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A strained epitaxial film can undergo surface instability and self assem-

ble into discrete islands. The unique physical features of these islands make

self-assembly an enabling technique for advanced device technology while con-

trol of the island size, shape, and alignment is critical. During the process

of self-assembly, the stress field and the interface interaction have profound

effects on the dynamics of surface evolution. In this dissertation, a contin-

uum model is developed to study the nonlinear dynamics of surface pattern

evolution and self assembly in epitaxial thin films. Within the framework of

vii



non-equilibrium thermodynamics, a nonlinear evolution equation is developed,

and a spectral method is implemented for numerical simulations. The effects

of stress and wetting are examined. It is found that, without wetting, the

nonlinear stress field induces a “blow-up” instability. With wetting, the thin

film self assembles into an array of discrete islands lying on a thin wetting

layer. The dynamics of island formation and coarsening over a long time and

a large area is well captured by the interplay of the nonlinear stress field and

the wetting effect in the present model.

For single-crystal epitaxy, the anisotropic material properties in the bulk

and surface play important roles in the process of self assembly and pattern

formation. In particular, this study investigates the effects of anisotropic mis-

match stress and generally anisotropic elasticity. First, under an anisotropic

mismatch stress, a bifurcation of surface pattern is predicted. The effect of

anisotropic elasticity on pattern evolution is then investigated for two specific

systems, one for SiGe films on Si substrates with different surface orienta-

tions, and the other for hexagonal silicides on Si substrates. It is shown that

the consideration of elastic anisotropy reveals a much richer dynamics of sur-

face pattern evolution as opposed to isotropic models. Based on the theoretical

and numerical results from the present study, experimental approaches may

be developed to control the size and organization of self assembled surface

patterns in epitaxial systems.
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Chapter 1

Introduction

1.1 Background and motivation

Since Gordon Moore first predicted in 1965 [1] that the number of tran-

sistors per integrated circuit chip would continue to double in each technology

generation, the microelectronics industry has followed an exponential progress

based on scaling down device features. However, significant challenges to de-

crease the limiting feature size will be faced in the near future [2]. Therefore, it

has been recognized that the development of future microelectronics industry

may rely on the establishment of alternative fabrication methods and novel de-

vice structures. In particular, unique quantum phenomena in low-dimensional

electronic materials such as quantum wells, wires and dots (Fig.1.1) have been

demonstrated due to their ultra small dimensions. The confinement in one

(well), two (wire) and three (dots) dimensions discretizes the density of states,

enabling great tunability for adsorption and emission of electrons or holes, and

resulting in superb transport and opto-electrionic properties [3]. With advan-
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Quantum well
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Quantum wire
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Quantum dot 

(0D)

Figure 1.1: Schematic illustration of different forms of electronic materials.

tages for high device integration and ultra-low power consumption, this kind of

nanostructure based device has great prospects to revolutionize conventional

technology.

The rapid growth of the microelectronics technology in the past two

decades has been enabled by sustained advances in essentially two different

fabrication paradigms, respectively referred to as “top-down” and “bottom-

up” [4, 5]. The top-down method begins with large homogeneous objects

and removes material as needed to create smaller-scale structures. Lithog-

raphy, etching, and epitaxial growth techniques are all belonging to the top-

down method. As device sizes continue to shrink toward the nanometer scale,

however, these “traditional” technologies will encounter significant limitations

[6]. To fully develop nanoelectronics technology, low-cost and high-throughput

manufacturing techniques are essential [6, 7].

During the last several years, development of the unconventional bottom-

up method for fabricating nanostructures has drawn tremendous research ef-
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fort across the world. A bottom-up approach involves putting together smaller

components to form a larger or more complex system, during which chemical,

physical, and biological processes may coexist [8, 9]. Self-assembly offers such

an atom-by-atom synthesis approach, which is universally conceded to be the

prime route to manufacturable functional nanoscale systems. In self-assembly,

subunits (atoms, molecules, or mesoscale objects) spontaneously organize and

form stable, well-defined structures. Because the final self-assembled struc-

tures are at or close to thermodynamic equilibrium, they tend to reject defects

[10]. A variety of strategies for self-assembly have been developed to fabri-

cate structures with dimensions ranging from molecular, through mesoscopic,

to macroscopic sizes. Examples include self-assembled monolayers, phase-

separated block copolymers, and colloidal particles. However, the development

of these methods into practical routes to useful nanostructures still requires

great ingenuity. Neither our understanding nor our control of self-assembly

is adequate to map out the road to achieving the desired functionality and

versatility that is already achieved routinely by the most lowly forms of living

organisms in nature.

Motivated by the exciting developments of nanofabrication and self as-

sembly in the recent years, the research objective of this dissertation is to

develop a fundamental understanding on the dynamic process of self assembly

in epitaxial systems.
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1.2 Epitaxy and self assembly

1.2.1 Thin film growth

Various thin film growth methods have been developed. The growth

process could be as simple as depositing atoms onto a substrate surface such

as in molecular beam epitaxy (MBE) and related sputtering techniques [4].

More complex process may involve chemical reactions on the substrate sur-

face, e.g., chemical vapor deposition (CVD) [4, 11]. The microstructures and

properties of thin films depend on the growth condition such as the growth

rate, temperature, and vapor pressure [12].

Based on a simple thermodynamics consideration, three different growth

modes of thin films are commonly observed [13]. As illustrated in Fig.1.2, they

may be described as layer-by-layer growth, layer-by-layer plus island growth,

and island growth. When the thin film material has a lower surface energy

than the substrate, it wets the substrate surface and grows continuously with

a nominally flat film surface to minimize the surface energy; this is the so-

called Frank-Van der Merwe (FV) mode [14]. When the film is subjected to

a stress (e.g., due to lattice mismatch between the film and the substrate),

however, the continuous 2D growth of flat film becomes unstable beyond a

critical thickness and a transition to 3D growth of islands occurs, which is the

Stranski-Krastanow (SK) mode [15]. On the other hand, if the film material

has relatively high surface energy compared to the substrate, the growth pro-

cess begins with discrete clusters of atoms on the substrate surface, followed

by growth and coalescence of islands to form continuous films, and it is called

the Volmer-Weber (VW) mode [16].

4



Figure 1.2: Modes of thin-film growth: (a) Frank-Van der Merwe growth mode,
(b) Stranski-Krastanow growth mode, (c) Volmer-Weber growth mode.

Practical applications in microelectronic devices often require high-

quality, single-crystal semiconductor thin films. The most common technique

to produce such films is thin film epitaxy. The word “epitaxy” refers to the

extension of the crystal structure of the substrate into the film. An interface

between the film and the substrate is considered epitaxial if the atoms of the

film material occupy the natural lattice positions of the substrate. Two types

of epitaxy can be distinguished [4]. One is homoepitaxy, which refers to the

cases when the film and the substrate are the same material. The other is

heteroepitaxy, when the film material is different from the substrate. Ex-

amples of thin films grown by heteroepitaxy include Ge or SiGe films on Si

and InAs compound films on GaAs. The growth process of these films often

follows the SK mode. For applications requiring flat film surfaces, the sur-

face roughening due to the 3D island growth beyond the critical thickness is

undesirable and various techniques have been developed to suppress the rough-

ening process. On the other hand, the spontaneous formation of nanoscale 3D

islands during the SK growth of heteroepitaxial films has emerged as an at-

5



tractive approach for synthesis of self-assembled quantum dots (SAQDs) for

both microelectronic and optoelectronic applications [17, 18].

1.2.2 Self assembled quantum dots

The potential to grow nanoscale islands by self assembly has attracted

much attention since 1990s with an objective to develop novel applications

in microelectronics. Early attempts with respect to SK growth of SAQDs

were given independently by Mo et al. [19] and Eaglesham et al. [20]. Mo

et al. studied the 2D-3D transition during the SK growth of Ge on Si(001)

with Scanning Tunneling Microscopy (STM), and observed special faceting

along certain directions and alignment. Eaglesham et al. [20] reported for-

mation of dislocation-free SiGe islands on Si(001) and a critical thickness for

the island growth. The critical island size for dislocation introduction was

also investigated. Later, Cullis et al. [21] performed a comprehensive image

contrast analysis of SiGe alloy films on Si, showed that the driving force for

surface roughening in thermodynamics terms as the lowering of the overall

free energy of the system. More investigations about the strain relaxation and

defect formation during the self-assembly process were performed by Hans-

son et al. [22], Osten et al. [23], Ozkan et al. [24], and Floro et al. [25].

The composition-dependent size of self-assembled islands was first studied by

Dorsch et al. [26, 27]. A variation of the layer composition for SiGe alloy was

found to play a role in corresponding island scaling. Similar conclusion was

given by Floro et al. [28] that the sequence of morphological transitions at

low mismatch strain is qualitatively identical to that for high mismatch strain,

while the length scale of islands can be significantly different with respect to
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Figure 1.3: Scanning electron micrograph (SEM) of Si0.75Ge0.25 island chains
along <100> [31].

different misfit. More recently, Berbezier et al. [29] performed a comprehen-

sive investigation of the different growth modes of SiGe alloy films on Si with

Ge composition varying from 0 to 1, and presented distinct growth regimes

according to different surface orientation.

Recently, tremendous efforts have been devoted to improving the size

uniformity and spatial ordering of SAQDs by optimizing growth conditions

and using various templates to control strain and surface conditions.

One such approach is to take advantage of the anisotropic material

properties in the epitaxial system. Bimberg et al. [30] fabricated InAs quan-

tum dots in GaAs matrix by Molecular Beam Epitaxy (MBE), and observed

dot arrays self-organized in rows along <100> directions. By Liquid Phase

Epitaxy (LPE) Si1−xGex on Si, Meixner et al. [31] found that the interplay

between the kinetics and the anisotropic strain field results in ordered “island

chains” along certain directions (Fig.1.3) [31]. Discussions for Ge on other

orientation of Si surface were presented by Ohmori et al. [32].
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(a) (b)

Figure 1.4: (a) 3D and 2D AFM images of the self-assembled Ge islands on
the <110> oriented Si stripe with a window width of 0.6µm [33]. (b) AFM
images with Ge islands located on a square Si mesa with the base lines parallel
to the <110> directions [34].
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(b)

(a)

Figure 1.5: (a) Cross-sectional TEM of a 10 period Si/Si0.5Ge0.5 dot multilayer
[36]. (b) AFM images of first and 25th layer of a GeSi dot superlattice [37].
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(a) (b)

Figure 1.6: (a) Schematic view of a strain-distribution control using buried ox-
ide inclusions. (b) Well-ordered Ge nanostructures on strain-controlled Si(001)
surfaces [43].
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Increasing effort has been devoted to methods using the substrate as a

template for island nucleation and growth (Fig.1.4). Kamins and Williams [33]

deposited Ge islands on raised Si stripes on a (001) wafer, and islands nucleated

preferentially at the edges were obtained, forming a linear array. Jin et al. [34]

investigated the arrangement of Ge islands on lithographically patterned sub-

micron mesas, and ordered arrays with uniform size were obtained. Recently,

Yang et al. [35] investigated the self-assembly of Ge quantum dots on patterned

Si(001) substrate using only simple photolithography and annealing. Ordered

1D quantum dot arrays were also achieved.

Stacked growth of multilayers of islands has also been demonstrated to

improve the dots ordering. As investigated by Teichert et al. [36], multiple

layers of SiGe islands are continuously grown, separated by Si layers (Fig.1.5).

The strain field from each buried layer of islands influences the positioning of

islands in the next layer and so on, thereby leading to more uniform spacing in

successive layers. A similar method was used by Bauer et al. [37], and ordered

patterns were achieved.

Many other techniques are also being used to control the self-assembled

patterns, such as growth on miscut substrates with surface steps [38] and on

relaxed templates with dislocation networks [39, 40]; adjust the stress fields

within the thin film for pattern selection [41]. Artificial design of a non-

uniform strain field in the substrate, either by a strained template or embedded

quantum dots, offers a better approach to directly control the size and spatial

ordering of SAQDs grown, as shown in Fig.1.6 [42–45].

In addition to SAQDs, other different self-assembled nanostructures are

being investigated concomitantly. One-dimensional nanowires were first re-
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ported by Loretto et al. [46] by growing CaF2 on Si. Anisotropic surface

energy was believed to be the reason for line formation. Following that, exten-

sive work has been done for fabricating self-assembled nanowires by using the

benefits of elasticity anisotropy of the substrate [43, 47–52]. More recently,

one-dimensional silicide nanowires have gained enough interests, and plenty

of efforts are given for both experimental and theoretical investigations [53–

59]. Meanwhile, research with respect to other interesting structures such as

quantum rings and quantum molecules have never been stopped, which makes

self-assembled nanostructures possible to have distinct optic and electronic

properties for novel device applications [60–65].

All these experimental works mentioned above have demonstrated the

feasibility of achieving tailored nanostructures. However, in spite of enormous

experiments, the kinetics and thermodynamics mechanisms underlying the

thin film self assembly have not been clearly understood yet. Complementary

theoretical investigations of the growth and formation process are therefore

required to guide the technology development, which motivates the outset of

this thesis.

1.2.3 Modeling approaches

It has been generally understood that a macroscopically flat surface of

a stressed solid is thermodynamically unstable. The first theoretical investiga-

tion of the morphological instability in a stressed solid was given by Asaro and

Tiller [66], and later independently by Grinfeld [67] and Srolovitz [68]. They

performed linear stability analyses for a surface bounding a two-dimensional

semi-infinite solid under stress-assisted surface diffusion. The general finding

12



is that planar surfaces are unstable to small disturbances with wavelengths

greater than a critical value. Such an instability is driven by the elastic energy

associated with the applied stress and was inhibited by the surface energy

of the solid. The rate of surface roughening is controlled by associated ki-

netics of material transport, such as surface diffusion. More recently, several

researchers performed nonlinear analyses and showed that the stress-driven

surface instability evolves into a deep, crack-like groove or cusp morphology

[69–72]. Experimental investigations have observed similar surface instability

and morphology evolution in a number of material systems [73, 74].

A thin single-crystal layer on top of another substrate with the same

crystalline structure but different lattice spacing is inherently stressed due to

mismatch of crystal lattices, thus unstable. For the most common growth

mode, SK mode, a transition from two-dimension (2D) growth of a nominally

flat film to three-dimensional (3D) growth of islands occurs above a critical

mean film thickness. Unlike a semi-infinite homogeneous solid, the presence of

the substrate affects the instability in several ways. First, the elastic stiffness

of the substrate may differ from that of the film, which leads to a different

critical wavelength [75–77]: a stiffer substrate tends to stabilize the film and in-

creases the critical wavelength, while the contrary is true for a softer substrate.

At the limit of a rigid substrate, a critical film thickness exists, below which

the thin film is stable against perturbations of any wavelengths. However, the

stiffness effect is insignificant for cases when the film and the substrate have

similar elastic properties, such as a SiGe film on a Si substrate [78]. A more

important effect is owing to the interface between the film and the substrate.

At close proximity to the interface, the wetting interaction between the film
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and the substrate becomes significant. If the film wets the substrate, the wet-

ting interaction will prevent the substrate from being exposed. Even when the

wetting interaction is weak or the film is non-wetting, in which case the sub-

strate surface may be partly exposed, the surface of the unstressed substrate

is stable against further roughening. In both cases, instead of forming deep

grooves, the film breaks up into discrete islands [20, 24, 78, 79]. The critical

thickness for the 2D-3D transition during SK growth can be predicted by in-

troducing a wetting potential that is in competition with the strain energy and

surface energy [80, 81]. Subsequent growth of 3D islands exhibit intriguingly

rich dynamics with shape transition and self organization.

Different modeling approaches have been developed to simulate sur-

face pattern evolution and self assembly of quantum dots, such as kinetic

Monte Carlo simulations [31, 82, 83], energy minimization methods [84–86],

mean-field analyses [87–89], molecular dynamics simulations [90], phase-field

modeling [91–94], and surface differential equation approaches [81, 95–98].

In particular, the differential equation approaches have been most popular,

possibly owing to the direct connections to surface physics (thermodynamics,

kinetics, and mechanics) as well as relatively simple mathematical forms, and

yet nontrivial nonlinear solutions.

Despite extensive research with both experimental and modeling pro-

gresses, many questions remain open for the growth and evolution dynamics

of epitaxial surfaces, regarding the conditions under which ordered surface

patterns form as well as the underlying science that controls the size and or-

dering of self-assembled surface structures (e.g., quantum dots and nanowires)

in various epitaxial systems.
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1.3 Scope of this dissertation

In this dissertation, a continuum theory based on nonequilibrium ther-

modynamics is developed for modeling surface evolution and self assembly

in epitaxial systems. A nonlinear evolution equation is derived to study the

nonlinear effects of the stress field and wetting. Furthermore, the effects of

anisotropic mismatch stresses and anisotropic crystal elasticity on pattern evo-

lution are analyzed theoretically, with respect to specific epitaxial systems.

This dissertation is organized as follows. As an introduction, Chapter

1 gives a brief account of the background and motivation for this work. Ex-

perimental and theoretical aspects on thin film growth and self assembly are

reviewed.

Chapter 2 presents the general formulation of the theoretical model

and the technique for numerical simulations. An asymptotic analysis of the

nonlinear stress field is presented for generally anisotropic systems. A spectral

method is developed for numerical simulations.

In Chapter 3, the nonlinear effects of the stress field and wetting are

analyzed. An isotropic system is considered here. Linear analyses and numer-

ical simulations are presented, first without the wetting effect and then with

a nonlinear wetting potential.

Chapter 4 presents an analysis of pattern evolution under anisotropic

mismatch stresses. Analytical linear analysis and numerical simulations show

that the rotational symmetry in the isotropic system is broken, leading to

nontrivial anisotropic patterns.

Chapter 5 considers more general anisotropic systems with both stress
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and material anisotropy. Two specific epitaxial systems are investigated. First,

SiGe films on Si substrates with different crystal orientations are considered.

The effects of crystal orientation, Ge concentration, and film thickness on pat-

tern evolution are examined. Second, self-assembled metal silicide nanowires

on Si substrates are simulated.

In conclusion, Chapter 6 outlines the theoretical findings from the present

study and remarks on potential directions for future work.
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Chapter 2

Model Formulation and

Solution Methods

The underlying mechanism of the surface evolution and self-assembly

process in epitaxial systems has been understood as a result of strain-induced

instability, mediated by deposition and diffusion kinetics. In this chapter, gen-

eral formulation of a theoretical model is developed. For a general anisotropic

system, an asymptotic approach is adopted to solve the nonlinear stress field.

Then, a spectral method is developed for numerical simulations of the epitaxial

surface evolution and self assembly.

2.1 General formulation

Consider a single-crystal thin film on a substrate of another crystal with

a similar crystalline structure but different lattice spacing, such as the simple

2D configuration shown in Fig.2.1(a). For a very thin film, the substrate can be
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regarded as an infinite half-plane, the lattice mismatch is fully accommodated

by an elastic mismatch strain in the film [14] and the effect of substrate is

ignored, briefly,

εm = (as − af )/af , (2.1)

where af and as are the lattice spacing for the film and the substrate, re-

spectively. In a 3D configuration, the mismatch strain can be isotropic (equi-

biaxial) or anisotropic, depending on the epitaxial system. For example, an

equi-biaxial mismatch strain is usually obtained for cubic crystal film epitaxy,

e.g., SiGe on Si [20, 99]. For hexagonal crystal films on cubic substrates, due to

the different lattice spacing in the hexagonal structures, anisotropic mismatch

strains are possible [53, 100]. Details of the two systems are discussed later in

Chapter 5.

Mechanisms of relaxation of the mismatch strain can be either island

formation by mass transport along the surface or accumulation of misfit dis-

locations within the stressed thin film. The motion of crystal dislocations

have been reviewed by Freund [101]. Under appropriate growth conditions, it

is possible to compensate the lattice mismatch by distortion of the lattice of

the overlayer without formation of misfit dislocations or islands [20, 23]. This

growth mode continues only up to a certain critical thickness of the film, which

depends on the lattice mismatch and the growth temperature. In the present

work, the purpose here is to focus on the strain relaxation by means of mass

transport, and self-assembled islands for films beyond the critical thickness are

assumed dislocation-free.

A set of right-handed Cartesian coordinate systems (x1, x2, x3) can be
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Figure 2.1: A heteroepitaxial thin film structure. (a) schematic of a lattice
structure, (b) reference state, (c) evolving state with wavy surface.

attached, with x3 aligned in the thickness direction and x3 = 0 at the interface

between the film and the substrate. At the reference state (Fig.2.1(b)) with

flat film surface, the film has a mean thickness h0, and is unbounded in the

x1 and x2 directions. The film surface is free of traction and is allowed to

undulate by mass transport with respect to time, with an evolving surface

profile h(x1, x2, t) (Fig.1.2(c)).

The free energy of such an epitaxial system includes contributions from

the elastic strain energy and the surface energy. Assuming that the thickness
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of the substrate is always much thicker than that of the film, the substrate

is taken to be an elastic half-space. The crystal material will tend to alter

its overall surface shape in order to change the elastic free energy, as well as

the surface free energy, thermodynamically minimizing the total free energy

of the system. Simple energetic analyses given by Srolovitz [68] and Mullins

[102] demonstrate the nature of this instability: the initial waviness of an

arbitrarily small amplitude in the surface shape of a stressed system will tend

to increase in amplitude to reduce the strain energy, while the slightly wavy

surfaces also tend to become flat in order to minimize the free surface energy.

Similar arguments are given by Freund and Jonsdottir [76] and Gao [103].

By definition, the total free energy of the system is evaluated by

G =

∫
Vs+Vf

UEdV +

∫
A0

γ(h)
√

1 + hαhαdA, (2.2)

where UE is strain energy density within the whole system, and takes the form,

UE =
1

2
σijεij, (i, j = 1 ∼ 3), (2.3)

σij and εij represent the stress and strain in both the film and the substrate,

γ(h) is the surface energy per unit area of the film surface, and is assumed

isotropic here as a function of the film thickness, hα = ∂h/∂xα(α = 1, 2) is

the gradient of the surface morphology. Vs and Vf are the volume of the film

and the substrate, respectively, and A0 refers to the projected area of the

curved film surface on the (x1, x2) plane. A repeated Greek subscript implies

summation over its value.

It is important to note that although such a simple form for surface

20



energy in Eq.(2.2) is sufficient for understanding the onset of the surface in-

stability, more complex forms of surface energy accounting for crystal surface

anisotropy and surface stress have been developed in order to understand the

size and shape of self-assembled islands. Chiu [96] assumed a surface energy as

a function of surface normal. The anisotropic surface energy leads to an addi-

tional term in the chemical potential. Zhang [104] used an anisotropic surface

energy of four-fold symmetry in the (001) plane to simulate shape transition

of self-assembled epitaxial islands. Zhang and Bower [105] defined a general

form of surface energy that produces shallow and localized minima for specific

surface orientations, and their simulations reproduced many observed features

in experiments such as island shape transition and surface faceting. A strongly

anisotropic surface energy was used by Savina et al. [106], with dependence

on both the surface normal and the local mean curvature. In addition to the

dependence on surface orientation, the surface energy of a stressed solid also

depends on surface deformation through surface stress [107–109]. The effect of

surface stress on epitaxial surface instability was investigated by Savina et al.

[110], using an isotropic surface energy with an additional surface stress term.

Shenoy and Freund [98] derived a general form of surface energy as a function

of both surface slope and strain. However, an extension of this form to ac-

count for the crystal symmetry within the epitaxial plane for 3D surfaces is not

yet available. In general, the application of complex surface energy functions

is hindered by the very limited knowledge of the additional parameters from

either experiments or first-principle models. For the present study, we take

the surface energy to be isotropic and independent of strain, and focus on the

effects of anisotropy in the elastic strain energy. It is believed that, while the
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surface energy anisotropy plays an important role in determining the island

shape, the elastic strain energy offers a long-range effect that controls the size

and organization of the island array.

Following the approach given by Freund and Jonsdottir [76], variation

of the total free energy gives,

δG =

∫
Vs+Vf

δUEdV +

∫
UEδV +

∫
Af

δγdA +

∫
γδAf . (2.4)

For a system in mechanical equilibrium with no external work done,

∫
Vs+Vf

δUEdV = 0. (2.5)

Consider a wavy surface with variational thickness h,

δV =

∫
A0

δhdA, (2.6)

and

δAf =

∫
A0

δ(
√

1 + hαhα)dA. (2.7)

Variation of the surface energy gives

δγ(h) =
dγ

dh
δh. (2.8)

Then, rewriting the variation form of the total free energy leads to

δG =

∫
A0

[
UE − γκ +

dγ

dh

1√
1 + hαhα

]
δhdA. (2.9)
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Here κ takes the form

κ =
(1 + hαhα)hββ − hαhβhαβ

(1 + hαhα)3/2
, (2.10)

and is the local mean curvature of the surface. The sign of κ is defined such

that it is positive for a concave surface and negative otherwise.

Consider the thickness change can be interpreted as the atomic volume

of the material, say, Ω, times the number of atoms q, being added to per unit

area of the film surface, then

δh = Ωδq. (2.11)

Thus the chemical potential for the mass transport process along the curvy

film surface can be defined as,

µ(x1, x2, t) = Ω

[
UE − γκ +

dγ

dh

1√
1 + hαhα

]
. (2.12)

The strain energy density UE is evaluated by Eq.(2.3). The second term

in Eq.(2.12) is due to surface energy,

US = −γκ. (2.13)

which is simply a product of the surface energy density (or surface tension)

and the local mean curvature of the surface.

Besides strain and surface energy terms, the third term in Eq.(2.12)

represents the interaction between the film surface and the film/substrate in-

terface as the local film thickness varies, which may be termed as the wetting
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potential,

UW =
dγ

dh

1√
1 + hαhα

. (2.14)

The characteristic 2D-3D transition of SK growth along with the pres-

ence of a thin wetting layer underlying self-assembled islands at the later stage

suggests that a critical thickness exists, below which the flat film surface is

stabilized. Different physical origins and modeling approaches of the critical

thickness have been proposed. Kukta and Freund [111] suggested a regular-

ization of the film/substrate interface by assuming a thin transition layer with

a continuous variation in the mismatch strain. The same idea was adopted by

Zhang and Bower [97] and their subsequent works, assuming a linear variation

of the strain in the transition layer. Alternatively, a transition layer of sur-

face energy density may be assumed [80, 112–114], which postulates a gradual

variation of the surface energy density from substrate to film, as illustrated in

Fig.2.2. This model specifies a surface energy that depends on the film thick-

ness and undergoes a rapid transition from γf (film) to γs (substrate) over a

length scale b. The curved line in the figure represents the variation behavior

across the interface and through a smooth transition over the region b. Out

of the transition region, the surface energy is γf if the film has relatively high

thickness and is γs if the substrate is exposed. To promote a wetting layer

along the interface, γf < γs is required.

Following this transition idea, a proper mathematical expression is given

by Spencer [114], described as

γ(h) =
1

2
(γf + γs) +

1

π
(γf − γs) arctan(

h

b
) (2.15)
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Figure 2.2: Schematic of surface energy model across the film/substrate inter-
face.

This function offers the properties that γ(h) → γs with h → −∞, and γ(h) →

γf when h → +∞, which recovers the surface energy properties above and

below the interface, and for the present work, it is adopted as the surface

energy which leads to a nonlinear wetting potential as follows,

UW =
γf − γs√
1 + hαhα

b

π(b2 + h2)
. (2.16)

Different functional forms of the wetting potential have also been ob-

tained by considering physical interactions between the film and the substrate,

such as quantum confinement and van der Waals interactions [96, 105, 115]. A

general discussion on the effect of the wetting potential on surface instability

and pattern evolution dynamics was presented by Golovin et al. [116]. In
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principle, the wetting potential can be anisotropic, for example, as a result of

the transition of anisotropic surface energy. This however is not considered

in the present study, to be consistent with the assumption of isotropic surface

energy.

Under the circumstance of high temperature (500oC) and large mis-

match stress (1GPa), the material tends to change its surface shape by mass

transport, principally through the surface diffusion. The surface chemical po-

tential, if non-uniform, drives the surface diffusion process. A linear kinetic

law has been proposed, where the diffusion flux is proportional to the gradient

of the chemical potential, namely

Jα = −Mαβ
∂

∂xβ

(µ
√

1 + hχhχ), (2.17)

where Mαβ represents a generally anisotropic surface mobility. Note that,

in Eq.(2.17), the chemical potential is projected onto a plane parallel to the

film/substrate interface before taking the gradient with respect to the in-plane

coordinates. Assuming isotropic surface diffusion, we have Mαβ = M0δαβ,

where M0 is a constant and δαβ is the Kronecker delta.

Conservation of mass at each point along the surface requires that the

normal velocity is proportional to the divergence of the local surface flux [102],

∂h

∂t
= −Ω∇ · J (2.18)

Combination of (2.12), (2.17) and (2.18) leads to the change of the local thick-
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ness, namely

∂h

∂t
= Ω2Mαβ

∂2

∂xα∂xβ

[(UE + US + UW )
√

1 + hχhχ]. (2.19)

This is a typical diffusion equation valid for any nonlinear, anisotropic

situations. A flux term may be included to simulate growth during deposi-

tion, but often ignored for surface evolution upon annealing. The elastic strain

energy density at the surface is to be determined by solving an anisotropic

boundary value problem (details will be given in the next section). Further

complication of the differential evolution equation may involve the kinetics.

Considerations of anisotropic surface diffusion [117] and nonlinear kinetics

[118] may reveal more interesting surface dynamics. In addition, coupling

of surface and volume diffusion may also be important in some cases [119].

These issues will be left for future study.

2.2 Nonlinear, anisotropic stress field

Suppose that the half-space thin film/substrate system is not subjected

to externally applied surface traction. The traction free boundary condition

at the film surface (x3 = h) is generically imposed and self-satisfied by

σijnj = 0 (2.20)

with a unit vector of the surface normal given by

nα =
−hα√

1 + hβhβ

, n3 =
1√

1 + hβhβ

. (2.21)
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For a perfectly flat surface, which refers to the reference state, the normal

vector takes the form,

n = {0, 0, 1}, (2.22)

and above traction free boundary condition yields the vanish of out-of-plane

stress components, say,

σ
(0)
i3 = 0.(i = 1 ∼ 3) (2.23)

The reference state stress fields are uniform in the film, with in-plane com-

ponents, σ
(0)
11 , σ

(0)
12 and σ

(0)
22 only. For a given in-plane mismatch strain state,

ε
(0)
αβ , the stress and strain fields in the epitaxial thin film is connected by the

generalized Hooke’s law,

σ
(0)
ij = Cf

ijklε
(0)
kl , (2.24)

where Cf
ijkl represents the elastic constants for the film. Thus, a solvable

determinant equation system is presented, with 6 unknowns σ
(0)
αβ , and ε

(0)
3i .

Eq.(2.23) decouples the stress and strain terms, and makes it possible to solve

strain and stress separately.

In specific, the three unknown strain components are calculated first,



ε
(0)
33

ε
(0)
23

ε
(0)
31


= −A−1

2 A1



ε
(0)
11

ε
(0)
22

ε
(0)
12


, (2.25)
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where

A1 =



C31 C32 C36

C41 C42 C46

C51 C52 C56


, (2.26)

and

A2 =



C33 C34 C35

C43 C44 C45

C53 C54 C55


. (2.27)

It is worth mention that the existence of nonzero out-of-plane shear strains is

depending on the characteristics of compliance matrix: for cubic crystalline

films epitaxy on certain orientated surfaces, such as (001), (110), and (111),

Eq.(2.25) gives zero shear strains, while for cubic films on particular surface

such as (113), nonzero shear strain components are obtained, which indicates

the existence of out-of-plane shear deformation induced by in-plane epitaxial

mismatch strains in the film.

After the strain components are obtained by Eq.(2.25) the unknown

stress components are in turn calculated by Eq.(2.24). Corresponding strain

energy density at the reference state is simply calculated by

U
(0)
E =

1

2
σ

(0)
αβ ε

(0)
αβ . (2.28)

When the surface starts to evolve, general forms Eq.(2.21) sustain for
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unit vector, and the value keep changing along with the undulation of surface.

The nonlinearity in Eq.(2.21) is raised with respect to the moving boundary.

Corresponding stress and strain components in the film need to be evaluated

by solving a half-plane boundary value problem subjected to the action of

surface traction. This can be clearly interpreted by a superposition procedure

[103]. The interface between the film and the substrate (x3 = 0) remains

coherent, implying continuity for tractions and displacements. The substrate

is assumed to be infinitely thick with both the stress and the displacement

diminishing as x3 → −∞. Due to the nonlinearity in the boundary condition

(2.20), the elasticity problem in general must be solved numerically, which is

computationally expensive in 3D. An alternative approach will be introduced

next.

Following an asymptotic analysis by Xiang and E [72], we expand the

stress field into a series in the order of the surface gradient, namely,

σij = σ
(0)
ij + σ

(1)
ij + σ

(2)
ij + · · · , (2.29)

where σ
(0)
ij is the mismatch stress at the reference state, σ

(1)
ij represents a linear

perturbation to the reference stress field. The third term, σ
(2)
ij , is to the second

order of the magnitude of the surface gradient, as the leading nonlinear term

(second-order perturbation) of the stress field. In principle, successively higher

order terms can be included.

By substituting series (2.29) into the boundary condition (2.20) and
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keeping only the first-order terms, we obtain,

−σ
(0)
iα hα + σ

(1)
i3 = 0. (2.30)

Since only in-plane components exist for zeroth-order stresses, a boundary

condition for the first-order stresses is derived from Eq.(2.30):

σ
(1)
3α = σ

(0)
αβhβ, σ

(1)
33 = 0. (2.31)

Similarly, for the second-order stresses, we still put Eq.(2.29) into the boundary

condition and keep up to second-order terms,

−σ
(1)
iα hα + σ

(2)
i3 = 0. (2.32)

With the help of Eq.(2.31), nonlinear boundary conditions take the form

σ
(2)
3α = σ

(1)
αβhβ, σ

(2)
33 = σ

(0)
αβhαhβ. (2.33)

Both linear and nonlinear boundary conditions should be applied at

the film surface, i.e., x3 = h(x1, x2, t). A couple of approximations may be

used to solve such boundary value problems. First, for a film surface with

relatively slow variation of its thickness along the in-plane directions, the un-

dulated surface may be approximated by a flat surface with the average film

thickness (x3 = h0). As will be shown later from simulations, the surface pat-

tern usually has a characteristic length (e.g., wavelength for periodic patterns)

much larger than the amplitude of its thickness undulation. From experimen-
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tal observations, the diameter of self-assembled quantum dots is typically 1-2

orders of magnitude greater than the height [24, 42, 120, 121]. The second

approximation is to take the film-substrate problem as a semi-infinite homoge-

neous half-space problem. This is a reasonable approximation when the elastic

moduli for the film and the substrate are similar, such as SiGe films on Si sub-

strate [76, 78]. It has also been shown that, at the limit of very thin films,

the surface displacement at the film surface is predominantly controlled by the

substrate elasticity [77]. Therefore, in the following, the surface displacements

corresponding to the linear and nonlinear stress fields are approximately de-

termined by solving the half-space problem with boundary conditions (2.31)

and (2.33). By this approach, the effect of substrate elasticity is taken into

account in the calculation of the surface displacement, while the elastic mod-

uli of the film are used in calculating the mismatch stresses (i.e., σ
(0)
αβ ). As

a result, the effect of anisotropy is decomposed into two origins, one due to

the mismatch stress as related to the elastic anisotropy of the film and the

other due to the substrate. The generally anisotropic, linear elastic half-space

problem is solved by a Fourier transform method as detailed in Appendix A.

The solution gives a relationship between the surface traction and the surface

displacement in the Fourier space, namely

û
(n)
i (k1, k2) = Qij(k1, k2)σ̂

(n)
3j . (2.34)

where k1, k2 are the coordinates in the Fourier space (i.e., components of the

wave vector), Qij is a compliance matrix that depends on the elastic moduli of

the substrate, and n = 1, 2 for the first and second-order solutions, respectively.
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In accordance with the series expansion of the stress field in (2.29), the strain

energy density at the film surface can be written in form of a series as well:

UE = U
(0)
E + U

(1)
E + U

(2)
E + · · · . (2.35)

U
(0)
E is given in Eq.(2.28), and, by using the symmetry property of stiffness

matrix, other order strain energy terms are derived accordingly,

U
(1)
E = σ

(0)
αβ

∂u
(1)
α

∂xβ

, (2.36)

U
(2)
E = σ

(0)
αβ

∂u
(2)
α

∂xβ

+
1

2
σ

(1)
αβ

∂u
(1)
α

∂xβ

+
1

2
σ

(0)
αβhβ(

∂u
(1)
3

∂xα

+
∂u

(1)
α

∂x3

). (2.37)

The term U
(1)
E is the strain energy density to the first order of surface pertur-

bation and U
(2)
E is to the second order of surface perturbation, which is the

leading nonlinear term. The higher order terms are truncated for the present

study.

2.3 Spectral method for numerical simulations

In this dissertation, the evolution problem is formulated and governing

diffusion equation is integrated numerically by a spectral method. All simu-

lations are implemented and performed by commercial software MATLAB R©.

This section is intended to give an introduction to spectral methods and cor-

responding implementations in MATLAB.

Spectral method is a nice technology for solving ordinary differential

equations (ODEs) and partial differential equations (PDEs). The fundamental
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principle of spectral method is: given discrete data on a grid, interpolate the

data globally, and evaluate the derivative of the interpolant on the grid. This

approach offers a solution with higher accuracy for ODEs or PDEs defined

smoothly on a simple domain.

Depending on specific type of differential equations, the geometry of

spatial domains, and specific boundary conditions, different spectral schemes

have been developed [122]. For our present problem with unbounded domain,

the evolution process is unrelated to boundaries, and periodic boundary condi-

tion seems to be appropriate to use. In this dissertation, the spectral method

using Fourier series is employed in our simulation. Other approaches can be

found from general resources of numerical methods [123].

Fourier spectral method is processed by doing Fourier transform to the

objects and performing the calculation in Fourier space. After that, func-

tions are transformed back to the original space by taking the inverse Fourier

transform. This process is then iterated for each time step of the algorithm.

Specifically, the procedure for using Fourier spectral method to solve differen-

tial equations in a discrete simulation domain:

Step 1. For a given function f(x) , calculate the f̂(k) by using Discrete

Fourier Transform (DFT) in physical space.

Step 2. Evaluate f̂ ′
x by f̂ ′

x = ikf̂(k) in Fourier space.

Step 3. Obtain the spectral differentiation f ′(x) by applying inverse

DFT, giving the value in physical space again.

The computation of the DFT and inverse DFT can be accomplished by

the Fast Fourier Transform (FFT) and inverse Fast Fourier Transform (IFFT),

respectively. FFT is the technique for performing discrete Fourier transform
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in a computationally efficient way. Details can be found in many references

[124–127]. In MATLAB, the operations are performed by built-in functions

fft and ifft.

Now we look at the problem being described by a general nonlinear

PDE:

∂h

∂t
= L(h) + N(h), (2.38)

where L and N are linear and nonlinear operators, respectively. Fourier trans-

form of Eq.(2.38) gives

∂ĥ

∂t
= α(k) · ĥ + φ(ĥ), (2.39)

where α(k) is the coefficient from the linear term, which is a function of the

wave vector k in Fourier space, and φ(ĥ) is the nonlinear term, in terms of the

Fourier transformed thickness ĥ.

Eq.(2.39) can be integrated by a semi-implicit method in Fourier space:

the backward finite difference scheme is used for the linear part, and the for-

ward finite difference scheme is used for the nonlinear part, namely,

ĥ(n+1) − ĥ(n)

∆t
= α(k) · ĥ(n+1) + φ(ĥ(n)). (2.40)

Solving for ĥ(n+1) leads to

ĥ(n+1) =
ĥ(n) + φ(ĥ(n))∆t

1 − α(k)∆t
. (2.41)

It is important to note that the scheme is not unconditionally stable. There

exists a maximum ∆t, which is determined by both linear and nonlinear terms

[127].
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Figure 2.3 illustrates the flow chart for the integration of Eq.(2.41). By

communicating between the physical and Fourier spaces back and forth, linear

and nonlinear terms are calculated separately, and the surface profile h can be

traced at each time step by circling the loop.
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)(ˆ n
hik

)0()1( ˆˆ
mhQiku

)1(
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Figure 2.3: Flow chart for the numerical integration of surface profile.
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Chapter 3

Nonlinear Effect of Stress and

Wetting

Early investigations for a stressed solid by performing only the linear

analyses energetically revealed the reason for surface instability. Followed

nonlinear analyses, however, obtained a deep, crack-like groove or cusp mor-

phology, which has been supported by experiments observations. Different

from the stresses solid, for a thin film/substrate epitaxial system, the effect of

wetting energy attributed from the interface can even play an important role

in surface evolution and can not be ignored.

In this chapter, we will focus on the nonlinear effect in isotropic sys-

tems. With the general formulation developed in Chapter 2, we solve the

boundary value problems for the first- and second-order stress fields, and an-

alyze the nonlinear effects of stress and wetting. The effects of anisotropy will

be discussed in subsequent chapters.
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3.1 First-order solution: linear analysis

At the present study, an isotropic system is defined as both the surface

properties (surface energy) and the bulk properties (elastic moduli for film

and substrate) are isotropic, and the epitaxial growth offers an equi-biaxial

in-plane mismatch strain,

ε
(0)
αβ = εmδαβ. (3.1)

For an isotropic system, at the reference state, an equi-biaxial stress

state is induced by the mismatch strain,

σ
(0)
αβ = σmδαβ, (3.2)

and corresponding zeroth-order strain energy density is,

U
(0)
E =

1 − νf

Ef

σ2
m, (3.3)

where Ef is Young’s modulus of the film and νf is Poisson’s ratio. The ref-

erence state is an unstable equilibrium configuration because certain small

perturbations can grow. The boundary condition for the first-order stress

field, for isotropic system, can be simplified from Eq.(2.31),

σ
(1)
3α = σmhα, σ

(1)
33 = 0. (3.4)

For a semi-infinite solid subjected to surface tractions, the displace-

ment at the same surface can be evaluated analytically in the Fourier space

(Appendix A). From the solution to the classical Cerruti’s problem in linear
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elasticity, a simple form of the surface displacement with respect to first-order

traction boundary is obtained in terms of Fourier transforms:

û(1)
α = ikβQαβσmĥ, (3.5)

where û
(1)
α and ĥ are the Fourier transforms of the surface displacement and

the thickness profile, respectively, Qαβ is the compliance matrix of the sub-

strate given by (A.19), and kβ is the component of the wave vector in the

Fourier space. The thin-film approximation effectively takes into account the

elastic properties of the substrate, while the mismatch stress σm depends on

the elastic properties of the film. Consequently, different elastic properties can

be accommodated. Equation (3.5) is exact if the film and the substrate have

identical elastic properties, thus can also be used as a reasonable approxima-

tion for cases with elastically similar film and substrate materials.

Corresponding to the surface displacement in Eq.(3.5), the first-order

elastic strain energy density at the surface is

U
(1)
E = σm

∂u
(1)
α

∂xα

. (3.6)

The surface curvature as given in Eq.(2.10) can be expanded as

κ = hαα(1 − 1

2
δ2) − hαβhαhβ + O(δ4), (3.7)

where δ =
√

hαhα is the magnitude of the surface gradient vector. In the

present study, only the linear term ( κ = hαα) is used for the first and second-

order analyses, because the first nonlinear term in Eq.(3.7) is of the third
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order.

The surface energy γ(h) can be expanded with respect to reference

thickness ,

γ(h) = γ(h0) + γ′(h0)δh + · · · . (3.8)

Truncate higher order terms, we can take first term γ(h0) for linear analysis,

and it can be reasonably approximated by constant film surface tension γf for

very thin transition layer thickness.

To investigate the nonlinear stress effects, the wetting energy is not

considered at this part. By keeping the first-order terms only in Eq.(2.19), we

obtain a linearized evolution equation

∂h

∂t
= Ω2M

∂2

∂xβ∂xβ

(σm
∂u

(1)
α

∂xα

− γfhαα). (3.9)

Fourier transform of Eq.(3.9) leads to the linear equation in the Fourier space,

∂ĥ

∂t
= Ω2Mk2(

2σ2
m

Es

k − γfk
2)ĥ. (3.10)

where Es = Es/(1 − ν2
s ) is the plane-strain modulus of the substrate and

k2 = k2
1 + k2

2.

The two terms in the bracket of Eq.(3.10) compete with each other:

to relax the total free energy, the first term, strain energy, drives surface

instability, while the second term, surface energy, stabilizes the surface to

minimize the surface area. The competition sets up a length scale and an
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associated time scale, namely,

L =
γfEs

2σ2
m

, (3.11)

τ =
L4

Ω2Mγf

=
γ3

fE
4

s

16Ω2Mσ8
m

. (3.12)

Eq.(3.10) takes the form of an ordinary differential equation (ODE).

For a constant wave number k, the solution to Eq.(3.10) is simply

ĥ(k, t) = A exp(
st

τ
), (3.13)

where s is the normalized growth rate,

s = (kL)3(1 − kL), (3.14)

and A is the initial amplitude.

A critical wavelength (λc = 2πL) and the fastest growing mode (λm =

8
3
πL) can be determined according to Eq.(3.14). This result agrees with pre-

vious studies by linear perturbation analysis [75, 77]. To simulate surface

evolution with an arbitrary initial perturbation, the spectral method is em-

ployed for numerical simulations. At each step, the current thickness profile

is transformed into the Fourier space by Fast Fourier Transform (FFT). The

evolution equation (3.10) is integrated by a backward Euler scheme of finite

difference:

ĥ(n+1) =
ĥ(n)

1 − s∆t
, (3.15)
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where δt is the time step, normalized by the time scale in (3.12). The new

profile can then be obtained by an inverse FFT, assuming periodic bound-

ary conditions in the plane of the film. Same procedure can be applied for

both 2D and 3D configurations. Notably, normalization with the length L

and the time τ leads to a generic equation with no system-specific parameters.

Consequently, numerical simulations can be performed without specifying any

particular material properties; the result is general for all isotropic systems in

the linear regime, with the system dependence implicitly accounted for by the

definitions of the length and time scales.
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Figure 3.1: Two-dimensional simulation of surface evolution based on the
linear analysis.
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The result from a 2D simulation is shown in Fig.3.1, where the film

thickness varies in one direction only. A film stripe of 20L width is considered,

whose surface is discretized into 128 grid points. The simulation starts from

a sinusoidal perturbation with a wavelength 10L (close to the fastest grow-

ing mode) and a small amplitude (10−4L), using the normalized time step

∆t = 0.1. As the amplitude of the perturbation grows, the surface profile re-

mains sinusoidal, as expected from the linear perturbation analysis. Figure 3.2

shows the result from a 3D simulation, with a square computational cell of size

100L by 100L, starting from a random initial perturbation (Fig.3.2(a)). The

computational cell is discretized into a 128 by 128 grid, and the normalized

time step is again 0.1. Refining the computational grid and the time step leads

to no difference in the simulation results. As shown in Fig.3.2 (b)-(e), the sur-

face pattern quickly selects a characteristic length. Subsequently, the overall

pattern remains unchanged, while the surface roughness grows. Therefore, us-

ing the first-order evolution equation, the film surface evolves self-similarly in

both 2D and 3D configurations. The Fourier spectrum of the surface pattern

(Fig.3.2(f)) exhibits a circular ring of the peak intensity at the radius cor-

responding to the wave number of the fastest growing mode, 2πL/λm=0.75.

The randomly oriented labyrinth-type surface pattern is a common feature for

isotropic systems, similar to the domain patterns of modulated phases in a

variety of physical-chemical systems [128] and the wrinkling patterns of thin

films [129, 130].
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Figure 3.2: Three-dimensional simulation of surface evolution based on the
linear analysis. (a)-(e) are gray scale contour plots of the thickness profile,
h(x1, x2), white for crests and dark for troughs; (a) random perturbation at
t = 0, RMS = 5.77×10-5; (b) t = 20, RMS = 7.40×10-5; (c) t = 50, RMS
= 1.64×10-3; (d) t = 75, RMS = 2.39×10-2; (e) t = 100, RMS = 3.60×10-1;
(f) The Fourier spectrum of the surface pattern, which remains the same for
(b)-(e).
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3.2 Nonlinear effect of stress

Following the same procedure as in the previous section, the second-

order terms in the nonlinear boundary condition (2.33) lead to

σ
(2)
3α = σ

(1)
αβhβ, σ

(2)
33 = σmhβhβ. (3.16)

Here both shear and normal tractions are in action for the second-order field.

Under the thin-film approximation as described earlier, the Fourier transform

of the second-order surface displacement is

û(2)
α = Qαβϕ̂α + Qα3σmφ̂, (3.17)

where ϕα = σ
(1)
αβhβ, φ = hβhβ. The corresponding second-order strain energy

density at the surface is

U
(2)
E =

1

2
σ

(1)
ij ε

(1)
ij + σm

∂u
(2)
α

∂xα

. (3.18)

Noting Eq.(3.4) for the first-order surface tractions, the first term at the right

hand side of Eq.(3.18) can be written as

1

2
σ

(1)
ij ε

(1)
ij =

1 + νf

1 − νf

U
(0)
E φ + ψ (3.19)

where ψ = 1
2
σ

(1)
αβ ε

(1)
αβ and

ε
(1)
αβ =

1

2

[
∂u

(1)
α

∂xβ

+
∂u

(1)
β

∂xα

]
, (3.20)
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σ
(1)
αβ =

Ef

1 + νf

[
ε
(1)
αβ +

νf

1 − νf

ε(1)
γγ δαβ

]
. (3.21)

Substituting Eq.(3.19) into Eq.(3.18) and then into the governing equation

(2.19), together with the zero and first-order strain energies in Eq.(3.3) and

Eq.(3.6), and keeping terms up to the second order, we obtain a nonlinear

evolution equation for the isotropic system,

∂h

∂t
= Ω2M

∂2

∂xβ∂xβ

[
σm

∂u
(1)
α

∂xα

− γfhαα + σm
∂u

(2)
α

∂xα

+
3 + νf

2(1 − νf )
U

(0)
E φ + ψ

]
.

(3.22)

The first two terms in the bracket of Eq.(3.22) are the linear terms as in the

first-order equation (3.9), and the last three terms are the nonlinear terms of

the second order. Fourier transform of Eq.(3.22) leads to

∂ĥ

∂t
= Ω2Mk2

[
(
2σ2

m

Es

k − γfk
2)ĥ − ikαQαβϕ̂βσm − AU

(0)
E φ̂ − ψ̂

]
. (3.23)

where

A =
3 + νf

2(1 − νf )
+

(1 + νf )(1 − 2νs)Ef

(1 − νs)Es

. (3.24)

The semi-implicit algorithm introduced in Chapter 2 is adopted to integrate

Eq.(3.23), where the linear part is integrated by a backward finite difference

scheme and the nonlinear part by a forward scheme. The time integration

takes the form

ĥ(n+1) =
ĥ(n) − φ(n)∆t

1 − s∆t
, (3.25)
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where s is the normalized growth rate as obtained from the linear analysis,

and

φ =
1

2
k2

[
AEs

(1 + νf )Ef

φ̂ +
Ef

Es

ψ̂ +
Ef

Es

ikαQαβϕ̂β

]
. (3.26)

The length scale L, the time scale τ , and the modulus Ef have been used above

to normalize length, time, and stress, respectively. Unlike the first-order equa-

tion, numerical simulation of the second-order equation requires specification

of a set of physical parameters, including the modulus ratio (Ef/Es), and the

Poisson’s ratios (νf and νs).

A brief description of the numerical procedures follows. Starting with a

thickness profile, h(x1, x2, t), compute ĥ(k1, k2, t) with the Fast Fourier Trans-

form (FFT). Then, in the Fourier space, compute ikαĥ, û
(1)
α = ikβQαβĥσm, and

ikβû
(1)
α , by simple multiplications. Next, we obtain hα, u

(1)
α , and ∂u

(1)
α /∂xβ by

inverse FFT, and compute the nonlinear terms, φ, ϕα, and ψ, in the real

space, again by simple multiplications at each grid point. After transforming

the nonlinear terms into the Fourier space, Eq.(3.25) is used to update the

Fourier transform of the thickness profile, ĥ(k1, k2, t+∆t). The new thickness

profile is then obtained by an inverse FFT. The procedures repeat to simulate

evolution of the thickness profile. Similar numerical methods have been used

in simulations of other evolution problems [131, 132] with good stability and

efficiency.

The result from a 2D simulation is shown in Fig.3.3. The normalized

physical parameters are: Ef/Es = 1.1, and νs = νf = 0.25. All other nu-

merical parameters are identical to those in Fig.3.1, and the convergence of

the result was confirmed with finer discretization and time steps. The result
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Figure 3.3: Two-dimensional simulation of surface evolution by the nonlinear
analysis with no wetting effect.

is dramatically different from Fig.3.1. Instead of self-similar evolution of a

sinusoidal perturbation, the surface develops deep grooves, exemplifying the

effect of the nonlinear stress field. The result is similar to those obtained by

Spencer and Meiron [71] and Xiang and E [72], but somewhat different from

that by Yang and Srolovitz [69, 70]. In the latter case, the grooving was more

localized, which may be a result of stronger nonlinearity as opposed to the

second-order consideration in the present study. As pointed out by Yang and

Srolovitz [69, 70], the grooving may lead to nucleation of surface cracks in a

stressed solid, even with an initially defect-free, nearly flat surface. For an

epitaxial thin film on a substrate, however, the development of deep groov-
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ing would be suppressed by the wetting effect at the film/substrate interface,

which will be discussed in the following section.

A 3D simulation is shown in Fig.3.4, with the same physical parame-

ters as for Fig.3.3. The numerical parameters (including the initial random

perturbation) are identical to those in Fig.3.2. The initial stage of surface

evolution is similar to Fig.3.2. However, after a finite time, the solution blows

up (Figs.3.4(e) and 3.4(f)). Instead of a crack-like grooving expected from

the 2D simulations, the surface develops a circular pit-like morphology. The

result persists with finer numerical grids and time steps. Similar features were

also observed in previous studies [116]. This is believed to be a result of the

isotropic model, where both the driving force and the kinetics are isotropic,

with no particular direction(s) favored for grooving. On the other hand, the

crack-like morphology observed in experiments could be due to the effect of

anisotropy in the real systems. For example, in one case, the applied stress

was uniaxial [74]. Furthermore, even for an isotropic system, it has been

known that a circular void in a stressed solid can be unstable and evolve into

a crack-like slit [133]. This process, however, is not captured in the present

model because the simulation becomes numerically unstable shortly after the

blow-up: the tip of the circular pit advances increasingly faster, requiring

higher-order nonlinear analysis for simulations of further evolution.

The above numerical simulations clearly demonstrate the effect of the

nonlinear stress field on the dynamics of surface evolution. The nonlinear

behavior is far from what can be expected from a linear analysis, and the

results can be quite different between 2D and 3D configurations. Since the

wetting potential is ignored, the effect of the film/substrate interface is not
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Figure 3.4: Three-dimensional simulation of surface evolution based on the
nonlinear analysis with no wetting effect. (a)-(e) are gray scale contour plots
of the thickness profile, h(x1, x2), white for crests and dark for troughs; (a)
random perturbation at t = 0, RMS = 5.77×10-5; (b) t = 20, RMS = 6.67×10-
5; (c) t = 50, RMS = 1.3×10-3; (d) t = 70, RMS = 0.97×10-2; (e) t = 93,
RMS = 1.16×10-1; (f) The local 3D view of a circular pit at t = 93.

50



accounted for and the result is essentially identical to that for stressed semi-

infinite solids. For thin films, however, the wetting effect must be considered

explicitly.

3.3 Effect of wetting

For the SK mode epitaxial growth in our discussion, wetting energy

along the interface favors a thin wetting layer, and prevents the substrate

to be exposed. The effect of this wetting potential on surface evolution is

discussed in this section.

With the same procedure of doing the linear analysis for the stress

effects, by linearizing the wetting potential in Eq.(2.16), we obtain the first-

order evolution equation taking into account the effect of wetting

∂h

∂t
= Ω2M

∂2

∂xβ∂xβ

[
σm

∂u
(1)
α

∂xα

− γfhαα − 2(γf − γs)b

πh3
0

h

]
. (3.27)

Fourier transform of Eq.(3.27) leads to

∂ĥ

∂t
= Ω2Mk2

[
2σ2

m

Es

k − γfk
2 +

2b(γf − γs)

πh3
0

]
ĥ. (3.28)

For a constant wave number k, the solution to Eq.(3.28) has the same form as

(3.13), but with a different growth rate

s = (kL)2

[
kL − (kL)2 +

2bL2(γf − γs)

πh3
0γf

]
. (3.29)

The third term in the bracket of Eq.(3.29) represents the effect of wetting
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Figure 3.5: Linear analysis of the wetting effect: the growth rate versus the
wave number for different film thickness. The critical thickness hc is defined
by Eq.(3.28).

on the initial growth rate, which depends on the film thickness (h0) and the

transition of surface energy (i.e., γs, γf , b). The growth rate versus the wave

number is plotted in Fig.3.5 for different film thicknesses.

When γf < γs, a critical thickness is defined as

hc = 2L

[
b(γs − γf )

πLγf

]1/3

. (3.30)

If h0 < hc, the growth rate is negative for all wave numbers; the film is thus

stable with a flat surface. If h0 > hc, the growth rate becomes positive for wave

numbers between two critical values. Consequently the flat surface becomes
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unstable. This is consistent with the characteristics of SK growth of epitaxial

thin films, in which the film morphology undergoes a 2D-3D transition after

a critical thickness [20]. Using typical values: σ = 1GPa, Es = 150GPa,

γf = 1N/m, γs = 1.2N/m, and b = 0.1nm, we obtain that hc = 6.6nm,

which is in the reasonable range of the length scale reported by experiments.

The critical thickness weakly depends on the length b, which may be selected

empirically. For relatively thick films (e.g., h0 > 5hc), the wetting effect is

negligible at the initial stage, and the growth rate is essentially independent of

the film thickness. In between, both the growth rate and the fastest growing

wave number increases as the film thickness increases. The wetting potential

therefore has a significant effect on surface stability and evolution of thin films

(h0 < 5hc).

Another feature which is worthy of more discussion in Fig.3.5 is the

existence of a window for the wave number. Once the film thickness is beyond

the critical thickness, according to each thickness, there is always a distinct

minimum and maximum wave number, between which the fastest growing rate

is positive and otherwise outside the window. This indicates that the onset

of surface roughening process can be considered under the control of both the

deposited film thickness and perturbation condition of the surface.

Interestingly, if γf > γs, the present analysis predicts that the film

becomes increasingly unstable as the thickness decreases. Consequently, the

film tends to form clusters at the beginning of growth, characteristic of the

Volmer-Weber mode [134]. The dynamics of surface evolution for this case

will be left for future studies.

To look at the effect of complete wetting energy form, we start with the
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combination of linear other energy terms plus nonlinear wetting energy. By

putting the nonlinear wetting term into Eq.(3.27), we obtain,

∂h

∂t
= Ω2M

∂2

∂xβ∂xβ

[
σm

∂u
(1)
α

∂xα

− γfhαα − γs − γf

π
(ξhαα +

b

b2 + h2
)

]
, (3.31)

where ξ = π/2 − arctan(h
b
).

Following the same procedures described in last section, numerical sim-

ulations of surface evolution are conducted using the spectral method. First,

the result from a 2D simulation is shown in Fig.3.6. In addition to the same

parameters used in Fig.3.3, we take h0 = 0.1L, b = 0.001L, and γs/γf = 1.2,

which leads to a critical thickness hc = 0.08L. Starting from a sinusoidal per-

turbation of wavelength 40L, the initial stage of surface evolution (t < 100) is

similar to those in Figs.3.1 and 3.3, but with a slower growth rate due to the

wetting effect, as predicted by the linear analysis. Further evolution (t = 200)

shows stabilization of a wetting layer between the peaks (or islands), differing

from the deep grooving morphology observed in Fig.3.3. Evidently, the wetting

effect prevents exposure of the substrate surface. This result is consistent with

the “steady state” predicted by Tekalign and Spencer [80]. After a long-time,

some islands grow at the expense of their adjacent ones. Eventually, only one

island remains within the computational domain, resembling the coarsening

process observed in experiments [87], where the number of islands decreases

over time. It is noted that, the “steady state” predicted by Tekalign and

Spencer was obtained from numerical simulations with one period of a sinu-

soidal perturbation, in which case no coarsening can occur. In our simulations

over a large area, the coarsening process happened and blow-up occurred after
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Figure 3.6: Two-dimensional simulation of surface evolution based on the lin-
ear stress field plus the nonlinear wetting energy: (a) stable growth (0<t<200);
(b) coarsening (t>200); (c) blow-up pit forming (t>1400).
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coarsening begins. The blow up solution appears after further evolution of one

island morphology, similar to the computations for a perfectly rigid substrate

given by Golovin et.al. [116]

Figure 3.7 shows a 3D simulation of the surface evolution. The compu-

tational parameters are the same as in Figs.3.2 and 3.4, including the initial

perturbation, the computational grid, and the time step. The simulation shows

similar surface roughening at the initial stage. During the evolution, instead

of deep, circular pits in Fig.3.5, the film breaks up, forming discrete islands

on a thin wetting layer. As observed in the 2D simulation, the wetting effect

prevents exposure of substrate surface and leads to self-assembly of an array

of islands. Further evolution observes coarsening of the island array: some

islands grow higher at the expense of the others; consequently, the island

number density decreases over time. At a certain stage during the coarsening

process (t > 300), the blow-up whiskers come out around the highest islands,

with other islands keep further coarsening. This can be reasonably explained

by the interplay of stress field and wetting energy. Previous study shows that

the nonlinear stress field favors downward circular cusp into the substrate for

energy relaxation. While for present system, both the absence of nonlinear

stress field and the consideration of wetting energy along the interface prevent

the surface go deep into the substrate, isolated by a thin wetting layer. During

the coarsening process, more and more materials are moved to the bottom of

the growing islands with the diminishing of smaller ones. For those “satu-

rated” islands, which thermodynamically reach a equilibrium state and stay

with constant shapes and heights, further piling up at the bottom may squeeze

the extra materials to blow up. Then, interestingly, stable islands without ei-
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(a)
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(f)

Figure 3.7: Three-dimensional simulation of surface evolution based on the
linear analysis of stress field with nonlinear wetting energy. (a)-(f) are gray
scale contour plots of the thickness profile, h(x1, x2), white for crests and dark
for troughs; (a) random perturbation at t = 0, RMS = 5.77×10-5; (b) t =
50, RMS = 5.41×10-5; (c) t = 200, RMS = 2.19×10-2; (d) t = 250, RMS
= 9.97×10-2; (e) t = 299.1, RMS = 1.506×10-1; (f) The local 3D view of
blow-up pits around the island at t = 301.4.

ther circular cusp into the substrate or upward pits are possible to be achieved

by doing nonlinear analysis of both the stress field and the wetting energy.
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Figure 3.8: Two-dimensional simulation of surface evolution based on the non-
linear analysis of both stress and wetting effect: (a) stable growth (0<t<200);
(b) coarsening (t>200); (c) further coarsening (t>2000).
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3.4 Self assembly of isotropic patterns

Including the second-order nonlinear stress field with the full wetting

potential, Eq.(2.19) leads to a nonlinear evolution equation,

∂h

∂t
= Ω2M

∂2

∂xβ∂xβ

[
σm

∂u
(1)
α

∂xα

− γfhαα + σm
∂u

(2)
α

∂xα

+
3 + νf

2(1 − νf )
U

(0)
E φ+

ψ − γs − γf

π
(ξhαα +

b

b2 + h2
)

]
,

(3.32)

2D and 3D numerical simulations of Eq.(3.32) are performed by spectral

method, and parameters are used the same in Fig.3.6 and Fig.3.7. The result

from 2D simulation is shown in Fig.3.8. Starting from a sinusoidal perturbation

of wavelength 40L, the initial stage of surface evolution and the stabilization of

a wetting layer between the islands (t ≤ 200) are similar to those in Fig.3.6(a).

Further evolution and coarsening, compare with Fig.3.6(b), has a much slower

coarsening process due to the interplay of nonlinear stress field and wetting

energy. The effect of the nonlinear stress field in the present study becomes

prominent as the evolution continues (Fig.3.8(c)). Eventually, only one island

remains within the computational domain. Remarkably, the solution does not

blow up, even after a very long time (t = 20000). The present simulation

shows that the height of the surviving island increases while its lateral size

(diameter) and location remain nearly unchanged. This, however, seems to

contradict with experiments where islands typically grow in both height and

diameter. The contradiction is attributed to the effect of anisotropy in the

surface energy of real materials, which tends to select a particular surface

orientation, thus leading to simultaneous growth in the height and diameter
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during coarsening as well as shape transition in the later stage [87]. With

the isotropic model of the present study, however, more elastic energy can be

released as the aspect ratio of the island increases, without much penalty of

increasing the surface energy.

Figure 3.9 shows the 3D simulation of the surface evolution. The sim-

ulation shows similar surface roughening with higher island density. Further

evolution observes coarsening of the island array. After a very long time of

evolution (up to t = 30000), the island array seems to reach an equilibrium

state with no further coarsening. The island size in the final array is nearly

uniform, but no obvious spatial pattern is observed. In spite of the limitations

of the present model, the dynamics of island formation and coarsening over a

large area is reasonably captured by the interplay of the nonlinear stress field

and the wetting effect. It should be noted that shape transition of individual

islands predicted by previous works [96, 104–106] is not captured in the present

simulation due to assumption of isotropic surface energy. Here we focus on

macroscopic shape and large-area organization of islands rather than detailed

surface facets and steps at atomic scale.

Figure 3.10 compares the evolution of the surface roughness obtained

from the 3D simulations (i.e., Figs.3.2, 3.4, 3.7, and 3.9). The surface rough-

ness is quantitatively determined by the root mean square (RMS) of the thick-

ness profile, namely

RMS(t) =

√√√√ 1

N2

N∑
m=1

N∑
n=1

[h(m,n, t) − h0]2. (3.33)

where N is the number of the grid points along one side of the computational
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Three-dimensional simulation of surface evolution based on the
nonlinear analysis of both stress and wetting effect. (a)-(f) are gray scale
contour plots of the thickness profile, h(x1, x2), white for crests and dark for
troughs; (a) random perturbation at t = 0, RMS = 5.77×10-5; (b) t = 20, RMS
= 1.98×10-5; (c) t = 50, RMS = 5.99×10-5; (d) t = 220, RMS = 5.01×10-2;
(e) t = 500, RMS = 9.71×10-2; (f) t = 10000, RMS = 1.195×10-1.
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Figure 3.10: Comparison of the evolution of surface roughness from three-
dimensional simulations using the linear equation (I), the nonlinear equation
with no wetting (II), the linear equation with wetting (III), and the nonlinear
equation with wetting (IV).
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cell, and h(m,n, t) is the local thickness at the grid point (m,n). Without

the wetting effect, the surface roughness initially grows exponentially, with

the same growth rate for the linear and nonlinear equations. The growth

rate corresponds well with the fastest growing mode predicted by the linear

analysis (s = 0.105 for λm = 8
3
πL). While the surface evolves self-similarly by

the linear equation (Fig.3.2), the nonlinear stress field leads to blow-up of the

surface roughness when it develops deep pit-like grooves as shown in Fig.3.4.

Including the wetting effect leads to a lower growth rate at the initial stage

(s = 0.042), as predicted by the linear analysis (Fig.3.5). Again, the growth

rate agrees well with the fastest growing mode. After about t = 200, the

surface roughness saturates. For the case with linear stress field and wetting

potential, lack of nonlinear stress components induces the surface roughness

to blow up at around t = 260, develops whisker-like morphology, in contrast

to the “steady state” predicted by Tekalign and Spencer [80]. While for the

nonlinear situation (IV), coarsening of the island array continues for a much

longer time, the RMS surface roughness does not change significantly after

t = 500, which can be understood as a result of the competition between

roughening due to the growth of the island height and flattening due to the

decrease of the island number density. Therefore, both the nonlinear stress

field and the wetting effect must be included in studying long-time dynamics

of surface evolution.
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3.5 Summary

In summary, we have developed a nonlinear evolution equation with a

second-order approximation for the stress field and a nonlinear wetting poten-

tial for the interface effect. The equation is solved numerically by a spectral

method in both two-dimensional (2D) and three-dimensional (3D) configura-

tions. In absence of the interface effect, the nonlinear stress field leads to a

“blow-up” solution with crack-like grooving in 2D and circular pit-like mor-

phology in 3D. The blow-up is suppressed by the wetting effect for thin films,

leading to formation of an array of islands. Subsequent coarsening and stabi-

lization are observed in the simulations. It is thus concluded that the interplay

between the nonlinear stress field and the interfacial wetting has a profound

effect on the dynamics of surface evolution that may lead to organization of

self-assembled islands or quantum dots.
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Chapter 4

Symmetry Breaking and

Bifurcation Under Anisotropic

Stresses

4.1 Introduction

Experimental investigations have observed deep grooving and cracklike

surface patterns in stressed solids [73, 74]. This has been theoretically under-

stood as a result of nonlinear stress effect, which has been discussed in Chapter

3. Recently, Berger et al. [135] analyzed the morphological instability of bi-

axially stressed solids during a melting-crystallization process, and predicted

nontrivial dynamics of pattern formation when the two principal stresses at

the solid surface take opposite signs (i.e., tension and compression). Numeri-

cal simulations by Paret [136] confirmed the analytical prediction and showed

intricate patterns in the nonlinear regime.
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An epitaxial thin film is stressed due to lattice mismatch with underly-

ing substrate. Interaction between film and substrate further complicates the

dynamics of surface evolution, leading to a large variety of surface patterns,

such as self-assembled quantum dots. Previous studies have shown that the

shape of an individual dot is largely controlled by anisotropy in surface energy

[96, 104–106], while the spatial organization of dots is strongly influenced by

long-range interactions through elastic stress fields [88, 137]. Experimental

investigations have explored various techniques to manipulate the stress field

in order to achieve directed organization of quantum dots [33–35, 43, 138–

140]. Theoretically, although a few recent works considered the effect of elastic

anisotropy [94, 117, 141, 142], systematic studies on the dynamics of pattern

formation under influence of anisotropic and/or non-uniform stresses are lack-

ing.

As discussed in Chapter 3, under an equi-biaxial mismatch stress, the ro-

tational symmetry leads to isotropic patterns with no particular organization.

Numerical simulations predict self-assembly of circular islands in an isotropic

system. In this chapter, we consider epitaxial systems with anisotropic mis-

match stresses. We show that, in addition to the generic symmetry break-

ing, a bifurcation in pattern selection occurs when the film is subjected to

an anisotropic mismatch stress. While similar bifurcation was predicted for

biaxially stressed solids [135, 136], the epitaxial system exhibits even richer

dynamics in forming elongated islands or tilted line patterns. Practically,

anisotropic mismatch stresses can be obtained in many systems with either

elastically anisotropic film materials or anisotropic substrates. Examples in-

clude Ge on Si(113) [48] and hexagonally structured ErSi2 on Si(001) [53],
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which will be discussed in more details in Chapter 5.

4.2 Linear analysis

Now we consider a same 3D configuration as been presented in chapter

3. At the reference state, a general in-plane mismatch strain correspondingly

induces a in-plane biaxial stress state, σ
(0)
11 = σm1 and σ

(0)
22 = σm2, and other

stress components are zero. Upon annealing, the film surface evolves, with an

instantaneous thickness profile, h(x1, x2, t). The governing evolution equation

still takes the from of Eq.(2.19), and controls the variation of surface profile.

Procedures in Chapter 3 can still be followed to calculate every energy terms,

but the stress anisotropy makes some difference with respect to specific forms.

In this section, we start with the linear analysis first. Under the general

biaxial stress state, corresponding to boundary condition (2.20), the first-order

stress field along the surface becomes,

σ
(1)
31 = h1σm1, σ

(1)
32 = h2σm2, (4.1)

and

σ
(1)
33 = 0. (4.2)

Corresponding strain energy densities for present system are,

U
(0)
E =

1

2Ef (σ2
m1 + σ2

m2 − 2νfσm1σm2)
, (4.3)

67



and

U
(1)
E = σm1

∂u
(1)
1

∂x1

+ σm2
∂u

(1)
2

∂x2

, (4.4)

The first-order surface displacement is obtained in the form of Fourier

transform:

û(1)
α = (Qα1ik1σm1 + Qα2ik2σm2) ĥ, (4.5)

For the convenience, the stress anisotropy can be defined as the ratio

between the two stress components, namely,

c =
σm2

σm1

. (4.6)

c = 1 refers to the isotropic system, and when c 6= 1, an anisotropic system is

presented. The rotational symmetry is expected to be broken for anisotropic

case. To focus on the effect of stress anisotropy, the present study assumes an

otherwise isotropic system in the following. Both the film and the substrate

are elastically isotropic, with E and ν as Young’s modulus and Poisson’s ratio,

respectively.

Keeping up to the first-order energy terms, a linearized evolution equa-

tion is reduced from Eq.(2.19), with different form of isotropic case in Eq.(3.27),

∂h

∂t
= Ω2M

∂2

∂xβ∂xβ

[
σm1

∂u
(1)
1

∂x1

+ σm2
∂u

(1)
2

∂x2

− γfhαα − 2(γf − γs)b

πh3
0

h

]
. (4.7)

Fourier transform of Eq.(4.7) leads to an identical form of Eq.(3.13), with a
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different growth rate s,

s(k1, k2) =
1

k(1 − νs)

[
(k2

1 + k2
2c

2)k2 − (k2
1 + ck2

2)
2νs

]
− k4 +

2bL2(γf − γs)

πh3
0γf

.

(4.8)

It is noted that, the stress anisotropy c comes into the growth rate, and the

variation of c must lead to a variety of growth modes, in turn different surface

patterns. Figure 4.1 plots the growth rate as contours in the plane of wave

vector (k1, k2). When c = 1, the contours are concentric circles (Fig.4.1(a)),

indicating rotational symmetry in the isotropic system. The growth rate is

positive in an annular region (bounded by the black edges), and the fastest

growing mode corresponds to a circle (the dark color circle). The symmetry

is broken when c 6= 1. As shown in Fig.4.1(b) and (c), the fastest growing

mode corresponds to two points (dark spots), located on one of the principal

axes. This suggests that the initial evolution would develop parallel line pat-

terns perpendicular to the principal direction. The generic symmetry breaking

persists when c becomes negative, with the principal mismatch stresses tensile

in one direction and compressive in the orthogonal direction. In addition, a

bifurcation occurs at a critical value. As shown in Fig.4.1(d) for c = −1, the

fastest growing mode now corresponds to four points located at angles ±45o

from the principal directions, i.e., the two dark spots in Fig.4.1(b) have split

into four.

Define the angle θ of wave vector such that k1 = k cos θ and k2 = k sin θ

in Eq.(4.8). Setting ∂s/∂θ = 0 with respect to s leads to

(c − 1)[(1 − νs)(1 + c) − νs(1 − c) cos 2θ] sin θ cos θ = 0. (4.9)
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Figure 4.1: Contours of the growth rate, : (a) c = 1, (b) c = 0, (c) c = 2, and
(d) c = -1.
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When c = 1, ∂s/∂θ = 0 is satisfied all around, thus no particular angle is

selected for the fastest growth. When c 6= 1, the angle of the fastest growing

mode can be determined by examining the second derivative of the growth rate.

For 0.5 > νs > 0, three cases exist: (I) When 1 > c > −(1 − 2νs), sin θ = 0

for the fastest growth, giving θ = 0. (II) When c > 1 or c < −(1− 2νs)
−1, the

fastest growing mode corresponds to cos θ = 0, and thus θ = ±90o. Cases I

and II are equivalent upon switching σm1 and σm2. (III) When −(1−2νs)
−1 <

c < −(1 − 2νs), the angle of the fastest growing mode is given by

cos 2θ =
(1 + c)(1 − νs)

(1 − c)νs

. (4.10)

Figure 4.2 plots the angle of the fastest growing mode as a function of

stress anisotropy. A pitchfork bifurcation occurs at c = −(1−2νs)
±1 (c = −0.5

in the figure). In between, the angle rotates from one principal direction to

another, through two equivalent paths (clockwise or counterclockwise). In the

present system, there exist two types of transition: a step transition at c = 1

as the result of generic symmetry breaking, and a smooth transition from c =

−(1−2νs) to c = −(1−2νs)
−1 via the bifurcation. Similar bifurcation patterns

were reported for binary compositional fields in self-assembled monolayers [143,

144].

4.3 Numerical simulations

Nonlinear evolution process for the system with anisotropic mismatch

stress is aimed to investigate by numerical simulation in this part.
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Second-order nonlinear stress field are obtained similarly from Chapter

3,

σ
(2)
3α = σ

(1)
αβhβ, (4.11)

and

σ
(2)
33 = σm1h1h1 + σm2h2h2. (4.12)

Second-order strain energy is

U
(2)
E =

1

2
σ

(1)
ij ε

(1)
ij + σm1

∂u
(2)
1

∂x1

+ σm2
∂u

(2)
2

∂x2

, (4.13)

Corresponding second-order surface displacements are calculated in the Fourier

space,

û(2)
α = QαβF [σ

(1)
βγ ] + Qα3F [σm1h1h1 + σm2h2h2], (4.14)

and

û
(2)
3 = Q3βF [σ

(1)
βγ ] + Q33F [σm1h1h1 + σm2h2h2]. (4.15)

Nonlinear governing equation is obtained by keeping the full wetting

potential term together with up to second-order strain energy terms, namely,

∂h

∂t
= Ω2M

∂2

∂xβ∂xβ

[
1

2
U0hαhα + σm1

∂u
(1)
1

∂x1

+ σm2
∂u

(1)
2

∂x2

+ σm1
∂u

(2)
1

∂x1

+

σm2
∂u

(2)
2

∂x2

+
1

2
σ

(1)
ij ε

(1)
ij − γhαα − γs − γf

π
(

b

b2 + h2
)

]
,

(4.16)

Evolution equation (4.16) can be solved efficiently by the spectral method.
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The numerical results are normalized by a similar length scale,

L =
γfEs

2σ2
m1

, (4.17)

and a time scale,

τ =
L4

Ω2Mγf

=
γ3

fE
4

s

16Ω2Mσ8
m1

. (4.18)

The parameters used in simulations are the same as we used for the 3D simu-

lation in Chapter 3. When the film is subjected to an equi-biaxial mismatch

stress (c = 1), the surface evolves through the exact isotropic evolution se-

quence, which behaves identical to Fig.3.9 in Chapter 3: where the surface

first evolves into a chaotic pattern without particular orientation preference,

and breaks up into circular dots. For a long time evolution, after the coars-

ening process, the pattern is stabilized, with a nearly uniform dot size and

random location. The rotational symmetry of the isotropic system is respon-

sible for the initial chaotic pattern as well as the randomly organized circular

dots.

Symmetry breaking predicted in Fig.4.1 is confirmed by numerical sim-

ulation as shown in Fig.4.3 for c = 0. A parallel line pattern emerges at the

early stage for evolution. The nonlinear effects of stress and wetting take over

for long-time evolution, breaking up the lines into elongated islands.

Figure 4.4 shows a simulated evolution sequence of surface pattern with

c = −1. At the early stage, as opposed to the parallel line pattern in Fig.4.3,

the two angles of the fastest growth, θ = ±45o, compete, leading to a diamond

pattern. Subsequently, square-shaped islands form and undergo coarsening.

Interestingly, after a long time, the islands coalesce to form tilted lines. The
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t = 0 t = 100 t = 500 

t = 1000 t = 5000 t = 10000 

Figure 4.3: Contours of simulated surface morphology, h(x1, x2, t), with c = 0.
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t = 1000 

t = 0 t = 200 t = 50 

t = 500 t = 10000 

Figure 4.4: Contours of simulated surface morphology, h(x1, x2, t), with c =
−1.
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c = 0.5 c = 0 c = - 0.25 

c = - 0.5 c = - 0.75 c = - 1 

Figure 4.5: Surface patterns of different stress anisotropy.
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competition of the two tilting directions leads to co-existing of long and short

(broken) lines. Compared to previous studies on stressed solids [135, 136], the

long-time dynamics of pattern evolution is more complicated in the epitaxial

system due to film-substrate interaction.

A set of surface patterns with respect to different stress anisotropy c

is illustrated in Figure 4.5. These 3D simulation results presents a quite rich

variety of surface morphologies, following well with the prediction given by

linear analysis in Fig.4.2.

4.4 Summary

The present study considers the effect of stress anisotropy in an oth-

erwise isotropic epitaxial system. Rotational symmetry breaking and sur-

face pattern selection are presented as the effect of anisotropy from mismatch

stress. In real systems, stress anisotropy is usually coupled with other ma-

terial anisotropy. For example, in an epitaxial system with Ge on Si(113),

an in-plane stress state exists with two principle stresses in [1̄10] and [3̄3̄2]

directions, respectively, and with σm1 < σm2. Based on the discussion in this

chapter, parallel lines are expected to form in the [1̄10] direction, while lines in

[3̄3̄2] are mostly observed in experiments. This discrepancy may be resolved

by including effects of elastic anisotropy and surface energy anisotropy. The

interactions among different anisotropy would further complicate and also en-

rich the dynamics of pattern formation in the epitaxial system, which will be

left for future studies.
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Chapter 5

Evolution and Self Assembly of

Anisotropic Patterns

5.1 Introduction

Most of the previous studies on surface evolution have assumed isotropic

elasticity for the film and the substrate. This assumption however contradicts

the crystalline nature in essentially all epitaxial systems. While the anisotropic

elasticity may not be critically important for the understanding of the surface

instability, it is expected to play a significant role in the ordering of surface

structures over long term evolution [143]. Recently, by using anisotropic elastic

properties of cubic crystals and solving the evolution equation by a finite

element method, Liu et al. [145] showed alignment of self-assembled islands

on both <100> and <110> directions on a (001) surface, depending on the

strength of elastic anisotropy. Previously, Shenoy and Freund [98] developed

an anisotropic elasticity solution by using the half-space Green’s function to
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the first order of the surface slope. In the present study, we have developed

a nonlinear evolution equation for generally anisotropic epitaxial systems in

Chapter 2, along with the asymptotic solution to the anisotropic nonlinear

elasticity problem. In this chapter, we consider two specific epitaxial systems

and discuss the effect of elastic anisotropy on surface pattern evolution. First,

a cubic system, SiGe on Si, is considered. Four different crystal orientations of

the substrate, Si(001), Si(110), Si(111), and Si(113), are studied here. Crystal

orientations are expected to play an important role in the surface stability

and pattern evolution [19, 42, 47, 50, 52, 87, 146]. Second, the self-assembly

of rare-earth silicides on Si(001) is investigated, and the combined anisotropy

effects are illustrated.

5.2 Epitaxial SiGe films on Si substrates

SiGe alloy on Si is one of the mostly studied systems exhibiting self-

assembled nanostructures in semiconductor heteroepitaxy. During the past

decades, the research activity in the growth, characterization and exploitations

of SiGe on Si growth have been rapidly developed [25, 26, 31, 48, 137, 147–150].

In this part, we will focus our discussion on the evolution and self assembly

properties of such an epitaxial system.

Both Si and Ge have cubic crystalline structures, and they form totally

miscible solid solution, SiGe, over the entire range of Ge concentration [99].

Experiments have shown that the lattice constant of SiGe is closely matched
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with a simple liner interpolation between Si and Ge [99], i.e.,

aSiGe = (1 − x)aSi + xaGe, (5.1)

where aSi = 0.5428nm, aGe = 0.5658nm, and x is the Ge concentration of

SiGe. Consequently, the lattice mismatch between an epitaxial SiGe film and

its Si substrate induces an equi-biaxial compressive strain:

ε
(0)
11 = ε

(0)
22 = εm = −0.04x. (5.2)

Note that the mismatch strain is independent of either the crystal orientation

of the epitaxial surface or the selection of the in-plane coordinate axes. On

the other hand, the mismatch stress varies with the crystal orientation due to

anisotropy in the elastic moduli. The elastic moduli of SiGe are also obtained

by a linear interpolation between those for Si and Ge [151], namely

CSiGe
ijkl = (1 − x)CSi

ijkl + xCGe
ijkl. (5.3)

Similarly, we take the surface energy density of SiGe as

γSiGe = (1 − x)γSi + xγGe. (5.4)

The elastic moduli of Si and Ge, referring to their natural crystal coordinates,

are listed in Table 5.1. The elastic moduli are taken from Freund and Suresh

[12], referring to the natural crystal coordinates. The surface energy values

are from Stekolnikov et al. [152] for (001), (110), and (111) surfaces and from
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Table 5.1: Elastic moduli and surface energy density of Si and Ge.

Si Ge

C11 166.2 128.4

Elastic moduli (GPa) C12 64.4 48.2

C44 79.8 66.7

(001) 2.39 1.71

Surface energy density (111) 1.82 1.32

(J/m2) (110) 2.04 1.51

(113) 2.21 1.61

Stekolnikov et al. [153] for (113) surfaces.Transformations of the elastic moduli

to a different epitaxial coordinate (Fig.5.1) due to the variation of substrate

orientations are performed by standard approach given in Appendix B. The

values of surface energy density for Si and Ge are also listed in Table 5.1.

Although the surface energy is assumed to be isotropic for each epitaxial sys-

tem in the present study, different values are used for (001), (111), (110), and

(113) surfaces [152, 153]. We note quite a scattering in the reported surface

energy values obtained from experiments and theoretical calculations, which

vary significantly with specific surface conditions such as surface relaxation,

reconstruction, and hydrogenation [152, 153]. For simplicity, we use the values

of unrelaxed surfaces in the present study.
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film

Crystal substrate

x3

x1

h(x1, x2, t) h0

x2

1'x

2'x

3'x

Figure 5.1: Schematic illustration of an epitaxial film on a crystal substrate.
An arbitrarily rotated crystal lattice is noted by coordinates x

′
i(i = 1 − 3),

while the epitaxial coordinates are xi with x3 = 0 at the film/substrate inter-
face. The film has a mean thickness h0 and an instantaneous local thickness,
h(x1, x2, t).

Referring to Chapter 2, governing equation (2.19) is adopted to trace

the surface evolution for current SiGe/Si system. The linear analysis can be

performed by keeping only the first order terms for the strain energy den-

sity, the surface mean curvature, and the wetting potential. Corresponding

Fourier transform of linearized evolution equation leads to a differential equa-

tion, which takes the form of Eq.(3.13), with a general form of growth rate in

Fourier space,

s(k1, k2) = −Ω2M0k
2[−kαkβQχκσ

(0)
αχσ

(0)
βκ + γ0k

2 +
2h0b(γs − γf )

π(b2 + h2
0)

2
]. (5.5)

For an isotropic system with an equi-biaxial mismatch stress (i.e., σ
(0)
11 = σ

(0)
22 =

σm and σ
(0)
12 = 0), Eq.(5.5) is reduced to Eq.(3.29). The first two terms in

Eq.(3.29) represent a competition between the elastic strain energy and the
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surface energy, and the competition defines a length scale and a time scale

Eq.(3.11) and Eq.(3.12). Similar length and time scales can be defined for a

generally anisotropic systems by using a combination of elastic moduli and

mismatch strain. For the present study, we set

L =
γfEs

2(εmEf )2
, τ =

γ3
fE

4

s

16Ω2M(εmEf )8
, (5.6)

where εm = 1
2
(ε

(0)
11 + ε

(0)
22 ) is the mean mismatch strain, Es = C11 s−C2

12 s/C11 s

as the effective plane-strain modulus for the substrate, and Ef = C11 f +

C12 f − 2C2
12 f/C11 f as the effective biaxial modulus for the film; the elastic

moduli are written in the Voigt’s abbreviated notation with subscripts s and

f for the substrate and film, respectively. The effective moduli are defined

such that the scales in Eq.(5.6) recover those in Eq.(3.11) and Eq.(3.12) for

an isotropic system.

The third term in the bracket of Eq.(3.27) represents the effect of wet-

ting on the initial growth, which sets a critical thickness, Eq.(3.30), for an

isotropic system. Similarly, the critical thickness for an anisotropic system

can be determined, taking the form

hc = ηL

[
(γs − γf )b

πγfL

]1/3

, (5.7)

where the coefficient η depends on the elastic anisotropy of the substrate as

well as the mismatch strain. The critical thicknesses for specific anisotropic

systems are discussed in the following sections.

By far, the only parameter that remains to be determined in the present
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model is the thickness b for the transition of surface energy. Noting that the

critical thickness for the epitaxial surface given in Eq.(5.7) depends on the

transition thickness, a value b = 0.005L ≈ 0.02nm is estimated by comparing

the prediction with an experimentally measured critical thickness, hc ≈ 0.7nm

for epitaxial Ge films on Si(001) [148]. This value is used in the present study

for all quantitative analyses.

By including all the second-order energy terms, the nonlinear evolution

equation is obtained, and numerical simulations are given by spectral method.

A brief description of the simulation procedures follows, which is similar but

somewhat complicated than that of isotropic case introduced in Chapter 3.

The mean film thickness and the mismatch strain is specified at first. With the

anisotropic elastic moduli of the substrate, the compliance matrix, Qij, is cal-

culated following the steps that lead to Eq.(A.33) in Appendix A. Then, taking

a randomly generated thickness profile of small roughness as the initial condi-

tion, the surface evolution is simulated by updating the thickness profile over a

number of time steps. For each time step, we compute the Fourier transform of

the current thickness profile, ĥ(k1, k2, t), by the Fast Fourier Transform (FFT)

method. In the reciprocal Fourier space, the quantities ikαĥ, û
(1)
i =ikβQiασ

(0)
αβ ĥ,

and ikβû
(1)
i are computed by simple multiplications at each grid point (Fourier

component). Next, we obtain corresponding quantities in the real space, hα,

h
(1)
i , and ∂u

(1)
i /∂xβ, by inverse FFT, and compute the nonlinear terms, such

as σ
(2)
3α = σ

(1)
αβhβ, σ

(2)
33 = σ

(0)
αβhαhβ, σ

(1)
αβ∂u

(1)
α /∂xβ, hαhα, and γhαα, by simple

multiplications at each grid point (physical coordinate). After that, we trans-

form the nonlinear terms back into the Fourier space and update the Fourier

transform of the thickness profile, ĥ(k1, k2, t+∆t). The final thickness profile
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in the physical space is obtained by an inverse FFT at the end of the last time

step. All numerical simulations, we normalize the evolution equation using the

length and time scales defined in Eq.(5.6) and discretize the computational cell

of size 100 × 100 into a 128 by 128 grid with a periodic boundary condition.

To compare the results for different crystal orientations, the length scale for a

pure Ge film on Si(001) substrate is used for all calculations. The length scale

in this case is: L = 3.83nm. As will be shown later, the length scale increases

dramatically for SiGe films as the Ge concentration decreases.

5.2.1 Effect of substrate crystal orientation

Starting from a nearly flat film surface, the evolution dynamics at the

early stage can be understood by the linear analysis in above section. First,

the growth rate of the Fourier component as a function of the wave vector

dictates the stability and the fastest growing modes. Figure 5.2 plots the

contours of the growth rate in the plane of (k1, k2) for Ge films of a mean

thickness, h0 = 0.2L , on the four Si substrates; only positive growth rates are

shown in the contours. For the Ge/Si(001) epitaxy (Fig.5.2(a)), the growth

rate is positive in a diamond shaped region, with four peaks symmetrically

located on the k1 and k2 axes. This predicts the fastest growing modes at

the early stage, with the wave vectors along the [100] and [010] directions.

Apparently, the elastic anisotropy of the cubic crystal breaks the rotational

symmetry of surface evolution as predicted previously for isotropic systems

in Chapter 3. As will be shown later by numerical simulations, the break of

symmetry eventually leads to ordered surface patterns as opposed to the lack

of ordering in the isotropic systems.
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Figure 5.2: Contour plots of the initial growth rate with respect to the wave
numbers in the x1 − x2 plane for Ge films on Si substrates of different crystal
orientations. (a) Si(001) with x1 and x2 in the [100] and [010] crystal directions;
(b) Si(111) with x1 and x2 in the [21̄1̄] and [011̄] crystal directions; (c) Si(110)
with x1 and x2 in the [1̄10] and [001] crystal directions; (d) Si(113) with x1

and x2 in the [1̄10] and [3̄3̄2] crystal directions.
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Figure 5.3: The maximum initial growth rate (a) and the corresponding wave-
length (b) versus the average film thickness for Ge films on Si substrates of
different crystal orientations. A critical thickness exists for each orientation,
below which the growth rate is zero and the wavelength does not exist.
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While the Si(001) has been the most commonly used substrate for SiGe

epitaxy. Here we show that the surface evolution dynamics can be signifi-

cantly different for epitaxial films on other orientations of Si. For Ge/Si(111)

epitaxy (Fig.5.2(b)), the contours of the growth rate are nearly concentric cir-

cles, very similar to that for isotropic systems. This is not surprising as we

notice that the triangular lattice structure on the Si(111) plane indeed leads

to isotropic in-plane elastic properties. As a result, the early-stage surface

evolution on Si(111) resembles that in an isotropic system, with the fastest

growing modes in all directions, as predicted by the circle of the maximum

growth rate in the contour plot; the radius of the circle gives the wave number

of the fastest growth mode. For Ge/Si(110) epitaxy (Fig.5.2(c)), the contour

plot shows two peaks of the growth rate on the axis parallel to the [1̄10] direc-

tion. This predicts growth of stripe patterns parallel to the [001] direction on

the (110) surface. For Ge/Si(113) epitaxy (Fig.5.2(d)), there are four peaks in

the growth rate contour, with corresponding wave vectors titled ±31o from the

[3̄3̄2] direction on the (113) surface. This is similar to the bifurcation of the

growth mode due to anisotropic mismatch stresses in an otherwise isotropic

system, as discussed in Chapter 4. Here, however, the bifurcation is a result of

the combined effect of anisotropic mismatch stress and anisotropic substrate.

Figure 5.3 plots the peak growth rate and the corresponding wave length

versus the mean film thickness. For each substrate orientation, there exists

a critical thickness, below which the maximum growth rate is zero and thus

the film is stable with a flat surface. The critical thickness varies slightly

with the substrate orientation. For Ge on Si(001), hc = 0.18L ≈ 0.7nm,

which is about 3-5 monolayers thick and agrees with experimental observa-
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tions [19, 20, 120, 147, 148]. The predicted critical thicknesses for the other

orientations are smaller: hc = 0.1L ≈ 0.4nm for both Si(111) and Si(110), and

hc = 0.14L ≈ 0.55nm for Si(113). Supportive experimental data have been

reported [43]. For a film with the mean thickness greater than the critical

thickness, the maximum growth rate becomes positive and the flat film sur-

face is unstable. The growth rate increases with the mean film thickness, and

saturates for relatively thick films. Similar behavior was predicted for isotropic

systems (Chapter 3), as a result of the wetting effect: the wetting potential

suppresses the surface instability for thin films, but has little effect on the

early-stage evolution for relatively thick films. Figure 5.3(b) shows the similar

trend for the wave length of the fastest growing mode at the early stage. Only

beyond the critical thickness, does there exist a dominant wavelength, which

decreases with the mean film thickness and saturates for relatively thick films.

Comparisons of the growth rates and wavelengths for different crystal orien-

tations of the Si substrates in Fig.5.3 show an interesting trend. For a same

mean film thickness, the Ge/Si(001) epitaxial system is the most stable among

the four orientations, with the lowest growth rate, longest wavelength, and also

the largest critical thickness. The epitaxial surfaces are increasingly unstable

in the order of Ge/Si(113), Ge/Si(111), and Ge/Si(110). Interestingly, while

the (111) surfaces of both Si and Ge have the lowest surface energy of all

crystal orientations, the epitaxial Ge(111) surface on Si(111) substrate is less

stable compared to the (001) and (113) surfaces. Apparently, the stability of

the epitaxial surface is not controlled by the surface energy alone.

Evolution of the epitaxial surface morphology from numerical simu-

lations are shown in Figs.5.4-5.7, for epitaxial Ge films on Si(001), Si(111),
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t=1000 t=2000 t=10000

Figure 5.4: Simulated evolution of surface pattern for an epitaxial Ge film on
a Si(001) substrate.
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t=100

Figure 5.5: Simulated evolution of surface pattern for an epitaxial Ge film on
a Si(111) substrate.
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t=100 t=500 t=10000

Figure 5.6: Simulated evolution of surface pattern for an epitaxial Ge film on
a Si(110) substrate.
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t=5000 t=10000 t=500

t=100 t=200 t=0

Figure 5.7: Simulated evolution of surface pattern for an epitaxial Ge film on
a Si(113) substrate.
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Si(110), and Si(113) substrates, respectively. The mean film thickness is:

h0 = 1.2hc, where hc corresponds to the critical thickness for each orienta-

tion. All simulations start from a randomly generated initial perturbation to

the flat surface; the amplitude of the perturbation is 0.0001L. As predicted by

the linear analysis, surface evolution at the early stage is dominated by the

fastest growing modes. On the Si(001) substrate (Fig.5.4), the film surface

first evolves into shallow ripples in both [100] and [010] directions. The ini-

tially interconnected ridges then break up into chains of islands. These islands

are well organized, eventually forming a cubic array as a macroscopic replicate

of the underlying cubic crystal structure. Apparently, the anisotropic elastic

property effectively represents the cubic crystal structure and drives the or-

dering of the surface pattern. Similar evolution process occurs for the Si (113)

substrate (Fig.5.7), where the initial ridges are aligned along two directions of

angles ±31o off the [1̄10] direction and eventually the islands from a diamond

pattern. For the Si(111) substrate (Fig.5.5), the early stage evolution shows

similar surface patterns as that for isotropic systems, with shallow ridges and

grooves growing in all directions. After a long-time evolution, however, discrete

islands form and self-organize into a triangular array. Unlike the isotropic sys-

tem, the anisotropic elastic property again reflects the triangular lattice of the

cubic crystal on the (111) plane. While the early stage evolution is essentially

isotropic, the anisotropic effect manifests over the long time evolution. For

the Si(110) substrate (Fig.5.6), the film surface evolves from parallel ripples

to self-assembled lines in the [001] direction.

Most experimental observations of Ge or SiGe films are on Si(001) sub-

strates. Some reported arrays of self-assembled islands with no particular
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ordering [19, 20, 22, 25, 87], while the others observed patterns of surface

ripples and organized islands [21, 24, 26, 29, 31]. The results may depend on

the detailed experimental conditions, but the physical origin for the different

observations has not been well understood. The simulated surface evolution in

Fig.5.4 compares well with experiments by Ozkan et al. [24] and Dorsch et al.

[26], assuming similar patterns for SiGe films except for a change of the length

scale. In particular, Dorsch et al. [26] observed surface ripples aligned in the

<100> directions at the early stage and a transition to islands well aligned in

the same directions, similar to the evolution sequence in Fig.5.4.

5.2.2 Effect of Ge concentration

For epitaxial SiGe alloy films, the evolution dynamics is similar except

for the length and time scales. As defined in Eq.(5.6), the length scale depends

on the mismatch strain, film and substrate moduli, and surface energy density,

all varying with the Ge concentration x as given in Eqs.(5.2)-(5.4). The effects

of elastic moduli and surface energy density on the length scale have been

neglected in previous theoretical studies [68, 154], leading to a simple scaling,

L ∝ 1/x2. However, as pointed out by Dorsch et al. [26], this scaling has to be

corrected by considering the compositional dependence of the elastic moduli

among other possible causes. The length scale plays an important role in the

determination of the critical thickness and the dominant wavelength at the

early stage. Figure 5.8 plots the critical thickness as a function of the Ge

concentration for epitaxial SiGe films on Si substrates. Clearly, the critical

thickness increases rapidly as the Ge concentration decreases, approaching

infinity as x → 0 for stable, homoepitaxial growth of Si. A few experimental
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data [23, 137, 148, 155] are shown in Fig. 5.8 for comparison, all for SiGe films

on Si(001) substrates. As mentioned earlier, one of these data has been used

to determine the value of b in the present model. The agreement between the

present model predictions and the other experimental data is reasonably good

for a wide range of Ge concentration.

Figure 5.9 plots the wavelength of the fastest growing mode at the early

stage of surface evolution in epitaxial SiGe films as a function of Ge concentra-

tion. This wavelength scales linearly with the length scale, but varies slightly

with the crystal orientations of the substrates. It is noted that, while the

wavelength is well above 1 µm for SiGe films with low Ge concentration (e.g.,

x < 0.2), the dominant wavelength is well below 100 nm for Ge-rich films with

high Ge concentration (e.g., x > 0.8). The large variation in the length scale

thus offers a potential approach to tunable surface patterns. Unfortunately,

reliable experimental data is scarce for the early-stage evolution. Dorsch et

al. [27] presented a detailed study on the morphological evolution during the

growth of SiGe films of low Ge concentration (0.05 ≤ x ≤ 0.15), and their

measurements for the wavelengths of the ripple patterns at the early stage are

shown in Fig.5.9. The experimental data show a similar trend in the depen-

dence on the Ge concentration, but are consistently lower than the present

model predictions.

5.2.3 Effect of film thickness

Furthermore, it is found that the surface pattern depends on the mean

film thickness. Figure 5.10 shows the surface patterns from numerical simula-

tions of long-time evolution of Ge films on Si(001) substrates. When the mean
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Figure 5.8: Comparison of the critical thickness predicted by the present study
with previously published experimental data for SiGe films with varying Ge
composition on Si substrates. All cited experiments are for Si(001) substrates.
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Figure 5.9: The wavelength corresponding to the fastest initial growth rate as
a function of Ge composition for SiGe films on Si substrates. The experimental
data from Dorsch et al. [26] are the measured wavelengths of surface ripples at
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(a) (b) 

(c) (d) 

Figure 5.10: Surface patterns after long-term evolution for epitaxial Ge films
of different average thickness on Si(001) substrates. (a) h0 = 1.1hc, (b) h0 =
1.2hc, (c) h0 = 1.4hc, (d) h0 = 1.5hc.
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(a) (b)

(c) (d)

Figure 5.11: Surface patterns after long-term evolution for epitaxial Ge films
of different average thickness on Si(113) substrates. (a) h0 = 1.05hc, (b)
h0 = 1.1hc, (c) h0 = 1.25hc, (d) h0 = 1.5hc.
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film thickness is slightly above the critical thickness (h0 = 1.1hc, Fig.5.10(a)),

the islands form a cubic array. As the film thickness increases, the island array

first becomes denser (h0 = 1.2hc, Fig.5.10(b)) and then connected (h0 = 1.4hc,

Fig.5.10(c)). Further increase of the film thickness leads to a surface pattern

with perpendicular lines in the <100> directions (h0 = 1.5hc, Fig.5.10(d)).

Similar transition of the surface pattern from dots to lines has been observed

experimentally [21, 28, 31, 50, 155, 156].

A few recent experiments have reported epitaxial growth of Ge on high-

index Si substrates including Si(113) [47, 48]. It was observed that Ge is-

lands are shaped like wires along the [3̄3̄2] direction. However, the numerical

simulation with the present model predicts a diamond pattern of island ar-

ray (Fig.5.7). Increasing the mean film thickness in the numerical simulation

predicts a transition of the dot-shaped island array to a line-shaped pattern

(Fig.5.11), but the lines are aligned along two directions of angles ±31o off

the [1̄10] direction. This discrepancy indicates possible contributions on the

pattern evolution from other physical origins (e.g., surface steps), in addition

to the elastic anisotropy considered in the present study.

To our knowledge, no experimental observations have been reported for

epitaxial surface evolution of SiGe or Ge films on Si(111) or Si(110) substrates.

As predicted by the present numerical simulations, the triangular array of

islands on Si(111) (Fig.5.5) and the parallel lines on Si(110) (Fig.5.6) may be

attractive for practical applications in microelectronics and optoelectronics,

thus worthwhile for further investigations with experimental efforts.
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5.3 Self-assembled silicide nanostructures

5.3.1 Rare-earth metal silicides

Tremendous interest has been recently generated in self-assembled nanowires

(SANWs) formed by epitaxial growth of rare-earth (RE) metals on silicon sub-

strates. These one-dimensional nanostructures have metallic conduction and

extremely low Schottky-barrier (< 0.5eV ). These unique features make them

attractive for applications as low-resistance interconnects or nanoelectrodes

for electrically active nanostructures [157–159].

The very early work given by Preinesberger et al. [54] shown the for-

mation of long, narrow Dy wires self-assembled on Si(001). Lately, Chen et al.

[55] presented similar wire-like islands self-assembly for Er on Si(001), and, by

using the Scanning Tunneling Microscopy (STM), they investigated the surface

structures and presented that the nanowires have the same crystalline struc-

ture and orientation relative to the substrate, which indicates that continuous

ErSi2 thin films grown on Si(001). Following that, Chen et al. [160] studied

other kinds of RE silicides (ErSi2, ScSi2, GdSi2, and DySi2) grown on Si(001),

and illustrated that the epitaxial SANWs can be produced if the magnitude

of the lattice mismatch between the silicide layer and the substrate is large

along one of the crystal epitaxy axis and small along the perpendicular axis.

More recently, to achieve better control of the orientations of SANWs, RE

silicides grown on Si(110) and Si(111) have been reported [56, 57] to produce

orientated SANWs aligning in specific directions.

It is generally agreed that the formation of silicide SANWs is due to

lattice mismatch anisotropy between the silicides and the Si substrate. When
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Figure 5.12: Spatial and 2D model of hexagonal ErSi2 silicide unit cell.

the RE metals are deposited onto the Si substrate, metal silicides are formed

through the nucleation-determined chemical reactions between the RE metal

and Si atoms. RE silicides crystallize in three types of sturctures: hexagonal,

tetragonal, and orthorhombic [53, 161, 162]. The hexagonal phase are always

dominant and can coexist with other two phases [53, 58, 161–163]. Fig.5.12 and

Fig.5.13 show the hexagonal and tetragonal unit cell of RE silides, respectively,

and orthorhombic has the similar structure with tetragonal. The hexagonal

silicides epitaxially growing on Si are subject to an anisotropic lattice mis-

match, with a relatively large mismatch in the [0001] axis aligned with one of

the <110> axes of the substrate, and with a relatively small mismatch in the

perpendicular direction, [112̄0], aligned with the other <110> axis (Fig.5.14)

[53, 58, 100, 164]. The mismatch strain for common silicides are listed in Table

5.2. With the increasing of coverage, 2D-3D transition happens through the

Stranski-Krastanov growth mode, and self-assembled nanowire pattern forms.

These nanowires are observed to grow along [112̄0] , which can usually exceed
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Figure 5.13: Spatial and 2D model of tetragonal ErSi2 silicide unit cell.

1000Å in the length, and is constrained from growing along [0001] [56, 58]. In

addition to nanowires, compact shaped islands are usually formed concomi-

tantly with respect to these wires, depending on the detailed growth conditions

[161–165]. This is believed due to the existence of tetragonal phase silicides.

The tetragonal crystal structure has identical lattice spacing for a and b axis,

and epitaxially grows on Si(001) with a and b axis aligned along the two or-

thogonal <110> directions, which leads to an epitaxial layer with the same

mismatches in both directions [53, 58, 161, 162, 166]. Fig.5.15 schematically

shows the tetragonal phase silicides epitaxy on Si(001).

In this section, we will investigate the self-assembly of RE silicides on Si

with both hexagonal and tetragonal structures, and surface Si(001) is adopted

105



x
1

x
2

Si[010]

Si[100]

Si(001)

a-axis

c-axis
ca

Si(001)

]0001[
]0211[

Si(001)

a-axis

c-axis

Si(001)

a-axis

c-axis
ca

Si(001)

]0001[
]0211[

ca
Si(001)

]0001[
]0211[

x
1

x
2

Si[010]

Si[100]

Si(001)

a-axis

c-axis
ca

Si(001)

]0001[
]0211[

Si(001)

a-axis

c-axis

Si(001)

a-axis

c-axis
ca

Si(001)

]0001[
]0211[

ca
Si(001)

]0001[
]0211[

Figure 5.14: Schematic of hexagonal phase silicide epitaxy on Si(001).

Table 5.2: Lattice mismatch of hexagonal phase rare-earth metal silicides on
Si(001)

Silicides ErSi2 DySi2 ScSi2 GdSi2 HoSi2

[0001]mismatch 6.5% 7.6% −4.6% 8.9% 6.8%

[112̄0]mismatch −1.3% −0.1% 0.8% 0.8% −0.75%

in our discussion.

5.3.2 Self-assembly of silicide nanowires

Consider a flat silicide layer with mean thickness h0 epitaxy on a Si(001)

substrate. An in-plane biaxial mismatch strain in the silicide film is obtained

by comparing the lattice parameters of the silicides and the Si substrate. With

respect to the base coordinate system of the substrate, a corresponding coor-

dinate system is set up, with x1 along the Si[100] direction and x2 along the

Si[010] direction, as shown in both Fig.5.14 and Fig.5.15. At the reference
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Figure 5.15: Schematic of tetragonal phase silicide epitaxy on Si(001).

state, the mismatch stresses can be calculated referring to the procedures in

Chapter 2. It should be noted that, the alignment of base coordinate axis of

the silicides is different from that of the Si substrate, and a transformation of

the hexagonal elastic constants is necessary prior to subsequent calculation.

Details about the transformation can be referred to Appendix B.

For both the hexagonal and tetragonal structures, because of the ex-

istence of Si vacancies, real silicide structures are approximately (RE)Si1.7

[167, 168]. For simplicity, in the present work, we will refer to all the silicide

structures as (RE)Si2, and the elastic moduli of RE silicides are evaluated by

simple linear mixing rule between RE and Si, namely

C
(RE)Si2
ijkl = (1 − x)C

(RE)
ijkl + xCSi

ijkl, (5.8)
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Table 5.3: Elastic constants for typical rare-earth metals and silicon

Substance Elastic Constants (GPa)

C11(C22) C12 C13(C23) C33 C44(C55) C66

Er 83.7 29.3 22.2 84.5 27.5 27.2

Dy 73.1 25.3 22.3 78.1 24.0 23.9

Gd 66.1 25.0 20.8 71.4 20.4 20.6

Ho 76.1 24.8 20.6 77.6 25.7 25.7

Si 166.2 64.4 64.4 166.2 79.8 79.8

Table 5.4: Surface energy density for typical rare-earth metals and silicon

substance γ(N/m) Temp(0C) dγ/dt(N/(m · K))

Er 0.637 1530 -0.12e-3

Dy 0.648 1500 -0.13e-3

Gd 0.664 1350 -0.58e-4

Ho 0.650 1500 -0.125e-3

Si 0.775 1410 -0.145e-3

with x = 2/3. The elastic moduli for typical RE metals are listed in Table 5.3.

Upon annealing, the flat surface starts to evolve, and following the

discussion in Chapter 2, the governing equation is derived taking the form of

Eq.(2.19). Both linear and nonlinear are performed with the same procedure

presented in the previous part for SiGe on Si system.

To be specific, the RE metal Er on Si(001) is investigated first. For

the hexagonal structures, the [0001] axis of ErSi2 is aligned along the Si[11̄0]

axis and the [112̄0] axis along the Si[110] axis (Fig.5.14). Two mismatch

strains aligning in the a− and c−axis can be transformed into current system
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by standard tensor transformation, and the mismatch stresses are calculated

referring to Chapter 2. The physical constants used in simulations are listed in

Tables 5.2-5.4, for the lattice mismatch, elastic constants, and surface energy

density, respectively.

By doing the linear analysis, a similar length scale and time scale are

defined as

L =
γfEs

2(3εmEf )2
, τ =

γ3
fE

4

s

16Ω2M(3εmEf )8
, (5.9)

where εm refers to the mean mismatch normal strains in Si[100] and Si[010]

directions, i.e., εm = 1
2
(ε

(0)
11 + ε

(0)
22 ), and other parameters are defined the same

as those of Eq.(5.6). Compare with Eq.(5.6), coefficients are adjusted for the

purpose of numerical stability.

Fig.5.16 plots the growth rate in the plane of wave vector. The fastest

growing mode corresponds to two points located on the [1̄10] axis, which is

the direction with a large mismatch. This suggests that the initial evolu-

tion would develop parallel stripe patterns perpendicular to [1̄10] direction.

Fig.5.17 shows surface evolution from the nonlinear numerical simulation for

ErSi2 on Si(001). As predicted by the linear analysis, a parallel stripe pattern

emerges at the early stage in the [110] direction. After long time evolution, reg-

ular parallel lines are formed aligning in the [110] direction. Good agreements

are presented compare the simulation results with experimental observations

for both the pattern shape and their orientation.

Now we looking at the tetragonal ErSi2 structures, with which the a

and b axis of ErSi2 are aligned along the two orthogonal Si(110) axis, with

identical mismatch strain (Fig.5.15). The growth rate is shown in Fig.(5.18).
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Figure 5.16: Contour plots of the growth rate s(k1, k2) for hexagonal ErSi2 on
Si(001). Dark points indicate the peaks, which is located in [1̄10] direction.
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Figure 5.17: Evolution of surface morphology for hexagonal ErSi2 on Si(001)
from the numerical simulation. Parallel lines are eventually formed in the [110]
direction.
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Figure 5.18: Contour plots of the growth rate s(k1, k2) for tetragonal ErSi2
on Si(001). Four dark points indicate the peaks, which is located in [100] and
[010] directions.
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Figure 5.19: Evolution of surface morphology for tetragonal ErSi2 on Si(001)
from the numerical simulation. Compact dots are eventually formed.
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In a diamond shaped region, the growth rate is positive, with four peaks

located on the [100] and [010] axis. This indicates the initial evolution will

form perpendicular ridges in [100] and [010] directions. Fig.5.19 shows the

evolution of surface morphology by nonlinear simulation. The film surface

evolves into orthogonal ripples in both [100] and [010] directions as predicted.

The ridges then break up into islands, and, after long time evolution, form into

well organized array. No any elongated islands are obtained for this situation.

These regular islands also reflect the underlying crystal structure of Si(001),

which is similar with the situation for Ge on Si(001). This can be explained

by the isotropic strain (stress) state of the silicide thin film. Elastic anisotropy

from the substrate dominates the surface evolution for this system.

Combination of the results from both the hexagonal and tetragonal

silicide epitaxy investigation supportively illustrates that, in real RE silicide

on Si system, the hexagonal structured silicides tend to form elongated islands

aligning in the direction with small mismatch, while the tetragonal structured

silicides can only form compact islands. Coexistence of both two structures

offers a mixed pattern with both lines and dots. One thing need to mention is

that, different from the presented simulation results here, instead of lines grown

in a unique direction, orthogonal lines are commonly observed in experiments.

This phenomenon has been attributed to several reasons. The existence of

different surface terraces of the substrate could be one of them [53–55, 166,

169]. One type of terrace has dimmer rows parallel to the step edge, while the

other type has dimmer rows perpendicular to the step edge. Thus the lines

formed on the surface are tend to align in two perpendicular directions. Equal

possibilities for hexagonal silicides with a- or c-axes lying in any one of the
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<110> directions may also cause the generation of orthogonal lines.

5.4 Summary

In summary, we have studied the pattern evolution mechanism for het-

eroepitaxial film on anisotropic substrates, specific in two cases: SiGe islands

on Si substrates and disilicide nanostructures on Si substrate. The effects of

elastic anisotropy have been discussed in the early growing stage and during

long time evolution. Numerical simulations show that anisotropic elastic field

dominantly controls the evolution and formation of surface patterns. For SiGe

situation, the theoretical results are corroborated experimentally to check the

pattern variation with respect to surface orientation, pattern scaling deter-

mined by film composition and the film thickness effects on evolution. For

disilicide case, results support that anisotropic mismatch strain is the reason

for breaking the symmetry and forming elongated islands, which aligns in the

direction of small mismatch strain. Good agreement of our simulations with

experimental results for both cases serves a theoretical pathway for nano scale

pattern tailoring in heteroepitaxial thin film growth.
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Chapter 6

Conclusions and Outlook

In this dissertation, the pattern evolution process for epitaxial thin film

on single crystal substrate is discussed by a nonlinear model. Both linear

analysis and nonlinear numerical simulations are performed to investigate the

effects of nonlinear energy components and system anisotropy in self-assembled

surface pattern formation. Some general conclusions can be drawn with respect

to several aspects.

At the initial stage of self-assembly, stress field energetically competes

with the surface energy, stimulates the surface instability, and triggers the

surface evolution. After a long time evolution, different scenarios can hap-

pen depend on weather the nonlinear stress field is included or not: without

nonlinear stress terms, overall pattern remains unchanged with the roughness

of surface growing; when the nonlinear stress components are considered, the

film surface develops the “blow-up” instability by forming the deep circular

grooving like “nanopits”. So, without the wetting energy along the interface,

for relatively thick film, nonlinear stress field can induce surface instability by
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energy relaxation.

For SK growth mode, the wetting energy from the interface plays an

important role in surface dynamics. The presence of both nonlinear stress field

and wetting energy favors a stable evolution and organization of self-assembled

islands, leaving a thin uniform wetting layer along the interface.

Real epitaxial systems are essentially anisotropic. Considering only the

anisotropic mismatch stress can break the generic symmetry of an otherwise

isotropic system, and, in addition to that, predict a bifurcation of surface

pattern. Consideration of anisotropic mismatch stress enriches the surface

dynamics and offers a way for pattern selection.

For the SiGe/Si system, the anisotropy in both the surface and bulk

properties has profound effects on the nonlinear dynamics of pattern evolution.

With the surface energy anisotropy neglected, ordered surface patterns form

under the influence of elastic anisotropy, and they correlate well with the

underlying crystal structures of the substrate. Variation in the Ge composition

of SiGe films are found to lead to a change of the characteristic length scale

and thus the feature size of the final pattern. Furthermore, a transition of the

surface pattern from discrete islands to interconnected lines can be achieved

by increasing the mean film thickness.

For RE silicides epitaxy on Si(001), elongated silicide nanowires are

formed due to anisotropy of lattice mismatch strain between the silicides layer

and the substrate. The strong mismatch strain breaks the symmetry and form

elongated “wires” aligning in the direction of small mismatch strain.

In conclusion, the interplay between the nonlinear stress field and the

interfacial wetting has a profound effect on the dynamics of surface evolution.
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Further consideration of anisotropy can give a much richer dynamics of surface

pattern, and, in principle, may offer some instructions for epitaxial thin film

self-assembly for further applications.

Of course, materials discussed so far are by no means complete, and the

science of self-assembly growth is still developing. Even for the well-studied SK

growth mode, a lot of work remains to be done using crystal growth kinetics

and energetic to achieve a better control over the pattern nucleation, size,

composition, and uniformity. These unsolved issues are challenging and at the

same time very interesting.

As mentioned in Chapter 4 and 5, current evolution model is far from

completion, and can be further complicated by involving other kind of anisotropy,

such as anisotropic surface dynamics, anisotropic surface energy, and in turn

anisotropic wetting energy. Some tries have been reported mostly with anisotropic

surface energy in recent years [96, 104–106], and the rest issues remain to be

tackled. The reason for that is because of the lacking of acceptable mod-

els to give plausible description for these features both mathematically and

physically.

Another issue related to the pattern control is some artificially design

approach, such as strain field templates. The strain effect on SK growth has

inspired research activities aiming to improve the uniformity of self-assembled

nanostructures by strain engineering [35, 39, 170–176]. Qualitatively it is not

difficult to speculate that a non-uniform strain field on the substrate surface

would provide a modulated energy landscape that drives migration of adatoms

on the surface and thus nucleation and growth. Under proper conditions, the

regulation of the strain field may overrule the randomness of nucleation sites
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at the atomistic scale, leading to ordering and uniformity. The difficulties

however lie on the experimental realization of particular strain patterns and a

quantitative understanding of how a non-uniform strain field interacts with the

growth of self-assembled patterns. Several techniques have shown promise in

controlling the strain field. The effectiveness in terms of improving the spatial

and size uniformity varies, and the current practice is essentially trial-and-error

with little knowledge on why and how to improve. To this end, it is critical

to develop a quantitative model, based on which a mechanistic approach may

proceed to more effectively control the synthesis of self-assembled patterns.
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Appendix A

Solutions to Linear Elastic

Half-Space Problems

A.1 Isotropic solution

The classical approach to finding stress and displacement solutions due

to tractions acting on the surface area can be traced back to Boussinesq [177]

and Cerruti [178]. They employed the potential to get components of displace-

ment and stress for a distributed normal and tangential load over the surface

on an elastic half space, respectively. The results are given in terms of the

integrals of the loading distribution over the area. Hence, if the distributed

loading within the area are known explicitly, the solutions at any point in the

solid can be found by evaluating the integrals. To be specific, for a concen-

trated normal force acting on the surface of a half plane with no body force.
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Boussinesq’s solution gives the displacements on the surface:

ur =
1 − 2ν

4πµ

pz

r
, uz =

1 − ν

2πµ

pz

r
. (A.1)

Thus, the surface displacements due to a distributed pressure, p(x, y), are

evaluated in the integral form:

ux(x, y) =
1 − 2ν

4πµ

∫ ∫
(x − ξ)p(ξ, η)

(ξ − x)2 + (η − y)2
dξdη, (A.2)

uy(x, y) =
1 − 2ν

4πµ

∫ ∫
(y − η)p(ξ, η)

(ξ − x)2 + (η − y)2
dξdη, (A.3)

uz(x, y) =
1 − ν

2πµ

∫ ∫
p(ξ, η)√

(ξ − x)2 + (η − y)2
dξdη, (A.4)

This integral form can be further simplified in Fourier space by using the

property of convolution:

f(x, y) ∗ g(x, y) =

∫ +∞

−∞

∫ +∞

−∞
f(x − ξ, y − η)g(x, y)dξdη, (A.5)

and its Fourier transform

F [f(x, y) ∗ g(x, y)] = F [f ] · F [g]. (A.6)

Fourier transform of Eq.(A.2)-(A.4) leads to

ûx(k1, k2) = −1 − 2ν

2µ

ik1

k2
p̂(k1, k2), (A.7)
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ûy(k1, k2) = −1 − 2ν

2µ

ik2

k2
p̂(k1, k2), (A.8)

ûz(k1, k2) =
1 − ν

µ

1

k
p̂(k1, k2). (A.9)

Similarly, Cerruti’s problem considers a concentrated shear force acting on the

surface of a half plane with no body force. The displacement on the surface

are given by

ux =
px

2πµ

x2 + (1 − ν)y2

(x2 + y2)3/2
, (A.10)

uy =
px

2πµ

νxy

(x2 + y2)3/2
, (A.11)

uz = − px

4πµ

(1 − 2ν)x

x2 + y2
. (A.12)

Corresponding displacements for distributed shear tractions in both x and y

directions, τx(x, y) and τy(x, y), take the form:

ux =
1

2πµ

∫ ∫
[(x − ξ)2 + (1 − ν)(y − η)2]τx(ξ, η) + ν(x − ξ)(y − η)τy(ξ, η)

[(x − ξ)2 + (y − η)2]3/2
dξdη,

(A.13)

uy =
1

2πµ

∫ ∫
[(1 − ν)(x − ξ)2 + (y − η)2]τy(ξ, η) + ν(x − ξ)(y − η)τx(ξ, η)

[(x − ξ)2 + (y − η)2]3/2
dξdη,

(A.14)

122



uz = −1 − 2ν

4πµ

∫ ∫
(x − ξ)τx(ξ, η) + (y − η)τy(ξ, η)

(x − ξ)2 + (y − η)2
dξdη, (A.15)

Again, Fourier transform of (A.13)-(A.15) leads to

ûx(k1, k2) =
1

µk3
[(k2

2 + (1 − ν)k2
1)τ̂x − νk1k2τ̂y], (A.16)

ûy(k1, k2) =
1

µk3
[(k2

1 + (1 − ν)k2
2)τ̂y − νk1k2τ̂x], (A.17)

ûz(k1, k2) =
1 − 2ν

2µ

ik1τ̂x + ik2τ̂y

k2
. (A.18)

Combining the solutions to the Boussinesq’s problem and Cerruti’s problem

gives the general solution for the isotropic linear elastic half-space problem,



ûx

ûy

ûz


=

1

µk3



(1 − ν)k2 + νk2
2 −νk1k2 −1−2ν

2
ik1k

−νk1k2 (1 − ν)k2 + νk2
1 −1−2ν

2
ik2k

1−2ν
2

ik1k
1−2ν

2
ik2k (1 − ν)k2





τ̂x

τ̂y

p̂


,

(A.19)

which can be rewritten in the compact form,

ûi = QijT̂j. (A.20)

Index i and j take value from 1 to 3.
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A.2 Generally anisotropic solution

Methods for solving problems with respect to anisotropic materials are

well established so far [98, 179–182]. Essentially, all of these methods are re-

lated and extended upon the formulism given by either Lekhnitskii or Stroh

[179, 180]. These methods, however, are limited to give solutions for cases

where the stress and displacement fields depend on only two of the three spa-

tial coordinates x1, x2, and x3, and very few solutions exist for problems of

general anisotropy when the stresses depend on all three coordinates. Solu-

tions for a concentrated point force in an infinite body or on the surface of

a half-plane are generally obtained using transform methods, such that a 2D

problem is obtained in transform domain and can be solved by using Stroh and

Lekhnitskii formulism [143, 183, 184]. Here we develop a procedure based on

the transform method, and extend it to give solutions for general anisotropy.

Similar procedures have been used previously for different applications but

limited to cubic crystal structures only [143]. Special cases such as cubic

structure and isotropic elasticity are reduced at the end of this part as the

verification of our method. Consider a linear elastic half plane with generally

anisotropic material subject to arbitrary surface tractions. Substituting the

general Hooke’s law into the equilibrium equation leads to

Cijkluk,jl = 0, (A.21)

where Cijkl is the elastic moduli and uk the displacement, with the subscripts

taking values from 1 to 3 for the coordinates. We take Fourier transform of
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Eq.(A.21) with respect to the x1 and x2 coordinates and obtain that

Lij
∂2ûj

∂x2
3

+ ikMij
∂ûj

∂x3

− k2Nijûj = 0, (A.22)

where

ûj = ûj(x3, k1, k2) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
uj(x1, x2, x3) exp(ik1x1 + ik2x2)dx1dx2,

(A.23)

[Lij] =



C55 C45 C35

C45 C44 C34

C35 C34 C33


, (A.24)

[Mij] = 1
k



2(k1C15 + k2C56) k1(C56 + C14) + k2(C25 + C46)

2(k1C46 + k2C24)

sym

k1(C13 + C55) + k2(C45 + C36)

k1(C36 + C45) + k2(C23 + C44)

2(k1C35 + k2C34)


, (A.25)
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[Nij] = 1
k2



k2
1C11 + 2k1k2C16 + k2

2C66 k2
1C16 + k1k2(C12 + C66) + k2

2C26

k2
1C66 + 2k1k2C26 + k2

2C22

sym

k2
1C15 + k1k2(C14 + C56) + k2

2C46

k2
1C56 + k1k2(C25 + C46) + k2

2C24

k2
1C55 + 2k1k2C45 + k2

2C44


, (A.26)

and k =
√

k2
1 + k2

2. The Voigt’s abbreviated notation for the elastic moduli

has been used in Eqs.(A.24)-(A.26).

The solution to Eq.(A.22) takes the general form

ûj = vj(k1, k2) exp(λkx3). (A.27)

Substituting (A.27) into (A.22) leads to

(λ2Lij + iλMij − Nij)vj = 0. (A.28)

Therefore, vj(k1, k2) can be determined as the eigen vector from Eq.(A.28) cor-

responding to the eigen value λ, which can be solved by setting the determinant

of the coefficient matrix to be zero. In general, there exist six eigen values.

For the half-space problem, however, the displacement vanishes as x3 → −∞.
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Thus, only the three eigen values with positive real part are retained. The

complete solution takes the form

ûj =
3∑

n=1

Anv
n
j exp(λnkx3). (A.29)

Next, the boundary condition at the surface (x3 = 0) is specified to

determine the coefficients An in Eq.(A.29).

The Fourier transform of the surface traction, Ti(x1, x2) = σ3i(x1, x2, 0),

relates to the displacement as

T̂i = Σ3
n=1D

(n)
i An, (A.30)

where

D
(n)
i = (Pij + kλnLij)v

(n)
j , (A.31)

[Pij] =



ik1C15 + ik2C56 ik1C56 + ik2C25 ik1C55 + ik2C45

ik1C14 + ik2C46 ik1C46 + ik2C24 ik1C45 + ik2C44

ik1C13 + ik2C36 ik1C36 + ik2C23 ik1C35 + ik2C34


(A.32)

This completes the solution procedure. To summarize, the flow of the

solution steps is as follows.

(i) For each wave vector, (k1, k2), the eigen values and eigen vectors are

obtained from Eq.(A.28);
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(ii) For given surface traction, the coefficients An are solved from Eq.(A.30).

(iii) The displacement is determined by Eq.(A.29). In particular, for

the present study, the surface displacement is related to the surface traction

in form of

ûj(x3 = 0; k1, k2) = Qij(k1, k2)T̂i. (A.33)

(iv) The strain and stress on the surface can be obtained from (A.29):

∂ûj

∂x3

=
3∑

n=1

Anλnkv
(n)
j exp(λnkx3), (A.34)

σ̂ij = ikβCijαβûα + Cijα3(
∂ûα

∂x3

+ ikαû3) + Cij33
∂ûα

∂x3

. (A.35)

As a special case for the general solution, consider a half space of cubic

crystal with its surface parallel to the (001) plane. In this case, the eigenvalue

problem in (A.28) reduces to that in Lu and Suo [143]. The eigenvalues can

then be obtained by solving a cubic algebraic equation of :

λ6 + d1λ
4 + d2λ

2 + d3 = 0, (A.36)

where

d1 = −R2 + RS + S2 − 1

RS
, (A.37)

d2 =
R2 + RS + S2 − 1

RS
+

S3 − 2RS2 + R2S − 3S + 2R + 2

R2S

k2
1k

2
2

k4
, (A.38)
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d3 = −(R − S)2 − 1

RS

k2
1k

2
2

k4
− 1, (A.39)

with R = C44/(C12 + C44) and S = C11/(C12 + C44). Similarly, Eq.(A.30)

reduces to Eq. (20) in Lu and Suo [143] for (001) cubic crystals.

An important thing need to note here is that the isotropic case can

not be further recovered directly from the results of cubic crystals. It will

be shown in the following that, isotropic material properties lead to triply

degenerate eigenvalue in Eq.(A.36), and in turn no independent eigenvectors

can be obtained by general solution (A.27). A different form is thus needed

due to the degeneration.

We go back to Eq.(A.22) to solve the problem for isotropic cases. Now,

Eqs.(A.24)-(A.26) becomes

[Lij] =



µ 0 0

µ 0

sym λ + 2µ


, (A.40)

[Mij] =
1

k



0 0 k1(λ + µ)

0 k2(λ + µ)

sym 0


, (A.41)
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[Nij] =
1

k2



k2
1(λ + 2µ) + k2

2µ k1k2(λ + µ) 0

k2
1µ + k2

2(λ + 2µ) 0

sym 0


. (A.42)

Then, Eq.(A.22) can be simplified to,

∂4û1

∂x4
3

− 2k2∂2û1

∂x2
3

+ k4û1 = 0. (A.43)

The general solution to (A.43) is:

û1 = (A1 + B1kx3) exp(kx3). (A.44)

Similarly, we can get the general solution for other components in the form

ûj = (Aj + Bjkx3) exp(kx3). (A.45)

which are differing from (A.27). Substituting (A.45) into Eq.(A.22) together

with the isotropic elastic moduli, we obtain that

B1

k1

=
B2

k2

, (A.46)

A3 =
1

k
[−ik1A1 − ik2A2 −

k2(λ + 3µ)

ik1(λ + µ)
B1], (A.47)
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B3 = − ik

k1

B1. (A.48)

Applying the boundary condition at the surface leads to three more equations

that complete the solution,

τ̂x = µ(
∂û1

∂x3

+ ik1û3) =
µ

k
[(2k2

1 + k2
2)A1 + k1k2B1 −

2µ

λ + µ
k2A2], (A.49)

τ̂y = µ(
∂û2

∂x3

+ ik2û3) =
µ

k
[(k1k2A1 + 2k2

1 + k2
2)B1 −

2µ

λ + µ
k2B2], (A.50)

p̂ = λ(ik1û1 + ik2û2)+(λ+2µ)
∂û3

∂x3

= 2µ(−ik1A1− ik2B1)+
2µ(λ + 2µ)

λ + µ

ik2

k1

A2.

(A.51)

Combining (A.46)-(A.51) by eliminating coefficients recovers the relationship

between the surface tractions and the surface displacements, which is iden-

tical to solutions by integrating the classical solutions to the Cerruti’s and

Boussinesq’s problems obtained previously in (A.19).
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Appendix B

Transformation of Anisotropic

Elastic Moduli

In many cases, it is more convenient to work in an arbitrarily orien-

tated coordinate system to calculate the stress and strain components. Thus

a generalized Hooke’s law must be used and the elastic coefficients need to be

determined from a tensor transformation for the particular orientation.

Let Cijkl be the elastic moduli at the natural crystalline coordinate ( in

Figure 5.1). In an arbitrarily rotated coordinates (e.g., in Figure 5.1 for the

epitaxial system), the elastic moduli can be obtained by transformation

C̃ijkl = TimTjnTkpTlqCmnpq, (B.1)

where is the rotation matrix from the reference coordinates to the epitaxial

coordinates . For cubic crystals such as Si and Ge, the transformation reduces
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to

C̃ijkl = Cijkl − C0[
3∑

n=1

TinTjnTknTln − δijδklδik], (B.2)

where C0 = C11 − C12 − 2C44 and no summation is implied for indices i and

k. For convenience, the elastic moduli of Si and Ge in the four epitaxial

coordinates considered in the present study are listed in the matrix form as

follows.

Si(001), with the coordinate axes coinciding with the crystal directions,

[100], [010], and [001], which is identical to the natural coordinates:

C(001) =



166.2 64.4 64.4 0 0 0

64.4 166.2 64.4 0 0 0

64.4 64.4 166.2 0 0 0

0 0 0 79.8 0 0

0 0 0 0 79.8 0

0 0 0 0 0 79.8



(GPa). (B.3)

Si(111), with the coordinate axes in the crystal directions, [21̄1̄], [011̄],
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and [111]:

C̃(111) =



195.1 54.8 45.1 0 −13.6 0

54.8 195.1 45.1 0 13.6 0

45.1 45.1 204.7 0 0 0

0 0 0 60.5 0 13.6

−13.6 13.6 0 0 60.5 0

0 0 0 13.6 0 70.2



(GPa). (B.4)

Si(110), with the coordinate axes in the crystal directions, [1̄10], [001],

and [110]:

C̃(110) =



195.1 64.4 35.5 0 0 0

64.4 166.2 64.4 0 0 0

35.5 64.4 195.1 0 0 0

0 0 0 79.8 0 0

0 0 0 0 50.9 0

0 0 0 0 0 79.8



(GPa). (B.5)
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Si(113), with the coordinate axes in the crystal directions, [1̄10], [3̄3̄2],

and [113]:

C̃(113) =



195.1 40.8 59.1 11.1 0 0

40.8 202.7 51.5 5.1 0 0

59.1 51.5 184.4 −16.2 0 0

11.1 5.1 −16.2 66.9 0 0

0 0 0 0 74.5 11.1

0 0 0 0 11.1 56.2



(GPa). (B.6)

Ge(001), with the coordinate axes coinciding with the crystal direc-

tions, [100], [010], and [001], which is identical to the natural coordinates:

C(001) =



128.4 48.2 48.2 0 0 0

48.2 128.4 48.2 0 0 0

48.2 48.2 128.4 0 0 0

0 0 0 66.7 0 0

0 0 0 0 66.7 0

0 0 0 0 0 66.7



(GPa). (B.7)
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Ge(111), with the coordinate axes in the crystal directions, [21̄1̄], [011̄],

and [111]:

C̃(111) =



155.0 39.3 30.5 0 −12.5 0

39.3 155.0 30.5 0 12.5 0

30.5 30.5 163.9 0 0 0

0 0 0 49.0 0 12.5

−12.5 12.5 0 0 49.0 0

0 0 0 12.5 0 57.8



(GPa). (B.8)

Ge(110), with the coordinate axes in the crystal directions, [1̄10], [001],

and [110]:

C̃(110) =



155.0 48.2 21.6 0 0 0

48.2 128.4 48.2 0 0 0

21.6 48.2 155.0 0 0 0

0 0 0 66.7 0 0

0 0 0 0 40.1 0

0 0 0 0 0 66.7



(GPa). (B.9)
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Ge(113), with the coordinate axes in the crystal directions, [1̄10], [3̄3̄2],

and [113]:

C̃(113) =



155.0 26.4 43.4 10.3 0 0

26.4 162.0 36.3 4.7 0 0

43.4 36.3 145.1 −14.9 0 0

10.3 4.7 −14.9 54.8 0 0

0 0 0 0 61.9 10.3

0 0 0 0 10.3 45.0



(GPa). (B.10)
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