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I have pursued a breadth of research that explored the functional genomic study of 

eukaryotic transcriptional regulation.  I have utilized two model organisms, many 

experimental methodologies, and have developed a suite of computational resources to 

study the interaction of transcription factors with regulated targets. 

In Saccharomyces cerevisiae I worked with my collaborator Dr. Zhanzhi (Mike) 

Hu to characterize the whole-genome transcriptional response of 263 individual 

transcription factor deletions.  We utilized a sophisticated error model and directed-

weighted graphs to model a network of high-confidence targets for each transcription 

factor profiled.  We then used regulatory epistasis to elucidate the true set of primary KO-

regulated targets and construct a functional transcriptional regulatory network.  This 

network was analyzed for ontological and sequence motif enrichment in order to gain 

insight into the biological functions represented by transcription factors studied.  

Functional validation was performed to evaluate the probability of novel functional 
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characterizations.  Significant insight was gained from this study with regard to the nature 

of regulatory cascades and the inability for DNA binding events to predict regulation. 

This set of analysis was performed with a novel bioinformatic server called 

ArrayPlex. ArrayPlex is a software package that centrally provides a large number of 

flexible toolsets useful for functional genomics including microarray data storage, quality 

assessments, data visualization, gene annotation retrieval, statistical tests, genomic 

sequence retrieval and motif analysis.  It uses a client-server architecture based on open 

source components, provides graphical, command-line, as well as programmatic access to 

all needed resources, and is extensible by virtue of a documented API. 

Using many of the techniques and computational resources developed, I pursued 

the study of microRNA transcriptional abundance and targeting in H. sapiens cell 

cultures.  Utilizing custom-fabricated microarrays, I measured the whole-genome 

response of both mRNAs and microRNAs under serum stimulation, c-Myc 

overexpression, and c-Myc siRNA-mediated knockdown.  I then characterized the 

regulatory interactions between the sets of regulated microRNAs and coordinately 

regulated transcription factors.  Using analytical methods sensitive to regulatory 

directionality of both populations I was able to determine high-confidence relationships 

between transcription factors and regulated microRNAs as well as microRNAs and 

regulated gene targets. 
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Chapter 1: Introduction 

EUKARYOTIC TRANSCRIPTIONAL REGULATION 

Complexity Through Regulation 

Modern comparative genomic analyses indicate that the physiological complexity 

exhibited by metazoans is not accounted for through what was once predicted would be a 

proportionate increase in total gene count [1].  C. elegans has a 97 Mb genome of 

approximately ~19,000 genes while the physiologically more complex D. melanogaster  

has a 180 Mb genome containing only ~13,600 genes [2, 3].  The 3,200 Mb H. sapiens 

genome, containing ~30,000 protein-coding genes, was surprisingly smaller than even 

contemporary expectations [4].  Alternative splicing, the production of multiple mRNA 

isoforms from a single genomic sequence, is posited as one significant source of higher-

eukaryotic diversity [5].  Indeed, recent analysis of C. elegans, D. melanogaster, and H. 

sapiens genome sequences has estimated alternatively spliced isoforms at 5%, 18%, and 

75% of putative genes, respectively [1, 3, 6].  In additional to spliceosomal variation, 

more sensitive control of gene expression and regulation has become increasingly 

implicated in the characterization of cellular complexity and differentiation [7, 8].   

Eukaryotic Transcriptional Regulation 

Within the context of a eukaryotic cell, only a small percentage of genes in a 

genome are being expressed at any given time.  The process of regulating which genes 

are actively transcribed is a direct requirement of the diverse cellular types, physiological 

states, and environmental conditions that define an organism and its ecosystem.  
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Transcriptional regulation is facilitated by many interdependent and parallel processes: 

chromatin modification, sequence-specific DNA-protein transcription factor interactions, 

as well as the managed assembly of general eukaryotic transcriptional machinery all 

determine the expression level of a gene at any given time [7]. 

Core to the process of differential gene expression and cell-fate determination are 

the cis-regulatory elements that define eukaryotic promoters.  Eukaryotic promoters 

generally contain three common elements, the first two defining what is often called the 

core promoter: the transcription-start site, the TATA box, and upstream sequences 

including activators, enhancers, repressors, and silencers [9].  The core promoter, 

extending approximately 100bp and including the transcription start site, is generally 

adequate for directing the initiation of a basal level of ubiquitous transcription, thereby 

providing function but lacking in regulatory potential[7].  A subset of eukaryotic core 

promoters contain a TATA box approximately 30bp upstream of the transcription start 

site [9, 10]. 

Contemporary molecular biology now encompasses both the painstaking 

characterization of just a few genes at a time as well as the in vivo whole-genome 

transcriptional expression profiling of eukaryotic experimental samples under a variety of 

cellular and environmental conditions [11-14].  The data produced by these experiments 

hardly make the regulatory mechanisms of cellular systems transparent, however.  

Nonetheless, the combination of whole-genome expression data with the modern 

availability of sequence annotation has accelerated progress towards the characterization 

of biological systems as deterministic module networks [15].  Expression profiles provide 

both an indication of temporal interaction amongst putative genes in a network as well as 

a direct means of testing complex regulatory relationships through the transcriptional 

characterization of deletions, mutants, or RNAi-mediated knockdowns.  These 
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techniques, however, have not been able to elucidate the entire spectrum of regulation 

operating within eukaryotic organisms.  There are certainly known mechanisms of 

control that cannot be accounted for by expression profiling, including regulated post-

transcriptional activation [16].  Perhaps, however, clear understanding has been lacking 

due to an incomplete tally of the players and their roles within the game. 

MicroRNA Regulation 

Over a decade ago, the C. elegans heterochronic gene lin-4 was discovered to be 

required for proper post-embryonic development [17].  Three features of lin-4’s 

characterization was the discovery that it codes for a 22nt non-coding RNA (ncRNA) 

rather than a protein product, that its mature form contains partial antisense 

complementarity to the protein-coding gene lin-14, and that this complementarity 

eventually guides the post-transcriptional degradation of lin-14 [18].  Some time passed 

before the characterization of C. elegans let-7 showed that the regulatory phenomenon 

was not a singular aberration [19].  It has since become clear that let-7’s similar 

sequence-directed degradation of protein-coding transcripts is highly conserved from C. 

elegans to H. sapiens and that this widespread regulatory phenomena of microRNAs has 

both significant representation and conservation within nearly all metazoan genomes 

[18]. 

MicroRNA biogenesis has only recently become well characterized (Figure 1.1). 

Nuclear transcription and pre-processing of endogenous microRNA genes, as facilitated 

by Drosha, creates pri-microRNAs that are quickly processed into ~70nt pre-microRNAs 

[18, 20].  Pre-microRNAs all have primary sequences that ensure a stem-loop secondary 

structure [20].  Pre-microRNAs are then exported from the nucleus to the cytoplasm by 

Exportin (Exp5/Ran-GTP) mediated cargo transport [21].  Once present in the cytoplasm, 
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pre-microRNAs are again processed by the well-conserved protein complex Dicer.  The 

involvement of Dicer in microRNA processing is similar to its characterized role in the 

processing of double-stranded RNA during RNA interference (RNAi) [22].  Mature 

microRNAs now interact with and direct multi-protein RISC complexes, which mediate 

either the translational repression or post-transcriptional cleavage of protein-coding 

transcripts [20].  In this manner microRNAs have a substantial post-transcriptional effect 

upon the overall regulation of gene expression. 

If microRNA-directed regulation is an essential component of the regulatory 

fabric that defines metazoan development and homeostasis, the expression of microRNAs 

themselves must indeed be carefully modulated.  Additionally, if the original 

transcription of microRNAs is mediated by RNA polymerase II, well-tested 

computational and experimental methods will provide clues to mechanisms that define 

their regulation. 

Though a few microRNAs have been mapped within intronic regions of known 

genes, microRNAs generally reside within the great expanses of intergenic space that are 

present in higher eukaryotes [23].  Very few of the promoter regions of intergenic 

microRNAs have been characterized.  Nonetheless, significant evidence supports the 

hypothesis that these microRNAs are the product of RNA polymerase II thereby 

implicating regulation by cis-acting sequences and trans-acting factor [24, 25].  

Specifically, a documented cluster of C. elegans microRNAs (mir-35-mir-41) show 

transient patterns of expression during embryogenesis specifically suggesting regulated 

transcription [26].  Recent phylogenetic and molecular study of microRNAs in C. elegans 

and D. melanogaster have identified transcriptional responses to extracellular signaling, 

conserved promoter elements, and trans-acting factors [27].  Additionally, several 

research groups have both located and directly implicated the combination of specific 
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DNA sequences and transcription factors with modulated mammalian microRNA 

expression [28-39].  Given the fundamentally powerful yet almost entirely 

uncharacterized role microRNAs play within the context of whole-genome regulation and 

environmental response, it is important that the mechanisms, sequences, and factors 

directing their own regulated expression be properly characterized.  Finally, as 

microRNAs become increasingly implicated in causal roles of a large variety of human 

disease conditions, it is critical that our understanding of regulatory interactions that 

mediate their transcriptional regulation become more understood. 

RESEARCH OVERVIEW 

I have pursued research that explored the functional genomic study of eukaryotic 

transcriptional regulation.  I have utilized two model organisms, many experimental 

methodologies, and have developed a suite of computational resources to study the 

interaction of transcription factors with regulated targets. 

Chapter 2 is a succinct summation of generalized DNA microarray fabrication, 

primary data production, and normalization methods that are globally applicable to all 

research discussed. 

Chapter 3 details the rationale and methods behind the development of 

bioinformatic infrastructure resources.  The Longhorn Array Database is well known at 

the University of Texas at Austin as the central warehouse for nearly all locally produced 

primary microarray data.  ArrayPlex is a software package that centrally provides a large 

number of flexible toolsets useful for functional genomics including microarray data 

storage, quality assessments, data visualization, gene annotation retrieval, statistical tests, 

genomic sequence retrieval and motif analysis.  It uses a client-server architecture based 
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on open source components, provides graphical, command-line, as well as programmatic 

access to all needed resources, and is extensible by virtue of a documented API. 

Chapter 4 details my work with Dr. Zhanzhi (Mike) Hu to characterize the whole-

genome transcriptional response of 263 individual transcription factor deletions.  We 

utilized a sophisticated error model and directed-weighted graphs to model a network of 

high-confidence targets for each transcription factor profiled.  We then used regulatory 

epistasis to elucidate the true set of primary KO-regulated targets and construct a 

functional transcriptional regulatory network.  This network was analyzed for ontological 

and sequence motif enrichment in order to gain insight into the biological functions 

represented by transcription factors studied.  Functional validation was performed to 

evaluate the probability of novel functional characterizations.  Significant insight was 

gained from this study with regard to the nature of regulatory cascades and the inability 

for DNA binding events to predict regulation. 

Chapter 5 details my study of microRNA transcriptional abundance and targeting 

in H. sapiens cell cultures.  This research was a final important step in the goals I had 

with respect to my progress as a biologist and study of eukaryotic transcriptional 

regulation.  First, it was a project in which I assumed complete leadership of process 

development, experiment design, and data analysis.  MicroRNA expression profiling had 

been prototyped in the Iyer Lab but was far from a standardized process with Dr. Jian Gu 

graduated.  I was eager to accept the challenge of making the experimental process work 

in a deterministic and reliable manner.  The enrichment, direct labeling, and hybridization 

of small quantities of RNA proved to be a non-trivial methodological challenge.  

Utilizing custom-fabricated microarrays, I measured the whole-genome response of both 

mRNAs and microRNAs under serum stimulation, c-Myc overexpression, and c-Myc 

siRNA-mediated knockdown.  I then characterized the regulatory interactions between 
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the sets of regulated microRNAs and coordinately regulated transcription factors.  Using 

analytical methods sensitive to regulatory directionality of both populations I was able to 

determine high-confidence relationships between transcription factors and regulated 

microRNAs as well as microRNAs and regulated gene targets. 
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Figure 1.1 – MicroRNA Biogenesis 

The process of microRNA biogenesis begins in the nucleus with microRNA gene transcription by 
RNA polymerase II to generate pri-microRNAs.  The long initial transcripts are processed by 
Drosha/DGCR8 into ~70nt pre-microRNAs.  Exportin5 exports the pre-microRNAs.  In the 
cytoplasm Dicer processes the pre-microRNA into a microRNA duplex.  The duplex is separated 
and the single-stranded mature microRNA associates with RISC complex. 
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Chapter 2: General Materials and Methods 

DNA MICROARRAY FABRICATION 

This study required the production of three types of custom DNA microarrays.  All DNA 

microarrays were made in the Iyer Lab through the collective efforts of graduate students, 

post-doctoral researchers, and adviser oversight. 

Yeast Probe Set 

The yeast probe set consisted of cDNA sequences produced by PCR amplification of all 

yeast ORF and intergenic sequences. 

Human mRNA Probe Set 

The human mRNA probe set consisted of purchased cDNA sequences from 47,000 

sequence-verified IMAGE clones. 

Human MicroRNA Probe Set 

The human microRNA probe set consisted of Ambion DNA oligonucleotides 

representing 281 H. sapiens mature microRNAs, 49 M. musculus mature microRNAs, 14 

R. norvegicus mature microRNAs, and several dozen negative and positive control 

sequences. 

Printing 

DNA microarrays were made by using a customized robotic arrayer to spot DNA on 

either produced poly-L-lysine coated slides (yeast) or CEL VEPO-25C Epoxy Vantage 

Slides epoxy slides (Human mRNA, microRNA). 
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PRIMARY DATA CAPTURE & TRANSFORMATION 

Microarray Scanning 

Molecular Devices GenePix Pro 5.0 and 4000A/4000B microarray scanners were used to 

scan all DNA microarray slides.  Fluorescent intensities of hybridized samples were 

measured on either the Cy5 (635nm) or Cy3 (532nm) responsive wavelengths.  Primary 

data was saved in the form of uncompressed TIFF files for each fluorescent wavelength.  

Primary TIFF files were annotated through the process referred to as gridding.  Circles 

were aligned with fluorescent spots.  Each circle was pre-annotated to correspond with a 

documented DNA sequence.  The process of gridding was saved as a GenePix Pro 

Settings file (GPS).  Final data generation produced more than 50 metrics per annotated 

spot in a GenePix Pro Results file (GPR) that was uploaded to the Longhorn Array 

Database. 

Data Warehousing 

The Longhorn Array Database, described in Chapter 3, was used to store all primary 

microarray data from all microarray experiment types. 

Data Normalization 

The process of data normalization did not modify pre-normalized primary data files and 

values.  Normalized values were determined for all applicable single-channel and ratio-

based metrics and stored alongside unmodified primary data in the database. 
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Positive Control Normalization 

Positive control normalization involved the manual application of a predetermined 

normalization coefficient to an experiment during the process of Longhorn Array 

Database experiment submission.  This normalization coefficient was determined by 

custom software that read a GenePix Pro Results file and determined a linear coefficient 

that would adjust the average positive control spot ratio to a value of 1.0. 

Global Normalization 

Global mean normalization was applied to all experimental results during the process of 

data submission to the Longhorn Array Database with the exception of when positive 

control normalization was manually applied.   Global mean normalization involved the 

computation of a linear normalization coefficient that would adjust all spot ratios such 

that their mean value was 1.0.  This coefficient was determined by the Longhorn Array 

Database and applied without user intervention or calculation. 
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Chapter 3: Bioinformatic Infrastructure 

 The efforts described in this chapter detail the rationale and implementation of 

two bioinformatic systems:  Longhorn Array Database (LAD) and ArrayPlex.  The 

former project was in progress in 2002 and continued through 2003.  The research article 

The Longhorn Array Database (LAD): an open-source, MIAME compliant 

implementation of the Stanford Microarray Database (SMD) was published in August of 

2003 in BMC Bioinformatics [40].  A book chapter entitled Microarray Data 

Visualization and Analysis with the Longhorn Array Database (LAD) was authored 

shortly thereafter for Current Protocols in Bioinformatics [41].  ArrayPlex was initiated 

in 2004 and was instrumental in the fulfillment of research efforts described in Chapters 4 

and 5.  ArrayPlex is an independent manuscript (ArrayPlex: distributed, interactive and 

programmatic access to genome sequence, annotation, ontology, and analytical toolsets). 

INTRODUCTION 

Microarray data analysis is divided into two distinct stages. The first stage 

involves the warehousing of primary data into a centralized repository.  This takes the 

form of a database system that has been specifically designed to handle DNA microarray 

data.  A database system is requisite to the process of even the simplest of primary data 

analysis procedures.  The second stage of analysis is one of external information 

association and biological discovery.  Primary microarray data that has been filtered for 

both quality and significance is the beginning of the process of taking raw measurements 

and elucidating biological meaning.  That process cannot continue without the association 

of standardized gene annotations, ontological associations, and genome sequence with the 

microarray spots that emerged from the primary analysis and filtering process. 
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Each of these analytical stages requires specialized bioinformatic systems.  My 

initial research efforts began with the extended customization and deployment of an 

existing microarray database system.  This system, the Longhorn Array Database (LAD) 

would prove to be the foundation of both my personal research and the primary 

microarray database for more than one hundred Iyer Lab members and collaborators.  

Secondarily, I designed and implemented a novel network-centric computational 

environment focused entirely upon centralized access to genome resources. 

RESULTS 

Primary Data Warehousing 

A microarray database fulfills specific needs for a research environment that 

produces even modest quantities of primary microarray data.  Its primary function is to 

parse the file-format of the primary data itself and store the contained information in a 

high-performance underlying relational database system.  The relational system is usually 

one of several open-source or commercial variants:  MySQL, PostgreSQL, or Oracle.  

Once stored in the database system, a single or group of microarray experiments can be 

uniformly filtered for both data quality and statistical significance.  The single most 

important function of the microarray database is to accurately execute this process of 

database population with each experiment submission and then to subsequently protect 

the primary data from corruption.  Technologically, this protection comes in several 

forms.  Relational databases themselves have a feature-set known as transactions that 

allow operations that modify or delete data to be bundled in an all-or-nothing execution 

package.  If an error occurs or data inconsistency is detected during the process of data 

manipulation the database will rollback the entire set of operations to the previous error-
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free state.  This feature is critical to protecting primary data but can be utilized only if the 

microarray database application itself makes use of the option to do so. 

Microarray databases secondarily fulfill the need for geographic and collaborative 

flexibility in the process of data submission and access.  Centralized location and network 

accessibility allow groups of users to both submit primary data and share access to result 

sets and analytical toolsets. 

Database Selection 

We evaluated many relational database packages developed specifically for the 

purpose of primary DNA microarray data storage.  ArrayDB, BASE, GeneX, MADAM 

and MIDAS were all examples of development efforts from academic sources [42, 43].  

Most of these solutions had the advantage that the system source code was available and 

were thus open to modification.  Many of them had significant shortcomings.  Several 

stored numerical data but lacked the ability to simultaneously archive and visualize 

primary array images.  Others were simply not capable of operating with thousands of 

loaded experiments or were built upon technologies that would not guarantee the integrity 

of the stored primary data.  Finally, some solutions did not provide for network-based 

remote user access, a functional necessary in a collaborative multi-researcher 

environment.  GeneX, for example, was designed to rely upon a suite of both web-based 

and local applications for a variety of import and analysis feature.  This architectural 

decision expanded its graphical feature potential yet simultaneously reduced its 

geographical and web distributed user capabilities important to many research 

environments. 

One of the most utilized microarray databases was the Stanford Microarray 

Database [44].  During the period in which we evaluated microarray database options, 
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SMD had already archived more than 34,500 microarray experiments including 4500 

from more than a hundred different publications and supported approximately 700 users.  

It had a great breadth of features that included data filtering, data analysis, visualization 

toolsets, and updated gene annotations for many model organisms.  Additionally, SMD 

featured a strict hierarchical user and group model of user accounts such that experiments 

could be collaboratively shared or protected. 

The source code for SMD had been open-source for some time, which 

theoretically allowed any researcher to install and operate an SMD server.  SMD in this 

form, however, was based on proprietary hardware and software infrastructure that would 

have required a significant capital expenditure from any laboratory that wished to operate 

such a server.  SMD was primarily operated on the Sun Solaris operating system.  Solaris 

was tailored for Sun hardware and processors that were incompatible with and not nearly 

as affordable as Intel-based computer systems.  Additionally, SMD was designed and 

written to utilize the Oracle relational database management system.  The cost of initial 

investment and long-term ownership of these technologies was significantly higher than 

alternative open-source technology choices.  In addition to licensing costs, Oracle is a 

very demanding database in terms of the expertise required by professional database 

administrators to deploy and maintain it. 

Given the numerous strengths and proven nature of SMD, we wished to adapt it 

for compatibility with open-source operating and relational database systems.  We chose 

the combination of Linux and PostgreSQL to replace Solaris and Oracle. We have named 

our open-source version of SMD the Longhorn Array Database (LAD). 
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The Open-Source Translation 

We adopted a two-step strategy to accomplish the open-source port. We first 

transitioned SMD from Solaris to Linux while using Oracle as the relational database. 

This allowed us to ensure that the application component of the system operated to 

expectations before introducing major changes to the application source code.  We 

conservatively introduced only the required changes throughout the SMD/LAD source 

tree such that it would reliably operate within the Linux operating system. 

Once SMD/LAD was compatible with Linux, we undertook its migration to an 

open-source relational database that could support all the features required by the 

database-specific command-set within the SMD/LAD application source code.  These 

included transactions, foreign-key integrity constraints, indexes, and sequences. The 

open-source relational database that met these requirements was PostgreSQL.  

PostgreSQL is an open-source object-relational database management system that 

supports nearly all SQL constructs including transactions, triggers, stored procedures, 

sub-selects, and user-defined types and functions. The use of such features is generally 

considered critical for ensuring data integrity. MySQL, another open-source relational 

database system evaluated, had only attained much of this feature set and was not known 

to operate at the scale intended for our microarray database.  The original SMD database 

schema was re-implemented in the format required by PostgreSQL.  Oracle-specific SQL 

code, constructs, and syntax in the SMD tree were translated to a standards-compliant 

SQL set of statements so that they would execute correctly with PostgreSQL. We 

optimized the indexing of certain tables and profiled query execution of involved multi-

table joins to ensure that operations would complete in acceptable timeframes. 
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MIAME Support 

A critical part of reporting the results of microarray experimentation and data 

analysis is the ability to share information that fully describes individual experiments. 

Lack of standards for presenting both experimental conditions and primary microarray 

data made relative comparison of microarray experiments produced in separate research 

environments a near impossibility.  A standard entitled MIAME – the Minimum 

Information About a Microarray Experiment – was proposed to address this problem 

[45].  MIAME was a comprehensive specification that detailed the minimum annotation 

that should accompany the publication of any microarray data set.  Subsections pertaining 

to experimental design, array design, sample preparation, hybridization protocols, actual 

quantitative results, and normalization controls were all addressed within the 

specification.  MIAME had significant support from both the research and journal 

publishing communities.  It was therefore imperative that any long-term microarray data 

warehouse and analysis environment support the MIAME specification. This ensured that 

as results were accumulated within the database the appropriate experimental and 

conditional annotations were simultaneously recorded and archived. 

To enable LAD MIAME compliance we implemented a strategy that allowed a 

MIAME addendum to be attached to each experiment that was submitted to the database. 

Subsequent recall of that experiment also recalled all MIAME annotation information.  

Because a large fraction of this required information remained constant from experiment 

to experiment, MIAME annotation was implemented through use of reusable templates. 

This design enabled MIAME compliance without encumbering the experiment 

submission process. 
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Figure 3.1 – Longhorn Array Database Core Technology 

 
The Longhorn Array Database relies entirely on open-source technologies.  The 
application component is integrated with the Apache Web Server while PostgreSQL 
provides the relational database functionality.  All LAD functions are web-accessible 
allowing a distributed user-base to submit and collaboratively share experimental results. 
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Final Release & Support 

 Simultaneous to its publication in BMC Bioinformatics, LAD was released to the 

research community in August of 2003 [40].  Five revisions followed, each including 

both new features and defect repairs. 

Secondary Data Association & Analysis 

The development of LAD provided a reliable and secure primary data warehouse.  

It is difficult to functionally analyze primary microarray data, however, without many 

forms of exogenous information directly relevant to the set of significant microarray 

spots.  Following raw data retrieval is a process that involves the association of custom 

and curated annotations, genomic ontology, and raw genomic DNA sequence.  These 

resources are difficult to manually assemble while data manipulation and spot-to-

external-data association errors are frequent.  Amplifying this problem is the fact that this 

process is typically not executed just once in the life cycle of a research project.  These 

operations are part of a much larger cycle of analysis requiring execution with each round 

of hypothesis revision. 

To better handle this pervasive set of problems we have developed a network-

centric software environment (ArrayPlex) chartered with the goal of streamlining the up-

to-date acquisition of these resources and the ease by which they can be associated with 

primary data.  We have done this focusing upon resources related to three model 

organisms often studied in DNA microarray-based research: Homo sapiens (Hs), Mus 

musculus (Mm), and Saccharomyces cerevisiae (Sc).  Specifically, we have included 

commonly utilized systematic annotations from the Stanford Genome Database (SGD), 

NCBI, and the Gene Ontology (GO) Consortium.  Additionally, we provide complete 
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access to the latest UCSC-hosted genome sequence.  In addition to data resources, we 

have assembled access to a suite of frequently utilized DNA sequence analysis toolsets.  

A complete list of managed resources and toolsets are listed in Tables 3.1 and 3.2, 

respectively. 

Our goal was to develop an open-source, easily installed and maintained, robust, 

network-centric system with which researchers could construct reusable pipelines of 

complex data analysis procedures.  We designed the system to communicate on three 

levels of interaction: a graphical user interface for interactive data manipulation, a set of 

command-line analytical modules for script-driven analysis, and a documented Java-

based programmatic application programming interface (API).  Here we describe the 

systematic architecture of the ArrayPlex environment and the genomic resources within 

it.  Additionally, we demonstrate how ArrayPlex has been proven in the large-scale 

analysis of a transcriptional regulatory network. 

Core Technology, Design, & Network Operation 

ArrayPlex was implemented with exclusively open-source technologies.  Core 

software components were selected with a set of criteria.  The technologies selected were 

those proven by use in larger software ecosystems that included both research and 

commercial operation.  Components were selected in such a manner that it was possible 

to create a nearly encapsulated system; a package that when installed was ready to 

operate without a bevy of additional system requirements to be fulfilled. 

The ArrayPlex server is designed to operate on either the Linux operating system 

or Apple Mac OS X (Figure 3.2).  The primary server component of ArrayPlex is the 

application server Apache Tomcat.  The ArrayPlex server stores the large majority of its 

managed data in the PostgreSQL relational database system.  This is the only functional 
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prerequisite, other than the Apple Mac OS X or Linux operating system itself, of the 

ArrayPlex server that must be obtained and prepared prior to ArrayPlex server 

installation. 

The ArrayPlex client is a graphical user interface that contains dozens of data 

management, analysis, and visualization features.  It is compatible with the Apple Mac 

OS X, Windows XP, Windows Vista and most distributions of the Linux operating 

system.  It communicates by standard network protocols with the ArrayPlex server and 

thus can operate on any computer connected to the ArrayPlex server. 
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Figure 3.2 – ArrayPlex Core Technology 

The ArrayPlex server is a nearly encapsulated system comprised of an embedded Java 
Runtime Environment and Apache Tomcat application server.  The ArrayPlex requires 
one external resource, a PostgreSQL relational database server.  The ArrayPlex server 
operates within the Linux operating system and communicates with the PostgreSQL 
server by the standard JDBC protocol.  The ArrayPlex client can be operated on any 
Apple Mac OS X, Microsoft Windows, or Linux computer.  The ArrayPlex client is not 
installed but rather launched through use of Java Web Start.  This ensures that the 
ArrayPlex client is always up-to-date when used on any laptop or desktop computer.  The 
ArrayPlex client communicates with the ArrayPlex server by HTTP, the same protocol 
by which web browsers communicate with web servers.  Thus, the ArrayPlex client can 
be used anywhere there is simple network connectivity back to the ArrayPlex server. 
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Because it communicates with the ArrayPlex server using the same protocol a 

web browser utilizes, the ArrayPlex client requires no special changes to client firewall 

configurations or network settings for operation.  The ArrayPlex client requires no local 

installation process to be run in order to operate.  The application resides on the 

ArrayPlex server and is retrieved and launched through use of Java Web Start.  This 

ensures that with each execution the end-user is using the latest version of the ArrayPlex 

client.  This implementation allows a large research group to share a customizable and 

expanding graphical user interface without the perpetual need for widespread upgrade or 

reinstallation with each cycle of improvement.  In addition to the graphical user interface, 

ArrayPlex has a set of command-line executed client-side modules packaged in the form 

of standard Java Archive format (JAR) files.  These modules contain documented 

analytical routines that use the network to communicate with the ArrayPlex server in the 

same way that the ArrayPlex client does.  This allows the distributed network design of 

ArrayPlex to be used by command-line application and script-driven analysis as easily as 

the graphical interface.  

Bundled Genomic Resources 

The complete ArrayPlex server meta-environment is composed of the 

combination of the ArrayPlex application server and the many genomic resources and 

analytical toolsets it provides (Figure 3.2, Table 3.1, and Table 3.2).  The process of 

ArrayPlex server installation acquires each of the genomic resources (Table 3.1) from its 

officially hosted location.  This includes generic GO ontology descriptors, organism-

specific GO ontology assignments, and organism-specific gene annotations. 
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Figure 3.3 – ArrayPlex Architecture, Resources, & Communication 

The complete ArrayPlex environment is composed of the combination of the ArrayPlex 
application server and the many genomic resources and analytical toolsets that it installs, 
manages, and provides.  The ArrayPlex server installs genomic annotations, ontological 
assignments, and genome sequence.  Additionally, toolsets providing genomic sequence 
extraction, BLAST, sequence search, sequence discovery, and multi-sequence alignment 
are provided. 
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Table 3.1 – ArrayPlex Managed Resources 

Genomic resources downloaded by the ArrayPlex installation program.  Each of these 
resources is kept up-to-date and is accessible by the ArrayPlex client, command-line 
modules, and programmatic API. 
 

 
Resource Name Source Related Organism 
GO Ontology Descriptors GO Consortium Hs, Mm, Sc 
Genome Sequence UCSC Hs, Mm 
Hs GO Ontology Assignments EBI Hs 
Mm GO Ontology 
Assignments 

EBI Mm 

Sc Annotations SGD Sc 
Sc Genome Sequence SGD Sc 
Sc GO Ontology Assignments SGD Sc 
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Table 3.2 – ArrayPlex Integrated Toolsets 

The toolsets integrated into the ArrayPlex server environment.  The download code of 
Bundle indicates that that ArrayPlex installation program is capable of downloading the 
source-code and building the tool during the installation process with no further 
interaction needed.  Alternatively, a code of Acquire indicates that a license agreement is 
required for download and thus the installer of the ArrayPlex server must manually 
download a file and place it in the proper place on the ArrayPlex server.  Documentation 
is provided for how to acquire and install all toolsets with this requirement. 

 

 
Tool Name Purpose Download 
AlignAce sequence discovery Acquire 
Avid sequence alignment Acquire 
BLAST genomic sequence matching Bundle 
ClustalW sequence alignment Bundle 
cluster hierarchical clustering Acquire 
MDSCAN sequence discovery Bundle 
MEME sequence discovery Bundle 
fastacmd sequence retrieval Bundle 
rVista sequence alignment Acquire  
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Table 3.3 – ArrayPlex Modules 

The six command-line modules built by and provided with the ArrayPlex installation.  
The first three modules, classified a Generic are the modules most useful to a researcher 
desiring command-line access to any of the resources hosted on the ArrayPlex server.  
This includes all genome sequence, annotation, ontology, and user dataset information.  
The SequenceAnalysis.jar module, additionally, contains all of the genome sequence 
operations featured in the ArrayPlex client including organism-specific sequence 
extraction, BLAST, known-motif search, motif discovery, and multi-sequence alignment. 
The modules classified as Regulation are generally usable but were developed in a very 
specialized context.  These modules are the nearly-complete computational infrastructure 
for a recent large-scale study of systematic deletion of 263 individual transcription factors 
in Saccharomyces cerevisiae.  They provide both reusable analytical operations and a 
guide as to how the ArrayPlex programmatic API can be used for constructing novel 
analysis routines. 
 

 
Module Name Purpose Class 
AnnotationResources.jar Genome annotation and ontology retrieval Generic 
DatasetOperations.jar User dataset retrieval, transformation, and 

manipulation  
Generic 

SequenceAnalysis.jar Genome sequence extraction, search, 
discovery, manipulation 

Generic 

ErrorModel.jar Example routines in replicate combination Regulation 
InteractionGraph.jar Example routines in network modeling Regulation 
TargetAnalysis.jar Example routines in ontological and sequence 

analysis 
Regulation 
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All resources are processed from their heterogeneous downloaded forms to a structured 

query language (SQL) format that is loaded into the ArrayPlex relational database 

schema.  The design and implementation of this data transformation was central to the 

end-goal of the ArrayPlex programmatic API:  generic, organism-independent, 

reusability of core objects and analytical routines.  The transformation removes all of the 

organism-specific nature of the data and allows the ArrayPlex programmatic API to be 

designed such that reusable code modules can be implemented independent of the 

original source of the information being transported. 

A functional example of this would be GO ontology assignments.  This 

information is species-specific and details the mapping of universal GO ontology terms to 

specific genes within a given organism.  The downloaded content of these assignments 

for human and mouse differ from yeast in format and content.  This is the result of the 

fact that these assignments are curated and managed by independent research institutions: 

EBI for human and mouse, SGD for yeast.  The transformation of this information to a 

single format and normalized storage in a relational schema allowed for a single set of 

ArrayPlex database source-code to be written to retrieve and use this information.  This 

allows programmers using the ArrayPlex programmatic API to write data retrieval and 

analysis routines that are independent of the organism-specific caveats and institution-

specific file formats. 

In addition to GO ontology and gene annotations, complete genome sequence is 

downloaded for each of the supported model organisms.  This genome sequence is 

FASTA in raw form but is converted to NCBI BLAST-database format by the ArrayPlex 

installation program using NCBI-provided utilities.  This transformation is performed for 

two reasons.  First, it allows the ArrayPlex programmatic API to include complete 

BLAST functionality as a part of its catalogue of analytical operations.  Of more 
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importance it allows the ArrayPlex environment to leverage the NCBI-bundled toolsets 

for genome sequence retrieval.  These toolsets are designed to be both rapid and precise 

in their retrieval and manipulation of genomic sequence.  The process of acquiring and 

understanding the large set of NCBI-provided utilities for these operations can be 

inefficient.  Their bundled-inclusion in ArrayPlex is intended to provide their benefits 

while simplifying the process by which they are used. 

Genome resources are most valuable when synchronized with the most recent 

versions available.  Frequent modifications and additions occur to datasets, especially GO 

ontology and gene annotation assignments that are curated and updated based on 

published research.  Analytical routines and their biological conclusions suffer when 

input knowledge such as these assignments are not kept in sync with current revisions.  

For this reason, the ArrayPlex system is designed to not only download and store this 

information upon system installation, but also to have the capacity to check for updated 

information, retrieve it, and update the resources managed within the relational schema.  

This functionality is provided and documented in the format of a standard system 

scheduler that is a part of all Linux server environments. 

Integrated Sequence Analysis Toolsets 

In addition to the many genome resources hosted on the ArrayPlex server a 

complete set of open-source analytical toolsets are integrated into the environment (Table 

3.2).  The set of tools include NCBI BLAST, cluster, CLUSTALW, AVID/rVista, and 

several sequence motif discovery applications: AlignAce, MDSCAN, and MEME.  As 

detailed in Table 3.2, the majority of these applications are downloaded, compiled from 

source-code, and installed by the ArrayPlex installation program.  The limitation of 

licensing agreements made this not possible for a few of the integrated toolsets.  
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 Complete documentation is included with the ArrayPlex installation on how to 

retrieve and install these additional utilities.  The inclusion of these toolsets transformed 

ArrayPlex from solely an information warehouse to a server capable of extended 

analytical capacity.  All of these analytical features are accessible by way of the graphical 

ArrayPlex client application, the command-line modules, and the programmatic API.  

This access facilitates high-throughput data and sequence operations such as sequence 

retrieval, data manipulation and transformation, multi-genome BLAST, sequence motif 

search and discovery, hierarchical clustering, and sequence alignment.  The execution of 

these utilities on the ArrayPlex server provides their analytical functions without any 

direct support needed by either the ArrayPlex client or command-line modules.  In this 

fashion, it is now possible to retrieve the information provided by these utilities from 

computers that might never have been able to otherwise compile or run them. 

Analytical Accessibility & Customization 

In addition to the many genome resources and toolsets hosted by the ArrayPlex 

environment, Figure 3.2 depicts the overall interactivity and relationship of the 

subcomponent elements.  Both the ArrayPlex client and the command-line modules 

communicate over a network connection with the ArrayPlex server using the HTTP 

protocol.  It is both possible and intended for many individual clients or command-line 

modules to simultaneously interact with a single server.  Our research process included 

many multi-week executions of more than a dozen command-line modules interacting 

with a single ArrayPlex server for annotation, ontology, and genome sequence, as well as 

analytical toolset executions.  The ArrayPlex server was easily able to handle these 

parallel requests. 
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The details by which the ArrayPlex programmatic API communicates from either 

client or command-line module to server are depicted in Figure 3.4. Demonstrated are 

matching sequence motif analysis features from both the graphical client and the 

command-line module SequenceAnalysis.jar (Figure 3.4).  Each of these components 

interacts with the API by way of the [net.sourceforge.arrayplex.client] 

package of routines.  These client routines are designed to marshal the input parameters, 

data, and named operations being sent to them in such a way that the ArrayPlex server 

can decode this information and respond.  The objects transportable from client to server 

and back are an extensive and specialized set that is part of the 

[net.sourceforge.arrayplex.serial] package of resources.  The 

[net.sourceforge.arrayplex.servlet] package receives requests and 

decodes both what part of the client API made the request and what specific information 

is being sent to facilitate it.  The servlet API then calls a mirror server API based upon 

this information.  This server API, which is packaged as 

[net.sourceforge.arrayplex.server], is where actual functional operations 

begin to take place.  This package contains dozens of classes that interact with the 

ArrayPlex server operating system to execute analytical tasks or with the ArrayPlex 

relational database API [net.sourceforge.arrayplex.db] to retrieve either 

user datasets or genomic annotations.  When either an analytical process completes or 

database-stored information is retrieved, the process begins to fold back upon itself.  

Information is again loaded into API-based objects that are returned across the network to 

the original client operation. 

This design is notable in two ways.  First, the bioinformaticist utilizing the client 

API routines needs no actual knowledge that the programmatic request will be fulfilled 

over a network on a remote server.  The API is designed such that the complication of 
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network implementation is hidden from the user.  For example, the operation 

executeBlastAll (organism, evalue, sequence) that is part of the documented 

SequenceResources client API, gives no clue to the programmatic user that the 

implementation of the actual operation requires that the parameters organism, evalue, and 

sequence be encoded into an object and sent across the network to the ArrayPlex server 

where the NCBI-BLAST utility blastall is executed.  The result of that blastall execution 

is then read from the server file-system, formatted into a programmatic object, and 

returned across the network to the client computer.  To the programmatic user of the 

client API no network operation is either evident or noted; the BlastResult object is the 

result of the operation and their programmatic routines move to the next step.  It is as if 

everything executed and completed on their local computer. 
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Figure 3.4 – ArrayPlex Client & Server API Network Operation 

Both the ArrayPlex client and command-line modules use the network capabilities of the 
ArrayPlex API to send requests and retrieve results. 
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Figure 3.5 – ArrayPlex Client & Module Pairing 

The ArrayPlex client and command-line modules have matching sets of operations for 
nearly all genome resources and analytical toolsets.  Pictured are the graphical and 
command-line module versions of a sequence motif search function.  The option for 
specifying input FASTA sequence, background FASTA sequence, a motif to search for, 
and reporting of only first hits or all hits within a single sequence are provided for within 
both contexts. 
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Second, the information that exchanged with the ArrayPlex server is in the form 

of documented API objects.  This increases the efficiency by which a programmatic user 

can utilize the ArrayPlex API compared to other methods that launch processes remotely 

and retrieve results locally.  Most methods of remote task invocation require the 

programmatic user to parse a stream of resulting information that is returned from the 

server.  The task of parsing this information and determining actual results is error-prone.  

The ArrayPlex APIs are designed to communicate in terms of API documented objects.  

Using the example above, the BlastResult object that is returned from the ArrayPlex 

server is just that – a programmatic object like any other in the application environment.  

Referring to the provided documentation the programmatic user can denote that the 

BlastResult object is composed of a set of BlastHit objects, each of which have 

parameters that describe the genomic loci where BLAST found matching sequences. 

Finally, the entire ArrayPlex environment is designed to allow customization.  The 

ArrayPlex client can incorporate internationalization and localization of language 

elements through modification of a single resource bundle containing nearly all labels 

that appear throughout its interactive graphical interface.  Sections of the ArrayPlex client 

can be removed; newly designed sections can be accommodated. 

Documentation and Guidance 

Complete use of the ArrayPlex client, command-line-modules, and programmatic 

API is documented.  The command-line execution of the SequenceAnalysis.jar module 

demonstrates the in-line documentation provided by each of the command-line modules 

(Figure 3.5).  Similarly, the ArrayPlex client has hypertext-formatted help content for 

each of the interactive sections of the application.  This content describes the analytical 

effect of chosen options and the meaning of results that are displayed.  The programmatic 
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API, similarly documented, details the parameters required by each API and both the 

format and meaning of returned objects. 

DISCUSSION 

Utility of the Primary Data Warehouse 

We initially deployed LAD on an Intel-based dual-Xeon Dell Precision 530 

workstation with 1 GB of RAM and 500 GB of hard disk capacity.  Simultaneous to the 

publication of the LAD manuscript, LAD stored approximately 1300 microarray 

experiments.  The rapid influx of experimental data and the expansion of the user base to 

more than 100 researchers quickly demanded an upgrade in the hardware dedicated to the 

application.  A two-tier application and database architecture was developed that included 

the dedicated use of an eight-drive multi-terabyte RAID hard-disk enclosure.  This 

environment has been utilized for nearly five years.  LAD currently hosts nearly 7300 

individual microarray experiments for more than 130 total users.  We are currently in the 

process of moving to the next generation of LAD hardware and software improvements. 

LAD Adoption at Research Institutions 

The use of both Linux and PostgreSQL greatly reduced the level of complexity 

required to run a production microarray database due to the ease with which it is both 

installed and maintained. This opened up the possibility of a larger community of 

developers becoming involved with a proven array data warehouse.  Several research 

institutions have deployed LAD creating a larger community of both LAD contributors 

and users. 
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ArrayPlex Analytical Proving Ground 

The entire ArrayPlex system – server resources, client, and all command-line 

modules, were tested over the course of more than a year in an active research setting.  

Earlier this year we published the results of an extensive study of 263 individual 

transcription factor deletions in Saccharomyces cerevisiae [46].  The ArrayPlex system 

was the central hub of all analytical activities for this research.  The complete 

experimental design and results of this research are presented in Chapter 4. 

The published manuscript details the results of extensive GO ontological 

enrichment analysis, sequence motif search, and novel sequence motif discovery.  The 

ArrayPlex command-line modules ErrorModel.jar, InteractionGraph.jar, and 

TargetAnalysis.jar (Table 3.3) were central in defining the set of operations that led to the 

resulting biological conclusions.  These modules are included as part of the ArrayPlex set 

of command-line functions as their capacity is useful to any mRNA expression-based 

microarray research.  Additionally, the command-line modules AnnotationResources.jar, 

DatasetOperations.jar, and SequenceAnalysis.jar provide abstract implementations of 

methods to expose the genome sequence and resources hosted by the ArrayPlex server to 

the command-line module user.   

High-throughput Microarray Data Quality Analysis 

A significant data processing step that precedes actual functional analysis in DNA 

microarray research is one of data quality evaluation.  It is essential to understand the 

quality of each microarray experiment, check for any signal bias, and understand the 

effect that normalization has on individual and grouped batches of microarray 

experiments.  Secondarily, the selection of significant microarray values for an individual 

or set of experiments involves the filtering of candidate spots based on a variety of spot 
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metrics.  Measurements such as signal to noise ratios, spot consistency regression 

correlations, and background subtracted single-channel intensity values are typical 

metrics that are used to separate statistically believable spot values from those that might 

be of spurious quality. 

To address these issues we developed an entire section of the ArrayPlex client 

dedicated to processing, statistical analysis, and visualization of large batches of input 

data.  The GenePix Results File Operations section of the ArrayPlex client has the 

capacity to batch-process an unlimited quantity of Molecular Devices GenePix Pro Result 

files (GPR) in three ways.  First, the GenePix Results File Charting section can read large 

sets of GPR files into a batch queue for graphical analysis.  This is useful for the 

production of batch sets of data bias visualizations such as MA plots, which detect a bias 

in the relationship of spot absolute signal intensity to spot ratio.  Figure 3.6 depicts the 

selection of seventy-five GPR files and the rapid batch production of seventy-five 

matching MA plots. These plots were automatically saved to the client file-system and 

were screened using the image-thumbnail browsing capacity of any operating system file 

browser.
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Figure 3.6 – GenePix Result File Batch Quality Screen 

The GenePix Results File Operations section of the ArrayPlex client contains extensive 
resources for the statistical and visual processing of Molecular Devices GenePix Pro 
Result files (GPR).  Batch production of qualitative visualizations such as MA plots, two-
axis plots, and spot-metric histograms are possible.  This provides the capacity to screen 
for a number of data quality attributes in large sets of DNA microarray experiments. 
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The graphing capacity of this section of the ArrayPlex client is not limited to MA plots.  

Both histograms and two-axis plots can be mass-produced for any GPR spot metric.  In 

this manner we were able to screen hundreds of DNA microarray experiments for biased 

signal-to-ratio relationships, non-normal log-ratio distributions, and substandard signal to 

noise distributions with the selection of just a few parameters and the browsing of 

automatically saved images. 

Depicted in Appendix AI-21 is the GenePix Results File Group Analysis section 

of the ArrayPlex client.  This section of the client was developed to characterize the 

specific effect individual filters were having on the batch extraction of high-confidence 

data for the 263 individual transcription factor deletions and experimental replicates.  Our 

primary data was initially stored and analyzed in the Longhorn Array Database (LAD).  

This database is designed to accommodate batch-retrieval of filtered spot values across a 

multitude of submitted and normalized experiments.  We discovered, however, that we 

had limited capacity to understand the specific effect individual filters were having on the 

selection for or elimination of spot values across microarray experiments. 

We developed the capacity for the ArrayPlex system to load large quantities of 

GPR files into named groups.  These GPR groups can then be queried with a 

combinatorial set of spot-metric filters.  The output of each query for each experiment in 

the GPR group is a count of the number of spots that passed the filter criteria and the 

global normalization coefficient that would be calculated if these remaining spots were 

used as the complete set of high-confidence spots.  This normalization value was then 

compared back to the normalization coefficient determined for all spots and guided us as 

to whether spot-metric filters were selecting for non-representative sub-populations of 

spots within individual or groups of experiments.  Secondarily, the interactive 

manipulation of spot-metric filters allowed us to determine the threshold values that 
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would select for high quality spots yet not select against moderate quality DNA 

microarray result sets.  Finally, once threshold filters were determined we used the export 

functionality built into the GenePix Results File Group Analysis section of the client to 

retrieve specific spot metrics across large sets of experiments. 

Ontological Enrichment & Connectivity 

A successful component of the individual transcription factor deletion data 

analysis process of was the mining of GO ontological assignments within the pool of 

target genes affected by a single deletion for GO term-based enrichment.  This 

functionality is built into both the ArrayPlex client and the command-line module 

TargetAnalysis.jar. To cross-reference this functionality we have spot-checked several 

highly utilized datasets for expected GO term enrichment detection.  Figure 3.7 depicts 

ArrayPlex client processing a heat-shock experiment from a published set of 

environmental stress response data. 

Filtering of the GO term enrichment analysis showed that thirty-six terms were 

significantly enriched at a P value less than 0.001 as determined by the cumulative 

hypergeometric probability distribution.  Of these thirty-six terms, a large proportion was 

shown to specifically relate to ribosome biogenesis, protein folding, unfolded protein 

binding, response to stress, and chaperone binding.  This is the expected result when 

mining for GO ontological terms enriched in an experiment where yeast cell cultures 

were exposed to heat stress. 
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Figure 3.7 – Ontological Assignment Enrichment & Connectivity 

The ArrayPlex client displaying the result of GO term enrichment analysis on previously 
published environmental stress primary data.  Specific GO terms relating to the 
characterized stress response are clearly enriched. 
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Visualization Capacity 

The ArrayPlex client and command-line module InteractionGraph.jar have the 

capacity to cross-convert between many commonly used primary data formats.  

Specifically included is the pre-clustering format (PCL) common to many DNA 

microarray analysis applications and the graph-markup language format (GML) common 

to many network-visualization packages such as Cytoscape. 

Comparison to Similar Software Packages 

ArrayPlex was developed to fulfill the need for interactive, command-line, and 

programmatic access to up-to-date genomic resources and analytical toolsets in a 

networked computational environment.  Several other research projects have engaged 

subcomponents of these goals in a variety of ways.  EnsMart, Atlas, Mayday, SeqHound, 

and DAVID are all examples of bioinformatic server environments that address many of 

the stated associative and analytical goals.  SeqHound and Atlas each house an extensive 

API-accessible list of resources yet lack both an extensible user interface and pre-defined 

command-line modules.  EnsMart has a web interface and command-shell environment 

but lacks a client-server enabled API.  This feature was core to ArrayPlex’s design goal 

of enabling all computers in a research environment to be productive platforms on which 

data analysis can be accomplished.  Mayday and DAVID are toolsets focused upon DNA 

microarray data analysis and GO ontology analysis, respectively.  They each are feature-

rich in these categories but lack integration with the wide variety of genomic resources 

provided by the ArrayPlex environment. 
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MATERIALS AND METHODS 

Longhorn Array Database Requirements & Availability 

LAD source-code is freely available to all interested users.  The installation 

manual details the system prerequisites that are required for successful installation and 

operation of the LAD server.  Apache versions 1.x and 2.x are supported.  PostgreSQL 

versions 7.3 and 7.4 have been tested.  It is believed that PostgreSQL versions 8.0 and 

greater will operate but this configuration has not been tested in a production setting. 

ArrayPlex Requirements & Availability 

ArrayPlex is available from its project site at sourceforge.net.  The ArrayPlex 

server, client, and command-line modules are included in a single installation package.  

The ArrayPlex client and the command-line modules are prepared during the process of 

ArrayPlex server installation such that they are configured to communicate with the 

ArrayPlex server being installed by the system administrator.  Complete source-code is 

provided for each of the operational components. 

ArrayPlex Server Requirements 

The default server installation requires either an Intel-based computer running the 

Linux operating system or any computer running Apple Mac OS X.  Linux servers 

running both the 2.4 and 2.6 generation of kernels have been tested and are supported. 

During its development period, ArrayPlex was operated on Mandrake, Mandriva, Fedora, 

Gentoo, RedHat, and Ubuntu distributions of Linux.  Apple Mac OS X has been tested 

with version 10.4 (Tiger), but it is believed that most generations of the operating system 

will be compatible.  Additionally, an operational PostgreSQL relational database system 
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is required.  The ArrayPlex development and testing process has utilized PostgreSQL 

server versions 7.3, 7.4, 8.0, 8.1, and 8.2.  The database server does not need to be 

installed on the same computer as the ArrayPlex server, only reachable by TCP/IP 

network connectivity and standard PostgreSQL client utilities.  A sequestered ArrayPlex 

schema instance is created within the PostgreSQL database server such that ArrayPlex 

can co-exist with other database instances in operation.  Neither a Java Runtime 

Environment nor an installation of Apache Tomcat is required.  Each of these resources is 

bundled within the ArrayPlex installation in order to create a more encapsulated and 

ready-to-operate system.  Alternative implementations of the Java Runtime Environment 

or Apache Tomcat can be substituted through simple sub-folder replacement within the 

installed ArrayPlex server.  This process is documented in the ArrayPlex Server 

Installation Guide. 

The ArrayPlex distribution, as downloaded from the SourceForge.net project site, 

is 350MB in size.  The ArrayPlex server, however, downloads a large quantity of 

genomic annotation and sequence during the installation process.  The genomic sequence 

files are transformed into NCBI BLAST-compatible databases that allow for rapid 

sequence retrieval.  This results in the consumption of significant drive space such that an 

operational ArrayPlex server requires at least 14GB for complete installation. 

ArrayPlex Client Requirements 

The ArrayPlex client is not installed but rather launched from the ArrayPlex 

server by clicking a link within any web browser.  The client is supported on Apple Mac 

OS X, Microsoft Windows XP, Microsoft Windows Vista, and most distributions of the 

Linux operating system.  Each of these client operating systems must have a Java 

Runtime Environment (JRE) installed.  The default Microsoft-provided Java installation 
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on any version of Microsoft Windows is not supported.  A JRE should be downloaded 

and installed from Sun Microsystems.  The JRE that is bundled with Apple Mac OS X 

(10.2 Jaguar, 10.3 Panther, 10.4 Tiger, and 10.5 Leopard) has been tested for 

compatibility. 

ArrayPlex Command-Line Module Requirements 

The requirements for use of the command-line modules match those of the 

ArrayPlex client.  They are built by the ArrayPlex server installation process and 

downloaded by a web-browser to any supported client computer. 

SUPPLEMENTAL INFORMATION 

ArrayPlex Client Feature Set 

The complete feature set of the graphical ArrayPlex Client application is 

presented in Appendix I (1-20). 
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Chapter 4: A Functional Transcriptional Regulatory Network 

The research described in this chapter was performed in collaboration with Dr. 

Zhanzhi (Mike) Hu.  Dr. Hu performed the large-scale expression profiling of more than 

two hundred individual transcription factor deletions in Saccharomyces cerevisiae 

concomitant to my implementation of the ArrayPlex analytical environment described in 

Chapter 3.  We worked together for over two years to complete the analysis, functional 

validation experiments, and manuscript.  We co-first authored the final manuscript for 

Nature Genetics in April of 2007 (Genetic reconstruction of a functional transcriptional 

regulatory network) [46]. 

INTRODUCTION 

 Several research efforts have explored the regulatory relationships of 

Saccharomyces cerevisiae transcription factors to gene targets [47, 48].  These 

publications have primarily focused upon the measurement and analysis of whole-

genome DNA-protein interactions through the capture of transcription factor to genomic 

DNA binding events.  While knowledge of genomic locations in which a transcription 

factor is shown to bind is supportive to the claim of regulation, it is not conclusive with 

respect to the true regulatory effect that a transcription factor may or may not be having 

on a proximal gene target.  Several studies have demonstrated that the binding of a 

transcription factor to the promoter region of a gene does not necessarily result in the 

activation or repression of that putative gene target.  Methods that focus upon DNA-

protein interactions of transcription factors are not able to determine whether a true 

regulatory event has been measured.  Additionally, they are unable to measure neither the 

nature of the regulatory interaction nor the relative strength of the regulatory effect. 
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Using DNA microarrays, we profiled the whole-genome transcriptional responses 

of the individual deletion of 263 Saccharomyces cerevisiae transcription factors.  This 

experimental approach provided a strategy by which true regulatory targets could be 

determined for a large set of transcription factors by measuring the actual transcriptional 

response of regulated genes.  The method employed intrinsically captures the active or 

repressive nature of the regulatory relationship between each factor and its KO-regulated 

targets as well as the relative strength of the regulatory effect.  Additionally, six essential 

transcription factors were profiled through the use of conditionally repressive tet-off 

transcription factor strains. 

Given these experimental qualities and the fact that the scope of experimentation 

covers nearly all Saccharomyces cerevisiae transcription factors, we were able to both 

uncover the regulatory roles of individual factors profiled and describe a global 

regulatory network that encompasses all profiled transcription factors, their regulatory 

interrelationships, and shared target sets. 

RESULTS  

Primary Data Processing 

 The expression profiling microarray experiments were performed in duplicate 

over the course of several months.  Data analysis began with processing of the primary 

microarray data screening for quality, signal bias, and normalization of replicate 

experiment data into comparable high-confidence target sets. 
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Bias Screen 

As demonstrated in Figure 3.6, the complete set of more than five hundred 

replicate microarray experiments were individually screened for signal bias through the 

batch-production of MA plots and log-ratio histograms.  The signal bias detected by MA 

plots is an unexpected relationship between the log-ratio of a microarray spot and its 

absolute intensity on either of the measured channels.  A trend, for example, for high 

intensity spots to have predominantly high log ratios would be suspect with regards to the 

putative targets that emerged from such an experiment.  The results of the screen showed 

no significant impact of signal bias on any of the replicate microarray experiment 

primary datasets. 

Strain, Growth & Microarray Normalization 

 Supplemental Table 4.1 of this chapter provides a complete list of the 

transcription factors profiled in this study.  Additionally, the Materials and Methods 

section provides strain details, growth conditions, and batch-to-batch normalization 

methods used throughout the execution of the microarray experiments. 

Secondary Data Determination by Error Model 

 DNA microarray experiments are performed in biological replicate.  Repeated 

experimental results are statistically combined in order to determine the set of results that 

are significant and reliably repeated across replicates.   Simple statistical aggregation 

techniques such as arithmetic mean and median calculations provide a mechanism by 

which the typical value for a spot can be determined.  These methods lack the capacity to 

communicate the true reliability of the set of measurements across replicates and thus 

lack the capacity to weight final microarray spot values relative to their statistical 
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precision.  Additionally, the use of simple data aggregation models requires arbitrary 

cutoffs to be set in the final data extraction and filtering process.  This concept is 

visualized and described in Figure 4.1.  The dark blue and dark red lines represent 

arbitrary absolute signal intensity and log-ratio cutoff values, respectively.  Signal 

intensity cutoffs are necessary in order to determine a final result set with believable log-

ratio values.  Low signal intensity on either of the experimental channels can produce 

near-stochastic variability in log-ratio determination as the reliability of the ratio 

calculation across channels becomes unstable.  Log-ratio cutoffs are used to separate 

differentially expressed results from those that did not show significant change from 

transcription factor deletion to wildtype.  These methods are insensitive to the log-ratio 

and signal intensity distributions both within a single experiment and across biological 

replicates.  The arbitrary determination and use of these filters often results in high false 

positive and false negative rates with regards to spot inclusion and exclusion rates. 

 We employed an adapted error model in order to determine the final microarray 

scores across replicate transcription factor deletion experiments [47, 49].   Execution of 

this method began with the determination of systematic variation that was intrinsic to the 

DNA microarray experimental process itself.  This variation was not simply a byproduct 

of hybridization but rather was the aggregate variation that was accumulated across the 

entire process of RNA isolation, reverse transcription, dye incorporation, hybridization, 

and primary data capture.  Multiple iterations of identical RNA labeling and co-

hybridization (same vs. same) experiments were performed to produce a set of replicate 

data that describes the variation within the assay. 
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The result of these control co-hybridizations was used to produce the ƒ statistic such that: 
 

! 

f = stdev(ln(
R

G

" 

# 
$ 
% 

& 
' )) 

R, G = the Cy5 and Cy3 channel intensities 
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The metric wi was described as the weight of any spot within a single microarray 

experiment.  This metric would select against spots with low signal intensity, large errors, 

and general unreliability by weighting against small X values.  These calculations 

provided the metrics needed to determine the statistical precision and significance of all 

spots in a single microarray experiment.  A final metric was needed to combine 

calculations across biological replicates in such a way that rewarded for repeatability of 

measurement. 
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Figure 4.1 – Error Model vs. Arbitrary Filter Cutoffs 

The implementation of the error model allowed for a continuous function to be used to 
determine the significance of all spot-values across biological replicates.  The dark blue 
and dark red lines represent arbitrary absolute signal intensity and log-ratio cutoff values, 
respectively.  These cutoffs are insensitive to the actual foreground, background, and log-
ratios present on a single or set of microarray experiments.  Additionally, these cutoffs do 
not have the capacity to select for precise measurements across biological replicates.  
Alternatively, the error model determines a continuous function (black lines) that 
incorporates knowledge of the nominal error of the assay as well as the standard 
deviation of foreground and background measurements for both spots within a single 
microarray experiment and repeated measurements across replicate experiments. 
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Deletion Expression Validation 

 We wished to gauge the validity of the deletion strains and corresponding 

microarray experiments by visualizing the impact of each transcription factor deletion on 

its own measured transcriptional abundance.  The expectation was that measured relative 

RNA level of the deleted transcription factor should be both in the set of KO-regulated 

targets and significantly repressed across all transcription factor deletion experiments. 

The results of this analysis are presented in Figure 4.1.  The data table is sorted along 

both axes by the transcription factor names of all 263 non-essential transcription factors 

profiled.  Figure 4.1 (a) is rendered by log-ratio.  The presence of green and red cells in 

any single column represents transcription factors that were significantly regulated by the 

deletion experiment defined by the column in which they appear.  The green diagonal in 

this figure, an intended byproduct of the matching sort along both axes of the plot, 

confirms the repression of transcription factor genes in corresponding deletion 

experiments.  Figure 4.1 (b) is the same visualization substituting error-model determined 

P Values for log-ratios.  The combination of these two visualizations is confirmation that 

the process of KO-regulated target set determination by the error model produced a set of 

targets in which the expression of the transcription factor gene was repressed and 

statistically significant. 
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Figure 4.2 – Deletion Validation 

Each axis contains 263 measurements, ordered by transcription factor name.  The 
appearance of a strong green diagonal in diagram (a) demonstrates the measured 
transcriptional loss of the transcription factor from its own deletion profile.  Diagram (b) 
uses the P Value determined by the error model to demonstrate that the measured loss is 
both present and significant for nearly all transcription factors profiled. 
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Correlative Target Overlap 

 For each transcription factor profiled we compared the set of KO-regulated targets 

to targets determined by previous studies [47].  The overlap between our results and the 

ChIP-chip DNA-protein binding data provided by these studies was low.  Comparison of 

our results, however, with several focused DNA-protein studies of specific transcription 

factors showed much more favorable overlap [50].  This study determined 354 Rap1 

DNA-protein binding target genes.  Our results showed 537 KO-regulated targets for this 

transcription factor.  The overlap of 144 common targets was significantly more than the 

71 targets that were shared between our result set and the high-throughput ChIP-chip data 

first used for comparison. 

The Functional Regulatory Network 

 The dataset produced by more than two hundred individual transcription factor 

deletions was uniquely capable of describing a true transcriptional regulatory network.  

Each transcription factor deletion had a set of KO-regulated targets that were evaluated to 

be significant by the process of error-model analysis.  Within any set of these KO-

regulated targets there were both non-regulatory genes and transcription factors.  This 

phenomenon was expected.   It has long been known that the transcriptional abundance of 

any regulator might be the product of a regulatory cascade; a set of regulator-to-regulator 

interactions that produces a tuned cellular effect.  With many of the transcription factor 

target pools containing KO-regulated targets that were indeed transcription factors 

themselves, we proceeded to aggregate the complete set of regulators and targets into a 

complete functional transcriptional regulatory network. 
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Tertiary Data Model 

Computational analysis of the complete set of transcription factors and KO-

regulated targets required a robust system in which the relationships between these items 

could be accurately and informatively modeled.  The construct we chose was the directed 

weighted graph.  A graph (G) is a set of objects called vertices (V) connected by links 

denoted as edges (E).  A directed weighted graph is a graph in which edges between 

vertices have both an intrinsic directionality and an associated numeric weight.  In graph 

theory, directed weighted graphs are often simply referred to as networks.  We 

mathematically rendered graphs such that vertices represented either transcription factors 

or KO-regulated targets.  Any single edge e = {v1, v2} between two vertices described 

the directional relationship of transcription factor to a single KO-regulated target.  The 

associated weight could take one of two quantitative metrics.  Most often it represented 

the statistical significance of the regulatory relationship (the P Value).  Alternatively the 

weighted values reflected the (X) significance score. 

The aggregation of all edges emanating from a single transcription factor vertex 

defined the complete set of KO-regulated targets for that particular transcription factor. 

This produced a transcription factor-specific sub-network KOn.  The edge set for a factor-

specific sub-network was defined as E(KOn) while the set of vertices were defined as 

V(KOn).  Co-integration of each sub-network produced a final network that 

communicates both the specific KO-regulated targets of individual transcription factors 

and the transitive interrelationships between all factors and the union of their KO-

regulated targets. 

Final integration provides a declaration of the formal edge set of the network N: 

E(N) is the set of all unique edges across the union of each E(KOn) while V(N) (the set of 
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all vertices within the network) is the set of all unique vertices across the union of each 

V(KOn). 

The relationship between each sub-network KOn and the final network N: 
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The input to all analytical processes was in the form of an interaction file.  An 

interaction file is a tab-delimited three-column text file non-sequentially listing 

transcription factor (A) to KO-regulated target (B) relationships as “Aα Bβ Zβ” where α 

was the set of all transcription factors (269) and β was the set of all KO-regulated targets 

for a specific transcription factor in α.  The weight Zβ was always specific to the 

interaction between one transcription factor and a single KO-regulated target. 

An example of interaction file format is described in Figure 4.3.  In this example 

two transcription factors A and Z are regulating six and nine KO-regulated targets, 

respectively.  Figures 4.4 and 4.5 demonstrate how the individual sub-networks 

represented by each of these transcription factor KO-regulated target sets can be created 

and subsequently combined into a singular network containing both factors and the union 

of their target sets.  The X score network implementation of Figure 4.5 is able to 

communicate both interaction between transcription factors and targets and the nature of 

the regulatory relationship between them.  Interaction files that contained P Values and 

(X) scores were often used simultaneously when both sets of communicated information 

were needed to form analytical conclusions. 
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Figure 4.3 – Sample Interaction File 

The default format of all KO-regulated target-set data analysis.  In this example two 
transcription factors A and Z are regulating six and nine targets respectively.  The left 
interaction file contains numeric weights that represent the statistical significance 
between factor and KO-regulated target.  Alternatively, the right interaction file uses the 
weighted X score to communicate the nature of the regulatory relationship (activation or 
repression).  Interaction files containing P Value and X score information were often used 
together when both sets of information were required by the analysis performed. 
 
P Value Weighted X Score 
A B 2.37E-10 
A C 1.23E-08 
A D 1.49E-08 
A E 2.24E-07 
A F 3.19E-07 
A G 6.06E-12 
Z A 8.66E-14 
Z B 9.86E-07 
Z C 1.84E-13 
Z G 2.58E-13 
Z H 2.02E-12 
Z I 2.67E-12 
Z J 2.87E-12 
Z K 3.05E-12 
Z L 3.40E-12 
 

A B  6.32 
A C -5.33 
A D -5.23 
A E  4.80 
A F  4.73 
A G  7.22 
Z A  8.53 
Z B  4.32 
Z C  8.33 
Z G  8.21 
Z H  7.99 
Z I  7.91 
Z J  7.87 
Z K -7.63 
Z L -7.53 
 

 
V(KOA) = ({A, B, C, D, E, F, G}) 
E(KOA) = ({A, B} {A,C} {A,D} {A,E} {A,F} {A,G}) 
V(KOZ) = ({Z, A, B, C, G, H, I, J, K, L}) 
E(KOZ) = ({Z, A} {Z,B} {Z,C} {Z,G} {Z,H} {Z,I} {Z,J} {Z,K} {Z,L}) 
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Figure 4.4 – Network Modeling by P Value 

The P Value interaction file yields the two sub-networks G(KOA) and G(KOB): 
 
V(N) = ({A, B, C, D, E, F, G, H, I, J, K, L}) 
E(N) = ({A, B} {A,C} {A,D} {A,E} {A,F} {A,G} {Z, A} {Z,B} {Z,C} {Z,G} {Z,H} 
{Z,I} {Z,J} {Z,K} {Z,L}) 

 

 
 
The union of these sub-networks G(KOA) and G(KOB) yields a final network G(N): 
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Figure 4.5 – Network Modeling by Weighted X Score 

The weighted X score interaction file yields the two sub-networks G(KOA) and G(KOB): 
 
V(N) = ({A, B, C, D, E, F, G, H, I, J, K, L}) 
E(N) = ({A, B} {A,C} {A,D} {A,E} {A,F} {A,G} {Z, A} {Z,B} {Z,C} {Z,G} {Z,H} 
{Z,I} {Z,J} {Z,K} {Z,L}) 

 

 
 
The union of these sub-networks G(KOA) and G(KOB) yields a final network G(N): 
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The Regulatory Network G(N) 

The combined network G(N) carried significant regulatory information.  Each 

transcription factor was connected to its pool of KO-regulated targets through directed, 

weighted edges that described both directionality of regulation and relative significance.  

All vertices that were the origin of directed vertex-to-vertex connections were by 

definition known to be transcription factors as only transcription factors had the capacity 

to be the origin of a directed network edge.  All vertices that were targets of a directed 

edge could be either transcription factors or non-regulatory gene targets. 

Several key issues were central to the study with regards to understanding the 

complete transcriptional response of transcription factor deletion.  Of the set of KO-

regulated targets for a single transcription factor, we wished to detect how many were the 

result of the primary genetic perturbation and what proportion were secondary effects that 

were transitively passed from deletion through primary transcription factor targets 

through a regulatory cascade.  Additionally, we wished to characterize both the 

prevalence and depth of regulatory cascades within the network G(N). 

Regulatory Cascade Detection 

 Regulatory cascades were detectable through topological analysis of the directed 

and weighted properties of the network.  The strategy that we employed is described by 

Figures 4.6 and 4.7.  Figure 4.6 demonstrates the global set of operations used to produce 

the final regulatory network G(RN).  The individual sub-networks G(KOn) were defined 

for each transcription factor and its set of KO-regulated targets.  These networks were 

integrated into the combined network G(N).  The network G(N) was then evaluated for 

the presence of regulatory cascades.  This operation was performed to both separate 
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secondary regulatory effects from the G(RN) network and characterize the prevalence and 

depth of the regulatory cascades.  Figure 4.7 clarifies the actual mechanism of candidate 

cascade evaluation and elimination through descriptive example.   

A pair of vertices connected by a directed edge that share a directed third target 

vertex represent the topological definition of a detected regulatory cascade.  The first two 

vertices are by definition transcription factors, as they are both known to target a third 

shared vertex.  Two criteria were evaluated to determine if the shared target vertex was 

the result of a regulatory cascade from the first vertex’s regulatory influence on the 

second.  First, the directionality of regulation upon the shared vertex must be consistent.  

Each must either activate or repress the shared target. This was evaluated through 

modeling the regulatory network G(N) using the signed (X) score set of values.  Second, 

the significance of the putative secondary regulatory interaction emanating from the first 

to the shared third vertex had to be measured as less than the significance of the 

interaction of the second to third vertex.  This criteria was evaluated by comparison of P 

values using a G(N) network constructed with weighted P value edges. 

Regulatory Cascade Results 

The initial unrefined network contained 14,427 total interactions between all 

transcription factors profiled and significant KO-regulated targets.  Regulatory 

refinement allowing one level of indirect regulation reduced the count to 14,274 

interactions.  A second and third iteration of the refinement algorithm allowing two and 

three levels of indirect regulation reduced the interaction counts to 14,258 and 14,251, 

respectively.  Further depth of the refinement procedure was unable to detect qualified 

secondary regulatory relationships for elimination.  As visualized in Figure 4.8, the final 

refined network G(RN) was used for all subsequent data analysis. 
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Figure 4.6 – Network Refinement Process 

(a) The process of network refinement begins with modeling the KO-regulated targets of 
individual transcription factor deletions as separate directed weighted graphs.  Arrows 
represent activation while T structures represent repression.  (b) The network G(N) was 
defined as the union of all nodes and regulatory edges of the individual sub-networks into 
a single unrefined network.  (c) The initial iteration of network refinement demonstrates 
that TF A activates TF B.  They both share the activated target Gene M.  If the P Value 
significance of TF A activating Gene M is lower than the significance TF B activating 
Gene M the regulatory interaction between TF A and Gene M will be designated as 
secondary and eliminated from the network.  (d) Additional refinement steps of two and 
three levels of cascading regulation were evaluated under the same criteria. 
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Figure 4.7 – Network Refinement Example 

Transcription factor Z is shown to activate transcription factor A.  The regulation of Z upon A 
creates the possibility that each regulatory target that A and Z have in common is primarily 
regulated by A with Z’s regulatory impact being secondary.  This possibility is tested for each 
shared target (dashed lines).  The relationship Z◊C is not a candidate for elimination because the 
directionality of regulation is not consistent between Z◊C and A◊C.  The relationships Z◊B and 
Z◊G have compatible shared directionality of activation as compared to A◊B and A◊G.  The P 
Value of Z◊G is more significant than that of A◊G and thus Z◊G is not eliminated.  The same 
evaluation of Z◊B and A◊B shows that Z◊B is a secondary effect and is eliminated. 
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Figure 4.8 – The Regulatory Network G(RN) 

A visualization of the functional regulatory network G(RN) was produced by converting 
the interaction file format to a network-ready format compatible with Cytoscape [51].  
This network, specifically enriched for primary targets of transcription factors, was used 
for all subsections of data analysis. 
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Ontological Enrichment Analysis 

The Gene Ontology initiative is a collaborative effort to provide standardized 

nomenclature and universal identifiers to describe gene products.  The project spans 

many model organisms including Saccharomyces cerevisiae, Drosophila melanogaster, 

Mus musculus, and Homo sapiens.   The primary goal of the consortium is the 

development and maintenance of a structured set of ontologies that describe gene 

products in terms of their constituent biological processes, cellular components, and 

molecular functions.  GO annotations are curated for the yeast genome by the 

Saccharomyces Genome Database (SGD).  We utilized these resources in an effort to 

further understand the biological theme or set of themes represented by the KO-regulated 

targets for each transcription factor deletion. 

The primary goal of our GO enrichment analysis was to determine whether the 

deletion of a transcription factor produced a set of KO-regulated targets that have a 

common biological theme with regards to the analysis of their aggregated GO 

annotations.  This question was addressed in terms of ontologically assigned cellular 

locations, biological processes, and molecular functions.  We analyzed KO-regulated 

target sets of GO terms statistically for overrepresentation and topologically with regards 

to their relative placement within the overall GO network.  The standard and slim 

versions of the GO ontologies were used throughout the analysis process. 

Gene-Specific Assignment Acquisition 

The GO enrichment analysis process began with the acquisition of organism-

specific GO term assignments for all genes in the yeast genome.  ArrayPlex, depicted in 

Figure 4.9 and described in Chapter 3, provided this information.
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Figure 4.9 – Ontology & Genome Sequence Retrieval 

The ArrayPlex server environment actively maintains both genomic sequence 
information and SGD-curated GO term annotations.  ArrayPlex Command-Line Modules 
used the Client API to retrieve this information for both the GO term enrichment and 
promoter sequence analysis components of KO-regulated target analysis. 
 
ArrayPlex also contains ORF and intergenic alignments for several sensu stricto 
Saccharomyces species.  These resources were used during promoter sequence analysis 
for the purpose of phylogenetic shadowing of candidate cis-regulatory sequences.  
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Ontological Network Modeling 

We used directed weighted graphs to model the GO ontologies into networks in 

much the same way we defined transcription factor sub-networks G(KOn).  The GO 

ontology networks were built using relational constructs native to the GO nomenclature.  

GO is explicitly hierarchical; low-level nodes in the set of annotations specify very 

specific cellular components, biological processes, or molecular functions.  These nodes 

connect upwards through is_a or part_of relationships to less-specific, more generalized 

levels of annotation.  These sets of relationships were modeled as a directed weighted 

graph as demonstrated in Figure 4.10.  The complete GO ontology is represented in 

directed graph form as: 

 

V(GO) = { All GO annotations curated for the Saccharomyces cerevisiae genome } 

This information was provided by SGD. 

E(GO) = { All is_a, part_of relationships } 

This information is species-independent and provided by GO Consortium. 

 

Each gene product annotated by SGD was likely to have more than one 

annotation associated with it.  Often a gene will have several annotations in each of the 

three GO sub-hierarchies (component, process, function).  Figure 4.11 demonstrates that 

each of the KO-regulated targets of a transcription factor has often not just one but a set 

of assigned GO annotations.  Additionally, Figure 4.11 shows that annotation 

assignments are not unique to single genes.  This fact is the basis by which we can search 

for enrichment of specific GO terms within the KO-regulated targets of individual 

transcription factor deletions. 
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Figure 4.10 – GO Ontology Network Modeling 

The GO ontology was modeled using directed weighted graphs.  The theoretical GO sub-
network demonstrates the hierarchical nature of the GO sub-networks.  Low-level 
annotations describing specific biological components, processes, or functions link to 
higher, more generic annotations.  These linkages are directional.  As the example 
demonstrates, lower-level annotations can connect up to multiple levels in the GO sub-
networks. 

 
 
The specific example shows a small subsection of the GO component tree demonstrating 
specific parts of the proteasome separately annotated and hierarchically related. 
 

 



 
70 

 

Figure 4.11 – Transcription Factor Ontology Network 

Each KO-regulated target (B, C, D, E, F, G) of transcription factor A has a set of 
associated GO annotations.  These GO annotations can be unique to an individual gene 
target; many are likely shared among multiple gene targets.  In this example, KO-
regulated targets E, F, and G share theoretical GO annotation “GO:7”. 
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Raw Term Enrichment 

Each transcription factor-specific sub-network G(KOn) was analyzed for the 

overrepresentation of individual GO terms.  This analysis was performed utilizing the 

cumulative hypergeometric probability distribution, a discrete probability distribution 

that describes the number of successes in a sequence of draws from a finite population 

without replacement. 

All calculations were performed according to the unique occurrence of GO 

annotations for a given SGD-annotated gene product.  Each gene product often has an 

individual GO term associated with it multiple times in the GO ontologies maintained by 

SGD.  The catalog of GO term assignments is maintained with a descriptor termed the 

evidence code.  A single gene product may have multiple entries for the same GO 

annotation if there are multiple lines of experimental or computational evidence 

supporting the annotation assignment.  For all hypergeometric calculations we were 

careful to count only unique associations of a GO identifier (GOID) with a SGD 

identifier (SGDID). 

The population size (N) was defined as the total number of unique GOID and 

SGDID combinations within the entire pool of annotations provided by SGD.  The 

sample size (n) was defined as the total number of unique GOID and SGDID 

combinations in the pool of annotations for a single transcription-factor specific sub-

network G(KOn).  The parameter D, often denoted as the number of successes, is the total 

number of times a GOID is uniquely associated with a SGDID within the population N.  

Finally, the parameter k (the match) is the total number of times a GOID is associated 

with a unique SGDID within the transcription-factor specific sub-network G(KOn) set of 

annotations.  With each of these parameters established, the probability of GO term 
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overrepresentation was calculated using the cumulative hypergeometric probability 

function. 

Composite Term Enrichment 

The single-term GO analysis procedure uncovered many notable overrepresented 

annotations for the G(KOn) sub-networks.  We theorized that while a single GO 

annotation may barely miss the threshold of probabilistic significance, the aggregation of 

raw annotations upwards within the GO hierarchy may uncover what might otherwise be 

overlooked biological insights.  Figure 4.12 demonstrates this concept. 

The annotations GO:2, GO:4, GO:5, and GO:7 are within the pool of annotations 

provided by some G(KOn) sub-network.  The annotations GO:1, GO:3, and GO:6 are not 

represented by any of the KO-regulated targets within G(KOn).  While GO annotations 

GO:2, GO:4, GO:5, and GO:7 are not statistically significant these annotations 

hierarchically aggregate to the candidate GO term GO:3.  Evaluation of the statistical 

significance at this level GO:3 requires a description of how the hypergeometric 

parameters must be calculated for this type of analysis.  The population size (N) was 

calculated as previously discussed.  The sample size (n), the number of successes (D), 

and the match (k) were all calculated by summating the values, as they would be 

calculated for raw analysis of GO annotations GO:1, GO:3, and GO:6.  Additionally, n 

and D values are aggregated for any lower-level GO node (GO:6 in this instance) that is 

not part of the pool dictated by G(KOn).  The k value for GO node GO:6 is set to zero and 

does not contribute to additional match.   The composite GO annotation GO:3 is created 

and evaluated for statistical significance.  The composite GO annotation GO:1 is created 

in the secondary round of iteration as an aggregation of GO nodes GO:2 and GO:3.
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Figure 4.12 – Composite GO Analysis 

Raw Annotations (cyan) are GO nodes that are annotations provided by KO-regulated 
targets in a sub-network G(KOn).  Composite Annotations (yellow) are those uncovered 
through iterative aggregation of combinations of raw annotations and composite 
annotations. 
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Enrichment Results 

 The cumulative hypergeometric probability was evaluated for all evaluated GO 

terms at a stringent Bonferroni corrected statistical cutoff of 4.0 x 10-05.   At this threshold 

156 transcription factors had significantly enriched GO terms.  Of 1113 total transcription 

factor and GO term combinations, 213 total unique terms were enriched.  Of these unique 

terms, acid phosphatase activity, amino acid catabolism and metabolism, ribosomal 

biogenesis and constituent components, stress responses, and other metabolic activities 

were common. 

 A total of 418 transcription factor and GO Slim term combinations were enriched.  

Within this pool of combinations, 115 unique transcription factors and 48 GO Slim terms 

were unique.  These GO Slim terms clearly showed that amino acid metabolism, 

ribosome-centric processes and components, and stress responses were common 

biological themes that described the KO-regulated set of targets for transcription factor 

deletions. 

 The GO term enrichment results are available within the supplementary 

information section of the publication authored for this study [46].  The GO slim 

enrichment results are provided in Appendix II. 

Term Enrichment Validation 

 Comparison of enriched GO and GO Slim terms to the SGD annotations for well-

characterized transcription factors demonstrated that the analytical procedure recovered 

known biological components, processes, and functions in which factors were previously 

shown to function.  Transcription factors RPN4, TEC1, RAP1, HSF1, and GCR1 are but 
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a few of the factors whose GO term enrichments correlated well with their known 

regulatory roles. 

 Many previously uncharacterized transcription factors showed enrichment for GO 

terms.  Table 4.1 provides the GO terms that were enriched for the transcription factors 

AFT1 and RTG3.  These factors had a relatively small amount of annotation and known 

regulatory function when queried in SDG.  The deletion of AFT1 resulted in enrichment 

for several ribosomal, stress response, and chaperone terms.  Similarly, the deletion of 

RTG3 showed enrichment for amino acid biosynthesis and transport functions.  

Specifically, RTG3 was shown to be an activator of glutamate biosynthesis.  We wished 

to validate both the analytical procedure of GO term enrichment and the candidate novel 

characterizations provided by these enrichments through experimental growth assay. 

The transcription factors selected for this analysis were AFT1, RTG3, BAS1, RIC1, and 

PHO2.  The factors BAS1 and PHO2 have previously characterized roles in histidine 

biosynthesis.  RIC1 plays a role in rRNA transcription and promotes the synthesis of 

other ribosomal proteins.  The results of this analysis are demonstrated in Figure 4.13. 

The deletion strain aft1Δ was plated on rich YPD medium by serial dilution and was 

shown to exhibit growth similar to wildtype at 30°C.  The aft1Δ strain, however, 

exhibited a pronounced growth defect at the heat-stress condition 37°C.  The deletion 

strains rtg3Δ, bas1Δ, ric1Δ, and pho2Δ were serially diluted and plated on both rich YPD 

medium and synthetic minimal medium with dextrose, uracil, histidine, methionine, and 

leucine.  Of these strains, only rtg3Δ showed a significant growth defect on minimal 

medium lacking glutamate.
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Table 4.1 – GO Term Enrichment For Growth Assays 

 
TF 
Systematic  

TF 
Symbol  GO ID P Value Term 

YBL103C RTG3 GO:0000943 2.52E-37 retrotransposon nucleocapsid 
YBL103C RTG3 GO:0003723 1.76E-26 RNA binding 
YBL103C RTG3 GO:0005515 2.68E-20 protein binding 
YBL103C RTG3 GO:0003676 1.07E-12 nucleic acid binding 

YBL103C RTG3 GO:0016813 3.86E-06 
hydrolase activity, acting on carbon-nitrogen (but not peptide) 
bonds, in linear amidines 

YBL103C RTG3 GO:0019878 4.01E-06 lysine biosynthesis via aminoadipic acid 
YBL103C RTG3 GO:0005275 4.74E-05 amine transporter activity 
YBL103C RTG3 GO:0000256 7.44E-05 allantoin catabolism 
YBL103C RTG3 GO:0005488 1.13E-04 binding 
YBL103C RTG3 GO:0006536 1.55E-04 glutamate metabolism 
YBL103C RTG3 GO:0004410 2.46E-04 homocitrate synthase activity 
YBL103C RTG3 GO:0005371 2.46E-04 tricarboxylate carrier activity 
YBL103C RTG3 GO:0003994 2.46E-04 aconitate hydratase activity 

YBL103C RTG3 GO:0046912 4.26E-04 
transferase activity, transferring acyl groups, acyl groups 
converted into alkyl on transfer 

YBL103C RTG3 GO:0015291 6.15E-04 porter activity 
YBL103C RTG3 GO:0016836 7.93E-04 hydro-lyase activity 
YBL103C RTG3 GO:0015171 8.35E-04 amino acid transporter activity 
YBL103C RTG3 GO:0006537 9.81E-04 glutamate biosynthesis 
YGL071W AFT1 GO:0005830 4.46E-28 cytosolic ribosome (sensu Eukaryota) 
YGL071W AFT1 GO:0005842 5.01E-22 cytosolic large ribosomal subunit (sensu Eukaryota) 
YGL071W AFT1 GO:0043037 8.77E-22 translation 
YGL071W AFT1 GO:0003735 1.27E-19 structural constituent of ribosome 
YGL071W AFT1 GO:0005198 2.24E-16 structural molecule activity 
YGL071W AFT1 GO:0005843 1.14E-08 cytosolic small ribosomal subunit (sensu Eukaryota) 
YGL071W AFT1 GO:0006457 4.64E-08 protein folding 
YGL071W AFT1 GO:0009987 1.08E-07 cellular process 
YGL071W AFT1 GO:0005829 1.21E-07 cytosol 
YGL071W AFT1 GO:0006650 1.53E-07 glycerophospholipid metabolism 

YGL071W AFT1 GO:0006616 4.61E-07 
SRP-dependent cotranslational protein-membrane targeting, 
translocation 

YGL071W AFT1 GO:0009066 7.84E-07 aspartate family amino acid metabolism 
YGL071W AFT1 GO:0000788 2.71E-06 nuclear nucleosome 
YGL071W AFT1 GO:0016282 7.20E-06 eukaryotic 43S preinitiation complex 
YGL071W AFT1 GO:0051082 1.40E-05 unfolded protein binding 
YGL071W AFT1 GO:0050875 1.40E-05 cellular physiological process 
YGL071W AFT1 GO:0006096 3.11E-05 glycolysis 
YGL071W AFT1 GO:0000027 3.13E-05 ribosomal large subunit assembly and maintenance 
YGL071W AFT1 GO:0046688 8.15E-05 response to copper ion 
YGL071W AFT1 GO:0009277 9.67E-05 cell wall (sensu Fungi) 
YGL071W AFT1 GO:0006950 1.09E-04 response to stress 
YGL071W AFT1 GO:0006006 1.39E-04 glucose metabolism 
YGL071W AFT1 GO:0006333 1.68E-04 chromatin assembly or disassembly 
YGL071W AFT1 GO:0005788 2.32E-04 endoplasmic reticulum lumen 
YGL071W AFT1 GO:0006644 2.32E-04 phospholipid metabolism 
YGL071W AFT1 GO:0030003 5.00E-04 cation homeostasis 
YGL071W AFT1 GO:0009092 5.14E-04 homoserine metabolism 
YGL071W AFT1 GO:0007582 5.54E-04 physiological process 
YGL071W AFT1 GO:0006979 6.93E-04 response to oxidative stress 
YGL071W AFT1 GO:0005199 9.29E-04 structural constituent of cell wall 
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Figure 4.13 – Condition-Specific GO Term Enrichment Validation 

The deletion strains rtg3Δ, aft1Δ, bas1Δ, ric1Δ, and pho2Δ were serially diluted and 
plated on rich YPD medium and synthetic minimal medium with dextrose, uracil, 
histidine, methionine, and leucine. 
 
The transcription factor AFT1 was predicted to regulate the expression of chaperone 
proteins.  Growth of the deletion strain aft1Δ at heat-stress conditions of 37°C produced 
the expected growth defect. 
 
The transcription factors RTG3, BAS1, RIC1, and PHO2 were similarly grown on both 
YPD and minimal medium (dextrose, uracil, histidine, methionine, and leucine).  RTG3 
was predicted to play a role in the promotion of glutamate biosynthesis.  BAS1 and 
PHO2 were previously characterized to play roles in histidine biosynthesis while RIC1 
has been shown to play a role in rRNA transcription and ribosomal protein genes.  Of 
these factors only RTG3 showed a growth defect under minimal medium lacking 
glutamate. 
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Network Analysis of Enriched Terms 

We utilized graph traversal and network-descriptive measures to quantify the 

results of our ontological analysis.  The input to the process was the results of the Raw 

and Composite GO term enrichment analysis.  The GO hierarchy is composed of three 

independent and disconnected hierarchies:  the biological process tree, the molecular 

function tree, and the cellular component tree.  Each of the analysis methodologies 

detailed was performed within the context of an enriched GOID’s designated GO tree. 

GO sub-hierarchies were modeled using undirected non-weighted graphs.  The 

use of an undirected network allowed us to explore the relative distances and 

relationships between GOIDs while intentionally disregarding the top-down and 

directionally hierarchical nature of the sub-hierarchies.  Formal definitions of the graph 

model constituents are documented in Table 4.2.
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Table 4.2 – Graph Definitions for GO Network Analysis 

Formal definitions of graph model constituent elements used in enriched GO term 
network analysis traversal and analysis. 
 
V(GOX) { All GO annotations with aspect X=P|F|C } 
E(GOX) { All is_a, part_of relationships for the GOID nodes in V(GOX) 

} 
V(TFX,Y)RAW { All RAW GO annotations with aspect X=P|F|C statistically 

significant for TF=Y } 
E(TFX,Y)RAW { All is_a, part_of relationships for the GOID nodes in 

V(TFX,Y)RAW } 
V(TFX,Y)RAW+COMPOSITE { All RAW+COMPOSITE GO annotations with aspect 

X=P|F|C statistically significant for TF=Y } 
E(TFX,Y)RAW+COMPOSITE { All is_a, part_of relationships for the GOID nodes in V(TFX,Y) 

} 
V(TFX,Y)RAW,RANDOM { Random set where member size matches V(TFX,Y)RAW } 
E(TFX,Y)RAW,RANDOM { All is_a, part_of relationships for the GOID nodes in 

V(TFX,Y)RAW,RANDOM } 
V(TFX,Y)RAW+COMPOSITE, 

RANDOM 
{ Random set where member size matches 
V(TFX,Y)RAW+COMPOSITE } 

E(TFX,Y)RAW+COMPOSITE, 

RANDOM 
{ All is_a, part_of relationships for the GOID nodes in 
V(TFX,Y)RAW+COMPOSITE, RANDOM } 
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Network Metric, Average Path Length 

The first quantification methodology focused upon the analysis of the average 

path length between enriched GO annotations.  For each transcription factor deletion 

profiled, the statistically significant Raw GOID vertices V(TFX,Y)RAW were tagged within 

their modeled GO sub-hierarchy V(GOX).  All tagged vertices were then analyzed in a 

pair-wise fashion in order to determine the complete set of all possible minimum shortest 

path distances between GOID vertex combinations traversing edge elements in 

E(TFX,Y)RAW. The arithmetic mean of these values was calculated to determine an average 

path length between the set of GOIDs.  This process is detailed in Figure 4.14.   

This process was then iteratively performed for random permutations of node 

enrichments (using V(TFX,Y)RAW,RANDOM, E(TFX,Y)RAW,RANDOM).  For each set of GOIDs, 

equivalently sized sets of random SGD-curated GOIDs were tagged to appropriate GO 

sub-hierarchies.  Graph traversal algorithms were similarly used to determine pair-wise 

distances sufficient for the calculation of random average path lengths.  Iterations sets of 

both 20 and 100 in size were used to directly measure the number of times the actual 

average path length was less than the random path length.  The set of 100 random 

iterations provided a statistical foundation by which P Values could be derived describing 

the probabilistic expectation that the experimental average path length is significantly and 

reliably less than the random average path length.  Finally, each of the procedures 

detailed above was performed for the combination of RAW+COMPOSITE GOID 

annotations determined to be significant for each transcription factor KO (using 

V(TFX,Y)RAW+COMPOSITE , E(TFX,Y)RAW+COMPOSITE , V(TFX,Y)RAW+COMPOSITE,RANDOM, 

E(TFX,Y)RAW+COMPOSITE,RANDOM). 
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Figure 4.14 – Average Path Length 

Determination of average path length for a set of statistically significant GOIDs.  All 
shortest-path distances for all possible pair-wise combinations of enriched nodes (cyan) 
were determined using conventional graph traversal algorithms.  The arithmetic mean of 
these pair-wise distances provides a means by which the average network distance between 
enriched nodes can be determined.  The average path length for the above example would 
be 1.83. 
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Network Metric, Clustering Coefficient 

The clustering coefficient was first developed to demonstrate whether or not a 

graph might be considered to be a small-world network.  Formally defined, the clustering 

coefficient for a chosen vertex of a graph is the proportion of edges between the selected 

vertex and the vertices to which it is directly connected divided by the total number of 

edges that could possibly connect them all together.  

 
Mathematical definition of clustering coefficient Ci for some vertex Vi in the set of 
vertices V(TFX,Y)Z where Z can take on values of (RAW; RAW+COMPOSITE; RAW, 
RANDOM; RAW+COMPOSITE, RANDOM). 
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The procedures executed directly mirror those detailed in the average path length 

analysis.  The clustering coefficient is evaluated for each statistically significant Raw 

GOID of every transcription factor deletion profiled.
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Figure 4.15 – Clustering Coefficient with GO Term Enrichment 

Determination of clustering coefficient for a set of statistically significant GOIDs.  Edge 
tags of NC and C show the ability to not determine and determine a non-zero clustering 
coefficient respectively. 
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Network Analysis Results 

 For GO terms enriched at P Value less than 0.001 more than 70% of the terms 

demonstrated average path lengths that were statistically smaller than random 

permutations (P Value less than 0.01).  Similarly, more than 65% of the transcription 

factors with two or more enriched GO terms in the same GO sub-network (component, 

process, function) have significant clustering coefficients as compared with random 

assignment and evaluation. 

 These results were supportive of the overall results for GO term enrichment 

analysis.  The smaller than random average path lengths demonstrated co-enrichment of 

terms from co-localized areas of the GO hierarchies.  Similarly, statistically high 

clustering coefficients took the average path length results one level of confidence further 

by demonstrating that co-enriched GO terms were not only co-localized to a general areas 

of but in many instances shared a direct topological connection with each other. 

Target Promoter Sequence Motif Analysis 

Core to the process of differential gene expression and cell-fate determination are 

the cis-regulatory elements that define eukaryotic promoters.  Eukaryotic promoters 

generally contain three common elements, the first two defining what is often called the 

core promoter: the transcription-start site, the TATA box, and upstream sequences 

including activators, enhancers, repressors, and silencers [9].  We designed a sequence 

analysis methodology for the purpose of studying the promoter sequences of KO-

regulated targets of each profiled transcription factor.  We wished to determine whether a 

set of KO-regulated targets have statistically significant over-represented sequence motifs 
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in their promoter regions.  Additionally, we wished to profile the over-representation of 

characterized motifs within these regulatory regions. 

The analysis of promoter sequences required the parametric acquisition of 

primary sequence data.  In order to evaluate the efficacy of phylogenetic shadowing, 

primary genomic sequence was needed for both Saccharomyces cerevisiae as well as 

other related sensu stricto Saccharomyces species.  As detailed in Figure 4.9 and 

discussed in the ontological term enrichment sections of this chapter, this information 

was provided by the ArrayPlex.  ArrayPlex contained primary genomic sequence data for 

S. cerevisiae, S. mikatae, and S. bayanus.  In addition to raw genomic sequence 

information, ArrayPlex provided access to protein-coding and intergenic alignments 

between each of these yeast species.  These alignments allowed us to analyze promoter 

sequences utilizing phylogenetic shadowing to select for conserved non-coding regions of 

cis-regulatory promoter sequence.  In addition to primary sequence data, ArrayPlex had 

the capacity to dynamically execute and return normalized results from three separate 

software packages (AlignACE, MEME, and MDscan) that have been well characterized 

in previous efforts to analyze sequence sets for over-represented sequence motifs [REFs]. 

Sequence Analysis Life Cycle 

The sequence analysis process was performed for each KO-regulated target set.  

Figure 4.16 provides a top-down overview of the process through which each target set 

passed.  A set of statistically significant targets was previously determined for each 

transcription factor.  The relationship between transcription factors and their specific set 

of targets was expressed in terms of an interaction file, previously described by Figure 

4.9.  The set of targets for the example transcription factor deletion in Figure 4.16 (dTF) 

are A, B, C, and D. 
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Figure 4.16 – Sequence Analysis Life Cycle 

Life cycle of the sequence motif analysis process for a single transcription factor KO.  
Transcription factor deletion (dTF) has a predetermined set of statistically significant 
targets A, B, C, and D. 
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Promoter Sequence Extraction 

Two sets of sequence information were retrieved for each of the transcription 

factor KO-regulated targets.  First, multi-species sensu stricto Saccharomyces 

5’intergenic sequence alignments (CLUSTALW format) were retrieved, parsed, and post-

processed to produce a set of target-provided promoter sequences in which the sequence 

information was filtered for phylogenetic conservation.  Phylogenetic conservation was 

guided by user-provided parameters controlling the window-size of sequence evaluation 

as well as the proportion of nucleotides that must be conserved within a sliding window 

to tag a specific region as well conserved.  The other set of sequence information was the 

raw Saccharomyces cerevisiae promoter sequence from each of the transcription factor 

KO-regulated targets.  Raw sequence extraction was guided by parameters controlling the 

promoter distance of sequence retrieved.  Additionally, the algorithm was tuned to extract 

only intergenic sequence and not stray into neighboring ORFs.  The two separate sets of 

sequence information were formatted in FASTA format for use in both the search and 

discovery phases of promoter sequence analysis. 

Motif Search 

In parallel to the motif discovery, a motif search module was executed to scan the 

assembled promoter regions for the existence of previously elucidated and characterized 

cis-regulatory sequences.  Again, this process utilized a pre-determined background 

sequence model to guide the significance of located motifs.  The background sequence 

model used in this process was a pre-computed FASTA file of all Saccharomyces 

cerevisiae promoter regions.  A set of consensus sequences for each of the transcription 

factors deletions was provided.  Each of the consensus sequences was used to synthesize 
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a regular expression that was searched for in both the experimental and background 

FASTA files.  The number of promoters with hits found for each consensus sequence was 

recorded for both the background and experimental sequence sets.  The information was 

assembled and the cumulative hypergeometric probability was calculated to evaluate 

significance of enrichment. 

Motif Search Results 

 Of the transcription factors profiled, 102 had previously characterized sequence 

motifs.  Table 4.3 shows that 40 of these factors have sequence motifs that were 

statistically enriched within their KO-regulated target promoter regions.
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Table 4.3 – Complete Motif Search Results 

The complete results of characterizing the statistical overrepresentation of previously 
characterized sequence motifs within the promoter regions of KO-regulated targets. 
 
TF Systematic Name TF Gene Name Motif P Value 
YBR083W TEC1 CATTCY 7.21E-03 
YDL020C RPN4 GGTGGCAAA 1.21E-16 
YDL056W MBP1 ACGCGT 4.42E-05 
YDL106C PHO2 TAATRA 3.17E-03 
YDR207C UME6 GCGGC 1.86E-17 
YDR310C SUM1 GYGWCASWAAW 1.71E-16 
YDR423C CAD1 TTACTAA 8.49E-03 
YDR451C YHP1 TAATTG 4.23E-03 
YER040W GLN3 GATAAGATAAG 9.14E-03 
YER111C SWI4 CGCSAAA 4.24E-06 
YGL071W RCS1 GGGTGCANT 3.79E-03 
YGL073W HSF1 GARNNTTCNNGAA 2.66E-14 
YGL237C HAP2 CCAAT 8.60E-04 
YHL027W RIM101 TGCCAAG 5.18E-09 
YHR178W STB5 CGGNSTTATA 2.29E-03 
YHR206W SKN7 ATTTGGCYGGSCC 7.64E-04 
YJL056C ZAP1 ACCYYNAAGGT 6.91E-05 
YJL110C GZF3 GATAAG 1.60E-05 
YJR060W CBF1 CACGTG 2.28E-06 
YKL015W PUT3 CGGNNNNNNNNNNCCG 4.05E-03 
YKL043W PHD1 SCNGCNGG 2.38E-03 
YKR099W BAS1 TGACTC 9.21E-10 
YLR014C PPR1 TTCGGNNNNNNCCGAA 2.86E-03 
YLR131C ACE2 GCTGGT 1.13E-05 
YLR176C RFX1 TCGCCATGGCAAC 2.10E-03 
YLR403W SFP1 AYCCRTACAY 7.39E-46 
YLR451W LEU3 CCGNNNNCGG 1.40E-08 
YML007W YAP1 TTASTMA 8.79E-03 
YML051W GAL80 CGGNNNNNNNNNNNCCG 2.07E-06 
YMR019W STB4 TCGGNNCGA 4.74E-03 
YMR021C MAC1 GAGCAAA 2.15E-03 
YMR037C MSN2 MAGGGG 7.80E-11 
YMR070W MOT3 YAGGYA 1.28E-03 
YNL068C FKH2 GGTAAACAA 7.49E-03 
YNL216W RAP1 CAYCCRTRCA 5.74E-37 
YOL028C YAP7 MTKASTMA 6.32E-03 
YOR113W AZF1 YWTTKCKKTYYCKGYKKY 3.40E-04 
YPL049C DIG1 TGAAACA 2.10E-06 
YPL075W GCR1 CWTCC 3.99E-08 
YPR065W ROX1 YSYATTGTT 9.17E-05 
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Motif Discovery 

Sequence sets for each KO-regulated target pool were submitted to the ArrayPlex 

server for de novo analysis using the packages AlignACE, MEME, and MDscan.  Each of 

these programs is a Gibbs sampler designed to use a pre-determined background 

sequence model to find over-represented motifs within the set of sequences provided.  

The background sequence model we utilized was a nucleotide frequency matrix as 

computed by analysis of all Saccharomyces cerevisiae intergenic regions.  Each Gibbs 

sampler was guided by a set of computationally varied parameters including the desired 

motif width and the number of expected motifs.  Output from this process was 

normalized from the native output of each of the Gibbs samplers to a universal format. 

Motif Discovery Results & Aggregation 

The normalized information was processed into the relational database for the 

purpose of high-confidence motif discovery.  Motif aggregation was performed by the 

following procedure.  First, the relational database, when populated with all candidate 

motifs, contained nearly 400,000 motif records.  These records were first filtered by a 

parametrically varied set of tool scores specific to significance thresholds of each 

individual Gibbs sampler.  Next, the records that passed the first set of tool score filters 

were subjected to nucleotide complexity requirements, motif width limitations, duplicate 

elimination, as well as negative selection against sub-motifs, reverse-complement motifs, 

and previously characterized motifs.  Finally, the high-confidence candidate motifs that 

survived all of these filters were subjected to statistical significance quantification and 

filtered by P Value using the motif search methodology previously described. 
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Final Motif Aggregation 

The intersection of sequence motifs enriched by the process of directed motif 

search as well as overrepresented by the process of motif discovery was aggregated 

together to form a set of high-confidence novel sequence motifs for each KO-regulated 

target set.  A total of 105 transcription factors had 490 unique motifs that passed all of the 

filters applied in the final aggregation process.  A selection of these motifs is presented in 

Figure 4.17.  The complete set of high-confidence novel motifs appear in Appendix III. 

 

Figure 4.17 – Sample Motif Search & Discovery Results 

The left column is a selection of previously characterized motifs enriched within the 
promoter regions of KO-regulated target sets.  Table 4.3 contains a complete list of these 
motifs. 
 
The right column is a selection of novel motifs characterized by the process of motif 
discovery and final aggregation through a series of strict filters.  Appendix III presents a 
complete list of these motifs. 
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Binding Does Not Affirm Regulation 

 For each transcription factor profiled, we first evaluated KO-regulated target sets 

by comparing them to sets of targets that were determined by previous large-scale studies 

of yeast transcription factors [47, 48].  These previous studies measured DNA binding 

events and denoted proximal genes as putative regulatory targets.  Our research focused 

upon the deletion of transcription factors and the determination of targets by identifying 

transcript levels that were affected by the genetic perturbation.  The overlap between our 

KO-regulated target sets and these previous studies have been previously discussed in 

this chapter to be low. 

It is possible that promoters occupied by transcription factors are not necessarily 

activating or repressing proximal targets.  To investigate this hypothesis further we 

decided to investigate the effect of transcription factor overexpression, increased binding, 

and measured RNA transcript levels.  We overexpressed the transcription factor HSF1 

and determined significant targets.  We then analyzed previous studies to determine the 

set of genes bound by HSF1, induced at least 2.5-fold upon heat-shock, and yet not 

induced upon HSF1 overexpression. 

The result set depicted in Table 4.4 showed us that 28% of the targets occupied by 

HSF1 and activated by heat-shock were not activated by increasing HSF1 binding.  These 

targets represent a portion of the HSF1 binding targets that require a regulatory step 

independent of binding to activate proximal targets. 
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Table 4.4 – HSF1 Post-Binding Regulatory Analysis 

The set of genes bound by HSF1, induced at least 2.5 fold upon heat-shock, and not 
induced upon over-expression of HSF1. 
 
Systematic Name Gene Name Heat Shock Induction HSF1 OE Induction 
YBL075C SSA3 43.41 1.48 
YBR053C  17.51 0.96 
YBR101C FES1 10.13 1.27 
YCR010C ADY2 3.07 1.22 
YCR011C ADP1 3.66 0.87 
YDR003W RCR2 2.62 1.34 
YDR210W  3.10 1.22 
YDR216W ADR1 3.48 0.73 
YDR231C COX20 2.69 1.06 
YDR247W VHS1 3.16 1.37 
YDR258C HSP78 41.64 0.76 
YDR259C YAP6 3.27 1.11 
YER033C ZRG8 4.72 1.00 
YER037W PHM8 13.36 1.02 
YGL036W  4.00 1.09 
YGR141W VPS62 3.61 1.35 
YGR250C  12.21 1.18 
YHR082C KSP1 3.73 1.38 
YIR017C MET28 4.26 1.00 
YIR038C GTT1 6.92 1.00 
YJL148W RPA34 2.53 0.79 
YJR046W TAH11 3.86 1.00 
YKL010C UFD4 2.99 1.06 
YKL109W HAP4 8.51 0.73 
YKL163W PIR3 10.93 1.42 
YKL164C PIR1 2.75 1.11 
YLL023C  5.58 1.34 
YLL039C UBI4 26.72 1.19 
YLR168C  3.84 0.98 
YLR218C  2.64 0.98 
YLR260W LCB5 3.34 1.33 
YML100W TSL1 135.30 0.85 
YMR251W-A HOR7 14.52 1.24 
YNL007C SIS1 8.46 0.84 
YNL077W APJ1 20.11 0.99 
YNL125C ESBP6 4.69 1.29 
YNL194C  61.39 0.75 
YNR069C BSC5 5.39 1.34 
YOR267C HRK1 4.26 1.38 
YPL054W LEE1 4.47 1.22 
YPL250C ICY2 15.45 1.37 
YPR158W  9.19 1.23 
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Factor on Factor Regulation 

Using the large-scale transcription factor deletion data with a filter imposed such 

that we only included gene targets that were themselves transcription factors, we 

converted the raw PCL to a GML format.  This ability to visualize datasets from the 

ArrayPlex Client allowed us to detect pronounced relationships. 

Figure 4.18 (a, b, c, d) depicts this visualization and putative relationships.  The 

transcription factors PHD1, STP4, MCM1, MBF1, and HMS2 each have either a 

significant count of in-bound or out-bound regulatory connections with the other 

transcription factors that were profiled.  Specifically, MCM1 activates a large number of 

factors while STP4 is conversely activated by a large number of factors.  It is not 

surprising that MCM1 appears to be an activation hub for many transcription factors in 

the larger regulatory network.  MCM1 has been shown to perform an active role in cell-

cycle regulation through regulation of DNA replication initiation [52].  STP4 has little 

official annotation.  The GO ontological enrichment performed on the analysis of its 

affected targets indicates statistically significant roles in nucleotidyltransferase, 

polyamine transporter, spermine transporter, and polyamine activities.  These activities 

are general to the many pathways of amino acid metabolism and it is thus not surprising 

that STP4 would then be activated by a wide variety of other transcription factors.  Also 

of interest in the regulatory network, the transcription factors MBF1, PHD1 and HMS2 

are each repressed by many factors.  Both PHD1 and HMS2 have been shown to perform 

an active role in pseudohyphal growth adaptation [53, 54].  It is reasonable to believe that 

their transcriptional abundance would be repressed in the many conditions in which their 

cellular role is not required.
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Figure 4.18 – Factor on Factor Visualization 

a) The network G(RN) reduced to regulatory interactions between transcription factors. 

 
b) The transcription factors HMS2 and MBF1 are each repressed by many factors.   
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c) The factors PHD1 and TUP1 are repressed while STP4 is activated by many factors. 

 
d) MCM1, characterized in cell-cycle progression, activates many other factors. 
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DISCUSSION 

 The results produced by this study are of significant value to the research 

community.  This study represents the largest mRNA expression-based characterization 

of nearly all Saccharomyces cerevisiae transcriptional regulators.  The experimental 

methodology used allowed us to characterize both the relative strength by which each 

transcription factor regulates each of its KO-regulated targets and the directionality of 

that regulatory interaction. 

 Several previous studies have used expression data, graph models, and statistical 

likelihood of regulation to look at the concept of epitasis within transcriptional networks 

[55-59].  Our method utilized the inherent strengths of this study to more clearly establish 

the true set of targets for each transcription factor profiled.  The experimental design used 

growth controls to accentuate transcriptional differences caused by factor deletion and 

reduce batch-to-batch and other external sources of experimental variation.  The 

measurement of the true transcriptional response of KO-regulated targets provided direct 

knowledge of whether a transcription factor had an active or repressive role with each 

target.  The implementation of the secondary data model transformation through 

utilization of the error-model allowed high-confidence targets to emerge from replicate 

experiments.  Our network refinement algorithm used knowledge provided by these 

design choices, the directionality of factor-to-target regulation and comparable relative 

statistical significance with which a target was regulated by a factor, to reduce KO-

regulated target sets down to a more true set of primary regulatory interactions.  It was 

notable that the process of network refinement was unable to detect non-primary 

regulatory influences more than four levels deep into the set of regulatory interactions.  

Of the total unrefined regulatory network G(N), only 1.2% of the regulatory edges were 
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deemed to be indirect and removed from the final network G(RN).    This suggests that 

the process of regulatory propagation under normal steady-state growth conditions is less 

prevalent than might have been previously expected. 

We analyzed the possibility that RNA binding proteins could exert non-

transcriptional effects that would be measured within our experimental process and cause 

many of the regulated targets to be incorrectly associated with transcription factor 

deletion.  We compared previously characterized targets of RNA binding proteins with 

the KO-regulated targets of each transcription factor profiled.  The expectation was that if 

RNA binding proteins were playing a secondary role in regulating detected targets we 

should have found significant overlap between target pools and known targets of RNA 

binding proteins.   No such relationships were detected increasing the confidence that our 

refined regulatory network was predominately primary relationships. 

Similarly we compared all KO-regulated targets sets against each other in a pair-

wise fashion.  This was done in order to address the concern that target sets could be the 

result of some non-specific regulation that was the unexpected result of the transcription 

factor deletion.  The process of pair-wise comparing target sets looked for instances in 

which target sets largely overlapped between two transcription factors even though one 

factor was not the regulated target of another.  We detected no presence of what would be 

indirect transcriptional regulation by performing these comparisons. 

 It has been discussed that the process of GO term enrichment uncovered many 

significant annotations that corresponded with known biological roles which transcription 

factors have previously been shown to perform.  The process of aggregating raw 

annotation enrichments to composite levels of annotation uncovered and clarified the 

biological themes behind many of the KO-regulated targets of a transcription factor.  Our 

growth-assay experiments demonstrated that novel functional predictions could be both 
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accurate and testable.  One notable problem did occur with respect to the topological 

analysis of GO term enrichment.  We analyzed both the average path length and 

clustering coefficient of pools of co-enriched terms for a single transcription factor 

deletion.  As previously discussed, these network distance metrics demonstrated that 

many of our transcription factor deletions resulted in proximally co-located GO term 

enrichment clusters as compared to random permutations of SGD-assigned term 

assignments.  This conclusion was hindered by the discovery that SGD occasionally 

assigns proximally close GO terms to the same gene.  This meant that a single KO-

regulated target could contribute unfairly located GO terms to the pool of ultimately 

enriched targets thereby skewing the validity of comparison against random permutation.  

We still believe there are notable untainted results within this network analysis of GO 

term co-localization.  Nonetheless, we did not pursue this line of experimental analysis in 

the publication of this research. 

 Our promoter sequence analysis both recovered many previously characterized 

sequence motifs and discovered a set of novel regulatory motifs for many of the 

transcription factors profiled.  We noted that each of these processes performed very 

poorly when phylogenetic shadowing was used in place of raw promoter sequence 

extraction.  We had expected use of phylogenetic conservation to increase the signal-to-

noise ratio of promoter sequence analysis.  Conversely, for both motif search and 

discovery, phylogenetic shadowing significantly degraded both the quantity and quality 

of our results.  A recent study communicates that cis-regulatory sequences are more 

mobile than once expected and not well conserved among closely related species [60].  

This is one probability that explains our observation. 
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MATERIALS AND METHODS 

Experimental Conditions 

Strain Information 

All deletion strains were derived from BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) 

and procured from Open Biosystems.  The essential transcription factors profiled derive 

from a BY4741 derivative (URA3::CMV-tTA MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0).  

These strains contain a TetO7- promoter that allowed for the conditional repression of 

transcription factor expression. 

Non-Essential Transcription Factor Growth Conditions 

Cultures were grown in YPD (1% yeast extract, 2% peptone, 2% dextrose) until mid-log 

phase and collected for RNA isolation. 

Essential Transcription Factor Growth Conditions 

The TetO7- promoter of each of these strains was conditionally repressed through the 

addition of 10 µg/ml doxycycline for 14-16 hours and collected for RNA isolation. 

Heat Shock Growth Conditions 

Cultures were grown in YPD (1% yeast extract, 2% peptone, 2% dextrose) until mid-log 

phase and the transitioned from 30°C to 39°C for 15 minutes before rapid collection for 

RNA isolation. 
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Overexpression of HSF1 

The overexpression strain for HSF1 derives from Y258 (MATa pep4-3, his4-580, ura3-

53, leu2-3,112) and was procured from Open Biosystems. The vector is derived from 

pRSAB1234 to BG1805.  The GAL1 promoter in BG1805 is identical to yeast ChrII bp 

278,565-279048.  Overnight growth was in SD-ura medium without antibiotics at 30°C.  

The overnight culture was transitioned to a 25ml -ura 2% raffinose medium overnight.  

Final growth was a 200ml -ura 2% raffinose medium with a starting OD600.  At OD 1.2 

the medium was brought to 2% galactose for a 6-hour induction.  Cells were the collected 

for RNA isolation. 

Growth Defect Assay  

Several transcription factor deletion strains showed functional enrichment for GO terms 

that directly affect cellular proliferation and survival.  These strains were characterized 

through dilution-assay colony growth under specific growth conditions.  Each of the 

deletion strains rtg3Δ, aft1Δ, ric1Δ, pho2Δ, and bas1Δ were spotted on rich-medium 

(YPD), minimal medium (SD – dextrose, uracil, histidine, methionine, and leucine) and 

were grown under both normal (30°C) and heat shock (37°C) conditions. 

DNA Microarray Methods 

Total RNA Isolation 

Total RNA samples from the collected cells were extracted by hot acid phenol as 

described.  Cells were resuspended in AE buffer (50 mM sodium acetate, 10 mM EDTA). 

The cell suspension was mixed with equal amounts of acid phenol (pH 4.5-5.5), and SDS 

to a final concentration of 0.8 %. The cell suspension was incubated at 65°C for 60 
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minutes with agitation every 10 minutes. After incubation on ice for 10 minutes, cells 

were collected by centrifugation. Supernatant was then re-extracted with acid phenol 

followed by chloroform, then precipitated with ethanol and sodium acetate. 

Reverse Transcription 

Reverse transcription of was performed using a modified Invitrogen Superscript II 

protocol (anchored oligo dT 5µg, total RNA 15µg).  Amino Allyl dUTP was incorporated 

into the reverse transcription reaction for the purpose of Amersham Biosciences Cy Dye 

incorporation.  cDNA was purified using Qiagen MinElute columns according to the 

manufacturer’s protocol. 

cDNA Fluorophore Labeling 

Cy Dye incorporation was performed in the presence of purified cDNA with incorporated 

Amino Allyl dUTP.  Cy Dyes (Cy5, Cy3) were suspended in DMSO and incubated for 60 

minutes.  Labeled cDNA was separated from unincorporated Cy Dyes through 

purification with Qiagen MinElute columns according to the manufacturer’s protocol.  

Microarray Slide Preparation 

DNA Microarray slides were post-processed in a solution of succinic anhydride and 1-

methyl-2-pyrrolidinone and sodium borate. Slides were plunged rapidly in post-

processing solution and agitated for 15 minutes.  Slides were then transferred to 95°C 

water bath and incubated for 90 seconds.  Finally, slides were washed with 95 % ethanol 

and spun dry in a tabletop centrifuge (600 rpm, 3 minutes). 
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Hybridization & Washing 

Hybridization buffer consisted of 50% formamide, 10x SSC, 0.2% SDS. 

Purified and labeled cDNA was combined with 2x hybridization buffer and incubated at 

42°C for 16 hours.  After hybridization slides were washed for 5 minutes in three stages.  

Stage 1 was composed of 2x SSC, 0.1%SDS (5 minutes).  Stage 2 was composed of 1x 

SSC (5 minutes).  Stage 3 was composed of 0.1x SSC (5 minutes).  Slides were spun dry 

in a tabletop centrifuge (600 rpm, 3 minutes). 

Computational Methods 

Network Modeling 

All computational graphs were modeled using the Java package JGraphT, an open-source 

Java graph library that provides both reusable objects and algorithms for the purpose of 

modeling, traversing, quantifying, and manipulating mathematical graphs.  Significant 

pre-data prototyping and unit testing was implemented to ensure accuracy of all modeled 

sub-networks G(KOn) and the final networks G(N). 

GEO Repository 

The expression data from this study has been deposited in the Gene Expression Omnibus 

(GEO).  The series accession number is GSE4654. 

Longhorn Array Database 

All primary data for every microarray experiment performed in this study is available 

from the Publications section of the Longhorn Array Database hosted by the Iyer Lab of 

The University of Texas at Austin. 
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SUPPLEMENTAL INFORMATION 

 

Table 4.5 – Transcription Factors Profiled 

The symbol (*) indicates strains where heat-shock was profiled. 
The symbol (**) indicates strains with a tet-off promoter. 
 
Systematic Gene Systematic Gene Systematic Gene Systematic Gene 
YAL051W OAF1 YER045C ACA1 YJL103C  YNL021W HDA1 
YBL005W PDR3 YER051W  YJL110C GZF3 YNL027W CRZ1 
YBL005W* PDR3 YER068W MOT2 YJL127C SPT10 YNL068C FKH2 
YBL008W HIR1 YER088C DOT6 YJL168C SET2 YNL097C PHO23 
YBL021C HAP3 YER109C FLO8 YJL176C SWI3 YNL139C RLR1 
YBL052C SAS3 YER111C SWI4 YJL206C  YNL167C SKO1 
YBL054W  YER130C  YJR060W CBF1 YNL199C GCR2 
YBL066C SEF1 YER161C SPT2 YJR094C IME1 YNL204C SPS18 
YBL103C RTG3 YER169W RPH1 YJR122W CAF17 YNL216W** RAP1 
YBR033W  YER184C  YJR127C ZMS1 YNL236W SIN4 
YBR049C** REB1 YFL021W GAT1 YJR140C HIR3 YNL257C SIP3 
YBR083W TEC1 YFL031W HAC1 YJR147W HMS2 YNL309W STB1 
YBR083W* TEC1 YFL044C  YJR147W* HMS2 YNL314W DAL82 
YBR103W SIF2 YFL052W  YKL005C BYE1 YNL330C RPD3 
YBR150C TBS1 YFR034C PHO4 YKL015W PUT3 YNR010W CSE2 
YBR182C SMP1 YGL013C PDR1 YKL020C SPT23 YNR052C POP2 
YBR195C MSI1 YGL013C* PDR1 YKL032C IXR1 YNR063W  
YBR239C  YGL023C PIB2 YKL038W RGT1 YOL004W SIN3 
YBR240C THI2 YGL025C PGD1 YKL043W PHD1 YOL028C YAP7 
YBR245C ISW1 YGL035C MIG1 YKL043W* PHD1 YOL051W GAL11 
YBR275C RIF1 YGL071W RCS1 YKL062W MSN4 YOL067C RTG1 
YBR289W SNF5 YGL073W* HSF1 YKL062W* MSN4 YOL068C HST1 
YBR297W MAL33 YGL073W** HSF1 YKL072W STB6 YOL089C HAL9 
YCL055W KAR4 YGL096W TOS8 YKL109W HAP4 YOL108C INO4 
YCR065W HCM1 YGL131C SNT2 YKL112W** ABF1 YOL116W MSN1 
YCR081W SRB8 YGL151W NUT1 YKL185W ASH1 YOL148C SPT20 
YCR084C TUP1 YGL162W SUT1 YKL222C  YOR025W HST3 
YCR106W RDS1 YGL166W CUP2 YKR034W DAL80 YOR028C CIN5 
YDL020C RPN4 YGL181W GTS1 YKR036C CAF4 YOR028C* CIN5 
YDL020C* RPN4 YGL181W* GTS1 YKR064W  YOR032C HMS1 
YDL042C SIR2 YGL197W MDS3 YKR099W BAS1 YOR032C* HMS1 
YDL048C STP4 YGL209W MIG2 YKR101W SIR1 YOR038C HIR2 
YDL056W MBP1 YGL237C HAP2 YLR013W GAT3 YOR113W AZF1 
YDL070W BDF2 YGL244W RTF1 YLR014C PPR1 YOR113W* AZF1 
YDL106C PHO2 YGL254W FZF1 YLR039C RIC1 YOR140W SFL1 
YDL170W UGA3 YGR040W KSS1 YLR098C CHA4 YOR162C YRR1 
YDR009W GAL3 YGR044C RME1 YLR113W HOG1 YOR162C* YRR1 
YDR026C  YGR056W RSC1 YLR131C ACE2 YOR191W RIS1 
YDR043C NRG1 YGR063C SPT4 YLR136C TIS11 YOR213C SAS5 
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YDR049W  YGR067C  YLR176C RFX1 YOR229W WTM2 
YDR073W SNF11 YGR089W NNF2 YLR182W SWI6 YOR230W WTM1 
YDR123C INO2 YGR097W ASK10 YLR228C ECM22 YOR290C SNF2 
YDR146C SWI5 YGR104C SRB5 YLR266C PDR8 YOR298C-A MBF1 
YDR169C STB3 YGR249W MGA1 YLR278C  YOR304W ISW2 
YDR173C ARG82 YGR249W* MGA1 YLR357W RSC2 YOR344C TYE7 
YDR176W NGG1 YGR288W MAL13 YLR403W SFP1 YOR344C* TYE7 
YDR181C SAS4 YHL009C YAP3 YLR418C CDC73 YOR358W HAP5 
YDR191W HST4 YHL020C OPI1 YLR442C SIR3 YOR363C PIP2 
YDR207C UME6 YHL025W SNF6 YLR451W LEU3 YOR380W RDR1 
YDR213W UPC2 YHL027W RIM101 YLR453C RIF2 YPL001W HAT1 
YDR216W ADR1 YHR006W STP2 YML007W YAP1 YPL038W MET31 
YDR216W* ADR1 YHR041C SRB2 YML027W YOX1 YPL042C SSN3 
YDR253C MET32 YHR124W NDT80 YML051W GAL80 YPL049C DIG1 
YDR259C YAP6 YHR154W RTT107 YML076C WAR1 YPL075W** GCR1 
YDR259C* YAP6 YHR178W STB5 YML081W  YPL089C RLM1 
YDR266C  YHR206W SKN7 YML099C ARG81 YPL089C* RLM1 
YDR277C MTH1 YIL010W DOT5 YML102W CAC2 YPL129W TAF14 
YDR310C SUM1 YIL036W CST6 YML113W DAT1 YPL133C RDS2 
YDR363W ESC2 YIL038C NOT3 YMR016C SOK2 YPL139C UME1 
YDR392W SPT3 YIL084C SDS3 YMR019W STB4 YPL177C CUP9 
YDR421W ARO80 YIL101C XBP1 YMR021C MAC1 YPL202C AFT2 
YDR423C CAD1 YIL101C* XBP1 YMR037C MSN2 YPL230W  
YDR443C SSN2 YIL119C RPI1 YMR037C* MSN2 YPL248C GAL4 
YDR448W ADA2 YIL128W MET18 YMR042W ARG80 YPL254W HFI1 
YDR448W* ADA2 YIL130W  YMR043W** MCM1 YPR008W HAA1 
YDR451C YHP1 YIL131C FKH1 YMR053C STB2 YPR009W SUT2 
YDR463W STP1 YIR017C MET28 YMR070W MOT3 YPR018W RLF2 
YDR477W SNF1 YIR017C* MET28 YMR070W* MOT3 YPR022C  
YDR520C  YIR018W YAP5 YMR075W  YPR054W SMK1 
YEL009C GCN4 YIR023W DAL81 YMR164C MSS11 YPR065W ROX1 
YEL056W HAT2 YIR033W MGA2 YMR182C RGM1 YPR193C HPA2 
YER028C MIG3 YJL056C ZAP1 YMR273C ZDS1 YPR196W  
YER040W GLN3 YJL089W SIP4 YMR280C CAT8 YPR199C ARR1 
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Chapter 5:  MicroRNA Transcriptional Abundance & Regulation 

The research presented in this chapter was begun in May of 2006.  Dr. Jian Gu, a 

graduate of the Iyer Lab, developed our initial process for microRNA expression 

profiling [61].  Though he was able to attain significant results, the methodology and 

materials he utilized had significant limitations.  I began a process of refinement that 

eventually led to the development of a new set of procedures for microRNA labeling and 

hybridization.  I have pursued a line of research exploring the regulatory impact the 

proto-oncogene c-Myc has on microRNA transcriptional abundance.  Additionally, I have 

used serum stimulation of fibroblast cells as a model to further characterize the 

microRNA component of cellular proliferation.  The results of this research are being 

prepared for publication. 

INTRODUCTION 

MicroRNAs are members of an extensive family of non-coding RNAs that 

regulate gene expression in a post-transcriptional, sequence-specific manner [23].  

Originally believed to be few in number, limited in biological function, and 

phylogentically non-conserved, microRNAs have now been identified within nearly all 

metazoan genomes, including D. melanogaster, C. elegans, A. thaliana, and H. sapiens.  

Contemporary research of microRNAs has primarily focused upon the predictive and 

experimental identification of target genes and the pathway-specific implications thereof 

[28, 62-70].  Expression profiling has demonstrated that cellular microRNA quantities 

can either be temporal or remain constant once initiated.  The central focus of this chapter 

is that microRNA genes, while post-transcriptionally silencing their sequence-specific 

target, are themselves under some form of active transcriptional regulation. 
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It has been estimated that c-Myc is involved in the regulation of nearly 15% of all 

genes [71].  It has been characterized to have a role in many proliferation related cellular 

processes such as cell-cycle control, apoptosis, cellular differentiation, and DNA damage 

responses [72].  Previously published results indicated that the oncogene c-Myc is 

directly involved in promoting the transcription of a specific set of microRNA clusters 

[39].   We reasoned that the expansive regulation of c-Myc on many gene targets would 

likely be mirrored in its likelihood to regulate a substantial proportion of microRNA gene 

transcription.  This is supported by the fact that microRNAs have been shown to plan 

important roles in many of the mentioned biological processes [73, 74].   We theorized 

that c-Myc modulated microRNAs could be probable post-transcriptional regulatory 

intermediaries in the control c-Myc has upon its vast set of gene targets. 

RESULTS 

Experimental Design 

 The strategy adopted to pursue further understanding of the transcriptional 

regulation of microRNA genes was built upon two experimental approaches.  First, c-

Myc is known to be activated by serum stimulation of quiescent cells [61].   We reasoned 

that serum stimulation would provide an initial biological setting in which we could both 

recapitulate the previously characterized regulation of the mir-17/mir-106 microRNA 

clusters as well as investigate the transcriptional regulation of microRNAs responsive to 

serum stimulation.  Second, direct modulation of c-Myc transcriptional abundance 

through overexpression and siRNA-mediated knockdown would provide datasets that, 

when cross-correlated with microRNAs shown to be serum stimulation regulated, would 

clarify the list of microRNAs most likely to be regulated by c-Myc. 
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 This experimental design was predicated on the capacity to utilize two types of 

custom-fabricated DNA microarrays to profile the transcriptional abundance of mature 

microRNAs and mRNAs from matching biological samples.  With these datasets the 

power of computational methods to predict transcriptional regulation and microRNA 

gene targets becomes strengthened by cellular reality; the true measured state of 

microRNA and mRNA transcript levels. 

MicroRNA Microarray Design 

Initial Limitations 

Dr. Jian Gu, a graduate of the Iyer Lab, published research detailing the complex 

physiological response that accompanies cells exposed to various proliferative stimuli 

[61].  In this work he characterized the global transcriptional response of several 

fibroblast cell lines including both whole-genome mRNA and microRNA differential 

expression.  This microRNA experiments were performed using the first generation of 

Iyer Lab microRNA microarrays.  These microarrays were functional but had several 

limitations with respect to their usability and reliability in the study of global changes of 

mature microRNA expression in mammalian cells. 

MA-plot analysis of the results produced by these initial microRNA microarrays 

showed a significant abnormality in the relationship between absolute spot intensities and 

spot ratios.  There should be little relationship between these two spot metrics.  Moderate 

to high intensity spots have no particular bias towards positive or negative log ratio 

values and produce a distribution of spots that have equal distribution around zero on the 

log-ratio axis.  At low intensities the results are expected to become stochastic yet evenly 

distributed around zero as the calculation of the log-ratio value becomes unstable.  Figure 
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5.1 depicts a typical MA plot from this first generation of microRNA microarrays.  This 

result is representative of a significant signal-bias observed by three separate research 

groups at The University of Texas at Austin (Iyer, Harris, and Ellington labs).  The 

visualization shows a skew toward negative log-ratios beginning at moderate and 

continuing with increased magnitude at low intensity levels. 

The consequence of this data abnormality was considerable.  Strict data thresholds 

were required to select for the sub-population of spots not affected by this phenomena.  

This sub-population was by definition the most intense spots on the microRNA 

microarray representing the most highly abundant microRNAs in the population of all 

transcriptionally expressed microRNAs.  Data thresholds of this nature would have 

prevented the characterization of microRNAs expressed at medium to low levels.  

Secondarily, any log-ratio bias in an experiment severely hampers the capacity to apply 

normalization algorithms to the primary data.  This would have hindered both the 

believability of any single microarray experiment and relative comparisons one might 

have made from one microarray experiment to another. 
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Figure 5.1 – Initial MicroRNA Microarray Signal Bias 

The visualization depicts a representative MA-plot from experiments performed on the 
initial set of microRNA microarrays.  A significant signal bias is seen in the form of a 
skew toward negative log-ratios from moderate to low intensity spots.  This signal bias 
required strict intensity filters to select the small subpopulation of spots minimally 
affected by the bias.  This eliminated the capacity to profile transcriptional abundance for 
microRNAs expressed at moderate to low levels. 
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Labeling Methods  

Ambion developed the methodology we initially used to label microRNAs.  

Briefly, mature microRNAs are size-selected and enzymatically extended with a poly(A) 

tail.  These poly(A) tails have the capacity to conjugate fluorophore such that final 

hybridization yields a signal proportional to the amount of specific microRNA associated 

with a particular microarray locus.  This process functionally worked yet had several 

shortcomings.  First, it was both expensive and time-consuming.  The kit required to 

perform the enzymatic step of poly(A)-extending mature microRNAs doubled the total 

cost of each hybridization experiment.  The protocol for extension was time-consuming 

and labor intensive, including several dry-downs and lengthy incubations. 

Of the many alternative-labeling methods available, the Universal Linkage 

System (ULS) was a strong candidate.  This method involves the non-enzymatic labeling 

of either DNA or RNA substrates by a reaction that attaches a fluorophore to the N-7 

position of all guanine bases.  The reaction is complete in less than 15 minutes.  The cost 

per experiment is less than the Cy-dye component of the Ambion-produced poly(A)-

extension methodology and eliminated all enzymatic manipulation of the microRNA 

prior to actual hybridization.  Initial testing demonstrated positive results.  Overall signal 

intensities and signal-to-noise ratios measured were significantly higher in ULS-labeled 

experiments when compared to poly(A)-labeled counterparts. 

Slide Substrate 

The impetus behind adoption of an alternate labeling method, the signal bias 

problem, was not resolved through utilization of ULS-mediated labeling of the 

microRNAs.  Several subsequent rounds of hypothesis testing eventually determined that 
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a specific sub-population of the microRNA microarray slides were the true source of the 

problem.  The majority of slides produced were printed on epoxy-coated glass slides 

purchased from Schott/Nexterion.  These slides were expensive but judged to be of 

higher relative quality. A small minority of the slides produced was from a different 

supplier. Mock hybridizations without any fluorophore to Schott/Nexterion slides showed 

these slides produced a green auto-fluorescence at all DNA-spotted positions.  Several 

unsuccessful solutions were attempted in search of a procedure that would make these 

slides experimentally usable.  Ultimately, a new microRNA microarray production run 

was performed to produce a set of slides usable for reliable experimentation. 

Updated MicroRNA Probe Set 

Prior to the production of new microRNA microarrays was the acquisition of a 

new DNA oligonucleotide library that expanded our capacity to characterize a larger set 

of mammalian microRNAs.  This included 281 H. sapiens sequences, 49 M. musculus 

variants, 14 R. norvegicus, and several dozen negative and positive control sequences.  A 

sample hybridization of this microRNA microarray design is depicted in Figure 5.2. 

Development of a Reliable Process 

The process of solving the signal bias had several positive related benefits.  First 

was the development of a rigorously detailed process by which microRNA microarray 

experiments could be reliably performed.  This process is depicted in Figure 5.3.  Each 

step in the overall process represents a standardized and verbose protocol that was 

produced.  The protocols ensure that the small RNA population is preserved during each 

of the experimental sample manipulations:  RNA isolation, size-selection, fluorophore 

labeling, multiple clean-up steps, and final hybridization probe preparation.
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Figure 5.2 – ULS-labeled MicroRNA Microarray 

Two microRNA samples were differentially labeled with specific ULS fluorophore, 
combined into a single probe, and allowed to hybridize with complementary spots printed 
on the surface of the microarray.  The data-capture step involves the measurement of 
relative fluorophore amounts at each spot locus resulting in a visualization composed of 
red, yellow, green, and black spots. 
 
Red spots represent microRNAs that were more abundant in the experimental RNA 
sample whereas green spots represent microRNAs more abundant in the reference 
sample.  Yellow spots indicate equal transcriptional abundance between the two samples 
while black spots represent microRNAs that have low to zero transcriptional abundance 
in either sample. 
 
The MA plot and population distributions of log-ratio, Cy3 signal-to-noise, and Cy5 
signal-to-noise together demonstrate the new microRNA microarray materials and 
procedures produce high-quality result sets. 
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Figure 5.3 – MicroRNA Microarray Procedural Flow 

The process by which microRNAs are enriched from cell-cultures for microarray 
hybridization.  Total RNA is isolated using a modification of the Trizol Reagent standard 
protocol.  MicroRNAs are isolated through use of Ambion FlashPAGE poly-acrylamide 
gel apparatus.  Samples are differentially labeled with Invitrogen ULYSIS ULS reagents. 
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Primary Data Normalization 

Two-channel microarray experiments must eventually be normalized [75].  

Referring to MicroRNA Microarray Procedural Flow depicted in Figure 5.3, it is both 

possible to introduce sample-specific skew at many of the sub-steps within the overall 

procedure.  Small RNAs can be differentially lost at RNA isolation, size selection, 

labeling, and clean-up steps.  The process of scanning a microarray on two wavelengths 

typically involves the manual setting of independent laser PMT settings in such a way 

that maximizes the use of the entire dynamic range on each experimental channel.  This 

can lead to misleading trans-microarray ratio values.  Normalization is a process that 

handles each of the many sources of two-channel microarray data skew.  Normalization 

allows both a single ratio in a single experiment to be believed and for ratio values to be 

compared across multiple experiments.  During the development of the procedures by 

which microRNA microarray experiments were performed, two strategies were tested. 

Positive Control Normalization 

Positive control normalization is based upon the process of doping standard 

amounts of a heterologous nucleic acid into both the experimental and reference sample 

preparation processes.  Nucleic acid loss that occurs during the processing of the 

experimental or the reference sample can eventually be accounted for if there is a spot or 

set of spots on the microarray surface that bind these labeled heterologous sequences.  If 

no process-based skew were to occur the outcome would be a log-ratio of zero at positive 

control spots.  Experimental skew where some amount of the positive control nucleic acid 

was lost in the reference channel would eventually produce positive log-ratios at the 

positive control spots. 
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Positive control normalization is a mathematical process that uses a linear 

coefficient to adjust all spot intensities such that the mean positive control log ratio is 

zero.  The microRNA microarrays were pre-designed with such positive control spots.  

DNA oligonucleotides combined with T7-mediated transcription of short RNAs allowed 

for the production of positive control RNA that would both behave much like the 

experimental microRNAs and bind only to positive control spots on the array.  Test 

hybridizations demonstrated complementarity and specificity between usable RNA and 

microarray spots. 

Global Normalization 

In contrast to positive control normalization, global normalization is a more 

generalized form of experimental normalization and requires no additional experimental 

input.  Global normalization is based upon the assumptions that the average spot is not 

showing differential expression and that the relative occurrence of repression to 

activation is proportional.  Global mean normalization dictates that all spot ratios are 

adjusted such that mean log ratio becomes zero.  This strategy has been used effectively 

for thousands of microarray experiments in hundreds of publications. 

Normalization Conclusion 

Comparison of normalization methods was performed in several ways.  Generally, 

equal mass quantities of positive control RNA were added to both the experimental and 

reference samples immediately before then enrichment of microRNA from total RNA.  

The normal microRNA microarray procedures were then followed through primary data 

capture.  At this point both positive control and global normalization coefficients could 

be determined.  The expectation was that the two methods of normalization coefficient 
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determination would yield numerically close values.  At the very least it was hoped that 

they would at least agree upon the overall direction of experimental skew with respect to 

the global-normalization expectation of population centrality around a log-ratio of zero.  

The majority of these experimental outcomes fulfilled neither of these expectations.  

Normalization coefficients determined by the two differential methods were not 

numerically similar and often disagreed on which way the population of spot ratios 

should be shifted to achieve experiment normalization. 

Figure 5.4 demonstrates a typical outcome of an experiment designed to compare 

the applicability of the two normalization methods.  The experiment involved the 

execution of two microRNA microarray experiments in dye-swap fashion.  The null 

hypothesis of a dye-swap experiment pair is that comparison of post-normalization spot 

log-ratios from the first hybridization to the dye-swap should show inverse values.  A log 

ratio of 2.0 in the first experiment would be expected to be -2.0 in the corresponding dye-

swap.  Generally, all red spots in the primary hybridization should match up with green 

spots in the dye-swap.  Positive control normalization consistently produced dye-swap 

datasets where experiments correlated poorly based upon these expectations.  Conversely, 

global mean normalization reliably produced the expected outcome. 

One explanation for the failure of positive control normalization has to do with 

the ratio of microRNA to total RNA in isolated samples.  Positive control normalization 

is based on the assumption of equal starting masses of both RNA types in a given sample.  

Global normalization, however, has the intrinsic capacity to handle a situation in which 

equal masses of total RNA contain significantly different masses of microRNAs.  This 

could be the result of microRNA loss during the RNA isolation procedure.
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Figure 5.4 – Normalization Method Comparison 

A test of global and positive control normalization was executed in the form of an 
experiment and dye-swap pair.  The expectation of this pair of experiments is that after 
normalization the experimental and dye-swap log-ratios will be inverse signs. 
 
The data shown is from the same two experiments with the left-pair adjusted by positive 
control normalization and the right-pair normalized globally.  The results show that 
positive control normalization heavily skews the result set.  Conversely, global 
normalization produces the expected outcome of inverse values microRNA by 
microRNA basis. 

  

positive control normalization global normalization 
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Regulation of MicroRNAs by Serum Stimulation 

Experiment Design 

Though an initial characterization has been performed, we believed there was 

much to be learned about the transcriptional microRNA response in serum stimulated 

2091 fibroblast cells [61].  This was especially true in light of the functional limitations 

of the first generation of microRNA microarrays produced within the Iyer Lab. 

The experimental procedure of serum stimulation is detailed in Figure 5.5. 

Briefly, serum stimulation involved the growth of adherent 2091 fibroblast cells to 40% 

confluence.  Cell cultures were then switched to low-serum 0.1% FBS media for 48 

hours.  At this time half of the cell cultures were harvested for total RNA.  These cultures 

were quiescent cells and served as the experimental reference.  The remaining cultures 

were serum stimulated by switching them to 10% FBS media.  These serum-stimulated 

cultures were allowed to grow and harvested at specific time intervals of 5, 10, 20, 30, 

60, and 180 minutes. 

All relative microRNA microarray hybridizations were made between the post-

stimulation growth time-points and the reference cultures that were harvested prior to 

serum stimulation.  Additionally, matching mRNA hybridizations were performed with 

H. sapiens DNA microarrays capable of probing for more than 50,000 human ESTs.  

Each of the time-points was performed in duplicate for both microarray types producing a 

total of 24 microarray hybridizations.  The matching mRNA expression profiling 

experiments were designed to provide biological validation of predictions between 

regulated microRNAs and predicted gene targets. 
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Figure 5.5 – Serum Stimulation Experiment Design 

Serum stimulation experiments were performed by 48 hours of serum starvation followed 
by increasing time intervals of rich medium stimulation.  Separate microRNA and mRNA 
microarray experiments were performed for each time-point (5, 10, 20, 30, 60, 180).  
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Baseline Tests 

The first analytical focus of the serum stimulation result sets was a relative 

comparison to previous studies.  This approach allowed us to gauge the believability of 

our novel results by verifying experimental results against independent benchmarks.  The 

results presented in Figures 5.6, 5.7, and 5.8 represent a subset of the microRNAs 

differentially regulated by our experiments.  Concordant with expectations, the 

microRNAs in Figure 5.6 were activated by serum stimulation [61].  We next cross-

correlated the known regulation of the mir-17/mir-106 microRNA clusters by c-Myc 

[39].  It has been established that one of the many gene targets activated by serum 

stimulation is c-Myc [61].  It was expected that activation of c-Myc by serum stimulation 

would produce a cascaded transcriptional activation of these microRNA clusters.  This 

result was confirmed and is depicted in Figure 5.7.  Several lines of research have very 

recently implicated p53 as an activator of mir-34a [35, 76-78].  It has been previously 

demonstrated that in contrast to the expectations of p53 operating as tumor and growth 

suppressor, p53 is indeed activated by serum stimulation [79].  It was thus expected that 

mir-34a would be activated by serum stimulation.  Additionally, the activation of mir-34 

was shown to be specific to mir-34a and not expected for mir-34b or mir-34c.  These 

expectations were confirmed by our result sets and are depicted in Figure 5.8. 

Each of these correlated results strengthened our confidence in the analysis of 

novel microRNA regulatory relationships that emerged from these experiments.  

Additionally, the specific detection of mir-34a demonstrated the specificity of our assay 

with respect to short, highly related sequences. 
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Figure 5.6 – Activated MicroRNA Comparison 

The microRNAs presented match those previously shown to be activated by serum 
stimulation [61]. 
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Figure 5.7 – Activation of mir-17/mir-106 Clusters 

The transcription factor c-Myc is activated by serum stimulation [61].  Additionally, c-
Myc is known to activate the microRNA clusters mir-17 and mir-106 [39].  This 
visualization depicts the relative activation of these clustered microRNAs in our serum 
stimulation result sets. 
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Figure 5.8 – Activation of MicroRNA mir-34a 

The tumor suppressor p53 is unexpectedly activated by serum stimulation [79].  Several 
recent publications have demonstrated the direct activation of mir-34a by p53 [35, 77, 
78].  Our results demonstrate concordance with these observations by both significance 
and specificity. 
 

  
 
 
 CLUSTAL W (1.83) multiple sequence alignment 

 
HSA-MIR-34A      -UGGCAGUGUC-UUAGCUGGUUGUU 23 
HSA-MIR-34B      UAGGCAGUGUCAUUAGCUGAUUG-- 23 
HSA-MIR-34C      -AGGCAGUGUAGUUAGCUGAUUGC- 23 
                   ********  ******* ***   
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Novel MicroRNA Targets 

 Analysis of the 281 H. sapiens microRNA sequences probed for by our 

microRNA microarrays across the serum stimulation time course produced a set of 

microRNAs differentially regulated.  These microRNA results were extracted from the 

Longhorn Array Database using absolute intensity filters, spot consistency regression 

correlation, and log-ratio cutoffs for significance of regulation.  All of the microRNA 

expression profiling presented in this chapter showed differential expression levels that 

are lower than typically measured by mRNA profiling microarray experiments.  For each 

of the figures in this chapter a color bar is presented to indicate the relative scale of 

activation or repression measured for a microRNA under a specific experimental 

condition.  These scales are consistently set on a log-ratio range of -2 to +2.  This log-

ratio transformation is equivalent to a maximum absolute change of 4-fold in either 

regulatory direction. 

 Through the use of two log-ratio cutoffs the experimental results for the serum 

stimulation experiments were partitioned into two overlapping sets.  The first, referred to 

as normal, was based upon the use of an absolute fold cutoff of 1.32 (log ratio of 0.4).  

The second, referred to as restricted, utilized an absolute fold cutoff of 1.57 (log ratio of 

0.65).  Appling the aggregation of these filter constraints resulted in a normal and 

restricted result sets with 145 and 62 significantly activated and repressed microRNAs 

respectively.  These datasets are presented in Figures 5.9 and 5.10.  It is notable that the 

ratio of activations to repressions in the normal dataset is approximately equal while the 

restricted dataset has a higher relative presence of activated to repressed microRNAs.  

The analysis process was applied to each of these datasets separately.  Unless stated the 

results presented are based upon analysis of the normal result set. 
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Figure 5.9 – Serum Stimulation MicroRNA Targets (Normal) 

The set of microRNAs differentially regulated by serum stimulation.  Results were 
extracted from the Longhorn Array Database using intensity filters, regression correlation 
for spot consistency, and an absolute fold-change cutoff of 1.32. 
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Figure 5.10 – Serum Stimulation MicroRNA Targets (Restricted) 

The set of microRNAs differentially regulated by serum stimulation.  Results were 
extracted from the Longhorn Array Database using intensity filters, regression correlation 
for spot consistency, and an absolute fold-change cutoff of 1.57. 
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Candidate Regulators 

 We wished to determine the list of high-confidence transcription factors that were 

likely to play roles in regulating the set of microRNAs activated or repressed by serum 

stimulation.  Analysis of the whole-genome transcriptional response of fibroblasts under 

this condition provided an extensive list of factors.  This transcriptional response was 

defined by two data sources.  The first was the previously published and referenced 2006 

study while the second came directly from the mRNA expression profiling experiments 

performed with the biological samples used during microRNA expression profiling.  We 

utilized UCSC’s predetermined catalog of conserved binding sites for all mammalian 

transcription factors [TFBS Conserved] to construct a separate candidate list that was 

representative of conserved sequence motifs within the promoter regions of regulated 

microRNAs [80].  The mathematical intersection of these separately tabulated lists 

represented transcription factors that have conserved binding sites upstream of regulated 

microRNAs and have been shown to be differentially regulated by serum stimulation.  

We referred to these transcription factors as candidate regulators.   

The list of candidate regulators was much smaller than the separate transcription 

factor lists that contributed to its creation.  This list and the strategy by which it was 

created are presented in Figure 5.11.  The transcription factors ARNT, Bach1, Bach2, c-

Myc, FOXC1, Nkx3-1, RelA, Sox9, Sp1, SRF, STAT5B, and TGIF were analyzed for 

ontological enrichment with respect to the aggregation of their collective GO term 

assignments.  No cellular components, biological processes, or molecular functions other 

than the expected enrichment for transcription-factor associated annotations were 

detected.  Thus, these factors share no common biological theme yet do represent the 

most likely regulators of serum stimulation mediated microRNA differential expression. 
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Figure 5.11 – Candidate Regulator Identification 

Candidate regulators of microRNAs activated or repressed by serum stimulation were 
determined through overlap analysis.  The set of conserved transcription factor binding 
motifs present in upstream regions of regulated microRNAs was cross-correlated with 
both the 2006 study as well as the mRNA expression profiling experiments to determine 
the list of differentially expressed transcription factors that have a likelihood of binding 
near regulated microRNAs. 
 
Several of these factors (c-Myc, SRF, Sp1) are known as key regulators in the serum 
stimulation gene response.  Additionally, several factors (FOXC1, Nkx3-1, Sox9, TGIF) 
have characterized roles in cellular differentiation and tumor suppression. 
 

 

 
Factors Identified    
ARNT c-Myc RelA SRF 
Bach1 FOXC1 Sox9 STAT5B 
Bach2 Nkx3-1 Sp1 TGIF 
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Candidate Regulator Motif Search 

 The set of microRNAs regulated were subjected to upstream sequence analysis 

for statistical enrichment of DNA sequence motifs for each of the candidate regulators.  

Sequence motifs for each of the candidate regulators were obtained from rVista [81].  

Motif search was performed as detailed in Chapter 4 using existing toolsets and the 

cumulative hypergeometric probability distribution.  The search-space was defined as 

20kb of upstream sequence relative to the genomic locus at which each mature 

microRNA is known to reside [82].  Background sequence models included the separate 

testing of all human microRNA promoters on our microRNAs and all human microRNA 

promoters. 

 Significant motifs were determined at a strict P Value cutoff of 0.001.  Only the 

candidate transcription factors c-Myc, SRF, and STAT5B had significant motifs. 

 The canonical c-Myc e-box motif (CACGTG) was not enriched in this analysis.  

The non-canonical variant (CATGTG) was 75% depleted in the set of microRNAs 

activated by serum stimulation as compared to background.  Depletion of this non-

canonical e-box motif was on the basis of total motif over-occurrence to promoters 

profiled for both background and foreground calculations.  The multiple occurrences of 

e-box motifs within the promoters of these microRNAs were the only qualities that 

separated them from the average microRNA promoter sequences.  This depletion 

phenomenon is notable and discussed later in this chapter. 

The motif V$SRF_Q6 (GNCCAWATAWGGMN) was present in the promoter 

regions of hsa-let-7e, hsa-mir-125a, and hsa-mir-99b.  These three microRNAs are part 

of a probable but unconfirmed polycistronic cluster [83].  This single shared motif 



 
131 

occurrence was evaluated to be significant as it is the only occurrence of the motif in all 

human microRNA promoter regions. 

The STAT5 motif V$STAT_01 (TGCCGGGAA) was present in the promoter 

regions of hsa-mir-152, hsa-mir-22, hsa-mir-23a, and hsa-mir-27a.  The last two 

microRNAs from this list are also members of an unconfirmed polycistronic cluster.  The 

constituents of this cluster have been previously characterized as highly expressed in 

cholangiocarcinoma growth and proliferation [84]. 

Candidate regulator motifs were analyzed for over-representation by comparing 

the ratio of regulated microRNA promoter regions with at least one motif occurrence to 

all regulated microRNAs with the corresponding background ratio calculation.  Under 

this model the factors Bach2, FOX1C, Sox9, and Sp1 have a ratio at least 20% higher 

than background.  Additionally, the ratio-based comparison was performed comparing 

the total occurrences of sequence motifs in the pool of regulated microRNA promoters to 

the total occurrences in corresponding background promoters.  The factors Sox9 and Sp1 

each had motif concentrations at least 50% greater than background. 

Generalized Motif Search 

 The candidate regulator motif search did not yield a significant set of implicated 

sequence motifs likely to be mediating the regulation of transcription factors on 

microRNA gene expression.  We next looked at the enrichment of all conserved sequence 

motifs upstream of regulated microRNAs and compared this enrichment to background 

expectations. 

We partitioned the regulated microRNAs according to whether they were 

activated or repressed by serum stimulation and extracted 20kb of upstream promoter 

sequence for each microRNA.  For the partitioned microRNA target sets we calculated 
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the occurrence of conserved sequence motifs for all mammalian transcription factors.  In 

order to characterize background occurrence of transcription factor motifs we performed 

this same calculation using a third collection of microRNAs that represented all human 

microRNAs present on our microarrays. 

The set of activated microRNAs produced a set of sequence motifs that were 

significantly enriched.  The transcription factors Pax-4a, c-Myb, aMEF-2, ZID, Sox5, c-

Ets-1, Arnt, and COUP each had enrichment at a P Value less than 0.001.   The ratio of 

motif occurrences to microRNA promoters was shown to be approximately 30% above 

background for each of these transcription factors.  It should be noted that while the 

factors c-Myc, p53, CREB, and SREBP-1a did not have enrichment according to the P 

Value cutoff of 0.001, they each did have sequence motif occurrences that were 20% 

more abundant than background.  Finally, the previously denoted candidate regulators 

RelA, Sp1, Bach1, Sox9, and Arnt each had statistically insignificant yet relatively low P 

Values and motif occurrences more than 10% above background concentration.  It should 

be noted that the vast majority of mammalian transcription factor motifs profiled in this 

analysis had motif occurrences well below this 10% threshold. 

The set of repressed microRNAs had no enriched sequence motifs.  Interestingly, 

the transcription factors CUTL1, AP-2alpha, E2F, and STAT1 were shown to have 

motifs significant at the previously stated P Value cutoff.  These motifs, however, were 

significant not because of their abundance relative to background but rather their 

depletion.  Each of these motifs has significantly more enrichment in the background of 

all human microRNAs profiled by our microarrays as compared to the pool of 

microRNAs repressed by serum stimulation.  On average these microRNAs showed 20% 

less motif concentration when compared to background.  The transcription factor 

CUTL1, the most extreme example, had almost 40% depletion of its motif within the 
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pool of repressed microRNAs.  Other transcriptions factors showing similar motif 

depletion and near the statistical threshold include c-Myb, c-Myc, SRF, and STAT5.  

Additionally, this set of repressed microRNAs had almost no motifs with ratio-based 

concentrations greater than background.  Conversely, the set of activated microRNAs had 

no sequence motifs that were depleted in the manner demonstrated by the repressed 

microRNAs.  It is possible that negative regulation of microRNAs includes the loss of 

cis-regulatory sequences that prevent their activation under specific cellular conditions. 

mRNA Targeting 

 Both the 2006 study and mRNA experiments performed for this study produced a 

set of genes that were differentially regulated by the proliferative perturbation of serum 

stimulation.  Mechanistically, this regulation could be implemented in many forms.  

Some genes are primary targets of transcription factors either transcriptionally regulated 

by the stimuli themselves or post-transcriptionally activated.  Other genes may be the 

result of a regulatory cascade; secondary or tertiary targets regulated by transcription 

factors that were activated or repressed near the beginning of the initial cellular 

proliferation signal.  Finally, some of these regulated mRNAs are likely the regulatory 

targets of microRNAs that are differentially expressed. 

 We wished to characterize which serum stimulation gene targets were likely 

regulated by microRNA intermediaries.  Additionally, we wished to further understand 

which of the activated or repressed microRNAs were having the largest putative impact 

on the pool of regulated gene targets. 

 In order to clarify the answers to these questions we needed one additional piece 

of regulatory information:  the predicted set of gene targets for each microRNA under 

consideration.  This information was provided by the miRBase Targets Database [82].  
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This database is a compilation of the statistically highest probability gene targets of all 

characterized microRNAs.  It is based upon the combined algorithms of miRanda 

microRNA targeting, Vienna RNA folding and thermodynamic analysis, and MLAGAN-

mediated multiple sequence alignment for the evaluation of conservation of predicted 

target sequences in the 3’ UTRs of candidate gene targets. 

 Figure 5.12 depicts the information used and operations performed to determine a 

filtered set of microRNAs likely to regulate gene targets as well as previously known 

serum stimulation gene targets that are likely the result of microRNA-mediated 

regulation.  Each regulated microRNA was either activated or repressed by serum 

stimulation.  For all activated microRNAs we searched the miRBase Target Database for 

all putative gene targets.  We then correlated this list with a list of genes repressed.  

Similarly, all repressed microRNAs were mapped to predicted targets that cross-

correlated with genes activated by serum stimulation.  In this manner we used knowledge 

of directionality for both regulated microRNAs and mRNAs to correctly associate 

microRNA regulators with high-confidence gene targets. 

 The lists of activated and repressed genes derived from two data sources.  First 

the 2006 study was used to determine the results presented in Table 5.1.  Of the 73 

microRNAs activated by serum stimulation, 71 had predicted targets that showed 

regulatory repression.  Similarly, of the 72 repressed microRNAs, 66 had predicted 

targets that were activated.   These results demonstrate that the majority of regulated 

microRNAs map to predicted and regulated gene targets.  Of 445 total mRNA targets, 

127 unique targets were shown to be both measured as repressed and predicted as targets 

of activated microRNAs.  Of the same total mRNA targets, 141 were similarly measured 

as activated and predicated as targets of repressed microRNAs.   
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Similar analysis was performed using the second source of activated and 

repressed target information – the mRNA expression profiling experiments performed on 

the matching biological samples.  Table 5.2 details the outcome of this analysis.  The 

repressed microRNAs mapped to 178 predicted and experimentally activated gene 

targets.  Conversely, the activated microRNAs mapped to 294 predicted and 

experimentally repressed gene targets. 

In order to determine a final high-confidence set of microRNA-mediated gene 

targets we used the direction-specific overlap of genes regulated by both the 2006 study 

and the mRNA expression profiling experiments performed as a part of this study.  

Direction-specific, in this instance, means that for each mRNA activated in the 2006 

study we determined a final list of activated gene targets by including only those gene 

targets that were also significantly activated in our serum stimulation mRNA expression 

profiles.  In a similar fashion we used the direction-specific overlap of repressed gene 

targets from both datasets to determine a high-confidence list of microRNA-mediated 

repressed gene targets.  These high-confidence results are presented in Table 5.3.  Of the 

original list of microRNA-mediated repressed gene targets presented in Tables 5.1 and 

5.2, only 10 were repressed in both mRNA datasets.  Similarly, of the microRNA-

mediated activated gene targets, only 25 were conserved when both mRNA datasets were 

used for high-confidence overlap analysis. 

The significant reduction in target count through overlap analysis was indicative 

that the two serum stimulation datasets had significant disagreement with respect to their 

target sets.  These experiments though similar in the biological response they measured, 

differed significantly in their actual implementation.  The 2006 study was performed in 

such a way that serum stimulated cell cultures were relatively compared to a universal 

human reference in order to determine targets activated and repressed by the treatment.  
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The microRNA and mRNA expression profiling performed as a part of this study was 

designed to compare the transcriptional response of serum starved cell cultures that were 

stimulated by transition to rich-medium conditions to reference cell cultures that were 

similarly starved but not transitioned.  In this manner, our experiments measured the 

time-course response of the cells to a common biological time-point zero.  The difference 

in this design could explain the low overlap of gene targets.  Nonetheless, the mapping of 

microRNAs to predicted gene targets followed by direction-specific mapping to an 

overlapping high-confidence set of gene targets produced a final set of genes very likely 

to be regulated by microRNAs during serum stimulation. 
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Figure 5.12 – Serum Stimulation mRNA Targeting 

MicroRNAs were mapped to predicted and regulated gene targets.  Directionality of regulation 
was known for both microRNAs and regulated gene targets.  Activated microRNAs were mapped 
to predicted gene targets that were repressed by serum stimulation.  Conversely, repressed 
microRNAs were mapped to predicted gene targets that were activated. 
 
Figure 5.12a (right) demonstrates the method 
used to generate results in Table 5.1.  Gene 
targets were direction-specific mappings to 
mRNAs differentially expressed in the 2006 
serum stimulation study. 
 
Figure 5.12b (below) was used to generate the 
high-confidence results provided by Table 5.3.  
Gene targets were direction-specific mappings 
to the overlap of mRNAs regulated by both the 
2006 study and the mRNA expression profiling 
experiments performed as a part of this study. 

 

 



 
138 

 

Table 5.1 – Predicted & Known Regulated MicroRNA Targets 

Regulated microRNAs were mapped to predicted targets using the miRBase Target 
Database.  Predicted targets were correlated with direction-specific mappings to genes 
regulated in the 2006 serum stimulation study. 
 

Repressed Targets of Activated MicroRNAs Activated Targets of Repressed MicroRNAs 
ACSL3 FNBP1 MNS1 SLC27A3 ADAMTS1 ESM1 MT2A SACS 
AGPS FPGT MRPL34 SLC35A5 AMOTL2 ETS1 MTAP SDHA 
ALDH3A2 FYN MTMR4 SMARCA3 ANGPTL4 F3 MYC SERPINB2 
APOA2 GAD1 MUT SMPDL3A ATF3 FGF7 NAV3 SERPINE1 
ATP6AP2 GBAS MYBL1 SNX2 B3GNT1 FHL2 NEDD9 SERTAD1 
ATPAF1 GDF3 NF1 STAT2 BAALC FHOD1 NFKB1 SERTAD2 
AURKB GIT2 NFE2L1 STX7 BAG3 FOXF1 NFKBIA SFRS2 
BEX1 GPC3 NUDT9 TAF1 BCL10 GADD45B NOTCH1 SFRS3 
BRCA1 GPNMB NUSAP1 TBL1XR1 BCOR GATA2 NSUN2 SFTPC 
C10orf83 GPRC5B OGN TIA1 BDKRB1 GBP1 NUP88 SGK 
C18orf10 GRINL1A PANK1 TNKS CBFB GNPNAT1 NUP98 SLC2A14 
C9orf126 GRLF1 PARP16 TPD52L1 CCL2 GSPT1 OPRS1 SLC2A3 
CABC1 HBLD1 PCNA TTC19 CCNL1 HAS2 PAWR SMAD7 
CCNG1 HBP1 PLK1 TTC3 CHD1 HIVEP1 PBEF1 SNAI1 
CD99 HBZ POLE3 TUSC2 CKS2 HNRPAB PDGFA SOCS3 
CDC25C HEBP1 PPHLN1 UBE2H CRK HSPA8 PDLIM5 SOCS5 
CDCA1 HK1 PPIG USP21 CTGF ID2 PELI1 SPATA6 
CDKN1B HK1 PPP1CC YEATS2 CYR61 ID3 PFKFB3 SPOCD1 
CKAP2 HMGB2 PRDX3 ZFHX4 DDIT4L IER3 PHC2 SPRY2 
COPS4 IGF1R PRKAG1 ZNF217 DDX21 IL13RA2 PIM1 SPRY4 
CRBN IHPK2 PSAP ZNF436 DGKH IL7R PITPNC1 SRF 
CRSP6 ITGB3BP PSAT1  DKC1 INHBA PLAT SSB 
CRYZL1 JMJD2A PTK2  DNAJA1 IRF2BP2 PLAU STXBP5 
DDB2 KBTBD7 PYGL  DOCK10 JARID2 PLEKHJ1 SYN3 
DDIT4 KIAA0460 RAB40C  DUSP5 JUNB PNN SYNCRIP 
EBP KIF18A RAD1  EBF KCNV1 POLS TNFRSF10D 
ECHDC1 KIT RAD21  EDN1 KHDRBS3 PSG1 TUBB6 
EIF2S3 KLHDC2 RBM8A  EGR3 KIAA1949 PTPRO UAP1 
ELMOD2 LETMD1 REV3L  EHD4 KLF4 PURB UBL3 
EPB41L2 MAGED2 SASH1  EIF2C2 KLF6 RAI17 UCK2 
EXO1 MAGEF1 SC4MOL  EMP1 KRT18 RBM13 VCAM1 
EXOSC8 MAPKAP1 SCAMP2  EMR3 MPV17 RCOR1 VEGF 
FBXO25 MARCKS SCOC  ENAH MSN RGS4 VEGFC 
FEN1 MDH1 SETDB2  ENTPD7 MT1G RHOB WDR1 
FGA MLH1 SH3BGRL  ENTPD7 MT1H SACM1L ZNF281 
       ZNF347  
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Table 5.2 – Predicted & Measured Regulated MicroRNA Targets 

Similar to Table 5.1.  Direction-specific mappings to genes regulated in mRNA expression profiles. 
Activated Targets of Repressed MicroRNAs Repressed Targets of Activated MicroRNAs 
ABCG2 COL9A1 KIAA0391 SDF2 AADAT CRSP6 IGHG1 PAPSS1 SEC61G 
ABHD5 CRIP3 KLF6 SDF2L1 ABCB11 CSTF2 IKBKB PCBP2 SELPLG 
ACOT4 DDX58 KRR1 SKIL ACBD6 CTHRC1 IL22RA1 PCDH17 SERPINE2 
ACTC DENND1A KTN1 SMAD6 ACIN1 CTSL ING1 PDZD11 SETD5 
ACTN4 DET1 KYNU SMAD7 ACSL3 DCDC2 INPP4B PEG3 SF3B5 
ACTR3 DKC1 LARP2 SNRPA1 ANAPC5 DCP1B IQCG PEX14 SFTPB 
AFP DLGAP1 LATS2 SP100 ANAPC7 DCTD IRS2 PFDN1 SHB 
ALDH3B2 DLL1 LMCD1 SPRR1A ANKRD11 DDX56 ITM2B PFDN2 SLC12A9 
ANGPTL4 DUSP5 LONRF2 SPTAN1 ANKRD15 DECR2 JAK3 PGC SLC39A1 
ANPEP DYNLT1 MBNL2 SSTR1 ANXA7 DEPDC2 JOSD1 PHF12 SLC44A1 
ARHGAP12 EED MEF2A STAT5B APBA2BP DES KARS PHGDHL1 SLC6A6 
ARHGEF11 EGLN2 MEG3 STEAP1 APEX1 DIRAS1 KCNH2 PHTF1 SLIT2 
ARHGEF16 EGR2 MGAT1 STRAP API5 DOCK7 KLF4 PIB5PA SORCS1 
ARL4A EGR3 MOSC1 SYN2 APP DPYSL2 KRT5 PLEC1 SPG20 
ATF3 EIF2AK2 MT2A TAOK1 APPBP1 DSG2 LAMA4 PLS3 SSH1 
ATP8A2 EMP1 MVD TBC1D10A ARIH1 DSG3 LETMD1 PMP22 STAB2 
BCL10 ENTPD7 NEDD9 TCL1A ARPC1A DTX1 LGTN POLR2G STARD3NL 
BDKRB2 ERCC1 NFKBIA TES ASTN2 DUSP10 LIN7A POU2AF1 STC1 
BHLHB2 EVI5 NOL3 TFG ATP5B ENO1 LMAN1 PPIE STK16 
BICD2 F7 NR4A1 TM7SF2 ATP5C1 EPC1 LOXL1 PPIL6 STX16 
BMP5 FBN1 PDE1C TMED5 ATP5G3 EPRS LOXL4 PPP1CC SURF1 
BPHL FER1L3 PDE6A TMEM68 ATP5S ERGIC3 LRRC50 PPP2R5C TCEAL8 
BST1 FGA PEG3 TOM1L2 ATP6V0E ERMAP LSS PPP3CA TCF7L2 
C12orf51 FHL2 PGD TOP2B ATPIF1 ESCO1 MAF1 PRAF2 TEAD3 
C15orf17 FOXC1 PGM2 TPM1 BACH2 ESRRA MAP3K11 PRCP TGIF 
C16orf45 FOXP2 PHC2 TPM2 BAHCC1 EXOSC2 MAPRE1 PRDX5 TGOLN2 
C18orf51 FTSJ3 PIK3C2G TRPS1 C10orf57 FAM82B MCM5 PRG2 THBS3 
C1orf144 GMCL1 PIM1 TRSPAP1 C11orf10 FAM83D MDH2 PRMT5 TMEM118 
C1QTNF2 GNAS PKP4 TSPAN2 C11orf74 FER1L3 MDN1 PRR12 TPM4 
C3orf19 GNAT1 PLA2G12B TUBAL3 C4A FGD2 MEA1 PRR5 TPR 
C3orf26 GNB1 PLAT TUBB6 C6orf115 FN1 METAP2 PSMA1 TPST1 
C9orf93 HEG1 PRDM2 TYRP1 C9orf46 FNDC8 MFGE8 PSMA7 TRAPPC4 
CAPN3 HIVEP2 PSEN2 UAP1 C9orf75 FXN MGAT1 PTK7 TRIM38 
CASK HLA-E PTPLA UBE2M CACNA1C GABARAP MGST1 PTPRR TRIP12 
CBLB HNRPA1 PTPN11 UBL3 CACNA2D3 GALC MGST3 PYCR2 UBAP2L 
CCNL1 HNRPR PTPRM UQCRQ CALM2 GAPDH MICAL1 PYY2 UHMK1 
CCT5 HOOK2 PWP1 USP46 CCDC46 GATM MORF4L2 RAC1 USP14 
CDC25C HS3ST2 RANBP1 WAS CCDC72 GBAS MST1 RAD52 USP18 
CEACAM5 HSD17B8 RASSF4 WDR37 CD99 GCNT2 MT1H RAGE VASN 
CEPT1 ID2 RGS4 ZFP36L1 CDC27 GJA5 MTCH1 RBM8A VEGFC 
CES1 IFI30 RHOB ZNF236 CDC42EP3 GLYAT MVP RCN1 VIL2 
CES2 IL17RD SCAMP1 ZNF281 CDK2AP1 GPX3 MYO1B REC8L1 VTCN1 
CIB2 KAL1 SCAP1 ZNF330 CDK5RAP3 GPX4 NAV2 REV3L WDR22 
CKMT2 KCNH2 SDC1  CHCHD5 GRB7 NCF1 RGS10 WEE1 
CNKSR2 KIAA0141 SDCCAG1  CHI3L1 GRN NCOA1 RHOA WNK1 
    CHURC1 GSN NDEL1 RHOH WWP2 
    CKS2 GSTM1 NDRG2 RP9 YIPF3 
    CLN5 H3F3A NDUFA13 RPL29 YIPF5 
    CLYBL HLA-B NDUFA2 RPL31 ZBTB2 
    CMTM4 HMGN3 NDUFB8 RPL35 ZCCHC10 
    CNIH HNRPH1 NEK6 RPL41 ZDHHC7 
    CNKSR1 HSPB6 NFATC3 RPL9 ZDHHC8 
    CNN3 HSPB7 NFE2L1 RPS21 ZNF207 
    COG2 IARS2 NMNAT1 RPS6 ZNF307 
    COL5A1 IDH1 NOC2L S100A4 ZNF347 
    COPS5 IFITM1 NPC1L1 SCAMP2 ZNF498 
    COX11 IFITM2 NRP2 SCNN1G ZNF83 
    CPZ IFRD1 NSMAF SEC11L1 ZYG11BL 
    CROT IGFBP7 OAZ1 SEC24D   
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Table 5.3 – Predicted & Multi-Source Regulated MicroRNA Targets 

Regulated microRNAs were mapped to predicted targets using the miRBase Target 
Database.  Predicted targets were correlated with the direction-specific overlap of genes 
regulated in both the 2006 study and mRNA expression profiling experiments performed. 
 
These results are a subset of those presented in Tables 5.1 and 5.2. 
 

Repressed Targets of Activated MicroRNAs Activated Targets of Repressed MicroRNAs 
ACSL3 ANGPTL4 
CD99 ATF3 
CRSP6 BCL10 
GBAS CCNL1 
LETMD1 DKC1 
NFE2L1 DUSP5 
PPP1CC EGR3 
RBM8A EMP1 
REV3L ENTPD7 
SCAMP2 FHL2 
 ID2 
 KLF6 
 MT2A 
 NEDD9 
 NFKBIA 
 PHC2 
 PIM1 
 PLAT 
 RGS4 
 RHOB 
 SMAD7 
 TUBB6 
 UAP1 
 UBL3 
 ZNF281  
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Ontology Enrichment for Target Sets 

The lists of predicted and coordinately regulated gene targets presented in Table 

5.1 were tested for enrichment of GO terms. 

The list of repressed gene targets of activated microRNAs were enriched for the 

GO terms response to endogenous stimulus, DNA repair, response to DNA damage 

stimulus, DNA metabolism, cell-cycle, regulation of progression through the cell cycle, 

anti-oncogene, and negative regulation of progression through the cell cycle at a P Value 

of less than 0.001. 

The activated gene targets of repressed microRNAs were enriched for the GO 

terms negative regulation of apoptosis, negative regulation of programmed cell death, 

apoptosis, cell death, transcription, transcription regulation, activator, development, 

differentiation, growth factor, motigen, platelet derived growth factor, regulation of cell 

size, and positive regulation of cell proliferation at a P Value of less than 0.001.  

Additionally, the high-confidence list of microRNA-mediated activated gene targets 

presented in Table 5.2 is exclusively enriched for regulatory functions. 

It appears that the repressed gene targets are likely targeting cellular processes 

that would be suspended during cellular proliferation. Similarly, the activated gene 

targets seem to predominately regulate processes that allow proliferating cells to grow, 

differentiate, and produce the resources needed for high metabolic and transcriptional 

activity.  The regulatory enrichment produced for activated gene targets in Table 5.2 

suggests that microRNAs may have amplified regulatory impact by specifically targeting 

regulatory proteins for activation. 
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Regulation of MicroRNAs by c-Myc 

Experiment Design 

A 2005 publication established a regulatory link between a well-studied 

mammalian transcription factor and a specific set of microRNAs [39].  This publication 

demonstrated that the proto-oncogene c-Myc activates the expression of many constituent 

microRNAs within three paralogous clusters of human microRNAs.  These clusters are 

referred to as the mir-17 cluster (mir-17a, mir-18a, mir-19a, mir-20a, mir-19b-1, mir-92-

1), the mir-106a cluster (mir-106a, mir-18b, mir-20b, mir-19b-2, mir-92-2), and the mir-

106b cluster (mir-106b, mir-93, mir-25).  We hypothesized that over-expression and 

siRNA-mediated depletion of c-Myc would produce experimental results that 

biologically validated of our relatively new microRNA microarray process and uncovered 

novel c-Myc-regulated microRNAs. 

Over-expression was performed by lipotransfection of HeLa cells with a c-Myc 

expression vector acquired from Open Biosystems.  Efficiency of transfection was 

measured using co-transfection of a GFP reporter construct.  Western blot analysis of c-

Myc verified relative levels of protein abundance between lipotransfected and mock-

transfected cell cultures.  Similarly, siRNA-mediated mRNA knockdown was performed 

using synthetic c-Myc-specific RNA purchased from Dharmacon.  Similar to the over-

expression experiments, HeLa cell cultures were lipotransfected with either the c-Myc-

specific siRNA or a mock negative control siRNA.  Biological replicates of the over-

expression and siRNA-mediated knockdown experiments were performed and both 

mRNA and microRNA microarrays were separately utilized to capture differential whole-

genome expression profiles (Figure 5.13). 
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Figure 5.13 – c-Myc Overexpression & siRNA Experiment Design 

Experimental HeLa cell cultures were lipotransfected with either a c-Myc overexpression 
construct or siRNA specific to c-Myc.  Reference cell cultures were lipotransfected with 
the appropriate negative control.  Total RNA was isolated and used to perform mRNA 
expression profiling with microarrays.  MicroRNAs were isolated, enriched, and were 
used to perform microRNA expression profiling. 
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Baseline Tests 

Similar to the analysis of the serum stimulation set of regulated microRNAs, the 

initial analytical focus of the c-Myc overexpression and knockdown result sets was a 

relative comparison to previous studies and expected results.  This approach allowed us 

to gauge the believability of our novel results by verifying experimental results against 

independent benchmarks. 

Concordant with expectations, both the overexpression and knockdown of c-Myc 

produced respective activation and repression of the mir-17 and mir-106 microRNA 

clusters [39].  This result is depicted in Figure 5.14.  Detailed are the results of replicate 

c-Myc overexpression and knockdown. 

 In addition to measuring the effect of c-Myc overexpression and siRNA-mediated 

knockdown on mir-17 and mir-106 cluster transcriptional abundance, we realized that the 

expression profiling of cell-line comparisons could provide additional insight into the 

differential regulation of these microRNAs by c-Myc.  Figure 5.15 depicts the results of 

this set of experiments.  It was previously shown through both mRNA profiling and 

western analysis performed in the Iyer Lab by both the author and colleagues that HeLa 

cells have higher mRNA and protein levels of c-Myc when compared to 2091 fibroblast 

and GM6990 lymphoblastoid cells.  We hypothesized that a microRNA-based expression 

profile comparison of HeLa cells to these cell lines would show relatively higher levels of 

mir-17/mir-106 cluster expression in HeLa cells.  The results of these replicate 

experiments are presented in Figure 5.15. 

Each of these correlated results strengthened our confidence in the analysis of 

novel microRNA regulatory relationships that emerged from these experiments. 
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Figure 5.14 – c-Myc Modulation mir-17/mir-106 Cluster Effect 

Previous studies have demonstrated that the mir-17 and mir-106 clusters of microRNAs 
are directly regulated by the oncogene c-Myc [39].   
 
Replicate overexpression and knockdown of c-Myc recapitulates this result. 
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Figure 5.15 – Cell Line mir-17/mir-106 Cluster Effect 

MicroRNA expression profiles were performed to compare the transcriptional abundance 
of mir-17/mir-106 cluster microRNAs in HeLa cells relative to both 2091 fibroblast and 
GM6990 cells.  It was known that the level of c-Myc mRNA and protein was 
significantly higher in HeLa cells when compared with these two cell lines.  Given the 
known role of c-Myc as a transcriptional activator of these microRNAs, the expectation 
was that HeLa cells would consistently show relatively higher levels of their expression. 
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Novel MicroRNA Targets 

 Several methods were used to determine a high-confidence list of microRNAs 

regulated by c-Myc.  It was hypothesized that alignment of c-Myc overexpression and 

siRNA-mediated knockdown results would clearly show the opposite directionality of all 

significantly regulated microRNAs.  The behavior of the microRNAs in Figure 5.14 

demonstrates an example of this expectation.  Activation of microRNAs in 

overexpression experiments correlates with repression of matching microRNAs in 

knockdown experiments.  Across many replicates of both experiments we observed that 

while a proportion of regulated microRNAs behaved in this fashion, many did not.  We 

added the results of serum stimulation to the aligned c-Myc overexpression and 

knockdown experiments to gain a third quantitative perspective. 

Figure 5.16 depicts the spectrum of results that were observed.  Cross-experiment 

analysis of c-Myc overexpression and knockdown combined with serum stimulation 

provided a set of 42 microRNAs activated or repressed under all three experimental 

conditions.  These microRNAs were partitioned into three classes.  Class A included the 

set of 17 microRNAs whose regulatory behavior matched that of our initial expectations.  

Activation by either c-Myc overexpression or serum stimulation was mirrored by 

repression under c-Myc knockdown.  The 12 Class B microRNAs were those activated 

by c-Myc overexpression but unexpectedly also activated by c-Myc knockdown and 

repressed by serum stimulation.  Class C is composed of 11 microRNAs repressed by c-

Myc overexpression yet both activated and repressed by both c-Myc knockdown and 

serum stimulation. 

The emergence of these three classes of results was not fully understood.  All 

microRNA microarray experiments were extracted from the Longhorn Array Database 
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such that microRNAs were auto-partitioned by Class A, B, and C membership.  Visual 

inspection of 162 hybridizations produced by both the Iyer and Harris Labs demonstrated 

no strong tendency for these classes of microRNAs to co-segregate across most 

experimental conditions. Unsupervised hierarchical clustering, however, did indicate a 

partial tendency for members of the three classes to co-segregate.  This was possibly 

catalyzed by the experimental results themselves and not necessarily the result of 

exogenous data bias.  For example, Figure 5.16 shows that the c-Myc overexpression and 

serum stimulation experiments have a strong regulatory signal across each of the three 

classes.  This strong signal, especially when multiplied by correlative biological and 

technical replicates, had the capacity to direct hierarchical clustering to recapitulate these 

microRNA class partitions. 

To address this question further, the microRNAs in each of the three classes were 

retrieved for 49 experiments unrelated to c-Myc overexpression, c-Myc knockdown, or 

serum stimulation.  The hypothesis was that other experimental conditions were not 

likely to create strong regulatory signals on these sets of microRNAs that would mask a 

tendency for bias in the results.  This matrix was hierarchically clustered and inspected 

for co-segregation along lines of class membership.  This procedure showed that the 

classes significantly dispersed and that their existence was not likely to be the product of 

some bias intrinsic to the microRNAs or methods used during experimentation. 

The mir-17/mir-106 cluster constituents recaptured by our experiments partitioned 

exclusively to Class A.  Eliminating these microRNAs from the 17 members of this class 

left 13 novel microRNAs that represented the highest confidence microRNAs most likely 

to be regulated by cMyc: activated by c-Myc overexpression, repressed by siRNA-

mediated c-Myc knockdown, and correlatively activated by serum stimulation. 
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Figure 5.16 – Novel c-Myc MicroRNA Targets 

MicroRNAs regulated by c-Myc overexpression (myc++), siRNA-mediated knockdown 
(myc--), and serum stimulation (ss).  The microRNAs partition into three classes based 
upon their relative activation or repression under the three experimental conditions. 
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General E-box Search 

The transcription factor c-Myc binds the canonical E-box sequence (5� -

CACGTG-3� ) [85, 86].  It has also been shown to bind non-canonical sequences (5� -

CATGTG-3� , 5� -CACGCG-3� , 5� -CATGCG-3� , 5� -CACGAG-3� , 5� -CTCGCG-

3� , and 5� -CACGTTG-3� ).  Each of these sequences was evaluated for enrichment 

within the pool of Class A, B, and C microRNA promoters.  Similar to the sequence 

motif analysis performed for serum stimulation, 20Kb of upstream promoter sequence 

was extracted for each microRNA.  Enrichment was separately evaluated relative to 

background promoter collections representing all human microRNAs, all human 

microRNA on our microarrays, and all human genes. 

The canonical E-box CACGTG as well as the non-canonical variants CACGCG, 

CATGTG, and CACGAG are present in the majority of selected and background 

microRNA promoter sequences.  The other E-box forms are present in approximately 

40% of microRNA promoters. 

Overrepresentation of E-boxes based on total occurrence within individual 

promoters showed that the canonical E-box and several of the non-canonical forms occur 

at high frequencies.  None of these E-box motifs were statistically enriched in the 

selected microRNA promoter regions.  Interestingly, however, the Class C microRNAs 

were repressed by c-Myc overexpression and heavily enriched for over-occurrence of 

several non-canonical E-boxes.  This set of microRNAs showed approximately 100% 

greater enrichment than background.  It is notable that a recent study reported that 

canonical E-boxes generally correlate with activation of transcription by c-Myc while 

non-canonical E-boxes are responsible for gene repression [87].
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Table 5.4 – General E-box Search Results 

E-box motifs were located in all Class A, B, and C microRNA promoters.  A recent study characterized 
canonical motifs as activators and non-canonical variants as repressors [87].  Relative per-promoter and 
total occurrence rates were evaluated for statistical significance.  While the Class A promoters (activated) 
did not show enrichment for any of the motifs, they did show depletion for a non-canonical form when 
evaluated for over-occurrence. The Class C microRNAs (repressed) showed significant over-occurrence of 
several non-canonical variants. 
 

Class A: Single Count Per Promoter      
E-box Seq #M Hit #M #B Hit #B % M %B 
CMYC-C-1 CACGTG 13 11 528 470 84.62% 89.02% 
CMYC-NC-1 CATGTG 13 13 528 525 100.00% 99.43% 
CMYC-NC-2 CACGCG 13 4 528 201 30.77% 38.07% 
CMYC-NC-3 CATGCG 13 7 528 351 53.85% 66.48% 
CMYC-NC-4 CACGAG 13 11 528 409 84.62% 77.46% 
CMYC-NC-5 CTCGCG 13 5 528 204 38.46% 38.64% 
CMYC-NC-6 CACGTTG 13 5 528 220 38.46% 41.67% 
        
Class A: All Occurrences Per Promoter      
E-box Seq #M Hit #M #B Hit #B % M %B 
CMYC-C-1 CACGTG 13 27 528 1507 207.69% 285.42% 
CMYC-NC-1 CATGTG 13 74 528 4361 569.23% 825.95% 
CMYC-NC-2 CACGCG 13 7 528 344 53.85% 65.15% 
CMYC-NC-3 CATGCG 13 15 528 669 115.38% 126.70% 
CMYC-NC-4 CACGAG 13 22 528 876 169.23% 165.91% 
CMYC-NC-5 CTCGCG 13 7 528 344 53.85% 65.15% 
CMYC-NC-6 CACGTTG 13 7 528 338 53.85% 64.02% 
        
Class C: Single Count Per Promoter      
E-box Seq #M Hit #M #B Hit #B % M %B 
CMYC-C-1 CACGTG 11 10 528 470 90.91% 89.02% 
CMYC-NC-1 CATGTG 11 11 528 525 100.00% 99.43% 
CMYC-NC-2 CACGCG 11 7 528 201 63.64% 38.07% 
CMYC-NC-3 CATGCG 11 8 528 351 72.73% 66.48% 
CMYC-NC-4 CACGAG 11 11 528 409 100.00% 77.46% 
CMYC-NC-5 CTCGCG 11 2 528 204 18.18% 38.64% 
CMYC-NC-6 CACGTTG 11 4 528 220 36.36% 41.67% 
        
Class C: All Occurrences Per Promoter      
E-box Seq #M Hit #M #B Hit #B % M %B 
CMYC-C-1 CACGTG 11 32 528 1507 290.91% 285.42% 
CMYC-NC-1 CATGTG 11 105 528 4361 954.55% 825.95% 
CMYC-NC-2 CACGCG 11 17 528 344 154.55% 65.15% 
CMYC-NC-3 CATGCG 11 14 528 669 127.27% 126.70% 
CMYC-NC-4 CACGAG 11 28 528 876 254.55% 165.91% 
CMYC-NC-5 CTCGCG 11 5 528 344 45.45% 65.15% 
CMYC-NC-6 CACGTTG 11 5 528 338 45.45% 64.02%  
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Extended E-box Analysis 

 For each of the located E-boxes we decided to evaluate the probability of 

regulatory binding by c-Myc at each individual genomic locus.  The primary goal was to 

determine the subset of our c-Myc regulated microRNAs whose promoter regions 

contained the highest likelihood of cis-regulatory capacity. 

The first qualitative property that was evaluated for all E-boxes was the degree to 

which each was phylogenetically conserved across higher eukaryotes.  Conservation of 

non-coding sequences is often a significant indication that evolutionary pressure is 

maintaining that sequence for the purpose of its cis-regulatory capacity [88].  In addition 

to the conservation of E-boxes, the genomic binding of c-Myc has been long associated 

with the proximal presence of hypomethylated genomic regions referred to as CpG 

islands [89-93].  A recent whole-genome ChIP-PET analysis of c-Myc binding events 

found that more than 50% of E-boxes that correlated with binding events were within 5kb 

of a CpG island [90].  This same study noted that c-Myc often interacts with cofactors in 

order to assert regulatory activation or repression.  Finally, one of the most convincing 

substantiations of the regulatory probability of any cis-regulatory sequence is the 

experimental detection of actual transcription factor binding. 

We proceeded to evaluate all E-boxes of all c-Myc regulated microRNAs based 

upon these qualities.  This extensive process is depicted in Figure 5.17.  Conservation 

was evaluated for each locus through local installation of a portion of UCSC’s Genome 

Browser and command-line execution of UCSC toolsets (hgWiggle) that retrieved 

conservation metrics for a specified genomic range [80].  The presence of proximal CpG 

islands was evaluated using the CpG enrichment track [cpgIslandExt].  The existence of 

proximal cofactor binding sites was evaluated against known genomic locations of all 
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conserved binding sites of all mammalian transcription factors [tfbsConsFactors].  

Finally, correlation of located E-box motifs with binding events took advantage of three 

separate data sources.  The whole-genome ChIP-PET results published in 2006 were 

obtained and associated with our result sets [90].  In addition to these published results, 

we were able to obtain access to two high-resolution whole-genome datasets that 

characterized the binding of c-Myc.  These datasets, generously shared by Dr. Zheng 

(Roger) Liu of the Iyer Lab, come from the separate high-resolution tiling microarray 

hybridization and sequencing of chromatin-immunoprecipitated c-Myc-bound DNA 

fragments. 

The complete results of this analysis are presented in Table 5.5.  A total of 4560 

E-box motifs were located within 20kb of each human microRNA promoter.  For each of 

the c-Myc regulated microRNAs E-box motifs were evaluated for binding events within 

100bp by each of the three whole-genome data sources.   Each microRNA with an 

upstream E-box that correlated with a proximal binding event is listed in Table 5.5.  Each 

of these binding-verified motifs was then evaluated for phylogenetic conservation within 

the E-box motif itself and for conserved binding sites of other mammalian transcription 

factors within 100bp.  Finally, the presence of CpG islands was searched for on a range 

suggested by one of the whole-genome binding studies (5kb) [90]. 

 A total of 17 of the regulated microRNAs were shown to have E-boxes with 

proximal binding events.  Of these 17 microRNAs, hsa-let-7c, hsa-mir-152, hsa-mir-22, 

hsa-mir-30e, hsa-mir-148b, hsa-mir-149, hsa-mir-199, and hsa-mir-214 each have two of 

the other three qualities shown common to c-Myc regulated targets.
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Figure 5.17 – Extended E-box Analysis 

E-box motifs located upstream of regulated microRNAs were evaluated for their relative 
probability of acting as true cis-regulatory sequences.  Data sources were gathered to 
correlate genomic motif locations with phylogenetic conservation across higher 
eukaryotes, the presence of CpG islands, conserved cofactor binding motifs, and the 
detection of c-Myc binding in one of three whole-genome binding datasets. 
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Table 5.5 – Extended E-box Analysis Results 

The association of E-boxes in regulated microRNA promoters with information regarding their 
conservation across higher eukaryotes (cons), the proximal location of cofactor binding sites (co), local 
CpG islands (cpg), and whole-genome c-Myc binding events (bind).  Each record presented had a binding 
event within 100bp of E-box location.  Presence of CpG islands was evaluated by a range of 5kb [90].  The 
presence of cofactor motifs was evaluated at a threshold of 100bp.  Conservation was scored specifically 
across the E-box motif (Y=near-complete conservation, P=partial). 
 

class mirna seq chr str start stop bind co cpg cons 
- let-7c CACGTG chr21 + 16827391 16827396 liu_seq    
- let-7c CATGTG chr21 + 16828826 16828831 zeller_pet 14  Y 
- let-7e CATGTG chr19 + 56867959 56867964 zeller_pet    
- let-7e CATGTG chr19 + 56868225 56868230 zeller_pet    
- let-7e CATGTG chr19 + 56868527 56868532 zeller_pet    
A mir-125a CATGTG chr19 + 56868527 56868532 zeller_pet    
A mir-145 CATGTG chr5 + 148779464 148779469 zeller_pet    
A mir-152 CATGTG chr17 - 43480212 43480217 liu_array 3 1 P 
A mir-22 CACGTG chr17 - 1574703 1574708 liu_seq 5 2 Y 
A mir-22 CACGTG chr17 - 1574733 1574738 liu_seq 13 2 Y 
A mir-22 CACGCG chr17 - 1575313 1575318 liu_array 7 2 Y 
A mir-23b CATGTG chr9 + 96881692 96881697 liu_seq    
A mir-30e CATGTG chr1 + 40974711 40974716 zeller_pet 1  P 
A mir-30e CATGTG chr1 + 40984270 40984275 zeller_pet    
A mir-30e CATGTG chr1 + 40988656 40988661 liu_array   P 
B mir-138-1 CATGTG chr3 + 44128096 44128101 zeller_pet   P 
B mir-296 CACGTG chr20 - 56833512 56833517 liu_seq  1 P 
B mir-485 CACGTG chr14 + 100571773 100571778 zeller_pet 1   
B mir-485 CATGTG chr14 + 100574184 100574189 liu_seq    
C mir-148b CACGTG chr12 + 53004895 53004900 zeller_pet 5  P 
C mir-148b CACGTG chr12 + 53007493 53007498 zeller_pet    
C mir-148b CATGTG chr12 + 53010632 53010637 zeller_pet 5  Y 
C mir-148b CATGCG chr12 + 53009502 53009507 zeller_pet    
C mir-148b CACGAG chr12 + 53007471 53007476 zeller_pet    
C mir-148b CACGAG chr12 + 53008195 53008200 zeller_pet    
C mir-148b CACGAG chr12 + 53008402 53008407 zeller_pet    
C mir-149 CACGTG chr2 + 241025111 241025116 zeller_pet  1 P 
C mir-149 CACGCG chr2 + 241039855 241039860 liu_array   P 
C mir-182 CATGTG chr7 - 129212173 129212178 liu_array  2  
C mir-182 CATGTG chr7 - 129212173 129212178 liu_array  2  
C mir-182 CATGTG chr7 - 129214569 129214574 liu_seq  3  
C mir-182 CATGTG chr7 - 129214569 129214574 liu_seq  3  
C mir-199a-1 CACGTG chr19 - 10808213 10808218 liu_array    
C mir-199a-1 CATGTG chr19 - 10795197 10795202 liu_seq    
C mir-199a-1 CATGCG chr19 - 10800823 10800828 liu_seq 4  Y 
C mir-214 CATGCG chr1 - 170384907 170384912 liu_array 1  P 
C mir-502 CACGTG chrX + 49663163 49663168 liu_array   P  
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c-Myc MicroRNA Intermediaries 

Several publications have compiled lists of gene targets thought to be regulated by 

c-Myc [71, 89, 90, 94].  We wished to characterize how many of these c-Myc-regulated 

gene targets might be regulated by microRNA intermediaries.  We reasoned that some 

proportion of our binding-verified cMyc regulated microRNAs was acting upon these 

putative c-Myc gene targets in a manner that fulfilled c-Myc’s regulatory role.  Similar to 

the strategy adopted for the serum stimulation gene target analysis, we used direction-

specific knowledge of microRNA regulation, miRBase-provided predicted gene targets, 

and relevant gene target lists to reduce the regulatory permutations to those concordant 

with experimental results.   

Knowledge of c-Myc gene targets was assembled from two sources.  First, a 

multi-source database of cMyc gene targets was recently published [94].  This database 

has 1737 characterized gene targets but is unable to provide directionality of regulation 

with respect to whether c-Myc is known to activate or repress cataloged gene targets.  For 

this information we utilized a second source of gene target information.  Each of the 

cMyc overexpression and knockdown experiments were profiled for differential 

regulation by both microRNA and mRNA microarrays.  The mRNA arrays provided a 

dataset of cMyc regulated gene targets that retains information pertaining to the 

directionality in which each mRNA was regulated.  With this second data source we were 

able to map between activated microRNAs with predicted gene targets repressed under 

matching biological conditions.  Conversely, we mapped from repressed microRNAs to 

predicted gene targets that were activated. 



 
157 

The analysis was performed in a manner that separated results obtained using the 

previously published gene targets from the more filtered results that utilized gene target 

information produced by our experimentation. 

For both sets of analysis, the total number of binding-verified c-Myc regulated 

microRNAs that were shown to have predicted and c-Myc regulated gene targets was 

relatively small.  Of the microRNAs activated by c-Myc overexpression, hsa-let-7c, hsa-

let-7e, hsa-mir-22, hsa-mir23b, hsa-mir-30e, hsa-mir-125a, hsa-mir-138-1, hsa-mir-145, 

hsa-mir-152, hsa-mir-296, and hsa-mir-485 adhered to this set of criteria.  Of the c-Myc 

repressed microRNAs, hsa-mir-148b, hsa-mir-149, hsa-mir-199a, hsa-mir-182, hsa-mir-

214, and hsa-mir-502 were compliant with the requirements. 

Gene targets were determined by first filtering down to a set of regulated gene 

targets that were both predicted to be regulated by the set of binding-verified and 

regulated microRNAs and were regulated in the appropriate direction relative to known 

microRNA regulation.  This list of gene targets was then filtered against the database of 

curated c-Myc gene targets in order to determine a list of the highest possible confidence. 

These lists are succinct and represent a high-confidence assessment of 

microRNAs likely to be regulated by c-Myc.  We were first interested in this line of 

analysis in order to determine c-Myc gene targets that might be regulated by microRNAs.  

It should be noted, however, that the mapping of microRNA predicted targets to actual 

gene targets filters the list of candidate microRNAs to those that have the regulatory 

potential to act upon mRNA targets known to be concomitantly modulated.  Finally, the 

microRNAs that emerged from this analysis correlate in a near-perfect manner with the 

subset of regulated and binding-verified microRNAs that possessed E-box-proximal 

properties that raised their probability of c-Myc regulatory interaction. 
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Figure 5.18 – cMyc MicroRNA Intermediaries 

Regulated microRNAs that with binding-verified E-box motifs were used to search for 
known c-Myc gene targets whose regulation is likely the result of a microRNA 
intermediary.  Predicted gene targets were mapped for each high-confidence regulated 
microRNA.  These gene targets were filtered against targets regulated by mRNA 
expression profiling of c-Myc modulation and lists of curated c-Myc gene targets.  The 
resulting set of gene targets represents those with a high likelihood of regulation by 
microRNA-mediated c-Myc regulation. 
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Table 5.6 – Regulated Gene Targets of c-Myc Regulated MicroRNAs 

Binding verified regulated microRNAs were mapped to predicted gene targets through use of the miRBase 
Target Database set of predictions.  Predictions were then cross-correlated with direction-specific mRNAs 
differentially regulated by cMyc overexpression.  Finally, the set of gene targets that emerged from this 
process were filtered by a curated database of known c-Myc targets.  The final list provides a set of high-
confidence gene targets known to be regulated by c-Myc and likely regulated by c-Myc activated and 
repressed microRNAs. 
 

Repressed Targets of Activated MicroRNAs Activated Targets of Repressed MicroRNAs 
ABHD6 DNAJC8 NHP2L1 STX8 ANXA4 
ACBD5 DNM2 PABPN1 TACSTD2 ARF4 
ACOT8 DNMT1 PFDN1 TMEM150 BTBD7 
ACOX1 DSG2 PHC2 TMPO C18orf22 
ACPL2 ENO1 PLD3 TNFAIP3 CD55 
ADSSL1 EPS15 PPAP2C TPM2 COL3A1 
AKR1C2 ERH PPARA TPR DNAJC8 
ANXA8 EXOC6 PQLC2 TUBB6 DPM1 
AP3S2 FAF1 PRDX1 UBE2D1 EGFR 
APOBEC1 FBXW2 PRKAG1 UBE2D3 EIF4A1 
APOL1 GAP43 PRMT5 USP39 FN1 
ASPHD2 GATM PSMD14 VEZT GADD45G 
ATG10 GCAT PTPLAD1 VKORC1L1 HDGF 
ATP5F1 GLT8D1 PTPN13 WBSCR22 HES1 
ATP9B GRN PTPN22 WDR37 HIF1A 
BIN2 HDGF PUS1 WDR71 JUNB 
BRCA1 HERC5 PUS7 WISP3 LRP8 
BTBD7 HEXIM1 PYGL WRNIP1 MFAP1 
C18orf22 HIP1R RGL1 ZDHHC7 MRPS7 
C18orf22 HLA-E RHBDD3 ZNF553 MST1 
C18orf51 HMGN1 RIC8A ZNF83 MST1R 
C19orf12 HNMT RIOK1  NIFUN 
C1orf128 HSP90AB1 ROR2  PRDX5 
C2orf30 IFI30 RPL41  PRPSAP1 
C6orf130 IL6R S100A1  PSMD8 
C9orf41 KLHL5 SEC13L1  PUS1 
CAPN6 KLK12 SENP5  RPL13 
CCNB2 LARP5 SERPINA3  RPL31 
CD58 LRP2 SLC31A1  SLC9A3R2 
CEP72 MCM3 SLC35E3  SMG5 
CLASP2 MDK SMG5  SNAPC3 
CLTB MFSD4 SNX14  SUPT16H 
CMTM7 MNS1 SRFBP1  TFDP1 
COPA MORN1 SSX2IP  TPR 
CPXM MRPL52 ST7L  VAMP3 
CWF19L2 MRPS28 STK24  VCAM1 
DCBLD1 MYCN STX17  WDR37 
DHX30 NFXL1 STX7  ZNF193  
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Candidate Cofactors 

 We wished to utilize the knowledge of differentially regulated gene targets to 

determine candidate cofactors likely to cooperatively interact with c-Myc in the 

regulation of microRNA transcription.  The strategy employed is demonstrated in Figure 

5.19.  For each binding-verified regulated microRNA we cataloged the list of conserved 

transcription factor binding sites within its promoter region.  The transcription factors 

represented by these sites were then cross-correlated with transcription factors 

differentially regulated in the mRNA expression profiling experiments. 

 The microRNAs hsa-let-7c, hsa-mir-22, and hsa-mir-148b were each shown to 

have binding sites for the regulated transcription factor Arnt.  The microRNA hsa-mir-

148b was also shown to correlated with STAT1.  Finally, the microRNA hsa-mir-152 

was shown to have a conserved binding site for the regulated factor YY1. 

Each of these microRNAs was part of the subset of binding-verified regulated 

microRNAs that had at least two of the qualities that defined a high probability of c-Myc 

interaction with cis-regulatory sequences.  These included phylogenetic conservation of 

E-boxes, cofactor binding motifs, and the proximal presence of CpG islands.  The YY1 

motif upstream of hsa-mir-152 is 42bp from its partially conserved non-canonical E-box 

motif.  Both are located proximal to a CpG island.  The microRNA hsa-let-7c has a 

perfectly conserved non-canonical E-box that is 8bp from the cofactor Arnt motif.  The 

promoter of hsa-mir-22 contains two perfectly conserved non-canonical E-box motifs 

spaced 30bp apart and proximal to two CpG islands.  These two canonical motifs are 

within 36bp of two separate and conserved Arnt motifs.  Finally, the repressed 

microRNA hsa-mir-148b has a fully conserved non-canonical E-box 136bp from its 

STAT1 motif and a partially conserved non-canonical E-box is 6bp from its Arnt motif.
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Figure 5.19 – Candidate Cofactors 

For each binding-verified regulated microRNA we cataloged the list of conserved 
transcription factor binding sites within its promoter region.  The transcription factors 
represented by these sites were then cross-correlated with transcription factors 
differentially regulated in the mRNA expression profiling experiments to produce a set of 
candidate cofactors likely to interact with c-Myc in the regulation of microRNA targets. 
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Real-Time PCR Validation 

Our analytical process utilized overlapping and increasingly strict sets of 

information to arrive at a filtered set of regulated microRNAs.  Correlation with both 

published literature and previously characterized results are an excellent sign of 

experimental believability but insufficient for final publication.  Publication requires an 

independent experimental assay to probe for and measure the same experimental 

substrate that is being reported in the primary result.  To proactively address this 

requirement we performed several rounds of qPCR to validate the results of selected 

microRNA microarray experiments.   

For these procedures we used Applied Biosystems TaqMan microRNA Assays.  

We specifically selected both reverse transcription primers and qPCR primers/probes for 

hsa-mir-92, hsa-mir-22, and hsa-mir-34a.  Additionally, we selected RPL21 as an 

endogenous loading control RNA for the purpose of ΔCT and ΔΔCT calculations. 

The qPCR results support both the directionality and relative quantity of 

microRNA activation and repression.  Figure 5.20 depicts the candidate set of microRNA 

and experiments combinations that were used for qPCR validation.  For each of these 

experiments hsa-mir-92, hsa-mir-22, and hsa-mir-34a were relatively profiled using 

RPL21 as the endogenous loading control measurement.  The final comparative results 

presented were transformed such that they represent comparable same-sign microRNA 

microarray and qPCR fold-change ratios. 
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Figure 5.20 – Real Time PCR Validation 

Selected microRNAs and experimental samples were subjected to quantitative validation 
through qPCR.  The Applied Biosystems TaqMan MicroRNA Assays were used in 
conjunction with RPL21 as an endogenous loading control to determine ΔCT and ΔΔCT 
calculations.  Results were normalized to same-sign fold-change ratios and are presented 
for each microRNA and experiment combination.  The experimental samples used are the 
same samples that were utilized for both microRNA and mRNA expression profiling. 
 

 microarray qPCR 
HSA-MIR-92 (SS 30) 1.33 1.23 
HSA-MIR-92 (SS 30) 1.33 1.20 
HAS-MIR-92 (myc--) 1.33 1.45 
HSA-MIR-22 (SS 5) 1.35 2.04 
HSA-MIR-22 (SS 30) 1.47 2.86 
HSA-MIR-22 (cell line) 1.69 2.13 
HSA-MIR-34A (SS 30) 1.23 1.59 
HSA-MIR-34A (myc--) 1.08 1.20   
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DISCUSSION 

This study represents a thorough investigation into two dimensions of human 

microRNA regulatory influence: the transcription factor mediated regulation of 

microRNA expression and the aggregate regulatory influence of microRNAs on gene 

targets. The coordinated expression profiling of biologically matched mRNA and 

microRNAs samples under a spectrum of physiological perturbations allowed for cross-

correlative analysis of post-transcriptional microRNA regulation of gene targets as well 

as reciprocal gene-mediated regulation of microRNAs.  Each phase of analysis began 

with significantly long lists of putatively significant microRNAs and transcription factors 

and used processes of cumulative evidence correlation to determine succinct lists of high-

confidence regulators. 

Process Determination 

Many sections of this chapter began with efforts to correlate experimental results 

with literature-based expectations.  These efforts were required to gain confidence in 

what was a relatively new experimental system for the research environment in which 

they were performed.  Each example of correlative substantiation demonstrated that our 

experimental process was capable of fidelity with respect to the capacity to detect and 

report microRNA expression profiles across a spectrum of transcriptional abundance.  

Additionally, the specific detection of hsa-mir-34a regulation under serum stimulation 

provided proof that our assay was capable of significant sensitivity with respect to probe 

and target interactions. 

The data normalization process determination was daunting.  It was not fully 

understood what produced an inability for positive control sequences to reliably 
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communicate experimental bias induced during the many stages of microRNA 

microarray sample preparation and labeling.  Many examples of differential seeding of 

positive control nucleic acid were shown to reliably reproduce artificially induced 

normalization coefficients.  These test experiments, however, were often performed 

independent of cellular samples and did not measure the capacity of the control vehicle to 

account for starting amounts or migration of endogenous microRNAs through the 

experimental process.  In this way, positive control nucleic acids were shown to be more 

than capable of normalizing themselves but rarely capable of normalizing experimental 

samples.  The strongest possible explanation for the inability of positive control 

normalization to directionally or numerically agree with global mean normalization is the 

incorrect assumption that a given mass unit of isolated total RNA has a consistent 

percentage of microRNA.  Each microRNA microarray sample started with 100µg of 

total RNA subjected to size-selection for microRNA enrichment.  There was an implicit 

assumption that within this 100µg of total RNA there was a consistent level of 

microRNA conserved during the process of RNA isolation.   Purification columns were 

specifically avoided in the development of the RNA isolation procedure in an attempt to 

avoid any method that might intrinsically be prone to small-RNA loss.  Nonetheless, 

differential loss of small-RNA from the total RNA population would explain both an 

inability for positive control normalization to operate reliably and the ability of global 

mean normalization to compensate. 

Filtered Term Enrichment 

We wished to understand what proportion of c-Myc’s plethora of characterized 

biological roles is under the regulatory influence of c-Myc-regulated microRNAs.  In 

order to answer this question we analyzed each binding-verified regulated microRNA for 
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GO term enrichment within the pool of its predicted gene targets that overlap with known 

c-Myc targets.  In this manner we hoped to detect microRNAs that regulate gene targets 

that have concise biological roles that are a subcomponent of c-Myc’s regulatory 

influence on cellular proliferation and metabolism.  In the analysis of GO term 

enrichments for microRNA gene target sets that overlap with known c-Myc targets we 

intentionally ignored a large set of enrichments for ontology descriptions similar to cell 

cycle or cellular proliferation.  These enrichments were predicted and found to be quite 

common with respect to the analysis of any subset of c-Myc regulated genes.  

Most microRNAs showed significant enrichment of some kind.  The microRNA 

hsa-mir-30e, for example, was significantly enriched for dna repair, dna damage 

response, and DNA metabolism.  Additionally, there are many enriched annotations for 

stress response components such as heat shock proteins, molecular chaperones, and 

response to unfolded proteins.  These enrichments comprise the vast bulk of all 

significant enrichments for the predicted gene targets of hsa-mir-30e regulated by c-Myc 

transcriptional abundance. Many publications have implicated c-Myc in the repression of 

DNA repair processes and cellular components [95-101].  In this manner hsa-mir-30e 

appears to provide a concise regulatory influence as a regulatory intermediary of c-Myc. 

The microRNA hsa-mir-152 had singular significant enrichment for annotations 

corresponding to apoptosis, cell death, death, regulation of programmed cell death, and 

induction of apoptosis by extracellular signals.  These annotations are related to cellular 

proliferation but were considered significant in this case because of the fact that no other 

cell cycle or related proliferation annotations neared statistical significance. 

We believe that this is another area of analysis in which it is important to note that 

prediction must be filtered by cellular reality.  If it were possible to take microRNAs and 

their pool of predicted gene targets and produce convincing ontological enrichments the 
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research community would be much further in the process of understanding the 

regulatory function and biological roles of human microRNAs.  The limited results we 

obtained from the GO term analysis performed for both serum stimulation and c-Myc 

modulation experiments were only possible because we were able to first experimentally 

produce datasets capable of filtering prediction by measurement. 

Sequence Alignment 

The sets of high-confidence regulated microRNAs produced for both the serum 

stimulation and c-Myc experiment sets were evaluated for mature microRNA sequence 

similarity.  In addition to multiple-alignment of mature sequences, seed regions of 

microRNAs were separately aligned.  The seed region of microRNAs is described as the 

consecutive stretch of 7nt starting from the first or second nucleotide of the 5’ end [102].  

The seed region is considered to be a major component of the regulatory interaction 

between a mature microRNA and the sequence with which it interacts in the 3’ UTR of a 

gene target. 

Given the target-predictive capacity of a microRNA seed region, we were 

interested in whether our pools of regulated microRNAs contained regulatory redundancy 

in the form of multiple microRNAs with matching or extremely similar seed regions.  

Many examples of microRNA sequence alignment were intentionally ignored in this 

analysis.  For example, it is more than expected that several variants of a family of 

microRNAs would co-align (hsa-let-7c, hsa-let-7e).  Several compelling examples 

included hsa-mir99a/b with hsa-mir-100, hsa-mir-23a/b with hsa-mir-130a, hsa-mir-182 

with hsa-mir-96, and hsa-mir-148b and hsa-mir-152. 

The microRNAs hsa-mir-148b and hsa-mir-152 were significant targets in both 

sets of experimentation and have perfectly matching seed regions.  Of interest is the fact 
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that c-Myc overexpression repressed hsa-mir-148b while hsa-mir-152 was activated.  In 

this manner the transcriptional abundance of microRNAs with significant target overlap 

are being simultaneously activated and repressed.  Serum stimulation resulted in the 

activation of both of these microRNAs.  It is possible that microRNAs are both redundant 

and additive with respect to their genomic dispersal and transcription response.  The post-

transcriptional effect of microRNA abundance may not be the pure result of activating or 

repressing a single microRNA.  Alternatively, a unit of regulatory effect may be 

expressed by a specific microRNA (hsa-mir-152) while two units comes not from an 

increase in its transcriptional signal but rather the addition of transcriptional activation of 

a separate microRNA (hsa-mir-148b) with the same set of gene targets.   

MATERIALS AND METHODS 

Cell Culture & Experiments 

Normal Cell Culture Conditions 

HeLa and 2091 fibroblast cells were purchased from ATCC (American Type Culture 

Collection).  Cultures were grown at 37°C in DMEM (Dulbecco's Modified Eagle's 

Medium) supplemented with 10% FBS (Fetal Bovine Serum) and 100 units penicillin-

streptomycin. 

2091 Fibroblast Serum Stimulation 

2091 fibroblast cell cultures were grown under normal cell culture conditions until 40% 

confluent.  Medium was removed and cell cultures were washed 3x with PBS (Phosphate 

Buffered Saline).  Replacement medium was DMEM supplemented with 0.1% FBS and 

100 units penicillin-streptomycin.  Cell cultures were grown at 37°C for 48 hours.  Cell 
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cultures were washed 1x with PBS.  Reference cell cultures were harvested following 

Total RNA Isolation.  Replacement medium was DMEM supplemented with 10% FBS 

and 100 units penicillin-streptomycin.  Separate cell cultures were allowed to proliferate 

under serum-rich conditions for time-points of 5, 10, 20, 30, 60, and 180 minutes.  At the 

end of each of these time points cell cultures were harvested following Total RNA 

Isolation. 

c-Myc Overexpression Lipotransfection 

c-Myc overexpression plasmid was purchased from Open Biosystems. 

Plasmid information: MHS1010-57504, Human MGC Verified FL cDNA (IRAT).  

CloneID=298544,ImageID=2985844,Accession=AW675223.1,Library=NIH_MGC_12,

Vector=pCMV-SPORT6,Host=DH10B. 

GFP co-transfection plasmid was purchased from Clontech. 

Plasmid information: Vector=pEGFP-N1, Accession=U55762. 

HeLa cell cultures were grown under normal cell culture conditions.  6-well plates were 

seeded with 1.5 x 105 cells / well.  Cell cultures were allowed to grow for 24 hours.  Cell 

cultures were transiently lipotransfected with Invitrogen Lipofectamine 2000 according 

to the manufacturer’s protocol (for DNA plasmid transfection).  Cell cultures were grown 

under normal cell culture conditions for 48 hours and then harvested following Total 

RNA Isolation. 

c-Myc siRNA Lipotransfection 

c-Myc-specific siRNA was purchased from Dharmacon. 

siRNA Information: siGENOME SMARTpool deluxe (14), D-003282-14, MYC 

Sense Sequence = AACGUUAGCUUCACCAACAUU 
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Antisense Sequence = 5’- P UGUUGGUGAAGCUAACGUUUU 

siRNA Information: siGENOME SMARTpool deluxe (15), D-003282-15, MYC 

Sense Sequence = GGAACUAUGACCUCGACUAUU 

Antisense Sequence = 5’- P UAGUCGAGGUCAUAGUUCCUU 

siRNA Information: siGENOME SMARTpool deluxe (16), D-003282-16, MYC 

Sense Sequence = GAACACACAACGUCUUGGAUU 

Antisense Sequence = 5’- P UCCAAGACGUUGUGUGUUCUU 

siRNA Information: siGENOME SMARTpool deluxe (17), D-003282-17, MYC 

Sense Sequence = GGACUAUCCUGCUGCCAAGUU 

Antisense Sequence = 5’- P CUUGGCAGCAGGAUAGUCCUU 

Negative control siRNA was purchased from Dharmacon. 

siRNA Information: siCONTROL Non-Targeting siRNA Pool 

5’ – AUGAACGUGAAUUGCUCAA – 3’ 

5’ – UAAGGCUAUGAAGAGAUAC – 3’ 

5’ – AUGUAUUGGCCUGUAUUAG – 3’ 

5’ – UAGCGACUAAACACAUCAA – 3’ 

HeLa cell cultures were grown under normal cell culture conditions.  6-well plates were 

seeded with 1.5 x 105 cells / well.  Cell cultures were allowed to grow for 24 hours.  Cell 

cultures were transiently lipotransfected with Invitrogen Lipofectamine 2000 according 

to the manufacturer’s protocol (for siRNA transfection).  Cell cultures were grown under 

normal cell culture conditions for 48 hours and then harvested following Total RNA 

Isolation. 



 
171 

General DNA Microarray Methods 

Total RNA Isolation 

Invitrogen Trizol Reagent was used according to the manufacturer’s protocol. 

mRNA Expression Microarray Methods 

Reverse Transcription 

Reverse transcription of was performed using a modified Invitrogen Superscript II 

protocol (anchored oligo dT 5µg, total RNA 10µg).  Amino Allyl dUTP was incorporated 

into the reverse transcription reaction for the purpose of Amersham Biosciences Cy Dye 

incorporation.  cDNA was purified using Qiagen MinElute columns according to the 

manufacturer’s protocol. 

cDNA Fluorophore Labeling 

Cy Dye incorporation was performed in the presence of purified cDNA with incorporated 

Amino Allyl dUTP.  Cy Dyes (Cy5, Cy3) were suspended in DMSO and incubated for 60 

minutes.  Labeled cDNA was separated from unincorporated Cy Dyes through 

purification with Qiagen MinElute columns according to the manufacturer’s protocol.  

Microarray Slide Preparation 

DNA Microarray slides were post-processed through rapid immersion and removal from 

0.2 % SDS followed by 55°C incubation in 1%BSA, 5x SSC, 0.1% SDS for 45 minutes.  

Slides were rinsed 5x with MilliQ water and then 1x with isopropanol.  Slides were spun 

dry in a tabletop centrifuge (600 rpm, 3 minutes). 
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Hybridization & Washing 

Hybridization buffer consisted of 50% formamide, 10x SSC, 0.2% SDS. 

Purified and labeled cDNA was combined with 2x hybridization buffer and incubated at 

42°C for 16 hours.  After hybridization slides were washed for 5 minutes in three stages.  

Stage 1 was composed of 2x SSC, 0.1%SDS (5 minutes).  Stage 2 was composed of 1x 

SSC (5 minutes).  Stage 3 was composed of 0.1x SSC (5 minutes).  Slides were spun dry 

in a tabletop centrifuge (600 rpm, 3 minutes). 

MicroRNA Expression Microarray Methods 

Synthesis of Positive Control RNA 

A total of 13 positive control sequences were designed and obtained from IDT. 

T7 TAATACGACTCACTATAGGGAGA 

C-SC-1 ATTATGCTGAGTGATATCCCTCTCTAACGGGTTTTGCGTGAACT 

C-SC-1-RC ATTATGCTGAGTGATATCCCTCTAGTTCACGCAAAACCCGTTAG 

C-SC-2 ATTATGCTGAGTGATATCCCTCTCCGCAGAATGGGTAAAGCTCT 

C-SC-2-RC ATTATGCTGAGTGATATCCCTCTAGAGCTTTACCCATTCTGCGG 

C-SC-3 ATTATGCTGAGTGATATCCCTCTTCTACAGAACACCATACTTTA 

C-SC-3-RC ATTATGCTGAGTGATATCCCTCTTAAAGTATGGTGTTCTGTAGA 

C-SC-4 ATTATGCTGAGTGATATCCCTCTCTGAATTAAACCTTTTGGGTT 

C-SC-4-RC ATTATGCTGAGTGATATCCCTCTAACCCAAAAGGTTTAATTCAG 

MIR16 ATTATGCTGAGTGATATCCCTCTATCGTCGTGCATTTATAACCGC 

MIR16-RC ATTATGCTGAGTGATATCCCTCTGCGGTTATAAATGCACGACGAT 

MYC-1-SENSE 

ATTATGCTGAGTGATATCCCTCTGTAGTAGTAGGTCCTGACAAA 
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MYC-1-ANTISENSE 

ATTATGCTGAGTGATATCCCTCTTGTCAGGACCTACTACTACAA 

Oligos were combined with generic “T7” sequence to provide a double-stranded T7 

promoter.  Ambion MEGAscript T7 was used according to the manufacturer’s protocol to 

produce single-stranded positive control RNA. 

MicroRNA Enrichment, RNA Size Fractionation 

Ambion FlashPAGE Fractionator System, Pre-cast Gels, Buffer Kit, and Clean-Up Kit 

were used according to the manufacturer’s protocol. 

Fluorophore Labeling, Poly-A Method 

Ambion mirVana miRNA Labeling Kit was used according to the manufacturer’s 

protocol. 

Fluorophore Labeling, ULS Method  

Invitrogen ULYSIS 546 Nucleic Acid Labeling Kit was used for the typical Cy3 sample. 

Invitrogen ULYSIS 647 Nucleic Acid Labeling Kit was used for the typical Cy5 sample. 

The kits were used according to the manufacturer’s protocol.  It was determined that ½ 

the recommended dye component could be used with no degradation in signal.  Ambion 

FlashPAGE Clean-Up Kits were used for removal of unincorporated dye according to the 

manufacturer’s protocol. 

Microarray Slide Preparation 

MicroRNA oligonucleotide microarrays were post-processed using a pre-prepared 

solution of 50ml 1M Tris, pH 9.0, 500µl 10% SDS, 300µl ethanolamine (for final 

concentration of 100mM).  Solution was heated to 50°C.  MicroRNA oligonucleotide 
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microarrays were added to solution, sealed.  Solution and slides were incubated for 20 

minutes, agitating every 5 minutes.  Slides were washed with MilliQ water for 1 minute.  

Slides were spun dry in a tabletop centrifuge (600 rpm, 3 minutes). 

Hybridization & Washing 

MicroRNA oligonucleotide microarrays were hybridized by combining 10µl purified and 

ULS-labeled microRNA samples with 20µl Ambion 3x Buffer.  Microarrays were 

incubated at 42°C for 16 hours.  After hybridization slides were washed for 1 minute in 

three stages.  Stage 1 was composed of 2x SSC, 0.1%SDS (1 minute).  Stage 2 was 

composed of 1x SSC (1 minute).  Stage 3 was composed of 0.1x SSC (1 minute).  Slides 

were spun dry in a tabletop centrifuge (600 rpm, 3 minutes). 
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Chapter 6: Conclusions and Recommendations 

BIOINFORMATIC INFRASTRUCTURE 

DNA microarrays have transitioned from a novel research commodity to a 

widespread assay capable of screening for a variety of molecular phenomena.  Whole- 

genome expression profiling began with microarrays spotted with large PCR products 

capable of measuring the two-channel relative abundance of mRNAs homologous to 

cloned ESTSs, ORFs, and known genes. Production of microarrays now commonly 

involves the spotting of DNA oligonucleotides or methods such as chemical and ultra- 

violet lithography.  Each of these technologies has increased the resolution of the assay 

and introduced new experimental capacity.  DNA microarray experiments now include 

the profiling of high-resolution DNA-protein interactions, exon-specific splice-form 

variants, DNA copy number abnormalities, single nucleotide polymorphisms (SNPs), and 

regulatory chromatin modification events such as histone methylation, acetylation, 

phosphorylation and ubiquitination [103-108].  While the capacity of the assay has 

increased, the process by which biological meaning is elucidated from raw spot 

measurements has remained difficult and error-prone. 

This difficulty and relatively high error rate is a serious problem.  The average 

biologist spends such a significant amount of their time handling the manual aggregation 

of genome resources, curated gene annotations, and analytical toolsets that they easily 

forget the business that they are truly in; the study and understanding of biology.  This 

problem is only accelerating as high-throughput methodologies begin to scale to even 

larger resulting datasets.  The emerging dominance of affordable high-throughput 

sequencing and high-resolution whole-genome tiling microarrays will only increase the 
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relative noise produced by experiments executed on these platforms.  Finding the signal 

within that noise will become more difficult with this increase in scale. 

The analytical insights that were achieved in Chapter 4 (A Functional 

Transcriptional Regulatory Network) are representative of what is possible when more 

time is spent defining and answering biological questions than struggling with 

technology.  For each result presented, there were at least three other large-scale 

questions that were asked, answered, and then set aside.  This was possible because we 

had developed both a robust data model and a set of genome resources and analytical 

toolsets that could rapidly interact with it.  The consistent use of directed weighted 

graphs, the use of a repeatable pipeline of analytical procedures, and the availability of a 

programmatic API by which updated genome resources could be interacted with greatly 

shortened the cycle of think, ask, test, and answer.  That is truly the business of the 

biologist – think, ask, test, answer.  Think, ask, test, and answer. 

The toolsets and technologies presented in Chapter 3, however, represent only a 

temporary reprieve for the experimental biologists at work in the field of functional 

genomics.  The Longhorn Array Database and ArrayPlex are tools of the status quo.  

They have great capacity to handle the common bioinformatic problems of today.  They 

too, however, are unprepared for tomorrow.  Computational biologists need to begin the 

process of leading the reorganization and standardization of the vast data resources and 

toolsets that will be central to the next generation of experimental methods, analytical 

questions, and resulting sets of answers.  Standards such as MIAME and MAGE should 

not be proposed, published, supported, and then somewhat forgotten when they become 

uninteresting or seem untenable.  Experimental biologists would certainly be the 

beneficiaries but will not be the champions of these technological causes.  Their loyalties, 

understandably, are to results, grants, thinking, asking, testing, and answering.  This is as 
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it should be.  This is the business of experimental biology.  The business, however, of 

bioinformatics and computational biology is one of both providing analytical 

empowerment now and preparing for that capacity in the future.  The coming emergence 

of the next generation of high-throughput experimental technologies and results demands 

more attention is paid to the universal portability of gene and protein identifiers, genome 

sequence revisions, hierarchical and organism-independent ontology identifiers, and the 

ability for analytical toolsets to portably share input and output analytical connections in 

more productive, functional ways. 

MICRORNA TRANSCRIPTIONAL ABUNDANCE 

The computational prediction of microRNA targets is necessary to even begin the 

process of mechanistic in vivo validation.  Most human microRNAs, however, have more 

than 1000 predicted gene targets [62, 69, 109].  These regulatory predictions must be 

functionally supplemented with experimental characterization in order to have any hope 

of obtaining regulatory signal from the omnipresent noise.  The regulatory analysis and 

predictions performed for Chapter 5 of this study were sensitive to the directionality of 

microRNAs and gene targets because experimental design allowed us to characterize the 

cellular behavior of both regulator and target under matching physiological conditions.  

In this manner we were able to take the relatively weak regulatory signal of putative 

prediction and strengthen it through measured activation of microRNA and concomitant 

repression of target.  Similarly, we were able to take the unconvincing presence of 

upstream transcription factor motifs and strengthen it through measured activation of 

transcription factor and microRNA transcriptional response. 

Both the serum stimulation and c-Myc modulation experiments demonstrated 

capacity for regulatory motif depletion in promoter regions.  The serum stimulation 
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experiments showed that sequence motifs for transcription factors activated by serum 

stimulation were significantly depleted from promoter regions of microRNAs that were 

repressed under the same conditions.  In a similar manner, the non-canonical E-box 

variant (CATGTG) was 75% depleted in the set of microRNAs activated by serum 

stimulation.  The c-Myc experiments demonstrate very similar results with respect to the 

depletion of this non-canonical variant.  MicroRNAs activated by c-Myc overexpression 

were specifically depleted for this motif while repressed microRNAs showed significant 

over-occurrence.  It is known that sequence motif gain and loss is a major component of 

the evolutionary elasticity of microRNA-mediated regulation on gene targets [110].  The 

results here show that similar evolutionary gain and loss may be in effect to either 

accentuate or prevent the transcriptional activation of microRNAs under certain cellular 

conditions. 

Further research is needed to accelerate the characterization of microRNA 

transcriptional regulation.  The elucidation of transcription factor mediated regulation on 

gene targets has been a challenging process that will continue to provide many research 

opportunities for decades to come.  The continued emergence of new principles such as 

the histone code will forever keep complacency in check with respect to the battle of 

high-throughput molecular biology experiments vs. the outstanding complexity of 

mammalian transcriptional regulation [111].  More understanding is needed of the basic 

nature of microRNA primary transcript maturation.  Very few microRNAs have mapped 

transcriptional start sites.  Polycistronic clusters of microRNAs are often predicted but 

still not characterized.  The very definition of microRNA core promoters and enhancers is 

still at its relative infancy when compared to the relative information compiled for 

protein-coding gene transcription. 
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Finally, the biogenesis of microRNAs is not simply confined to transcriptional 

activation and repression.  Recent studies have demonstrated that non-transcriptional 

nuclear and cytoplasmic factors may play significant roles in the sequestration or 

availability of mature microRNA sequences [68, 112-114].  The results of our serum 

stimulation experiments were interesting in this regard.  A significant subset of the 

microRNAs regulated by serum stimulation was also regulated by c-Myc modulation.  

This was not a surprise as c-Myc is activated by serum stimulation.  What was surprising 

and not fully understood was the temporal speed by which many of the microRNAs were 

both activated and repressed.  The first time-point in the serum stimulation experiments 

was 5 minutes.  Many microRNAs were regulated within this period and one was 

validated with qPCR. This time frame, however, likely precedes the transcriptional 

activation of c-Myc itself.  The biogenesis mechanisms that allow this rapid maturation of 

microRNA need further investigation in order to truly begin to understand the nature of 

microRNA regulation.
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Appendix I – ArrayPlex Client Feature Set 

 

The ArrayPlex Client operates on Apple Mac OS X, Microsoft Windows (XP/Vista), and 

all distributions of the Linux operating systems. 

 

AI-1 – ArrayPlex Server Launch Screen 
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AI-2 – ArrayPlex Client Authentication 

 

 

AI-3 – ArrayPlex Client Longhorn Array Database Authentication 
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AI-4 – ArrayPlex Client Dataset Management 

 

 

AI-5 – ArrayPlex Client Dataset Display 

 



183 

 

 

AI-6 – ArrayPlex Client Hierarchical Clustering 

 

 

AI-7 – ArrayPlex Client Hierarchical Clustering (RG Color-Blind Mode) 
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AI-8 – ArrayPlex Client GO Ontology Enrichment Analysis 

 

 

AI-9 – ArrayPlex Client GO Ontology Enrichment Documentation 
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AI-10 – ArrayPlex Client Replicate Experiment Processing 

 

 

AI-11 – ArrayPlex Client Saccharomyces cerevisiae Genome Mapping 

 



186 

 

 

AI-12 – ArrayPlex Client Authentication Genome Sequence Retrieval 

 

 

AI-13 – ArrayPlex Client BLAST 

 



187 

 

 

AI-14 – ArrayPlex Client Authentication Sequence Motif Search 

 

 

AI-15 – ArrayPlex Client Authentication Sequence Motif Discovery 
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AI-16 – ArrayPlex Client Sequence Alignment 

 

 

AI-17 – ArrayPlex Client GenePix Pro Results Normalization 
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AI-18 – ArrayPlex Client Batch MA Plotting (75 GPR Files) 

 

 

AI-19 – ArrayPlex Client Batch MA Plotting Results 
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AI-20 – ArrayPlex Client GenePix Pro Results Histogram Plotting 

 

 

AI-21 – ArrayPlex Client GenePix Pro Results File Group Analysis 
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Appendix II – GO Slim Term Enrichment 
TF Systematic  TF Symbol GO ID P Value Term 
YBL052C SAS3 GO:0008372 3.29E-04 cellular component unknown 
YBL052C SAS3 GO:0000004 8.66E-04 biological process unknown 
YBL103C RTG3 GO:0005618 9.54E-05 cell wall 
YBR033W  GO:0006519 2.92E-07 amino acid and derivative metabolism 
YBR049C REB1 GO:0005840 2.79E-17 ribosome 
YBR049C REB1 GO:0007582 1.92E-15 physiological process 
YBR049C REB1 GO:0006519 2.06E-08 amino acid and derivative metabolism 
YBR049C REB1 GO:0005198 9.87E-08 structural molecule activity 
YBR049C REB1 GO:0008152 2.18E-06 metabolism 
YBR049C REB1 GO:0006412 2.45E-06 protein biosynthesis 
YBR049C REB1 GO:0043232 9.56E-06 intracellular non-membrane-bound organelle 
YBR049C REB1 GO:0006950 2.71E-05 response to stress 
YBR049C REB1 GO:0043170 1.57E-04 macromolecule metabolism 
YBR049C REB1 GO:0005618 9.50E-04 cell wall 
YBR103W SIF2 GO:0004386 5.67E-04 helicase activity 
YBR182C SMP1 GO:0006810 7.97E-04 transport 
YBR240C THI2 GO:0005840 3.17E-04 ribosome 
YBR289W SNF5 GO:0007582 4.34E-10 physiological process 
YBR289W SNF5 GO:0016829 1.61E-09 lyase activity 
YBR289W SNF5 GO:0006519 2.06E-09 amino acid and derivative metabolism 
YBR289W SNF5 GO:0005886 2.82E-07 plasma membrane 
YBR289W SNF5 GO:0006091 4.21E-05 generation of precursor metabolites and energy 
YBR289W SNF5 GO:0005618 6.13E-05 cell wall 
YBR289W SNF5 GO:0008152 1.69E-04 metabolism 
YBR289W SNF5 GO:0016491 8.30E-04 oxidoreductase activity 
YCL055W KAR4 GO:0000746 9.36E-04 conjugation 
YCR081W SRB8 GO:0005618 9.02E-07 cell wall 
YCR081W SRB8 GO:0006950 6.42E-05 response to stress 
YCR084C TUP1 GO:0005618 3.40E-07 cell wall 
YCR084C TUP1 GO:0007582 4.69E-06 physiological process 
YCR084C TUP1 GO:0016491 1.62E-05 oxidoreductase activity 
YCR084C TUP1 GO:0016829 3.13E-05 lyase activity 
YCR106W RDS1 GO:0006950 4.11E-04 response to stress 
YDL020C RPN4 GO:0005886 1.84E-05 plasma membrane 
YDL020C RPN4 GO:0000746 1.24E-04 conjugation 
YDL020C RPN4 GO:0008233 1.64E-04 peptidase activity 
YDL020C RPN4 GO:0005618 2.54E-04 cell wall 
YDL020C RPN4 GO:0006950 3.51E-04 response to stress 
YDL042C SIR2 GO:0005840 1.72E-09 ribosome 
YDL042C SIR2 GO:0005198 1.31E-06 structural molecule activity 
YDL042C SIR2 GO:0000746 9.36E-06 conjugation 
YDL106C PHO2 GO:0003824 1.92E-05 catalytic activity 
YDL106C PHO2 GO:0005773 1.52E-04 vacuole 
YDR073W SNF11 GO:0005618 4.99E-05 cell wall 
YDR146C SWI5 GO:0005576 3.42E-04 extracellular region 
YDR176W NGG1 GO:0006950 1.21E-04 response to stress 
YDR176W NGG1 GO:0016787 8.40E-04 hydrolase activity 
YDR181C SAS4 GO:0008372 3.57E-06 cellular component unknown 
YDR181C SAS4 GO:0006766 2.48E-04 vitamin metabolism 
YDR207C UME6 GO:0007126 6.97E-08 meiosis 
YDR207C UME6 GO:0006519 4.57E-05 amino acid and derivative metabolism 
YDR207C UME6 GO:0016491 2.65E-04 oxidoreductase activity 
YDR259C YAP6 GO:0005618 4.40E-04 cell wall 
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YDR310C SUM1 GO:0030435 2.35E-12 sporulation 
YDR310C SUM1 GO:0005618 1.11E-10 cell wall 
YDR310C SUM1 GO:0005554 3.36E-05 molecular function unknown 
YDR310C SUM1 GO:0008372 5.34E-05 cellular component unknown 
YDR310C SUM1 GO:0000004 3.58E-04 biological process unknown 
YDR310C SUM1 GO:0006766 5.53E-04 vitamin metabolism 
YDR363W ESC2 GO:0006950 6.42E-05 response to stress 
YDR392W SPT3 GO:0006519 3.36E-06 amino acid and derivative metabolism 
YDR392W SPT3 GO:0016491 4.99E-06 oxidoreductase activity 
YDR392W SPT3 GO:0005576 2.67E-05 extracellular region 
YDR392W SPT3 GO:0016829 8.62E-04 lyase activity 
YDR392W SPT3 GO:0003824 9.13E-04 catalytic activity 
YDR443C SSN2 GO:0006950 3.57E-05 response to stress 
YDR443C SSN2 GO:0005618 2.27E-04 cell wall 
YDR448W ADA2 GO:0005618 5.44E-05 cell wall 
YDR463W STP1 GO:0005618 6.72E-06 cell wall 
YDR463W STP1 GO:0006519 2.83E-04 amino acid and derivative metabolism 
YDR463W STP1 GO:0006810 4.82E-04 transport 
YDR463W STP1 GO:0005886 5.77E-04 plasma membrane 
YDR477W SNF1 GO:0005886 3.17E-04 plasma membrane 
YDR477W SNF1 GO:0005215 3.33E-04 transporter activity 
YDR520C  GO:0005886 5.71E-04 plasma membrane 
YEL009C GCN4 GO:0006950 6.04E-04 response to stress 
YER040W GLN3 GO:0007582 2.87E-19 physiological process 
YER040W GLN3 GO:0008152 8.56E-15 metabolism 
YER040W GLN3 GO:0016491 2.10E-04 oxidoreductase activity 
YER040W GLN3 GO:0006519 9.21E-04 amino acid and derivative metabolism 
YER045C ACA1 GO:0000746 8.12E-04 conjugation 
YER109C FLO8 GO:0006950 5.99E-05 response to stress 
YER109C FLO8 GO:0005618 3.08E-04 cell wall 
YER111C SWI4 GO:0005618 4.12E-08 cell wall 
YER111C SWI4 GO:0007047 6.25E-04 cell wall organization and biogenesis 
YER111C SWI4 GO:0005576 8.84E-04 extracellular region 
YER130C  GO:0006950 4.11E-04 response to stress 
YER169W RPH1 GO:0005618 9.98E-05 cell wall 
YER184C  GO:0006091 3.94E-04 generation of precursor metabolites and energy 
YFL031W HAC1 GO:0006810 4.80E-04 transport 
YFR034C PHO4 GO:0005618 3.41E-06 cell wall 
YGL025C PGD1 GO:0006950 1.10E-04 response to stress 
YGL071W RCS1 GO:0005618 4.78E-06 cell wall 
YGL071W RCS1 GO:0016491 7.89E-06 oxidoreductase activity 
YGL071W RCS1 GO:0006950 3.83E-05 response to stress 
YGL073W HSF1 GO:0005840 3.18E-84 ribosome 
YGL073W HSF1 GO:0007582 1.87E-63 physiological process 
YGL073W HSF1 GO:0005198 3.92E-41 structural molecule activity 
YGL073W HSF1 GO:0043232 1.04E-35 intracellular non-membrane-bound organelle 
YGL073W HSF1 GO:0006412 5.32E-31 protein biosynthesis 
YGL073W HSF1 GO:0008152 9.01E-25 metabolism 
YGL073W HSF1 GO:0043170 3.98E-17 macromolecule metabolism 
YGL073W HSF1 GO:0005622 2.71E-15 intracellular 
YGL073W HSF1 GO:0044267 3.24E-15 cellular protein metabolism 
YGL073W HSF1 GO:0019538 7.61E-15 protein metabolism 
YGL073W HSF1 GO:0044238 8.97E-08 primary metabolism 
YGL073W HSF1 GO:0005618 1.88E-06 cell wall 
YGL073W HSF1 GO:0006519 3.40E-05 amino acid and derivative metabolism 
YGL073W HSF1 GO:0005576 5.34E-05 extracellular region 
YGL073W HSF1 GO:0005623 1.07E-04 cell 
YGL073W HSF1 GO:0006091 2.08E-04 generation of precursor metabolites and energy 
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YGL151W NUT1 GO:0004386 5.79E-06 helicase activity 
YGL151W NUT1 GO:0005618 8.37E-05 cell wall 
YGL166W CUP2 GO:0006950 9.05E-04 response to stress 
YGL237C HAP2 GO:0005618 1.72E-05 cell wall 
YGL237C HAP2 GO:0000910 4.55E-04 cytokinesis 
YGR056W RSC1 GO:0005618 1.82E-04 cell wall 
YGR063C SPT4 GO:0004386 4.45E-04 helicase activity 
YHL020C OPI1 GO:0006629 8.01E-07 lipid metabolism 
YHL020C OPI1 GO:0003824 5.20E-04 catalytic activity 
YHL020C OPI1 GO:0016740 5.31E-04 transferase activity 
YHL025W SNF6 GO:0007582 5.21E-26 physiological process 
YHL025W SNF6 GO:0005840 8.38E-10 ribosome 
YHL025W SNF6 GO:0008152 7.42E-09 metabolism 
YHL025W SNF6 GO:0005618 1.41E-08 cell wall 
YHL025W SNF6 GO:0016829 8.65E-08 lyase activity 
YHL025W SNF6 GO:0006091 2.19E-07 generation of precursor metabolites and energy 
YHL025W SNF6 GO:0006519 9.93E-07 amino acid and derivative metabolism 
YHL025W SNF6 GO:0045182 5.69E-06 translation regulator activity 
YHL025W SNF6 GO:0005623 9.69E-06 cell 
YHL025W SNF6 GO:0005622 2.66E-05 intracellular 
YHL025W SNF6 GO:0004386 1.33E-04 helicase activity 
YHL025W SNF6 GO:0043232 1.62E-04 intracellular non-membrane-bound organelle 
YHL025W SNF6 GO:0005975 5.10E-04 carbohydrate metabolism 
YHL025W SNF6 GO:0016740 5.70E-04 transferase activity 
YHL025W SNF6 GO:0016874 6.50E-04 ligase activity 
YHL025W SNF6 GO:0042254 6.91E-04 ribosome biogenesis and assembly 
YHL027W RIM101 GO:0005215 1.00E-04 transporter activity 
YHL027W RIM101 GO:0006810 1.28E-04 transport 
YHL027W RIM101 GO:0005886 2.25E-04 plasma membrane 
YHL027W RIM101 GO:0005618 3.95E-04 cell wall 
YHR041C SRB2 GO:0005618 7.61E-05 cell wall 
YIL036W CST6 GO:0005840 8.84E-80 ribosome 
YIL036W CST6 GO:0007582 4.34E-68 physiological process 
YIL036W CST6 GO:0043232 1.75E-31 intracellular non-membrane-bound organelle 
YIL036W CST6 GO:0008152 2.50E-26 metabolism 
YIL036W CST6 GO:0005198 1.01E-25 structural molecule activity 
YIL036W CST6 GO:0006412 9.70E-24 protein biosynthesis 
YIL036W CST6 GO:0043170 1.73E-16 macromolecule metabolism 
YIL036W CST6 GO:0005622 5.64E-16 intracellular 
YIL036W CST6 GO:0044267 1.01E-12 cellular protein metabolism 
YIL036W CST6 GO:0019538 1.06E-12 protein metabolism 
YIL036W CST6 GO:0006091 1.35E-09 generation of precursor metabolites and energy 
YIL036W CST6 GO:0005623 7.11E-07 cell 
YIL036W CST6 GO:0005975 3.80E-06 carbohydrate metabolism 
YIL036W CST6 GO:0045182 6.71E-06 translation regulator activity 
YIL036W CST6 GO:0016740 1.29E-05 transferase activity 
YIL036W CST6 GO:0006519 1.60E-05 amino acid and derivative metabolism 
YIL036W CST6 GO:0044238 3.28E-05 primary metabolism 
YIL036W CST6 GO:0016874 5.90E-05 ligase activity 
YIL036W CST6 GO:0016491 2.62E-04 oxidoreductase activity 
YIL036W CST6 GO:0016829 6.39E-04 lyase activity 
YIL036W CST6 GO:0005618 6.75E-04 cell wall 
YIL036W CST6 GO:0005737 8.62E-04 cytoplasm 
YIL084C SDS3 GO:0000746 5.71E-06 conjugation 
YIL084C SDS3 GO:0005618 1.54E-04 cell wall 
YIR033W MGA2 GO:0006950 5.57E-11 response to stress 
YIR033W MGA2 GO:0016491 1.24E-09 oxidoreductase activity 
YIR033W MGA2 GO:0005618 3.99E-05 cell wall 
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YIR033W MGA2 GO:0005576 8.66E-04 extracellular region 
YJL056C ZAP1 GO:0005886 5.88E-05 plasma membrane 
YJL110C GZF3 GO:0005886 6.73E-05 plasma membrane 
YJL110C GZF3 GO:0005215 5.50E-04 transporter activity 
YJL127C SPT10 GO:0005840 9.67E-93 ribosome 
YJL127C SPT10 GO:0005198 8.64E-44 structural molecule activity 
YJL127C SPT10 GO:0043232 9.95E-43 intracellular non-membrane-bound organelle 
YJL127C SPT10 GO:0006412 1.93E-37 protein biosynthesis 
YJL127C SPT10 GO:0007582 4.01E-35 physiological process 
YJL127C SPT10 GO:0044267 5.59E-19 cellular protein metabolism 
YJL127C SPT10 GO:0019538 1.26E-18 protein metabolism 
YJL127C SPT10 GO:0043170 4.04E-16 macromolecule metabolism 
YJL127C SPT10 GO:0005622 2.20E-15 intracellular 
YJL127C SPT10 GO:0008152 3.01E-13 metabolism 
YJL127C SPT10 GO:0045182 2.65E-05 translation regulator activity 
YJL127C SPT10 GO:0044238 2.46E-04 primary metabolism 
YJL176C SWI3 GO:0007582 1.09E-09 physiological process 
YJL176C SWI3 GO:0016491 1.07E-05 oxidoreductase activity 
YJL176C SWI3 GO:0006519 1.67E-05 amino acid and derivative metabolism 
YJL176C SWI3 GO:0005886 2.33E-05 plasma membrane 
YJL176C SWI3 GO:0045182 5.66E-05 translation regulator activity 
YJL176C SWI3 GO:0005618 7.50E-05 cell wall 
YJL176C SWI3 GO:0016829 1.90E-04 lyase activity 
YJL176C SWI3 GO:0016874 5.18E-04 ligase activity 
YJR060W CBF1 GO:0006950 1.52E-07 response to stress 
YJR060W CBF1 GO:0005618 6.20E-06 cell wall 
YJR060W CBF1 GO:0016829 1.44E-04 lyase activity 
YJR060W CBF1 GO:0005886 7.80E-04 plasma membrane 
YKL015W PUT3 GO:0006519 1.90E-04 amino acid and derivative metabolism 
YKL032C IXR1 GO:0005576 2.52E-04 extracellular region 
YKL038W RGT1 GO:0000746 2.52E-05 conjugation 
YKL038W RGT1 GO:0007165 7.07E-05 signal transduction 
YKL038W RGT1 GO:0005576 1.45E-04 extracellular region 
YKL043W PHD1 GO:0000746 3.98E-05 conjugation 
YKL043W PHD1 GO:0007165 1.11E-04 signal transduction 
YKL043W PHD1 GO:0005576 1.95E-04 extracellular region 
YKL109W HAP4 GO:0005576 1.77E-04 extracellular region 
YKL112W ABF1 GO:0016491 6.64E-05 oxidoreductase activity 
YKR099W BAS1 GO:0006519 4.64E-08 amino acid and derivative metabolism 
YKR099W BAS1 GO:0003824 7.46E-07 catalytic activity 
YKR099W BAS1 GO:0016491 3.55E-06 oxidoreductase activity 
YKR099W BAS1 GO:0005622 5.00E-04 intracellular 
YKR101W SIR1 GO:0005576 2.33E-04 extracellular region 
YLR013W GAT3 GO:0006091 7.27E-04 generation of precursor metabolites and energy 
YLR039C RIC1 GO:0005618 2.30E-05 cell wall 
YLR039C RIC1 GO:0006950 6.75E-05 response to stress 
YLR039C RIC1 GO:0016829 4.17E-04 lyase activity 
YLR039C RIC1 GO:0007582 7.22E-04 physiological process 
YLR131C ACE2 GO:0005576 3.03E-06 extracellular region 
YLR131C ACE2 GO:0005618 4.28E-05 cell wall 
YLR266C PDR8 GO:0005886 9.51E-04 plasma membrane 
YLR357W RSC2 GO:0006519 4.42E-04 amino acid and derivative metabolism 
YLR357W RSC2 GO:0007582 4.48E-04 physiological process 
YLR357W RSC2 GO:0008152 5.25E-04 metabolism 
YLR403W SFP1 GO:0005840 1.01E-90 ribosome 
YLR403W SFP1 GO:0007582 8.79E-51 physiological process 
YLR403W SFP1 GO:0043232 2.47E-36 intracellular non-membrane-bound organelle 
YLR403W SFP1 GO:0005198 9.71E-36 structural molecule activity 
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YLR403W SFP1 GO:0006412 5.03E-31 protein biosynthesis 
YLR403W SFP1 GO:0008152 2.11E-20 metabolism 
YLR403W SFP1 GO:0043170 8.42E-16 macromolecule metabolism 
YLR403W SFP1 GO:0044267 1.01E-15 cellular protein metabolism 
YLR403W SFP1 GO:0019538 8.90E-15 protein metabolism 
YLR403W SFP1 GO:0005622 4.83E-13 intracellular 
YLR403W SFP1 GO:0045182 3.02E-07 translation regulator activity 
YLR403W SFP1 GO:0005623 5.17E-06 cell 
YLR403W SFP1 GO:0006091 8.12E-06 generation of precursor metabolites and energy 
YLR403W SFP1 GO:0042254 3.68E-05 ribosome biogenesis and assembly 
YLR403W SFP1 GO:0016829 5.55E-05 lyase activity 
YLR403W SFP1 GO:0006519 6.86E-05 amino acid and derivative metabolism 
YLR403W SFP1 GO:0044238 1.09E-04 primary metabolism 
YLR418C CDC73 GO:0000746 9.94E-07 conjugation 
YLR418C CDC73 GO:0005618 3.25E-05 cell wall 
YLR418C CDC73 GO:0005576 8.46E-05 extracellular region 
YLR418C CDC73 GO:0016491 9.28E-05 oxidoreductase activity 
YLR418C CDC73 GO:0004386 5.05E-04 helicase activity 
YLR418C CDC73 GO:0006766 5.06E-04 vitamin metabolism 
YLR418C CDC73 GO:0000004 5.23E-04 biological process unknown 
YLR442C SIR3 GO:0000746 6.31E-07 conjugation 
YLR442C SIR3 GO:0005618 4.58E-04 cell wall 
YLR442C SIR3 GO:0007165 9.45E-04 signal transduction 
YLR451W LEU3 GO:0006519 4.56E-09 amino acid and derivative metabolism 
YML007W YAP1 GO:0006950 1.32E-06 response to stress 
YML007W YAP1 GO:0016491 7.43E-04 oxidoreductase activity 
YML051W GAL80 GO:0005975 1.68E-05 carbohydrate metabolism 
YML081W  GO:0005618 8.37E-05 cell wall 
YML099C ARG81 GO:0006519 6.71E-05 amino acid and derivative metabolism 
YML102W CAC2 GO:0006766 2.89E-06 vitamin metabolism 
YML102W CAC2 GO:0016491 7.46E-04 oxidoreductase activity 
YMR016C SOK2 GO:0005886 9.11E-04 plasma membrane 
YMR037C MSN2 GO:0006950 7.59E-06 response to stress 
YMR037C MSN2 GO:0005576 7.89E-04 extracellular region 
YMR042W ARG80 GO:0006519 1.80E-05 amino acid and derivative metabolism 
YMR043W MCM1 GO:0007582 4.37E-18 physiological process 
YMR043W MCM1 GO:0006091 6.08E-09 generation of precursor metabolites and energy 
YMR043W MCM1 GO:0008152 2.64E-08 metabolism 
YMR043W MCM1 GO:0005623 5.21E-08 cell 
YMR043W MCM1 GO:0016491 1.95E-07 oxidoreductase activity 
YMR043W MCM1 GO:0016829 7.64E-04 lyase activity 
YMR043W MCM1 GO:0005618 8.74E-04 cell wall 
YMR070W MOT3 GO:0005618 5.34E-10 cell wall 
YMR164C MSS11 GO:0005886 8.89E-04 plasma membrane 
YMR182C RGM1 GO:0005618 9.89E-05 cell wall 
YMR182C RGM1 GO:0006950 5.48E-04 response to stress 
YNL021W HDA1 GO:0005618 4.59E-06 cell wall 
YNL097C PHO23 GO:0006950 2.53E-08 response to stress 
YNL097C PHO23 GO:0016787 1.33E-05 hydrolase activity 
YNL199C GCR2 GO:0005975 4.35E-15 carbohydrate metabolism 
YNL199C GCR2 GO:0006091 3.58E-13 generation of precursor metabolites and energy 
YNL199C GCR2 GO:0016829 1.06E-06 lyase activity 
YNL199C GCR2 GO:0003824 1.91E-05 catalytic activity 
YNL216W RAP1 GO:0005840 2.59E-87 ribosome 
YNL216W RAP1 GO:0005198 4.37E-41 structural molecule activity 
YNL216W RAP1 GO:0043232 5.52E-32 intracellular non-membrane-bound organelle 
YNL216W RAP1 GO:0006412 2.42E-25 protein biosynthesis 
YNL216W RAP1 GO:0005622 2.33E-14 intracellular 
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YNL216W RAP1 GO:0044267 8.61E-12 cellular protein metabolism 
YNL216W RAP1 GO:0006519 5.27E-10 amino acid and derivative metabolism 
YNL216W RAP1 GO:0006091 5.43E-10 generation of precursor metabolites and energy 
YNL216W RAP1 GO:0016491 8.70E-09 oxidoreductase activity 
YNL216W RAP1 GO:0005975 1.79E-06 carbohydrate metabolism 
YNL216W RAP1 GO:0016740 9.29E-05 transferase activity 
YNL216W RAP1 GO:0016829 1.60E-04 lyase activity 
YNL216W RAP1 GO:0005623 2.72E-04 cell 
YNL216W RAP1 GO:0005576 2.73E-04 extracellular region 
YNL216W RAP1 GO:0005618 6.14E-04 cell wall 
YNL236W SIN4 GO:0007582 2.81E-20 physiological process 
YNL236W SIN4 GO:0006091 9.92E-10 generation of precursor metabolites and energy 
YNL236W SIN4 GO:0016829 1.52E-08 lyase activity 
YNL236W SIN4 GO:0008152 1.46E-07 metabolism 
YNL236W SIN4 GO:0006519 7.53E-07 amino acid and derivative metabolism 
YNL236W SIN4 GO:0005618 3.43E-06 cell wall 
YNL236W SIN4 GO:0016491 9.33E-06 oxidoreductase activity 
YNL236W SIN4 GO:0005840 1.62E-04 ribosome 
YNL236W SIN4 GO:0045182 1.98E-04 translation regulator activity 
YNL236W SIN4 GO:0016874 6.71E-04 ligase activity 
YNL309W STB1 GO:0006810 8.05E-05 transport 
YNL309W STB1 GO:0005618 1.32E-04 cell wall 
YNR010W CSE2 GO:0005618 1.46E-04 cell wall 
YOL004W SIN3 GO:0005840 8.56E-09 ribosome 
YOL004W SIN3 GO:0005618 4.48E-05 cell wall 
YOL004W SIN3 GO:0007582 5.35E-05 physiological process 
YOL004W SIN3 GO:0005576 6.51E-05 extracellular region 
YOL004W SIN3 GO:0006519 9.10E-04 amino acid and derivative metabolism 
YOL068C HST1 GO:0006766 1.36E-05 vitamin metabolism 
YOL068C HST1 GO:0030435 6.25E-04 sporulation 
YOL068C HST1 GO:0005618 8.23E-04 cell wall 
YOL148C SPT20 GO:0005840 1.26E-43 ribosome 
YOL148C SPT20 GO:0007582 1.50E-23 physiological process 
YOL148C SPT20 GO:0043232 2.05E-15 intracellular non-membrane-bound organelle 
YOL148C SPT20 GO:0005198 3.53E-15 structural molecule activity 
YOL148C SPT20 GO:0006412 4.13E-11 protein biosynthesis 
YOL148C SPT20 GO:0016829 3.81E-07 lyase activity 
YOL148C SPT20 GO:0005618 5.16E-07 cell wall 
YOL148C SPT20 GO:0008152 5.92E-07 metabolism 
YOL148C SPT20 GO:0006091 3.93E-06 generation of precursor metabolites and energy 
YOL148C SPT20 GO:0006519 8.23E-06 amino acid and derivative metabolism 
YOL148C SPT20 GO:0043170 1.80E-05 macromolecule metabolism 
YOL148C SPT20 GO:0005576 2.84E-05 extracellular region 
YOL148C SPT20 GO:0005886 3.26E-05 plasma membrane 
YOL148C SPT20 GO:0005622 4.90E-05 intracellular 
YOL148C SPT20 GO:0044267 1.72E-04 cellular protein metabolism 
YOL148C SPT20 GO:0045182 1.72E-04 translation regulator activity 
YOL148C SPT20 GO:0019538 3.15E-04 protein metabolism 
YOL148C SPT20 GO:0016491 6.18E-04 oxidoreductase activity 
YOR028C CIN5 GO:0005840 4.53E-07 ribosome 
YOR028C CIN5 GO:0005198 1.08E-04 structural molecule activity 
YOR028C CIN5 GO:0043232 9.75E-04 intracellular non-membrane-bound organelle 
YOR032C HMS1 GO:0005840 7.06E-09 ribosome 
YOR032C HMS1 GO:0005198 1.81E-05 structural molecule activity 
YOR032C HMS1 GO:0043232 2.46E-04 intracellular non-membrane-bound organelle 
YOR032C HMS1 GO:0006412 8.60E-04 protein biosynthesis 
YOR140W SFL1 GO:0005618 1.19E-05 cell wall 
YOR140W SFL1 GO:0006810 2.27E-04 transport 



197 

 

YOR213C SAS5 GO:0008372 3.81E-04 cellular component unknown 
YOR229W WTM2 GO:0006950 5.28E-04 response to stress 
YOR290C SNF2 GO:0005840 8.64E-24 ribosome 
YOR290C SNF2 GO:0007582 3.32E-23 physiological process 
YOR290C SNF2 GO:0043232 3.15E-11 intracellular non-membrane-bound organelle 
YOR290C SNF2 GO:0042254 3.14E-09 ribosome biogenesis and assembly 
YOR290C SNF2 GO:0006519 6.06E-09 amino acid and derivative metabolism 
YOR290C SNF2 GO:0008152 2.46E-08 metabolism 
YOR290C SNF2 GO:0045182 7.68E-07 translation regulator activity 
YOR290C SNF2 GO:0005198 1.28E-06 structural molecule activity 
YOR290C SNF2 GO:0006412 1.47E-06 protein biosynthesis 
YOR290C SNF2 GO:0016829 3.93E-05 lyase activity 
YOR290C SNF2 GO:0005622 6.72E-05 intracellular 
YOR290C SNF2 GO:0005886 7.63E-05 plasma membrane 
YOR290C SNF2 GO:0006996 7.76E-05 organelle organization and biogenesis 
YOR290C SNF2 GO:0005623 1.44E-04 cell 
YOR290C SNF2 GO:0016491 2.46E-04 oxidoreductase activity 
YOR290C SNF2 GO:0005618 2.49E-04 cell wall 
YOR290C SNF2 GO:0005576 2.79E-04 extracellular region 
YOR304W ISW2 GO:0005840 3.29E-28 ribosome 
YOR304W ISW2 GO:0005198 1.20E-18 structural molecule activity 
YOR304W ISW2 GO:0043232 1.27E-14 intracellular non-membrane-bound organelle 
YOR304W ISW2 GO:0006412 3.74E-11 protein biosynthesis 
YOR304W ISW2 GO:0005622 4.50E-08 intracellular 
YOR304W ISW2 GO:0044267 6.27E-06 cellular protein metabolism 
YOR363C PIP2 GO:0005840 1.06E-09 ribosome 
YOR363C PIP2 GO:0005198 1.45E-07 structural molecule activity 
YOR363C PIP2 GO:0043232 2.20E-05 intracellular non-membrane-bound organelle 
YOR363C PIP2 GO:0006412 2.72E-04 protein biosynthesis 
YPL049C DIG1 GO:0000746 1.80E-08 conjugation 
YPL075W GCR1 GO:0005840 9.37E-74 ribosome 
YPL075W GCR1 GO:0007582 1.70E-71 physiological process 
YPL075W GCR1 GO:0005198 1.21E-35 structural molecule activity 
YPL075W GCR1 GO:0008152 8.75E-26 metabolism 
YPL075W GCR1 GO:0043232 4.46E-25 intracellular non-membrane-bound organelle 
YPL075W GCR1 GO:0005622 7.56E-20 intracellular 
YPL075W GCR1 GO:0006412 8.98E-20 protein biosynthesis 
YPL075W GCR1 GO:0043170 7.25E-13 macromolecule metabolism 
YPL075W GCR1 GO:0044267 9.84E-11 cellular protein metabolism 
YPL075W GCR1 GO:0019538 7.95E-10 protein metabolism 
YPL075W GCR1 GO:0006519 1.20E-09 amino acid and derivative metabolism 
YPL075W GCR1 GO:0005623 2.54E-08 cell 
YPL075W GCR1 GO:0016491 1.03E-07 oxidoreductase activity 
YPL075W GCR1 GO:0006091 8.65E-07 generation of precursor metabolites and energy 
YPL075W GCR1 GO:0016829 1.26E-06 lyase activity 
YPL075W GCR1 GO:0045182 2.57E-06 translation regulator activity 
YPL075W GCR1 GO:0005618 3.42E-06 cell wall 
YPL075W GCR1 GO:0005975 2.10E-05 carbohydrate metabolism 
YPL075W GCR1 GO:0016853 5.91E-05 isomerase activity 
YPL075W GCR1 GO:0044238 6.17E-05 primary metabolism 
YPL075W GCR1 GO:0005783 6.95E-04 endoplasmic reticulum 
YPL075W GCR1 GO:0006629 7.84E-04 lipid metabolism 
YPL129W TAF14 GO:0005576 3.91E-07 extracellular region 
YPL129W TAF14 GO:0000746 1.51E-04 conjugation 
YPL139C UME1 GO:0005618 1.70E-04 cell wall 
YPL177C CUP9 GO:0005886 9.87E-05 plasma membrane 
YPL248C GAL4 GO:0005198 7.42E-06 structural molecule activity 
YPL248C GAL4 GO:0005840 3.43E-05 ribosome 
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YPL254W HFI1 GO:0005840 5.67E-18 ribosome 
YPL254W HFI1 GO:0005198 5.09E-09 structural molecule activity 
YPL254W HFI1 GO:0005618 1.64E-08 cell wall 
YPL254W HFI1 GO:0007582 5.20E-08 physiological process 
YPL254W HFI1 GO:0005576 2.05E-06 extracellular region 
YPL254W HFI1 GO:0005886 7.45E-06 plasma membrane 
YPL254W HFI1 GO:0043232 1.33E-04 intracellular non-membrane-bound organelle 
YPL254W HFI1 GO:0016491 1.89E-04 oxidoreductase activity 
YPL254W HFI1 GO:0006412 3.41E-04 protein biosynthesis 
YPR018W RLF2 GO:0006766 4.22E-06 vitamin metabolism 
YPR018W RLF2 GO:0008152 7.50E-04 metabolism 
YPR065W ROX1 GO:0006810 2.13E-05 transport 
YPR065W ROX1 GO:0005618 4.87E-05 cell wall 
YPR065W ROX1 GO:0016491 8.48E-05 oxidoreductase activity 
YPR065W ROX1 GO:0006118 9.06E-05 electron transport 
YPR065W ROX1 GO:0006810 4.88E-04 transport 
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Appendix III – Novel Sequence Motifs 

TF Systematic Name TF Gene Name Motif P Value 
YBL021C HAP3 AACTTTGA 0.000861 
YBL052C SAS3 AGAATTGCAGATT 3.27E-13 
YBL052C SAS3 AGAGGAAGCTG 3.74E-11 
YBL052C SAS3 CCTCGAGGA 6.25E-19 
YBL052C SAS3 GGAATAAAAATC 7.65E-23 
YBL052C SAS3 GGATCAAT 4.8E-21 
YBL052C SAS3 GTTGGGATTCCATTG 0.000137 
YBL052C SAS3 TCGCAGGCCAGAAA 0.000276 
YBL052C SAS3 TCGTCTA 0.000000472 
YBL052C SAS3 TGACGCAAAT 3.56E-15 
YBL052C SAS3 TGGAAGCTGA 6.5E-16 
YBL052C SAS3 TTGCACCAAGGAAGT 0.00000984 
YBL103C RTG3 GAAGCCT 0.000288 
YBR049C REB1 GAAGCTGTCATCG 0.00000027 
YBR049C REB1 GAATTGCAGATTCCC 0.000000014 
YBR049C REB1 GTCTATCAACTAA 0.000000456 
YBR049C REB1 GTGGAAGCTGAA 1.41E-10 
YBR049C REB1 GTTAGAAGATGACGC 9.46E-10 
YBR049C REB1 TGGATTC 0.0000696 
YBR083W TEC1 AATATACTAGAAG 0.000757 
YBR083W TEC1 AATCCTCGAG 1.07E-08 
YBR083W TEC1 ACACCGTATATGA 0.0000651 
YBR083W TEC1 ACATATAAAACG 8.92E-19 
YBR083W TEC1 AGAAATAGTCAT 3.54E-19 
YBR083W TEC1 AGAAGCTGTCATCGA 1.7E-13 
YBR083W TEC1 CACCGTATATGATA 0.0000651 
YBR083W TEC1 CATATAAAATG 4.26E-11 
YBR083W TEC1 CTCCTCGAGGATA 0.000219 
YBR083W TEC1 CTCGAGGAGA 3.1E-21 
YBR083W TEC1 CTGAAGTGCAAGG 0.000000541 
YBR083W TEC1 GAAGCTGA 9.57E-27 
YBR083W TEC1 GAGGAATAATCGTAA 1.02E-12 
YBR083W TEC1 GCTGAAATGCAAGGA 0.000219 
YBR083W TEC1 GCTGTCATCGAAG 1.25E-09 
YBR083W TEC1 GGATCAATGAAT 3.53E-25 
YBR083W TEC1 GTGAGGGTTGAAC 0.00029 
YBR083W TEC1 GTGTAGAATTGCAG 4.34E-13 
YBR083W TEC1 TAGGATCAATGAA 3.53E-25 
YBR083W TEC1 TCCTCAAAATGGAAT 0.000381 
YBR083W TEC1 TCCTCGAGGA 2.89E-23 
YBR083W TEC1 TTAGAAGATGAC 2.55E-19 
YBR083W TEC1 TTAGAGGAAGCTGAA 3.74E-12 
YBR083W TEC1 CCTCGAGG 7.8E-22 
YBR083W TEC1 CACCGTATATG 0.0000798 
YBR083W TEC1 CCTCAAAATGGAAT 0.000381 
YBR083W TEC1 CGTATATGAT 0.00000183 
YBR083W TEC1 CTCAAAATGG 0.0000761 
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YBR083W TEC1 CTCAAAATGGAAT 0.000381 
YBR083W TEC1 CTCGAGGA 4.44E-21 
YBR083W TEC1 GGATCAATG 3.12E-24 
YBR083W TEC1 TCCTCGAGG 1.32E-22 
YBR083W TEC1 TTAGAGGAAGC 7.55E-12 
YBR103W SIF2 GGGACTGGCC 0.0000035 
YBR150C TBS1 ATTTCCAGGT 0.00000656 
YBR150C TBS1 GATCCGC 0.0000102 
YBR289W SNF5 ATTAGTGGAAGCT 2.77E-10 
YBR289W SNF5 CGCAAGGATTGA 3.73E-13 
YBR289W SNF5 GAGGAAGCTGAAA 0.000034 
YBR289W SNF5 GTGTAGAATTGCAGA 0.000000465 
YBR297W MAL33 CCGATTG 0.0000657 
YBR297W MAL33 GATGAGCTCA 0.000153 
YBR297W MAL33 TAGATGAGCT 0.0000768 
YCR081W SRB8 CTCTGGA 0.000253 
YCR084C TUP1 AATAAGCTTCTG 0.00000192 
YCR084C TUP1 AATAGGATCA 4.36E-10 
YCR084C TUP1 AGAAATATAGATTCC 0.0000274 
YCR084C TUP1 ATAGAGCTGCTTCAA 2.05E-10 
YCR084C TUP1 CAAGGATTGA 7.12E-11 
YCR084C TUP1 CGCATACGAATACAC 1.31E-11 
YCR084C TUP1 CTGAACGAGGGTC 0.000631 
YCR084C TUP1 GCACTAAAAAA 0.00000106 
YCR084C TUP1 GCTGTCATCG 0.0000137 
YCR084C TUP1 GCTTCTGAACGAGG 0.00000279 
YCR084C TUP1 GTGTTAGAAGATGAC 1.11E-08 
YCR084C TUP1 TGATGAC 0.000977 
YCR084C TUP1 TGTACGAGGGTCC 4.65E-08 
YCR084C TUP1 TTACGTA 0.000305 
YCR084C TUP1 TTCGTTCAAAAACAA 0.000164 
YCR084C TUP1 ATAGAGCTGC 1.05E-11 
YCR084C TUP1 CTGAACGAGGG 0.0000429 
YCR084C TUP1 GCATACGAATAC 1.31E-11 
YCR084C TUP1 GTACGAGGGTCC 4.65E-08 
YDL020C RPN4 GCCAAATTGG 0.000968 
YDL042C SIR2 ACAGAATCTCAAA 0.000000643 
YDL042C SIR2 ACATATAAAATGA 4.01E-08 
YDL042C SIR2 CAGTGACA 0.0000172 
YDL042C SIR2 GAAGCTGTCATC 4.07E-09 
YDL042C SIR2 GAGGTTACTGAG 0.000000643 
YDL042C SIR2 GCCTAAAATAGC 0.000000643 
YDL042C SIR2 GTGGAAGC 4.51E-09 
YDL042C SIR2 GTTGGGATTC 0.00000294 
YDL042C SIR2 TAGGATCAATGA 3.46E-16 
YDL042C SIR2 TGTCACAGGAAA 0.0000201 
YDL042C SIR2 GTCACAGGAA 0.0000038 
YDL106C PHO2 AACAAGGCTC 0.00000191 
YDL106C PHO2 AGGCTCAATGCAT 0.000000365 
YDL106C PHO2 CGTACGA 0.0002 
YDL106C PHO2 GAGTCTT 0.000571 
YDL106C PHO2 GCCCCATAGAGAGC 0.000000365 



201 

 

YDL106C PHO2 GTGAGAC 0.000111 
YDL106C PHO2 TCACCAG 0.00000116 
YDL106C PHO2 TTTGCGCAACGAA 0.000000365 
YDL170W UGA3 GAGGCTTAT 0.0000719 
YDR043C NRG1 AGGCTTA 0.000684 
YDR043C NRG1 GAGGCTT 0.0000134 
YDR043C NRG1 TGAGGCT 0.000354 
YDR073W SNF11 AACGTATATAAGCT 0.00000993 
YDR073W SNF11 TCACACG 0.00000139 
YDR176W NGG1 AAAGCTGC 0.00000294 
YDR176W NGG1 AAGTCATGAC 6.04E-11 
YDR176W NGG1 AGTCCTC 0.00000201 
YDR176W NGG1 ATAAGCGAGATCT 4.03E-12 
YDR176W NGG1 GACTGAAAG 1.32E-09 
YDR176W NGG1 GCAGTCT 0.00000294 
YDR176W NGG1 GGAGATCT 5.02E-08 
YDR176W NGG1 TAAGCGAGATC 4.03E-12 
YDR176W NGG1 AGCGAGATCT 6.04E-11 
YDR181C SAS4 AGGGTCCAAA 0.000000457 
YDR181C SAS4 GAGGTGC 0.000162 
YDR181C SAS4 GGGTGCAA 0.000963 
YDR181C SAS4 TCGTTCAGAAACAA 0.00000279 
YDR207C UME6 ACCCAGAGGTCAT 7.52E-08 
YDR207C UME6 ACCCGCATTAAAGT 0.00000265 
YDR207C UME6 CACGAGGTTACTGAG 7.51E-08 
YDR207C UME6 GAATCTTCATGTCAG 0.00000265 
YDR207C UME6 GAGCCATTGCATGA 1.68E-09 
YDR207C UME6 TAGCCGC 0.000000242 
YDR216W ADR1 GTTGGCTTGAGA 0.000382 
YDR310C SUM1 ATGTCACAAAA 0.0000146 
YDR310C SUM1 CTGACAC 0.000149 
YDR310C SUM1 GCGTCACAAA 0.000000101 
YDR310C SUM1 GGCGTCAGGA 0.00072 
YDR310C SUM1 GTCACAAA 6.69E-09 
YDR310C SUM1 TGCGTCA 0.000343 
YDR310C SUM1 TTGTGTCACT 0.00072 
YDR310C SUM1 TTTGTGTCAC 0.000196 
YDR310C SUM1 TTTGTGTCAT 0.000736 
YDR310C SUM1 TTTTGTGTCA 0.000017 
YDR310C SUM1 TTGTGAC 0.000000189 
YDR310C SUM1 TGACACA 0.000607 
YDR310C SUM1 ATGTCACAAA 0.0000362 
YDR310C SUM1 CGTCACA 0.00000049 
YDR310C SUM1 GCGTCAG 0.000983 
YDR310C SUM1 GTCACAA 0.00000521 
YDR310C SUM1 TGTGTCA 0.00014 
YDR392W SPT3 CTAGTAT 5.4E-13 
YDR392W SPT3 GGAAGCTG 4.69E-22 
YDR392W SPT3 TGTATACCTAA 2.75E-17 
YDR392W SPT3 TTGTTGGGATTCCA 0.00000217 
YDR392W SPT3 GTTGGGATTCCA 0.00000217 
YDR421W ARO80 TCGTCAT 0.000963 
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YDR448W ADA2 AAAGTCTC 0.000351 
YDR463W STP1 AACAGACCTGAGAGC 0.000128 
YEL009C GCN4 CTCAGGT 0.0000321 
YER045C ACA1 AAAAGATGCA 0.00000656 
YER051W  TCGTGGA 0.000326 
YER111C SWI4 AAAAAGGGCTCC 4.69E-11 
YER111C SWI4 AGGTACG 0.000616 
YER111C SWI4 ATAGTTAAGATACTG 6.69E-09 
YER111C SWI4 CAAGGAAGTA 0.000000217 
YER111C SWI4 CCTCGAA 0.000287 
YER111C SWI4 CTCGACTAAGCAG 1.54E-10 
YER111C SWI4 GCGCAGATTCTGC 2.37E-11 
YER111C SWI4 GCTAAGCGCAG 0.00000424 
YER111C SWI4 GCTGAGC 0.000726 
YER111C SWI4 GGAAATCTA 0.000123 
YER111C SWI4 GGGACAGACAGTC 2.37E-11 
YER111C SWI4 GGGACAGACAGTCGC 2.37E-11 
YER111C SWI4 TAGGCTAAGC 0.00000631 
YER111C SWI4 TAGTCATACAGACGC 0.000000465 
YER111C SWI4 TGCAGGC 0.000000177 
YER111C SWI4 GACAGACAGTC 2.37E-11 
YER111C SWI4 GACAGTC 0.00000699 
YFL021W GAT1 GGTGCAA 0.000101 
YFR034C PHO4 CTCCCGA 0.0000685 
YGL013C PDR1 AGTTACT 0.000947 
YGL025C PGD1 AAAGCTGCAG 2.2E-09 
YGL025C PGD1 AAATCATGACA 5.27E-11 
YGL025C PGD1 AAGACTC 0.00000251 
YGL025C PGD1 AAGCGAGAT 7.36E-10 
YGL025C PGD1 AATGTACAAGAAC 1.06E-11 
YGL025C PGD1 AGATCTT 0.0000289 
YGL025C PGD1 AGGCTGCTGCCTG 1.06E-11 
YGL025C PGD1 ATTAAAGCTGC 1.06E-11 
YGL025C PGD1 CAAATCATGA 5.27E-11 
YGL025C PGD1 CAGTCTT 0.00000222 
YGL025C PGD1 CATGACACA 3.68E-10 
YGL025C PGD1 CATGACATACA 1.06E-11 
YGL025C PGD1 CATGATGTGC 0.000717 
YGL025C PGD1 CCTCCGAAGG 1.06E-11 
YGL025C PGD1 CGACGAGGAT 5.27E-11 
YGL025C PGD1 CTGCCACGTC 0.000301 
YGL025C PGD1 CTTGGAGAT 3.68E-10 
YGL025C PGD1 GATGCTGTAATCT 1.06E-11 
YGL025C PGD1 GCTATCG 0.00000629 
YGL025C PGD1 GGACGTTCCA 1.06E-11 
YGL025C PGD1 GGAGATCTCG 1.06E-11 
YGL025C PGD1 GGATCTGGCT 0.000301 
YGL025C PGD1 GTCATGA 0.000017 
YGL025C PGD1 GTCGACGAGG 1.06E-11 
YGL025C PGD1 GTCTAAC 0.000000228 
YGL025C PGD1 TATCGCT 0.000197 
YGL025C PGD1 TCAAGCAGCA 7.36E-10 



203 

 

YGL025C PGD1 TCATGTC 4.39E-08 
YGL025C PGD1 TCATGAT 0.0000303 
YGL025C PGD1 CATGACA 0.000000712 
YGL025C PGD1 TCGACGA 0.00000293 
YGL035C MIG1 GCCCGAT 0.00095 
YGL073W HSF1 CCCATGC 0.0000553 
YGL073W HSF1 CGCACGT 0.0000016 
YGL073W HSF1 GCAAGGATTGA 0.00000215 
YGL151W NUT1 AGTTGAGAGACAGG 0.0000146 
YGL151W NUT1 CTAAGCGCAGG 0.000789 
YGL151W NUT1 GTAGGGTAAC 0.000647 
YGL151W NUT1 TCGCACA 0.000655 
YGL166W CUP2 AATTGAC 0.00000889 
YGL181W GTS1 AACATATAAAATG 3.57E-08 
YGL181W GTS1 AGAATTGCAG 8.01E-09 
YGL181W GTS1 CTAGTATATTATC 4E-12 
YGL181W GTS1 GATGACATAAG 0.0000102 
YGL181W GTS1 GATTCCC 0.00000517 
YGL181W GTS1 TAGTGGAAGCTGAA 3.31E-12 
YGL181W GTS1 TATTATCATATACG 1.21E-15 
YGL181W GTS1 TCTAGTA 9.21E-12 
YGL237C HAP2 AAAAAAATGTATCA 3.11E-08 
YGL237C HAP2 AGGAAGAGCAACGTC 3.11E-08 
YGL237C HAP2 GAGGCCTGAGG 3.11E-08 
YGL237C HAP2 GAGTCTTCAAGCAG 3.11E-08 
YGL237C HAP2 GGATGTTCC 0.00000209 
YGL237C HAP2 TAAGCGAGATCTT 3.11E-08 
YGL237C HAP2 TAAGCGAGATCTTT 3.11E-08 
YGL237C HAP2 TAAGGAAGAGCAAC 3.11E-08 
YGL237C HAP2 TTCGAAAAAAATAGA 3.11E-08 
YGL237C HAP2 AAGCGAGATCT 0.000000154 
YGL237C HAP2 TAAGCGAGATCT 3.11E-08 
YGL237C HAP2 TAAGGAAGAGCA 3.11E-08 
YGR040W KSS1 GGGATTCCAT 0.0000517 
YGR040W KSS1 TGGGATTCCA 0.000047 
YGR056W RSC1 AAGATCTCAGCAGA 0.000256 
YGR063C SPT4 AATCCTCGAGG 0.000000127 
YGR063C SPT4 AGTGGAAGCT 3.73E-12 
YGR063C SPT4 CATCGAAGTTAGAG 0.000505 
YGR063C SPT4 CCTCGAC 0.00000299 
YGR063C SPT4 GAAGATGACGCAAAT 2.35E-11 
YGR063C SPT4 GGCTACGCCG 0.000407 
YGR063C SPT4 TAGATTC 0.000483 
YGR063C SPT4 TGGAATAAAAATC 3.76E-15 
YGR089W NNF2 TTGGGATTCC 0.000546 
YHL020C OPI1 AAAAGACATTTTTG 0.0000385 
YHL020C OPI1 TTCCAGCAAAAA 0.0000385 
YHL020C OPI1 AAAGACATTTTTG 0.0000385 
YHL025W SNF6 AATAGGATCAATGA 0.00000018 
YHL025W SNF6 AGATTCC 0.000277 
YHL025W SNF6 CCTCGAG 0.000152 
YHL025W SNF6 CTGCATAGCGCAG 0.00000167 
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YHL025W SNF6 GAGGAATAATCG 0.000525 
YHL025W SNF6 GTGCACCATGGAAAT 0.000011 
YHL025W SNF6 TCCTCGA 4.5E-10 
YHL027W RIM101 CTCGAGG 0.000167 
YHR041C SRB2 AAACCCCGTC 2.36E-09 
YHR041C SRB2 AAATCATGACATA 2.36E-09 
YHR041C SRB2 AAGCGAGATCTTTA 2.36E-09 
YHR041C SRB2 ACAAGGT 0.00091 
YHR041C SRB2 ACTGTAAGATC 1.17E-08 
YHR041C SRB2 AGATCAC 0.000106 
YHR041C SRB2 CTGAGCCGA 3.51E-08 
YHR041C SRB2 CTGCCAAAGG 0.000305 
YHR041C SRB2 CTGTACAAGGCTGC 2.36E-09 
YHR041C SRB2 GACGAGGATGC 2.36E-09 
YHR041C SRB2 GAGATCTCGC 6.77E-10 
YHR041C SRB2 GGCCTGAGGC 2.36E-09 
YHR041C SRB2 TAAAGCTGCAGT 2.36E-09 
YHR041C SRB2 TCAAGCAG 0.00000367 
YHR041C SRB2 TCAGACC 0.000000953 
YHR041C SRB2 AGCGAGATC 3.51E-08 
YIL036W CST6 ACGCAAGGAT 0.000396 
YIL036W CST6 GGTACCG 0.000393 
YIL084C SDS3 AACATATAAAACG 1.62E-14 
YIL084C SDS3 ATCCTTGCGT 0.00000245 
YIL084C SDS3 ATCTACTAACTAGTA 3.16E-15 
YIL084C SDS3 CGCAAGGATTG 1.46E-19 
YIL084C SDS3 CTCGAGGAT 0.000356 
YIL084C SDS3 CTTCTAGTATA 7.17E-21 
YIL084C SDS3 GAAGCTG 1.31E-12 
YIL084C SDS3 GCGAGCGCCT 0.000143 
YIL084C SDS3 TGGCCAG 0.000251 
YIL084C SDS3 TTATCAATCCTTG 0.0000582 
YIL084C SDS3 TCTGGCCAGA 0.000842 
YIL084C SDS3 ATATAAAACG 1.13E-13 
YIL084C SDS3 CGCAAGGATT 1.46E-19 
YIR023W DAL81 CAGCAAAAAAGACT 0.00000569 
YJL089W SIP4 GTGGGTGACC 0.00000261 
YJL103C  ATACTAGAAGTTCTC 0.000309 
YJL103C  ATATACTAGAAGTT 0.000247 
YJL110C GZF3 AAACAGCGTC 0.00000153 
YJL110C GZF3 AATGCCAA 0.0000949 
YJL127C SPT10 AGTGCCATAAA 1.03E-09 
YJL127C SPT10 GAACGAGGGTCC 0.0000554 
YJL127C SPT10 GAAGATGACG 0.000011 
YJL127C SPT10 GCAAGGATTG 1.02E-10 
YJL127C SPT10 GTGGAAGCTG 0.000000412 
YJL127C SPT10 TACGAAT 0.0000642 
YJL127C SPT10 TCCGTAC 4.08E-18 
YJL127C SPT10 TCGTTCAGAAAC 0.000119 
YJL127C SPT10 TGTGTAGAATTGC 0.0000337 
YJL127C SPT10 TGTTGGGATTCCATT 0.000974 
YJL176C SWI3 ATCCTCGAGGAGA 0.000000315 
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YJL176C SWI3 CTAAATTAGTGGA 2.39E-08 
YJL176C SWI3 GAAATAGTCATCTAA 2.39E-08 
YJL176C SWI3 GAGGAAGCTG 0.0000914 
YJL176C SWI3 GGGATTCCATT 0.000459 
YJL176C SWI3 GTATATTATCATATA 1.78E-08 
YJL176C SWI3 TATCCTCGAGGAG 0.000573 
YJR140C HIR3 TTACTTG 0.000981 
YKL005C  GCAGTGGC 0.000206 
YKL032C IXR1 AAAATGGAATCTATA 0.000232 
YKL032C IXR1 ACGCAAGGATTG 2.74E-22 
YKL032C IXR1 AGAATTGCAGATTC 1.49E-12 
YKL032C IXR1 AGATGAC 1.06E-08 
YKL032C IXR1 ATATCCTCGAGGA 1.41E-08 
YKL032C IXR1 ATCAATCCTTGCG 0.000184 
YKL032C IXR1 CATATAAAACG 4.75E-15 
YKL032C IXR1 CATATAAAATGATG 1.68E-10 
YKL032C IXR1 CCTCGAGGATATAG 0.000524 
YKL032C IXR1 CTGTCATCGATGT 0.000888 
YKL032C IXR1 GATTCCATTTTGAGG 8.76E-10 
YKL032C IXR1 GTTATATTATCAA 2.7E-09 
YKL032C IXR1 GTTGGGATTCCATT 1.72E-08 
YKL032C IXR1 TAAATCCTCGAGG 5.33E-09 
YKL032C IXR1 TAACACCGTATATG 0.000167 
YKL032C IXR1 TGAGGAATAATCG 9.09E-11 
YKL032C IXR1 TGGATTCCTAA 9.61E-14 
YKL032C IXR1 CATTTTGAGG 2.65E-09 
YKL032C IXR1 CTCGAGGATA 0.000365 
YKL112W ABF1 AAGAAAAATTTTTC 0.0000221 
YKL112W ABF1 AAGATGACGCAAA 0.000000481 
YKL112W ABF1 ATGAGGAATAATC 0.00000279 
YKL112W ABF1 CCACTAATTTAGAT 0.000479 
YKL185W ASH1 CGAAGGTGCC 0.000573 
YKR099W BAS1 AGAAGATGAC 1.07E-14 
YKR099W BAS1 AGGATCAATGAAT 3.16E-20 
YKR099W BAS1 ATTCCATTTTGAG 2.16E-10 
YKR099W BAS1 GACTCCT 0.00000571 
YKR099W BAS1 TACTAGT 1.26E-09 
YKR099W BAS1 TCCTAAATCCTTG 0.000005 
YKR099W BAS1 TGTGTAGAATTGCA 2.05E-11 
YKR099W BAS1 TTAGCGC 0.000948 
YKR099W BAS1 GAAGATGAC 1.26E-12 
YKR099W BAS1 GGATCAATGAA 3.16E-20 
YKR099W BAS1 GTGTAGAATTGCA 2.05E-11 
YKR101W SIR1 AATTAGTGGAAGCT 0.00000842 
YKR101W SIR1 TCCTCGAGGAG 0.000623 
YKR101W SIR1 TTAGTGGAAGCTGAA 0.00000842 
YLR014C PPR1 TGCTGCA 0.000887 
YLR014C PPR1 TGGCCAT 0.000868 
YLR176C RFX1 GTTGCCATGG 0.0000523 
YLR176C RFX1 TTGCCATGGC 0.0000523 
YLR176C RFX1 GTTGCCA 0.0000108 
YLR182W SWI6 ATTCCATTTTGAGGA 0.0000742 
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YLR182W SWI6 GCACAGT 0.000234 
YLR418C CDC73 AAAAAGGGCTCCTC 4.21E-13 
YLR418C CDC73 AGTTAAGATACTG 2.59E-11 
YLR418C CDC73 CTGCGCATAC 0.0000171 
YLR418C CDC73 GAAAGTACGTACC 0.000000824 
YLR418C CDC73 GCACCATGGAAAT 2.86E-10 
YLR418C CDC73 GCGCAGATTC 7.08E-10 
YLR418C CDC73 GGACAGACAGTCGC 2.86E-10 
YLR418C CDC73 GTCAAAAAG 0.00000022 
YLR418C CDC73 GTGGACC 0.0000489 
YLR418C CDC73 TGGGTGCA 0.00016 
YLR418C CDC73 CTGCGCA 0.000242 
YLR418C CDC73 GACAGACAGTCGC 2.86E-10 
YLR418C CDC73 GCACCATGG 3.45E-08 
YLR442C SIR3 AAGCTGTCATCGAAG 0.000000203 
YLR442C SIR3 ATTTACGTTACTAGT 2.95E-13 
YLR442C SIR3 GAAACGCAAGGATTG 3.16E-23 
YLR442C SIR3 GTCAGTATGACAAT 0.00000181 
YLR442C SIR3 GTTGTATCTCAAA 4.39E-08 
YLR442C SIR3 TGACATAAGTTATG 9.62E-11 
YLR442C SIR3 GTCAGTATGAC 0.000000144 
YLR451W LEU3 GACTCAG 0.0000721 
YLR453C RIF2 CGTATGC 0.000649 
YML081W  AAAAAGCGTAT 0.000275 
YML081W  TCCAGCAAAAAAGA 0.00000993 
YML102W CAC2 ACGTATATACATA 0.0000655 
YML102W CAC2 ACTAGTA 0.00000261 
YML102W CAC2 AGGATCAATG 9.65E-10 
YML102W CAC2 AGTGGAAGCTG 1.06E-11 
YML102W CAC2 GTGGAAGCTGAAA 4.75E-11 
YML102W CAC2 TCGTTCA 0.000661 
YML102W CAC2 TTACTAG 0.0000923 
YML102W CAC2 ACGTATA 0.0000771 
YMR021C MAC1 ATATACTAG 0.000014 
YMR021C MAC1 GAAACGCAAGGATT 0.00000131 
YMR021C MAC1 GAACTTCTAGTAT 0.0000752 
YMR021C MAC1 GGAAGCTGAAA 0.00000207 
YMR037C MSN2 AATGTTGGCTCGC 1.58E-11 
YMR037C MSN2 AGATCTCGCT 1.58E-11 
YMR037C MSN2 AGATCTCGCTTA 1.58E-11 
YMR037C MSN2 CGTTCTGAGG 1.58E-11 
YMR037C MSN2 CTTTTCCGAAAGT 1.58E-11 
YMR037C MSN2 GAAAGTCATG 1.58E-11 
YMR037C MSN2 GAATAACGCATAGAG 1.58E-11 
YMR037C MSN2 GACGAGGAT 3.3E-09 
YMR037C MSN2 GGAGATC 0.00000771 
YMR037C MSN2 GGATGCTTTTCCG 1.58E-11 
YMR037C MSN2 GGATGTTCCA 7.91E-11 
YMR037C MSN2 TAAGGAAGAGCAA 1.58E-11 
YMR037C MSN2 TCATGAC 0.000000337 
YMR037C MSN2 GCGAGATC 1.57E-08 
YMR037C MSN2 AGATCTC 0.00000276 
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YMR037C MSN2 CGAGATC 0.00000471 
YMR037C MSN2 TAAGGAAGAGC 7.91E-11 
YMR070W MOT3 CAGATAG 0.000541 
YMR070W MOT3 CTCCGAT 0.00014 
YMR070W MOT3 GCAAAAGGGT 0.0000101 
YMR070W MOT3 GGCTCAC 0.000988 
YMR075W  TTGCAAA 0.000724 
YMR164C MSS11 AATATCATATAGAAG 0.00000328 
YMR164C MSS11 ACAAGGTTTTGAA 0.0000135 
YMR164C MSS11 CTGTACA 0.0000436 
YMR164C MSS11 TAATCGA 0.0000226 
YMR164C MSS11 ACAAGGTTTTG 0.000045 
YMR273C ZDS1 CCTGGAA 0.000327 
YMR273C ZDS1 TTCCAGG 0.000312 
YNL097C PHO23 AAATCATGAC 2.4E-12 
YNL097C PHO23 AACACATAATG 2.4E-12 
YNL097C PHO23 AAGCGAGATC 2.4E-12 
YNL097C PHO23 AAGTCATGA 1.58E-10 
YNL097C PHO23 ACTTGGA 0.00000155 
YNL097C PHO23 AGATCTCGC 1.01E-10 
YNL097C PHO23 ATAAGCGAG 6.04E-11 
YNL097C PHO23 CATGACATAC 1.68E-11 
YNL097C PHO23 CCGTTCTGAG 2.4E-12 
YNL097C PHO23 CGTCATG 0.000000186 
YNL097C PHO23 CTCCGAAGGG 3.35E-09 
YNL097C PHO23 CTTCAGCACG 7.19E-12 
YNL097C PHO23 GAGGATGCT 1.68E-11 
YNL097C PHO23 GCAGTGTAAACT 4.8E-13 
YNL097C PHO23 GTCATGACAC 7.19E-12 
YNL097C PHO23 TCCGAAGGGT 3.35E-09 
YNL097C PHO23 TCGTCACACAAGG 4.8E-13 
YNL097C PHO23 TGTTAGACTG 3.36E-11 
YNL097C PHO23 TTCGAAAAA 0.000000215 
YNL097C PHO23 CAGTCTA 0.000000741 
YNL097C PHO23 GATCTCG 9.21E-08 
YNL097C PHO23 TCCGAAGG 5.5E-13 
YNL199C GCR2 CTCCACG 0.000974 
YNL199C GCR2 GATATTGAAAGAC 0.000000353 
YNL199C GCR2 GTTACTAGTAT 3.01E-08 
YNL199C GCR2 GTTGGATCTGGAAAG 0.0000513 
YNL216W RAP1 AAATTAGTGGAAGC 0.000261 
YNL216W RAP1 AGAAGATGACGCA 0.000634 
YNL216W RAP1 CACCCGT 0.0000687 
YNL216W RAP1 CCGCTTA 0.000138 
YNL216W RAP1 CGCATACGAATA 0.000255 
YNL216W RAP1 GAAGCTGAAA 0.00000413 
YNL236W SIN4 AATAGGATCAATG 7.15E-08 
YNL236W SIN4 AATTAGTGGAAGCTG 0.00000518 
YNL236W SIN4 AGAGGAAGCTGAA 0.000572 
YNL236W SIN4 CACCATGGAAATTG 0.000143 
YNL236W SIN4 CACGTAA 0.0000836 
YNL236W SIN4 GATGATGACATAAG 0.000139 
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YNL236W SIN4 GATTCCT 0.0000363 
YNL236W SIN4 GGATCAATGA 0.00000018 
YNL236W SIN4 GTTAGAGGAAGCTG 0.000376 
YNL309W STB1 GGTGCAAAAA 0.000813 
YNL309W STB1 GTGCAAAAAAA 0.000652 
YOL004W SIN3 ACGATTATCGAGT 2.18E-09 
YOL004W SIN3 ATTACGATTATCGAG 2.18E-09 
YOL004W SIN3 CCAGAGGTCATGC 0.000000249 
YOL068C HST1 AGTCACTGTCAAGAG 0.000000292 
YOL068C HST1 CTGTCAGTCA 0.00000289 
YOL068C HST1 GTCAGTCACT 0.00001 
YOL068C HST1 TGTCATT 0.0000245 
YOL108C INO4 CAAGTTG 0.000139 
YOL116W MSN1 AGATCAG 0.000284 
YOL148C SPT20 AGTGGAAGC 0.00000225 
YOL148C SPT20 GATGATGACAT 0.0000447 
YOL148C SPT20 TCGAGGA 0.0000242 
YOR028C CIN5 CCAAGTT 0.000895 
YOR191W RIS1 GAGGAAGCT 0.00000596 
YOR191W RIS1 GGAAGCT 0.000107 
YOR213C SAS5 AACGAAT 0.000294 
YOR213C SAS5 AATTCAAGAG 0.0000424 
YOR213C SAS5 ACATACG 0.00000104 
YOR213C SAS5 ACGAATCGTT 8.51E-10 
YOR213C SAS5 ACGACTC 0.00000954 
YOR213C SAS5 AGCTGCT 9.13E-08 
YOR213C SAS5 CGCATACGAA 1.66E-09 
YOR213C SAS5 CTGTACGAGGGTCC 6.89E-08 
YOR213C SAS5 GAATCGT 0.0000187 
YOR213C SAS5 GAGCGTCTGT 0.000000138 
YOR213C SAS5 GAGCTGC 6.64E-09 
YOR213C SAS5 GAGTGCC 0.0001 
YOR213C SAS5 GCGCATACGA 5.86E-10 
YOR213C SAS5 GTATACG 0.0000201 
YOR213C SAS5 GTGCCATAAA 0.000000181 
YOR213C SAS5 TAGAGCTG 1.12E-09 
YOR213C SAS5 TATACGA 0.000073 
YOR213C SAS5 TGCGCATACG 9.09E-11 
YOR213C SAS5 TTCGTTCAAAAAC 0.0000296 
YOR213C SAS5 GATTCGT 0.0000428 
YOR213C SAS5 GCATACG 0.0000132 
YOR229W WTM2 TCCCGAG 0.000982 
YOR290C SNF2 AGTGGAAGCTGAA 0.000000104 
YOR290C SNF2 CTGTCATCGAAGTTA 0.000177 
YOR290C SNF2 GGATTCC 4.31E-09 
YOR290C SNF2 TATCCTCGAGGAGA 0.000266 
YOR290C SNF2 TTCGATG 0.000952 
YOR304W ISW2 AAAAAAGTTCCTG 0.000136 
YOR304W ISW2 ATCCGTC 0.000661 
YOR304W ISW2 CGTACAT 0.000023 
YOR304W ISW2 CTGGCCA 0.000594 
YOR344C TYE7 AACTTCTAGTA 2.57E-17 
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YOR344C TYE7 ATAGGATCAATGA 2.03E-14 
YOR344C TYE7 ATGGATTCCTAA 1.77E-09 
YOR344C TYE7 CCTCGAGGAG 3.46E-12 
YOR344C TYE7 GAAATAGTCATC 1.28E-10 
YOR344C TYE7 GACACGT 0.000519 
YOR344C TYE7 GAGGAAGCTGA 3.23E-08 
YOR344C TYE7 GGAAGCTGAA 3.02E-18 
YOR344C TYE7 GTTGGAATAAAAATC 4.48E-14 
YOR344C TYE7 TCCACGC 0.000081 
YOR344C TYE7 TTAGTGGAAGCTG 6.13E-11 
YOR358W HAP5 TTTCGAG 0.000164 
YPL049C DIG1 AAAACGTATATAAGC 2.41E-08 
YPL049C DIG1 ACGTGGG 0.000672 
YPL049C DIG1 TGCCAAA 0.0000193 
YPL049C DIG1 AACGTATATAAGC 6.16E-11 
YPL075W GCR1 CCGTACA 2.46E-14 
YPL075W GCR1 GAAAAATTTTC 0.000542 
YPL129W TAF14 ACGTATATAAA 0.0000161 
YPL177C CUP9 GAAGCTT 0.000462 
YPL248C GAL4 ATCCGTG 0.0000284 
YPL254W HFI1 ACCACGT 0.0000143 
YPL254W HFI1 ACGCAAGGATT 2.61E-12 
YPL254W HFI1 ATATACG 3.54E-09 
YPL254W HFI1 ATTTGGC 0.000173 
YPL254W HFI1 GAAGATGACGC 1.41E-08 
YPL254W HFI1 GTGTAGAATTGC 0.00000162 
YPL254W HFI1 TACGTAA 0.000172 
YPL254W HFI1 TAGTGGAAGCTG 1.2E-09 
YPL254W HFI1 TCCACGT 0.0000438 
YPL254W HFI1 TGTTGGGATTCC 0.000378 
YPR018W RLF2 AAATCCTCGAGGAG 1.42E-09 
YPR018W RLF2 ATAGGATCAATGAA 5E-10 
YPR018W RLF2 GATCAATGAAT 6.24E-10 
YPR018W RLF2 AAATCCTCGAGGA 1.79E-09 
YPR054W SMK1 GCCGCAT 0.000523 
YPR054W SMK1 TGCGCAT 0.000736 
YPR065W ROX1 GGATGCA 0.00074 
YPR065W ROX1 GGGTGCA 0.0000563 
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