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Alcoholism is a complex disease that exists as a specific set of behaviors, such as 

the preoccupation with obtaining alcohol and compulsive alcohol drinking. Currently, 

more than 18 million adults in the United States suffer from alcohol abuse or alcoholism. 

This disease poses serious medical and economic consequences for society. Identifying 

the neurobiological mechanisms that underlie alcohol drinking, specifically the transition 

from initiation to binge drinking is critical for improved treatments for alcoholics and the 

vulnerability for relapse in those recovering. Many studies have identified brain regions 

and molecular mechanisms that underlie various stages of alcohol abuse; however few 

have investigated the role of specific cell types within these areas.  

The overarching hypothesis of the studies in this dissertation is that cholinergic 

interneurons of the nucleus accumbens (NAc) are key neural substrates that underlie 

alcohol drinking, and as drinking continues; neuroadaptations within these cells then 
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facilitate such behaviors as compulsive alcohol drinking. More specifically, these studies 

tested whether 1) cholinergic cell ablation in the NAc causes a decrease in alcohol 

drinking in C57BL/6J mice, 2) neuroadaptive changes in dopamine (DA) D2 receptor and 

cyclin dependent kinase 5 (Cdk5) occur within these cells following initiation alcohol 

drinking, and to a greater extent following binge alcohol drinking in C57BL/6J mice, and 

3) neuroadaptive changes in DA D2 receptor and Cdk5 also occur in brain regions that 

have been implicated in the rewarding and reinforcing effects of alcohol in inbred 

alcohol-preferring (iP) rats. The present findings report a causal role for accumbal 

cholinergic neurons in binge alcohol drinking and identify DA D2 receptor and Cdk5 

neuroadaptations following initiation and binge alcohol drinking.  

These studies identify the involvement of cholinergic interneurons in binge 

drinking and reveal alcohol-induced region- and cell-specific receptor and molecular 

changes that occur with continued drinking. These findings contribute to the 

understanding of the neurobiological mechanisms that underlie alcohol drinking, and 

provide the basis for cholinergic targeted treatments designed to attenuate binge drinking. 

These data also provide the groundwork for future studies aimed to examine receptor and 

intracellular molecular changes that occur with compulsive alcohol drinking, craving, and 

relapse.  
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Chapter 1: Introduction 

 

1.1  Overview  

Alcoholism is a complex disease that exists as a combination of physiological, 

behavioral, and cognitive impairments that lead to the preoccupation with obtaining 

alcohol, a loss of control over limiting intake, the development of tolerance and 

dependence, and impairment in social and occupational functioning (American 

Psychiatric Association, 1994). For an alcoholic the use of alcohol takes on a much 

higher priority than other behaviors that once had greater value, and for hundreds of years 

people considered addiction to be a problem of will power or moral failing. We now 

know that alcoholism is a disease much like other chronic illnesses, and like other 

chronic illnesses, understanding the underlying neurobiology of this disease will lead to 

the development of improved treatments. Numerous neurobiological studies have 

identified brain regions and molecular mechanisms that underlie various stages of alcohol 

abuse, yet the development of improved site-specific treatments will require a more in 

depth understanding of the role of specific cell types within those previously identified 

brain areas and the neuroadaptations that occur within those specific cell circuits with 

exposure to alcohol. The purpose of my dissertation research is to identify the 

involvement of a specific cell type, the cholinergic interneuron, in alcohol drinking and to 

examine changes in dopamine (DA) D2 receptor and Cdk5 expression that occur within 

this cell population following voluntary alcohol drinking. These findings may lead to 

improved region- and cell-specific pharmacotherapeutic and behavioral treatment 

programs for alcohol abuse and dependence. 
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 The central hypothesis of these dissertation studies is that cholinergic 

interneurons of the nucleus accumbens (NAc) are key components that underlie 

alcohol drinking, and as drinking continues; neuroadaptive changes within these 

cells facilitate such behaviors as compulsive alcohol drinking. The studies in this 

dissertation focus on the involvement and neuroplasticity of cholinergic interneurons, 

specifically in the NAc. This is not to say that the NAc is the only, or most important, 

brain region underlying alcohol drinking. This region, however, has long been identified 

in the reinforcing effects of alcohol and drug-seeking behavior and was therefore of 

interest to examine in these studies.  

 The first study (Chapter 2) examined a causal role of cholinergic neurons in the 

NAc on binge alcohol drinking. This study used a cell ablation technique to selectively 

destroy cholinergic interneurons of the NAc in C57BL/6J mice. The following 2 chapters 

discuss studies that employed immunocytochemical (ICC) procedures to examine the 

effects of alcohol drinking on cholinergic neuronal plasticity in C57BL/6J mice. More 

specifically, the study in Chapter 3 examined dopamine (DA) D2 receptor 

neuroadaptation in cholinergic interneurons of the NAc following a model of initiation 

alcohol drinking and a model of binge alcohol drinking. The following study (Chapter 4) 

examined cyclin dependent kinase 5 (Cdk5) neuroplasticity in cholinergic cells following 

the initiation and binge alcohol drinking models. The last study (Chapter 5) assessed the 

effects of 1 month of initiation drinking on both D2 receptor and Cdk5 neuroadaptations 

in the NAc of inbred alcohol-preferring (iP) rats. Chapter 6 provides a general discussion 

of the findings and concepts covered throughout the studies in this dissertation.   
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 The remainder of this chapter provides background information for the studies 

presented in this dissertation. The first sections give an overview of alcoholism and the 

mechanisms of action of ethanol, and introduce microcircuits and brain regions that 

underlie this disease. Animal models of alcoholism used throughout the studies in this 

dissertation are presented in the following sections. The final sections provide cholinergic 

cell ablation background and give an overview of the receptor subtype and intracellular 

molecular mechanisms examined in Chapters 3-5.  

 

1.2  Alcoholism 

Alcoholism is a chronic relapsing disease that is characterized by a specific set of 

behaviors including persistent and intense alcohol-seeking, compulsive alcohol drinking, 

the development of tolerance and dependence, and an impairment in social and 

occupational functioning (American Psychiatric Association, 1994). Alcohol is the most 

widely used drug in the world today. In the United States alcohol use is greater than all 

other drugs of abuse combined (Substance Abuse and Mental Health Services 

Administration, 2006). Alcohol, or more specifically, ethanol, produces a wide range of 

effects in humans. It is a central nervous system depressant and produces characteristic 

mood elevation, anxiolytic, sedative and ataxic effects. In 2005 over half of Americans 

aged 12 or older (an estimated 126 million people) reported being current drinkers of 

alcohol; of these, 18.2 million were dependent on or had abused alcohol in the past year 

(Substance Abuse and Mental Health Services Administration, 2006). In 1998 the 

estimated economic costs of alcohol abuse in the US was over $184 billion (Harwood, 

2000). 



 4

 The overall goal of this dissertation is to identify the specific involvement of 

cholinergic interneurons in alcohol drinking, and to examine neuronal adaptations that 

occur within these cells following initiation and binge drinking. It is hypothesized that 

neuroadaptive changes in these cells can contribute to the regulation of such behaviors as 

compulsive alcohol drinking. Alcoholism is a widespread problem in today’s society and 

poses serious health and economic consequences. It is therefore imperative that we gain a 

better understanding of the neurobiological factors that cause or contribute to this disease 

in order to develop improved pharmacotherapeutic treatments. More specifically, the 

findings from the studies reported in this dissertation may contribute to an improved 

understanding of the underlying neurobiology of alcoholism which will hopefully lead to 

the future development of cellular- and molecular-specific treatments for this disease. 

 

1.3  Mechanisms of Action of Ethanol 

 Traditional theories concerning the actions of ethanol considered this molecule to 

have non-specific effects on neuronal membrane lipids, however more recent studies 

have revealed selectively for specific sites of action on neuronal proteins (e.g., Chandler 

et al., 1998; Davies, 2003; Harris, 1999; Tabakoff and Hoffman, 1996). It is currently 

thought that ethanol exerts its effects by altering the function of membrane-bound ligand-

gated ion channels, voltage-dependent ion channels (Chandler et al., 1998; Davies, 2003; 

Harris, 1999; Tabakoff and Hoffman, 1996), as well as altering the function of second-

messenger proteins (Macdonald, 1995; Pandey, 1998). More specifically, ethanol 

potentiates GABAA receptor currents, inhibits NMDA glutamate receptors, both inhibits 

and excites nicotinic ACh receptors, enhances activity of Ca2+ activated K+ channels, 
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inhibits N- and P/Q-type Ca2+ channels, and modulates inwardly rectifying K+ channels 

(Davies, 2003; Pierce and Kumaresan, 2006).  

Ethanol, therefore, produces various effects on neurotransmitter systems in the 

brain, which combine to produce specific behavioral actions such as mood elevation, 

sedation, anxiolytic, and ataxic effects. The initial rewarding effects of ethanol have been 

hypothesized to occur through the activation of the mesocorticolimbic DA system. The 

DA system is believed to play an important role not only in the initial rewarding effects 

of alcohol but also in habit or compulsive alcohol drinking. Brain areas such as the NAc, 

dorsal striatum (DS), and prefrontal cortex (PFC), which are targeted by the DA system, 

are of particular interest to examine in order to identify the neuroadaptive changes that 

underlie initial alcohol drinking, binge drinking, and the potential switch that occurs from 

one stage to the other. 

 

1.4 Mesocorticolimbic Dopamine System 

 The mesocorticolimbic DA system (Figure 1.1) is a circuit that arises in the 

ventral tegmental area (VTA) and sends dopaminergic projections to limbic and cortical 

regions, including the NAc and PFC. This system has been implicated in the positive 

reinforcing effects of alcohol and other drugs of abuse (Di Chiara and Imperato, 1988, Di 

Chiara et al., 2004), and it has been identified as a critical component of alcohol self-

administration (Pierce and Kumaresan, 2006). Most drugs of abuse, including alcohol, 

enhance activity in this system leading to an increase in DA release in terminal areas 

(Yim and Gonzales, 2000). For example, studies show that alcohol produces increased 

cell body firing in the VTA both in vitro (Brodie et al., 1990) and in vivo (Gessa et al. 
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1985). Increased activation of VTA DA neurons results in elevated extracellular DA 

levels in the rat NAc (Budygin et al., 2001; Di Chiara and Imperato, 1988; Gonzales et 

al., 2004; Imperato and Di Chiara, 1986; Yim and Gonzales, 2000), PFC (Gronier et al., 

2000), and DS (Di Chiara and Imperato, 1988). 

 While not traditionally associated with the mesocorticolimbic DA system, the DS 

receives the majority of its dopaminergic afferents from the substantia nigra (SN). The 

pathway of dopaminergic projections from the SN to the DS is commonly referred to as 

the nigrostriatal pathway and has long been implicated in motor related function. 

Recently, however, the DS has been suggested to play a role in habit learning and long-

term plasticity as casual drug use progresses to habitual drug-seeking (Berke and Hyman, 

2000; Everitt and Wolf, 2002).  



 

 

 

 

1

 

a

I

a

g

 

Figure 1.1. Schematic representation of the mesocorticolimbic DA pathway. In the 

mesocorticolimbic pathway, dopaminergic cell bodies located in the VTA send 

projections to the NAc and PFC. NAc, nucleus accumbens; PFC, prefrontal cortex; 

VTA, ventral tegmental area.   
.5 Nucleus Accumbens 

The NAc, the major area of the ventral striatum, is a primary brain region 

ssociated with the reinforcing effects of alcohol and other drugs of abuse (Di Chiara and 

mperato, 1988; Koob, 2003; Koob and Bloom, 1988; Pontieri et al., 1995; Rassnick et 

l., 1992). This brain region is thought to integrate cortical and limbic information and 

enerate goal-directed behaviors (Kalivas, 2004; Mogenson et al., 1980; Voorn et al., 

7
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1986). The NAc is hypothesized to be a primary site of action for the initial effect of 

alcohol on mesolimbic DA activity (Löf et al., 2007), and microdialysis studies have 

recently shown that accumbal DA is increased in the first 5 minutes following ethanol 

availability (Doyon et al., 2003; Doyon et al., 2005). In addition, this brain region has 

been identified as the initial site of cellular and molecular adaptations in the brain 

following exposure to other drugs of abuse, such as cocaine (Macey et al., 2004). 

Specifically, it is thought that the more alcohol-induced DA that is released in the NAc, 

the greater the alcohol preference (Katner and Weiss, 2001). 

 The NAc is a heterogeneous structure comprised of two functionally distinct 

compartments, termed the shell and core (Figure 1.2), which have been characterized by 

histochemical, electrophysiological, in vivo neurochemical, morphological, and 

ultrastructural studies (Heimer and Alheid, 1991; Kelley, 2004; Zahm, 2000). The NAc 

contains various cell types, including GABAergic medium spiny projection neurons 

(MSNs), GABAergic interneurons, and cholinergic interneurons (Kawaguchi et al., 

1995). The studies contained in this dissertation will focus specifically on the role of 

accumbal cholinergic interneurons in alcohol drinking.  
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Figure 1.2. Schematic representation of a coronal section of the NAc in the mouse 

brain. The NAc (Bregma 1.10 mm) obtained from the mouse brain atlas (Franklin and 

Paxinos, 1997). The black boxes indicate the sample areas where quantifications were 

obtained for the core and shell NAc. 
 

.5.1 Shell and Core Compartments of the Nucleus Accumbens 

The shell NAc receives dense dopaminergic innervations from the VTA and 

lutamatergic input from the hippocampus, amygdala, and PFC (Amalric and Koob, 

993; Gerfen et al., 1987), and sends GABAergic projections to the VTA, extended 

mygdala [comprised of the shell NAc, central nucleus of the amygdala (CNA), 

ubstantia innominata (SI), and bed nucleus of the stria terminalis (BNST)] (Alheid and 

eimer, 1988; Koob, 1999), ventromedial ventral pallidum (VP) (Zahm and Heimer, 

990), lateral hypothalamus (LH), and mesencephalic tegmentum (Heimer et al., 1991). 

he shell is associated with limbic functions, via its efferent connections to the extended 

mygdala (Brog et al., 1993; Koob, 1999; Voorn et. al., 1986), the mediation of the 
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rewarding and reinforcing effects of drugs of abuse (McBride et al., 1999; Pontieri et al., 

1995), and alcohol self-administration (Janak et al., 1999).  

 The core receives inputs from the SN, amygdala, and PFC (Zahm, 2000), and 

projects to the dorsolateral VP, subthalamic nucleus, SN and entopeduncular nucleus 

(Berendse et al., 1992; Heimer et al., 1991; Zahm and Heimer, 1990). The core has 

traditionally been associated with motor functions due to its connections with the SN and 

entopeduncular nucleus (Heimer et al., 1991; Nirenberg et al., 1996). Recent studies, 

however, associate the core NAc with drug-seeking, possibly due to glutamatergic 

influences from the PFC (Kalivas and Volkow, 2005), and it is hypothesized that the core 

mediates the expression of learned behaviors in response to motivationally relevant 

stimuli (Di Ciano and Everitt, 2001; Kelley, 2004). Additionally, the core NAc is 

associated with drug-induced sensitization (Li et al., 2004; Robinson and Kolb, 2004) and 

related synaptic rewiring (Berlanga et al., 2006). 

 

1.5.2 Medium Spiny Projection Neurons of the Nucleus Accumbens 

 The major output neurons of the NAc are the GABAergic MSNs. Their cell 

bodies range in size from 15-20 microns with dendrites that can extend up to 500 

microns. MSNs make up 95% of the total striatal population and are the synaptic targets 

of the majority of inputs to the striatum and give rise to the outputs of the striatum. These 

cells receive glutamatergic afferents from the PFC, thalamus, hippocampus, and 

amygdala, and dopaminergic afferents from the SN and VTA. These cells send 

projections to many different brain regions, including the CNA, SI, BNST (Alheid and 

Heimer, 1988; Koob, 1999), VP, LH, mesencephalic tegmentum, SN, and entopeduncular 
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nucleus (Heimer et al., 1991; Zahm and Heimer, 1990), and are reciprocally connected 

with striatal cholinergic interneurons and other interneurons. Within the circuitry of the 

basal ganglia two different subtypes of MSNs have been characterized into the direct- 

and indirect-pathways (Gerfen, 1992). Neurons in the direct pathway express DA D1 

receptors and substance P and project primarily to the internal segment of the globus 

pallidus (GP) and SN, while neurons in the indirect pathway express DA D2 receptors 

and enkephalin and project to the external segment of the GP.  

 

1.5.3 Aspiny Cholinergic Interneurons of the Nucleus Accumbens 

 Cholinergic interneurons of the NAc make up only 1-2% of the total striatal 

population yet they are the largest cells in this area. Their widespread dendritic 

arborizations and axonal fields position these cells as important integrators and 

modulators of striatal functioning (Kawaguchi et al., 1995; Wilson et al., 1990). Striatal 

cholinergic interneurons possess several receptors, including DA receptors, which have 

been linked to plasticity, learning, and drug abuse (Alcantara et al., 2003; Berlanga et al., 

2005). These cells exhibit long-term potentiation (LTP) (Suzuki et al., 2001) and play a 

critical role in associative learning (Aosaki et al., 1994). Striatal cholinergic neurons 

receive synaptic input from the thalamus (Lapper and Bolam, 1992) in addition to 

glutamatergic inputs from the PFC, amygdala, and hippocampus (Kalivas, 2004). These 

cells then synapse onto MSNs and other striatal interneurons, thus providing a powerful 

influence on overall striatal signaling (Howe and Surmeier, 1995). 

 Pharmacological studies have demonstrated an effect of alcohol on acetylcholine 

(ACh) release, suggesting the importance of cholinergic interneurons in alcohol abuse 
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(Nestby et al., 1999; Stancampiano et al., 2004). Herring et al. (2004) revealed that these 

cells are activated by ethanol in a region-specific and dose-dependent manner. Studies 

included in this dissertation will focus on the effects of voluntary alcohol drinking on 

cholinergic interneurons in the NAc. A direct causal link between cholinergic 

interneurons and alcohol drinking, as demonstrated by selective destruction of these cells, 

is presented in Chapter 2 and neuroadaptive changes in cholinergic interneurons are 

examined throughout the remaining chapters. 

 

1.6 Dorsal Striatum 

The DS is a heterogeneous region that can be divided into medial and lateral 

subdivisions based on differential regulation of DA function (Cline et al., 1995), as well 

as connectivity. Dopaminergic cell bodies located in the VTA project primarily to the 

ventromedial region of the DS and shell NAc, while the dorsolateral region of the DS and 

core NAc are innervated by the SN (Gerfen et al., 1987). In addition to the VTA and SN, 

the DS also receives input from the dorsolateral PFC (Haber et al., 2000). The DS has 

traditionally been associated with motor function but recent studies have also elucidated 

its involvement in habit learning and long-term synaptic plasticity that underlies the 

progression towards habitual drug-seeking (Berke and Hyman, 2000; Everitt and Wolf, 

2002). Cue-induced DA release in the DS can trigger relapse into drug-taking behavior 

(Ito et al., 2002) and previous work in our laboratory found cholinergic interneurons of 

the ventromedial DS to be dose-dependently activated as early as the first session of 

cocaine self-administration (Berlanga et al., 2003). 
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1.7 Prefrontal Cortex 

The PFC has been implicated in a variety of brain processes including decision-

making, attention, working memory, premotor planning (Dalley et al., 2004; Goldman-

Rakic and Selemon, 1986), salience attribution, and inhibitory response control 

(Goldstein and Volkow, 2002). The PFC has also been associated with the motivational 

effects underlying drug-seeking, cue-induced drug craving, and vulnerability to relapse 

(Weiss et al., 2001). The prelimbic (PrL) region of the PFC receives dopaminergic 

projections from the VTA (Van Eden et al., 1987) and sends glutamatergic projections 

throughout the NAc which terminate most abundantly in the core NAc (Berendse et al., 

1992; Brog et al., 1993; Vertes, 2004), while infralimbic (IL) PFC glutamatergic fibers 

are located mostly in the shell NAc (Brog et al., 1993). Dopaminergic input from the 

VTA is reported to exert an inhibitory influence on PFC neurons either directly, by 

influencing cortical pyramidal cells, or indirectly via GABAergic influences onto 

pyramidal cells (Penit-Soria et al., 1987; Pirot et al., 1992). In turn, the PFC is thought to 

control drug use by exhibiting an inhibitory influence on subcortical brain regions such as 

the NAc and CNA. It has been proposed that the transition from voluntary substance 

abuse to compulsive intake occurs through the disruption of this inhibitory influence 

(Goldstein and Volkow, 2002; Jentsch and Taylor; 1999; Kalivas and Volkow, 2005). 

This is further supported by fMRI studies reporting alcohol-induced hypofunction of the 

frontal cortex (Volkow et al., 1990; Volkow et al., 1992; Volkow et al., 1994).  
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1.8 Animal Models of Alcohol Drinking 

 Since the 1960s experimenters have used various methods to try and induce high 

alcohol drinking in rodents. Some examples include continuous-access two-bottle choice 

in unselected rats (Boyle et al., 1994), intravenous (Numan and Naparzewska, 1984), 

intragastric, schedule-induced polydipsia (Falk et al., 1972), and prandial drinking 

(Meisch, 1975). All of these methods have been criticized; some for producing low 

ethanol intake (two-bottle choice in unselected rats, intravenous, and intragastric), and 

others for maintaining rodents at a reduced body weight (schedule-induced polydipsia, 

and prandial drinking). Alcohol self-administration is the most homologous model of 

human alcohol drinking, and the characterization of animals that are selectively bred for 

high alcohol intake has produced a model with high clinical validity and suggests that 

ethanol may be reinforcing for some rats.  

 While it is recognized that no animal model fully emulates a human alcoholic it is 

widely accepted that the individual features of alcoholism can be studied in animal 

models in great detail. Selective breeding creates a powerful genetic tool by 

concentrating influential genetic factors into a single animal line. Such models mimic 

aspects of human dependence such as craving, relapse, and the loss of control over 

drinking, and provide a means with which to pursue the underlying neurological basis for 

this complex disease. It is important to understand the neuronal systems that underlie 

alcohol drinking in animals selectively bred for, or genetically predisposed for high levels 

of alcohol intake. 
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1.8.1 C57BL/6J Mice 

     A growing interest in the genetic mechanisms underlying alcohol drinking has 

lead to increased study of rodent models of alcohol drinking (George, 1988; Grahame, 

2000; Risinger et al., 1998). Genetic variability exists in selectively outbred rodent 

models for alcohol consumption. Inbred mouse strains, such as the C57BL/6J mouse, 

minimize this variability by offering genetic homogeneity and provide important insights 

into the genetic and biochemical nature of alcohol abuse. The C57BL/6J mouse was not 

selectively bred for alcohol preference. Originally, the C57BL strain was used in cancer 

research (Stewart and Grupp, 1992) and was later found to be genetically predisposed for 

high alcohol drinking behavior (Ng et al., 1994), while also exhibiting a strong preference 

for morphine and cocaine (George and Goldberg, 1989; Horowitz et al., 1977). Out of 15 

mouse strains studied, C57BL/6J mice have demonstrated the highest voluntary alcohol 

consumption and alcohol preference (Belknap et al., 1993). 

 

1.8.2  Inbred Alcohol-Preferring (iP) Rats  

Rodents that are not selected for ethanol preference typically consume low 

amounts of ethanol when given the two-bottle choice method. Alcohol-preferring (P) and 

alcohol-non-preferring (NP) rats were derived through selective breeding from a 

heterogeneous Wistar strain using the continuous-access, two-bottle choice procedure 

(described below, 1.8.4). P rats meet all the criteria for an animal model of alcoholism, 

including voluntary intake of alcohol, willingness to work for alcohol through operant 

responding, and the development of tolerance and dependence through free-choice 

drinking (Murphy et al., 2002). P rats have been reported to consume at least 5 g 
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alcohol/kg/d and attain blood alcohol concentrations of 50 to 200 mg% (Murphy et al., 

2002). Inbred alcohol-preferring rats (iP) were developed from the P line and studies 

suggest that behaviors in iP rats, such as high-alcohol drinking, resemble those of the 

parent line (Edenberg et al., 2005). Inbred strains are useful for reducing genetic 

variability among individual animals, thus providing insight into the genetic and 

biochemical properties of alcohol drinking. Female iP rats were used in studies discussed 

in Chapter 5 of this dissertation. Females have been shown to consume more alcohol, in 

grams per kilogram of body weight, than male P rats (McKinzie et al., 1998a; McKinzie 

1998b).  

 

1.8.3 Initiation Alcohol Drinking 

The studies presented in this dissertation use two different voluntary alcohol 

drinking models. The phrases ‘initiation alcohol drinking’ and ‘binge alcohol drinking’ 

are used to distinguish between the two models. Initiate can be defined as, “to cause or 

facilitate the beginning of” (“initiate,” Merriam-Webster Online Dictionary, 2007). The 

initiation drinking paradigm employed in these studies was termed initiation drinking in 

an effort to model the time around when one begins to drink alcohol. This paradigm uses 

the standard continuous-access, two-bottle choice procedure. The two-bottle choice 

procedure is the most widely used and straightforward approach to model human alcohol 

consumption in animals. Using this method, animals in the experimental group are given 

continuous, 23-24 hours/day, access to two bottles; one containing 10% (v/v) ethanol and 

the other containing water. The control group has continuous access to two bottles but 

they both contain water, and food is available ad libitum for both groups. Since 
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experimental animals in the initiation drinking studies consume alcohol over the course 

of 23-24 hours a day it is not clear when or if the animals drink to pharmacologically 

significant levels (BECs > 0.8 mg.ml blood), because drinking is most likely episodic. 

The initiation drinking model used throughout the studies in this dissertation was 

therefore interested in examining the effects of moderate alcohol drinking on neuronal 

changes in DA D2 receptor and Cdk5 expression, specifically in cholinergic interneurons 

of the NAc. 

 

1.8.4 Binge Alcohol Drinking 

While traditional rodent models of alcohol self-administration allow for the 

investigation of neuroadaptive changes that occur over the course of days, weeks, or 

months, these models rarely produce pharmacologically significant blood ethanol 

concentrations (BECs › 0.8 mg/ml blood) over extended periods of time. A fundamental 

component of alcoholism is loss of control over alcohol consumption (National Institute 

on Alcohol Abuse and Alcoholism, 2001), which often involves binge drinking. Binge 

alcohol drinking is defined as a pattern of alcohol consumption that results in BECs of 

0.08% (equivalent to 0.8 mg/ml blood) or above and usually corresponds to 4 or more 

drinks for women and 5 or more drinks for men in about 2 hours (National Institute of 

Alcohol Abuse and Alcoholism, 2004). In the United States alone an estimated 57 million 

people, aged 12 and over, participated in binge drinking in the past month (Substance 

Abuse and Mental Health Services Administration, 2007). Binge alcohol drinking 

produces high BECs in alcohol abusers which, when repeated, may ultimately lead to 

neuroadaptations that further drive behaviors such as compulsive drinking, craving and 
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relapse. One goal of alcohol research is to identify neuronal changes that occur with 

binge drinking. It therefore becomes important to develop an animal model of binge 

drinking.  

 A procedure, termed Drinking in the Dark (DID), was recently developed 

(Rhodes et al., 2005) in an effort to mimic binge alcohol drinking. Using this procedure a 

majority of C57BL/6J mice drink to a BEC above 1 mg/ml blood each day. This 

procedure will be discussed in more detail in Chapter 2 (section 2.3.3). Briefly, the home 

cage water bottle is replaced with a bottle containing 20% ethanol (v/v) for 2 hours (days 

1 - 3) or 4 hours (days 4 - 28) starting 3 hours after lights off. At the end of the alcohol 

drinking session, intakes are recorded and the home cage water bottles are put back in 

place.   

   

1.9 Cholinergic Cell Ablation 

Previous studies have used mu p75-saporin, a ribosome-inactivating toxin, to 

study the functional role of the cholinergic system. This toxin has been shown to induce 

selective loss of cholinergic neurons in mice (Berger-Sweeney et al., 2001; Hunter et al., 

2004). Studies investigating the role of the basal forebrain cholinergic system have found 

that this toxin not only selectively destroys cholinergic neurons but it also induces 

cognitive impairment in mice; two characteristics that are often used to model disorders 

such as Alzheimer’s disease (Berger-Sweeney et al., 2001). 

 Selective removal of accumbal cholinergic interneurons provides a useful animal 

model for studying the role of these neurons in alcohol abuse. Recent studies have 

implicated cholinergic interneurons in the NAc as key substrates underlying drug self-
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administration (Berlanga et al., 2003; Smith et al., 2004). Cholinergic cell ablation, by 

immunotoxin-mediated cell targeting, enhanced long-lasting behavioral changes of 

cocaine (Hikida et al., 2001) and morphine abuse (Hikida et al., 2003), impaired 

procedural learning and working memory (Kitabatake et al., 2003), and increased 

sensitivity to low doses of cocaine (Smith et al., 2004). Specifically, studies using 

cholinergic cell ablated rodents have measured cocaine induced conditioned place 

preference, motor sensitization (Hikida et al., 2001; Hikida et al., 2003), and cocaine self-

administration (Smith et al., 2004), yet these studies have not been carried out in 

conjunction with voluntary alcohol drinking. Altogether these findings suggest that 

accumbal cholinergic neurons are directly involved in various behaviors associated with 

drugs of abuse, and implicate the potential role for these cells in alcohol drinking.  

 

1.10  Motor Impairment  

 Motor impairment (ataxia) resulting from alcohol exposure is one of the most 

readily observable features of alcohol intoxication. While complex in nature, this 

behavior is often used to measure behavioral intoxication in rodents (Crabbe et al., 2003; 

Crabbe et al., 2005; Cronise et al., 2005; Rustay et al., 2003a; Rustay et al., 2003b). The 

DID model of binge alcohol drinking, which leads to BECs above 1 mg/ml, has been 

shown to cause behavioral intoxication, as measured by impaired performance on the 

rotarod and balance beam (Rhodes et al., 2005). Motor impairment resulting from alcohol 

drinking and cholinergic cell ablation, as measured by performance on the rotarod, was 

examined in Chapter 2 of this dissertation.  
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1.11  cFos 

 The immediate early gene (IEG) c-fos is often used as a marker for cellular 

activity (for review, see Curran and Morgan, 1995). Maximal expression occurs between 

1 and 3 hours after stimulation, and detectable levels of Fos (the phosphoprotein product 

of c-fos) are low under basal conditions (Hughes et al., 1992). Studies examining 

activation of brain regions following alcohol exposure have used immunocytochemical 

labeling of c-fos (McBride, 2002).  

 In a previous study we investigated the effects of varying acutely administered 

intraperitoneal (i.p.) doses of alcohol on cellular activation using Fos immunoreactivity 

(IR) (Herring et al. 2004). This study focused on neuronal activation in brain regions that 

have been implicated in the reinforcing and anxiolytic effects of alcohol abuse; the 

extended amygdala and hypothalamus. Various neuroanatomical studies have examined 

Fos IR of the extended amygdala after systemic administration of alcohol (Chang et al., 

1995; Knapp et al., 2001; McBride, 2002; Ryabinin et al., 1997), few have investigated 

the involvement of particular cell types within these regions (Criado and Morales, 2000; 

Morales et al., 1998), and none have examined neuronal activation in cholinergic 

interneurons. This study was therefore primarily interested in testing the hypothesis that 

cholinergic neurons in the NAc are putative targets for alcohol. Alcohol induced 

activation of cholinergic neurons was examined in the NAc (Figure 1.2), and other 

regions, using dual-label Fos ICC procedures. In addition, using single-label Fos ICC 

procedures, neuronal activation was measured in these brain regions irrespective of cell 

type. For the purposes of this discussion data from the dual-label [choline 

acetyltransferase (ChAT)/Fos] NAc are presented (Table 1.1), although significant 



increases in single-label c-fos expression were also observed in other brain regions 

(Herring et al., 2004).  

A 1 g/kg dose of ethanol lead to a significant increase in the percentage of Fos-

positive cholinergic neurons in the shell NAc, while a 2 g/kg dose caused a significant 

increase in accumbal Fos-positive neurons, irrespective of cell type. These findings 

revealed a region-specific and dose-dependent change in Fos IR following acute ethanol 

exposure. This study identified the specific activation of cholinergic neurons of the shell 

NAc which lead to the development of studies designed to examine the effects of 

voluntary alcohol drinking in this brain region.  

 

Table 1.1. Percent of Fos-Positive Cholinergic Neurons 
in the Shell NAc Following i.p. Administered Saline 
or Ethanol

Shell Nucleus Accumbens
saline 28.6 ± 5.2
0.5 g/kg EtOH 32.8 ± 3.9
1.0 g/kg EtOH    46.5 ± 5.6**
2.0 g/kg EtOH 32.2 ± 4.6

Data are presented as mean number of Fos-positive cholinergic
neurons per sample area ± SEM for the 7-8 rats per group.
**p <0.01 versus saline control; Dunnett's planned comparisons.  
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1.12  Dopamine Receptors 

 DA receptors are critical links between extracellular events and intracellular 

biochemical cascades that underlie long-term neuronal plasticity. DA exerts its effects 

through the activation of two pharmacologically distinct classes of receptors: DA D1-like 

receptors (D1 and D5) and D2-like receptors (D2, D3, and D4). These receptors are G-

protein coupled and can be differentiated based on their coupling to adenylyl cyclase. In 

general, stimulation of the DA D1 receptor activates adenylyl cyclase while the DA D2 

receptor inhibits adenylyl cyclase activity (Missale et al., 1998). ACh release is increased 

by DA D1-like agonists (Consolo et al., 1999), while DA D2-like activation has been 

shown both in vivo and in vitro to inhibit ACh release (Bertorelli and Consolo, 1990; 

Gorell and Czarnecki, 1986; Stoof et al., 1987).  

 

1.13  Dopamine D2 Receptor Subfamily 

 The DA D2 receptor is the predominant D2-like subtype in the brain with the 

largest concentrations found in the striatum, substantia nigra (SN), and VTA (Diaz et al., 

1995; Gurevich and Joyce, 1999; Landwehrmeyer et al., 1993). Studies utilizing animal 

models of alcoholism, as well as those with humans, have implicated the importance of 

DA receptors in alcoholism. DA D2 receptors in particular have been associated with 

alcohol drinking (Thanos et al., 2001; Thanos et al., 2004), withdrawal (Sousa et al., 

1999), and the reinforcing effects of alcohol (Crabbe and Phillips, 1998; McBride et al., 

1993; Nowak et al., 2000; Stefanini et al., 1992), as well as drug-seeking and relapse (De 

Vries and Shippenberg, 2002; De Vries et al., 2002; Self et al, 1996). 
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 Numerous animal studies have shown that alcohol-preferring animals have lower 

DA D2 levels, particularly in the limbic areas, when compared to their non-preferring 

counterparts (for review see Tupala and Tiihonen, 2004). Low levels of DA D2 could 

predispose these animals to consume excessive amounts of alcohol in an effort to 

compensate for their subnormal level of DA function. Moreover, Thanos and colleagues 

(2001; 2004) reported that overexpression of the DA D2 gene in the core NAc attenuated 

alcohol drinking in P rats, suggesting that high DA D2 levels may be protective against 

alcohol abuse. Similarly, DA D2 agonists have been shown to decrease, while DA D2 

antagonists increase alcohol intake in both high alcohol drinking (HAD) rats and P rats 

(Dyr et al., 1993; Levy et al., 1991). DA receptors in the NAc are targeted by 

dopaminergic terminals of the mesolimbic DA system, and the aforementioned studies 

suggest that these receptors are important components of alcohol drinking. 

 

1.14  Cyclin dependent kinase 5  

 Fos-related antigens (FRAs), another class of Fos-like proteins, are induced by 

chronic drug administration (Hope et al., 1994; Nye et al., 1995; Nye and Nestler, 1996) 

and are more stable than the Fos-like proteins. ∆FosB, a splice variant of FosB, 

accumulates in the striatum in response to repeated exposure to drugs of abuse and 

persists for weeks or months even after the drug is withdrawn (Nestler et al., 2001). 

 Cdk5 is a downstream target of ∆FosB (Bibb et al., 2001) and it has been shown 

to regulate various signal transduction mechanisms associated with neuroplasticity (Bibb, 

2003) including neurotransmitter release (Tomizawa et al., 2002), LTP induction (Li et 
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al., 2001), and associative learning (Fischer et al., 2002). Furthermore, Cdk5 is 

upregulated in the mouse striatum in response to chronic cocaine exposure and in 

transgenic mice overexpressing ∆FosB (Bibb et al., 2001), and is necessary for dendritic 

spine plasticity in the NAc of the rat (Norrholm et al., 2003). Cdk5 is a potential marker 

of neuronal plasticity, however the effects of alcohol drinking on Cdk5 expression has yet 

to be studied with the exception of previous work in our laboratory (Camp et al., 2006), 

and a study, using Western blot analysis, by Rajgopal and Vemuri (2001) that reported an 

increase in Cdk5 activity in the cerebral cortex and cerebellum of Wistar rats following 

chronic alcohol drinking.  
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Chapter 2: Cholinergic Cell Ablation in the Nucleus Accumbens Attenuates Binge 

Alcohol Drinking in C57BL/6J Mice 

 

2.1  Abstract 

 Many studies have identified various brain regions that are targeted by alcohol 

and other drugs of abuse. One such brain region, the NAc, has long been identified as a 

primary area associated with the reinforcing effects of alcohol and other drugs of abuse 

(Di Chiara and Imperato, 1988; Koob, 2003; Koob and Bloom, 1988; Pontieri et al., 

1995; Rassnick et al., 1992). While the NAc has been identified as an important brain 

region underlying alcohol drinking, the roles of specific cell types within this region have 

not been investigated. Cholinergic interneurons in the NAc are important neuronal 

integrators and modulators of striatal functioning (Kawaguchi et al., 1995; Wilson et al., 

1990). Pharmacological studies demonstrate the effects of alcohol on ACh release in the 

NAc (Nestby et al., 1999) and PFC (Stancampiano et al., 2004), and cholinergic neurons 

are activated following acute alcohol exposure (Herring et al., 2004).  

 The purpose of this study was to examine whether cholinergic neurons of the NAc 

are directly involved in alcohol drinking by selectively destroying cholinergic cells with 

the immunotoxin mu p75-saporin. Mice received bilateral microinjections of either mu 

p75-saporin or saline. Animals then underwent 1 month of binge alcohol drinking using 

the Drinking in the Dark (DID) model. To examine motor impairment animals were 

placed on the fixed speed rotarod every other day immediately following the alcohol 

access period and latency to fall was recorded.  
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 Selective destruction of cholinergic neurons of the NAc produced a 26% decrease 

in alcohol drinking compared to saline microinjected controls. Cholinergic cell 

eliminated mice also fell from the rotarod 24% sooner than controls. These findings 

provide evidence of a causal link between cholinergic interneurons and alcohol drinking 

and establish the basis for cholinergic targeted pharmacotherapeutic treatments designed 

to attenuate compulsive binge drinking. 

 

2.2  Introduction 

 Various brain regions and molecular mechanism that underlie different stages of 

alcohol abuse have been identified, yet the role of specific cell types within these areas is 

not well understood. Identifying the involvement of specific cell types and 

neuroadaptations within those cells in voluntary alcohol drinking should improve our 

understanding of the cellular and molecular basis of behaviors such as compulsive 

alcohol drinking. One brain region that has long been associated with the reinforcing 

effects of alcohol is the NAc (Di Chiara and Imperato, 1988; Koob, 2003; Rassnick et al., 

1992). The NAc contains a specific population of cells, cholinergic interneurons, which 

have largely been overlooked in alcohol research. Cholinergic interneurons have recently 

been implicated in alcohol and drug use (Berlanga et al., 2003; Camp et al., 2006; 

Herring et al., 2004; Hikida et al., 2001; Hikida et al., 2003; Mark et al., 1999; Nestby et 

al., 1999; Smith et al., 2004; Stancampiano et al., 2004), and are putative cells to examine 

as potential mediators of alcohol drinking.  

 Studies examining ablation of cholinergic neurons of the NAc demonstrate that 

destruction of these cells produce enhanced cocaine- and morphine-induced sensitivity to 
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drug-related place preference and cocaine-induced motor sensitization in mice (Hikida et 

al., 2001; Hikida et al., 2003). In addition, Smith et al. (2004) reported a leftward shift in 

cocaine self-administration in rats. Collectively, these studies suggest the importance of 

cholinergic interneurons in the modulation of drug-related behaviors, yet the effects of 

accumbal cholinergic cell ablation on alcohol drinking have not been examined.  

 The present study was therefore designed to establish a causal role of cholinergic 

interneurons in the NAc on alcohol drinking using a model of binge alcohol drinking. 

Cholinergic interneurons of this brain region were selectively destroyed, using the 

immunotoxin mu p75-saporin, to test the hypothesis that removal of the accumbal ACh 

signal would cause a decrease in alcohol drinking in C57BL/6J mice. A pilot ablation 

study was performed to verify correct placement of the injection sites and to determine if 

the immunotoxin mu p75-saporin successfully destroyed cholinergic interneurons in the 

NAc. Mu p75-saporin is a compound that consists of a molecule of saporin, a ribosome-

inactivating toxin, combined with a rat monoclonal antibody that binds to the 

extracellular domain of murine p75 (Berger-Sweeney et al., 2001). This immunotoxin 

destroys cholinergic neurons by inhibiting protein synthesis (Wiley et al., 1991).

 While it was hypothesized that cholinergic cell ablation would cause a decrease in 

alcohol drinking, the possibility existed for an increase in drinking. C57BL/6J mice were 

used in this study because they innately consume high amounts of alcohol and have been 

shown to drink enough alcohol to produce pharmacologically significant BECs (above 

0.8 mg/ml blood) in the DID paradigm (Rhodes et al., 2005). If accumbal cholinergic cell 

ablation caused an increase in drinking, a ceiling effect was likely to occur where 

increases would not be detected due to the high amount of alcohol innately consumed by 
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these animals. In order to detect either an increase or a decrease in drinking, effects of the 

ablation were also examined in BALB/cByJ mice, a strain that consumes intermediate 

amounts of alcohol.  

Collectively, the studies presented in this dissertation hypothesize that alcohol-

induced neuroadaptive changes on cholinergic neurons of the NAc regulate striatal 

neurons and signaling mechanisms which translate to behaviors such as drug-seeking or 

compulsive alcohol drinking. The aim of the present study was to establish a causal role 

for accumbal cholinergic interneurons in alcohol drinking. These data have been 

presented in preliminary form (Camp and Alcantara, 2007). 

 

2.3  Materials and Methods 

2.3.1  Animals 

Fourteen male C57BL/6J mice (18.7-22.9 g) and fourteen male BALB/cByJ mice 

(20.6-25.2 g) were purchased from The Jackson Laboratory (Bar Harbor, ME). 

Cholinergic cell ablation did not produce a change in alcohol drinking in the BALB/cByJ 

mice. These animals consume intermediate amounts of alcohol. We potentially observed 

a floor effect in this strain where differences may not have been detected due to the low 

to intermediate quantities of alcohol consumed by this strain. Therefore, only data from 

the C57BL/6J mice are presented. Mice were individually housed in standard cages in a 

temperature- and humidity-controlled room under a reverse 12 hour light/dark cycle 

(lights on 21:00 h). Mice were between 7 and 8 weeks old at the start of the experiment 

and food was available ad libitum. All experimental procedures complied with guidelines 
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specified by the National Institutes of Health and were performed under an institutionally 

reviewed and approved research protocol. 

 

2.3.2  Surgical Procedures and Cholinergic Cell Ablation 

2.3.2.1 Stereotaxic Surgery 

All animals were anesthetized with a ketamine (117 mg/kg) and xylazine (7.92 

mg/kg) solution (from Thiele et al., 2003) administered i.p. When the animals were fully 

anesthetized, as verified by tail pinch and corneal response, they were placed in a 

stereotaxic apparatus. The scalp was swabbed with betadine, and Lidocaine HCL was 

injected subcutaneously at the surgical site. An incision into the skin overlying bregma 

was made and the scalp was pulled back and secured with surgical clamps. Small holes 

were made in the skull aimed at the shell NAc using the following stereotaxic 

coordinates: anteroposterior, +1.1; mediolateral, ±1.0; dorsoventral, -4.5 (Franklin and 

Paxinos, 1997).  

 

2.3.2.2 Cholinergic Cell Ablation 

The immunotoxin 192 IgG-saporin, directed against the rat p75 nerve growth 

factor receptor, has been used to study the functions of the cholinergic system in rats 

(Beaulé and Amir, 2002; Smith et al., 2004; Wiley, 1992; Wrenn and Wiley, 1998). 

Saporin, bound to an antibody against the mouse p75 receptor, was used in the present 

experiment to selectively destroy cholinergic neurons in mice (Berger-Sweeney et al., 

2001). Animals received bilateral microinjections into the NAc of either anti-murine-p75-

saporin or saline. The neurotoxin was dissolved in saline immediately before injection 
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and saline alone was injected into controls. A volume of 0.5 µL of saporin (3.6 µg) or 

saline was injected into each hemisphere. Microinjections were administered using a 

precision micro infusion pump at a rate of 0.2 µl/min. [0.5 µL into each hemisphere for a 

total of 1 µL (3.6 µg of toxin)]. The injection needle was left in place for 5 minutes to 

allow for diffusion of the liquid. The scalp was then sutured using about 5 closely placed 

and trimmed sutures of 3-0 nylon monofilament. Antibiotic ointment containing 

Pramoxine HCL (an analgesic) was then applied to the skin at and near the incision site. 

Mice were monitored and allowed to recover for 1 week.  

 

2.3.2.3 Verification of Effective Ablation 

After animals were perfused, brain tissue was immunolabeled for ChAT and all 

remaining cholinergic cells were quantified in order to demonstrate the effectiveness of 

the ablation (Figure 2.1). A thorough anterior to posterior examination of the NAc 

(Bregma 1.54 mm - 0.86 mm) was performed for each animal. This enabled us to 

compare the number of cholinergic interneurons between the saline-treated controls and 

the experimental animals throughout the full extent of the NAc. A visual examination of 

the striatum, including the DS, was performed and the lesion appears to be confined to 

the region of the NAc medial and ventral to the anterior commissure (Figure 2.2). 

Verification of cannula placement was visible with ChAT IR.  
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Figure 2.1. Representative photomicrographs from the NAc (Bregma 1.10 mm) 

following microinjections of saline or mu p75-saporin.  (A) saline-treated control 

and (B) saporin-treated C57BL/6J mouse. Scale bars = 100 µm. 

 

 

 

 



Figure 2.2. Schematic representation of the extent of saporin lesions in the NAc 

of C57BL/6J mice. The spread of the lesion is indicated by the grey circles. Top, 

coronal brain section (Bregma 1.10 mm); bottom, sagittal brain section (Lateral 0.96 

mm). Figures adapted from Franklin and Paxinos (1997). 
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2.3.3  Model of Binge Alcohol Drinking Design and Procedures 

 One week after surgeries animals were administered alcohol using the Drinking in 

the Dark (DID) schedule of binge alcohol drinking. For the first three days the DID 

procedure was as follows: Three hours into the dark cycle (12:00 h) the home cage water 

bottle was replaced with an identical bottle containing 20% (v/v) ethanol solution. The 

ethanol bottle remained in place for 2 hours. At the end of the 2 hour session intakes were 

recorded, animals were weighed, and home cage water bottles were put back into place. 

On the 4th day procedures were the same as before except that the 20% ethanol solution 

was left in place for 4 hours. Mice remained on the 4 hour ethanol schedule for the 

remainder of the month. BECs were collected and analyzed immediately upon removal of 

ethanol on the last drinking day.    

 

2.3.4  Blood Ethanol Concentrations 

Retro-orbital blood samples were collected from each animal immediately 

following the alcohol access period on the last drinking day using 25 µL heparinized 

capillary tubes. Next, 10 µL of blood from each animal were pipeted into separate gas 

chromatography vials containing 90 µL of saline. BECs were determined using gas 

chromatography as previously described by Tang et al. (2003). The blood samples were 

analyzed by a Varian CP 3800 gas chromatograph with a Varian 8200 headspace 

autosampler and flame ionization detector. An INNOWAX capillary column (30 m X 

0.53 mm X 0.1 µm film thickness) was used along with an absorbing/desorbing SPME 

fiber assembly. The fiber coating was 75 µm Carboxen-PDMS. The retention time of 

ethanol was approximately 1.8 min. The concentration of ethanol was quantified by 
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constructing a standard curve consisting of 0.3125, 0.625, 1.25, 2.5, 5.0, 10.0, 20.0, and 

40.0 mM ethanol.  

 

2.3.5  Rotarod Design and Procedures 

 An Economex Rota Rod (Columbus Instruments, Columbus, OH) was used for 

the fixed speed rotarod test and the design of this study was adapted from Cronise and 

colleagues (2005). The rotating rod was 4 cm in diameter with a 40 cm fall height. The 

day before surgeries to microinject either saporin or saline into the NAc all mice were 

trained to criterion at 10 RPM. Specifically, mice were given 6, 30-second (s) trials at 10 

RPM with 30 s intervals between trials. Next, mice had to remain on the rod at 10 RPM 

for 3, 3-minute (min) trials. Latencies to fall were recorded. A criterion of a maximum of 

16 training trials for the 3 x 3-min was used. If mice did not reach criterion within 16 

trials they were to be excluded from the study. After training at 10 RPM, mice were given 

1 trial at a fixed speed of 15 RPM. Mice were then tested following each water or alcohol 

access period on days 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27 at both 10 RPM 

and 15 RPM. They were given 3 trials (1 trial at 10 RPM and 2 at 15 RPM) with a ceiling 

of 3 min each. Latencies to fall were recorded at each RPM, and latencies were averaged 

in the 15 RPM condition to derive daily performance.  

 

2.3.6  Tissue Preparation 

 The day after the last drinking day animals were anesthetized with an i.p. 

injection of sodium pentobarbital and perfused transcardially with 15 mL of 0.1 M 

phosphate-buffered saline (PBS; pH 7.4), followed by 185 mL of 4% 
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paraformaldehyde/0.1% glutaraldehyde in PBS. The brains were immediately removed 

and postfixed for 2 hours in 4% paraformaldehyde in PBS. Vibratome sections (50 µm 

thick) were taken and placed in a cryoprotectant solution and stored for 24 hours at 4°C 

and then stored at -20°C. Tissue was later processed for light microscopy using single 

ChAT immunoperoxidase labeling procedures. 

 

2.3.7  Single ChAT Immunoperoxidase Labeling 

 Light microscopy single-labeling immunoperoxidase procedures were performed 

on free-floating tissue sections that were rinsed in 0.1 M PBS (2 × 10, 3 × 5 minutes) and 

preincubated for 1 hour in a PBS blocking solution containing 5% normal goal serum 

(NGS) and 0.01% H2O2. Sections were then incubated overnight at 4°C in an affinity-

purified mouse anti-ChAT monoclonal antibody (1:1,000; Chemicon, Temecula, CA) 

diluted in the 5% NGS/PBS blocking solution. The tissue was subsequently rinsed in PBS 

(4 × 5 minutes and similarly rinsed after each step). Sections were then incubated in 

secondary biotinylated donkey anti-mouse immunoglobulin (IgG) antiserum (1:500; 

Jackson ImmunoResearch, West Grove, PA), diluted in 2% NGS/PBS for 2 hours, and 

then incubated in avidin–biotin complex (ABC; Vectastain Elite kit, Vector Laboratories, 

Burlingame, CA) for 1 hour. ChAT IR was visualized with 0.05% 3,3'-diaminobenzidine 

tetrahydrochloride (DAB) and 0.01% H2O2 in PBS, which resulted in a brown reaction 

product. 
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2.3.8  Quantitative and Statistical Analysis 

 For each animal, quantifications of single ChAT immunoperoxidase-labeled brain 

tissue were performed in the shell and core regions throughout the NAc in regions 

corresponding to Bregma 1.54 mm – 0.86 mm (Franklin and Paxinos, 1997). The left and 

right hemispheres were quantified from an average of 3 brain sections per animal. Digital 

images representing areas of 0.45 × 0.45 mm were acquired with a 20 × objective (800 × 

working magnification) from both hemispheres of the NAc. Two digital images were 

acquired for quantification from left and right hemispheres of the core NAc (Bregma 1.10 

mm), and three digital images were acquired from both hemispheres of the shell NAc 

(1.10 mm). All images were stored and analyzed by observers blind to group assignment. 

In quantifying these single ChAT IR regions, the observers counted all cells that 

expressed ChAT staining within the left and right hemispheres of both the core and shell 

NAc. An average number for the sample areas per brain region, averaged across both 

hemispheres, was calculated for each animal. The group averages were subsequently 

calculated for each brain area of interest. 

Daily session intakes of alcohol and water were calculated for each animal. 

Alcohol intakes were calculated in grams of alcohol per kilogram of body weight (g/kg). 

Latencies to fall from the rotarod were recorded at each RPM. All values are reported as 

means ± standard error of the mean (SEM). Statistical analysis of the alcohol drinking 

data was performed for days 8-28. This allowed 1 week for the immunotoxin, saporin, to 

be completely effective. A two-way repeated measures analysis of variance (ANOVA) 

was used to analyze alcohol and water drinking across days and between groups, 

behavioral measures of motor impairment, and body weight. Group (saporin or saline) 
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was used as the between-subjects factor and day, or trial, was used as the within-subjects 

factor. Student’s t-test was used identify a significant change in ChAT expression 

following bilateral microinjections of either saporin or saline.    

 

2.4  Results 

2.4.1 Single ChAT Immunoreactivity 

 Single ChAT IR was examined in the shell and core regions of the NAc to verify 

effectiveness of the mu p75-saporin ablation. Mean number of ChAT IR neurons in saline 

treated controls was 5.16 ± 0.12, while in the saporin-treated the mean was 1.29 ± 0.05 

(Figure 2.3). Mu p75-saporin produced an average loss of 75% [t(12) = 29.27, p<0.0001, 

2-tailed].  



 

***

 
Figure 2.3. Average number of ChAT immunoreactive neurons following 

bilateral microinjections of saline or mu p75-saporin. Mu p75-saporin caused a 

75% loss of cholinergic neurons in the NAc. Data are presented as mean number of 

cholinergic neurons per optical field ± SEM in C57BL/6J mice (***p<0.0001).  

 

 38



 39

2.4.2  Model of Binge Alcohol Drinking 

 Average daily intake of ethanol ± SEM for cholinergic cell eliminated C57BL/6J 

mice was 5.71 ± 0.5 g/kg, while saline treated mice consumed 7.76 ± 0.58 g/kg. 

Cholinergic cell eliminated mice showed a 26% decrease in alcohol drinking compared to 

saline microinjected controls (p<0.05) (Figure 2.3). There was no significant difference in 

water drinking (Figure 2.4), suggesting that changes seen in alcohol drinking were not 

due to overall fluid consumption.  

 A blood sample was taken from each animal immediately following the alcohol 

access period on the last drinking day to determine BECs. In the saline treated control 

group BECs were above 1.0 mg/ml in three out of seven mice and one BEC was 0.93 

mg/ml. In the saporin treated group the BEC of one animal was 2.23 mg/ml and another 

was 0.86 mg/ml. BECs of the other five animals were much lower.  

.  

 



 
Figure 2.4. Alcohol consumption in saline- and saporin-treated C57BL/6J 
mice. All animals underwent 1 month of binge alcohol drinking. Main effect of 
group for days 8-28, p<0.05. Mean values ± SEM are shown.  

 

 
 
 

 
 
 Figure 2.5. Water consumption in saline- and saporin-treated C57BL/6J mice. 

Mean values ± SEM are shown.   
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2.4.3  Rotarod 

 Cholinergic cell eliminated mice fell from the 15 RPM rotarod 24% sooner than 

controls (p<0.05). Latency to fall increased in both groups over the course of 14 trials 

(p<0.0001), and there was no interaction between group and trial (Figure 2.5). There 

were no significant differences between groups at 10 RPM.  

 

 

 

 

 

Figure 2.6. Latency to fall from the fixed speed rotarod at 15 RPM. Main 

effects of group (p<0.05) and main effect of time (p<0.0001). Mean values ± SEM 

are shown. 
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2.5  Discussion 

 The present study examined the effects of accumbal cholinergic cell ablation on 

binge alcohol drinking in C57BL/6J mice. Many procedures have been developed to 

increase ethanol intake in rodents but they often involve periods of water and/or food 

restriction, or sucrose fading, and they rarely produce pharmacologically significant 

BECs. The DID model of binge alcohol drinking employed in this study is a simple 

procedure that does not require food or water restriction and leads to pharmacologically 

significant drinking in C57BL/6J mice (Rhodes et al., 2005). 

 One major goal of alcoholism research is to identify the underlying cellular and 

molecular basis of this complex disease in order to develop improved 

pharmacotherapeutic treatments. The NAc, a brain region involved in the reinforcing 

effects of alcohol (Di Chiara and Imperato, 1988; Koob, 2003; Rassnick et al., 1992), 

contains a cell population, cholinergic interneurons, which have not been thoroughly 

studied in alcohol research. Cholinergic interneurons are important integrators and 

modulators of striatal functioning (Kawaguchi et al., 1995; Wilson et al., 1990), and have 

recently been implicated in studies on alcohol (Camp et al., 2006; Herring et al., 2004; 

Nestby et al., 1999; Stancampiano et a., 2004) and other drugs of abuse (Berlanga et al., 

2003; Hikida et al., 2001; Hikida et al., 2003; Mark et al., 1999; Smith et al., 2004). 

These cells were therefore of interest to examine as potential underlying mediators of 

alcohol drinking. 

 Previous cholinergic cell ablation studies revealed an increase in cocaine-induced 

locomotor activity, and robust conditioned place preference with a lower dose of cocaine 

(Hikida et al., 2001) or morphine (Hikida et al., 2003), when compared to controls. 
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Additionally, cholinergic cell elimination has been shown to produce a leftward shift in 

cocaine self-administration (Smith et al., 2004). These findings show that ACh from 

cholinergic cells of the NAc is involved in the neural responses that underlie cocaine- and 

morphine-induced behaviors. It is hypothesized that accumbal cholinergic interneurons 

are potentially one of the key elements that contribute to homeostatic regulation of the 

NAc in response to drugs of abuse. Removing ACh from the NAc potentially strengthens 

the DA response to drugs of abuse, thus increasing sensitivity to drug-induced behavioral 

changes. Ablation studies have not been carried out in conjunction with alcohol. Alcohol, 

however, shares the characteristic with these other drugs of abuse of being rewarding in 

animals and humans. When the NAc undergoes plasticity, as may occur through alcohol 

drinking, the function of the cholinergic system may become compromised and drive 

such behaviors as compulsive alcohol drinking. In the present study, cholinergic cell 

ablation caused a decrease in ACh which was hypothesized to increase sensitivity to 

alcohol, thus resulting in a decrease in alcohol drinking.  

The rotarod is one of the most commonly used behavioral tests of motor 

incoordination (Bogo et al., 1981; Rustay et al., 2003b). Rhodes et al. (2005) 

demonstrated that DID produces behavioral intoxication in C57BL/6J mice, as measured 

by motor impairment on a rotarod test similar to the one employed in the present study. 

Motor impairment was measured both within and between groups at 10 RPM and 15 

RPM. Since it has been established that DID produces behavioral intoxication, the 

present study sought to examine if cholinergic cell ablation causes further motor 

impairment. Cholinergic cell eliminated mice fell from the rotarod significantly sooner at 

15 RPM, but not at 10 RPM. The rotarod task at 10 RPM may not have been challenging 
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enough to detect a significant difference between the groups. Alternatively, a difference 

at 10 RPM may not have been detected since the majority of training was conducted at 

this speed. Animals had more practice on the rotarod at 10 RPM which may have 

increased their latencies to fall. Differences detected between saporin- and saline-treated 

mice at 15 RPM were most likely due to a motor deficit rather than intoxication. It took 

about 7 g/kg alcohol in 4 hours to reach BECs of 1.0 mg/ml. On average, animals in the 

saporin group consumed less than 7 g/kg suggesting that the shorter latencies to fall were 

due to cholinergic cell ablation-induced motor deficits and not intoxication. There was 

also a significant main effect of time indicating that, over the course of 1 month, mice in 

both groups improved with intoxicated practice.

 Results from the present study indicate that cholinergic interneurons of the NAc 

are directly involved in alcohol drinking and demonstrate a role for these cells in motor 

impairment. Subsequent studies can now examine the intricate details of alcohol-induced 

neuroadaptations that occur within the cholinergic neuronal circuits of the NAc that may 

potentially underlie alcohol drinking. Those findings will then lead to improved site-

specific pharmacotherapies that can target these circuits at specific stages of alcohol 

abuse and dependence. 



 45

Chapter 3: Dopamine D2 Receptor Neuroadaptation in Cholinergic Interneurons of 

the Nucleus Accumbens of C57BL/6J Mice Occurs Following Binge Alcohol 

Drinking But Not After Initiation Alcohol Drinking  

3.1  Abstract 

 Identifying alcohol-induced receptor neuroadaptations that occur within specific 

cell populations will help to elucidate the underlying neurobiology of this complex 

disease. The present study tested the hypothesis that DA D2 receptor changes occur in 

cholinergic neurons of the NAc following initiation and binge alcohol drinking.  

In the initiation model of alcohol drinking the experimental group self-

administered ethanol using a two-bottle choice procedure with unlimited access to 10% 

(v/v) ethanol and water for 23 h/d for 1 month. Control animals received identical 

treatment, except that both bottles contained water. In the binge model of alcohol 

drinking experimental animals were given limited access to 20% (v/v) ethanol in the dark 

cycle, and mice remained on this schedule for 1 month. All animals were perfused and 

brain sections were processed for ICC procedures.  

The binge model of alcohol drinking produced a 33% decrease in DA D2 positive 

cholinergic interneurons in the core NAc. No significant changes were observed 

following the initiation model of alcohol drinking indicating that high BECs, produced by 

the binge drinking model, were necessary for DA D2 receptor changes in this brain 

region. These findings identify region- and cell-specific DA D2 receptor neuroplasticity 

that can be targeted by improved genetic, pharmacotherapeutic and behavioral treatment 

programs for alcohol abuse and alcoholism. 
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3.2  Introduction 

Alcoholism is a chronic disorder that is characterized by a specific set of 

behaviors, including persistent alcohol seeking and the inability to stop drinking, which 

can lead to tolerance, withdrawal, and vulnerability to relapse (American Psychiatric 

Association, 1994). Because this devastating disease affects millions of people 

worldwide, and poses serious medical, economic, and social consequences, it is important 

to identify the critical brain regions and specific cell types involved in alcohol drinking 

and the neuroadaptations within those circuits that underlie alcohol abuse and 

dependence.  

The mesocorticolimbic DA system, comprised of dopaminergic projections from 

the VTA to limbic and cortical regions including the NAc and PFC, is widely accepted as 

a critical component of alcohol self-administration (Pierce and Kumaresan, 2006). 

Studies show that alcohol produces increased cell body firing in the VTA both in vitro 

(Brodie et al., 1990) and in vivo (Gessa et al., 1985), which results in elevated 

extracellular DA levels in terminal areas of the mesolimbic DA system (Di Chiara and 

Imperato, 1988; Gronier et al., 2000; Imperato and Di Chiara, 1986; Yim and Gonzales, 

2000). Voluntary alcohol drinking also increases DA activity in the NAc (Doyon et al., 

2003; Doyon et al., 2005; Weiss et al., 1993). DA, therefore, is thought to be a key 

neurotransmitter underlying the initiation of alcohol use (Czachowski et al., 2001; 

Czachowski et al., 2002; Gonzales et al., 2004) and the reinforcing effects of alcohol 

(Koob and Bloom, 1988; Rassnick et al., 1992).  

Alcohol effects on DA signaling can also lead to DA receptor neuroadaptation. 

DA receptors are important links between extracellular events and intracellular signaling 



 47

mechanisms that underlie long-term neuronal plasticity. Neuroadaptive changes in DA 

D2 receptors have been reported to occur following alcohol drinking and withdrawal and 

have been implicated in drug-seeking behavior and relapse (De Vries and Shippenberg, 

2002; De Vries et al., 2002; Self et al., 1996). Thanos and colleagues (2001; 2004) found 

that overexpression of the DA D2 receptor gene in the core NAc resulted in a decrease in 

alcohol drinking in P rats. This finding suggests that high levels of DA D2 receptors are 

protective against alcohol abuse. Similarly, DA D2 receptor agonists have been shown to 

decrease alcohol intake in C57BL/6J mice (Ng and George, 1994). While these findings 

implicate DA D2 receptors in specific brain areas to be critically involved in alcohol 

drinking, alcohol-induced changes in DA D2 receptor expression in specific cell types 

within these brain areas have not been previously investigated.  

Although DA D2 receptors are located on a variety of cell types, cholinergic 

interneurons were of particular interest to examine for possible alcohol mediated changes 

in DA D2 receptor changes in the present study for several reasons. Namely, these cells 

have been associated with the initial effects of alcohol (Herring et al., 2004) as well as 

voluntary alcohol drinking (Camp et al., 2006; Camp and Alcantara, 2007). They are 

important integrators and modulators of striatal functioning (Kawaguchi et al., 1995; 

Wilson et al., 1990) and possess several key receptors, including DA receptors, which 

have been linked to plasticity, learning, and drug abuse (Alcantara et al., 2003; Berlanga 

et al., 2005). In addition, alcohol self-administration has been shown to increase ACh in 

the NAc, suggesting the importance of cholinergic interneurons in alcohol abuse (Nestby 

et al., 1999). Furthermore, Chapter 2 of this dissertation revealed a direct causal link 

between cholinergic interneurons and alcohol drinking as demonstrated by selective 
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destruction of these cells (Camp and Alcantara, 2007). Understanding the effects of 

alcohol drinking on neuroadaptations of DA D2 receptors in cholinergic neurons should 

provide insight into the effects of alcohol mediated dopaminergic modulation of ACh 

neurotransmission and its effects on specific alcohol-mediated behaviors. 

The present study examined accumbal DA D2 receptor expression in cholinergic 

interneurons following initiation and binge alcohol drinking in C57BL/6J mice. This 

study tested the hypothesis that 1 month of initiation alcohol drinking causes a decrease 

in D2-positive cholinergic neurons of the core NAc, while binge alcohol drinking 

produces a more robust decrease in D2-positive cholinergic cells in this brain region. 

Comparing initiation and binge alcohol drinking may potentially give insight into 

neuroadaptive changes that occur both in moderate alcohol drinking (initiation) and in 

binge alcohol drinking, when BECs are driven to pharmacologically significant levels. 

Identifying neuroadaptations that occur in the transition from causal alcohol drinking to 

compulsive drinking is important for future research aimed to prevent the development of 

behaviors such as compulsive drinking. Identifying alcohol-driven neuroplasticity of 

receptor subtypes located on specific cell populations in brain areas implicated in the 

rewarding effects of alcohol and compulsive alcohol drinking may aid in improving the 

understanding of the underlying neurobiology of alcoholism. 
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3.3  Materials and Methods 

3.3.1  Animals 

3.3.1.1 Model of Initiation Alcohol Drinking  

 Twenty male C57BL/6J mice (18.7-23.3 g) were obtained from The Jackson 

Laboratory (Bar Harbor, ME). Each mouse was individually housed in a standard cage in 

a temperature- and humidity-controlled room under a 12 hour light/dark cycle (lights on 

07:00 h). Mice were 7 weeks old at the start of the experiment and food and water were 

available ad libitum. All experimental procedures complied with guidelines specified by 

the National Institutes of Health and were performed under an institutionally reviewed 

and approved research protocol.  

 

3.3.1.2 Model of Binge Alcohol Drinking 

 Twenty-six male C57BL/6J mice (17.3-22.5 g) were obtained from The Jackson 

Laboratory (Bar Harbor, ME). Each mouse was individually housed in a standard cage in 

a temperature- and humidity-controlled room under a reverse 12 hour light/dark cycle 

(lights on 19:00 h). Mice were 7 weeks old at the start of the experiment and food was 

available ad libitum. All experimental procedures complied with guidelines specified by 

the National Institutes of Health and were performed under an institutionally reviewed 

and approved research protocol.  

 

3.3.2  Model of Initiation Alcohol Drinking Design and Procedures 

A continuous-access, two-bottle choice procedure was used for this study. 

Animals were randomly assigned to either the ethanol group or control group. In the 
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alcohol group, food pellets, water, and 10% (v/v) alcohol were available continuously for 

23 hours/day, while the control group had continuous access to food pellets and water. 

One hour was used to service the cages. During this hour, the fluid volumes consumed 

were recorded to the nearest 0.1 g, the bottles were refilled, the left-right positions of the 

2 bottles were alternated to counterbalance among subjects to control for side preference, 

and the mice were weighed. An alcohol bottle and a water bottle were placed on an 

empty cage on each of the animal racks. These bottles were weighed each day to estimate 

the fluid that was lost due to leakage or evaporation. Average volume lost from these 

bottles was subtracted from the individual volumes each day. Alcohol intake was 

converted into average g alcohol/kg body weight/day. The data were recorded and stored 

for later analysis. Both groups remained under these conditions for 28 days (i.e., 1 

month).  

  

3.3.3  Model of Binge Alcohol Drinking Design and Procedures 

 The Drinking in the Dark (DID) model of binge alcohol drinking used in this 

study was the same as previously described in Chapter 2 (page 34, section 2.3.3). Briefly, 

animals were randomly assigned to either the alcohol group or control group. For the 

alcohol group the home cage water bottle was replaced with a bottle containing 20% (v/v) 

ethanol for 2 hours (days 1 – 3) or 4 hours (days 4 – 28) starting 3 hours after lights off 

(12:00 h). The control group received identical treatment except that the home cage water 

bottle was replaced with another water bottle. Ethanol and water bottles were weighed 

upon removal from the cages and animals were weighed daily after alcohol access. 

Animals remained on this schedule for 1 month.  
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3.3.4  Tissue Preparation  

 At the end of the 1 month drinking period, animals were perfused and tissue was 

sectioned as previously described in Chapter 2 (page 36, section 2.3.6).  

 

3.3.5  Light Microscopy Immunocytochemistry 

3.3.5.1 Dual ChAT and Dopamine D2 Receptor Immunoperoxidase Labeling 

Light microscopy dual-labeling immunoperoxidase procedures were performed 

on free-floating tissue sections that were rinsed in 0.1 M PBS (2 × 10, 3 × 5 minutes) and 

preincubated for 1 hour in a PBS blocking solution containing 5% NGS and 0.01% H2O2. 

Sections were then incubated simultaneously in both primary antibodies: affinity-purified 

mouse anti-ChAT monoclonal antibody (1:1,000; Chemicon) and affinity-purified rabbit 

anti-DA D2 receptor polyclonal antibody (1:350, Chemicon). Sections were then rinsed 

in PBS (4 × 5 minutes and similarly rinsed after each step). The tissue was subsequently 

incubated in secondary biotinylated donkey anti-mouse IgG antiserum (1:500; Jackson 

ImmunoResearch), diluted in 2% NGS/PBS for 2 hours, and then incubated in ABC 

(Vector Laboratories) for 1 hour. ChAT IR was visualized with DAB and 0.01% H2O2 in 

PBS, which resulted in a brown reaction product. Sections were then incubated in 

secondary biotinylated goat anti-rabbit IgG antiserum (1:200; Vector Laboratories) 

diluted in 2% NGS/PBS for 1 hour and then incubated in ABC (Vector Laboratories) for 

1 hour. DA D2 receptor IR was visualized with an SG substrate kit (Vector Laboratories), 

which resulted in a blue/black reaction product. 

To confirm specificity of the labeling procedures, all combinations of single-

labeled ChAT and D2 were visualized with DAB or Vector SG. Specific labeling for the 
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respective antigens was observed under all of these conditions. Control sections for 

single-labeling and dual-labeling procedures were processed identically, with the 

exception that primary antibodies were omitted from the incubation solution. 

Immunolabeling was not observed in any of the control conditions. All photomicrograph 

images were processed for contrast and brightness with Adobe Photoshop 8.0.      

  

3.3.5.2 Single Dopamine D2 Receptor Immunoperoxidase Labeling 

Light microscopy single-labeling immunoperoxidase procedures were performed 

on free-floating tissue sections that were rinsed in 0.1 M PBS (2 × 10, 3 × 5 minutes) and 

preincubated for 1 hour in a PBS blocking solution containing 5% NGS and 0.01% H2O2. 

Sections were then incubated overnight at 4°C in an affinity-purified rabbit anti-DA D2 

receptor polyclonal antibody (1:350, Chemicon) diluted in the 5% NGS/PBS blocking 

solution. The tissue was subsequently rinsed in PBS (4 × 5 minutes and similarly rinsed 

after each step). Sections were then incubated in secondary biotinylated goat anti-rabbit 

IgG antiserum (1:200; Vector Laboratories), diluted in 2% NGS/PBS for 2 hours, and 

then incubated in ABC (Vector Laboratories) for 1 hour. DA D2 receptor IR was 

visualized with DAB and 0.01% H2O2 in PBS, which resulted in a brown reaction 

product. 

 

3.3.6  Quantitative and Statistical Analysis 

3.3.6.1 Dual ChAT and Dopamine D2 Receptor Quantification 

 Digital images representing areas of 0.45 × 0.45 mm were acquired with a 20 × 

objective (800 × working magnification) from brain tissue that was dual 
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immunoperoxidase labeled for ChAT and DA D2 receptor. For each animal, the shell and 

core regions of the NAc were examined from coronal brain sections corresponding to the 

appropriate levels from the Franklin and Paxinos (1997) mouse brain atlas. Two digital 

images were acquired from both left and right hemispheres of the core NAc (Bregma 

1.10 mm) and three digital images were acquired from both hemispheres of the shell NAc 

(Bregma 1.10 mm). Images were acquired on a Nikon (Melville, NY) Eclipse E800 light 

microscope equipped with a digital camera interfaced with a personal computer. All 

images were stored and analyzed by observers blind to group assignment. In quantifying 

these dual-labeled regions, the observers counted cholinergic cells and then determined 

which of these cells coexpressed D2 receptor labeling. The percentage of cholinergic 

cells that expressed D2 receptor IR was calculated for each sample area. An average 

number for the sample areas per brain region, averaged across both hemispheres, was 

calculated for each animal. The group averages were subsequently calculated for each 

brain area of interest. 

 

3.3.6.2 Single Dopamine D2 Receptor Quantification 

 For single immunoperoxidase labeled brain tissue sections, digital images 

representing an area of 0.225 × 0.225 mm were acquired using a 20 × objective (800 × 

working magnification) for the shell and core regions of the NAc (Franklin and Paxinos, 

1997). Two digital images were acquired for quantification from both left and right 

hemispheres of the core NAc (Bregma 1.10 mm), and three digital images were acquired 

from both hemispheres of the shell NAc (Bregma 1.10 mm). All images were stored and 

analyzed by observers blind to group assignment. In quantifying these single 
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immunoperoxidase labeled regions, the observers counted all cells that expressed DA D2 

receptor IR within the left and right hemispheres of each brain region of interest. An 

average number for the sample areas per brain region, averaged across both hemispheres, 

was calculated for each animal. The group averages were subsequently calculated for 

each brain area of interest.                

 

3.3.6.3 Statistical Analysis 

 Daily session intakes were calculated in grams of alcohol per kilogram of body 

weight (g/kg). All values are reported as means ± SEM. Statistical analysis of data was 

carried out using Student's t-test for individual comparisons between alcohol-treated rats 

and control groups. A value of p<0.05 was considered significant for these analyses.       

 

3.4  Results  

3.4.1  Home Cage Fluid Intake  

 In the initiation drinking paradigm animals in the experimental group self-

administered an average of 8.5 ± 1.4 g/kg alcohol per day, while in the control group 

animals self-administered an average of 1.9 ± 0.3 mL of water a day.  

 In the binge drinking paradigm animals in the experimental group self-

administered an average of 7.8 ± 0.8 g/kg alcohol per day, while in the control group 

animals self-administered an average of 2.0 ± 0.7 mL of water a day.    
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3.4.2  Model of Initiation Alcohol Drinking  

3.4.2.1 Dual ChAT and Dopamine D2 Receptor Immunoreactivity   

 Dual ChAT and D2 receptor IR was examined in the shell and core regions of the 

NAc. One month of continuous-access, two-bottle choice initiation alcohol drinking did 

not elicit significant changes in either region. The percentage of D2-positive cholinergic 

neurons is presented in Table 3.1. 

 

3.4.2.2 Single Dopamine D2 Receptor Immunoreactivity 

 Single D2 receptor IR was examined in the shell and core regions of the NAc. 

One month of voluntary initiation alcohol drinking did not elicit significant changes in 

the general population of accumbal cells in either of these brain regions. The average 

number of DA D2 receptor-positive neurons per sample area in the core NAc was 33.9 ± 

1.8 in the control group and 35.7 ± 1.7 in the alcohol group, while in the shell NAc the 

average number of DA D2 receptor-positive neurons per sample area was 28.8 ± 1.1 in 

the control group and 28.2 ± 2.0 in the alcohol group. These data are reported as means ± 

SEM. 

 



Table 3.1 DA D2 Receptor Neuroadaptation in the NAc of C57BL/6J 
Mice Following 1 Month of Voluntary Initiation Alcohol Drinking

Percent of DA D2 receptor-positive cholinergic neurons 
Water Alcohol

Nucleus Accumbens
Core 65.8 ± 14.1 65.8 ± 8.1
Shell 45.9 ± 5.1 59.9 ± 8.0

Data are presented as mean number of DA D2-positive neurons per 
sample area ± SEM.  

 

3.4.3  Model of Binge Alcohol Drinking 

3.4.3.1 Dual ChAT and Dopamine D2 Receptor Immunoreactivity   

 Dual ChAT and D2 receptor IR was examined in the shell and core regions of the 

NAc (Figure 3.1). Quantitative analysis of the percent of cholinergic neurons that 

coexpressed D2 receptor, as reported in Table 3.2 and Figure 3.2, was calculated from 

immunoperoxidase labeled tissue. At the end of the 1 month binge alcohol drinking 

period, a 33% decrease in the percentage of D2 receptor-positive cholinergic neurons was 

observed in the core NAc [t(22) = 2.61, p<0.05, 2-tailed] (Figure 3.2). The average 

number of DA D2 receptor-positive cholinergic neurons per sample area in the core NAc 

was 59.3 ± 6.6 in the control group and 39.7 ± 4.1 in the alcohol group. These data are 

reported as means ± SEM. Alcohol did not elicit significant changes in the shell NAc.   

 

3.4.3.2 Single Dopamine D2 Receptor Immunoreactivity        

 Single D2 receptor IR was examined in the shell and core regions of the NAc. 
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Alcohol drinking did not cause significant changes in the general population of accumbal 

neurons in either of these brain regions. The average number of DA D2 receptor-positive 

neurons per sample area in the core NAc was 14.1 ± 1.0 in the control group and 14.8 ± 

1.5 in the alcohol group, while in the shell NAc the average number of DA D2 receptor-

positive neurons per sample area was 15.6 ± 1.3 in the control group and 17.3 ± 1.4 in the 

alcohol group. These data are reported as means ± SEM. 

 

Table 3.2 DA D2 Receptor Neuroadaptation in the NAc of C57BL/6J 
Mice Following 1 Month of Voluntary Binge Alcohol Drinking

Percent of DA D2 receptor-positive cholinergic neurons 
Water Alcohol

Nucleus Accumbens
Shell 57.1 ± 5.8 41.5 ± 5.9

Data are presented as mean number of DA D2-positive neurons per 
sample area ± SEM.  
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Figure 3.1. Representative photomicrographs of dual-immunoperoxidase labeled 
tissue illustrating the localization of DA D2 receptors in cholinergic interneurons 
of the NAc in C57BL/6J mice. (A) Low-magnification of the NAc from an animal 
that underwent 1 month of binge alcohol drinking. (B) High-magnification of the core 
NAc from the area outlined in the box shown in A. (C) Low-magnification of the NAc 
from a control animal. (D) High-magnification of the core NAc from the area outlined 
in the box shown in C. The brown DAB label identified ChAT IR cholinergic neurons, 
whereas the blue/black SG label indicated DA D2 receptor IR. Scale bars = 100 µm A, 
C; 30 µm B, D.  
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Figure 3.2. Percent of DA D2 receptor-positive cholinergic interneurons in the 

core NAc of C57BL/6J mice following 1 month of voluntary binge alcohol 

drinking. Binge drinking elicited a 33% decrease in the percentage of DA D2 receptor-

positive cholinergic neurons in the core NAc. Data are presented as mean number of 

DA D2-positive cholinergic neurons per optical field ± SEM (*p<0.05). 
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3.5  Discussion 

 The present study focused on identifying alcohol mediated DA D2 receptor 

changes on cholinergic neurons of the NAc. Binge alcohol drinking resulted in a decrease 

in the percentage of D2 IR cholinergic neurons in the core NAc. Significant changes in 

D2 receptor expression were not observed in non-cholinergic neurons following the binge 

drinking model. Additionally, D2 receptor changes in cholinergic or non-cholinergic 

neurons were not found following the initiation drinking model. Altogether, this study 

demonstrates that changes in D2 receptor expression in C57BL/6J mice are specifically 

influenced by binge alcohol drinking, when BECs are repeatedly driven to intoxicating 

levels. Furthermore, these findings suggest that neuroadaptation of D2 receptors 

previously reported to occur in association with alcohol drinking may be occurring 

primarily in cholinergic neurons.  

 Studies utilizing animal models of alcoholism, as well as those in human 

alcoholics, have identified the importance of D2 receptors. Thanos and colleagues (2001; 

2004) varied the levels of DA D2 receptors in the NAc of P rats using an adenoviral 

vector and found that increases in accumbal DA D2 receptors reduced alcohol preference 

and intake. Furthermore, human neuroimaging studies have shown that chronic alcohol 

drinking results in significantly lower amounts of available DA D2 receptors (Hietala et 

al., 1994; Volkow et al., 1996) and nonalcoholic members of alcoholic families have 

higher than normal levels of DA D2 receptors (Volkow et al., 2006). These findings were 

consistent with earlier work by Blum and colleagues (1990) who found a positive 

correlation between the A1 allele of the D2 receptor gene and an increased susceptibility 

to alcoholism. These studies demonstrate the importance of reduced levels of D2 
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receptors in alcohol abuse, but none focus on examining receptor changes in specific cell 

types. These findings suggest that alcohol mediated dopaminergic facilitation of ACh 

release, occurring through DA D2 receptor down-regulation, may influence neuronal 

circuits that facilitate compulsive alcohol drinking.  

 Cholinergic interneurons of the striatum have previously been implicated in acute 

alcohol exposure (Herring et al., 2004), voluntary alcohol drinking (Camp et al., 2006; 

Camp and Alcantara, 2007) and drug abuse (Berlanga et al., 2003; Mark et al., 1999). In 

the striatum, these large, aspiny, local circuit neurons are involved in associative learning 

(Aosaki et al., 1994), synaptic plasticity, LTP induction (Calabresi et al., 2000; Suzuki et 

al., 2001), and modulation of prefronto-striatal information processing (Alcantara et al., 

2001). Their widespread dendritic arborizations (Wilson et al., 1990) integrate inputs 

from regions such as the PFC and thalamus (Dimova et al., 1993; Lapper and Bolam, 

1992), and their extensive axonal fields synapse onto several striatal cells including 

MSNs, thereby providing a powerful influence on overall striatal signaling and motor 

output behavior (Howe and Surmeier, 1995).            

 The goal of the present study was to identify receptor neuroadaptation on 

cholinergic interneurons following voluntary alcohol drinking. As has been discussed 

throughout the chapters of this dissertation, the NAc is a key brain area associated with 

the reinforcing effects of alcohol and other drugs of abuse (Di Chiara and Imperato, 

1988; Koob, 2003; Koob and Bloom, 1988; Pontieri et al., 1995; Rassnick et al., 1992) 

and drug-seeking behavior (Kalivas and Volkow, 2005). Its connectivity with areas such 

as the PFC and DS position this region to serve as an integrator of cortical and limbic 

information and to generate goal-directed behaviors (Kalivas, 2004; Mogenson et al., 
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1980; Voorn et al., 1986). The core NAc is associated with drug-seeking (Kalivas and 

Volkow, 2005), as well as the expression of learned behaviors in response to 

motivationally relevant stimuli (Di Ciano and Everitt, 2001; Kelley, 2004). Additionally, 

the core NAc is associated with sensitization to cocaine and other drugs of abuse (Li et 

al., 2004; Robinson and Kolb, 2004) and related synaptic rewiring (Berlanga et al., 2006). 

The findings that DA D2 IR was down-regulated in cholinergic cells of the core NAc are 

consistent with previous reports of decreased DA D2 receptor availability in striatal areas 

of alcohol abusers.    

 These findings demonstrate that cholinergic neurons targeted by alcohol undergo 

changes in DA D2 receptor neuroadaptation in the NAc following voluntary binge 

alcohol drinking. The fact that DA D2 receptor changes did not occur in other neurons of 

this region identify the importance of cholinergic interneurons as key components of 

alcohol drinking. This also suggests that striatal DA D2 receptor changes previously 

reported, such as in neuroimaging studies, could potentially be influenced by changes 

occurring in cholinergic neurons. Significant changes were observed in the core NAc and, 

while not statistically significant, there was a tendency for a down-regulation of D2-

positive cholinergic cells in the shell NAc following binge alcohol drinking. The core 

NAc has recently been implicated in drug-seeking (Kalivas and Volkow, 2005) and is a 

component of a striatal circuitry where ventral regions influence more dorsal regions 

(Haber et al., 2000). The core NAc could potentially be recruited in binge drinking as 

drinking behavior becomes more compulsive and habitual. It is also noteworthy that 

changes did not occur following 1 month of initiation drinking. This suggests that in 

C57BL/6J mice DA D2 receptor changes are contingent upon repeated, intoxicating 



 63

BECs. These findings, in addition to previous findings reported in this dissertation, 

identify cholinergic interneurons as critical components of alcohol drinking. These results 

may contribute to a better understanding of the cellular and molecular mechanisms that 

lead to alcoholism, thus leading to improved pharmaceutical and behavioral treatment 

programs for alcoholism. 
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Chapter 4: Cdk5 Neuroadaptation in Cholinergic Interneurons of the Nucleus 

Accumbens of C57BL/6J Mice Occurs Following Initiation and  

Binge Alcohol Drinking 

 

4.1  Abstract 

 Neurobiological studies have identified brain areas and related molecular 

mechanisms involved in alcohol abuse and dependence. Specific cell types in these brain 

areas and their role in alcohol-related behaviors, however, is not well understood. This 

study examined plasticity-related intracellular changes that occur in cholinergic neurons 

of C57BL/6J mice following a model of initiation drinking and a model of binge alcohol 

drinking. Cdk5 IR was examined in cholinergic neurons of the NAc, using dual ICC 

procedures, and single Cdk5 IR was examined in this brain region to determine the 

potential role of other cells within the NAc network on alcohol drinking. 

Brain tissue examined in this study was performed on adjacent sections to those 

examined in the DA D2 receptor study (Chapter 3). In the initiation model of alcohol 

drinking the experimental group self-administered ethanol using a two-bottle choice 

procedure with unlimited access to 10% (v/v) ethanol and water for 23 h/day for 1 month. 

Experimental animals in the binge model were given limited access to 20% (v/v) ethanol 

in the dark cycle. Control animals in both groups received only water bottles and all 

animals remained on these schedules for 1 month. All animals were perfused and brains 

were processed for ICC procedures. 

The initiation model of alcohol drinking produced a 38% increase in Cdk5 IR 

cholinergic interneurons in the core NAc, while the model of binge alcohol drinking 
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caused a 65% increase in the percent of Cdk5 IR cholinergic interneurons in the core 

NAc.  Additionally, the binge model of alcohol drinking revealed a 29% increase in 

single Cdk5 IR in the core NAc.  

This study identified Cdk5 neuroadaptation in cholinergic interneurons and other 

neurons of the NAc following 1 month of initiation alcohol drinking and 1 month of 

binge alcohol drinking. These findings contribute to our understanding of the cellular and 

molecular basis of alcohol drinking. 

 

4.2  Introduction 

 Cdk5 is a neuronal serine/threonine protein kinase that has been reported to 

control a number of signal transduction mechanisms that regulate both functional and 

structural neuronal plasticity (Bibb, 2003), including neurotransmitter release (Tomizawa 

et al., 2002), LTP induction (Li et al., 2001), associative learning (Fisher et al., 2002), 

and synapse formation (Johansson et al., 2005). Neuronal plasticity is a critical 

component of the neurobiological responses to alcohol and other drugs of abuse. 

Neurotransmitter release can induce the activation of receptors which are then coupled to 

intracellular signaling pathways in the postsynaptic cell. These second messenger signal 

transduction pathways then cause a plethora of cellular alterations, such as gene 

transcription, that can lead to the development of such behaviors as compulsive alcohol 

drinking. Cdk5 has been identified as a downstream target of ∆FosB (Bibb et al., 2001), a 

transcription factor that accumulates and persists in the striatum in response to repeated 

exposure to drugs of abuse and persists for weeks or months even after the drug is 

withdrawn (Nestler et al., 2001). Cdk5 has also recently been identified as an important 
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mediator of drug addiction (Benavides and Bibb, 2004), and was therefore used in this 

study to examine neuroadaptive changes that result from voluntary alcohol drinking.  

Cholinergic interneurons of the NAc are putative cells to study as potential key 

mediators of initiation and binge alcohol drinking. These cells undergo plasticity and 

learning (Aosaki et al., 1994; Suzuki et al., 2001), integrate a variety of cognitive, limbic, 

and motor functions (Calabresi et al., 2000), and provide a powerful influence on striatal 

output neurons. In addition, pharmacological studies have demonstrated an effect of 

alcohol on ACh release in the NAc (Nestby et al., 1999) and PFC (Stancampiano et al., 

2004), suggesting the importance of cholinergic interneurons in alcohol abuse. A 

previous study in our laboratory demonstrated a dose-dependent activation of accumbal 

cholinergic interneurons following an acute i.p. administered does of alcohol (Herring et 

al., 2004).   

 The purpose of this study was to investigate the involvement and neuroplasticity 

of cholinergic interneurons and other neurons of the NAc as potential substrates 

underlying voluntary initiation and binge alcohol drinking in C57BL/6J mice. The study 

discussed in Chapter 2 identified the involvement of cholinergic neurons in alcohol 

drinking, and Chapter 3 examined alcohol-induced DA D2 receptor neuroadaptations. 

The present study tested the hypothesis that 1 month of initiation alcohol drinking causes 

an increase in Cdk5 IR in cholinergic neurons of the core NAc, and that binge alcohol 

drinking causes a more robust increase in Cdk5 IR cholinergic neurons of this region. 

Greater neuroplastic changes were predicted with the binge model where BECs 

repeatedly reach pharmacologically significant levels.  
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4.3  Materials and Methods 

4.3.1  Animals 

4.3.1.1 Model of Initiation Alcohol Drinking 

 Twenty male C57BL/6J mice (18.7-23.3 g) were obtained from The Jackson 

Laboratory (Bar Harbor, ME). Mice were individually housed in standard cages in a 

temperature- and humidity-controlled room under a 12 hour light/dark cycle (lights on 

07:00 h). Mice were 7 weeks old at the start of the experiment and food and water were 

available ad libitum. All experimental procedures complied with guidelines specified by 

the National Institutes of Health and were performed under an institutionally reviewed 

and approved research protocol.  

 

4.3.1.2 Model of Binge Alcohol Drinking 

 Twenty-six male C57BL/6J mice (17.3-22.5 g) were obtained from The Jackson 

Laboratory (Bar Harbor, ME). Mice were individually housed in standard cages in a 

temperature- and humidity-controlled room under a reverse 12 hour light/dark cycle 

(lights on 19:00 h). Mice were 7 weeks old at the start of the experiment and food was 

available ad libitum. All experimental procedures complied with guidelines specified by 

the National Institutes of Health and were performed under an institutionally reviewed 

and approved research protocol.  

 

4.3.2  Model of Initiation Alcohol Drinking Design and Procedures 

 The experimental design for the model of initiation drinking was identical to that 

described in Chapter 3 (page 50, section 3.3.2) 
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4.3.3  Model of Binge Alcohol Drinking Design and Procedures  

The experimental design for model of binge alcohol drinking was identical to that 

described in Chapter 2 (page 34, section 2.3.3). 

  

4.3.4  Tissue Preparation 

 At the end of the 1 month drinking period, animals were perfused and tissue was 

sectioned as previously described in Chapter 2 (page 36, section 2.3.6).  

 

4.3.5  Light Microscopy Immunocytochemistry 

4.3.5.1 Dual ChAT and Cdk5 Immunoperoxidase Labeling                    

Light microscopy dual-labeling immunoperoxidase procedures for ChAT and 

Cdk5 were performed on adjacent sections to those examined for dual ChAT and D2 IR. 

Procedures were identical to those described in Chapter 3 (page 52, 3.3.5.1), except that 

the primary antibody cocktail contained mouse anti-ChAT monoclonal antibody (1:000, 

Chemicon) and affinity-purified rabbit anti-Cdk5 polyclonal antibody [1:250, Santa Cruz 

Biotechnology Inc., Santa Cruz, CA; Cdk5 (C-8); epitope mapping at C-terminal amino 

acid residues 284–291 of human Cdk5] diluted in the 5% NGS/PBS blocking solution 

overnight at 4°C. Cdk5 antibody specificity has been demonstrated by blotting analysis to 

recognize specifically Cdk5 of mouse, rat, and human origin. Cdk5 IR was visualized 

with an SG substrate kit (Vector Laboratories).  
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4.3.5.2 Single Cdk5 Immunoperoxidase Labeling                       

Light microscopy single-labeling immunoperoxidase procedures for Cdk5 were 

performed on adjacent sections to those examined for single DA D2 receptor IR. 

Procedures were identical to those described in Chapter 3 (page 53, section 3.3.5.2), 

except that the primary antibody was affinity-purified rabbit anti-Cdk5 polyclonal 

antibody (1:250, Santa Cruz Biotechnology, Inc.)  

  

4.3.6  Quantitative and Statistical Analysis 

4.3.6.1 Dual ChAT and Cdk5 Quantification 

Dual quantification procedures were identical to those described in Chapter 3 

(page 53, section 3.3.6.1), except that when quantifying the dual-labeled regions 

observers determined which cholinergic cells coexpressed Cdk5 IR.  

  

4.3.6.2 Single Cdk5 Quantification   

Single quantification procedures were identical to those described in Chapter 3 

(page 54, section 3.3.6.2), except that observers counted all cells that expressed Cdk5 IR.  

  

4.3.6.3 Statistical Analysis 

 Daily session intakes were calculated in grams of alcohol per kilogram of body 

weight (g/kg). All values are reported as means ± SEM. Statistical analysis of data was 

carried out using Student's t-test for individual comparisons between alcohol-treated rats 

and control groups. A value of p<0.05 was considered significant for these analyses.  

 



 70

4.4  Results                                           

4.4.1  Home Cage Fluid Intake                

 In the initiation drinking paradigm animals in the experimental group self-

administered an average of 8.5 ± 1.4 g/kg alcohol per day, while in the control group 

animals self-administered an average of 1.9 ± 0.3 mL of water a day.    

  In the binge drinking paradigm animals in the experimental group self- 

administered an average of 7.8 ± 0.8 g/kg alcohol per day, while in the control group 

animals self-administered an average of 2.0 ± 0.7 mL of water a day.    

        

4.4.2  Model of Initiation Alcohol Drinking                                                   

4.4.2.1 Dual ChAT and Cdk5 Immunoreactivity                 

 Dual ChAT and Cdk5 IR was examined in the shell and core regions of the NAc. 

Quantitative analysis of the percent of cholinergic neurons that co-expressed Cdk5, as 

reported in Table 4.1 and Figure 4.1, was calculated from immunoperoxidase labeled 

tissue. At the end of the 1 month initiation drinking period, a 38% increase in the 

percentage of Cdk5-positive cholinergic neurons was observed in the core NAc [t (16)= 

2.73, p<0.01, 2-tailed] (Figure 4.1). The average number of Cdk5-positive cholinergic 

neurons per sample area in the core NAc was 42.7 ± 4.0 in the control group and 59.2 ± 

4.3 in the alcohol group. These data are reported as means ± SEM. Alcohol did not elicit 

significant changes in the shell NAc.                          

 

 

 



4.4.2.2 Single Cdk5 Immunoreactivity     

Single Cdk5 IR was examined in the shell and core regions of the NAc. 

Quantitative analysis of Cdk5-positive neurons was calculated from immunoperoxidase 

labeled tissue. One month of initiation alcohol drinking did not elicit significant changes 

in the general accumbal cell population in either the shell or core NAc. The average 

number of Cdk5-positive neurons per sample area in the core NAc was 62.4 ± 1.9 in the 

control group and 61.8 ± 2.6 in the alcohol group, while in the shell NAc the average 

number of Cdk5-positive neurons per sample area was 56.9 ± 1.1 in the control group and 

57.4 ± 0.9 in the alcohol group. These data are reported as means ± SEM. 

 

Table 4.1 Cdk5 Neuroadaptation in the NAc of C57BL/6J Mice
Following 1 Month of Voluntary Initiation Alcohol Drinking

Percent of Cdk5-positive cholinergic neurons 
Water Alcohol

Nucleus Accumbens
Shell 52.5 ± 3.0 44.8 ± 3.3 

Data are presented as mean number of Cdk5-positive neurons per 
sample area ± SEM.  
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Figure 4.1. Percent of Cdk5-positive cholinergic interneurons in the core NAc of 

C57BL/6J mice following 1 month of voluntary initiation alcohol drinking. 

Initiation drinking elicited a 38% increase in the percentage of Cdk5-positive 

cholinergic neurons in the core NAc. Data are presented as mean number of Cdk5-

positive cholinergic neurons per optical field ± SEM (**p<0.01). 
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4.4.3  Model of Binge Alcohol Drinking                                                                

4.4.3.1 Dual ChAT and Cdk5 Immunoreactivity             

 Dual ChAT and Cdk5 IR was examined in the shell and core regions of the NAc 

(Figure 4.2). Quantitative analysis of the percent of cholinergic neurons that co-expressed 

Cdk5, as reported in Table 4.2 and Figure 4.3, was calculated from immunoperoxidase 

labeled tissue. At the end of the 1 month DID drinking period, a 65% increase in the 

percentage of Cdk5-positive cholinergic neurons was observed in the core NAc [t(23) = 

2.22, p<0.05, 2-tailed] (Figure 4.3). The average number of Cdk5-positive cholinergic 

neurons per sample area in the core NAc was 31.4 ± 7.1 in the control group and 51.8 ± 

5.9 in the alcohol group. These data are reported as means ± SEM. Alcohol did not elicit 

significant changes in the shell NAc.   

 

4.4.3.2 Single Cdk5 Immunoreactivity          

 Single Cdk5 IR was examined in the shell and core regions of the NAc. 

Quantitative analysis of Cdk5-positive neurons was calculated from immunoperoxidase 

labeled tissue. One month of DID binge alcohol drinking resulted in a 29% increase 

above baseline values in the core NAc [t(20) = 2.71, p<0.01, 2-tailed] (Figure 4.4). The 

average number of Cdk5-positive neurons per sample area in the core NAc was 18.9 ± 

1.3 in the control group and 24.4 ± 1.5 in the alcohol group. Alcohol drinking did not 

produce significant changes in the number of Cdk5-labeled neurons in the shell NAc.  

The average number of Cdk5-positive neurons per sample area in the shell NAc was 15.4 

± 2.2 in the control group and 19.8 ± 1.7 in the alcohol group. These data are reported as 

means ± SEM. 
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Figure 4.2. Representative photomicrographs of dual-immunoperoxidase labeled 
tissue illustrating the localization of Cdk5 in cholinergic interneurons of the NAc 
in C57BL/6J mice. (A) Low-magnification of the NAc from an animal that underwent 
1 month of binge alcohol drinking. (B) High-magnification of the core NAc from the 
area outlined in the box shown in A. (C) Low-magnification of the NAc from a control 
animal. (D) High-magnification of the core NAc from the area outlined in the box 
shown in C. The brown DAB label identified ChAT IR cholinergic neurons; whereas 
the blue/black SG label indicated Cdk5 IR. Scale bars = 100 µm A, C; 30 µm B, D.  



Table 4.2 Cdk5 Neuroadaptation in the NAc of C57BL/6J Mice
Following 1 Month of Voluntary Binge Alcohol Drinking

Percent of Cdk5-positive cholinergic neurons 
Water Alcohol

Nucleus Accumbens
Shell 40.6 ± 3.8 46.5 ± 5.5

Data are presented as mean number of Cdk5-positive neurons per 
sample area ± SEM.  
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Figure 4.3. Percent of Cdk5-positive cholinergic interneurons in the core NAc of 
C57BL/6J mice following 1 month of voluntary binge alcohol drinking. Binge 
drinking elicited a 65% increase in the percentage of Cdk5-positive cholinergic neurons 
in the core NAc. Data are presented as mean number of Cdk5-positive cholinergic 
neurons per optical field ± SEM (*p<0.05). 
 

**

 

 

Figure 4.4. Number of Cdk5-positive neurons in the core NAc of C57BL/6J mice 
following 1 month of voluntary binge alcohol drinking. Binge drinking elicited a 
29% increase in the percentage of Cdk5-positive cholinergic neurons in the core NAc. 
Data are presented as mean number of Cdk5-positive neurons per optical field ± SEM 
(**p<0.01). 
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4.5  Discussion  

 The present study examined the effects of initiation drinking and binge alcohol 

drinking on the expression of Cdk5 in cholinergic neurons and other neurons of the NAc. 

The identification of specific cell types in brain regions involved in alcohol drinking is 

essential for understanding the precise neurobiological basis of initial drinking that may 

ultimately progress to compulsive drinking. It was hypothesized that alcohol drinking in 

the continuous access, two-bottle choice initiation drinking procedure would cause an 

increase in Cdk5-positive cholinergic interneurons of the core NAc, and that excessive 

alcohol drinking in the binge model would cause a more robust increase in Cdk5-positive 

cholinergic interneurons of this region. The data show that, in fact, alcohol drinking in 

the initiation model causes a 38% increase in Cdk5-positive cholinergic neurons of the 

core NAc, while alcohol drinking in the binge model causes an almost 2-fold increase, 

65%, in Cdk5-positive cholinergic cells of this region when compared with baseline 

values.                 

 Cdk5 controls a number of mechanisms that regulate neuronal plasticity such as 

synapse formation, which may underlie long-term changes in the brain that mediate 

compulsive alcohol drinking, craving, or relapse. A previous study reported that 

inhibiting Cdk5 decreased spine density in the NAc (Norrholm et al. 2003). The findings 

of the present study suggest a potential increase in synapse formation in the core NAc 

with initiation alcohol drinking, and to a greater extent with binge drinking.  

 As continuously highlighted in the studies of this dissertation, cholinergic 

interneurons of the NAc are putative cells to study as potential mediators of alcohol 

drinking since they have recently been implicated in alcohol and drug use (Berlanga et 
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al., 2003; Camp et al., 2006; Herring et al., 2004; Hikida et al., 2001; Hikida et al., 2003; 

Mark et al., 1999; Nestby et al., 1999; Smith et al., 2004; Stancampiano et al., 2004). The 

NAc has been implicated in the rewarding and reinforcing properties of alcohol and other 

drugs of abuse (Di Chiara and Imperato, 1988; Koob, 2003; Koob and Bloom, 1988; 

Pontieri et al., 1995; Rassnick et al., 1992), however, this is not to say that the NAc is the 

only brain region affected by alcohol drinking. Many studies, in addition to work from 

our laboratory have found selective brain regions to be associated with exposure to 

alcohol (Bachtell et al., 1999; Camp et al., 2006; Herring et al., 2004; Lyons et al., 1998; 

Porrino et al., 1998; Williams-Hemby and Porrino, 1994). Bachtell and colleagues (1999) 

found that out of 23 brain regions c-fos expression was significantly induced in only 3: 

the core NAc, medial posteroventral portion of the CNA, and the Edinger-Westphal 

nucleus. Additionally, Porrino and colleagues (1998) found increases in cerebral 

metabolism in only 9 of 39 regions examined. These studies and studies from our 

laboratory indicate that alcohol selectively targets specific brain areas, suggesting that 

critical molecular transduction mechanisms that underlie alcohol drinking are region and 

cell specific.          

 Traditional animal models of alcohol drinking rarely produce pharmacologically 

significant BECs over extended periods of time. These methods are important for 

identifying changes that occur with the initial effects of alcohol drinking, but in order to 

understand neuroplasticity that occurs with compulsive drinking one must use binge 

models. This study shows that binge alcohol drinking causes an almost 2-fold increase in 

Cdk5-positive cells in the core NAc, which suggests importance of this brain region as 

casual alcohol drinking progresses to compulsive drinking. This finding is fundamental to 
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alcohol research since a primary component of alcoholism is loss of control over alcohol 

consumption (American Psychiatric Association, 1994). The present study identifies 

cholinergic neurons as critical sites for alcohol-mediated neuroadaptations which may 

facilitate the underlying characteristics of alcoholism such as compulsive alcohol 

drinking. These sites can then be targeted for the development of improved 

pharmacotherapeutic and behavioral interventions in the treatment of this complex 

disease.  
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Chapter 5: Dopamine D2 Receptor and Cdk5 Neuroadaptation in Cholinergic 

Interneurons of the Nucleus Accumbens, Dorsal Striatum, and Prefrontal Cortex of 

Inbred Alcohol-Preferring (iP) Rats Occurs Following Initiation Alcohol Drinking 

 

5.1  Abstract 

 Previous studies in this dissertation have focused on the involvement and 

neuroplasticity of cholinergic interneurons in C57BL/6J mice. In order to further our 

understanding of this complex disease it is important to identify alcohol-induced 

similarities and differences across species. The goal of the present study, therefore, was 

to examine changes in DA D2 receptor and Cdk5 expression in cholinergic interneurons 

and other neurons of iP rats. Neuroadaptive changes were examined in various brain 

regions that have been implicated in the rewarding and reinforcing effects of alcohol and 

alcohol drinking following the initiation model of voluntary alcohol drinking.  

 Alcohol was self-administered using the two-bottle choice procedure with 

unlimited access to 10% (v/v) ethanol and water for 23 h/day for 1 month. Control 

animals received identical treatment, except both bottles contained water. Rats were 

perfused and brain sections were processed for ICC procedures.   

 Alcohol drinking resulted in a 25% and 46% decrease in DA D2 positive 

cholinergic interneurons in the core NAc and PrL PFC, respectively. A 46% increase in 

DA D2 positive cholinergic interneurons was also observed in the ventromedial DS. In 

addition, voluntary alcohol drinking produced a 51% increase in Cdk5-positive 

cholinergic interneurons in the shell NAc. Alcohol drinking also produced a 51% 

decrease in Cdk5-positive cholinergic neurons in the IL PFC and a 46% decrease in 
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Cdk5-positive cholinergic neurons in the PrL PFC. This study identifies cholinergic 

neuronal circuits that undergo DA D2 receptor and Cdk5 neuroadaptations following 

voluntary alcohol drinking in iP rats. 

 

5.2  Introduction  

 Previous studies in this dissertation have focused on examining the involvement 

and neuroadaptations of cholinergic interneurons in the NAc following voluntary alcohol 

drinking in C57BL/6J mice. An important goal for research examining human conditions, 

including alcoholism, is to extrapolate results from animal studies to humans in an effort 

to better understand the underlying neurobiology of the disease and to develop improved 

treatments. Since there is no perfect animal model for alcoholism similarities and 

differences across species have to be considered when modeling different aspects of this 

disease.   

 There are many neuroanatomical and neurochemical similarities between mice 

and rats which make both important in alcohol studies. It has previously been identified 

that the boundaries of the shell and core subcompartments of the NAc of the mouse and 

rat are similar (Zocchi et al., 2003). In addition, ethanol and other drugs of abuse cause an 

increase in DA release in both the mouse (Zocchi et al., 2003) and the rat (Yim and 

Gonzales, 2000). While C57BL/6J mice are genetically predisposed to consume high 

amounts of ethanol, iP rats have been selectively bred for this behavior.  

 This study examined neuroadaptive changes in DA D2 receptor and Cdk5 

expression in iP rats following 1 month of initiation alcohol drinking. iP rats are 

selectively bred to consume alcohol and meet the criteria for an animal model of 



 82

alcoholism. They voluntary drink alcohol, display a willingness to work for alcohol 

through operant responding, and develop tolerance and dependence through free-choice 

drinking (Murphy et al., 2002). P rats consume at least 5 g alcohol/kg/day and attain 

BECs of 50 - 200 mg% (Murphy et al., 2002). The iP strain was developed from the P 

line and it is suggested that the high-alcohol drinking behavior of the iP rat resembles that 

of the parent line (Edenberg et al.  2005).  

The present study examined neuroadaptations in a number of different brain 

regions in the iP rat. This chapter will highlight changes in the NAc, DS, and PFC. The 

DS and PFC are intricately linked to the NAc through the nigrostriatal and 

mesocorticolimbic DA pathways, respectively. The DS is associated with habit learning 

(Ito et al., 2002; Jog et al., 1999) and is hypothesized to be involved in long-term synaptic 

plasticity as casual drug use progresses towards habitual drug-seeking (Berke and 

Hyman, 2000; Everitt et al., 2001; Everitt and Wolf, 2002). The PFC has been implicated 

in various higher-order cognitive tasks including, decision-making, attention, working 

memory, premotor planning (Dalley et al., 2004; Goldman-Rakic and Selemon, 1986), 

salience attribution, and inhibitory response control (Goldstein and Volkow, 2002). 

Additionally, the PFC is associated with the motivational effects underlying drug-

seeking, cue-induced drug craving, and vulnerability to relapse (Weiss et al., 2001). 

Neuroadaptive changes in D2 receptor and Cdk5 expression were examined in the present 

study. Cdk5 was used as a marker of neuronal plasticity, and alternate brain sections were 

used to examine changes in D2 IR. 
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5.3  Materials and Methods 

5.3.1  Animals 

 Thirty female iP rats (250-300 g) derived from strain 10C were obtained from the 

Indiana University Alcohol Research Center. Each rat was individually housed in a 

standard cage with food and water available ad libitum.  

 

5.3.2  Model of Initiation Alcohol Drinking Design and Procedures 

 The initiation drinking paradigm was identical to that described in Chapter 3 

(page 50, section 3.3.2). 

 

5.3.3  Tissue Preparation 

 At the end of the 1 month drinking period, animals were anesthetized with an i.p. 

injection of sodium pentobarbital and perfused transcardially with 50 mL of 0.1 M PBS; 

pH 7.4), followed by 200 mL of 4% paraformaldehyde/0.1% glutaraldehyde in PBS. 

Alcohol and water bottles were removed immediately before each animal was 

anesthetized. Ten perfusions were performed each day, alternating between animals from 

alcohol and control group, for a total of 3 perfusion days. Brains were immediately 

removed and postfixed for 2 hours in 4% paraformaldehyde in PBS. Vibratome sections 

(100 µm thick) were taken and placed in 30% sucrose in PBS, frozen in liquid nitrogen, 

and stored in a -70°C freezer. Tissue was then thawed and processed for dual 

immunoperoxidase, single immunoperoxidase, or dual immunofluorescence labeling 

procedures. All efforts were made to minimize animal suffering and the number of 

animals used in the present study.  
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5.3.4  Dopamine D2 Receptor Immunoperoxidase Labeling 

5.3.4.1 Dual ChAT and Dopamine D2 Receptor Immunoperoxidase Labeling 

  Light microscopy dual-labeling immunoperoxidase procedures for ChAT and D2 

receptor were identical to those described in Chapter 3 (page 52, section 3.3.5.1). 

 

5.3.4.2 Single Dopamine D2 Receptor Immunoperoxidase Labeling  

 Light microscopy single-labeling immunoperoxidase procedures for D2 receptor 

were identical to those described in Chapter 3 (page 53, section 3.3.5.2). 

 

5.3.5  Cdk5 Immunoperoxidase Labeling  

5.3.5.1 Dual ChAT and Cdk5 Immunoperoxidase Labeling 

 Light microscopy dual-labeling immunoperoxidase procedures for ChAT and 

Cdk5 were identical to those described in Chapter 4 (page 67, section 4.3.5.1).  

 

5.3.5.2 Single Cdk5 Immunoperoxidase Labeling  

 Light microscopy single-labeling immunoperoxidase procedures for Cdk5 were 

identical to those described in Chapter 4 (page 68, section 4.3.5.2).  

 

5.3.6  Dual ChAT and Cdk5 Immunofluorescence Labeling     

 Light microscopy dual-labeling immunofluorescence procedures were performed 

on free-floating, coronal tissue sections to verify colocalization of Cdk5 and ChAT 

(Figure 5.1). Sections were rinsed in 0.1 PBS (2 × 10, 3 × 5 minutes) and preincubated 

for 1 hour in a PBS blocking solution containing 5% normal donkey serum (NDS) and 
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2% bovine serum albumin (BSA). Sections were then incubated simultaneously in both 

primary antibodies: affinity-purified mouse anti-ChAT monoclonal antibody (1:50; 

Chemicon) and affinity-purified rabbit anti-Cdk5 polyclonal antibody (1:250; Santa Cruz 

Biotechnology, Inc.), diluted in the 5% NDS/2% BSA/PBS blocking solution for 48 hour 

at 4°C. Sections were rinsed in PBS (4 × 5 minutes). The tissue was then incubated in a 

cocktail of both secondary antibodies: fluorescein (FITC) affinipure donkey anti-mouse 

IgG and Texas Red affinipure donkey anti-rabbit IgG (1:500; Jackson ImmunoResearch), 

diluted in 2% NDS/PBS solution for 1 hour. Sections were washed with PBS (3  ×  5 

minutes) and placed back in the primary cocktail for 1 hour, followed by incubation in 

the secondary cocktail for 1 hour. The incubation in primary and secondary cocktails was 

repeated a third time with washes (PBS 3  ×  5 minutes) between each hour of incubation. 

The sections were then mounted and dried overnight and coverslipped with Krystalon 

(EM Science Harleco, Gibbstown, NJ) mounting media.                  

 Fluorescence images were acquired on a Leica SP2 AOBS laser-scanning 

confocal microscope with a 40  ×  1.25NA objective. Mouse anti-ChAT monoclonal 

antibody labeled with FITC (1:500; Jackson ImmunoResearch) was visualized using 488-

nm excitation and a 535/70 emission filter. Rabbit anti-Cdk5 polyclonal antibody labeled 

with Texas Red (1:500; Jackson ImmunoResearch) was visualized using 594-nm 

excitation and a 650/100 emission filter. Fluorescent channels were acquired sequentially. 

 



 

 

 

 

 

 

Figure 5.1. Confocal images of tissue processed for dual-immunofluorescence 
procedures. Maximum projections reveal ChAT IR neurons (A, FITC/green) and 
Cdk5-labeled cells (B, Texas Red). Each 512x512-pixel image represents a 177x177-
µm area. A z-series of 25 images was acquired over a 3.9-µm distance. Coexpression of 
ChAT and Cdk5 in these neurons is shown with an overlay image at a single z position 
and is evident by the yellow color (C). Their intensities were normalized using Adobe 
Photoshop 7.0. Scale bars = 20 µm. 

5.3.7  Quantitative and Statistical Analysis 

5.3.7.1 Dual ChAT and Dopamine D2 Receptor Quantification 

 Dual quantification procedures were identical to those described in Chapter 3 

(page 53, section 3.3.6.1). In the present study, areas of the NAc, DS, and PFC were 

examined. For each animal, brain areas of interest were examined from coronal brain 

sections corresponding to the appropriate Bregma levels from the Paxinos and Watson rat 

brain atlas (1998) (Figure 5.2). Two digital images were for quantification from left and 

right hemispheres of the IL and PrL PFC (Bregma 3.20 mm), and core NAc (Bregma 

1.20 mm). Three digital images were acquired from both hemispheres of the shell NAc 

(Bregma 1.20 mm), and dorsolateral and ventromedial regions of the DS (Bregma 1.20 

mm).  
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Figure 5.2. Schematic representations of coronal sections of the rat brain.
Sections obtained from the Paxinos and Watson atlas (1998). The black boxes indicate 
the sample areas were quantifications were obtained from each area of interest. 
Samples were taken from (A) the shell and core NAc (Bregma 1.20 mm); (B) the 
dorsolateral and ventromedial regions of the DS (Bregma 1.20 mm); (C) the prelimbic 
and infralimbic regions of the PFC (Bregma 3.20 mm). 

 

 

 87



 88

5.3.7.2 Single Dopamine D2 Receptor Quantification 

 Single quantification procedures were identical to those described in Chapter 3 

(page 54, section 3.3.6.2), except that coronal brain sections corresponded to the Paxinos 

and Watson rat brain atlas (1998) as described above (section 5.3.7.1). 

 

5.3.7.3 Dual ChAT and Cdk5 Quantification 

Dual quantification procedures were identical to those described in Chapter 4 

(page 68, section 4.3.6.1), except that coronal brain sections corresponded to the Paxinos 

and Watson rat brain atlas (1998) as described above (section 5.3.7.1).  

 

5.3.7.4 Single Cdk5 Quantification 

Single quantification procedures were identical to those described in Chapter 4 

(page 68, section 4.3.6.2), except that coronal brain sections corresponded to the Paxinos 

and Watson rat brain atlas (1998) as described above (section 5.3.7.1).  

 

5.3.7.5 Statistical Analysis 

 Daily session intakes were calculated in grams of alcohol per kilogram of body 

weight (g/kg). All values are reported as means ± SEM. Statistical analysis of data was 

carried out using Student's t-test for individual comparisons between alcohol-treated rats 

and control groups. A value of p<0.05 was considered significant for the D2 receptor 

analyses. Because of the large number of brain areas examined in the Cdk5 analyses, a 

significance of p<0.01 was used in an effort to reduce any false positives.       
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5.4 Results 

5.4.1 Home Cage Fluid Intake 

 Animals in the ethanol group self-administered an average of 6.15 ± 0.81 g/kg 

ethanol per day. In the control group, animals self-administered an average of 9.5 ± 0.35 

mL water per day. One animal was excluded from the study due to a leaking bottle. The 

data from that animal, therefore, was not used in the statistical analysis of this study. 

Also, due to occasional tissue shredding, data were collected and analyzed only from 

those areas of sampling that were intact and therefore appropriate for data quantification.  

 

5.4.2 Dopamine D2 Receptor Immunoreactivity 

5.4.2.1 Dual ChAT and Dopamine D2 Receptor Immunoreactivity 

 Dual ChAT and DA D2 immunoperoxidase labeling was examined in the shell 

and core NAc (Figure 5.3), the dorsolateral and ventromedial regions of the DS, and the 

IL and PrL regions of the PFC. Quantitative analysis of the percent of cholinergic 

neurons that co-expressed DA D2 in alcohol treated and control animals is reported in 

Table 5.1 and Figure 5.4. Baseline levels of DA D2 immunoperoxidase-labeled 

cholinergic cells were determined by calculating the percentage of cholinergic cells that 

expressed DA D2 in control animals. After 1 month of voluntary alcohol drinking, there 

was a 25% decrease in the percentage of DA D2 receptor-positive cholinergic neurons, as 

compared to baseline values, in the core NAc [t(13)=2.19, p<0.05, two-tailed] (Figure 

5.4A), and a 46% decrease in the percentage of DA D2 receptor-positive cholinergic cells 

in the PrL PFC [t(17)=2.41, p<0.05, two-tailed] (Figure 5.4B). A 46% increase in the 

percentage of DA D2 receptor-positive cholinergic neurons, as compared to baseline 
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values, was observed in the ventromedial DS [t(15)=2.60, p<0.05, two-tailed] (Figure 

5.4C). In the core NAc the average number of DA D2 receptor-positive cholinergic 

neurons per sample area was 32.6 ± 2.5 in the control group and 24.3 ± 3.0 in the alcohol 

group, while in the PrL PFC the average number of DA D2 receptor-positive cholinergic 

neurons per sample area was 11.0 ± 1.3 in the control group and 5.9 ± 1.7 in the alcohol 

group. In the ventromedial DS the average number of DA D2 receptor-positive 

cholinergic neurons per sample area was 19.2 ± 2.3 in the control group and 28.1 ± 2.4 in 

the alcohol group. Alcohol did not elicit significant changes in the percentage of DA D2 

receptor-positive cholinergic neurons in the shell NAc, IL PFC, or the dorsolateral region 

of the DS.  



Figure 5.3. Representative photomicrographs of dual-immunoperoxidase labeled 
tissue illustrating the localization of DA D2 receptors in cholinergic interneurons of 
the NAc in iP rats. (A) Low-magnification of the NAc from an animal that underwent 1 
month of initiation alcohol drinking. (B) High-magnification of the core NAc from the 
area outlined in the box shown in A. (C) Low-magnification of the NAc from a control 
animal. (D) High-magnification of the core NAc from the area outlined in the box shown 
in C. The brown DAB label identified ChAT IR cholinergic neurons, whereas the 
blue/black SG label indicated D2 receptor IR. Scale bars = 100 µm A, C; 40 µm B, D.  
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Table 5.1. Percent of DA D2 Receptor-Positive Cholinergic Neurons
in iP Rat Brain Following 1 Month of Initiation Alcohol Drinking

Water Alcohol
Nucleus Accumbens
Shell 31.0 ± 2.6 29.0 ± 2.0 

Dorsal Striatum
Dorsolateral 25.4 ± 3.4 28.8 ± 4.7 

Prefrontal Cortex
Infralimbic 5.9 ± 2.2 13.4 ± 4.8 

Data are presented as mean number of DA D2 receptor-positive cholinergic 
neurons per sample area ± SEM. 
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Figure 5.4. Percent of DA D2 receptor-positive cholinergic neurons in iP rats 
following 1 month of initiation alcohol drinking. Initiation drinking elicited (A) a 
25% decrease in the core NAc, (B) a 46% increase in the ventromedial DS, and (C) a 
46% decrease in the PrL PFC in D2-positive cholinergic neurons as compared to 
baseline values. Data are presented as mean number of DA D2 receptor-positive 
cholinergic neurons per optical field ± SEM (*p<0.05). 
 



5.4.2.2 Single Dopamine D2 Receptor Immunoreactivity  

Single DA D2 receptor immunoperoxidase labeling was examined in the shell and 

core NAc, the dorsolateral and ventromedial regions of the DS, and the IL and PrL 

regions of the PFC (Table 5.2). One month of alcohol drinking did not elicit significant 

changes in any of the brain regions examined.  

 

Table 5.2. Number of DA D2 Receptor-Positive Neurons in 
iP Rat Brain Following 1 Month of Initiation Alcohol Drinking

Water Alcohol
Nucleus Accumbens
Core 40.0 ± 2.9 38.6 ± 5.5 
Shell 35.1 ± 2.8 35.4 ± 3.4 

Dorsal Striatum
Dorsolateral 20.1 ± 1.5 17.0 ± 3.0
Ventromedial 16.0 ± 1.3 16.8 ± 2.1 

Prefrontal Cortex
Prelimbic 29.4 ± 3.0 29.1 ± 4.1 
Infralimbic 31.4 ± 4.6 28.7 ± 4.2

Data are presented as mean number of DA D2 receptor-positive 
neurons per sample area ± SEM.  

 

5.4.3 Cdk5 Immunoreactivity  

5.4.3.1 Dual ChAT and Cdk5 Immunoreactivity 

Dual ChAT and Cdk5 IR was examined in the shell and core regions of the NAc 

(Figure 5.5), dorsolateral and ventromedial regions of the DS, and IL and PrL PFC. 
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Additional brain regions examined but not discussed in the present study are presented in 

Table 5.3. Quantitative analysis of the percent of cholinergic neurons that co-expressed 

Cdk5 was calculated from immunoperoxidase labeled tissue. At the end of the 1 month 

drinking period, a 51% increase in the percentage of Cdk5-positive cholinergic neurons 

was observed in the shell NAc [t(19) = 2.70, p<0.01, 2-tailed] (Figure 5.6A). In the PFC 

a 51% decrease in the percentage of Cdk5-positive cholinergic neurons compared with 

baseline values was observed in the IL region [t(14) = 3.42, p<0.01, 2-tailed] (Figure 

5.6B), and a 46% decrease was observed in the PrL region [t(18) = 3.02, p<0.01, 2-tailed] 

(Figure 5.6C). In the shell NAc the average number of Cdk5-positive cholinergic neurons 

was 29.4 ± 3.7 in the control group and 44.4 ± 3.0 in the alcohol group. In the IL PFC the 

average number of Cdk5-positive cholinergic neurons was 49.7 ± 6.8 in the control group 

and 24.2 ± 4.0 in the alcohol group, while in the PrL PFC the average number of Cdk5-

positive cholinergic neurons was 45.4 ± 5.7 in the control group and 24.2 ± 4.1 in the 

alcohol group. These data are reported as means ± SEM. Alcohol did not elicit significant 

changes in the percentage of Cdk5-positive cholinergic neurons in the core NAc, 

dorsolateral DS or ventromedial DS.  
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Figure 5.5. Representative photomicrographs of dual-immunoperoxidase labeled 
tissue illustrating the localization of Cdk5 in cholinergic interneurons of the NAc in 
iP rats. (A) Low-magnification of the NAc from an animal that underwent initiation 
alcohol drinking. (B) High-magnification of the shell NAc from the area outlined in the 
box shown in A. (C) Low-magnification of the NAc from a control animal. (D) High-
magnification of the shell NAc from the area outlined in the box shown in C. The brown 
DAB label identified ChAT IR cholinergic neurons; whereas the blue/black SG label 
indicated Cdk5 IR. Scale bars = 100 µm in A, C; 30 µm in B, D.  



Table 5.3 Percent of Cdk5-Positive Cholinergic Neurons in 
iP Rat Brain Following 1 Month of Initiation Alcohol Drinking

Water Alcohol
Prefrontal Cortex
Cg1 43.5 ± 7.3 61.4 ± 6.0

Striatum
Core NAc 30.1 ± 3.2 23.0 ± 3.8
Dorsolateral DS 39.0 ± 4.0 35.9 ± 5.5
Ventromedial DS 33.0 ± 3.7 39.1 ± 5.3
Olf 37.2 ± 4.9 49.8 ± 7.3
VP 50.1 ± 6.0 55.0 ± 5.3

Basal Forbrain
MS 58.5 ± 3.2 55.5 ± 4.6

Extended Amygdala
SI 41.2 ± 2.9 41.2 ± 1.4

Hypothalamus
LH 36.8 ± 9.2 39.8 ± 14.1

Data are presented as mean number of Cdk5-positive cholinergic
neurons per sample area ± SEM.  
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Figure 5.6. Percent of Cdk5-positive cholinergic neurons in iP rats following 1 
month of initiation alcohol drinking. Initiation drinking elicited (A) a 51% increase 
in the shell NAc, (B) a 51% decrease in the IL PFC, and (C) a 46% decrease in the PrL 
PFC in Cdk5-positive cholinergic neurons as compared to baseline values. Data are 
presented as mean number of DA D2 receptor-positive cholinergic neurons per optical 
field ± SEM (**p<0.01). 
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5.4.3.2 Single Cdk5 Immunoreactivity        

Single Cdk5 IR was examined in the shell and core regions of the NAc, 

dorsolateral and ventromedial regions of the DS, and IL and PrL PFC. Quantitative 

analysis of Cdk5-positive neurons, as reported in Table 5.4, was calculated from 

immunoperoxidase labeled tissue. Alcohol drinking did not produce significant changes 

in the number of Cdk5-labeled neurons in either region of the NAc, DS, or PFC.   
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Table 5.4 Number of Cdk5-Positive Neurons in iP Rat Brain 
Following 1 Month of Initiation Alcohol Drinking

Water Alcohol
Prefrontal Cortex
IL 44.1 ± 6.8 47.4 ± 1.9
PrL 41.4 ± 3.3 46.4 ± 2.4
Cg1 19.6 ± 1.8 20.1 ± 1.7

Striatum
Shell Nac 57.6 ± 2.1 63.1 ± 1.3
Core Nac 69.1 ± 4.4 67.3 ± 3.4
Dorsolateral DS 49.9 ± 3.5 54.7 ± 4.4
Ventromedial DS 55.4 ± 4.5 63.1 ± 3.6
Olf 13.0 ± 2.0 18.4 ± 3.2
VP 46.3 ± 4.4 53.9 ± 4.7

Basal Forebrain
MS 7.3 ± 0.6 7.1 ± 0.8

Extended Amygdala
BNST 51.8 ± 5.1 58.1 ± 7.6
CNA 48.0 ± 1.7 68.0 ± 8.1**

Hypothalamus
LH 0.9 ± 0.1 0.8 ± 0.2
PVN 48.7 ± 4.1 46.1 ± 5.5

Hippocampus
CA1 32.5 ± 1.8 32.6 ± 1.8
CA3 28.5 ± 2.1 27.0 ± 1.8
Dentate gyrus 90.6 ± 5.8 85.4 ± 4.8
Data are presented as mean number of Cdk5 positive neurons per 
sample area ± SEM. ** indicates p <0.01.  
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5.5  Discussion 

 The present study examined changes in DA D2 receptor and Cdk5 expression in 

iP rats following the 1 month, continuous-access, initiation alcohol drinking model. 

Previous studies in this dissertation have highlighted changes in D2 receptor and Cdk5 

expression in C57BL/6J mice. It is important to perform similar experiments across 

species in an effort to better extrapolate findings in animal models to human conditions. 

Comparing similarities in alcohol-induced neuroadaptations across species helps to 

identify key brain regions that underlie alcohol drinking. Differences across species aid in 

identifying the appropriate animal model for the question at hand. Different species can 

express differences in behavior, neuronal connectivity, and neurochemical content in 

various brain regions. The present study examined neuroadaptive changes in D2 receptor 

and Cdk5 expression in the NAc, DS, and PFC of iP rats. Additional brain areas that have 

been reported to be involved in various alcohol related behaviors were also examined 

(see Table 5.3 and Table 5.4.), however the discussion is focused on the aforementioned 

brain regions.  

 

5.5.1 Dopamine D2 Receptor Neuroadaptation in Cholinergic Interneurons of iP 

Rats Following Initiation Alcohol Drinking 

The present study aimed to identify D2 receptor changes in cholinergic 

interneurons, and other neurons, of the NAc, DS, and PFC of iP rats following 1 month of 

voluntary initiation alcohol drinking. Findings revealed a 25% decrease in D2-positive 

cholinergic interneurons in the core NAc, a 46% decrease in D2-positive cholinergic 

neurons in the PrL PFC, and a 46% increase in D2-positive cholinergic neurons of the 
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ventromedial DS, as compared to baseline values, following 1 month of voluntary 

initiation alcohol drinking.              

D2 receptors have been implicated in the reinforcing effects of alcohol (Crabbe 

and Phillips, 1998; McBride et al., 1993; Nowak et al., 2000; Stefanini et al., 1992), 

alcohol drinking (Thanos et al., 2001; Thanos et al., 2004), drug-seeking behavior and 

relapse (De Vries and Shippenberg, 2002; De Vries et al., 2002; Self et al., 1996) as well 

as withdrawal (Sousa et al., 1999). Low densities of D2 receptors have been observed in 

drug abusers (Volkow et al., 1990; Volkow et al., 2001; Wang et al., 1997), however, it is 

currently unknown whether decreases in D2 receptors are a consequence to drug use or if 

low D2 levels predispose an individual to drug abuse and dependence. Volkow and 

colleagues (1999) addressed this question by measuring DA D2 receptor availability in 

healthy human subjects before administering intravenous methylphenidate (i.e. Ritalin). 

The subjects who reported the drug as pleasant had significantly lower striatal DA D2 

receptor availability than those who reported it as unpleasant (Volkow et al., 1999). In 

addition, low striatal DA D2 receptor availability was demonstrated to be predictive of 

increased cocaine self-administration in monkeys (Morgan et al., 2002). The 

aforementioned studies suggest that the effects of a drug are produced as a combination 

of the pharmacologic action of the drug and the neurochemistry of a subject’s brain and 

suggest that high D2 levels may be protective against substance abuse.   

Studies comparing various strains of alcohol-preferring rats to their nonpreferring 

counterparts have generally found that DA D2 receptor density, especially in limbic 

areas, is lower in the alcohol-preferring animals (Korpi et al., 1987; McBride et al., 1993; 

Stefanini et al., 1992). It has been hypothesized that this difference may predispose these 
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animals to high alcohol intake (McBride et al., 1993). These results, in conjunction with 

the fact that P rats have been shown to have moderate to low levels of DA D2 receptors 

(McBride et al., 1993), suggest that high levels of DA D2 receptors could be protective 

against alcohol abuse. Thanos and colleagues (2001; 2004) found that overexpression of 

the DA D2 receptor gene in the core NAc of P rats attenuated alcohol drinking, 

suggesting that high levels of DA D2 receptors may be protective against alcohol abuse. 

Furthermore, human neuroimaging studies have shown that chronic alcohol drinking 

results in significantly lower amounts of available DA D2 receptors (Hietala et al., 1994; 

Volkow et al., 1996) and nonalcoholic members of alcoholic families have higher than 

normal levels of DA D2 receptors (Volkow et al., 2006). None of these studies however 

narrowed the focus to examine these receptors in specific cell types, which makes the 

present examination of D2 receptors in cholinergic interneurons key to revealing the 

underlying neurobiology of alcoholism. The fact that D2 receptor changes were observed 

in the core NAc in both the C57BL/6J mice and iP rats further exemplifies this area as a 

key region involved in alcohol drinking.      

The core NAc has traditionally been characterized as an area involved primarily 

with motor functions. Recent studies, however, associate the core NAc with drug-seeking 

(Kalivas and Volkow, 2005), and it is hypothesized that the core mediates the expression 

of learned behaviors in response to motivationally relevant stimuli (Di Ciano and Everitt, 

2001; Kelley, 2004). The core NAc is also associated with drug-induced sensitization (Li 

et al., 2004; Robinson and Kolb, 2004) and related synaptic rewiring (Berlanga et al., 

2006). The findings that DA D2 IR was reduced in cholinergic cells of the core NAc are 
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consistent with previous reports of decreased DA D2 receptor availability in striatal areas 

of alcohol abusers.         

The DS is a region composed of a medial and a lateral subdivision. The 

ventromedial DS receives dopaminergic afferents from the VTA, while the dorsolateral 

DS is innervated primarily by the SN (Gerfen et al., 1987). The DS has traditionally been 

associated with motor function, however recent studies demonstrate its role in habit 

learning and the synaptic plasticity that underlies the progression from casual drug use to 

habitual drug-seeking (Berke and Hyman, 2000; Everitt and Wolf, 2002). Cue-induced 

DA release in the DS can trigger relapse into drug-taking behavior (Ito et al., 2002) and 

previous work in our laboratory found cholinergic interneurons of the ventromedial DS to 

be dose-dependently activated by the acute self-administration of cocaine (Berlanga et 

al., 2003). The present study provides evidence of receptor neuroadaptation in the 

ventromedial DS following voluntary alcohol drinking, as measured by an increase in DA 

D2 IR cholinergic neurons. These findings, along with the previous work of others, 

suggest that the DS undergoes alcohol-induced cellular and receptor changes that may 

underlie a repertoire of alcohol-mediated behaviors.      

 The PFC has been implicated in various cognitive processes such as decision-

making and goal-directed learning (Dalley et al., 2004; Ostlund and Balleine, 2005) as 

well as alcohol drinking (Hodge et al., 1996). Connectivity between the PFC and 

subcortical regions, and the neurotransmitter release that occurs within these areas, are 

thought to control behaviors such as the transition from voluntary substance abuse to 

compulsive intake (Goldstein and Volkow, 2002; Jentsch and Taylor; 1999; Kalivas and 

Volkow, 2005). Down-regulation of DA D2 receptors in the PrL PFC observed in the 
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present study is consistent with previous reports indicating that alcohol produces 

hypofrontality (Lyons et al., 1998) and impairment in PFC executive function and 

memory tasks (O’Mahony and Doherty, 1996; Sullivan et al., 2000). The present work 

provides further insight into the mechanisms that may contribute to this PFC 

hypofunction and impairment of PFC mediated functions.                    

 

5.5.2  Cdk5 Neuroadaptation in Cholinergic Interneurons of iP Rats Following 

Initiation Alcohol Drinking 

 Adjacent sections to those examined for dual ChAT and DA D2 receptor IR were 

examined for dual ChAT and Cdk5 IR. Cdk5 has been shown to regulate various 

mechanisms associated with neuroplasticity, such as synapse formation (Bibb, 2003; 

Johansson et al., 2005; Norrholm et al., 2003), and was therefore used in this study as a 

potential marker of neuronal plasticity. The findings from this study revealed a 51% 

increase in Cdk5-positive cholinergic neurons of the shell NAc, and a 51% and 46% 

decrease in Cdk5-positive cholinergic neurons of the IL PFC and PrL PFC, respectively, 

as compared to baseline values, following 1 month of voluntary initiation alcohol 

drinking. Additional brain areas were examined (see Table 5.3, Table 5.4, and Camp et 

al., 2006), but for the purpose of this discussion significant data from the NAc and PFC 

are presented.    

 As has been extensively discussed in this dissertation, the NAc is a critical region 

for mediating the reinforcing properties of alcohol and other drugs of abuse (Koob, 2003; 

Koob and Bloom, 1988; Pontieri et al., 1995; Rassnick et al., 1992). Many studies have 

been conducted that reveal differential responsiveness of the shell and core NAc to drugs 
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of abuse. For example, acute administration of a variety of drugs of abuse causes an 

increase in extracellular DA levels in the shell but not the core (Pontieri et al., 1995), and 

rats will lever press for cocaine into the shell but not the core (Carlezon et al., 1995). 

Porrino and colleagues (1998) reported an increase in activity of various brain regions, 

including the PFC and shell NAc, but not the core NAc following voluntary alcohol 

consumption in rats. Alternatively, Smith and colleagues (2001) reported a decrease in 

functional activity, as measured by the 2-DG method, in 49 of 57 brain regions examined, 

including the medial PFC, shell NAc, and core NAc. The finding that alcohol elicited 

significant changes in Cdk5 expression in only 3 of the 12 brain regions examined with 

dual-labeling procedures, and only 1 of the 17 regions examined with single-labeling 

procedures suggests that alcohol exerts its effects in a region-specific manner. 

Furthermore, these findings of significant changes in Cdk5-positive cholinergic 

interneurons suggest that alcohol also acts in a cell-specific manner.  

 The PFC is associated with numerous behaviors including drug-seeking, and 

alcohol drinking (Dalley et al., 2004; Hodge et al., 1996; McFarland et al., 2003). It is 

hypothesized that the transition from casual drug use to compulsive intake occurs through 

disruption of the inhibitory influence of the PFC on subcortical brain areas such as the 

NAc (Goldstein and Volkow, 2002; Jentsch and Taylor; 1999; Kalivas and Volkow, 

2005). Dopaminergic afferents from the VTA have been shown to exert an inhibitory 

influence on PFC neurons. For example, electrical stimulation of the VTA and 

application of DA into the PFC induces inhibition of the spontaneous firing rate of 

cortical cells (Bunney and Aghajanian, 1976; Ferron et al., 1984; Godbout et al., 1991; 

Mantz et al., 1988; Penit-Soria et al., 1987; Peterson et al., 1987; Sesack and Bunney, 
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1989). This inhibition may be related not only to the direct effect of DA on cortical 

pyramidal cells but also to an indirect action of DA via GABA interneuronal influences 

on pyramidal cells (Penit-Soria et al., 1987; Pirot et al., 1992). Consistent with these 

findings, hypofrontality has been reported to occur, as measured by the 2-DG method, 

following long-term self-administration of cocaine (Macey et al., 2004) and in a time-

dependent manner following an intragastric dose of alcohol (Lyons et al., 1998). The 

present study provides evidence that voluntary alcohol drinking results in a down-

regulation of Cdk5 IR cholinergic neurons of the PFC. These findings provide evidence 

of alcohol-mediated hypofrontality at a cellular, mechanistic level and are in accordance 

with reports of VTA-mediated cortical cell inhibition, reduced ACh levels (Stancampiano 

et al., 2004), and alcohol-induced hypofrontality (Berglund and Ingvar, 1976; Berglund 

and Risberg, 1977; Lyons et al., 1998; Volkow et al., 1990; Volkow et al., 1992; Volkow 

et al., 1994).                       

 Chronic alcohol drinking did not induce changes in general cell activation, as 

measured by single-label Cdk5 IR, in the IL PFC, PrL PFC, shell NAc, core NAc, 

ventromedial DS, or dorsolateral DS, suggesting that previous reports of striatal 

hyperactivity or prefrontal hypoactivity changes are occurring specifically in cholinergic 

neurons. It is possible, however, that changes in Cdk5 in these areas may occur at earlier 

or later stages of alcohol drinking that were not examined in the present study.  

 The studies performed in iP rats identified the involvement of cholinergic 

interneurons of the NAc, DS and PFC in initiation alcohol drinking. These findings are 

consistent with previous reports on a ventral to dorsal recruitment of striatal areas (Haber 

et al., 2000) with continued alcohol drinking, and further identify the PFC as a critical 
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influence over subcortical activity that underlies the progression from controlled drug use 

to addiction.  
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Chapter 6: General Discussion 

Alcoholism is a complex relapsing disease that is characterized by the 

preoccupation with obtaining alcohol, excessive alcohol drinking, the development of 

tolerance and dependence, and an impairment in social and occupational functioning 

(American Psychiatric Association, 1994). Identifying the neurobiological mechanisms 

involved in alcohol drinking, specifically the transition from initiation drinking to binge 

drinking, is critical for the development of treatments for alcoholics and the vulnerability 

for relapse in those recovering. Neuroplasticity underlies the development of alcoholism 

and refers to neuroadaptations and the capability of brain reorganization in response to 

various stimuli, including alcohol drinking. The studies in this dissertation focused on 

identifying the involvement of a specific cell type, cholinergic interneurons, and the 

neuroadaptive changes that occur within these cells following alcohol drinking. These 

studies tested the overarching hypothesis that cholinergic interneurons in the NAc are 

critical substrates that underlie alcohol drinking, and that the plasticity that occurs within 

these cells then facilitates behaviors that are hallmarks of alcoholism such as compulsive 

alcohol drinking. 

The study presented in Chapter 2 is the first study to examine the effects of 

accumbal cholinergic cell ablation on binge alcohol drinking in C57BL/6J mice. Results 

revealed a direct role for cholinergic interneurons in alcohol drinking by demonstrating 

that selective destruction of these cells causes a decrease in alcohol drinking. Once it was 

established that accumbal cholinergic interneurons are involved in alcohol drinking the 

next step was to investigate specific neuroadaptations that occur within these cells that 
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may underlie the transition from casual alcohol use to compulsive drinking. The next two 

studies were therefore designed to examine specific receptor and molecular 

neuroadaptations that occur within cholinergic neurons following the initiation and binge 

alcohol drinking models.  

The second study (Chapter 3) examined the effects of initiation and binge alcohol 

drinking on DA D2 receptor expression in accumbal cholinergic neurons in C57BL/6J 

mice. One month of binge alcohol drinking lead to a decrease in D2-positive cholinergic 

cells in the core NAc, implicating this region as critically involved in compulsive alcohol 

drinking. Striatal D2 receptors have been shown to be down-regulated in addicted 

individuals (Volkow et al., 2004), however previous reports used imaging technology and 

report global changes in particular brain regions. The present study was able to pinpoint 

D2 receptor changes on a specific cell type, suggesting that significant findings reported 

in earlier studies could potentially be occurring on cholinergic interneurons. Since D2 

receptors are inhibitory, a down-regulation potentially causes an overall increase in ACh 

release when compared to water drinking controls. It is hypothesized that this increase in 

ACh release then regulates striatal neurons and intracellular signaling mechanisms which 

translate to behaviors such as drug-seeking or compulsive alcohol drinking.  

Cdk5 controls a number of signal transduction mechanisms that regulate neuronal 

plasticity (Bibb, 2003). Cdk5 expression was examined in cholinergic interneurons of the 

core NAc of C57BL/6J mice following the initiation and binge alcohol drinking models 

(Chapter 4). One month of initiation alcohol drinking lead to a significant increase in 

Cdk5-positive cholinergic neurons in the core NAc of C57BL/6J mice, while binge 

drinking lead to a more robust increase in Cdk5 expression in these cells. The progression 
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from initiation alcohol drinking to compulsive, binge drinking is a key behavior 

underlying the development of alcoholism. These data suggest that cholinergic 

interneurons, particularly in the core NAc, are critically involved in the transition from 

initial alcohol drinking to binge drinking. Neuroplasticity within these cells, as measured 

by Cdk5 IR, could mediate a potential mechanistic switch that facilitates this transition. 

This study also revealed an increase in single-label Cdk5 expression in the core NAc. 

This finding is presumably indicative of an increase in Cdk5-positive MSNs and suggests 

a recruitment of these cells in binge drinking. Future work would need to address earlier 

time points to identify when exactly these cells are being recruited. 

Animal models are invaluable tools for examining the underlying neurobiology of 

human diseases. They afford experimental control and neurochemical analysis that is not 

possible in humans. When modeling human conditions such as alcoholism it becomes 

important to compare similarities and differences between species to more precisely 

identify the underlying neuronal mechanisms that contribute to this disease. Animal 

models have been developed to address characteristics of alcoholics such as craving, loss 

of controlled drinking, and relapse. Comparing similar neuroadaptive changes between 

animal models helps to identify key brain regions that could serve as potential targets for 

improved treatments. While previous studies have identified neuroadaptive changes in 

C57BL/6J mice, the final study (Chapter 5) assessed changes in both D2 receptor and 

Cdk5 expression in cholinergic cells of the NAc, DS, and PFC in iP rats following 1 

month of initiation alcohol drinking. 

 One month of voluntary initiation alcohol drinking in iP rats caused a significant 

decrease in D2-positive cholinergic neurons of the core NAc and PrL PFC, and an 
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increase in D2-positive cholinergic cells in the ventromedial DS. A down-regulation of 

D2-positive cholinergics in the core NAc and PrL PFC is consistent with previous 

findings of decreased D2 receptor availability in striatal areas of alcoholics (Hietala et al., 

1994; Volkow et al., 1996), and with the idea that the transition from casual drug use to 

compulsive intake occurs through a disruption of the PFC influence on subcortical brain 

regions (Goldstein and Volkow, 2002; Jentsch and Taylor; 1999; Kalivas and Volkow, 

2005). The increase in D2-positive cholinergic cells in the ventromedial DS is in 

accordance with the underlying role of this area in habit learning and habitual drug-

seeking (Berke and Hyman, 2000; Everitt and Wolf, 2002). The down-regulation of D2-

positive cholinergic neurons in the core NAc of C57BL/6J mice and iP rats, reported in 

these dissertation studies, could facilitate future behaviors characteristic of alcoholics 

such as compulsive alcohol drinking. Thanos and colleagues showed that overexpression 

the D2 gene in the core NAc attenuated alcohol drinking, further suggesting that low 

receptor levels in this area could lead to compulsive drinking. A disruption in the normal 

circuitry between the NAc and PFC could lead to increased drinking as well as relapse. 

The deficit in inhibitory control from the PFC could influence other compulsive 

behaviors such as abuse of other drugs, gambling, and response to cues associated with 

drugs of abuse. 

 An increase in Cdk5-positive neurons of the shell NAc was observed following 1 

month of initiation drinking in the iP rat while a concomitant down-regulation of Cdk5-

positive neurons was observed in the PrL and IL regions of the PFC. These results are in 

accordance with fMRI measured overactivity of subcortical brain areas and a 

corresponding hypofrontality that occurs with alcohol and drug abuse. Results from iP 
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rats specifically identify cholinergic neuroadaptations in brain regions previously 

identified in the complex circuitry that underlies alcohol drinking and the progression to 

habitual drinking. Cdk5 has been shown to be necessary for various mechanisms 

associated with neuroplasticity including increased spine formation in the NAc 

(Norrholm et al., 2003). Increases in Cdk5 expression in the NAc, observed in the present 

studies, may be predictive of increased synapse formation that underlies long-term 

persistent changes in the brain that facilitates behaviors such as compulsive alcohol 

drinking. Initiation and binge alcohol drinking lead to a 38% and 65% increase, 

respectively, in Cdk5-positive cholinergic neurons in the core NAc of C57BL/6J mice. 

High BECs produced by the binge drinking model caused an almost 2-fold increase in the 

percentage of cholinergic cells that expressed Cdk5. This suggests that if drinking 

continues, to the point where intoxication is reach frequently, long-term synaptic changes 

are likely to occur in regions that mediate the transition from casual to compulsive 

alcohol use. Similar to the discussion above, the down-regulation of Cdk5-positive 

cholinergic cells observed in the PFC of iP rats could lead to a reduction of synaptic 

connections which would normally serve to inhibit addiction related circuits and 

behaviors, leading to the future potential for relapse.  

The NAc is well established as a key region that underlies the reinforcing effects 

of alcohol and other drugs of abuse. The shell of the NAc is involved in the acute 

administration of alcohol (Di Chiara and Imperato, 1988; Herring et al., 2004; Imperato 

and Di Chiara, 1986) while the core is associated with drug seeking and the maintenance 

of instrumental behavior (Everitt and Robbins, 2005; Kalivas and Volkow, 2005). The 

DS has been implicated in habitual behavior as casual drug use progresses toward 
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compulsive use and addiction. The transition from initial drug use to habitual drug 

seeking is thought to involve a ventral to dorsal transfer of information processing. One 

such mechanism that might be controlling this ventral to dorsal movement is a cascading 

loop circuitry in which output from the shell NAc influences DA projections to the core, 

and similarly, output from the core influences projections to the DS (Haber et al., 2000).  

Altogether, the studies of this dissertation indicate that cholinergic interneurons of 

the NAc are critical mediators of alcohol drinking and that drinking, either in an initiation 

or binge model, causes neuroadaptive receptor and molecular changes that underlie 

behaviors such as compulsive drinking. These studies integrate molecular, cellular and 

circuitry information and contribute to the understanding of the neurobiological 

mechanisms that underlie alcohol drinking. The findings are in accordance with recent 

work emphasizing the role of the striatum as a whole (including the shell NAc, core NAc, 

and DS) in the processes leading first to drug abuse then to addiction through an 

interconnected spiraling loop with ventral striatal regions influencing more dorsal striatal 

regions (Haber et al., 2000). It remains to be determined whether these cholinergic 

specific neuroadaptations can lead to structural changes, such as synaptic remodeling, 

that may underlie long-term alcohol mediated behaviors such as compulsive alcohol 

drinking, which may drive the switch that occurs from recreational drug use to long-term 

drug addiction. Future work will determine whether synaptic rewiring occurs in this brain 

tissue following these models of alcohol drinking and will provide critical insight into the 

neurobiological basis of alcohol drinking and relapse. Altogether, these data provide the 

basis for cholinergic targeted treatments designed to attenuate compulsive binge drinking 

and provide the groundwork for future studies examining region- and cell-specific 
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receptor and intracellular changes that underlie excessive alcohol drinking, craving, and 

relapse. These findings may lead to improved cell- and molecular-specific targeted 

genetic, pharmaceutical and behavioral treatment programs for alcoholism.  
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