Hoop－Passi ng Mbtion for a Snake Robot to Realize Mbtion Transition Across Different Envi ronnents

著者（英）	Tat suya Takenor i，Mdt oyasu Tanaka，Fumitoshi Nat suno
j our nal or publ i cat i on titl e	I EEE Tr ansact i ons on Robot i cs
vol une	37
nunber	5
page range	$1696-1711$
year	$2021-10$
URL	ht p：／／i d．ni i．ac．j p／1438／00009999／
doi：10．1109／TRO．2021．3063438	

Hoop-passing Motion for a Snake Robot to Realize Motion Transition across Different Environments

Tatsuya Takemori, Student Member, IEEE, Motoyasu Tanaka, Member, IEEE, and Fumitoshi Matsuno, Member, IEEE,

Abstract

A snake robot performs diverse motions. To realize a wide range functions in a complex environment, it is necessary to transition between various motions suited to each environment. In this paper, we propose a method of transitioning the motion of a snake robot across different environments to expand the application environment of the robot. We first find that the motion at the connection point between two motions must coincide with the tangential movement during motion transition across different environments. We then design a gait called the circular pedal wave. This circular pedal wave allows a hooppassing motion in which the whole body moves as if it is passing through a virtual hoop fixed in space in sequence from its head through combination with a proposed shift part. The hoop-passing motion allows motion transition across different environments. We propose three application examples of this hoop-passing motion, namely passing through a hole in a wall, entering an underfloor, and attaching to a ladder. We report on experiments conducted to verify the effectiveness of the proposed method and to realize the described motions.

Index Terms-Search and Rescue Robots, Biologically-Inspired Robots, Redundant Robots, and Snake Robot

I. Introduction

BIOLOGICAL snakes, despite having simple and limbless bodies, adapt to various environments through a variety of behaviors; e.g., when moving over uneven terrain and climbing trees. A snake can also grasp an object by wrapping itself around it. A snake robot, which is based on a biologicalsnake mechanism, is expected to solve a variety of problems while having a simple structure, and much research has been done on relevant control methods [1]. A control method that converges the controlled quantity to a target value using a model has been proposed. Two main models are used for this method: a friction model that does not take nonholonomic constraints into account [2]-[4] and a model that does take non-holonomic constraints into account [5]-[11]. Such a method using a model of interaction between the robot and environment is effective for simple environments such as those on a plane.

In a complex environment with obstacles that are difficult to model, methods of propulsion using obstacles in a manner

[^0]similar to that adopted by a biological snake has also been studied [12]-[15], which called "obstacle-aided locomotion".
There is another approach in complex environments to realize locomotion which design the overall form of the snake robot. Although such an approach does not involve kinematic or kinetic optimization, it is easy to apply to complex environments that cannot be modeled. A variety of gaits, such as sidewinding and lateral rolling, can be realized by directly defining the trajectory of the joint angle of the snake robot as a parameterized equation [16]-[19]. However, when the target form of a snake robot becomes more complex, it is difficult to directly formulate a joint angle trajectory that realizes that form.
Without using gait functions, the target form is represented by a continuous spatial curve called the backbone curve [20], and a method of approximating a discrete snake robot to this curve has been studied [21]-[30]. Adopting this method, a snake robot is abstracted into a continuous curve, and the advantage is that it is easy to design complex forms because the joint angles do not need to be determined directly. We extended the approximation method of Yamada et al. [24] and proposed a method of designing the target form of a snake robot by connecting the curve segment [31]. In addition, by using our motion design method, we proposed motions that allow the robot to move over a flange on a pipe and a crawler gait for moving over uneven ground. Furthermore, we designed a ladder-climbing gait and developed a novel snake robot with a smooth surface shape, and realized ladder climbing with the snake robot [32]. On the basis of these studies [16]-[32], we can design corresponding motions of a robot for propulsion to some specific irregular environments.

The motion of a snake robot is diverse, and the effectiveness of a motion depends on the configuration of the snake robot and environmental conditions. In realizing diverse functions in a complex environment, it is necessary to transition between diverse motions suitable for each environment. Methods adopted for the movement of a snake robot across a discontinuous environment have been studied [33]-[35]. However, these methods are limited in their motion pattern and target environments.

In this paper we take a step towards our ultimate goal developing a unified method for snake robot to transition between environments by transitioning between common snake motions. Now, we focus on the motions commonly used in snake robots and consider a method for transitioning between them accross different environments. In sec. III, in preparation for the mathematical description of motion, we extend the
method of designing target forms by connecting simple shapes and formulate a method of designing new target forms by connecting several target forms. In sec. IV, we discuss the motion transition of a snake robot and decide on the realization of a hoop-passing motion as a problem to be solved in this work. In sec. V, we propose a method of realizing a hooppassing motion. In sec. VI, we propose application examples of the proposed hoop-passing motion, such as passing a hole in a wall, passing a hole in the floor, and attaching to a ladder from the floor. In sec. VII, we verify the effectiveness of the proposed method by conducting experiments with our snake robot developed in [32]. In sec. VIII, we summarize the present study and discuss future works.

II. Related work

This section describes the details of the related work mentioned in section I.

A. Obstacle-aided Locomotion

Transeth et al. and Liljebäck et al. [13] realized efficient obstacle-aided locomotion adopting compliance control that fits the obstacle on the side directed toward where the snake robot wants to proceed but does not fit the obstacle on the opposite side. Kamegawa et al. [14] introduced motion based on a serpenoid curve that is a reflexive behavior for obstacle contact. Kano et al. [15] realized autonomous and decentralized promotion with obstacles by feeding back reaction forces received from the environment. These studies considered a plane with obstacles as an environment.

B. Motion Design with Continuous Curve

In [20]-[24], methods of obtaining the joint angles to approximate the robot to the backbone curve were proposed. Andersson [21] proposed a method of matching the joint positions from the beginning to the target curve in a multilinked robot connected with universal joints. However, when each joint has only one degree of freedom, it is not possible in principle to match all the joint positions to the curve, and the approach is not applicable. Hatton et al. [22] therefore proposed annealed chain fitting, which approximates the target curve from the beginning by minimizing the evaluation function corresponding to the magnitude of the distance between the target curve and robot. Liljebäck et al. [23] proposed a method of approximating the snake robot to a curve drawn by connecting the shape control points in a 3D space. Yamada et al. modeled a snake robot using Frennet-Serret's formula in [25] and proposed a method of deriving appropriate joint angles based on the curvature and torsion of the target curve in [24].

The approximation method of Yamada et al. [24] has the advantage that it can be easily applied when the curvature and torsion of the target form are easy to determine, and it has been applied in many studies [27]-[30]. In these studies, the target joint angles were calculated using the method of Yamada et al. [24] from the curvature and torsion calculated from the target continuous curve representing the target form. However,

Fig. 1. Difference between the Frenet-Serret frame and the backbone curve reference set [31].
it is difficult to represent an appropriate continuous curve analytically when a more complex target form is required. Additionally, the target joint angle cannot be calculated using the method of Yamada et al. because of the divergence of the torsion if there is a region where the curvature is zero on the curve [25]. We therefore extended the method of Yamada et al. [24] and proposed a method of designing the target form of a snake robot by connecting the curve segment whose properties, such as curvature and torsion, are already known [31].

C. Locomotion across Discontinuous Environments

Several methods for the movement of a snake robot across a discontinuous environment have been proposed. Fu et al. [33] developed a snake robot with compliant passive wheels that can move from one horizontal plane to another after overcoming a step. Nakajima et al. [34] demonstrated that a snake robot with passive wheels can move across non-parallel planes. In these studies, a specific environment was considered and a corresponding movement method was proposed for each environment. This is a limitation of these studies. Kano et al. [35] proposed a TEGOTAE-based ("Tegotae" is a Japanese concept that describes how well a perceived reaction matches an expectation) decentralized control scheme for switching behavior in response to changes in the environment, such as those in a parallel-wall or random-obstacle environment. In this method, different locomotion patterns emerge from a single decentralized control rule. However, this method is applicable to only a two-dimensional plane.

III. Gait Design and Fitting Method

In this section, we explain the method used to express a target form of a snake robot and approximate the form of the snake robot to the target form, proposed in [31].

A. Shape Fitting Using the Backbone Curve

We use a snake robot model that is comprised of alternately connected pitch-axis and yaw-axis joints. A previous study [24] showed that this configuration gives the best approximation. The number of joints is represented by $n_{\text {joint }}$ and the link length is l. The upper value of the limitation of the absolute angle of a joint is $\theta_{\text {max }}$.

We explain the relationship between the Frenet-Serret frame and the backbone curve and the approximation method, which was proposed in [24], [25]. The backbone curve is used to

Fig. 2. Concept of shift control
express the target form of the snake robot. Let a spatial continuum curve be $\boldsymbol{c}(s)$, where s is the length variable along the curve. As shown in Fig. 1, $\boldsymbol{e}_{1}(s), \boldsymbol{e}_{2}(s)$, and $\boldsymbol{e}_{3}(s)$ are the unit vectors that form the orthonormal basis, which is called the Frenet-Serret frame. Curvature $\kappa(s)$ corresponds to the change in the direction of $\boldsymbol{e}_{1}(s)$ while torsion $\tau(s)$ corresponds to the change in the direction of $\boldsymbol{e}_{2}(s)$. In contrast with the Frenet-Serret model, the backbone curve reflects the joint direction in the modeling of the snake robot. As shown in Fig. 1, a backbone curve reference set comprising $\boldsymbol{e}_{r}(s)$, $\boldsymbol{e}_{p}(s)$, and $\boldsymbol{e}_{y}(s)$ is defined on the curve by considering the snake robot to have the form of a continuous curve. $\boldsymbol{e}_{r}(s)$ is equal to $\boldsymbol{e}_{1}(s) . \boldsymbol{e}_{p}(s)$ is a unit vector that is oriented along the pitch axis and $\boldsymbol{e}_{y}(s)$ is a unit vector that is oriented along the yaw axis. These vectors constitute the basis vectors of the backbone curve reference set. As shown in Fig. 1, $\psi(s)$ is the twist angle of the Frenet-Serret frame and the backbone curve reference set around $\boldsymbol{e}_{1}(s)$, which can be obtained from $\tau(s)$ as

$$
\begin{equation*}
\psi(s)=\int_{0}^{s} \tau(\hat{s}) \mathrm{d} \hat{s}+\psi(0) \tag{1}
\end{equation*}
$$

where $\psi(0)$ is an arbitrary integral constant that corresponds to an initial angle.

We consider the curvature based on the backbone curve reference set. $\kappa_{p}(s)$ and $\kappa_{y}(s)$ are respectively the curvatures around the pitch axis and yaw axis in the backbone curve reference set and can be obtained as

$$
\begin{equation*}
\left(\kappa_{p}, \kappa_{y}\right)=(-\kappa(s) \sin \psi(s), \kappa(s) \cos \psi(s)) \tag{2}
\end{equation*}
$$

Finally, the target angle of each joint is calculated using

$$
\theta_{i}^{d}=\left\{\begin{array}{cc}
\int_{s_{\mathrm{h}}-(i-1) l}^{s_{\mathrm{h}}-(i+1) l} \kappa_{p}(s) \mathrm{d} s & (i: \text { odd }) \tag{3}\\
\int_{s_{\mathrm{h}}-(i-1) l}^{s_{\mathrm{h}}-(i+1) l} \kappa_{y}(s) \mathrm{d} s & (i: \text { even })
\end{array}\right.
$$

where s_{h} is the head position of the snake robot on the target continuous curve. As shown in Fig. 2, by changing s_{h} smoothly, the corresponding region on the target form to the approximated form of the snake robot change, then the snake robot can change its form smoothly. This control method is called shift control. The basic concept of shift control is described in [1]. This shift control method based on backbone curve can generate motion without directing motion in joint space. Shift control is used to generate various motion such as wave like motion, sliding motion, peeling motion. In addition

Fig. 3. Joint between segments [31].
to that, it can be used in various ways, for example when there is an obstacle or when the snake robot has wheels.

B. Backbone Curve Connecting Simple Shapes

It is difficult to represent complex target forms analytically. There is also the problem that the torsion may sometimes become infinite if there are regions of zero curvature within the target form [25]. To solve these problems, we proposed a method of expressing the target form based on the connection of simple shapes for which the curvature and torsion are clear [31]. Using this method, we can design the target form intuitively. The simple shapes that are connected in this method are called segments. This subsection describes how the target form can be configured by connecting these segments; this replaces the first step of the shape fitting process.

At the connection part, in which segments are connected, the Frenet-Serret frame is discontinuous. It is therefore necessary to devise a representation of the target form. When counting from the tail side, the j-th segment is referred to as segment $j(j \in \mathbb{N}) . s=s_{j}$ is the point of connection part j, which connects segment j and segment $(j+1)$, and is obtained from the length of segment $j l_{j}$:

$$
\begin{equation*}
s_{j}=s_{j-1}+l_{j} \tag{4}
\end{equation*}
$$

where $s_{0}=0$ is the beginning point of the target form of the snake robot.

The state of connection part j is shown in Fig. 3. s_{j-} and s_{j+} are respectively the points at infinitesimal distances before and after connection part j. The Frenet-Serret frame, curvature, and torsion at s_{j} are represented by corresponding values at s_{j-}.

The curvature and torsion of segment j are respectively denoted κ_{j} and τ_{j}. The curvature of the target form $\kappa(s)$ and the torsion $\tau(s)$ are obtained as

$$
\begin{equation*}
(\kappa(s), \tau(s))=\left(\kappa_{j}, \tau_{j}\right) \quad\left(s_{j-1}<s \leq s_{j}\right) \tag{5}
\end{equation*}
$$

We next consider the twist at the connection part. As shown in Fig. 3, the angle between $\boldsymbol{e}_{2}\left(s_{j-}\right)$ and $\boldsymbol{e}_{2}\left(s_{j+}\right)$ around $\boldsymbol{e}_{1}\left(s_{j-}\right)$ is denoted $\hat{\psi}_{j}$. To consider this twist angle within the relationship between the Frenet-Serret frame and the backbone curve, (1) must be replaced by

$$
\begin{equation*}
\psi(s)=\int_{0}^{s} \tau(\hat{s}) \mathrm{d} \hat{s}+\psi(0)+\sum_{j} \hat{\psi}_{j} u\left(s-s_{j}\right) \tag{6}
\end{equation*}
$$

Fig. 4. Schematic diagram of motion transition
where $u(s)$ is the step function. The first step of the shape fitting procedure is now replaced and the desired joint angles of the snake robot can thus be obtained using (2) and (3) based on (5) and (6). To design the target form, we must first determine the shape of each segment and the twist angle $\hat{\psi}_{j}$.

In this paper, we use a straight line and a circular arc as simple shapes of segments in which the curvature and torsion are constant. In the case of a straight line, the Frenet-Serret frame and torsion are not defined. In this study, we newly define torsion to be zero so that the straight-line segments can be handled in the same way as other segments. The frame inside the straight line is defined as being equal to the frame at $s=s_{j-}$ and the torsion is zero. A circular arc, in which the curvature is constant and the torsion is zero, is defined by its radius r_{j} and its central angle ϕ_{j}. The length of a circular arc segment is calculated to be $r_{j} \phi_{j}$.

IV. Problem Setting

A. Appropriate Motion at the Boundary

Let us consider an environment E_{i} and a corresponding motion M_{i} in E_{i}. We define $\mathrm{B}_{i j}$ as a boundary surface between E_{i} and E_{j} and define $\mathrm{NB}_{i-j}\left(\mathrm{NB}_{j-i}\right)$ as a neighborhood of $\mathrm{B}_{i j}$ inside $\mathrm{E}_{i}\left(\mathrm{E}_{j}\right)$. As a snake robot should move across the boundary of a connected environment of E_{i} and E_{j} with discontinuity, our problem is to design a connection motion between two different movements M_{i} and M_{j} of the robot in E_{i} and E_{j}. At the boundary $\mathrm{B}_{i j}$, the velocity vector of the motion of the robot inside E_{i} should coincide with that inside E_{j} during the transition. This is a boundary condition. In general, it is difficult for M_{i} to coincide with M_{j} at $\mathrm{B}_{i j}$. We propose connection motions CM_{i-j} and CM_{j-i} in NB_{i-j} and NB_{j-i}, which satisfy the boundary condition, to connect motions M_{i} and M_{j} that the robot can move across from E_{i} to E_{j}. The definitions are shown in Fig. 4. In Fig. 4, $\mathrm{CP}_{i j}$ is the connecting point between the part for CM_{i-j} and the part for CM_{j-i} in the snake robot.

In the transition process, we consider which motion of CM_{i-j} and CM_{j-i} at $\mathrm{B}_{i j}$ meets the boundary condition. Let

Fig. 5. Displacement of $\mathrm{CP}_{i j}$
the length of the part for CM_{j-i} and M_{j} in the snake robot at time t be $L_{j-i}(t)$ as shown in Fig. 4. In this study, we simplify the problem by assuming the following movement across $\mathrm{B}_{i j}$.

1) The snake robot moves in E_{i} and approaches $B_{i j}$ ($L_{j-i}=0$).
2) The head of the snake crosses $\mathrm{B}_{i j}$ and enters NB_{j-i} and E_{j} with L_{j-1} increasing from 0 (at the moment the head reaches $\mathrm{B}_{i j}$) to $L_{\text {robot }}$, once the whole robot has entered NB_{j-i} and/or E_{j}.
Therefore, from the beginning to the end of the motion transition from CM_{i-j} to $\mathrm{CM}_{j-i}, L_{j-i}$ varies from zero to the full length of the snake robot. Let us consider the displacement from $\mathrm{CP}_{i j}(t)$ to $\mathrm{CP}_{i j}(t+\Delta t)$ as shown in Fig. 5. $\mathrm{CP}_{i j}(t)$ is a point at a length $L_{j-i}(t)$ from the beginning of the CM_{j-i} side of the snake robot at time t. Boundary conditions (BC1 and BC 2) that ensure the velocities of CM_{i-j} and CM_{j-i} at $\mathrm{CP}_{i j}$ match in the tangential direction of the trunk to cancel out the motion of $\mathrm{CP}_{i j}$ resulting from changing L_{j-i} are expressed as follows.
$B C$ 1: $\mathrm{CP}_{i j}$ must move along the tangential direction of the curve of the snake robot form while changing $L_{j-i}(t)$.
$B C$ 2: $\mathrm{CP}_{i j}$ does not move at the environmental boundary $\mathrm{B}_{i j}$ with respect to the inertial coordinate system Σ_{o} (w.r.t Σ_{o}) during motion transition, which means that the displacement between $\mathrm{CP}_{i j}(t)$ and $\mathrm{CP}_{i j}(t+\Delta t)$ must be zero.

In such a transition process, the snake robot passes through only one point in the boundary surface $\mathrm{B}_{i j}$ (the position of $\mathrm{CP}_{i j}(t)$ is invariant). This means that we do not have to take into account the complexity of the shape of the boundary surface $\mathrm{B}_{i j}$, simplifying the transition motion.

B. Classification of Motion Transition

In many motions of snake robots, the whole body slips in the tangential direction of each part. Taking the example of the snake robot that is constrained in the normal direction of the trunk by its passive wheels [5]-[11] or obstacles [13][15], the constrained part of the body moves in the tangential direction of the trunk. In the case of the ladder-climbing gait [32], although there is no constraint in the direction parallel to the steps of the ladder, the whole body of the robot moves in a tangential direction. We then classify motions such that the

TABLE I
Classification of Motion Transition

M_{i} $\left(\right.$ Motion in $\left.\mathrm{E}_{i}\right)$	CM_{i-j} (Motion in $\left.\mathrm{NB}_{i-j}\right)$	CM_{j-i} (Motion in NB $\left._{j-i}\right)$	M_{j} (Motion in E_{j})
TP	-	-	TP
TP	-	$?$	Non-TP
Non-TP	$?$	-	TP
Non-TP	$?$	$?$	Non-TP

movement of the point of connection with other motion can be kept in a direction tangential of the trunk during a motion transition as tangential propulsion (TP)-type motion. This means that TP-type motion satisfies BC1 and BC2 without any special connection motion CM_{i-j} and CM_{j-i} between TP-type motions during a transition.

Meanwhile, there are many motions that are not of TPtype, which are classified as non-TP-type motions. Examples of such motions are sidewinding [36], the 3D pedal wave [37], and the crawler gait [31], which are motions in which the point of contact between the robot and environment does not move spatially. These motions are important because they can be adopted even when slippage between the robot and environment is not allowed owing to, for example, high friction with the environment. Additionally, the propulsion does not require frictional anisotropy and is thus effective when a snake robot without passive wheels moves in a non-obstacle environment. The non-wheeled snake robot with no anisotropy of friction has the advantage that it can be fabricated with a simple configuration and is easy to make waterproof and dustproof by attaching a cover. Additionally, an operation that adopts rolling, such as helical rolling [27], [28], [30] which can move inside and outside the pipe, is an example of non-TP-type motion. Thus, depending on the configuration of the snake robot and environment, there are many cases in which non-TP-type motions are required. However, in such motions, it is difficult to meet the boundary conditions in performing motion transition.

As the motions of snake robots are classified into TP-type and non-TP-type motions in this paper, we have two possibilities for the motion $\mathrm{M}_{i}\left(\mathrm{M}_{j}\right)$ in the environment $\mathrm{E}_{i}\left(\mathrm{E}_{i}\right)$. We can classify motion transition into four cases $\left(\mathrm{CM}_{i-j}, \mathrm{CM}_{j-i}\right)$ $\in\{$ TP-type, Non-TP-type $\} \times\{$ TP-type, Non-TP-type $\}$ as shown in Table I. Note that TP-type motion does not require connection motion and can be directly connected because TPtype motion meets both BC1 and BC2 by definition. Therefore, our problem is to design a connection motion $\left(\mathrm{CM}_{j-i}, \mathrm{CM}_{j-i}\right)$ that satisfies boundary conditions BC 1 and BC 2 in the case that either or both of M_{i} and M_{j} are of non-TP-type.

C. Overview of Hoop-passing Motion

The above discussion reveals the importance of proposing a connection motion to achieve motion transition, even in the situation that the snake robot does not slide in the tangential direction of the trunk. In this situation, TP-type motions are not applicable and only non-TP-type motions are available. We refer to motion in which the body is pushed (BC 1) and the snake robot passes through a virtual hoop fixed w.r.t Σ_{o}

Fig. 6. Application examples of hoop-passing motion
(BC2) from head to tail without slippage between the robot and environment as hoop-passing motion. The virtual hoop should be fixed at the position where $\mathrm{CP}_{i j}$ should pass on $\mathrm{B}_{i j}$. The plane that includes the virtual hoop should be in contact with the surface of $\mathrm{B}_{i j}$. In this study, a special gait called the circular pedal wave (c-pedal wave) is designed to realize the hoop-passing motion. The c-pedal wave is a propulsion motion that does not require passive wheels, obstacles, or frictional anisotropy and does not require slippage between the robot and environment. It is classified as a non-TP-type motion. Additionally, the c-pedal wave can be combined with the newly proposed shift part and TP-type motion can be adopted as the connection motion for motion transition. Therefore, the hoop-passing motion, which is detailed in section V , can be applied as a connection motion in the transition to various motions. Application examples of hoop-passing motion, such as passing through a narrow space or attaching to a ladder, are shown in Fig. 6.

V. Hoop-passing Motion

In this section, the hoop-passing motion is proposed as the connection motion of motion transition for non-TP-type motion. We propose a new gait referred to as the circular pedal wave, which is a non-TP-type motion. The C-pedal wave has a form such that wave-shaped units are connected. A feature of the c-pedal wave is that the tangential direction at both ends of the unit is parallel to the direction of propulsion. Additionally, we design a shift part to be combined with the c-pedal wave such to push the snake robot head out. It is then possible to execute repeatedly a deforming motion as the snake robot pushes its body out while satisfying BC1 and BC2. Satisfying BC 1 and BC 2 is equivalent to passing a point fixed on the boundary surface of the environment with the trunk of the robot parallel to the normal of the boundary surface. This is as if the robot were passing through a virtual hoop fixed in space from its head to tail. The shift part connects the c-pedal wave to the virtual hoop and is the key to realizing the hooppassing motion.

In the following, we first formulate a method of designing a new target form by connecting multiple target forms. Next, to realize the hoop-passing motion, we describe the design of the c-pedal wave, the design of the shift part, and the execution of the hoop-passing motion. Finally, we introduce the lift part as

【Original forms 】

【 Connected form】

Fig．7．Diagram of connecting next forms
a typical example of a form that is often used in applications of hoop－passing motion．

A．Form design by connecting forms

We extend the method of representing a target form by con－ necting curve segments and explain the method of representing a new target form $C(s)$ by connecting several different target forms．The form is obtained from（2）and（3）by determining the curvature $\kappa(s)$ and torsional angle $\psi(s)$ ．

The number of forms connected is N ，and we let the k th form from the beginning be form $-k(k=1,2, \cdots, N)$ ． Let the curvature and torsion angle of form－k be $\kappa_{\mathrm{f} k}(s)$ and $\psi_{\mathrm{f} k}(s)$ respectively．The position of the connection part between form－k and form－$k+1$ in $C(s)$ is denoted S_{k} ， and the discontinuous torsion angle at this connection part is denoted $\hat{\Psi}_{k}$ in the same way as in Fig．3．Furthermore，$\hat{\Psi}_{0}$ is determined as the initial torsion angle at $C(0)$ ．

A schematic diagram of connecting multiple target forms is shown in Fig．7．Fig． 7 shows an example of $N=3$ ．Let $s_{\mathrm{f} k}$ be the starting point of the part of form－k to be used for the new target form，and $l_{f k}$ be the length of the part to be used for the new form．The starting point of the new connected form is defined as $S_{0}=0$ ，and the position of the connected part of each original form has the relationship

$$
\begin{equation*}
S_{k}=\sum_{\hat{k}=1}^{k} l_{\mathrm{f} \hat{k}} \tag{7}
\end{equation*}
$$

Fig．8．Overview of circular pedal wave

TABLE II
Parameters of segments composing the circular pedal wave

seg no．j	type	parameter	$\hat{\psi}_{j}$
$3 n+1$	arc	$\left(r_{j}, \phi_{j}\right)=\left(r_{\mathrm{p}}, \beta_{\mathrm{p}}\right)$	$(-1)^{n} \alpha_{\mathrm{p}}$
$3 n+2$	arc	$\left(r_{j}, \phi_{j}\right)=\left(r_{\mathrm{p}}, 2 \beta_{\mathrm{p}}\right)$	π
$3 n+3$	arc	$\left(r_{j}, \phi_{j}\right)=\left(r_{\mathrm{p}}, \beta_{\mathrm{p}}\right)$	π

Then，the curvature $K(s)$ and torsion angle $\Psi(s)$ in $\left(S_{k-1}<s \leq S_{k}\right)$ of $C(s)$ are determined as

$$
\begin{align*}
K(s)= & \kappa_{\mathrm{f} k}\left(s-S_{k-1}+s_{\mathrm{f} k}\right) \tag{8}\\
\Psi(s)= & \Psi\left(S_{k-1}\right)+\hat{\Psi}_{k-1} \\
& +\psi_{\mathrm{f} k}\left(s-S_{k-1}+s_{\mathrm{f} k}\right)-\psi_{\mathrm{f} k}\left(s_{\mathrm{f} k}\right) \tag{9}
\end{align*}
$$

here $\Psi\left(S_{k-1}\right)$ is the torsion angle of the end of the previous form in the connected form，$\hat{\Psi}_{k-1}$ is the discontinuous torsion angle between form－$(k-1)$ and form－k in the connected form and determined by the motion designer，and $\psi_{\mathrm{f} k}\left(s-S_{k-1}+\right.$ $\left.s_{\mathrm{f} k}\right)-\psi_{\mathrm{f} k}\left(s_{\mathrm{f} k}\right)$ is the change of the torsion angle from the starting point on the original form－k ．

By determining the form of each original curve to be connected and the torsion angle $\hat{\Psi}_{k}$ of the connecting part， we can approximate the form of the snake robot from（2）and （3）．

B．Design of Hoop－passing Motion

The hoop－passing motion is realized by combining a newly proposed gait called the circular pedal wave and a form called the shift part．The end part of the shift part is in the virtual hoop，and the deformation of the shift part pushes the body out through the virtual hoop in a tangential direction．We will explain each form and the motion design．

1）Circular Pedal Wave：We propose a new gait called the circular pedal wave（c－pedal wave）in the hoop－passing motion． The c－pedal wave is a modification of the 3D pedal wave proposed in［37］and does not require slippage between the body and environment．At the same time，by combining with the shift part，which will be explained later，it has the property of enabling the hoop－passing motion as TP－type．The c－pedal wave is designed by connecting circular arcs and has the form shown in Fig．8．The three arcs make a c－pedal unit，and the

Fig. 9. Diagram of the circular pedal wave

TABLE III
Parameters of segments composing the shift part in phase A

seg no.	type	parameter	$\hat{\psi}_{j}$
1	arc	$\left(r_{1}, \phi_{1}\right)=\left(r_{\mathrm{s}}, \beta_{\mathrm{s}}\right)$	$\pi+(-1)^{k_{\mathrm{r}}} \alpha_{\mathrm{p}} / 2$
2	arc	$\left(r_{2}, \phi_{2}\right)=\left(r_{\mathrm{s}}, 2 \beta_{\mathrm{s}}\right)$	π
3	arc	$\left(r_{3}, \phi_{3}\right)=\left(r_{\mathrm{s}}, \beta_{\mathrm{s}}\right)$	π

target form is configurated by connecting the isomorphic cpedal units. The form is determined by three gait parameters: the height h_{p}, width w_{p}, and wave interval d_{p}. The shape parameters of each arc that compose the c-pedal wave are given in Table II. The quantity n in Table II is the index of the c-pedal unit. The form of the c-pedal wave projected on the yz-plane and the plane parallel to the unit are schematically represented in Fig. 9. Fig. 9 shows that the radius r_{p} of all arcs, the angles α_{p} and β_{p}, and the lengths $h_{\mathrm{p}}, w_{\mathrm{p}}$, and d_{p} in Table II have the geometrical relationships

$$
\begin{align*}
\alpha_{\mathrm{p}} & =2 \arctan \left(\frac{w_{\mathrm{p}}}{2 h_{\mathrm{p}}}\right), \tag{10}\\
a_{\mathrm{p}} & =2 r_{\mathrm{p}}\left(1-\cos \beta_{\mathrm{p}}\right) \tag{11}\\
a_{\mathrm{p}} & =\sqrt{{h_{\mathrm{p}}}^{2}+\left(\frac{w_{\mathrm{p}}}{2}\right)^{2}}, \tag{12}\\
d_{\mathrm{p}} & =4 r_{\mathrm{p}} \sin \beta_{\mathrm{p}} . \tag{13}
\end{align*}
$$

Solving (11) and (13) for r_{p} and β_{p} yields,

$$
\begin{align*}
r_{\mathrm{p}} & =\frac{4 a_{\mathrm{p}}^{2}+d_{\mathrm{p}}^{2}}{16 a_{\mathrm{p}}} \tag{14}\\
\beta_{\mathrm{p}} & =2 \arctan \left(\frac{d_{\mathrm{p}}}{4 r_{\mathrm{p}}-2 a_{\mathrm{p}}}\right) \tag{15}
\end{align*}
$$

According to the above, once the gait parameters $h_{\mathrm{p}}, w_{\mathrm{p}}$, and d_{p} are determined, all other parameters can be obtained using (12), (14), and (15). Additionally, the length of one c-pedal unit l_{pu} is derived as

$$
\begin{equation*}
l_{\mathrm{pu}}=4 r_{\mathrm{p}} \beta_{\mathrm{p}} \tag{16}
\end{equation*}
$$

In the case of the c-pedal wave, shift control generates movement in the x-axis direction in Fig. 8 and movement in the y-axis direction can be achieved by a rolling motion. To realize hoop-passing motion that meets BC 1 and BC 2 , the tangents at the two ends of each c-pedal unit are designed to align in a straight line, and the tangent direction is designed to be parallel to the direction of movement by the shift control.
2) Shift Part: The shift part has two segment configurations, corresponding to two operation phases, phase A and phase B. The shift part is transformed by repeating the

Fig. 10. Forms of the shift part corresponding to operations in phases A and B

TABLE IV
PARAMETERS OF SEGMENTS COMPRISING THE SHIFT CONNECTING PART IN PHASE B

seg no.	type	parameter	$\hat{\psi}_{j}$
1	straight	$l_{1}=d_{\mathrm{s}}$	$\pi+(-1)^{k_{\mathrm{r}}} \alpha_{\mathrm{p}} / 2$

phase-A operation and phase-B operation alternately. Let the deformation from the initial state of phase A to the end state of phase B be one period and the number of repetitions of this period be k_{r}. A form of the shift part for each phase is shown in Fig. 10. Additionally, parameters of each segment in phase A and phase B are respectively presented in Table III and Table IV. Let the progress of each operation phase be $q(0 \leq q \leq 1) . q=0$ means the initial state of the phase and $q=1$ the end state of the phase.

In phase A, the form of the shift part is determined by the value of a_{s}, which corresponds to the height of the wave. When $a_{\mathrm{s}}=a_{\mathrm{p}}$, namely $q=0$, the form of the shift part is the same as that of the c-pedal unit. The value corresponding to the wave interval is fixed at d_{p}, which is the same value as for the c-pedal wave. From a_{s} and $d_{\mathrm{p}}, r_{\mathrm{s}}(q)$ and $\beta_{\mathrm{s}}(q)$ are derived using the same computation as for (14) and (15). As the phase progresses, the form parameters change as

$$
\begin{equation*}
a_{\mathrm{s}}(q)=(1-q) a_{\mathrm{p}}+q \epsilon_{\mathrm{s}}, \tag{17}
\end{equation*}
$$

where ϵ_{s} is a minute positive constant that prevents the radius from diverging by the form being a straight line. The form of the shift part coincides with the form of the c-pedal unit when $q=0$ and becomes almost straight when $q=1$.
The length $l_{\mathrm{sA}}(q)$ of the shift part in phase A is obtained using

$$
\begin{equation*}
l_{\mathrm{sA}}(q)=4 r_{\mathrm{s}}(q) \beta_{\mathrm{s}}(q) \tag{18}
\end{equation*}
$$

In phase \mathbf{B}, the shift part is a straight line and its length $d_{\mathrm{s}}(q)$ is determined to change in length to zero smoothly as

$$
\begin{equation*}
d_{\mathrm{s}}(q)=(1-q) d_{\mathrm{p}} \tag{19}
\end{equation*}
$$

The length $l_{\mathrm{sB}}(q)$ of the shift part in phase B is obtained using

$$
\begin{equation*}
l_{\mathrm{sB}}(q)=d_{\mathrm{s}}(q) \tag{20}
\end{equation*}
$$

Fig. 11. Process of the hoop-passing motion
3) Process of the hoop-passing motion: The form of the part beyond the virtual hoop is called the next form. We design a transition from the c-pedal wave to the next form by connecting the c-pedal wave, the shift part, and the next form and repeating phase A and phase B. In the method of connecting target forms described in subsection V-A, form-1 is the c-pedal wave, form-2 is the shift part, and form-3 and later are the next forms.

The process of the hoop-passing motion is shown in Fig. 11. First, the deformation of phase A (Fig. 11 (a) and (b)) is performed while the position of the connecting part between the c-pedal wave and the shift part is fixed on the robot (i.e., the point of no movement in Fig. 11). This transformation reduces the length of the shift part and increases the length of the next form, and the total length of the shift part and next form is constant. During this deformation, the tangents at the two ends of the shift part are kept aligned in a straight line, and BC1 is satisfied. At the same time, this deformation does not produce any horizontal frictional force, and the robot thus does not move. Additionally, the positional relationship between the two ends of the shift part does not change. These results mean that BC2 is satisfied. Afterward, in phase B (Fig. 11 (c)-(e)), the c-pedal wave part moves to the next form and the shift part is shortened. During this phase, the tip of the
shift part does not move w.r.t. Σ_{o} because the length that the shift part shortens is equal to the length that the c-pedal wave part travels. This means BC 1 and BC 2 are satisfied. In the final state of phase B, the c-pedal unit next to the shift part becomes the new shift part in the initial state of the next phase A (Fig. 11 (f)). The yellow circles in Fig. 11 indicate a part of the body that does not move w.r.t. Σ_{0}. By repeating this action until the whole body of the robot becomes the next form, the whole body can be pushed through the virtual hoop.
4) Formulation: We formulate the parameters of each form to realize the process described in Fig. 11. The length l_{t} of the transitioned next form that changes with the hoop-passing motion is defined by

$$
l_{\mathrm{t}}= \begin{cases}\left\{l_{\mathrm{sA}}(0)-l_{\mathrm{sB}}(q)\right\}+k_{\mathrm{r}}\left\{l_{\mathrm{sA}}(0)-d_{\mathrm{p}}\right\} & (\text { phase A) } \tag{21}\\ \left(k_{\mathrm{r}}+1\right)\left\{l_{\mathrm{sA}}(0)-l_{\mathrm{sB}}(0)\right\} & (\text { phase B) }\end{cases}
$$

The total length of the snake robot is set to $l_{\text {robot }}$. During the hoop-passing motion, the head position of the snake robot on the target curve is fixed at $s_{\mathrm{h}}=l_{\text {robot }}$, and the lengths $l_{\mathrm{f} 1}$ and $l_{\mathrm{f} 2}$ connecting the c-pedal wave and shift part are varied

Fig. 12. Configurations of the lift part
as

$$
\begin{align*}
& l_{\mathrm{f} 1}= \begin{cases}l_{\text {robot }}-l_{\mathrm{t}}-l_{\mathrm{sX}} & \left(l_{\mathrm{t}}+l_{\mathrm{sX}} \leq l_{\text {robot }}\right) \\
0 & \left(l_{\text {robot }}<l_{\mathrm{t}}+l_{\mathrm{sX}}\right)\end{cases} \tag{22}\\
& l_{\mathrm{f} 2}= \begin{cases}l_{\mathrm{sX}} & \left(l_{\mathrm{t}} \leq l_{\text {robot }}\right) \\
0 & \left(l_{\text {robot }}<l_{\mathrm{t}}\right)\end{cases} \tag{23}\\
& l_{\mathrm{sX}}
\end{align*}= \begin{cases}l_{\mathrm{sA}} & (\text { phase A) } \tag{24}\\
l_{\mathrm{sB}} & (\text { phase B) })\end{cases}
$$

The length $l_{f 3}$ is determined according to the design of the next form. $s_{\mathrm{f} 1}$ and $s_{\mathrm{f} 2}$, the starting points of form-1 and form- 2 to be used for the new target form, are specified by the equations

$$
\begin{align*}
& s_{\mathrm{f} 1}=-k_{\mathrm{r}} l_{\mathrm{pu}}-l_{\mathrm{f} 1}, \tag{25}\\
& s_{\mathrm{f} 2}=0 \tag{26}
\end{align*}
$$

Additionally, the torsion angle $\hat{\Psi}_{1}$ at the connecting part of the c-pedal wave and shift part is determined using

$$
\begin{equation*}
\hat{\Psi}_{1}=(-1)^{k_{\mathrm{r}}+1} \alpha_{\mathrm{p}} \tag{27}
\end{equation*}
$$

C. Lift part

The next form can be freely designed. We now introduce a typical example of a frequently used form, which is the lift part. This form is suitable for lifting the snake robot head further from the position of the virtual hoop. When passing through a hole in a wall, this lifting part lifts the body to the height of the hole. The form of the lift part is determined by the height h_{1} and the width r_{1}. Its form is shown in Fig. 12. There are two segment configurations depending on the height h_{1}. In the case that $h_{1} \leq 2 r_{1}$, configuration A comprises two arc segments. In the case that $h_{1}>2 r_{1}$, configuration B comprises two arc segments and one straight line segment. The center angle β_{1} of the arc of each configuration and the length d_{l} of the straight-line segment in configuration B are given by

$$
\left(\beta_{1}, d_{1}\right)= \begin{cases}\left(\arccos \left(1-\frac{h_{1}}{2 r_{1}}\right), 0\right) & \left(h_{1} \leq 2 r_{1}\right) \tag{28}\\ \left(\frac{\pi}{2}, h_{1}-2 r_{1}\right) & \left(h_{1}>2 r_{1}\right)\end{cases}
$$

The total length of the lift part $l_{\text {lift }}$ is obtained as

$$
\begin{equation*}
l_{\text {lift }}=2 \beta_{1} r_{1}+l_{l} \tag{29}
\end{equation*}
$$

Motions of snake robot

\Leftrightarrow Transitionable by switching the role of the first unit
\leftrightarrow Transitionable across different environments while meeting BC 1 and BC 2
\longleftrightarrow Transitionable in the same env. by shift control
\longleftrightarrow Transitionable in special case
Fig. 13. Transitionable relationship between various motions

D. Motion Transition

Transitionable relationship between various motions is shown in Fig. 13. Each motion is classified according to whether it is TP-type or non-TP-type and the environment in which it can be applied.

The c-pedal wave is not a TP-type motion on its own, but by replacing the first unit with a shift part, the hooppassing motion, which is TP-type, is performed. This motion transition is important in the change between TP and non-TPtype motion.

The red arrow in the figure indicates that transition across a different environments is possible. TP-type motions satisfy both BC 1 and BC 2 and transition between is possible across different environment.

The blue arrows in the figure indicate that transition in a given environment is possible (this must be distinguished from transition across different environments). For example, the cpedal wave is designed so that the direction of movement due to shift control and the tangential directions of the two ends of the unit are parallel to one another. Therefore, as shown in the upper part of Fig. 14, by connecting the lift part and a straight segment beyond it, it is possible for the robot to deform into a straight form without slipping against the environment through shift control. Similarly, forms that can be deformed into the straight form can transition between one another through the straight form. The crawler gait, proposed in [31], also has a

Fig. 14. Deformation to a straight form from (a) c-pedal wave and (b) crawler gate via shift control
form in which the direction of propulsion due to shift control and the straight segments are parallel to one another, and the gait can be transformed into the straight form as shown at the bottom of Fig. 14. Therefore, the c-pedal wave and crawler gait can transition between one another through the straight form. Sidewinding [36] and helical rolling [27], [30] are also considered to be deformable to the straight form.

The green arrow indicates that helical rolling can be used for movement across different environments in a special case. Helical rolling is mainly used for movement inside or outside a pipe. It can also be used for movement on a flat surface. Therefore, it is possible to move from a pipe environment to a flat surface if the pipe outlet is located along the floor. Note that this transition does not satisfy BC1 and BC2. Although these transitions are different from that mainly considered in this paper, we include them in Fig. 13 to show the diversity and potential of motion transitions.

The snake robot can transition from various type of motion to a c-pedal wave via the straight form on a plane and then transition to other TP-type motions through the hoop-passing motion. Transitions between diverse motions are thus possible via the hoop-passing motion.

VI. Application

A. Passing through a Hole in a Wall

The hoop-passing motion is applied to design a motion passing through a hole in a wall. In this case, a snake robot should move across different environments twice, from the floor $\left(\mathrm{E}_{1}\right)$ to the hole in the wall $\left(\mathrm{E}_{2}\right)$ and from the hole in the

Fig. 15. Target form of passing through a hole in a wall

Fig. 16. Target form of entering the underfloor
wall $\left(E_{2}\right)$ to the floor $\left(E_{3}\right)$. An overview of the target form is shown in Fig. 15, and the process of motion transition is shown in Table V. In this motion, two form sets with connected cpedal waves and shift parts are placed in front of and behind the wall, and they are connected by two lift parts. The two lift parts, which are parameterized according to the height of the hole, are connected by a straight segment corresponding to the part that passes through the wall. Let the length of this straight segment be d_{l}. The combination of the two lift parts and the straight segment is the form for the motion passing through the hole, and this part is a TP-type motion.

During the process, the shift part on the front side of the wall progresses through the hoop-passing motion as the body is pushed out to the hole side. In contrast, the shift part on the far side of the wall proceeds in the opposite direction to the front side of the hoop-passing motion as the body is pulled through the hole. For this reason, the shift parts on the front side and far side are always in the same phase, but when one phase progress is q, the other progress is set as $1-q$ so as to generate an inverse transition.

B. Entering the Underfloor

We apply the hoop-passing motion to design a motion to pass through a hole in the floor and enter the underfloor. In this motion, the robot moves between different environments twice as in VI-A. An overview of the target form is shown

TABLE V
Motion Transition Process of Passing through a Hole in a Wall and Entering the Underfloor

$\mathrm{E}_{1}:$ Floor	NB_{1-2}	NB_{2-1}	$\mathrm{E}_{2}:$ Hole in the wall	NB_{2-3}	$\mathrm{E}_{3}:$ Floor(Underfloor)	NB $_{3-2}$
M_{1}	CM_{1-2}	CM_{2-1}	M_{2}	CM_{2-3}	CM_{3-2}	M_{3}
c-pedal wave (Non-TP)	hoop passing motion (TP)	-	passing through a hole	-	hoop passing motion	c-pedal wave
(Non-TP)						

TABLE VI
Motion Transition of Attaching to a Ladder

$\mathrm{E}_{1}:$ Floor	NB_{1-2}	NB_{2-1}	$\mathrm{E}_{2}:$ Ladder
M_{1}	CM_{1-2}	CM_{2-1}	M_{2}
crawler gait (Non-TP)	straight form \rightarrow c-pedal wave(Non-TP) \rightarrow hoop passing motion(TP)	-	ladder climbing (TP)

Fig. 17. Segment configuration for the ladder climbing motion [32].
in Fig. 16 while the process of motion transition is given in Table V. The basis of this behavior is the same as the motion described in section VI-A. However, only one lift part is the form for passing through the hole and used to bridge the height difference between the groundfloor and underfloor. As an application, we consider changing the orientation of the c-pedal wave before and after the passage of the hole by $\psi_{\text {rot }}$. To this end, we suppose configuration B in Fig. 12, where the parameters of the lift part are $h_{1}>2 r_{1}$, and set the torsion angle between the second and third segments of the lift part $\psi_{\text {rot }}$. Let h_{1} equal the difference in height between the surface of the groundfloor and underfloor.

C. Attaching to a Ladder

As an example of the application of hoop-passing motion, the motion of attaching to a ladder from a floor is designed. The motion used in climbing a ladder [32] is classified as being of TP-type. As an example, by combining the deformations shown in Fig. 14 and the hoop-passing motion, the snake robot can move over rough terrain with the crawler gait and transform into the c-pedal wave via the straight form, and then attach to the ladder adopting the hoop-passing motion as shown in Table VI. The arrows in Table VI show the motion transition in the same area.

1) Gait Design for Ladder Climbing: First, we briefly describe the target form for the ladder climbing proposed in [32]. The basic form of the gait required to climb a ladder is shown in Fig. 17. This form consists of repeatedly connected units that are configured by combining six simple shapes. One

TABLE VII
PARAMETERS OF SEGMENTS USED TO COMPOSE THE GAIT REQUIRED TO CLIMB A LADDER [32]

seg no. j	type	parameter	$\hat{\psi}_{j}$
$6 n+1$	circular arc	$\left(r_{j}, \phi_{j}\right)=\left(r_{\mathrm{c}}, \frac{\pi}{2}+\beta\right)$	$(-1)^{n}\left(\alpha+\frac{\pi}{2}\right)$
$6 n+2$	straight line	$l_{j}=\left(h_{\mathrm{s}}-2 r_{\mathrm{c}}\right) / \cos \beta$	0
$6 n+3$	circular arc	$\left(r_{j}, \phi_{j}\right)=\left(r_{\mathrm{c}}, \frac{\pi}{2}-\beta\right)$	0
$6 n+4$	circular arc	$\left(r_{j}, \phi_{j}\right)=\left(r_{\mathrm{c}}, \frac{\pi}{2}\right)$	$(-1)^{n}\left(\alpha-\frac{\pi}{2}\right)$
$6 n+5$	circular arc	$\left(r_{j}, \phi_{j}\right)=\left(r_{\mathrm{c}}, 2 \alpha\right)$	$(-1)^{n+1} \frac{\pi}{2}$
$6 n+6$	circular arc	$\left(r_{j}, \phi_{j}\right)=\left(r_{\mathrm{c}}, \frac{\pi}{2}\right)$	$(-1)^{n} \frac{\pi}{2}$

unit corresponds to one step of the ladder. The shapes of the segments are defined using $h_{\mathrm{s}}, l_{\mathrm{s}}, \alpha$, and r_{c}, as shown in Table VII, where $n \in \mathbb{N}$ is a unit index. h_{s} and l_{s} are respectively the vertical interval and horizontal interval between the steps of the ladder. These intervals are dependent on the shape of the ladder. α is the angle shown in Fig. 17. Increasing α increases the height of the far side of the ladder to make it easier for the snake robot to grab the step but also increases the required length of the snake robot per step on the ladder. r_{c} is the radius of all circular arcs. A smaller value of r_{c} means that the required length of the snake robot per step is shorter, while a larger r_{c} value makes the robot form smoother. The minimum value of r_{c} is determined from the shape constraints while considering $\theta_{\max }$ as discussed in [31]. β in Table VII can be obtained according to the geometrical relationship as

$$
\begin{equation*}
\beta=\arctan \left(\frac{l_{\mathrm{s}}}{h_{\mathrm{s}}-2 r_{\mathrm{c}}}\right) \tag{30}
\end{equation*}
$$

Therefore, to be able to calculate β, h_{s} must meet the condition

$$
\begin{equation*}
h_{\mathrm{s}}>2 r_{\mathrm{c}} \tag{31}
\end{equation*}
$$

Shift control is used to generate the ladder climbing motion. It is possible to climb up the ladder by shifting s_{h} in the positive direction and to climb down the ladder by shifting s_{h} in the negative direction.
2) Connecting to the Hoop-passing Motion: We explain how to apply the hoop-passing motion to ladder climbing. In this motion, the next form is the form connecting the form of the ladder climbing described in subsection VI-C1 and the lift part. In other words, form-1 is the c-pedal wave, form-2 is a lift part, form-3 is a lift part, and form-4 explained in subsection V-A is the ladder climbing action. The lift part is connected to the position of the connecting part-3 among the target forms of the ladder climbing motion. So that the tip of the lift part rides exactly on the first step of the ladder, h_{1} is determined as

$$
\begin{equation*}
h_{\mathrm{l}}=h_{\mathrm{s}}-h_{\mathrm{p}} \tag{32}
\end{equation*}
$$

Fig. 18. Snake robot [32].

Fig. 19. Module Configuration [32].

We formulate the configuration of the next form. The lengths of form- 3 and form- 4 and the starting point for connecting each form are given as

$$
\begin{align*}
l_{\mathrm{f} 3} & = \begin{cases}l_{\mathrm{t}} & \left(l_{\mathrm{t}} \leq l_{\text {lift }}\right) \\
l_{\text {lift }} & \left(l_{\text {lift }}<l_{\mathrm{t}}\right)\end{cases} \tag{33}\\
l_{\mathrm{f} 4} & = \begin{cases}0 & \left(l_{\mathrm{t}} \leq l_{\text {lift }}\right) \\
l_{\mathrm{t}}-l_{\text {lift }} & \left(l_{\text {lift }}<l_{\mathrm{t}}\right)\end{cases} \tag{34}\\
s_{\mathrm{f} 3} & =0, \tag{35}\\
s_{\mathrm{f} 4} & =\pi r_{\mathrm{c}}+\frac{h_{\mathrm{sn}}-2 r_{\mathrm{c}}}{\cos \beta_{n}} \tag{36}
\end{align*}
$$

On the above basis, we first perform motion transitions using hoop passing motions as $s_{\mathrm{h}}=l_{\text {robot }}$. When a sufficient length of the snake robot body can be transitioned to the ladder climbing form, the climbing of the ladder can be performed by shift control.

VII. EXPERIMENT

A. Design of a Snake Robot

We here describe the development of a snake robot with a smooth surface shape proposed in [32]. In this paper, we conducted experiments using this robot.

The system configuration of the snake robot is shown in Fig. 18. The snake robot has a module configuration in which each module comprises a link and joint, as shown in Fig. 19. The link length l is 70 mm , the diameter of the thickest part of the link is 56 mm , and the mass of a single module is approximately 0.15 kg . All joints have a range of motion of 180 deg.; i.e., $\theta_{\max }=90$ deg. A DYNAMIXEL XH430-V350R (ROBOTIS) is used as the joint actuator and the maximum torque is approximately 4.0 Nm . The robot has 36 joints. The snake robot is powered via a power cable and the target angle for each joint is sent from a computer on the operator side through an RS485 interface. It is possible to obtain information about the robot, including the joint angle and motor current. The sampling time required to update the target joint angle is 20 ms . The operator can control the robot's operations via a gamepad. According to [31], the maximum curvature $\kappa_{\max }$ that can be achieved by this snake robot is $0.0112 \mathrm{~mm}^{-1}$. The minimum value of the radius $r_{\text {min }}$ is thus 89.1 mm .

To ensure that the snake robot can move without becoming stuck in the environment, it is important that its exterior body surface is smooth. We therefore developed a snake robot that had a smooth exterior body surface by giving the links the pectinate shape shown at the top of Fig. 19. In this design, the surface shape is smoothed using the pectinate part, and this part does not affect the bending of joints. The interval between the teeth of the comb structure is 3 mm , which means that debris larger than 3 mm does not get inside the robot.

B. Parameters of the c-pedal wave

Three experiments were conducted to verify the effectiveness of the proposed method. The first experiment was conducted for motion through a hole in a wall, the second for motion through a hole in the floor and entering the underfloor, and the third for attaching to a ladder after moving along a floor. The form parameters of the c-pedal wave and the shift part common to all experiments were set as $h_{\mathrm{p}}=100 \mathrm{~mm}$, $w_{\mathrm{p}}=250 \mathrm{~mm}, d_{\mathrm{p}}=400 \mathrm{~mm}$, and $\epsilon_{\mathrm{s}}=10 \mathrm{~mm}$.

C. Passing through a Hole in a Wall

We conducted an experiment for a snake robot passing through a hole in a wall. An acrylic plate having thickness of 5 mm and a hole with a diameter of 80 mm was placed vertically. The center of the hole was located at a height of 500 mm from the floor. The parameters of the lift part were $h_{1}=372 \mathrm{~mm}$ and $r_{1}=100 \mathrm{~mm}$, and the length of the straight line through the hole part was $d_{1}=50 \mathrm{~mm}$.

The experimental results are shown in Fig. 20 and the video "Extension1-passing-through-the-hole-in-the-wall.mp4". We started the experiment with the head placed on the edge of the hole in the wall due to the difficulty in maintaining fine enough control and lack of torque to support a long link of snake, the expiment started with the head of the snake robot placed in the hole in the wall. It was able to pass the snake robot through the hole by performing the hoop-passing motion. The smooth surface shape of the robot allowed the robot to pass through the hole without being caught on the edge of the hole.

Fig. 20. Results of the experiment of passing through a hole in a wall

If the curvature of the target form around the hole is large, the joint angle of the snake robot there becomes large, and the robot was sometimes unable to pass through the hole because it was caught around the hole. Therefore, in making the robot form near the hole, r_{1} was set larger than the minimum value $r_{\text {min }}=89.1 \mathrm{~mm}$ determined by the joint range limitation [31] while d_{l} was set larger than the thickness of the wall.

D. Entering the Underfloor

The experiment was conducted for the snake robot passing through a hole in the floor, assuming an application of inspection under the floor. Acrylic plates with a thickness of 5 mm were fixed horizontally to prepare a floor surface with a height of 335 mm . The hole was 80 mm in diameter. The parameters of the lift part were set to $h_{1}=335 \mathrm{~mm}$ and $r_{1}=100 \mathrm{~mm}$. Assuming that the direction of travel must change after the robot enters the subfloor, we set $\psi_{\text {rot }}=90 \mathrm{deg}$.

The experiment is shown in Fig. 21 and the video "Extension2-entering-under-the-floor.mp4". The head of the snake robot was placed at the end of the first segment of the target form of the lift part, and the experiment began with the head inserted into the hole. The hoop-passing motion allowed the snake robot to pass through a hole in the floor and enter the underfloor while changing its orientation by 90 deg .

E. Attaching to the Ladder

In a previous study [32], we conducted an experiment in which the snake robot attached itself to a ladder while

Fig. 21. Result of the experiment of entering the underfloor
transitioning to a (TP-type) ladder climbing gait after moving across the floor with a crawler gait (non-TP-type), via the (non-TP-type) c-pedal wave [31]. The crawler gait allows the robot to move at high speed even on uneven terrain and to turn and adjust its position finely. In this experiment, both motions of approaching and attaching to the ladder were considered. Assuming the shape of the ladder is known, we let $h_{\mathrm{s} n}=150 \mathrm{~mm}, l_{\mathrm{s} n}=0 \mathrm{~mm}$, and $r_{\mathrm{c}}=r_{\mathrm{min}}$. Additionally, the parameters of the lift part were $h_{1}=210 \mathrm{~mm}$ and $r_{1}=r_{\text {min }}=89.1 \mathrm{~mm}$.

The process of the experiment is described below.
Step 1 The snake robot moved across the floor and approached the ladder adopting the crawler gait(NonTP Type).
Step 2 The arc segment of the crawler gait was deformed and the head of the snake robot was hung on the first step of the ladder. The form of this hanging part was designed in advance by combining straight lines and arcs.
Step 3 The form of the crawler gait was shifted to the tail side and became a straight form.
Step 4 The straight form was deformed to the (non-TP-type) c-pedal wave form through shift control from the tail side to the head side.
Step 5 The first unit of the c-pedal wave was replaced with a shift part and attached to the ladder by performing the hoop-passing motion (as CM_{1-2}).

Fig. 22. Results of the experiment of attaching to the ladder

Step 6 The robot climbed the ladder (TP-type motion) through shift control.
In this process, the set of motions of transforming to the straight form, the c-pedal wave, and the hoop-passing motion are regarded as CM_{1-2} as shown in Table VI. We advanced from step 5 to step 6 when the length of the tail side before the lift part became less than 600 mm , terminated the hooppassing motion, and transitioned to ladder climbing through simple shift control. The experimental results are shown in Fig. 22 and the video "Extension3-attaching-to-the-ladder.mp4". Using the proposed hoop-passing motion, the snake robot climbed the ladder after moving across the floor with the crawler gait.

VIII. Conclusion and Future Works

A. Conclusion

We worked on solving the problem of transitioning the motion of a snake robot across different environments to expand the application environment of the snake robot. We first found that it is important that the motion at the connection point between the two motions coincides with the tangential movement when performing such a transition and satisfying boundary conditions BC1 and BC2. Additionally, we classified the motions of the snake robot into two types: the TP-type, in which the body moves in a tangential direction using the lateral constraint of a passive wheel or obstacle, and the non-TP-type. Such a transition is easy if it is between TP-type motions. Meanwhile non-TP-type motions are not suitable for transition across different environments, but non-TP-types include important motions such as those that do not require slippage between the snake robot body and the environment.

We then designed a special gait called the circular pedal wave (c-pedal wave), which does not require sliding but at the same time allows TP-type motion. The c-pedal wave combined with deformation of the shift part allows a TPtype "hoop-passing motion" in which the whole body moves as if it were passing through a virtual hoop fixed in space in sequence from its head. Furthermore, some non-TP-type motions can transform to the c-pedal wave via the straight form in the same environment. Consequently, it is possible to transform the motion across a discontinuous environment change even if the process includes a non-TP-type motion. We conducted experiments to verify the effectiveness of our proposed method. In the first experiment, the passage of a snake robot through a hole in a vertical wall was achieved. In the second experiment, we propelled the robot through a hole in the floor and into the underfloor while changing the direction of propulsion. In the third experiment, after moving across the floor with the crawler gait, the robot placed its head by itself and deformed to the c-pedal wave via the straight form. Afterward, the robot successfully executed motion transition and climbed the ladder.

B. Future Works

Finally, future works are discussed. In this study, we focused only on the transition between TP-type motions in which the
connection point between two motions moves only in the tangential direction of the trunk. The motions of the snake robot are complicated because of not only the change in body form curve but also the combination of rolling motions. The crawler gait, sidewinding, helical rolling, and c-pedal wave are capable of transitioning to one another via the straight form, there are likely to be a variety of other ways to transition between motions. The generalization of the method for transforming a variety of gait forms into the straight form in various environments is an issue that needs to be addressed in future work. Furthermore, in the proposed method, the hoop-passing motion is restricted to a two-dimensional plane. When the hoop-passing motion is performed on uneven terrain, the tip of the shift part can not be fixed to the environment during the movement of the c-pedal wave. A possible solution to this problem is to add a part next to the shift part to counteract the motion of the latter part and thus stabilize the robot; however this requires a large joint torque to lift the long robot body. This problem will be considered in future work.

Regarding the experiments described in section VII-C and VII-D, a future challenge will be to realize the ability of the snake to insert its head into the hole. While in theory, it would be possible for the robot to approach the wall and place its head in the hole independently. The c-pedal wave could be moved back and forth via shift control and left and right via rolling, but the system lacks control fidelity to do so effectively, particularly as the snake is not capable of yawing. Furthermore, lifting the head sufficiently high would require greater torque than can be produced by the servos.

Future work will seek to improve control fidelity and find motions that minimize torque requirements. One approach to solve this problem is to design the target form of the snake robot in such a way that the moment on the body is reduced considering the density of the robot. Another is to optimize the parameters of the proposed forms (i.e., $h_{\mathrm{p}}, w_{\mathrm{p}}$, and d_{p} for the c-pedal wave). In addition, in some cases, the snake robot has few grounding points and thus becomes unstable during transition. One solution to this problem is to increase the number of joints and the body length of the snake robot to create more grounding points. Another solution is to shorten the interval of the units of the c-pedal wave to increase the number of grounding points; however this method is difficult to achieve because of the limited joint motion range.

REFERENCES

[1] S. Hirose, Biologically Inspired Robots: Snake-Like Locomotor and Manipulator, Oxford, U.K.: Oxford University Press, 1987.
[2] M. Saito, M. Fukaya, and T. Iwasaki, "Serpentine Locomotion with Robotic Snakes," IEEE Control Syst., vol. 22, no. 1, pp. 64-81, Feb. 2002.
[3] P. Liljebäck, I. U. Haugstuen, and K. Y. Pettersen, "Path Following Control of Planar Snake Robots Using a Cascaded Approach," IEEE Trans. Control System Technology, vol.20, no.1, 2012.
[4] A. Mohammadi, E. Rezapour, M Maggiore, and K. Y. Pettersen, "Maneuvering Control of Planar Snake Robots Using Virtual Holonomic Constraints," IEEE Trans. Control System Technology, vol.24, no.3, 2016.
[5] P. Prautsch, T. Mita, and T. Iwasaki, "Analysis and Control of a Gait of Snake Robot," Trans. Electr. Electron. J., vol. 120-D, pp. 372-381, 2000.
[6] K. Watanabe, M. Iwase, S. Hatakeyama, and T. Maruyama, "Control Strategy for a Snake-Like Robot Based on Constraint Force and Verification by Experiment," Advanced Robotics, no.23, pp.907-937, 2009.
[7] F. Matsuno and K.Mogi, "Redundancy Controllable System and Control of Snake Robot Based on Kinematic Model," Proc. IEEE Conf. Decision and Control, 2000, pp. 4791-4796.
[8] F. Matsuno and H. Sato, "Trajectory Tracking Control of Snake Robots Based on Dynamic Model," Proc. IEEE Int. Conf. Robot. Autom., 2005, pp. 3040-3046.
[9] M. Tanaka and F. Matsuno, "Modeling and Control of Head Raising Snake Robots by Using Kinematic Redundancy," J. of Intelligent and Robotic Systems, vol.75, no.1, pp.53-69, 2014.
[10] M. Ishikawa, K. Owaki, M. Shinagawa, and T. Sugie, "Control of Snakelike Robot based on Nonlinear Controllability Analysis," Proc. IEEE Int. Conf. on Control Applications, pp.1134-1139, 2010.
[11] M. Tanaka and K. Tanaka, "Control of a Snake Robot for Ascending and Descending Steps," IEEE Trans. on Robotics, vol. 31, no.2, pp. 511-520, 2015
[12] A. A. Transeth, R. I. Leine, C. Glocker, K. Y. Pettersen, and P. Liljebäck, "Snake Robot Obstacle-Aided Locomotion: Modeling, Simulations, and Experiments," IEEE Trans. on Robotics, vol.24, no.1, pp.88-104, 2008.
[13] P. Liljebäck, Kristin Y. Pettersen, Øyvind Stavdahl, and Jan Tommy Gravdahl "Compliant Control of the Body Shape of Snake Robots," Proc. IEEE Int. Conf. Robot. Autom., 2014, pp. 4548-4555.
[14] T. Kamegawa, T. Watanabe, S. Yuan, and A. Gofuku, "Reactive motion for a snake-like robot in a crowded space," Nuclear Safety and Simulation, vol.6, no.2, pp.109-115, 2015.
[15] T. Kano, R. Yoshizawa, and A. Ishiguro "TEGOTAE-based Control Scheme for Snake-like Robots That Enables Scaffold-based Locomotion," Proc. The 5th Int. Conf. on Biomimetic and Biohybrid Systems, 2016, pp.454-458
[16] M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Peck, J. Rembisz, and H. Choset, "Parameterized and Scripted Gaits for Modular Snake Robots," Advanced Robotics, vol. 23, no. 9, pp. 1131-1158, 2009.
[17] M. Yim and S. Homans, and K. Roufas, "Climbing with Snake-Like Robots," IFAC Workshop on Mobile Robot Technology, 2001
[18] D. Rollinson and H. Choset, "Pipe Network Locomotion with a Snake Robot," Journal of Field Robotics, vol. 33, no. 3, pp. 322-336, 2016.
[19] M. Travers, J. Whitman, and H. Choset, "Shape-based coordination in locomotion control," The Int. J. of Robotics Research, vol. 37, no. 10, pp. 1253-1268, 2018.
[20] G. S. Chirikjian and J. W. Burdick, "The Kinematics of HyperRedundant Robot Locomotion," IEEE Trans. Robot. Autom., vol. 11, no. 6, pp. 781-793, Dec. 1995.
[21] S. B. Andersson, "Discretization of a Continuous Curve," IEEE Trans. on Robotics, vol. 24, no. 2, pp. 456-461, 2008.
[22] R. L. Hatton and H. Choset, "Generating gaits for snake robots: annealed chain fitting and keyframe wave extraction," Auton. Robot, vol. 28, no. 3, pp. 271-281, 2010.
[23] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J.T. Gravdahl, "A 3D Motion Planning Framework for Snake Robots," Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 2014, pp. 1100-1107.
[24] H. Yamada and S. Hirose, "Study of Active Cord Mechanism Approximations to Continuous Curves of a Multi-joint Body-," J. of the Robotics Society of Japan, vol.26, no.1, pp.110-120, 2008. (in Japanese with English Summary)
[25] H. Yamada and S. Hirose, "Study on the 3D Shape of Active Cord Mechanism," Proc. IEEE Int. Conf. on Robotics and Automation, 2006, pp. 2890-2895.
[26] H. Yamada, S. Takaoka, and S. Hirose, "A snake-like robot for real-world inspection applications (the design and control of a practical active cord mechanism)," Advanced Robotics, vol.27, no. 1, pp.47-60, 2013.
[27] T. Kamegawa, T. Harada, and A. Gofuku, "Realization of cylinder climbing locomotion with helical form by a snake robot with passive wheels," Proc. IEEE Int. Conf. on Robotics and Automation, 2009, pp. 3067-3072.
[28] T. Baba, Y. Kameyama, T. Kamegawa, and A. Gofuku, "A snake robot propelling inside of a pipe with helical rolling motion," Proc. SICE Annual Conference, 2010, pp. 2319-2325.
[29] T. Kamegawa, T. Baba, and A. Gofuku, "V-shift control for snake robot moving the inside of a pipe with helical rolling motion," Proc. IEEE Int. Symp. on Safety, Security, and Rescue Robotics, 2011, pp. 1-6.
[30] W. Zhen, C. Gong, and H. Choset, "Modeling Rolling Gaits of A Snake Robot," Proc. IEEE Int. Conf. on Robotics and Automation, 2015, pp. 3741-3746.
[31] T. Takemori, M. Tanaka, and F. Matsuno, "Gait Design for a Snake Robot by Connecting Curve Segments and Experimental Demonstration," IEEE Transactions on Robotics, vol.34, no.5, pp.1384-1391, 2018
[32] T. Takemori, M. Tanaka, and F. Matsuno, "Ladder Climbing with a Snake Robot," IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018, pp.8140-8145.
[33] Qiyuan Fu and Chen Li, "Robotic modelling of snake traversing large, smooth obstacles reveals stability benefits of body compliance," Royal Sosiety Open Science, vol.7, no.2, 2020.
[34] M. Nakajima, M. Tanaka, K. Tanaka, and F. Matsuno, "Motion Control of a Snake Robot Moving between Two Non-parallel Planes," Advanced Robotics, vol.32, no.10, pp.559-573, 2018.
[35] T. Kano, R. Yoshizawa, and A. Ishiguro, "Tegotae-based decentralised control scheme for autonomous gait transition of snake-like robots," Bioinspiration\& Biomimetics, vol.12, no.4, pp.1-20, 2017.
[36] J.W. Burdick, J. Radford, G.S.Chirikjian, "A ‘sidewinding' locomotion gait for hyper-redundant robots," Proc. IEEE Int. Conf. on Robotics and Automation, 1993, pp. 101-106.
[37] H. Ohno and S. Hirose, "Design of slim slime robot and its gait of locomotion," Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2001, pp. 707-715.

Tatsuya Takemori (S'16) received his B.S. and M.S. degrees in Engineering from the Department of Mechanical Engineering and Science, Kyoto University, Kyoto, Japan, in 2016 and 2018, respectively. He is currently a Ph. D. student at the Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto, Japan. His research interests include biologically inspired robotics, entertainment computing, and rescue support systems in fires and disasters.
He received the Japan Society of Mechanical Engineers Award, in 2019, and the Institute of Systems Control and Information Engineers Young Researcher Award in 2020.

Motoyasu Tanaka (S'05 - M'12) received his B.S., M.S., and Ph.D. degrees in Engineering from the Department of Mechanical Engineering and Intelligent Systems at the University of ElectroCommunications, Tokyo, Japan, in 2005, 2007, and 2009 , respectively. From 2009 to 2012, he worked at Canon, Inc., Tokyo, Japan. He is currently a Professor at the Department of Mechanical and Intelligent Systems Engineering, the University of Electro-Communications. His research interests include biologically inspired robotics and dynamic-
based nonlinear control.
He received the IEEE Robotics and Automation Society Japan Chapter Young Award from the IEEE Robotics and Automation Society Japan Chapter in 2006, and the Best Poster Award at SWARM2015: The First International Symposium on Swarm Behavior and Bio-Inspired Robotics, Kyoto, Japan, in 2015.

Fumitoshi Matsuno (M'94) received his Dr. Eng. degree from Osaka University in 1986. In 1986, he joined the Department of Control Engineering, Osaka University. Since 2009, he has been a Professor with the Department of Mechanical Engineering and Science, Kyoto University. He is the Vice President of the Robotics Society of Japan (RSJ) and the NPO Int. Rescue System Institute, and served as the President of the Institute of Systems, Control, and Information Engineers. His research interests include robotics, swarm intelligence, and control of nonlinear and distributed parameter systems. He received Best Paper Awards in 2001, 2006, and 2017 from the Society of Instrument and Control Engineers (SICE), in 2013 from the Information Processing Society of Japan, and in 2018 from the RSJ, and the Prize for Academic Achievement from the Japan Society of Mechanical Engineers (JSME) in 2009. He served as a General Chair of IEEE SSRR2011, IEEE/SICE SII2011, SWARM2015, SWARM2017, DARS2021 etc. He is a Fellow Member of the SICE, JSME, and RSJ.

[^0]: This work was partially supported by the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office Government of Japan).
 T. Takemori and F. Matsuno are with the Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto, 606-8501, Japan (e-mail: takemori.tatsuya.23a@st.kyoto-u.ac.jp, matsuno@me.kyoto-u.ac.jp).
 M. Tanaka is with the Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan (e-mail: mtanaka@uec.ac.jp).

