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I designed three experiments to determine how procedural memory consolidation 

in a music task is affected by practice under different conditions of speed regulation and 

different time intervals between practice sessions. Ninety-two nonpianist musicians 

practiced a 9-note sequence with their nondominant hand on a digital piano in three 

sessions, each of which comprised 3 blocks of 15 performance trials. In Experiment 1 (n 

= 31), participants were instructed to perform as quickly and accurately as possible but 

determined their own tempos in each trial. In Experiment 2 (n = 31), three defined 

practice tempos (M. M. = 52, 72, and 92) were externally regulated in a stable practice 

procedure in which tempo changed between, not within, blocks. In Experiment 3 (n = 

30), the same three tempos were externally regulated in a variable practice procedure in 

which practice tempo changed from trial to trial within each block. In each experiment, 

three different groups’ practice sessions were separated by either 5 min, 6 hr, or 24 hr.  
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Consistent with previous descriptions of procedural memory consolidation, the 

results of Experiment 1 show that note accuracy improved significantly between Sessions 

1 and 2 only when the sessions were separated by a 24-hr interval that included sleep; 

performance speed improved in all groups between Sessions 1 and 2, and between 

Sessions 2 and 3 when sessions were separated by 6 or 24 hr. In Experiment 2 (stable 

practice) there were significant improvements in note and tempo accuracy between 

Sessions 1 and 2 when those sessions were separated by 5 min or 6 hr, but not when the 

sessions were separated by 24 hr. In Experiment 3 (variable practice), note accuracy 

improved between Sessions 1 and 2 only when the sessions were separated by a 24-hour 

interval that included sleep; there were no significant improvements in tempo accuracy, 

perhaps due to the high physical demands of matching varying target tempos in 

successive trials. These results demonstrate that motor skill learning in music is affected 

by the time interval between practice sessions, and that the effects of distributed practice 

are dependent upon practice conditions.  
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Chapter I:  Introduction 

The goal of instrumental music teaching is to improve the performance of 

developing musicians. Most teachers agree that engaging in physical practice is the most 

efficient and effective way for students to improve performance skills, and that knowing 

how to practice is a critical component of becoming an accomplished performer. 

Although independent practice plays an important role in improving performance skills, 

practice behaviors and practice strategies have not been thoroughly investigated in the 

music learning literature.  

Observing professional and advanced musicians (e.g., graduate students in music 

performance that have reached near-professional levels of skill) engaged in practice is a 

logical way to learn about effective practice, as advanced performers have reached the 

highest levels of skill in our discipline. Detailed descriptions of professional and 

advanced musicians’ practicing (Chaffin & Imreh, 1997, 2001; Chaffin, Imreh, Lemieux, 

& Chen, 2003; Hallam, 2001; Miklaszewski, 1989; Nielsen, 1999a, 1999b, 2001, 2004; 

Williamon, Valentine, & Valentine, 2002) identify key behaviors of experts:  they engage 

in goal-directed practice, they use effective practice strategies to improve performance, 

they monitor their progress during practice, and they adjust their implementation of 

practice strategies when they perceive their current course of action to be ineffective.  

Even in initial stages of acquisition, professional and advanced musicians play 

large sections of pieces at tempos close to performance tempo (Duke, Davis, & Simmons, 

2004; Miklaszewski, 1989; Nielsen, 1999a); they allow an aural image of a piece to guide 

physical practice (Chaffin & Imreh, 2001; Chaffin et al., 2003; Miklaszewski, 1989); they 

employ extensive repetition during practice (Maynard, 2006); they address errors 

immediately and thoroughly so they do not reoccur (Chaffin & Imreh, 2001; Duke et al., 



 2 

2004); they practice technically demanding passages in chunks (Chaffin & Imreh, 2001; 

Maynard, 2006; Miklaszewski, 1989; Nielsen, 1999a); they practice those chunks at 

varying tempos (Duke et al., 2004; Miklaszewski, 1989; Nielsen, 1999a); and they 

recontextualize that material before moving on to something new (Duke et al., 2004; 

Miklaszewski, 1989). Taken together, these studies illustrate that professional and 

advanced musicians engage in thoughtful practice that is strategically designed to 

accomplish specific performance goals.  

Music learning research that has examined the practice behaviors and strategies of 

inexperienced and so-called “developing” musicians makes clear that developing 

musicians typically do not practice like professionals and advanced musicians (Lehmann 

& Ericsson, 1997; Pitts, Davidson, & McPherson, 2000). Developing musicians tend to 

ignore mistakes in their practice. When errors are addressed, they are not addressed 

effectively enough to eradicate errors in subsequent performance (McPherson & 

Renwick, 2001). Repetition of material does not occur to the extent observed in the 

practicing of more skillful musicians (Maynard, 2006). Developing musicians tend to 

“play through” music, applying little or no metacognitive skills in their practice 

(McPherson & Renwick, 2001).  

Practice strategies employed by professional and advanced musicians have been 

imposed on developing musicians with some success. Developing musicians benefit from 

structured, goal-oriented practice (Barry, 1992; Puopolo, 1971); from physical 

engagement with their instrument (Lim & Lippman, 1991); from mental practice alone 

(Coffman, 1990; Ross, 1985) and combined physical and mental practice (Theiler & 

Lippman, 1995); from listening to models (Goins, 2006; Henley, 2001; Hewitt, 2001; 

Lim & Lippman, 1991; Puopolo, 1971; Rosenthal, 1984; Rosenthal, Wilson, Evans, & 
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Greenwalt, 1988; Theiler & Lippman, 1995); and from distributing practice over time 

(Rubin-Rabson, 1940; Simmons & Duke, 2006).  

Although music teachers may suggest to developing musicians that they distribute 

their practice over time, there is little empirical evidence in music literature that describes 

the effectiveness of this strategy or explains why this strategy may be effective for 

developing musicians. Recent research in other domains of human learning has 

demonstrated that distributed practice can enhance learning. Simmons and Duke (2006) 

obtained similar results in the context of music performance.  

Distributed practice has received considerably more attention by researchers of 

human movement and psychology, albeit in different contexts than those typically 

discussed in music research. Even though most of this work involves the acquisition of 

simpler motor skills than those involved in music performance, the principles of human 

learning and memory that have been described in these investigations offer a wealth of 

information about the cognitive and physical processes that underlie performance 

improvements of motor skills in general. These ideas can inform what musicians do and 

what teachers instruct developing musicians to do.  

 

HUMAN MOTOR LEARNING AND MEMORY RESEARCH IN OTHER DOMAINS 

Researchers who study human movement have examined how the content of 

practice affects the acquisition and improvement of motor skills and the development of 

motor skill memory. Many of their studies required learners to practice relatively simple 

motor skills (i.e., skills that have one degree of freedom, can be acquired in one practice 

session, and are typically not skills executed outside of laboratories); much less research 

is done with complex motor skills (i.e., skills that have multiple degrees of freedom, 
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require multiple practice sessions for skill acquisition, and are sometimes skills people 

engage in as a part of life), a category under which music performance inarguably falls 

(Wulf & Shea, 2002).  

 

Practice Variability 

Over the past 32 years, motor learning research has demonstrated that including 

variability in the acquisition and continued practice of new motor skills affects the way 

motor skills are encoded into memory and recalled in subsequent practice. Variability in 

motor skill execution is systematically imposed on learners in these investigations; 

learners either practice slightly altered versions of the same kind of movement (e.g., 

hitting a curveball and a fastball) or they practice the same movement under slightly 

different performance parameters (e.g., executing the same finger-tapping sequence at 

different speeds). Learners recall the new skill in a retention test and complete a transfer 

test at least 24 hours after acquisition practice. Comparisons are then made between 

performances of learners who executed identical movements under identical performance 

parameters during practice (stable practice) and performances of learners who negotiated 

a degree of variability in the movement itself or in performance parameters during 

practice (variable practice).  

Put most simply, motor learning research consistently demonstrates that variable 

practice enhances the retention and transfer of simple motor skills to a greater extent than 

does stable practice (Albaret & Thon, 1998; Li & Wright, 2000; Pollock & Lee, 1997; 

Shea, Kohl, & Indermill, 1990; Shea, Lai, Wright, Immink, & Black, 2001; Simon & 

Bjork, 2001; Tsutsui, Lee, & Hodges, 1998; Young, Cohen, & Husak, 1993); however, 

research that explores complex skill learning demonstrates that the benefits of variable 



 5 

practice over stable practice are mediated by skill complexity and learner sophistication 

(for reviews, see Guadagnoli & Lee, 2004; Wulf & Shea, 2002). It may seem 

counterintuitive that executing skills under variable conditions yields enhanced 

performance at subsequent retests more so than does executing skills under stable 

conditions, particularly when error rates are considered. Learners who acquire skills 

under variable conditions unsurprisingly make more errors in practice than do learners 

engaged in stable practice (Giuffrida, Shea, & Fairbrother, 2002; Li & Wright, 2000; 

Pollock & Lee, 1997; Shea et al., 1990; Shea et al., 2001; Simon & Bjork, 2001; Tsutsui 

et al., 1998; Young et al., 1993). How then could more errorful practice yield superior 

performance at retest? Researchers in human movement propose that the extent to which 

learners are cognitively engaged during practice explains the benefits of variable practice 

and the differences between variable practice effects observed with simple and complex 

motor skills. 

Variable practice requires more cognitive engagement than stable practice. When 

movement structure and performance parameters remain the same from trial to trial, the 

amount of cognitive effort learners must exert to execute skills decreases over multiple 

repetitions; in other words, skill execution to some extent requires less attention. Varying 

movement structure or performance parameters between trials maintains higher levels of 

cognitive effort throughout practice. Cognitive processing must change from trial to trial, 

thereby increasing cognitive demands placed on learners. As a result of heightened 

cognitive engagement throughout acquisition practice, learners who engage in variable 

practice demonstrate enhanced performance in subsequent retests more so than do 

learners who engage in stable practice.  

Learners demonstrate varying levels of ability when acquiring new skills and 

consequently respond to skill complexity somewhat idiosyncratically; in general, learning 
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is optimized when the difficulty of a given task matches the sophistication of learners and 

when the degree of variability in practice is modified according to that relationship. More 

sophisticated learners (those who have some degree of familiarity or skill with the task to 

be acquired) are able to negotiate more complex skills (high cognitive demands) or a 

greater degree of variability in practice (high cognitive demands) than are less 

sophisticated learners. The delicate and poorly defined relationship between task 

complexity and learner sophistication makes it difficult to effectively match learner 

sophistication with appropriate levels of task complexity and practice variability. 

Demanding too much cognitive effort from one component overloads the learner and 

diminishes the beneficial effects of including variability in practice.  

Although there is as yet no clear experimental evidence demonstrating that 

systematic variation in practice enhances music performance skills, practicing with 

variations in performance parameters has long been a typical part of musicians’ practice 

routines. Based on the research described above, it seems logical that musicians who 

possess different levels of sophistication would respond differently to variability in 

practice, particularly when executing movements of different complexity levels. Learning 

to perform on a secondary instrument, for example, inarguably requires the simultaneous 

execution of many complex motor skills (e.g., forming an embouchure, creating sound, 

moving fingers to produce melodic lines). The development of such novel skills in well-

trained musicians is affected by task complexity and practice variability in ways that have 

been unexplored to date. 
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Distributing Practice Over Time 

Research in human movement has demonstrated that learners who distribute 

practice over time (i.e., dividing practice trials across multiple sessions that span several 

days) perform better than do learners who engage in massed practice (i.e., completing all 

practice trials in one session on one day) when skills are recalled at least 24 hours after 

practice ends (Dail & Christina, 2004; Donovan & Radosevich, 1999; Lee & Genovese, 

1988; Lee & Wishart, 2005; Shea, Lai, Black, & Park, 2000). In an effort to explain why 

distributing practice across time enhances performance skill and memory more than 

massed practice, researchers in human movement have drawn upon explanations first 

proposed by psychologists (for reviews, see Lechner, Squire, & Byrne, 1999; McGaugh, 

2000), which suggest that enhancements in performance are behavioral manifestations of 

neurophysical changes in the brain during rest intervals between practice sessions. These 

biological processes, identified as memory consolidation, have yet to be clearly defined; 

however, it is now widely accepted that acquiring new motor skills and forming 

memories for those skills elicit structural and functional reorganization in the brain 

(Walker & Stickgold, 2006). A time course for skill acquisition and memory 

consolidation has been consistently demonstrated in neuroscience literature that examines 

simple motor skill acquisition and performance in a population of learners who have no 

prior experience with the task they are asked to learn. 

Observed patterns of neural activity change over time as learners engage in skill 

acquisition. Learners experience a rapid improvement in skill execution when they first 

engage in practice of a new motor skill (Fischer, Hallschmid, Elsner, & Born, 2002; 

Karni et al., 1998; Korman, Raz, Flash, & Karni, 2003; Walker, Brakefield, Morgan, 

Hobson, & Stickgold, 2002). As these rapid improvements occur, neural activity that 
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guides motor activity is modified (Floyer-Lea & Matthews, 2005). Neurons that fire 

together during repeated practice of a new motor skill begin to fire together more easily 

so that existing pathways become readily activated as practice continues (Karni et al., 

1998; Kleim et al., 2004; Walker, 2005). Rapid improvements level off during acquisition 

practice, and performance gains are incremental by the end of the session. The refined 

pattern of neural activation that emerges at this point comprises a neural representation of 

the newly acquired motor skill. 

Changes in memories for newly acquired skills occur when learners are not 

actively engaged in practice, an idea that seems contrary to commonly held views in 

music teaching and learning. Practice triggers the onset of memory consolidation, but the 

process continues after practice has ended (Luft & Buitrago, 2005). Memory 

consolidation is thought to occur in two stages (Walker, 2005): the first stage, 

consolidation-based stabilization, modifies neural representations of motor skills in ways 

that make memories resistant to interference and forgetting; the second stage, 

consolidation-based enhancement, yields enhancements in motor performance and 

memory.  

Consolidation-based stabilization typically occurs in the wakeful hours 

immediately following practice. Wake-based consolidation makes memories resistant to 

interference from competing tasks (e.g., engaging in motor activity nearly identical to 

practiced tasks) and maintains performance gains achieved during acquisition (Fischer et 

al., 2002; Hotermans, Peigneux, Maertens de Noordhout, Moonen, & Maquet, 2006; 

Robertson, Pascual-Leone, & Press, 2004; Walker, Brakefield, Hobson, & Stickgold, 

2003; Walker et al., 2002). The process of wake-based consolidation typically lasts up to 

four to six hours after active practice has ended. If this process is interrupted, 

performance of newly acquired skills can be impaired and their memories compromised. 
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Current theory suggests that consolidation-based stabilization is characterized by 

intermittent occurrences of task-related neural activity and by early protein synthesis in 

the brain (Peigneux et al., 2006). Imaging studies have demonstrated that brain activity 

during skill acquisition is different from patterns of brain activity elicited when skills are 

recalled after consolidation-based stabilization has occurred, which suggests that the 

memories for new skills are modified subsequent to active practice. 

Consolidation-based enhancement depends on the chemical processes of sleep. 

Sleep-based consolidation enhances memories for newly acquired skills so that 

performance is significantly improved when skills are recalled. In other words, sleep 

enhances simple motor skill performance in the absence of additional practice (Brashers-

Krug, Shadmehr, & Bizzi, 1996; Duke & Davis, 2006; Fischer et al., 2002; Fischer, 

Nitschke, Melchert, Erdmann, & Born, 2005; Hotermans et al., 2006; Karni et al., 1998; 

Korman et al., 2003; Kuriyama, Stickgold, & Walker, 2004; Maquet et al., 2003; 

Mednick, Nakayama, & Stickgold, 2003; Robertson, Press, & Pascual-Leone, 2005; 

Simmons & Duke, 2006; Walker, Brakefield, Hobson et al., 2003; Walker, Brakefield, 

Seidman et al., 2003). The chemical processes of sleep are thought to “clean up” neural 

activity that occurs during acquisition; in other words, processes that occur during sleep 

disengage neural networks that were active during acquisition but are not essential for 

optimal task performance (Benington & Frank, 2003). Sleep studies have demonstrated 

that patterns of brain activity engaged during new task learning are again active during 

sleep, as if the brain is “replaying” significant events of the day (Walker & Stickgold, 

2006). More invasive work done with cats has clearly demonstrated that modifications of 

neural connections occur during sleep (Frank, Issa, & Stryker, 2001). Once again, it is 

clear that memories continue to be encoded and modified after practice has ended in ways 

that enhance performance when skills are recalled. 
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STUDY PURPOSE 

The purpose of music practice is to improve performance skill as quickly and 

efficiently as possible. Instructors teach their students effective practice strategies in an 

effort to create independent learners who are able to improve skills in the absence of 

external guidance. Practice strategies mentioned in music literature have yet to be 

explored thoroughly in music performance contexts. Systematically varying motor skill 

execution during practice and distributing practice over time (which allows memory 

consolidation to occur) are two such strategies that have received little attention in music 

research, though motor skill research in other domains has demonstrated the effectiveness 

of these two strategies in improving motor skill performance. 

Kinesiology and neuroscience research have demonstrated beneficial effects of 

distributed practice, most often with learners who have no prior task-related experience 

and who practice relatively simple motor tasks. Beneficial effects of distributed practice 

that includes sleep-based memory consolidation have also been observed with non-pianist 

musicians who engaged in self-regulated practice of a short sequence of notes on a 

keyboard (Simmons & Duke, 2006). It remains to be seen whether distributing practice 

across intervals of wake- and sleep-based consolidation will affect the way skills are 

learned and recalled when learners engage in externally regulated practice that includes 

systematic variation in task performance during practice.  

The purpose of the present study was to examine the effects of wake- and sleep-

based memory consolidation on musicians’ retention of complex motor skills learned 

under self-regulated practice conditions and externally regulated practice conditions with 

systematic variations in performance speed. I sought to discover new information about 

the cognitive processes that underlie complex motor skill performance and provide 

functional information for increasing efficiency and success in motor skill learning. 
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This research addressed the following three questions: 

1. Experiment 1: To what extent are complex motor skills affected by wake- and 

sleep-based consolidation processes in learners with extensive task-related 

knowledge and moderate levels of task-related skill?    

2. Experiment 2: To what extent are consolidation-based enhancements affected by 

stable practice procedures, in which the speeds of learners’ practice trials are 

externally regulated and practiced in a sequence that includes minimal variation in 

performance speed from trial to trial?   

3. Experiment 3: To what extent are consolidation-based enhancements affected by 

variable practice procedures, in which the speed of learners’ practice trials are 

externally regulated and practiced in a sequence that includes maximum variation 

in performance speed from trial to trial? 
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Chapter II:  Review of The Literature 

HUMAN LEARNING 

Observable changes in patterns of human behavior are outward manifestations of 

neurophysical changes in the brain. The processes involved in learning, specifically, the 

encoding, storage, and retrieval of memories, are of interest to researchers in domains 

related to various aspects of human behavior. Understanding the cognitive processes that 

underlie memory formation illuminates how learners best acquire knowledge.  

All that people know and are able to do is broadly classified into one of two 

categories of knowledge:  declarative knowledge (e.g., facts and events) and procedural 

knowledge (e.g., physical and perceptual tasks). Declarative knowledge is further 

separated into two distinct categories. Episodic memory describes recall of specific 

events (e.g., the details of a first piano recital), whereas semantic memory refers to the 

recall of facts (e.g., the capital of Texas is Austin). Procedural knowledge is often 

revealed through the execution of perceptual and motor skills (e.g., playing a C major 

scale on the piano) and habits, by demonstrating learned associations between actions and 

consequences, and by demonstrating reflexive behavior (Squire & Zola, 1996). 

Learners may acquire declarative knowledge with relatively few exposures to a 

stimulus and with very little rehearsal. The acquisition of procedural knowledge, though, 

typically requires longer periods of exposure and multiple repetitions of skills (i.e., 

practice). Playing a C scale on the piano beautifully (a procedural skill) requires more 

instruction and practice than does reciting the notes of the scale (declarative knowledge).  

Procedural skill learning, particularly fine motor skill learning, is characterized by 

incremental improvements in performance that are brought about by practice and the 

passage of time (Karni et al., 1995; Karni et al., 1998). Research in neuroscience, 
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psychology, and human movement has investigated the cognitive and physical processes 

that underlie performance improvements in motor skills, and has begun to explain how 

memories change over time and how the structure of practice affects learning. These 

investigations often study the acquisition of simple motor skills (i.e., skills that have one 

degree of freedom, can be acquired in one practice session, and are typically not executed 

outside laboratories); there is less research in procedural learning that considers complex 

motor skills (i.e., skills that have multiple degrees of freedom, require multiple practice 

sessions for skill acquisition, and are sometimes engaged in as a part of life) (Wulf & 

Shea, 2002), particularly the skills of music performance.  

Music practice and performance have received some attention from psychologists, 

because examining the behavior of musicians in the practice room offers rich information 

to the study of human learning and memory. Instrumental music performance involves 

the execution of intricate fine motor movements that are planned and rehearsed 

extensively, are often coordinated between hands, and are sustained over long periods of 

time in one practice session. These complex skills are performed over professional 

musicians’ life spans and reside in rich and varied contexts, making authentic music skills 

difficult to study systematically. 

 

MUSIC PRACTICE 

Musicians of all ages and skill levels engage in practice to improve the quality 

and fluency of their performances. Considering the importance of practice to the 

development and maintenance of performance skill, it is surprising that the details of 

practice (i.e., what goes on in practice rooms), particularly practice over extended periods 

of time, has been scarcely addressed in music research.  
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Complex motor movement planning and rehearsal occur simultaneously with 

complex auditory processing and discrimination in music practice. Advanced musicians 

develop auditory images (i.e., mental representations) of repertoire that are based on 

years of performance training and experience (Duke & Simmons, 2006). An advanced 

musician compares her auditory image of a piece she’s learning with the sounds she hears 

in the practice room. Practice is directed at modifying and refining motor movements so 

that musical intentions are conveyed appropriately (Chaffin & Imreh, 2001; Chaffin, 

Imreh, Lemieux, & Chen, 2003; Miklaszewski, 1989). 

In light of the extended, intensive practice that musicians undertake to achieve 

professional levels of performance (Ericsson, Krampe, & Tesch-Romer, 1993), 

examining the practice of professional musicians seems an advantageous starting place in 

gathering information about music practice (Chaffin et al., 2003). The fact that experts 

attain such high levels of skill indicates that their practice behavior functioned effectively 

in their development of skills. 

 

Practice Strategies Observed in Cases Studies of Advanced Instrumentalists 

Several case studies of advanced musicians (i.e., music performance majors who 

have reached near-professional and professional levels of performance) and professional 

musicians have been conducted in an effort to identify the mechanisms of practice that 

are consistently employed by the highest achievers (Chaffin & Imreh, 1997, 2001; 

Chaffin et al., 2003; Miklaszewski, 1989; Nielsen, 1999a, 1999b, 2001; Williamon, 

Valentine, & Valentine, 2002). In these investigations, musicians were observed as they 

practiced a new piece in preparation for performance and the strategies they employed 
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during practice (i.e., systematic approaches to solving identified potential and existing 

performance problems) were identified and described.  

Professional musicians systematically use a variety of physical and cognitive 

strategies to acquire a mental representation of a piece of music (i.e., an auditory image 

of the piece they will perform) and the motor skills required to execute performance so 

that the auditory image is realized (Chaffin et al., 2003; Miklaszewski, 1989). In fact, 

Chaffin et al. (2003) determined that the auditory representation of a piece guides 

physical practice from the initial reading to performance in concert. Auditory images of 

music are processed with different neural mechanisms than are motor skills, yet the 

findings described by Chaffin et al. (2003) and Miklaszewski (1989) suggest that 

advanced musicians’ auditory and motor processing work together in initial stages of 

practice for the proper acquisition of new material.  

After an initial reading of a score to be learned, advanced musicians begin to 

develop motor skills that are required to execute technical demands of the piece (e.g., 

notes, rhythms), which is unsurprising. In case studies of professional and advanced 

pianists, Miklaszewski (1989) and Chaffin and Imreh (2003) observed that a great deal of 

effort in the initial stages of practice was directed at deciding on fingering combinations 

for technically demanding passages. Once selected, fingering patterns remained fixed 

throughout practice (Chaffin et al., 2003; Miklaszewski, 1989; Nielsen, 1999a). Chaffin 

and Imreh (2003) described the importance of this strategy in terms of the development 

of a plan of motor movements that could be encoded into memory and reproduced the 

same way in subsequent practice.  

As practice continues over the course of weeks, motor movements are reliably 

executed, and professional musicians shift their focus of attention from developing motor 

movement plans to making quite detailed decisions about interpretative elements of 
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performance (Chaffin & Imreh, 2001). Later stages of practice reveal that musicians’ 

starts and stops are guided by interpretive sections of the music. During this phase of 

practice, musicians strive to achieve the utmost nuance in phrasing and expressive detail. 

It is important to note that these observations do not suggest that expressive elements of 

playing are not considered until technical aspects of performance are acquired. As 

mentioned before, musicians let auditory images that include all of the expressive 

elements of music making guide practice from the beginning, an approach that is 

certainly different than the unfortunately common practice among novices of learning 

notes and rhythms before addressing interpretive elements of music performance. 

Professional musicians use the formal structure of music to organize practice; in 

other words, the starts and stops that musicians make as they play coincide with musical 

units (Chaffin & Imreh, 1997; Miklaszewski, 1989; Nielsen, 1999a; Williamon et al., 

2002). In cases where music memorization is an inherent part of learning music, as is the 

case with vocalists and pianists, organizing practice around the formal structure of music 

allows cognitive encoding that facilitates the memorization and recall of music (Chaffin 

& Imreh, 1997). Playing sections of music facilitates motor skill acquisition and, as most 

musicians would agree, playing entire sections of music is more aesthetically gratifying 

than playing fragments of sections. 

Professional and advanced musicians are also able to shift their focus of attention 

between levels of the formal structure of music as they practice (Miklaszewski, 1989; 

Williamon et al., 2002). Over the course of preparing a piece for performance, 

professional and advanced pianists shift their attention between the entire piece, major 

sections, and from note to note. Initial stages of practice are organized around performing 

the piece as a whole to solidify musicians’ auditory images, followed by more detailed 

work that occurs at the level of major sections, while also working out note-to-note 
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problems at the level of individual measures. Practice continues in this manner, even into 

the final stages of practice before performance. 

Nielsen (1999a) and Miklaszewski (1989) observed that playing through large 

sections of a piece at close to performance tempo early in the learning process is a 

strategy musicians employ to help solidify their image of the piece, and to help them 

identify where technical and interpretive problems will occur during the learning process. 

Playing the piece at performance tempo in early stages of practice helps musicians create 

necessary practice plans to accomplish learning the piece.  

Advanced musicians increase the efficiency of practice by structuring practice 

sessions around performance goals; goals are developed to organize individual practice 

sessions and to achieve a beautiful and fluid performance on stage. The identification of 

performance goals for individual practice sessions focuses attention on specific elements 

of performance. Achieving predetermined goals leads to a sense of accomplishment at the 

end of each practice session. Those achievements contribute to the planning of future 

practice sessions (Chaffin et al., 2003). Even from initial stages of practice, professional 

musicians demonstrate the ability to anticipate where technical and interpretive problems 

will occur during the learning process (Chaffin & Imreh, 2001; Nielsen, 2001) and to 

create plans that will enable them to perform well on stage. 

Professional musicians use a variety of metacognitive strategies as they practice 

(Chaffin & Imreh, 2001; Hallam, 2001; Nielsen, 2001, 2004); in other words, 

professionals monitor their practice, using many different practice strategies to 

accomplish effective learning. They listen carefully to the sounds they create as they play 

and constantly compare them to the idealized image of the piece they have in mind. 

When particular performance trials do not go well, professionals assess problems, 

evaluate the effectiveness of the strategies they are using to work out the problems, and 
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make modifications in their approaches to solve the problems. Professional musicians 

also monitor their progress toward learning the pieces they are working on, and make 

adaptations to short-term practice goals. In short, they know how to learn independently 

and efficiently. 

After advanced musicians identify problem areas, they focus on them in practice, 

using a variety of strategies to remediate problems. Advanced and professional musicians 

employ extensive routines of repeating targeted passages to ensure fluid technical 

execution (Maynard, 2006). Combined with repetition are a variety of other strategies 

directed at developing and solidifying an appropriate motor movement plan.  

Advanced musicians choose small chunks of material to isolate during repetitive 

work (Chaffin & Imreh, 2001; Maynard, 2006; Miklaszewski, 1989; Nielsen, 1999a), 

which makes the extensive use of repetition less time consuming than it would be if 

larger chunks of material were chosen. ‘Chunking’, as this technique is often called, also 

increases practice efficiency by allowing attention to be focused directly on performance 

problems unique to the passage without distractions from surrounding material.  

Short practice chunks are often played at varying tempos during practice to 

accommodate technical demands. Tempos for repetitions are purposefully selected, and 

are often not chosen in progressively increasing or decreasing order (Miklaszewski, 1989; 

Nielsen, 1999a). Miklaszewski’s case study describes one example of purposeful tempo 

variation. The participants of his study first played through the piece to be learned at a 

near-performance tempo and identified problem areas. A small segment of the music was 

then chosen for isolated work. Practice tempo first decreased while motor movements for 

the segment were worked out. When the motor skills were reliably executed, the practice 

tempo was increased back to near-performance tempo. When performance of the passage 

at the near-performance tempo was not satisfactory, more isolated, remedial work was 
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done at varying tempos. Once the passage was playable at the near-performance tempo, 

the passage was recontextualized into the section of music where it appeared before 

practice of a different section of music was initiated.  

Another strategy used with repetition is to break apart the physical movements 

involved in performance and rehearse component movements separately. In the case of 

piano practice, professional musicians tend to alternate between playing difficult 

passages with one hand only and with both hands together. Organists also add pedal-

separate playing to hands-together/hands-separate approaches (Nielsen, 1999a, 1999b). 

Wind instrumentalists may choose to finger through a passage without blowing into the 

instrument. Rehearsing components of physical movements separately allows musicians 

to direct attention to particular movements that present problems by reducing the 

cognitive load that typical performance presents. 

Repetition of problem areas continues in the initial stages of practice until 

musicians feel that very short episodes of rehearsal in subsequent practice sessions will 

be required to maintain technical fluency (Chaffin & Imreh, 2001). Within a couple of 

practice sessions, there are no differences between the amount of time spent on 

technically difficult passages and time spent on more simple technical passages. 

Performance problems are addressed to the extent that performance is accurate, fluent, 

and consistently executed early in the learning process.  

Detailed observations of the unrestricted practice of an excerpt by 17 advanced 

pianists (Duke, Davis, & Simmons, 2004) led to the conclusion that the organizational 

structure of practice is more determinative of superior playing in subsequent performance 

than is how much or how long one practices. The number of complete, correct trials 

executed during the practice session best predicted superior performance at a subsequent 

retention test. The pianists who best learned the passage neither spent more time 
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practicing nor played more total trials (correct and incorrect) during practice than did 

other pianists who performed more poorly on the retention test. The fact that the best 

performing pianists took no less time to learn the passage than the other pianists is also 

notable, because it contravenes the notion that the pianists who performed best on the 

retention test were more highly skilled than the other pianists and thus were able to learn 

the passage more easily than the others.  

The characteristics of the practice sessions of the three pianists who scored 

highest on the retention test are summarized below. Although the top scoring pianists 

demonstrated most or all of the behaviors listed, lower scoring pianists demonstrated only 

a few. 

1. Playing is hands-together early in practice 

2. Playing is with inflection early on; the initial conceptualization of the music is 

with inflection 

3. Practice is thoughtful, as evidenced by silent pauses while looking at the music, 

singing/humming, making notes on the page, or expressing verbal “ah-ha”s 

4. Errors are preempted by stopping in anticipation of mistakes 

5. Errors are addressed immediately when they appear  

6. The precise location and source of each error is accurately identified, rehearsed, 

and corrected 

7. Tempo of individual performance trials is systematically varied; logically 

understandable changes in tempo occur between trials (slow down enough; do not 

speed up too much) 

8. Target passages are repeated until the error is corrected and the passage is 

stabilized, as evidenced by the error’s absence in subsequent trials 

9. When tempo is changed, the first trial at the new tempo is accurate 
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10. After the initial learning phase errors are intermittent (no persistent errors) 

11. At least 20% of all starts are complete, correct performances, though not 

necessarily at the target tempo 
 

Nielsen (1999a) discusses both mental practice and distribution of practice in her 

analysis of a performer’s practice strategies. Mental practice (e.g., imagining, without 

movement, the performance of a passage) prepares cognitive and physical aspects of 

performance away from the instrument, while limiting learner fatigue. Distributing 

practice over the course of a day also helps lessen physical and mental fatigue brought on 

by intense and continuous physical practice. Ericsson and colleagues and Nielsen have 

observed that advanced musicians often nap between practice sessions (Ericsson et al., 

1993; Nielsen, 1999a), the effects of which are related to both recovery from fatigue and 

memory consolidation. 

Other practice strategies mentioned less frequently in the literature include 

performing with a metronome, systematically altering the rhythm of difficult passages to 

facilitate motor skill production, studying the music in terms of formal structure, writing 

comments in the score (e.g., notes about the formal structure of the piece, harmonic 

analysis, fingering pattern reminders, and interpretive reminders), and listening to the 

recordings of other artists.  

Musicians’ verbal descriptions of their own practice strategies are not always 

consistent with their actual practice behaviors (Chaffin et al., 2003). Furthermore, 

Madsen (2004) has shown that musicians’ recollections of past practice are often 

unreliable. Perhaps musicians’ memories of their practice conflict with observations of 

actual practice because a degree of automaticity exists in their practice behaviors, a result 
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of extensive practice undertaken over the course of many years. Extensive use of routines 

may prevent musicians from being consciously aware of exactly how they use strategies 

in practice. 

 

Practice Strategies, Practice Time, and Music Performance Expertise 

The ability to effectively employ cognitive (e.g., practice strategies) and 

metacognitive (e.g., monitoring performance and adjusting practice accordingly) skills in 

the practice room is a critical component of performance preparation by professional and 

advanced musicians. This kind of effortful and intentional practice is characteristically 

different from the practice of less-skilled performers (Lehmann & Ericsson, 1997). Goal-

oriented practice that is consistently monitored by the performer for goal achievement has 

been labeled deliberate practice; studies in different performance domains (e.g., music, 

chess, sports, visual arts, sciences) have examined the role of deliberate practice in the 

development of performance expertise (Ericsson, 1996).  

Studies of musicians show that expert-level performers began practicing 

deliberately during childhood, accumulating no fewer than 10 years of deliberate practice 

before they received professional recognition (Ericsson, 1997; Ericsson et al., 1993; 

Lehmann, 1997). Differences between the performance skills professional-level 

musicians are attributed in part to the amount of time spent in deliberate practice; in other 

words, professionals who engage in deliberate practice for longer periods of time 

eventually reach higher levels of success than do professionals who engage in fewer 

hours of deliberate practice (Ericsson et al., 1993; Madsen, 2004). 

Extended, intense practice does not always facilitate the development of expert- 

and professional-level performance, however (Moore, Burland, & Davidson, 2003). 
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Moore et al. examined the role of deliberate practice in the musical development of 

children, and observed that children who engaged in intense practice from the beginning 

of study showed high levels of musical success initially, but did not pursue music 

performance as a career. The children who did become adult professional musicians 

gradually increased the amount of practice they engaged in over the course of many years 

rather than practicing intensely for extended periods of time from the beginning of study. 

These data suggest that intense practicing from the very beginning of music study may 

dampen interest in pursuing high levels of music performance skill in the long-term.  

 

Practice Strategy Observations in the Practice of Developing Musicians 

Research in music education has sought to determine how practice strategies can 

be effectively implemented in the practice of developing musicians. In these 

investigations, practice strategies of professional and advanced musicians have been 

taught to developing musicians to examine their effectiveness. 

Structured practice improves performance more so than unstructured or free 

practice (Barry, 1992; Puopolo, 1971), particularly among developing musicians. It 

seems clear that beginning instrumentalists must learn how to practice with skill 

development in mind. Teachers must not only introduce practice strategies through 

explanation, but must practice the implementation of effective practice procedures with 

their students.  

Physical practice improves music performance to a greater extent than does 

studying scores while listening to recordings (Lim & Lippman, 1991) or engaging in 

mental practice (Coffman, 1990; Ross, 1985) in the absence of physical practice. This is 
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unsurprising, as neither cognitive preparation nor mental practice fully engage the 

movements that are necessary for the refinement of motor movement plans.  

Combining physical and mental practice optimizes cognitive coding and engages 

attention and arousal (Theiler & Lippman, 1995), but tests of combined physical and 

mental practice in music have produced inconsistent results. Rubin-Rabson (1941), for 

example, observed that combining physical and mental practice facilitated performance 

more than physical practice alone. Coffman (1990) and Ross (1985) observed that 

physical practice alone and combined physical/mental practice improved performance 

similarly, and the combination of physical/mental practice improved performance 

significantly more than mental practice alone.  

Listening to recorded models during physical practice improves performance 

more than physical practice only (Henley, 2001; Hewitt, 2001; Lim & Lippman, 1991; 

Puopolo, 1971; Rosenthal, 1984; Rosenthal, Wilson, Evans, & Greenwalt, 1988; Theiler 

& Lippman, 1995). Listening to recorded models provides an auditory image of the 

practice goal and thus increases the effectiveness of physical practice. Combining 

recorded model listening, mental practice, and physical practice facilitated the 

memorization of vocal and guitar music (Theiler & Lippman, 1995) to a greater extent 

than combined physical/mental practice and physical practice alone. Listening to a 

recording of a piece while studying its score also improves performance (Lim & 

Lippman, 1991). Rosenthal et al. (1998) observed that listening to a model in the absence 

of physical practice and physical practice without a recorded model both enhanced 

performance to the same extent, though in this experiment, practice time was limited to 

three minutes. Hewitt (2001) observed that having young students listen to recordings of 

their own playing improved subsequent performance only if students also listened to a 

recorded model. This result supports the notion that recorded models provide, especially 
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for inexperienced musicians, a clear performance goal that helps guide decision making 

during practice.  

Puopolo (1971) observed that beginning instrumentalists demonstrated improved 

performance after practicing with a recording that provided aural models of practice 

material, gave cues about elements of performance (e.g., fingerings, accidentals), asked 

students to evaluate their performances, and required several repetitions of material. The 

beneficial effects of listening to recorded models that also guide musicians’ practice 

behaviors are mediated by age. Rosenthal (1984) observed that more experienced 

musicians (college level) did not benefit as much from a listening to a recorded model 

that also guided practice as they did from listening to a recorded model that did not 

include a guide for practice behavior. These results suggest that experience and skill level 

mediate the effect of guided practice; college-level musicians who have completed years 

of training are more equipped to effectively guide their own practice than are less 

experienced musicians.  

Observations made in some of the first documented studies of developing 

musicians’ practice are consistent with information gathered in the case studies of 

advanced and professional instrumentalists. Brown (1928) observed that both practicing 

complete sections of music (whole practice) and alternating between practicing complete 

sections and isolating problem areas (combination of whole/part practice) was more 

effective in improving performance than was breaking up sections into parts without 

playing complete sections (part practice). In contrast, Rubin-Rabson (1940b) did not 

observe differences between whole- and part-practice. Brown and Rubin-Rabson also 

reported different results for hands-together and hands-separate practice; Brown (1933) 

noted that hands-together practice was more effective than hands-separate practice, 

whereas Rubin-Rabson (1939) observed no differences between the two strategies. 
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Differences between the results of these studies may be attributed to differences in their 

methodologies and their dependent measures. 

Spacing practice over time (i.e., distributed practice) was more shown to be 

effective in improving performance than practicing for the same amount of time in one 

session (i.e., massed practice) (Rubin-Rabson, 1940a). This landmark study was the first 

comparison of massed and distributed practice in the context of music. Adult musicians 

with extensive piano training were given 30 trials to learn a passage on the piano that 

required coordinated performance of both hands; they either completed 30 trials in one 

session, or completed 15 trials in each of two sessions, spaced by 1 hour or by 24 hours. 

A 2-week delayed retest showed that pianists whose practice was distributed across two 

sessions were able to perform the passage without error in fewer trials than did pianists 

who engaged in massed practice. Although there were no significant differences between 

the 1- and 24-hour distributed practice groups, the largest performance differences were 

observed between the 24-hour distributed practice group and the massed practice group.  

One strategy found to benefit learning with advanced and professional pianists 

was found to be ineffective when employed by novice musicians. Henley (2001) 

observed that alternating between slow and fast tempos during practice did not improve 

performance more than practicing with a gradually increasing tempo, nor did it improve 

performance more than practicing at performance tempo only.  

Even though effective practice strategies have been identified in research, their 

implementation in the practice of most developing musicians has yet to be fully described 

(Pitts, Davidson, & McPherson, 2000). The strategy that occurs most often in the practice 

of developing musicians is repetition; however, repetitions typically do not thoroughly 

address error correction. If error correction is attempted, most developing musicians 

briefly implement ineffective strategies to correct errors and move on before problems 
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are solved (McPherson & Renwick, 2001). In other words, beginning instrumentalists 

tend to play through music a couple of times, paying little attention to errors and overall 

performance quality, rather than setting goals for each practice session and monitoring 

performance to ensure that goals are achieved.  

In a study of practice by artist-teachers and their students, Maynard (2006) 

observed that artist-teachers, graduate students, and advanced undergraduates selected 

over twice as many targets for isolated practice than did beginning undergraduates. The 

least advanced undergraduate group performed almost half the number of repetitions in 

practice than did the more advanced groups. Differences in practice habits exist between 

more-skilled and less-skilled performers, even at the collegiate level. 

The demonstration of cognitive and metacognitive practice strategies early in 

instrumental study is a reliable predictor of musical success (McPherson & Renwick, 

2001). A small percentage of developing musicians use cognitive and metacognitive 

practice strategies, albeit in a manner less sophisticated than that observed among more 

experienced musicians. Hallam (2001) observed that young instrumentalists who use 

practice strategies effectively are also able to identify technically demanding passages in 

score study and aurally identify errors. Differences between more successful and less 

successful instrumentalists become evident quite early; they are observable even in 

children as young as six years of age and by instrumentalists’ second year of study 

(Sloboda, Davidson, Howe, & Moore, 1996). 

Children must be taught to be self-motivated, independent learners who enjoy 

playing their instrument. Playing beautifully is motivating, but the work required to 

develop the motor, cognitive, and meta-cognitive skills necessary to play beautifully is 

often too arduous for developing musicians who have not learned how to engage in 

effective practice techniques independently. However, when students are free to exercise 
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choices in practice they are more likely to enjoy it, persevere in the face of problems, and 

persist in the activity (Renwick & McPherson, 2002). Renwick and McPherson observed, 

for example, a young instrumentalist engaged in advanced practice strategy behavior 

(e.g., humming, fingering silently, studying the music, practicing larger sections, 

persisting for longer periods of time to correct errors) when practicing a piece that was 

self-selected. This practice behavior differed markedly from the practice behavior she 

engaged in when she practiced teacher-selected repertoire.  

Young instrumentalists reported enjoying practice more when repetitions of 

difficult material included varying performance elements (e.g., different rhythms, 

different tempos, changing articulation) than when repetitions were performed identically 

(da Costa, 1999). Sloboda et al. (1996) observed that students were more likely to 

succeed in music performance if they supplemented formal practice (e.g., scales, etudes, 

teacher-assigned repertoire) with informal practice (e.g., improvisation, playing by ear).  

Practice strategy instruction is not consistently observed in private lesson studio 

teaching (Barry & McArthur, 1994), and what teachers think they are teaching their 

students about practice is not always evident in students’ practice room behavior (Kostka, 

2002). Kostka’s survey of college-level private studio instructors reported that teachers 

had the expectation that students followed a specific practice routine, but more than half 

of their students indicated that they did not do so. Nearly all teachers in the survey stated 

that they discussed practice strategies in students’ lessons, but well over half of the 

students reported that practice strategies were not discussed in their lessons. Perhaps the 

least surprising observation was that teachers expected that more time was spent in 

practice than was reported by students. 
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Music Practice Research Conclusions 

Musicians of all ages and ability levels engage in physical practice to improve 

performance. The most important findings from the research described above are that 

professional and advanced musicians engage in goal-oriented, deliberate practice 

behavior, employing metacognitive skills to monitor their progress over time. In contrast, 

developing musicians typically do not practice effectively and do not carefully monitor 

their progress. 

Studies of music practice to date have not examined all that musicians do while 

practicing, and they offer only limited information about the optimal applications of 

practice strategies. Some strategies, like Rubin-Rabson’s 1940 comparisons of massed 

and distributed practice in music memorization, have received little attention in music 

learning research. The effectiveness of systematically varying practice content also 

requires further study in the context of music performance.  

Distributed practice and variability of practice have received considerably more 

attention in contexts other than those typically discussed in music research. Many of the 

investigations of motor skill learning and procedural memory test simpler motor skills 

than those involved in music performance, but the principles of human learning and 

memory that have been described in these investigations offer a wealth of information 

about the cognitive and physical processes that underlie performance improvements of 

motor skills in general.   
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CURRENT THEORIES OF MOTOR SKILL LEARNING AND MEMORY 

Researchers have published a number of studies that investigate how motor skill 

learning and memory are affected by the structure of practice. Much of this work was 

designed to test the schema theory of motor learning (Schmidt, 1975); schema theory 

addresses how motor skills are represented in memory and how the degree of variation in 

practice influences cognitive and behavioral components of learning. The impact of 

schema theory remains robust 31 years after its introduction. Schmidt’s schema theory 

publication has spawned decades of research designed to test the principles of human 

motor learning that it described (C. H. Shea & Wulf, 2005). 

A major premise of schema theory is that when a sequence of motor movements 

is executed repeatedly, the brain creates a motor program that is a cognitive 

representation of those coordinated movements (Schmidt & Lee, 1999). A motor program 

represents the fixed relationships between individual movement segments that comprise a 

motor skill. In other words, motor programs are invariant structural patterns of 

proportional relationships among movements. Invariant patterns of proportional 

relationships are somewhat analogous to note values that comprise the rhythm of a 

melody. A given melody may be performed at various tempos that require the overall 

rhythmic structure to be performed faster or slower, but the relationships between notes 

in the melody stay the same. When evoked by sensory information in the environment, a 

motor program generates production of the coordinated movement pattern it represents 

(e.g., a performer sees a cue from a conductor that initiates recall of a motor program that 

produces sound from the instrument).  

Motor programs are not always executed under the same performance parameters. 

The term generalized motor program (Schmidt, 1975), or GMP, refers to motor programs 
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that can be executed under different performance parameters (e.g., performing the rhythm 

of a melody at various tempos). In other words, the proportional relationships between 

the movements (e.g., rhythm) do not change, but the conditions under which they are 

executed (e.g., tempo) vary.  

Cognitive information about movements and the results of movements are 

processed as a GMP is being learned (Schmidt & Lee, 1999). First, proprioceptive 

information that precedes movements is processed (e.g., how fingers are positioned over 

the keys of a piano). Second, information about unique performance parameters applied 

to GMPs is stored (e.g., performing the rhythm of a melody at M.M. = 92). Learners then 

evaluate the results of movements after GMP execution (e.g., was the rhythm performed 

accurately at this tempo?), and they process sensory information about how it felt to 

execute the GMP under specific performance parameters (e.g., evaluating whether a 

particular fingering pattern used to execute a rhythm is awkward or comfortable at a 

given tempo).  

As learners continue to execute a GMP under varying performance parameters, 

they begin to form relationships between the GMP, the parameters under which the GMP 

is executed, and the results of their attempts to adjust their movements to accommodate 

various performance parameters while maintaining GMP structure. The cognitive 

representation of these relationships comprises a recall schema (Schmidt, 1975). Recall 

schemas may be thought of as a set of rules that allow a GMP to be executed in different 

contexts; the relationships between movements stay constant while the actual parameter 

value for each component movement of the GMP changes to accommodate the 

requirements of each situation.  

In the motor learning literature, the extent to which skills are learned is typically 

assessed in two measures: retention tests and transfer tests. Retention tests are performed 
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after varying time intervals following practice (e.g., minutes, days, weeks). Retention 

tests usually comprise a limited number of performance trials that are identical to 

acquisition trials. Transfer tests are usually conducted after retention tests and typically 

involve performing a number of trials that are slightly altered versions of acquisition 

trials (e.g., playing the practiced rhythm of a melody at a previously unpracticed tempo). 

Retention tests provide information about the integrity of the memory formed for new 

skills as a result of practice. Transfer tests measure the extent to which new skills are 

successfully applied to new contexts. Assessing learners’ ability to recall and transfer 

skills is a universally accepted measure of learning (Simon & Bjork, 2002). 

Retention and transfer tests demonstrate that practice that facilitates GMP 

learning is different from practice that facilitates development of the recall schema for a 

GMP. A GMP is most efficiently learned under practice conditions that promote stability 

in movement execution (i.e., parameters for movement execution stay the same between 

performance trials; see Giuffrida, Shea, & Fairbrother, 2002; Lai & Shea, 1998; Lai, 

Shea, Wulf, & Wright, 2000; C. H. Shea, Lai, Wright, Immink, & Black, 2001). This 

trial-to-trial consistency allows attention to be directed at the fundamental structure of the 

movement pattern, which strengthens the formation of the GMP. Constant practice 

(identical repetitions of one task throughout practice) and blocked practice (completing 

all performance trials under one set of parameters before beginning practice under a 

different set of parameters) are the most stable kinds of practice identified in motor 

learning literature.  

Although stable practice facilitates GMP learning, it does not enhance the ability 

to execute movement patterns in different contexts (Giuffrida et al., 2002; Lai et al., 

2000; C. H. Shea et al., 2001; Wright & Shea, 2001). Practicing skills on a variable 

schedule, where parameters for movement execution change between performance trials, 
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is necessary for the development of a recall schema that facilitates executing a GMP in 

new contexts. This trial-to-trial inconsistency requires attention to be focused more on 

negotiating parameter changes and less on learning the underlying structure of the 

movement pattern (GMP). The more practice is varied, the more experience learners have 

executing GMPs in changing contexts; these varied experiences enhance recall schema 

development. Serial practice (performance parameters for each trial vary in a systematic 

way that is repeated throughout practice) and random practice (performance parameters 

for each trial vary quasi-randomly throughout practice) are the kinds of variable practice 

typically described in the motor learning literature. 

 

The Effects of Stable and Variable Practice on Motor Skill Learning and Memory 

Surprisingly, many studies show that learners who engage in variable practice 

during the acquisition phase of learning demonstrate better retention and/or transfer than 

do learners who engage in stable practice (Albaret & Thon, 1998; Li & Wright, 2000; 

Pollock & Lee, 1997; C. H. Shea, Kohl, & Indermill, 1990; C. H. Shea et al., 2001; 

Simon & Bjork, 2001; Tsutsui, Lee, & Hodges, 1998; Young, Cohen, & Husak, 1993). 

The observation that variable practice enhances transfer test performance seems intuitive; 

variable practice offers learners frequent experiences executing movements in changing 

contexts, whereas stable practice offers no such experience (constant practice) or quite 

limited experience (blocked practice) with varied parameters.  

One unsurprising effect of including variability in practice is that more errors are 

made during the acquisition phase of learning than are typically observed when learners 

are engaged in stable practice (Giuffrida et al., 2002; Li & Wright, 2000; Pollock & Lee, 

1997; C. H. Shea et al., 1990; C. H. Shea et al., 2001; Simon & Bjork, 2001; Tsutsui et 
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al., 1998; Young et al., 1993). When performance parameters change with each trial, 

learners are more likely to make errors than they are when parameters stay the same 

between trials. It seems in some ways counterintuitive that learners engaged in variable 

practice make more errors during the acquisition phase of learning than stable practice 

learners but demonstrate better performance on retention tests; more errorful practice 

yields better learning.  

Variable practice enhances learning more than stable practice because it engages 

the memory system in more complicated ways, requiring more information processing 

and encoding as learners negotiate changing parameters (Albaret & Thon, 1998; Immink 

& Wright, 1998, 2001; C. H. Shea et al., 1990; Wulf & Shea, 2002). The benefits of this 

elaborate cognitive processing are described by two competing ideas, namely, the 

Reconstruction and Elaboration Hypotheses (Schmidt & Lee, 1999; Young et al., 1993). 

The Reconstruction Hypothesis proposes that learners create a new action plan for each 

trial they encounter. Previously used action plans are not engaged when learners develop 

action plans for new trials performed under different parameters (Giuffrida et al., 2002; 

Immink & Wright, 1998; Schmidt & Lee, 1999). The high level of cognitive processing 

involved in the trial-to-trial reconstruction of action plans enhances memories for 

practiced tasks. The Elaboration Hypothesis proposes that information about each 

performance trial is stored in working memory. Continuous comparisons between new 

trials and previously experienced trials require high levels of cognitive processing that 

lead to distinct and elaborate memories. Similar cognitive demands are not experienced 

with stable practice schedules. Executing movements the same way from trial to trial 

allows a degree of cognitive and motor automaticity to develop over time, resulting in 

less elaborate memories for new skills.  
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Motor learning research that examines the effects of including variability in 

practice has been guided by two competing theories. The variability of practice 

hypothesis, proposed by Schmidt (1975), describes the effects of varying performance 

parameters on motor learning (e.g., performing the same movement at different speeds). 

The second hypothesis, the contextual interference effect (J. B. Shea & Morgan, 1979), 

discusses the effect of executing different movement sequences (GMPs) of the same 

movement type on learning (e.g., performing slightly different movements at the same 

speed). The contextual interference effect suggests that varying the GMP executed in 

consecutive performance trials creates cognitive interference for learners as relationships 

between movements are changed from trial to trial. Much has been made of the 

difference between the variability of practice hypothesis and the contextual interference 

effect in motor learning literature; however, there are some generalities to draw from both 

ideas. Both kinds of variation (negotiating changing parameters or negotiating different 

GMPs from trial to trial) interfere with learners’ ability to execute movements 

consistently. The interference created by GMP and/or parameter variation increases the 

cognitive processing load imposed on learners during the acquisition phase of learning, 

thereby enhancing the memory formed for new skills. (In the investigation reported in 

this dissertation, practice variation is included by learners’ negotiation of performance 

parameter changes as described by the variability of practice hypothesis.) 

 

Complexity in Motor Skill Learning Mediates Practice Schedule Benefits 

Motor learning research consistently demonstrates that variable practice enhances 

simple motor skill learning; however, research that explores complex skill learning 

demonstrates that the benefits of variable practice are mediated by task complexity and 
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sophistication of learners (Guadagnoli & Lee, 2004; Wulf & Shea, 2002). In complex 

skill learning, the extent to which variable practice enhances learning is inversely related 

to the degree of task complexity (Albaret & Thon, 1998). In other words, as tasks 

increase in difficulty, benefits of variable practice decrease. Complex motor skill 

execution requires more cognitive effort than simple motor skill execution, and variable 

practice requires more cognitive processing than stable practice. The combination of 

increasing cognitive demands both in task difficulty and in practice schedule often 

overloads cognitive processing of naïve learners. The interaction between task 

complexity and practice variability was clearly demonstrated by Albaret and Thon; 

variable practice enhanced learners’ drawing performance when tasks were relatively 

simple (drawings that consisted of 2 or 3 segments), but did not enhance learning of the 

more complex task (drawings that consisted of 4 segments).  

The extent to which variable practice enhances learning is positively related to 

sophistication of learners. In other words, as learners become more sophisticated in terms 

of the target skill, benefits of variable practice increase. More sophisticated learners are 

able to acquire more complex tasks than are less sophisticated learners. Jarus and Gutman 

(2001), for example, observed children learning a simple and a complex throwing task; 

stable practice facilitated learning of both tasks, whereas variable practice only enhanced 

learning of the simple task. Children could not accommodate the cognitive demands 

required to execute a complex task under a variable practice schedule. With increasing 

age typically comes increasing motor coordination and control. Jarus and Gutman also 

observed that college-aged learners who engaged in variable practice of a dart-throwing 

task demonstrated a greater degree of learning than did those who engaged in stable 

practice.  
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The relationship between practice variability and learner sophistication also varies 

with learners’ pre-existing levels of motor coordination and control. Hebert et al. (1996) 

separated college students enrolled in a beginning tennis course into low- and high-

skilled groups based on pre-test scores. Stable practice enhanced performance of low-

skilled beginners more than variable practice, and there were no differences between the 

extent to which stable and variable practice enhanced learning of high-skilled beginners. 

Surprisingly, Hebert et al. also observed that variable practice did not produce more error 

in the acquisition phase of learning than did stable practice.  

Learners demonstrate varying levels of ability when acquiring new skills and 

consequently respond to skill complexity uniquely; in general, learning is optimized 

when the difficulty of a given task matches the ability of a learner and when the degree of 

variability in practice is modified according to that relationship. In one such example of 

optimized learning, collegiate-level baseball players clearly demonstrated that variable 

practice enhances performance of highly complex motor skills when learners are highly 

competent with the task (Hall, Domingues, & Cavazos, 1994). Skilled baseball players 

completed two sessions of additional batting practice every week for six weeks. Athletes 

who engaged in variable practice outperformed athletes who engaged in stable practice in 

both retention and transfer tests, which demonstrates that variable practice enhances 

highly complex skills performed by quite sophisticated learners.  

There are inconsistencies in the motor learning literature that are currently 

attributed to the complicated nature of matching learners’ ability with the appropriate 

degree of task complexity and to the fact that procedures used to study practice variability 

are not identical from one experiment to another (for a review, see Wulf & Shea, 2002). 

Thus, beneficial effects of practice variability on complex motor skill performance have 

been found in studies of baseball (Hall et al., 1994), racket sports (Green, Whitehead, & 
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Sugden, 1995), aiming tasks (Pollock & Lee, 1997), throwing tasks (Wulf, 1991), and 

computer games (Shewokis, 1997). No beneficial effects were found in studies of racket 

sports (Hebert, Landin, & Solmon, 1996), basketball (Shoenfelt, Snyder, Maue, 

McDowell, & Woolard, 2002), computer games (Shewokis, 2003), and throwing tasks 

(Jarus & Gutman, 2001). 

In these and the other studies described above, learners engaged in either stable or 

variable practice; several authors have proposed that learning may benefit most from a 

combination of stable and variable practice (Lai et al., 2000; Lee & Wishart, 2005; C. H. 

Shea et al., 1990; Wulf & Shea, 2002). In the earliest stages of acquiring a new task, 

stable practice schedules, where movements remain the same from trial to trial, do not 

overload learners with the cognitive processing demands associated with variable 

practice. Once movements are reliably executed with stable practice, learners are no 

longer challenged by the lower cognitive demands of stable practice. Engaging in 

variable practice after movements are reliably executed increases cognitive demands at a 

point in the learning process when learners benefit from negotiating parameter and/or 

GMP changes.  

 

Knowledge of Results Influences Learning 

Providing learners with knowledge of the results of their movements influences 

learning under both stable and variable practice schedules. It is important to note that 

knowledge of results (KR) is distinguishable from knowledge of performance (KP), which 

provides learners with information regarding the nature of their movements rather than 

focusing only on the outcome of the movement (KR) (e.g., whether a ball hit its target). 

Learners who immediately receive information about the outcome of their movements 
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(KR) after every performance trial are not required to engage in self-assessment. 

Delaying the presentation of KR and/or reducing KR frequency allows learners to 

develop their own mechanisms for error detection and self-correction, which increases 

the amount of cognitive involvement required during practice (Swinnen, Schmidt, 

Nicholson, & Shapiro, 1990).  

The optimal amount of KR for a given learner depends on the learner’s 

sophistication, the complexity of the task, and the amount of variability associated with 

practice (Guadagnoli & Lee, 2004). More skilled learners require less immediate and less 

frequent feedback than do less skilled learners, because more skilled learners benefit 

from increased cognitive demands that are engaged through self-evaluation and self-

correction. With complex tasks, more immediate or more frequent KR facilitates 

learning, whereas delayed or less frequent KR is more beneficial in learning simple tasks; 

again, learning is optimized when cognitive demands required by task complexity and 

KR frequency are balanced.  

To optimize learning, a balance must be achieved between cognitive demands 

created by practice schedule conditions and KR frequency (del Rey & Shewokis, 1993). 

Del Rey and Shewokis observed that performance under variable practice schedules was 

enhanced by less frequent KR (given after groups of ten trials), whereas performance 

under stable practice schedules was enhanced by constant KR. Learners who engage in 

variable practice are overloaded by processing KR after every trial; reducing KR 

frequency under variable practice schedules makes movements more stable (Lai & Shea, 

1998). Bandwidth KR, providing qualitative feedback that indicates success within a 

range around the performance goal, also stabilizes movements in variable practice (Lai & 

Shea, 1998; Lai et al., 2000) by directing attention toward fluid movement execution 

rather than at processing detailed feedback for each trial. 
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Immediate and constant KR enhance performance during the acquisition phase of 

learning more than does reduced KR (Anderson, Magill, & Sekiya, 2001; Schmidt, 

Young, Swinnen, & Shapiro, 1989); however, once movements are stabilized, gradually 

reducing KR across practice trials enhances learning (Guadagnoli, Dornier, & Tandy, 

1996; Winstein & Schmidt, 1990). As learners gain experience with movements, 

gradually fading KR allows them to develop self-correction and assessment abilities that 

enhance learning. If learners are provided feedback about their movements as they 

happen (i.e., feedback is concurrent with movement execution), learning during 

acquisition is impaired (Schmidt & Wulf, 1997); perhaps attending to concurrent 

feedback focuses attention on modifying movement segments as they happen and diverts 

attention away from fluid execution of the movement as a whole. 

 

Distributed Practice in Motor Learning Research 

It has been demonstrated repeatedly that learners whose practice trials are 

distributed across multiple sessions over the course of two or more days perform better 

than do learners who practice the same number of trials in one session (massed practice) 

(Dail & Christina, 2004; Donovan & Radosevich, 1999; Lee & Genovese, 1988; Lee & 

Wishart, 2005; C. H. Shea, Lai, Black, & Park, 2000). The benefits of distributed practice 

over massed practice with continuous motor tasks (i.e., balancing tasks and ski-simulator 

tasks) have been consistently observed (for meta-analyses, see Donovan & Radosevich, 

1999; Lee & Genovese, 1988). The superiority of distributed practice over massed 

practice (i.e., tasks that have a clear beginning and end, as with sequences of key presses 

and golf putting) has been less consistently observed in learning discrete motor tasks 

(Donovan & Radosevich, 1999; Lee & Wishart, 2005).  
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No well-defined theory exists in the motor learning literature that explains why 

distributed practice enhances learning more than massed practice, although several 

researchers have suggested that learning is enhanced by biological processes that occur 

during rest intervals between practice sessions (Dail & Christina, 2004; C. H. Shea et al., 

2000; Shewokis, 2003). These biological processes, termed memory consolidation, are 

neurophysical changes that occur in the brain during rest intervals between practice 

sessions (memory consolidation will be discussed in further detail in the next section of 

this review); these changes lead to enhancements in skill performance. 

Donovan & Radosevich (1999) showed that the extent to which distributed 

practice enhances learning is mediated by task complexity. In a meta-analysis of 63 

experiments that studied the effects of distributed practice on learning, they found that 

distributed practice enhances learning in tasks of lower complexity to a greater extent 

than that observed with tasks of higher complexity. The authors categorized task 

complexity in each experiment into one of four levels determined by the combination of 

physical requirements, mental requirements, and overall complexity. The four levels of 

task complexity all had having high levels of physical requirements, but varied in mental 

requirements and overall complexity. Tasks identified as low in mental requirements and 

low or average in overall complexity included motor skills such as typing, tossing a ball, 

playing video games, and learning mazes. Skills identified as low in mental requirements 

and high in overall complexity included gymnastics skills and balancing. Motor skills 

considered high in mental requirements and overall complexity included music 

performance and airplane control simulation. 

The majority of extant studies have examined distributed practice effects using 

tasks identified as having low/average mental requirements and low overall complexity 

(according to Donovan and Radosovich’s classification scheme). Most of these studies 
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show that distributed practice enhances learning more than massed practice. Two recent 

studies have clearly demonstrated distributed practice benefits using a balance task (C. H. 

Shea et al., 2000) and golf putting (Dail & Christina, 2004), both of which are high in 

overall complexity. Simmons and Duke (2006) and Rubin-Rabson (1940a) are the only 

studies I found that observed distributed practice enhancements using music performance 

tasks, which are high in mental requirements and overall complexity. 

Donovan and Radosevich (1999) also found that optimal rest interval durations 

exists for tasks of different complexities. Simpler tasks benefit from shorter rest intervals 

between practice sessions, whereas more complex tasks benefit from longer rest intervals. 

These authors suggest that the benefits of distributed practice may be mediated by the 

learners’ initial levels of skill on the task to be practiced; that question remains 

unexplored in existing literature. 

 

Motor Learning Research Summary 

As a learner begins to practice a new motor skill, a neural representation of that 

skill, a motor program, is formed in the brain. This motor program represents the fixed 

relationships between movements that comprise the skill. Generalized motor programs 

(GMPs) are representations that allow invariantly structured motor programs to be 

executed under varying performance parameters. Varied practice generates a set of rules, 

a recall schema, that facilitates the execution of the learned skill in novel contexts while 

retaining the integrity of the governing GMP. 

Practice that facilitates GMP learning is different from practice that enhances the 

development of a recall schema. GMP learning is best accomplished when practice is 

stable (i.e., skills are executed the same way from trial to trial). Recall schema 
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development is most enhanced by variable practice (i.e., skills are executed under 

performance parameters that change from trial to trial). Cognitive demands placed on 

learners during practice increase as variability from trial to trial increases. 

A large body of motor learning research done with relatively simple motor skills 

demonstrates that variable practice leads to better retention than does stable practice. 

Researchers propose that the beneficial effect of variable practice is explained by the 

heightened levels of cognitive engagement required of learners who execute movements 

under performance parameters that change from trial to trial.  

Research done with more complex motor skills shows that the benefits of variable 

practice are mediated by the complexity of the task to be learned and the skill level of the 

learner. Learning is optimized when the difficulty of a given task matches the ability of a 

given learner and when the degree of variability in practice is modified according to that 

relationship.  

 

Relevance of Motor Learning Research to This Study 

Our current understanding of how people learn motor skills is certainly 

incomplete. The complexity of the interactions among learner sophistication, practice 

variability, and practice distribution makes it difficult to obtain reliable findings that are 

generalizable among skills, learners, and contexts. All combinations of these variables 

have not been studied thoroughly; in particular, little is known about interactions between 

practice variability, practice distribution, and learners who have considerable task-related 

knowledge. 

Our understanding of the mechanisms by which distributed practice enhances 

memory formation and performance is also lacking, particularly in relation to the 
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neurocognitive changes that underlie behavioral improvements. Describing the neural 

processes that underlie memory formation has long been the focus of research in 

psychology and neuroscience (McGaugh, 2000). The results of this body of work 

describe neurological principles that obtain in massed and distributed practice contexts.  

 

HUMAN LEARNING FROM THE NEURAL PERSPECTIVE 

It has long been known that the brain is modified through experience, and 

although the mechanisms of neural plasticity have been more clearly characterized in 

recent years, the development and modification of the neural representations of complex 

behavior are not well understood. Some aspects of neural function are known; for 

example, specific locations in the cerebral cortex—the outermost layer of the brain—are 

related to specific parts of the human body both for incoming sensory information 

(afferent stimuli) and outgoing motor signals (efferent stimuli). Imaging studies have 

allowed researchers to identify areas of the brain that become active when we engage in 

specific kinds of activity.  

What is less clearly understood is how brain function is altered when learners 

actively engage in processing new sensory stimuli and when they acquire new motor 

skills. For more than a century, researchers have tried to identify how memories for 

experiences are formed and stored. Now widely accepted is the idea that forming 

memories for new skills requires structural and functional reorganization in the brain 

(Walker & Stickgold, 2006). The remainder of this review focuses on what is known 

about human learning and memory in the motor skill domain. 
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Motor Skill Acquisition Elicits Unique Patterns of Brain Activation  

As all human beings have experienced, the performance of novel movement 

sequences improves rapidly at first, after which the rates of improvement in accuracy and 

speed decrease and eventually level off (Fischer, Hallschmid, Elsner, & Born, 2002; 

Karni et al., 1998; Korman, Raz, Flash, & Karni, 2003; Walker, Brakefield, Morgan, 

Hobson, & Stickgold, 2002). Rapid, within-session improvements in performance 

comprise the fast learning stage of motor skill acquisition (Karni et al., 1998).  

As movement sequences are repeated during an initial practice session, the neural 

patterns that direct the movements change (Floyer-Lea & Matthews, 2005). The primary 

motor cortex (M1) is activated when a learner begins to practice a new finger sequence. 

As repetitions of the sequence continue, activity in M1 first decreases, but later in the 

same practice session, sequence-specific neural activity increases (Karni et al., 1995). 

This sequence-specific activation is characterized by the “unmasking” of previously 

existing neural connections. In essence, connected neurons that are not likely to fire 

together before practice begins, fire together easily as the result of continued activation as 

a sequence is repeated during practice (Karni et al., 1998; Kleim et al., 2004; Walker, 

2005). During this fast learning stage, observable improvements in motor skill 

performance, in terms of speed, accuracy, and evenness, are outward manifestations of 

neurophysical changes in the cortex. The refined pattern of neural activation that emerges 

by the end of the fast learning stage comprises a neural representation of the newly 

acquired motor skill (Walker, 2005). 

It seems commonly held that the act of learning a motor skill (e.g., improving 

performance) is synonymous with physical activity and conscious attention—that as 

learners practice, repeating skills to increase strength, fluency, automaticity, flexibility, 
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accuracy, and speed (Maynard, 2006), the brain undergoes physical changes as 

increasingly refined neural pathways are formed. Less obvious is the fact that learning 

continues after the cessation of practice, even when learners devote their attention and 

efforts elsewhere. The slow learning phase begins as the brain continues “off-line” 

processing of initially fragile neural representations for newly acquired motor skills 

without any conscious effort on the part of the learner. 

 

Neural Representations for Motor Skills are Modified Subsequent to Practice  

Consolidation is the off-line process through which motor skills and other 

procedural memories are encoded and refined, resulting in their resistance to interference 

and forgetting (McGaugh, 2000; Walker, 2005; Walker & Stickgold, 2004). Although the 

process of consolidation has yet to be fully characterized, it is currently described as a 

time-dependent process that begins during physical practice and continues after practice 

has ended (Luft & Buitrago, 2005). If the consolidation process continues unabated for 

four to six hours after the cessation of practice, new motor memories become resistant to 

interference, thus maintaining performance levels achieved during practice (Walker, 

Brakefield, Seidman et al., 2003). 

If interfering stimuli (e.g., the practice of new tasks that are similar, but not 

identical, to the tasks learned during training) are introduced within four to six hours of 

training, the consolidation process may be disrupted and learners may show decrements 

in performance during subsequent testing (Brashers-Krug, Shadmehr, & Bizzi, 1996; 

Shadmehr & Brashers-Krug, 1997; Walker, Brakefield, Hobson, & Stickgold, 2003). 

Memory consolidation may also be interfered with if learners experience cerebral trauma 

(McGaugh, 2000), if the electrical activity of specific brain areas is altered (Muellbacher 
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et al., 2002; Robertson, Press, & Pascual-Leone, 2005), or if learners take drugs that alter 

neural function (Donchin, Sawaki, Madupu, Cohen, & Shadmehr, 2002). 

A sufficient amount of practice during acquisition is required to trigger 

consolidation processes; learners must achieve a degree of performance success and 

complete a sufficient number of repetitions in practice for memories to be encoded and 

refined (Hauptmann & Karni, 2002; Hauptmann, Reinhart, Brandt, & Karni, 2005; Karni 

et al., 1998; Walker, 2005). The initial, rapid improvements often observed during the 

acquisition phase of learning must level off before practice ends in order to trigger 

consolidation processes. At the point when performance improvements become more 

incremental, a relatively clear neural representation of the skill has formed; that 

representation is then “tagged” for processing that continues after practice has ended 

(Walker, 2005). 

Consolidation processes that begin subsequent to practice occur in two distinct 

phases (Walker, 2005). Consolidation-based stabilization begins at or near the end of 

skill acquisition and is completed four to six hours later. During this time, learners are 

awake and engaged in other activities. Studies of motor skill learning in humans have 

shown that levels of performance accuracy and speed attained by the end of an initial 

training session are sustained during subsequent time awake (Hotermans, Peigneux, 

Maertens de Noordhout, Moonen, & Maquet, 2006; Robertson, Pascual-Leone, & Miall, 

2004; Robertson, Pascual-Leone, & Press, 2004; Walker, Brakefield, Hobson et al., 2003; 

Walker et al., 2002; Walker, Brakefield, Seidman et al., 2003). Two studies reported 

enhancements in performance speed following consolidation that occurred during time 

awake (Fischer et al., 2002; Walker, Brakefield, Seidman et al., 2003); however, neither 

study reported similar observations in performance accuracy. These inconsistencies in 

observations of speed enhancements are not discussed in the literature. Current theory 
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proposes that wake-based consolidation is characterized by intermittent occurrences of 

task-related neural activity that persist beyond practice, by early protein synthesis in the 

brain, and by the potentiation of freshly unmasked neural connections (Peigneux et al., 

2006).  

Consolidation-based enhancement begins sometime after the onset of 

consolidation-based stabilization, and, in most procedural skills, is dependent on the 

biological processes of sleep. During the enhancement phase of consolidation, neural 

representations are modified in the absence of additional practice in ways that facilitate 

improvement in skill execution; in other words, sleep enhances motor skill performance. 

Processes of consolidation that include sleep have been shown to significantly enhance a 

variety of procedural skills, including motor skills (Brashers-Krug et al., 1996; Duke & 

Davis, 2006; Fischer et al., 2002; Fischer, Nitschke, Melchert, Erdmann, & Born, 2005; 

Hotermans et al., 2006; Karni et al., 1998; Korman et al., 2003; Kuriyama, Stickgold, & 

Walker, 2004; Maquet, Laureys et al., 2003; Mednick, Nakayama, & Stickgold, 2003; 

Robertson et al., 2005; Vertes & Eastman, 2000; Walker, Brakefield, Hobson et al., 2003; 

Walker, Brakefield, Seidman et al., 2003), serial reaction time (Robertson, Pascual-

Leone, & Press, 2004), auditory discrimination skills (Atienza & Cantero, 2001; Atienza, 

Cantero, & Dominguez-Marin, 2002; Atienza, Cantero, & Stickgold, 2004), visual 

discrimination skills (Karni, Tanne, Rubenstien, & Askenasy, 1994; Maquet, Schwartz, 

Passingham, & Frith, 2003; Mednick et al., 2002; Mednick et al., 2003; Stickgold, James, 

& Hobson, 2000), and verbal discrimination skills (Fenn, Nusbaum, & Margoliash, 

2003). The results of this research reveal performance enhancements subsequent to sleep, 

but no enhancements following consolidation intervals that do not include sleep (Fischer 

et al., 2002; Walker, Brakefield, Hobson et al., 2003). Careful controls have excluded the 
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possibility of performance differences due to circadian influences (i.e., the times of day 

of training and retesting) (Fischer et al., 2002). 

Current theory suggests that processes that occur during sleep are responsible for 

modifying neural networks in ways that enhance performance following sleep (Benington 

& Frank, 2003). Some neural networks active during the acquisition phase of learning are 

no longer necessary for optimal performance of a newly learned skill at subsequent retest. 

During sleep, those neural networks are disengaged (Fischer et al., 2005), yielding a 

modified and more refined neural representation of the skill. Sleep studies have 

demonstrated that patterns of brain activity active during new task learning are again 

active during sleep, as if the brain is “replaying” significant events of the day (Walker & 

Stickgold, 2006). More invasive work done with cats has clearly demonstrated that 

modifications of neural connections occur during sleep (Frank, Issa, & Stryker, 2001). 

Sleep-based consolidation allows motor skills to be performed more quickly, accurately, 

and more automatically as a result of a large-scale reorganization of neural 

representations across several brain areas (Walker & Stickgold, 2006). 

It has long been known that there are two broad classifications of human sleep, 

REM (rapid eye movement) sleep and NREM (non-rapid eye movement) sleep, the latter 

of which is separated into four distinct stages. Each type and stage of sleep is 

characterized by distinct patterns of electrical and neurochemical activity in the brain. As 

humans sleep, they cycle through these types of sleep approximately every 90 minutes. 

Researchers propose that each phase of a sleep cycle may contribute to memory 

formation and encoding in a unique way, although these contributions have yet to be 

clearly identified (Walker, 2005).  

The fact that memories are encoded and transformed after acquisition is clearly 

demonstrated by neural imaging studies that demonstrate that brain activation during skill 
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acquisition is different from patterns of brain activation during skill recall (Fischer et al., 

2005; Karni et al., 1995; Karni et al., 1998; Muellbacher et al., 2002; Pascual-Leone, 

Dang, Cohen, Brasil-Neto, & et al., 1995; Penhune & Doyon, 2002; Shadmehr & 

Holcomb, 1997; Walker & Stickgold, 2006). Cortico-cerebellar networks are actively 

engaged when learners first practice a new motor skill. During recall of that skill, cortico-

cerebellar activation is replaced with cortico-striatal activation. The interactions between 

cortico-cerebellar and cortico-striatal networks begin in the hours subsequent to practice. 

Bursts of task-related neural activity persist during this time as motor memories begin to 

shift to other areas of the brain (Peigneux et al., 2006). When a task is recalled, brain 

areas known to represent conscious regulation and self-monitoring of movements are not 

active to the extent they were during acquisition (Fischer et al., 2005). Quite literally, 

memories for new skills shift to different areas of the brain during time awake and during 

sleep.  

Studies of motor skill learning that examine variables associated with sleep-based 

memory consolidation offer interesting insight into this phenomenon. It is important to 

note that in studies of memory consolidation, learners typically engage in self-regulated 

practice of quite simple motor skills (i.e., participants select and adjust performance 

parameters at will). Results described in the following paragraphs were obtained using 

research paradigms quite different from those used in the motor learning literature 

described previously, where learners engaged in systematically controlled practice. 

Learning is impaired if sleep is deprived the night before acquisition of new 

motor skills (Walker & Stickgold, 2006). When learners do not sleep before they practice 

a new skill for the first time, memory encoding during acquisition is impaired. If sleep is 

deprived the night immediately following acquisition, learners do not demonstrate 

performance enhancements (Maquet, Laureys et al., 2003). When sleep is deprived the 
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first night following acquisition and recovery sleep occurs the second night, learners who 

were deprived on the first night do not demonstrate the same extent of performance 

enhancement as learners who slept the first night post-training (Fischer et al., 2005). 

Patterns of neural activation between sleep-deprived and non-deprived participants differ 

(Maquet, Peigneux et al., 2003).  

Motor skill performance is enhanced most when sleep occurs during the night 

immediately subsequent to acquisition. Consolidation that occurs during additional nights 

of sleep beyond that first night continue to enhance performance, but to a lesser degree 

(Duke & Davis, 2006; Walker, Brakefield, Seidman et al., 2003).  

Consolidation-based enhancements are specific to practiced tasks and do not 

transfer to similar tasks performed with the same hand or to identical tasks performed 

with the contralateral hand (Fischer et al., 2002; Karni et al., 1998). This lack of transfer 

illustrates that neural representations for individual motor skills are uniquely stored in the 

brain (Karni et al., 1995).  

Increasing the amount of practice during acquisition does not yield differences in 

the extent that sleep-based consolidation enhances performance when skills are recalled 

(Savion-Lemieux & Penhune, 2005; Walker, Brakefield, Seidman et al., 2003), and the 

extent to which consolidation enhances motor skills is not related to the extent to which 

skills improve during acquisition (Walker, Brakefield, Seidman et al., 2003). Sleep-

dependent memory consolidation enhances performance of more complex finger skills to 

an even greater degree than it does less complex finger skills (Kuriyama et al., 2004). 

In addition to observing sleep-based consolidation enhancements in motor skill 

performance, Hotermans et al. (2006) observed that participants who recalled a finger 

sequence after a brief rest period (5 and 30 minutes) demonstrated enhancements in 

performance. That boost in performance was temporary, though, disappearing after four 
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hours of wakefulness. The authors also observed that the temporary performance boost 

observed after brief rest intervals was similar in extent to the performance enhancements 

observed when the skill was recalled following sleep-based consolidation. Similarly, 

Davis (2007) observed enhancements in performance following 5-minute rest periods that 

were inserted into an initial practice session, regardless of whether the rest period was 

inserted early in initial the practice session or later in those sessions. The biological 

mechanisms that may serve to elicit boosts in performance have yet to be identified.  

 

Neural Changes During the Slow Learning Phase 

Sleep-dependent memory consolidation has been demonstrated in humans, non-

human primates, cats, rats, mice, and zebra finch (Walker & Stickgold, 2006). Non-

human studies of memory consolidation and development offer more detailed 

information about the neural processes that underlie memory formation, as this research 

is typically more invasive than that conducted with human participants. These studies 

more completely describe neural processes that occur during the slow learning phase of 

motor skill development. Slow learning begins following acquisition, and continues as 

learners engage in practice of a skill over an extended period of time. This phase of motor 

learning is characterized by incremental performance gains that occur across many 

practice sessions. Neural activity that underlies these changes is characteristically 

different than activity observed during skill acquisition.  

Studies of complex motor learning with rats demonstrate that extensive motor 

skill training over many days induces synaptogenesis and motor map reorganization 

within the motor cortex (Kleim et al., 2004); synaptogenesis and motor map 

reorganization are not present during the fast learning stage when skills are acquired. 
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Protein synthesis begins during acquisition and continues for hours and days afterward. 

Protein synthesis initiates the formation of new synapses between existing neurons. 

Neural representations for skills become more extensive as more synapses form between 

neurons. Synaptogenesis and motor map reorganization are distinct neural processes 

unique to the slow learning phase. It is interesting to note that rapid gains in performance 

do not occur simultaneously with extensive changes in neural activity; rather, those large 

gains in performance during the fast learning stage initiate neural processes that change 

the functional and structural organization of the brain over time.   

Imaging studies with humans also illustrate that neural representations for motor 

skills continue to change over the course of slow learning (Floyer-Lea & Matthews, 

2005; Karni et al., 1995; Karni et al., 1998). Karni et al. (1995) provided evidence of a 

gradual evolution of the representation of a learned finger sequence that occurred with 

extended practice over the course of many weeks. The result of slow learning was an 

expanded neural representation for the sequence in primary motor cortex. The area of 

neural activation elicited by performance was enlarged compared to initial activation, 

with a more extensive network of neurons in M1 recruited to represent the learned task. 

Activation patterns that occur during fast learning are movement-specific, whereas 

activation patterns that occur during slow learning indicate increased bihemispheric 

activity in both motor and somatosensory networks (Floyer-Lea & Matthews, 2005). 

These differences in activation support the idea that neural networks are plastic and are 

modified through experience.  
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Memory Consolidation Research Summary 

It is now widely accepted that neural networks in the brain are modified through 

experience. Put simply, forming memories for new skills requires structural and 

functional reorganization in the brain.  

Performance of a new skill improves rapidly in the initial stages of practice. 

Those performance improvements are the result of changes in brain activation elicited by 

repeated execution of the skill. The rate of performance improvement begins to level off 

during initial practice as a distinct neural representation for the practiced skill is formed. 

Memory consolidation is triggered during practice and continues after practice has ended; 

this process modifies the neural representation, or memory, for the new skill in ways that 

affect performance when skills are recalled.  

Memory consolidation occurs in two stages. The first stage, consolidation-based 

stabilization, makes new memories resistant to interference and sustains levels of 

performance achieved by the end of initial practice. Consolidation that occurs during this 

phase happens during waking hours and continues for 4-6 hours after the end of practice. 

The second phase, consolidation-based enhancement, modifies memories in ways that 

enhance performance when skills are recalled. This phase of consolidation most often 

relies on neural processes that occur during sleep. 

 

Relevance of Memory Consolidation Research To This Study 

The research on procedural memory to date has examined consolidation effects 

with relatively simple motor skills (i.e., skills that comprise limited movement parameters 

and degrees of freedom) learned by participants who had had little previous practice with 
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the experimental tasks prior to training. It is unknown whether the observable effects of 

sleep-based consolidation are limited to inexperienced learners or whether these effects 

are robust and observable in more experienced participants performing more complex 

and familiar skills.  

Studies that examine memory consolidation effects have yet to manipulate 

practice in a systematic way, as have researchers who study human movement and motor 

control. Participants in studies of memory consolidation typically perform skills as 

quickly and accurately as possible. Learning skills at rates that are regulated externally  

(i.e., under stable and variable practice schedules) may affect memory consolidation 

processes in ways that have not yet been observed. Does the time course of memory 

consolidation change when learners acquire new skills under practice schedules that 

require different levels of motor control?  

 

SUMMARY 

Motor skill performance in music depends heavily on practice, yet there is a 

paucity of empirical research in music that addresses how the content of practice directly 

affects a musicians’ ability to recall performance skills. Research that examines the 

practice of professional and near-professional musicians has shown that professional 

musicians use effective practice strategies that facilitate the achievement of short term 

goals within each practice session and long term goals related to performing beautifully 

and fluidly on stage. The decisions they make about technique occur early in the learning 

process and are repeated consistently as practice continues so that the motor skills they 

use to execute passages of music are well remembered. Professional and near-
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professional musicians engage metacognitive skills to monitor and adjust practice 

strategies as needed to achieve their long term goals.  

Extant research in music does not yet explain how the content of practice affects 

memory and skill development in music performance. Some practice strategies that have 

been identified as effective means of facilitating memory and skill development in other 

disciplines (e.g., distributing practice over time, systematically varying the way a skill is 

executed during practice) have not been explored thoroughly by music researchers.  

Researchers who study human movement and motor control have shown that the 

development of motor memory and performance skills depends on complex interactions 

between the sophistication of learners, the complexity of the skills they acquire, and the 

cognitive requirements that different practice schedules impose. As learners become 

increasingly sophisticated, they are able to acquire increasingly complex skills and 

negotiate the higher cognitive demands required by variable practice. It remains to be 

seen how task-related knowledge and experience with specific motor skills mediate the 

complex relationships that exist between learner sophistication, task complexity, and 

practice variability.  

Memory consolidation research indicates that memory and skill development 

continue to change after physical practice has ended. Consolidation that occurs during 

time awake renders memories resistant to interference and maintains performance levels 

achieved during acquisition, and consolidation that occurs during sleep may enhance 

performance beyond that achieved during acquisition. Memory formation and 

consolidation have been studied using motor skills more simple in nature than music 

performance skills; those studies have demonstrated consolidation effects only with 

learners who had no previous experience with the experimental task. Simmons and Duke 

(2006) were the first to observe consolidation effects with experienced learners.  
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The study reported here was designed to draw upon the principles of human 

learning demonstrated in other disciplines and to apply them in the context of music 

learning. Testing the effects of memory consolidation and practice variability in the 

context of music performance offers new information about cognitive processes that 

underlie complex motor task performance and contributes to our understanding of human 

learning. 
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Chapter III:  Method 

Findings in neuroscience suggest that wake-based consolidation, a process of 

memory formation that begins during active practice and continues during waking hours 

subsequent to the cessation of practice, renders procedural memories resistant to 

interference and forgetting. Skills levels obtained by the end of active practice are 

typically maintained following wake-based consolidation. Sleep-based consolidation, 

which may occur during daytime naps or overnight sleep, has been shown to enhance 

procedural memories, resulting in improved performance following sleep, even absent 

further practice (Fischer, Hallschmid, Elsner, & Born, 2002; Walker, Brakefield, Hobson, 

& Stickgold, 2003; Walker, Brakefield, Morgan, Hobson, & Stickgold, 2002; Walker, 

Brakefield, Seidman et al., 2003). These effects have been demonstrated repeatedly in the 

performance of simple motor tasks, in which participants perform brief manual sequences 

“as quickly and accurately as possible.” In these experiments, participants selected and 

adjusted their performance speed at will, with their judgments presumably based on 

balancing speed and accuracy. 

In attempting to characterize the nature of the cognitive organization of motor 

skill memory, researchers in kinesiology have adopted a somewhat different approach to 

the study of motor learning. Participants typically practice prescribed performance tasks 

under highly structured conditions that include systematically varied performance 

parameters. The findings of this research, done primarily with simple motor tasks, 

demonstrate quite consistently that learners who engage in variable practice demonstrate 
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better performance when tasks are recalled than do learners who engage in stable 

practice.  

The effects of practice variability on performance have been investigated in 

numerous physical, perceptual, and cognitive skills, ranging from highly contrived 

movements (e.g., pursuit rotor tasks) to more common behaviors (e.g., batting in 

baseball). Participants in these studies engaged in structured practice of assigned motor 

tasks during which investigators systematically varied performance parameters. It is 

important to note that in much of this research, retests occurred 24 hours after acquisition. 

In other words, the time between acquisition and recall included sleep-based memory 

consolidation. 

Studies in neuroscience that examine the effects of memory consolidation on 

learning have yet to manipulate practice in a systematic way. In all studies conducted to 

date, learners’ practice speeds were self-regulated. Studies in motor learning that examine 

the effects of practice variability on learning have yet to examine how memories for 

newly acquired skills are changed during the waking hours immediately subsequent to 

practice. Whether the time course of memory consolidation is modified for skills learned 

under systematically controlled conditions remains unknown. 

Motor skill performance in music depends heavily on the ability to retain 

improvements achieved during active practice in subsequent practice sessions and, 

ultimately, in performance. Examining the effects of distributing practice across hours 

and days (to allow time for wake- and sleep-based memory consolidation) and 

systematically varying the way motor skills are executed during practice offers new 
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information about cognitive processes that underlie procedural learning. There is as yet 

no clear understanding of the relationship between practice variability and the processes 

of memory consolidation.  

PARTICIPANTS 

 
Participants (N = 92) were music majors at The University of Texas at Austin (n = 

50 males). All were right-handed, between 18 and 40 years of age, and had no 

neurological, psychiatric, or sleep-disorder histories. All reported no extensive training or 

experience on the piano beyond a maximum of five semesters of undergraduate group 

piano instruction.  

Three experiments were designed to examine the effects of memory consolidation 

and practice variability on the retention of a motor sequence. I created nine experimental 

conditions by pairing each of three practice schedules (self-regulated, stable, and variable 

practice) with each of three inter-session interval conditions (5 minutes, 6 hours, and 24 

hours; see Table 1). Conditions were assigned randomly to 92 participants, with 

approximately 10 participants in each condition; exceptions were made to accommodate 

participants’ schedules in approximately 10 cases. 

All participants learned a 9-note sequence on a digital piano, which they practiced 

in three, 15-20 minute sessions. Each practice session consisted of three blocks of 15 

performance trials. Each block was separated by 30 seconds of rest. Each performance 

trial was followed by 3 seconds of silence and the subsequent presentation of an auditory 

and visual cue for the next performance trial to begin. At the conclusion of each session, 
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participants completed a post-test that consisted of five additional performance trials in 

which participants were instructed to perform “as quickly, accurately, and evenly as 

possible.” The three sessions were separated by three different time intervals to assess 

possible effects of sleep- and wake-based memory consolidation. For approximately one 

third of the participants, the three sessions were separated by 5 minutes of rest (massed 

practice); for another third, sessions were separated by 6 hours (wake-based 

consolidation); and for the remaining participants, sessions were separated by 24 hours 

(wake- and sleep-based consolidation).  

Participants learned under one of three practice conditions. Approximately one 

third of the participants practiced the sequence at self-regulated speeds, with the goal of 

playing “as quickly, accurately, and evenly as possible”; another third practiced at each 

of three tempo designations (M.M. = 52, 72, and 92; equivalent to 208, 288, and 368 key 

presses per minute and 2308, 1667, and 1304 ms, respectively) with one tempo practiced 

in each 15-trial block (stable practice); the remaining third practiced at the same three 

tempos, but the tempo varied from trial to trial within each block in a quasi-random 

arrangement (variable practice). Following each session, all participants performed 5 

trials “as quickly, accurately, and evenly as possible.” 



 62 

Table 1:  Practice and Inter-Session Interval Condition Assignments. 

Practice Condition Session 
Inter-Session 

Interval Session 
Inter-Session 

Interval Session 

Experiment 1  
Self-regulated Practice 1 5 minutes 2 5 minutes 3 

  6 hours  6 hours  

  24 hours  24 hours  

Experiment 2 
Stable Practice 1 5 minutes 2 5 minutes 3 

  6 hours  6 hours  

  24 hours  24 hours  

Experiment 3 
Variable Practice 1 5 minutes 2 5 minutes 3 

  6 hours  6 hours  

  24 hours  24 hours  
 

Note: 24-hr intervals include overnight sleep. 
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So as not to introduce tempo variations before performance of the task stabilized, 

all participants in the stable and variable practice experiments performed all 15 trials in 

the first block of Session One at M. M. = 52. This facilitated acquisition of this complex 

motor skill prior to introducing changes in speed (Lai, Shea, Wulf, & Wright, 2000). 

Following the first block of practice in the training session, participants in the stable 

practice experiment negotiated changing tempo parameters with each new practice block, 

and participants in the variable practice experiment negotiated changing tempo 

parameters with each performance trial for the remaining blocks of practice in the three 

sessions (see Appendix A).  

Participation in this study was voluntary. Prior to the first session, I asked all 

participants to abstain from engaging in behaviors that are known to diminish cognitive 

function and motor performance. Participants agreed to avoid drinking alcoholic and 

caffeinated beverages and to avoid using other mind-altering drugs for 12 hours prior to 

and for the duration of their participation in the study. Participants whose practice 

sessions were separated by 6 hours agreed to avoid napping between sessions, and 

participants whose sessions were separated by 24 hours agreed to sleep at night between 

sessions.  

Participants were able to complete the three practice sessions in one hour or less. 

Upon completion of the study, participants received $12 compensation. Prior to the 

beginning of the first session, all participants signed a consent form that noted approval 

by The University of Texas at Austin Institutional Review Board. 
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SETTING 

 
I made individual appointments with every participant. Participants either met 

with me or with one of two other graduate students who served as test proctors. All 

meetings were conducted in a small, quiet, windowless room in the music building at The 

University of Texas at Austin. The room was chosen to prevent extraneous sounds and 

movement from distracting participants.  

I used the Midiman USB Midisport 2x2 MIDI Interface to connect a Macintosh 

12" PowerBook G4 computer (model number A1010) to a Roland KR-4700 Digital Piano 

for data collection. Participants completed all practice sessions on the Roland piano. The 

sequence, target tempos, and feedback were presented to participants on the laptop 

computer using Max/MSP software; the computer was located on top of the keyboard 

where sheet music is typically positioned. The software also recorded MIDI performance 

data from each session.  

The sound of a metronome and the sound of participants’ performance were heard 

through the computer. Participants listened to all electronic cues (sound of the 

metronome, the sound of the piano during every performance trial, and a bell-like tone 

that sounded during the post-test) through Bose QuietComfort Headphones (model 

number QC-2). The test proctor listened through a second set of headphones.
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PROCEDURES FOR DATA COLLECTION 

 
Participants signed an official consent form approved by The University of Texas 

at Austin Institutional Review Board at our first meeting (see Appendix B). Before they 

began each practice session, they rated their feeling of alertness using the Stanford 

Sleepiness Scale (Hoddes, Dement, & Zarcone, 1972) and answered questions about their 

music backgrounds. The test proctor also recorded the following information: name, 

gender, handedness, reports of compliance with study criteria (e.g., no consumption of 

caffeine, alcohol, drugs), and reports of sleep time for the previous night (see Appendix 

C).  

Participants’ task was to learn a 9-note sequence on the digital piano with their 

left (non-dominant) hand (see Figure 1) and to practice this same sequence for the 

duration of the three practice sessions. Each practice session consisted of three blocks of 

15 performance trials; each block was separated by 30 seconds of rest; and each 

performance trial was separated by 3 seconds of silence. Following each session, all 

participants were instructed to perform 5 trials “as quickly, accurately, and evenly as 

possible.” 

Before the first session began, the test proctor oriented participants to the visual 

presentation on the computer screen and read the following instructions: 

You will learn a short sequence of notes on this keyboard. You will play the 
sequence with your left hand and will use the fingerings written under the staff.  

 



 66 

Participants then played through the sequence one time as slowly as needed to play the 

correct notes with the correct fingerings.  If the participant struggled to do this initially, 

feedback was offered and repetitions were allowed until one correct execution of the 

sequence was achieved.  During this time, participants were free to ask questions about 

the procedure and the sequence. The remaining instructions to the self-regulated practice 

learners (Experiment 1) were as follows:   

The sequence and fingering indications will be displayed continuously on the 
computer screen. Your goal is to play the sequence as quickly, accurately, and 
evenly as possible. You will hear a ding and see the word “ready” appear on the 
computer screen above the sequence. This indicates that the computer is ready to 
record your performance. You may then start playing when you are ready. When 
you finish playing the sequence, please wait for the word “ready” to appear and 
for the auditory cue to sound before beginning your next trial.  

The dots that you see above the staff correspond to each note. They will light up 
from left to right with each note you play on the keyboard. The lights will be 
illuminated regardless of whether you play the correct pitch; they are only there to 
help you keep track of where you are in the sequence. The computer will only 
record the first 9 notes that you play, so it is important that you not start over 
again or try to replay a note that you might miss. Do your best to play the melody 
from beginning to end each time without stopping. Do not practice specific parts 
out of context or vary the rhythm pattern; in other words, play it just as written. 

 
The remaining instructions to stable practice learners (Experiment 2) and variable 

practice learners (Experiment 3) were as follows: 

The sequence and fingering indications will be displayed continuously on the 
computer screen. The computer will also display a target tempo for each 
performance trial. Your goal is to play the sequence at the target tempo as 
accurately and evenly as possible. A metronome will sound quarter notes at the 
target tempo, indicating that the computer is ready to record your performance. 
After the metronome begins, you may start playing when you are ready. When 
you play the first note of the sequence, the metronome will stop sounding. When 
you have completed each trial, the computer will display the actual tempo of your 
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performance in the box immediately below the target tempo. Your goal is to 
match your performance tempo with the target tempo, and play as accurately and 
evenly as you can. This feedback will be displayed for a few seconds, and will 
disappear when the target tempo for the next performance trial is presented and 
the metronome begins to sound. Listen to the metronome long enough to orient 
yourself to the tempo and begin to play when you are ready.  

The dots that you see above the staff correspond to each note. They will light up 
from left to right with each note you play on the keyboard. The lights are there to 
help you keep track of where you are in the sequence. The lights above each note 
will be illuminated regardless of whether you play the correct pitch. The computer 
will only record the first 9 notes that you play, so do your best to play the melody 
from beginning to end each time without stopping; do not practice specific parts 
out of context. Do not vary the rhythm pattern; in other words, play it just as 
written. 

 

Before data collection began, participants performed two test trials with the 

computer program so they could orient themselves to the way the program worked. 

Participants in the stable and variable practice experiments were told that they would 

practice the sequence at three different tempos. Stable practice learners were told that the 

tempo would change after each set of 15 trials. Variable practice learners were told that 

after the first practice block of training the tempo would change for each trial in random 

order.   

At the end of Sessions 1 and 2, participants in the 5-minute rest interval groups 

were given a break, during which practice was prohibited. Participants either sat and 

made general conversation with me, got up to stretch their legs, or excused themselves 

for a restroom break. Participants in the 6-hour rest interval groups were reminded to 

avoid napping, to abstain from drinking caffeinated or alcoholic beverages and from 

using other mind-altering substances, and to refrain from practicing the sequence between 

sessions. Participants in the 24-hour rest interval groups were reminded to abstain from 

drinking caffeinated or alcoholic beverages and from using other mind-altering 
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substances, to refrain from practicing the sequence between sessions, and to note how 

long they slept that night.  

Figure 1: The 9-note sequence participants practiced in all three experiments. The 
numbers below the staff indicate the finger used to play each note. 

In Experiment 1 (self-regulated practice), Sessions 2 and 3 were conducted in the 

same manner as Session 1. In Experiments 2 (stable practice) and 3 (variable practice), 

there was a slight difference in the way sessions were conducted. The first block of 

practice (15 trials) in Session 1 occurred at M.M. = 52 for both stable and variable 

practice participants. In blocks 2 and 3 of Session 1, participants in the stable practice 

condition performed the sequence at M.M. = 72 and 92, and participants in the variable 

practice condition negotiated the quasi-random presentation of trials at all three tempos. 

In Sessions 2 and 3, stable and variable practice participants performed an equal number 

of trials at each pre-designated tempo that were presented according to practice 

conditions previously described (see Appendix A). 

 

COMPUTER PROGRAM 

A computer programmer at The University of Texas at Austin wrote a program 

specifically for the purposes of this investigation using Max/MSP software. The program 

was set up to display the sequence (all groups) and target tempos (for stable and variable 
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practice conditions), to run the protocol for each experimental condition, to provide 

feedback to participants (performance speed for self-regulated conditions and tempo 

accuracy for stable and variable conditions), and to collect MIDI performance data.  

The computer continuously displayed the sequence in music notation for all nine 

groups. Also displayed were dots that appeared above each note on the staff. The dots 

illuminated in red from left to right with each keypress to help participants keep track of 

where they were in the sequence as they practiced. The lights above each note were 

illuminated regardless of whether the correct pitch was played. The computer stopped 

recording on each trial after the first nine notes were played.  

For self-regulated practice learners (Experiment 1), each performance trial was 

initiated by the appearance of the word “Ready” above the staff and the sound of a bell-

like tone. Each trial was followed by three seconds of silence, then the word “Ready” 

appeared and the tone sounded to prompt participants for the next trial.    

For stable and variable practice learners (Experiments 2 and 3), the computer 

display also included a numeric indication of the target tempo designated for each 

performance trial. The sound of a metronome at the target tempo initiated each 

performance. Three seconds of silence followed each trial. During that time, the 

computer displayed feedback about the actual tempo of participants’ performance (in 

terms of a metronome marking) underneath the numeric display of the target tempo. After 

three seconds, the target tempo for the next trial was displayed and the metronome clicks 

began at the target tempo.  



 70 

Figure 2: Computer screen viewed by self-regulated participants. 
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Figure 3: Computer screen viewed by stable and variable practice participants. 

 

The software recorded MIDI (Musical Instrument Digital Interface) data during 

all three sessions. Data for the following variables were analyzed in Experiment 1 (self-

regulated practice): accuracy, defined as the number of keypress errors per sequence, and 

speed, defined as the time elapsed between first and last key presses in each sequence 

(expressed in milliseconds). Data for the following variables were analyzed in 

Experiments 2 and 3 (stable and variable practice): accuracy, defined as the number of 

keypress errors per sequence, and tempo accuracy, defined as the difference between the 

predetermined target duration of each sequence and the actual duration of each sequence 

(expressed in milliseconds). The software recorded data for individual trials and 

calculated block and session means for each variable.  
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The software had two reset features. If participants got a false start on a trial, the 

proctor was able to reset that trial and have the participant start again. The criterion for a 

false start was that participants stopped playing altogether after playing no more than two 

notes, regardless of note accuracy. Trials were typically reset for false starts one or two 

times in any given session for about half of the participants. In only a few cases were 

several trials reset for false starts; even in these situations, though, the number of resets 

did not exceed 10 across all three sessions (135 total trials).  

In cases where a given trial was markedly different from all other trials, the 

proctor was able to remove the data for that trial from calculations of block and session 

means. The criteria for this reset function were fairly subjective. After the first block of 

Session 1, most participants established levels of note accuracy, tempo accuracy, and 

performance speed that did not vary greatly from trial to trial. In other words, 

participants’ trial-to-trial performances were relatively consistent, with gradual 

improvements in performance occurring over time. In rare instances, a participant would 

perform a trial that was clearly aberrant, perhaps due to lack of concentration, readiness, 

or fatigue. This reset function was used one or two times for very few participants across 

all three sessions. The proctors’ handwritten notes were used to generate the preceding 

information on reset function use. 

In situations where two keys were pressed within 50 milliseconds of each other 

(i.e., when a participant played two notes at virtually the same time; “finger misfires”), 

only the second of the two notes was recorded. If the second note was indeed the next 

note in the sequence, no error was recorded. If it was not, one error was recorded. For 

most participants, finger misfires occurred quite infrequently, if ever. Finger misfires 

were a common occurrence for only two participants. 
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The method used in this investigation was inspired by and modeled after several 

studies of procedural learning that describe significant enhancements in performance that 

were observed when newly acquired skills were recalled, absent additional practice 

following skill acquisition (Duke & Davis, 2006; Shea, Lai, Black, & Park, 2000; 

Simmons & Duke, 2006; Walker, Brakefield, Hobson et al., 2003). The premise of this 

study was to draw together the principles of human learning these studies describe to 

better inform our understanding of how memories for newly acquired skills change over 

time and how performance is most efficiently improved over time and across practice. 
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Chapter IV:  Results 

The refinement of skill performance in music requires that learners improve 

performance during practice and retain improvements over time. This study was designed 

to test distribution of practice and practice variability, principles of human learning that 

have been scarcely addressed in music research, though they have been studied more 

thoroughly in other domains. Testing these effects in music performance offers new 

information about cognitive processes that underlie procedural learning in the context of 

complex motor task performance.  

Three experiments were conducted to address the following research questions:   

1. Experiment 1: To what extent are complex motor skills affected by wake- and 

sleep-based consolidation processes in learners with extensive task-related 

knowledge and moderate levels of task-related skill?    

2. Experiment 2: To what extent are consolidation-based enhancements affected by 

stable practice procedures, in which the speeds of learners’ practice trials are 

externally regulated and practiced in a sequence that includes minimal variation in 

the way skills are executed from trial to trial?   

3. Experiment 3: To what extent are consolidation-based enhancements affected by 

variable practice procedures, in which the speed of learners’ practice trials are 

externally regulated and practiced in a sequence that includes maximum variation 

in the way skills are executed from trial to trial?   

 

EXPERIMENT 1:  SELF-REGULATED PRACTICE AND MEMORY CONSOLIDATION 

The results I obtained in this experiment are consistent with the findings of many 

studies in which novice learners practiced more limited tasks unrelated to music 
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performance, and to the findings reported in Simmons and Duke (2006), in which 

musicians practiced a keyboard melody. In short, I observed that memory consolidation 

enhanced note accuracy in the performances of participants who slept between Sessions 1 

and 2. All three groups demonstrated enhanced performance speed in Session 2, and the 

6-hour and 24-hour groups continued to demonstrate speed enhancements in Session 3. A 

more complete description of my results follows.  

 

Self-reports of Sleep and Alertness   

There were no differences between groups in the amount of sleep participants 

reported for the night before Session 1, F(2, 24) = .479, p > .625. There were no 

significant correlations between reported sleep and note accuracy:  Session 1, r = -.186, p 

> .352; Session 2, r = -.582, p > .078; Session 3, r = .119, p > .743. There were also no 

significant correlations between reports of sleep and speed: Session 1, r = -.372, p > .056; 

Session 2, r = -.217, p > .548; Session 3, r = -.291, p > .414.  

I compared participants’ reports of alertness on the Stanford Sleepiness Scale 

given at the beginning of each session with corresponding note accuracy and speed data. 

There were no significant correlations between reports of alertness and note accuracy 

data:  Session 1, r = -.104, p > .590; Session 2, r = -.195, p > .411; Session 3, r = .064, p 

> .790. Similar results were observed between reports of alertness and speed data: 

Session 1, r = -.266, p > .163; Session 2, r = -.337, p > .146; Session 3, r = -.274, p > 

.242. These results suggest that the extent to which participants felt alert had no 

consistent effect on their performance.  
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Excluded Data 

A descriptive analysis by group identified two participants as outliers in at least 

one group session mean. These two participants (one from the 5-minute group and one 

from the 6-hour group) were also outliers in terms of block means; their performance in 

at least 2 blocks was in excess of two standard deviations away from group block means. 

Based on these criteria their data were excluded, leaving 29 participants in the analysis 

for the self-regulated learners (5-minute group, n = 9; 6-hour group, n = 10; 24-hour 

group, n = 10). 

There were problems with the five post-session trials for all of the participants 

that preclude a meaningful analysis. The data from these trials will not be discussed 

further. 

 

Note Accuracy 

Means for 5-minute, 6-hour, and 24-hour groups are presented in Figure 4. I 

compared the note accuracy in participants’ performances within each intersession-

interval condition using one-way, repeated measures ANOVAs and post hoc one-tailed t-

tests with appropriate Bonferroni corrections.  

There were no significant differences among the three note accuracy session 

means for the 5-minute group, F(2, 16) = 0.96, p > .405. It should be noted that the error 

rate in this group in the first practice session was near zero, much lower than that of the 

other two groups. 

Likewise, there were no significant differences among the three note accuracy 

session means for the 6-hour group, F(2, 18) = 0.29, p > .754. As was the case in the 5-

minute group, there were no discernible improvements in note accuracy from one session 

to the next. 
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Figure 4: Note accuracy session means for the self-regulated practice experiment. 
Error bars represent ±1 standard error of the mean. 

I found a significant difference among the three note accuracy session means for 

the 24-hour group, F(2, 18) = 4.92, p < .021. Post hoc analyses indicate that the mean for 

the first practice session was significantly higher than the mean for Session 2, p < .034, 

and Session 3, p < .046, which were not significantly different from one another, p > 

.500. 

In this analysis, it is important to note that all trials from Session 1 were included 

in the comparison. Memory consolidation research in neuroscience, and similar studies in 

music (e.g., Duke & Davis, 2006; Simmons & Duke, 2006), compared only the last three 

blocks (out of 12 total practice blocks) of Session 1 with brief, 3-block retests in two 
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subsequent sessions. In this study, as in Shea, Lai, Black and Park (2000), the very first 

trials in the learning process were included in the analysis. 

As the data in Figure 4 clearly show, participants in the three groups did not 

perform similarly in Session 1, most likely due to a selection variable that I will address 

later in the document; therefore, direct comparisons of note accuracy between the 5-

minute group and the other two groups are not possible. Mean note accuracy data for the 

6-hour and 24-hour groups, whose Session 1 performances were similar, demonstrate 

clear differences in the effects of wake- and sleep-based consolidation; put simply, 

memory consolidation enhanced Session 2 performance for participants who slept 

between sessions. This result is consistent with data reported in Simmons and Duke 

(2006) and a larger body of research performed with simple motor skills.  

Note accuracy session means reveal that the 24-hour group, whose participants 

slept between Sessions 1 and 2, made the largest improvements in performance between 

sessions. Smaller, nonsignificant gains were observed in the 6-hour group, who remained 

awake between sessions. These results suggest that sleep-based consolidation enhanced 

Session 2 performance in the 24-hour group, whereas wake-based consolidation did not 

lead to performance enhancements in the 6-hour group.  

Smaller changes in performance were observed between Sessions 2 and 3 for all 

three groups. It seems that a second night of sleep-based consolidation did not lead to 

continued performance enhancements between Sessions 2 and 3 in the 24-hour group, nor 

did wake-based consolidation lead to Session 3 enhancements in the 6-hour group.  
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Speed 

Means for 5-minute, 6-hour, and 24-hour groups are presented in Figure 5. I 

compared participants’ performances in terms of speed within each intersession-interval 

condition using one-way, repeated measures ANOVAs and post hoc one-tailed t-tests 

with appropriate Bonferroni corrections.  

There was a significant difference among the three speed session means in the 5-

minute group, F(1, 8)1 = 27.68, p < .002. Post hoc analyses indicate that the mean for 

Session 1 was significantly higher (indicating slower performance) than the means for 

Session 2, p < .002, and Session 3, p < .001, which were not significantly different from 

one another, p > .231. 

There were also significant differences among the three speed session means in 

the 6-hour group, F(1, 9)1 = 28.32, p < .001. Post hoc analyses indicate that the means for 

Sessions 1, 2, and 3 were all significantly different from one another: Session 1 vs. 

Session 2, p < .001; Session 1 vs. Session 3, p < .001; and Session 2 vs. Session 3, p < 

.003. 

There were significant differences among the three speed session means in the 24-

hour group, F(1, 9)1 = 18.39, p < .003. Post hoc analyses indicate that the means for 

Sessions 1, 2, and 3 were all significantly different from one another: Session 1 vs. 

Session 2, p < .004; Session 1 vs. Session 3, p < .003; and Session 2 vs. Session 3, p < 

.004. 

                                                
1 Corrected df for violation of the sphericity assumption (Lower-bound). 
 
 



 80 

Figure 5: Speed session means for the self-regulated practice experiment. Error bars 
represent ±1 standard error of the mean. 

Session means for speed reveal that the extent of performance speed change 

between Sessions 1 and 2 was similar in all three groups, whereas the 6-hour and 24-hour 

groups showed larger gains in speed between Sessions 2 and 3 than did the 5-minute 

group. The observation of speed enhancements in the 6- and 24-hour groups are 

consistent with another study performed using simpler motor skills, which demonstrates 

sleep enhancements following wake-based memory consolidation (Fischer, Hallschmid, 

Elsner, & Born, 2002). Perhaps both wake- and sleep-based memory consolidation 

facilitated the larger gains in speed observed between Sessions 2 and 3 in the 6- and 24-

hour groups. 
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I observed significant, positive correlations between note accuracy (number of 

errors per sequence) and speed (sequence duration, ms) in Sessions 1 and 2: Session 1, r 

= .421, p < .024; Session 2, r = .432, p < .020. In these sessions, participants who made 

fewer errors also tended to perform faster (less time in ms) than did participants who 

made more note errors. That relationship was not evident in Session 3, r = -.119, p > 

.539, which is perhaps attributable to the lack of change in note accuracy performance in 

all groups between Sessions 2 and 3.  
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EXPERIMENT 2:  STABLE PRACTICE AND MEMORY CONSOLIDATION 

The enhancing effects of memory consolidation on motor skill performance have 

been repeatedly observed when learners engage in self-regulated practice. What remains 

unknown is whether this effect is present when learners engage in other kinds of practice, 

namely, practice that is externally regulated and systematically varied. Experiment 2 was 

designed to examine the effects of memory consolidation on procedural skills learned 

under controlled practice conditions in which learners performed multiple trials at a given 

tempo before practicing at different tempos. 

In short, I observed performance enhancements in note accuracy and tempo 

accuracy for all three inter-session intervals, regardless of whether the intervals between 

sessions included time for wake- and sleep-based memory consolidation. This pattern of 

skill improvement is quite different from patterns observed when learners engage in self-

regulated practice, which suggests that beneficial effects of memory consolidation may 

be mediated by practice that occurs under systematically controlled conditions, or that 

memory consolidation processes operate under a different time course with stable 

practice. A more complete description of these results follows. 

 

Self-reports of Sleep and Alertness 

There were no differences between groups in the amount of sleep participants 

reported for the night before Session 1, F(2, 25) = 1.05, p > .365.  Reported sleep was 

unrelated to note accuracy performance:  Session 1, r = .119, p > .545; Session 2, r = -

.465, p > .293; Session 3, r = -.010, p > .983. There were also no significant correlations 

between reported sleep and tempo accuracy:  Session 1, r = -.097, p > .624; Session 2, r = 

-.628, p > .131; Session 3, r = -.410, p > .360.  
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I compared participants’ ratings of alertness in each session with corresponding 

note accuracy data and found no relationship between these variables:  Session 1, r = -

.083, p > .673; Session 2, r = .194, p > .440; Session 3, r = -.137, p > .587.  There was 

also no significant relationship between alertness and tempo accuracy data in Sessions 1 

and 2: Session 1, r = .087, p > .659; Session 2, r = -.255, p > .308.  In Session 3, I found a 

significant moderate correlation between alertness and tempo accuracy: Session 3, r = 

.529, p < .025. Although this may be a spurious result, this finding indicates that 

participants who reported greater alertness (represented by lower numbers on the 

alertness scale) tended to perform with more tempo accuracy (represented by a smaller 

difference between the goal tempo and the actual tempo) than did participants who 

reported lower levels of alertness. The fact that there were no consistent relationships 

between alertness reports and note or tempo accuracy data makes the one significant 

correlation difficult to explain. 

 

Excluded Data 

Three participants were identified as outliers for at least one group session mean; 

all three participants were from the 24-hour group. As in Experiment 1, their performance 

in at least 2 blocks was in excess of two standard deviations away from group block 

means. Based on these criteria their data were excluded from this analysis, leaving 28 

participants in the stable practice condition (5-minute group, n = 10; 6-hour group, n = 

11; 24-hour group, n = 7). 

There were problems with the five post-session trials for all of the participants 

that preclude a meaningful analysis. The data from these trials will not be discussed 

further. 
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Note Accuracy 

Means for 5-minute, 6-hour, and 24-hour groups are presented in Figure 6. I 

compared the note accuracy in participants’ performances within each intersession-

interval condition using one-way, repeated measures ANOVAs and post hoc one-tailed t-

tests with appropriate Bonferroni corrections. 

There were significant differences among the three note accuracy session means 

for the 5-minute group, F(2, 18) = 19.33, p < .001. Post hoc analyses indicate that the 

mean for Session 1 was significantly higher than the means for Session 2, p < .001, and 

Session 3, p < .002, which were not significantly different from one another, p > .139. 

Likewise, there were significant differences among the three note accuracy 

session means for the 6-hour group, F(2, 20) = 11.14, p < .002. Post hoc analyses indicate 

that the mean for Session 1 was significantly higher than the means for Sessions 2, p < 

.014, and Session 3, p < .005, which were not significantly different from one another, p 

> .071. 

I found significant differences among the three note accuracy session means for 

the 24-hour group, F(1, 6)2 = 6.24, p < .048. Post hoc analyses did not indicate that the 

mean for the first practice session was significantly higher than the mean for Session 2, p 

> .076, and Session 3, p > .062. Differences between means for Sessions 2 and 3 were 

also not significant, p > .110. The lack of observed statistical significance in the post hoc 

tests can be attributed to the considerable variation associated with this group’s 

performance; clearly, the improvements I observed in this group follow the same trend 

observed in the other two groups of stable practice learners. 

                                                
2 Corrected df for violation of the sphericity assumption (Lower-bound). 
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Figure 6: Note accuracy session means for the stable practice experiment. Error bars 
represent ±1 standard error of the mean. 

 

As was the case in Experiment 1, all of the performance trials in each session 

were included in the analysis. The fact that data analysis included all information 

gathered in Session 1 explains, at least in part, the dramatic improvements that occurred 

between Sessions 1 and 2 in all groups. 

Mean data clearly illustrate similar patterns of note accuracy improvement 

between groups, regardless of how practice was distributed across time. This finding 

suggests that under externally controlled practice conditions when variation in practice is 

minimal, improvements in note accuracy are not enhanced by sleep-based consolidation. 

It is important to note that this is the first experiment that used a controlled number of 
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repetitions in the practice of a sequential keypress task. The resulting pattern of skill 

improvement is quite different from patterns observed when learners engage in self-

regulated practice, which suggests that beneficial effects of memory consolidation may 

be mediated by the different kinds of practice. Or it may be that the time course of skill 

improvement under stable practice conditions is different from that of self-regulated 

practice conditions.  

 

Tempo Accuracy   

Means for 5-minute, 6-hour, and 24-hour groups are presented in Figure 7. I 

compared tempo accuracy in participants’ performances within each intersession-interval 

condition using one-way, repeated measures ANOVAs and post hoc one-tailed t-tests 

with appropriate Bonferroni corrections.  

There were significant differences among the three tempo accuracy session means 

in the 5-minute group, F(1, 9)3 = 6.76, p < .030. Post hoc analyses indicate that the mean 

for Session 1 was significantly higher than the means for Session 2, p < .052, and Session 

3, p < .036, which were not significantly different from one another, p > .279. 

There were also significant differences among the three tempo accuracy session 

means in the 6-hour group, F(2, 20) = 6.27, p < .009. Post hoc analyses indicate that the 

mean for Session 1 was significantly higher than the means for Session 2, p < .017, and 

Session 3, p < .043, which were not significantly different from one another, p > .500. 

There were significant differences among the three tempo accuracy session means 

in the 24-hour group, F(2, 12) = 5.08, p < .026. Post hoc analyses indicate that the 

difference between Session 1 and 2 means was not significant, p > .122, and that the 

                                                
3 Corrected df for violation of the sphericity assumption (Lower-bound). 
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mean for Session 1 was not significantly different from the mean for Session 3, p > .073. 

Sessions 2 and 3 were not significantly different from one another, p > .219. Again, the 

lack of observed statistical significance in the post hoc tests can be attributed to the 

variation in this group’s performance. Trends of skill improvement between sessions are 

the same as those observed in the 5-minute and 6-hour groups in the stable practice 

condition. 

Figure 7: Tempo accuracy session means for the stable practice experiment. Error bars 
represent ±1 standard error of the mean. 

 

Comparisons among the session means for tempo accuracy reveal that patterns of 

performance improvement were similar in the three groups; memory consolidation 
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offered no clear performance advantage to participants in the 6- and 24-hour groups over 

massed practice in the 5-minute group. As observed with note accuracy data, these 

findings suggest that the beneficial effects of memory consolidation may be mediated by 

practice conditions, or that under stable practice conditions, skill improvements occur on 

a different time course than has been observed under self-regulated practice conditions. It 

may be that the initial stages of consolidation that begin during practice are effective in 

bringing about skill improvements on a more rapid time course when learners engage in 

externally controlled practice that includes little variation in the way skills are executed 

from trial to trial than when they engage in self-regulated practice. These data suggest 

that improvements in skills learned under systematically controlled and varied practice 

conditions may not be enhanced by processes of memory consolidation. 

There were no significant correlations between note accuracy and tempo accuracy 

across all sessions for the stable practice condition:  Session 1, r = .197, p > .315; Session 

2, r = .264, p > .175, Session 3, r = .142, p > .470. In other words, note accuracy 

performance was unrelated tempo accuracy performance when learners engaged in stable 

practice of this task.  
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EXPERIMENT 3:  VARIABLE PRACTICE AND MEMORY CONSOLIDATION 

Experiment 3 was designed to examine the effects of memory consolidation on 

procedural skills learned under systematically controlled practice conditions that include 

variations in speed from trial to trial. 

In short, I observed significant enhancements in note accuracy for participants 

who slept between Sessions 1 and 2. I observed significant improvements in note 

accuracy performance between Sessions 1 and 3 for the 6-hour group as well. There were 

no significant tempo accuracy enhancements in any group. A more thorough description 

of my results follows.  

 

Self-reports of Sleep and Alertness 

There were no differences between groups in the amount of sleep participants 

reported for the night before Session 1, F (2, 24) = .078, p > .925. Reported sleep was 

unrelated to note accuracy data in all sessions:  Session 1, r = .194, p > .332; Session 2, r 

= .017, p > .964; Session 3, r = -.410, p > .239. Likewise, there were no significant 

correlations between reported sleep and tempo accuracy data:  Session 1, r = .192, p > 

.337; Session 2, r = -.108, p > .767; Session 3, r = -.523, p > .121.  

I compared participants’ ratings of alertness in each session with corresponding 

note and tempo accuracy data. There were no relationships between participants’ ratings 

of alertness and note accuracy data in Sessions 1 and 2:  Session 1, r = .324, p > .100; 

Session 2, r = .089, p > .719. In Session 3, there was a significant, moderate correlation 

between ratings of alertness and note accuracy data, r = .545, p < .017, which indicates 

that participants who reported greater levels of alertness (represented by lower numbers 

on the alertness scale) tended to perform with greater note accuracy (represented by a 
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lower error score). There were no significant correlations between ratings of alertness and 

tempo accuracy in any of the three sessions:  Session 1, r = .213, p > .285; Session 2, r = 

.151, p > .538; Session 3, r = -.014, p > .956. As observed in Experiment 2, the lack of 

consistent significant correlations between alertness ratings and note or tempo accuracy 

data make it difficult to draw conclusions from one significant correlation.  

 

Excluded Data 

Three participants in the variable practice condition were excluded from this 

analysis based on the same criteria used in the previous two experiments. Two 

participants were from the 5-minute group; the third participant excluded from the 

analysis was from the 6-hour group. Descriptive analysis identified these three as outliers 

in at least one group session mean; at least two block means were in excess of two 

standard deviations away from their respective group block means. There were 27 

participants included in this analysis (5-minute group, n = 8; 6-hour group, n = 9; 24-hour 

group, n = 10). 

There were problems with the five post-session trials for all of the participants 

that preclude a meaningful analysis. The data from these trials will not be discussed 

further. 

 

Note Accuracy 

Means for 5-minute, 6-hour, and 24-hour groups are presented in Figure 8. I 

compared the note accuracy in participants’ performances within each intersession-

interval condition using one-way, repeated measures ANOVAs and post hoc one-tailed t-

tests with appropriate Bonferroni corrections.  
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There were no significant differences among the three note accuracy session 

means for the 5-minute group, F(2, 14) = 1.34, p > .293. It should be noted that this 

group’s error rate in the first practice session was much lower than the error rate observed 

in the other groups, leaving little room for change across practice sessions. 

There were significant differences among the three note accuracy session means 

for the 6-hour group, F(2, 16) = 5.76, p < .014. Post hoc analyses indicate there were no 

differences between means for Sessions 1 and 2, p > .086, and that the mean for Session 1 

was significantly higher than the mean for Session 3, p < .010. The means for Sessions 2 

and 3 were not significantly different from one another, p > .500. 

Figure 8: Note accuracy session means for the variable practice experiment. Error bars 
represent ±1 standard error of the mean. 
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I also found significant differences among the three note accuracy session means 

for the 24-hour group, F(1, 9)4 = 7.39, p < .025. Post hoc analyses indicate that the mean 

for Session 1 was significantly higher than the means for Session 2, p < .025, and Session 

3, p < .034. There were no significant differences between means for Sessions 2 and 3, p 

> .500. 

Participants in the three groups did not perform similarly at the outset (see Figure 

8). As mentioned in Experiment 1, this result is most likely due to a selection variable 

that I will address later in the document. Between-group differences in Session 1 note 

accuracy performance do not permit direct comparisons of note accuracy improvements 

between the 5-minute group and the other two groups. Mean note accuracy data for the 6-

hour and 24-hour groups, whose Session 1 performances were similar, demonstrate clear 

differences in the effects of wake- and sleep-based consolidation. Memory consolidation 

enhanced Session 2 performance for participants in the 24-hour group, who slept between 

sessions. Smaller, nonsignificant gains were observed in the 6-hour group, who remained 

awake between sessions. These results suggest that sleep-based consolidation enhanced 

Session 2 performance in the 24-hour group, whereas wake-based consolidation did not 

lead to performance enhancements in the 6-hour group.  

Smaller changes in performance were observed between Sessions 2 and 3 for all 

three groups. It seems that a second night of sleep-based consolidation did not lead to 

continued performance enhancements between Sessions 2 and 3 in the 24-hour group, nor 

did wake-based consolidation lead to enhancements between Sessions 2 and 3 in the 6-

hour group.  

                                                
4 Corrected df for violation of the sphericity assumption (Lower-bound). 
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These note accuracy findings are consistent with results reported in Simmons and 

Duke (2006) and a larger body of research performed with simple motor skills learned 

under self-regulated practice conditions. Interestingly, these results are inconsistent with 

the results reported in Experiment 2, in which learners engaged in systematically 

controlled practice that included minimal variation in the way skills were executed during 

practice (stable practice). 

 

Tempo Accuracy   

Means for 5-minute, 6-hour, and 24-hour groups are presented in Figure 9. I 

compared participants’ performances in terms of tempo accuracy within each 

intersession-interval condition using one-way, repeated measures ANOVAs.  

There were no significant differences among the three tempo accuracy session 

means for all three groups: 5-minute group, F(1, 7)5 = .936, p > .365; 6-hour group, F(1, 

8) = 4.197, p > .075; 24-hour group, F(1, 9) = 1.933, p > .198. Although changes in 

tempo accuracy were nonsignificant, comparisons among session means reveal that 

performance improvements observed were similar in the three groups.  

Tempo accuracy findings are consistent with the results of Experiments 1 and 2 in 

that patterns of performance improvement related to performance speed were similar 

between groups, whether the speed variable was one of speed capacity (play the sequence 

as quickly as possible) or speed control (play the sequence at a given tempo). The tempo 

accuracy findings of Experiment 3 are different from those of Experiments 1 and 2 in that 

variable practice did not elicit enhancements in performance for all groups in all sessions, 

                                                
5 Corrected df for violation of the sphericity assumption (Lower-bound). 
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whereas self-regulated and stable practice learners demonstrated Session 2 performance 

enhancements in respective speed variables.  

Figure 9: Tempo accuracy session means for the variable practice experiment. Error 
bars represent ±1 standard error of the mean. 

 

The lack of significant tempo accuracy improvement in any group in the variable 

practice condition could be related to the demands of performing the skill at speed. 

Perhaps executing the sequence at M.M. = 52, 72, and 92 in quasi-random order was too 

difficult for participants to negotiate and inhibited performance enhancements in 

subsequent sessions. This study is the first to examine the effects of memory 

consolidation in the context of systematically controlled practice that includes high 
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variability in a skill parameter (speed). As in Experiment 2 (stable practice), these 

findings suggest that the beneficial effects of memory consolidation may be mediated by 

the extent to which skill execution is varied during practice and the extent to which 

practice is externally controlled.  

I observed significant correlations between note and tempo accuracy performance 

in all sessions for all variable practice participants; Session 1, r = .529, p < .006; Session 

2, r = .725, p < .001; Session 3, r = .562, p < .003. In other words, participants who 

played more correct notes tended to match pre-determined tempos more closely than did 

participants who made more note errors. 

 

SUMMARY OF RESULTS 

Experiment 1 (self-regulated practice) replicated the results of Simmons and Duke 

(2006) by demonstrating that sleep-based consolidation led to significant improvements 

in note accuracy.  The observed changes in performance speed between Sessions 1 and 2 

in all groups demonstrated that wake- and sleep-based consolidation led to significant 

improvements in performance speed. Experiment 1 also showed that a second interval of 

consolidation (whether wake- or sleep-based) did not lead to note accuracy improvements 

in Session 3, but did lead to significant improvements in Session 3 performance speed.  

Experiments 2 (stable practice) and 3 (variable practice) were the first to examine 

the relationship between distribution of practice and externally controlled practice that 

includes variation in performance speed. The results of these two experiments suggest 

that improvements in skills learned under stable and variable practice conditions do not 

show the same patterns of improvement as do skills learned under self-regulated speed 
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conditions. The findings of all three experiments provide new insight as to what is known 

about human learning and memory for procedural skills.  
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Chapter 5:  Discussion 

For centuries, musicians have engaged in systematic physical practice to improve 

performance skills, yet even today the precise relationship between given practice 

strategies and their effects on the encoding, storage, and recall of procedural memories 

has not been fully characterized. This study was designed to examine motor memory 

consolidation and two important variables related to the structure of practice: the 

organization of variations in practice parameters within practice sessions and the 

distribution of practice sessions over time.  

This investigation is the first to examine wake- and sleep-based memory 

consolidation in skills learned under externally regulated and varied practice conditions. 

Perhaps the most important finding of this study is that the time course of motor skill 

improvements seems to be modified when procedural skills are learned under different 

rehearsal conditions and when practice sessions are distributed across different intervals 

of time. 

The results discussed below address the following specific questions: 

1. Experiment 1: To what extent are complex motor skills affected by wake- and 

sleep-based consolidation processes in learners with extensive task-related 

knowledge and moderate levels of task-related skill?    

2. Experiment 2: To what extent are consolidation-based enhancements affected by 

stable practice procedures, in which the speeds of learners’ practice trials are 

externally regulated and practiced in a sequence that includes minimal variation in 

the way skills are executed from trial to trial?   

3. Experiment 3: To what extent are consolidation-based enhancements affected by 

variable practice procedures, in which the speed of learners’ practice trials are 
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externally regulated and practiced in a sequence that includes maximum variation 

in the way skills are executed from trial to trial? 

 

NOTE ACCURACY 

The results of Experiment 1 are consistent with research conducted using simple 

motor tasks (Duke & Davis, 2006; Fischer, Hallschmid, Elsner, & Born, 2002; 

Robertson, Pascual-Leone, & Press, 2004; Walker, Brakefield, Hobson, & Stickgold, 

2003; Walker, Brakefield, Morgan, Hobson, & Stickgold, 2002; Walker, Brakefield, 

Seidman et al., 2003) and with research conducted using a keyboard task similar to the 

one used in this study (Simmons & Duke, 2006). All of this research shows that 

performance accuracy is enhanced by sleep-based memory consolidation.  

The findings in Experiment 2 are inconsistent with those in Experiment 1 and the 

larger body of neuroscience research described above. The 5-minute and 6-hour groups in 

the stable practice condition evinced significant note accuracy enhancements between 

Sessions 1 and 2; improvements in the 24-hour group followed the same trend observed 

in the other two groups of stable practice learners. Again, the lack of observed statistical 

significance in this group can be attributed to the large error variation associated with 

their performances.  

Distributing practice over time offered no observable advantage (in terms of 

performance accuracy) to learners whose practice sessions were separated by 24-hour 

intervals that included overnight sleep when the speeds of learners’ practice trials were 

externally regulated; similar patterns of performance accuracy improvement were 

observed in learners whose practice sessions were separated by 5-minute or 6-hour 

intervals. The results observed in all three stable practice groups suggest that the time 
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course of procedural skill improvements may vary depending on the source of speed 

regulation (external vs. internal control) and the extent to which practice is varied within 

sessions.  

In Experiment 3, I observed sleep-based consolidation effects consistent with 

effects observed in Experiment 1, in neuroscience research conducted using simple motor 

tasks learned under self-regulated practice conditions (Duke & Davis, 2006; Fischer et 

al., 2002; Robertson et al., 2004; Walker, Brakefield, Hobson et al., 2003; Walker et al., 

2002; Walker, Brakefield, Seidman et al., 2003), and in research conducted using a 

similar keyboard task (Simmons & Duke, 2006). The most interesting finding in this 

experiment is that sleep-based consolidation effects were observed in learners who 

engaged in variable practice and who slept between sessions; similar effects were not 

observed in variable practice learners who remained awake between sessions. This is the 

first demonstration that learners who practice under externally controlled practice 

conditions that include a high level of trial-to-trial variability demonstrate sleep-based 

enhancements in note accuracy similar to those observed in learners who engage in self-

regulated practice. 

It is interesting to note that the variable practice 6-hour group, who did not 

demonstrate significant note accuracy enhancements in Session 2, demonstrated 

enhanced performance by the end of practice (mean performance accuracy was 

significantly different between Sessions 1 and 3). This result is consistent with results 

reported in Walker, Brakefield, Seidman et al. (2003), in which continued improvements 

in accuracy and speed were observed across multiple self-regulated practice sessions that 

were distributed across one day with no intervening intervals of sleep between sessions. 

This finding is inconsistent, though, with results observed in the 6-hour self-regulated 

practice group in this investigation, whose participants did not substantially improve note 
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accuracy performance between multiple practice sessions distributed across one day. It 

may be that including trial-to-trial variations in practice leads to significant 

improvements during wake-based consolidation.  

In the stable and variable practice 24-hour groups whose practice sessions were 

spaced across consecutive days, the second night of sleep between Sessions 2 and 3 

yielded no significant improvements in note accuracy beyond those obtained by Session 

2. The self-regulated 24-hour group reached such high levels of accuracy at the end of 

Session 2 (approximately .5 errors per block), it would have been unlikely to detect any 

further improvements.  

Comparing patterns of note accuracy improvement between stable and variable 

practice groups is quite interesting. The 5-minute and 6-hour groups in the stable practice 

condition demonstrated significant improvements in note accuracy between Sessions 1 

and 2, whereas the 24-hour group was the only variable practice group to demonstrate 

significant note accuracy improvements in Session 2. This difference implicates practice 

variability as a mediating variable in the consolidation process. Stable practice 

participants in the 5-minute and 6-hour groups, who negotiated less practice variability 

from trial to trial than did learners in the variable practice groups (performing all trials at 

one tempo before practicing the next tempo), obtained significant improvements in note 

accuracy in Session 2, irrespective of the fact that their intersession interval did not 

include sleep; however, significant improvements in note accuracy between Sessions 1 

and 2 in the variable practice condition were only evident following sleep-based 

consolidation.  

As the data in Figures 4 and 8 clearly show, participants in the self-regulated 

practice condition did not perform similarly in Session 1, nor did participants in the 

variable practice condition; therefore, direct comparisons of note accuracy between the 5-
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minute groups and the other two groups in those practice conditions are not possible. As 

mentioned above, comparisons between the three stable practice groups, whose Session 1 

performances were similar, revealed no clear differences related to intersession-interval 

condition.  

The Session 1 note accuracy differences between the self-regulated and variable 

practice conditions may be attributable to the adjustments I made to accommodate 

participants’ schedules during group assignment. In order to fill each group, I 

accommodated the busiest of the willing participants by assigning them to the 5-minute 

groups. Of course, the busiest students in a music school are typically those who are in 

high demand because of their levels of relevant music skills. The schedule adjustments I 

made, which violated random assignment of conditions, seem to have resulted in the most 

able participants being assigned the 5-minute rest interval condition. There were fewer 

reassigned participants in the stable practice 5-minute group, whose Session 1 

performance was similar to the other two groups in that practice condition, than there 

were in the self-regulated and variable practice 5-minute groups. It is important to note 

that the performances of participants for whom I made schedule adjustments were not 

markedly better than performances of the other participants in the same groups; rather, it 

seems that the number of people likely to perform with more skill was increased in the 5-

minute rest interval condition as a result of this compromise. 

Performance differences observed in Session 1 between 5-minute, 6-hour, and 24-

hour groups in both the self-regulated and variable practice conditions are not likely 

attributable to circadian influences. It does not seem that Session 1 performances were 

affected by the time of day practice occurred. The 6-hour groups completed Session 1 

between 8:00-10:00 AM, the 5-minute groups between 10:00 AM–1:00 PM, and the 24-

hour groups between 1:00-4:00 PM. The largest difference in Session 1 scheduling 
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occurred between the 6-hour and 24-hour groups, yet I observed no Session 1 

performance differences between those two groups in either practice condition. There is 

also no evidence of circadian influence on participants’ performances in the stable 

practice condition. 

 

SPEED AND TEMPO ACCURACY 

All participants in Experiment 1 evinced improvements in speed between 

Sessions 1 and 2 irrespective of the time intervals between sessions. The self-regulated 6- 

and 24-hour groups continued to demonstrate speed enhancements in Session 3, perhaps 

due to the combination of continued practice and additional intervening consolidation. 

These results are consistent with the data reported in studies conducted with 

simple motor skills (Fischer et al., 2002; Robertson et al., 2004) and music learning tasks 

(Simmons & Duke, 2006) in that speed enhancements were observed following both 

wake- and sleep-based consolidation. The participants in the present study, unlike those 

in Simmons and Duke, were able to significantly and consistently improve performance 

speed with practice, irrespective of the time intervals interposed between sessions. 

Changing the task from the melodic-type sequence of notes practiced in Simmons and 

Duke (2006) to a more unitary musical gesture or flourish facilitated consistent 

significant improvements in performance speed for all three self-regulated practice 

groups between Sessions 1 and 2, and for the 6-hour and 24-hour groups between 

Sessions 2 and 3. 

Performance speed is a measure of motor capacity (i.e., playing the sequence as 

quickly as possible) whereas tempo accuracy is a measure of motor control (i.e., gauging 

movements in a sequence to match a target tempo). Most memory consolidation research 
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to date has considered motor capacity and not motor control in finger sequence learning. 

Experiment 1 demonstrated significant improvements in speed (motor capacity) for all 

self-regulated learners, irrespective of their assigned intersession-interval condition.  

Patterns of skill improvement observed in Experiment 2 (stable practice) were 

similar to those observed in the self-regulated practice condition. Participants in all three 

stable practice groups demonstrated improved tempo accuracy in Session 2, irrespective 

of the intersession intervals. Improvements between Sessions 1 and 2 were significant in 

the 5-minute and 6-hour groups and approached significance in the 24-hour group. 

Session means for the 24-hour group clearly show a skill improvement pattern similar to 

the other two groups; the lack of significance observed is attributable to the large 

variation observed in this group’s data and the resulting low power of the statistical tests. 

The fact that there were no significant differences in tempo accuracy between 

performances in Sessions 2 and 3 in any group in the stable practice condition suggests 

that wake- and sleep-based consolidation offered no clear advantage to learners in the 6- 

and 24-hour groups. Perhaps continued enhancements in motor control require more time 

and practice to become evident, or perhaps the extent of improvements obtained in a 

regulated practice procedure are such that consolidation-based enhancements are not 

evident in learners’ behavior for this dependent measure. 

Although all groups in Experiment 3 improved across practice sessions, none of 

the observed differences between sessions was significant. Perhaps the trial-to-trial 

adjustments required in the variable practice procedure, in particular the size and 

accompanying physical demands of the speed adjustments, added a level of complexity to 

the task that learners could not overcome. In other words, variable practice as 

implemented in this task may have overloaded learners to the extent that significant 

tempo accuracy enhancements were not possible in this short time frame. It is notable 
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that almost no learners ever mastered the skill at the fastest performance speed; this may 

indicate that those who could not play the sequence at tempo remained focused on 

maintaining or increasing note accuracy at the expense of improvements in tempo 

accuracy.  

It is quite possible that the time course of skill improvements in the variable 

practice condition would have been different if task complexity, learner sophistication, 

and the extent of variability included in practice had been better matched. Perhaps the 

extent to which I varied practice tempos was too great; in other words, performing 

randomly ordered trials at M.M. = 52, 72, and 92 demanded motor skill capacity (i.e., 

performing fast enough to match M.M. = 92) and control (i.e., negotiating a much slower 

tempo, M.M. = 52) that these participants could not manage in this short a time frame. As 

I mentioned in the discussion of the note accuracy results, stable practice participants, 

who had to contend with less practice variability than did variable practice participants, 

improved in terms of tempo accuracy between Sessions 1 and 2.  

Recall that studies of procedural memory consolidation in finger sequence 

learning has measured motor capacity (i.e., how fast skills can be executed), not motor 

control (i.e., controlling movement speed). Perhaps the differences I obtained in these 

three practice conditions are attributable in part to the fact that motor capacity 

improvements develop on a different time course than do improvements in motor control. 

 

CORRELATIONS BETWEEN NOTE ACCURACY AND SPEED VARIABLES 

The significant, moderate, positive correlations between note accuracy and speed 

(self-regulated practice condition) in Sessions 1 and 2 and between note accuracy and 

tempo accuracy (variable practice condition) in all three sessions indicate that 
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improvements in note accuracy and speed tended to develop concurrently. The lack of 

relationship between note accuracy and speed in Session 3 in the self-regulated condition 

is attributable to fact that these participants reached a ceiling for note accuracy by the end 

of Session 2.  

The same relationships between note accuracy and tempo accuracy were not 

observed in the stable practice condition. This result is interesting in that improvements 

in one variable did not occur at the expense of the other (i.e., matching tempos more 

closely did not consistently elicit more errors, and vice versa), nor did improvements in 

one variable consistently coincide with improvements in the other variable. I find it 

difficult to interpret why correlations between note accuracy and speed variables were 

observed in self-regulated and variable practice conditions and not observed in the stable 

practice condition. 

 

GENERAL DISCUSSION 

The most unique contributions of this investigation come from the introduction of 

externally controlled practice conditions that include systematic variations in target 

performance speeds. The focus of the remaining discussion addresses the contributions 

made by the results observed in these practice conditions.  

There are several important differences between this study and previous work that 

demonstrates memory consolidation effects. As was the case in Experiment 1, other 

neuroscience research conducted with simple motor skills, and research conducted by 

Duke and Davis (2006) and Simmons and Duke (2006) required learners to attend to only 

one judgment of correctness during practice (self-evaluation of keypress accuracy). 

Experiments 2 and 3 in this investigation required learners to attend to judgments of note 
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and tempo accuracy, which increased the complexity of processing demands during 

practice. Learners were forced to work toward achieving two defined goals (correct 

sequence of finger movements and accurate movement speed). In this investigation and 

in Simmons and Duke (2006), I and the other proctors observed during testing that 

learners—all skilled musicians—typically focused on achieving note accuracy before 

attending to attaining prescribed goal speeds. In other words, it was more important to 

participants that the notes be correct than that they be played at the target tempo, a 

priority in keeping with the practice habits of most skilled performers in music. 

The observation that participants in this study and in Simmons and Duke (2006) 

tended to strive for note accuracy at the expense of speed is attributable to the fact that 

they were provided relevant auditory feedback (musicians heard every trial they 

performed on the keyboard) throughout practice. Perhaps without concurrent auditory 

feedback, musicians may be more likely to strive to reach accuracy goals and speed goals 

simultaneously. Processing concurrent feedback certainly complicates motor skill 

acquisition, even in the acquisition of simple motor skills (Schmidt & Wulf, 1997). It is 

interesting to note that in self-regulated and variable practice conditions (Experiments 1 

and 3), participants still demonstrated significant sleep-based improvements in note 

accuracy despite the fact that they were processing concurrent auditory feedback that 

undoubtedly influenced their performance across practice. 

One aspect of the variable and stable condition comparisons is the similarity in 

the error rates between learners practicing on stable and variable schedules. This finding 

is contrary to a great deal of motor learning research (Giuffrida, Shea, & Fairbrother, 

2002; Li & Wright, 2000; Pollock & Lee, 1997; Shea, Kohl, & Indermill, 1990; Shea, 

Lai, Wright, Immink, & Black, 2001; Simon & Bjork, 2001; Tsutsui, Lee, & Hodges, 

1998; Young, Cohen, & Husak, 1993) which demonstrates that variable practice leads to 
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more error during acquisition and better performance at retest than does stable practice. 

The results I observed in initial practice and in skill recall do not show such a trend. 

 

Difficulties Inherent in Distributed and Variable Practice 

As I attempted to randomly assign participants to the nine groups in this study, I 

found that some people were either reluctant to participate or simply could not work 

participation into their schedules when assigned to the distributed practice conditions (6- 

and 24-hour groups). Similar situations have been observed before by Baddeley and 

Longman (1978), who reported that participants preferred massed practice over 

distributed practice, mostly for practical reasons of convenience.  

A review by Lee and Wishart (2005) discussed that distributed practice is not as 

efficient as massed practice in terms of the total elapsed time from the onset of practice to 

reaching criterion. I see this somewhat differently. If distributed practice enhances 

performance more than massed practice, less time can be spent in the act of practicing, 

even though more time (over the course of days) is required to reach a given performance 

goal.  

Lee and Wishart (2005) also suggest that variable practice may be undesirable 

because of the large error rates typically observed in initial stages of practice; those error 

rates cause learners to make metacognitive judgments that learning is not progressing 

during acquisition. This negative attitude could limit students’ motivation to practice. I 

did not observe substantially different error rates between stable and variable practice 

conditions in this experiment, but this may be an important point to consider in future 

studies.  
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QUESTIONS RESULTING FROM THIS INVESTIGATION 

In future investigations, I would like to structure experiments that allow for direct 

statistical comparisons of stable and variable practice by including an equal number of 

trials at each tempo in all three practice sessions. This may require the addition of a 

practice block before the first session that would comprise 15 self-regulated trials. 

Allowing participants one self-regulated block at the beginning of practice may allow 

them to acclimate to the sequence more effectively before practice variability is 

introduced.  

Testing experienced learners performing authentic music skills presents special 

challenges in research of this type, in which the optimal balance between task 

complexity, learner sophistication, and the extent of variation in practice is somewhat 

difficult to achieve. In future experiments, I intend to pre-test participants performing 

similar keyboard skills before assigning practice conditions; this will allow more control 

for the wide variability in participants’ performance skills by matching between groups.  

Perhaps a more effective measure of motor control needs to be developed as well. 

Future investigations may be directed at narrowing the range of predetermined tempos 

that participants are required to perform. Reducing the demands of motor capacity may 

have a direct effect on participants’ ability to negotiate contextual interference in 

practice, potentially making consolidation effects on motor control skills more evident.  

Motor learning research clearly demonstrates that providing learners with visual 

and auditory feedback affects learning. In this investigation and in Simmons and Duke 

(2006), processing concurrent auditory feedback during practice seems to exert a 

considerable effect on the choices musicians make during practice. If musicians were not 

given auditory feedback during practice and could no longer hear errors in note accuracy, 

would that impact the choices they make during practice?  Might they prioritize note 
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accuracy, speed, and tempo accuracy differently than musicians who can hear their 

performances?  

Future investigations that focus on manipulating the frequency and specificity of 

visual KR in motor control investigations (displaying computer feedback in terms of 

tempo accuracy) may also affect musicians’ ability to improve performance. In this study, 

the computer program offered specific tempo accuracy feedback (to the tenth of a 

metronome marking) to participants in the stable and variable practice conditions after 

every trial. Many participants responded with audible frustration when they would get 

very close to the tempo they were shooting for yet be off by a fraction of a metronome 

marking. Offering less specific feedback, referred to as bandwidth KR in motor learning 

literature, may focus learners’ attention more on consistency in skill execution and less 

on matching tempos to at a level that is very exact. Some motor learning researchers have 

suggested that constant KR facilitates complex skill learning (del Rey & Shewokis, 1993; 

Guadagnoli & Lee, 2004), whereas others have proposed that learners engaged in 

variable practice are overloaded by processing KR after every trial, and that reducing KR 

frequency under variable practice schedules makes movements more stable (Lai & Shea, 

1998). Clearly, more investigation is needed to determine the optimal frequency of KR in 

complex skill learning. 

 

CONCLUSIONS 

These experiments confirm and elaborate what is known about complex motor 

skill learning under self-regulated practice conditions by demonstrating sleep-based 

consolidation effects on note accuracy and time-based consolidation effects on speed in 

the context of music performance. Perhaps the most important finding of this 



 110 

investigation is that memories for skills learned under different practice conditions seem 

to develop on a time course that is affected by the structure of practice. When learners 

engage in practice that is externally controlled and includes either minimal speed 

variation or trial-to-trial variations in performance speed, patterns of skill improvement 

following intervals of memory consolidation are different from those observed following 

self-regulated practice.  

It is interesting to speculate how the behavioral effects of memory consolidation 

can be directly applied to optimize music learning. Perhaps new music tasks are best 

learned with intervening intervals of sleep between their introduction and recall in later 

practice. Distributing practice across time that allows consolidation to stabilize and 

enhance procedural memories may even increase the efficiency of musicians’ practice 

time. Although these ideas are interesting to contemplate, their verification requires 

considerable additional research in the context of music skills.  
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Appendix B 
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Appendix C 

Self-regulated Practice, 24-hour Group 
 
Session 1:  
 
Name:          Subject #:    
  
How do you feel right now?   
 
Are you a music major?      Y        N 
 
Which is your dominant hand?     R       L   Gender:    M        F 
 
Principal Instrument:      Years of Study: 
 
What other instruments have you studied?   
 
For how long? 
 
Finger Independence Training (+3 years of study):      Y         N 
 
Have you ever taken piano lessons?     Y        N How long?  At what age? 
 
How many semesters of class piano have you completed?   
 
How much sleep did you get last night?   Well?  Restlessly? 
 
Is that a typical amount of sleep for you? 
 
Have you had any caffeine, alcohol, or drugs in the last 12 hours?   Y  N  
 
If yes, how much of what? 
 
Notes:   
 
 
 
 
Session 2:  
 
How do you feel right now?   
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Have you had any caffeine, alcohol, or drugs since we met last time?   Y      N        
 
If yes, how much of what? 
 
Did you play a music instrument yesterday after we met? 
 
If so, which instrument and for how long?  
 
Did you play a music instrument before our meeting today? 
 
If so, which instrument and for how long?  
 
 
How much sleep did you get last night?   Well     Restlessly  
 
Notes: 
 
 
 
 
Session 3: 
 
How do you feel right now?   
 
Have you had any caffeine, alcohol, or drugs since we met last time?   Y      N        
 
If yes, how much of what? 
 
Did you play a music instrument yesterday after we met? 
 
If so, which instrument and for how long?  
 
Did you play a music instrument before our meeting today? 
 
If so, which instrument and for how long?  
 
How much sleep did you get last night?   Well     Restlessly  
 
Notes: 
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