
University of New Hampshire University of New Hampshire

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Winter 2021

High Level Learning Using the Temporal Features of Human High Level Learning Using the Temporal Features of Human

Demonstrated Sequential Tasks Demonstrated Sequential Tasks

Madison Brandywine Clark-Turner
University of New Hampshire

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation Recommended Citation
Clark-Turner, Madison Brandywine, "High Level Learning Using the Temporal Features of Human
Demonstrated Sequential Tasks" (2021). Doctoral Dissertations. 2655.
https://scholars.unh.edu/dissertation/2655

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New
Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of University of New Hampshire Scholars' Repository. For more information, please contact
Scholarly.Communication@unh.edu.

https://scholars.unh.edu/
https://scholars.unh.edu/dissertation
https://scholars.unh.edu/student
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F2655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/2655?utm_source=scholars.unh.edu%2Fdissertation%2F2655&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu

HIGH LEVEL LEARNING USING THE TEMPORAL FEATURES OF

HUMAN DEMONSTRATED SEQUENTIAL TASKS

BY

MADISON CLARK-TURNER

BSc in Computer Science and Biology, Franklin and Marshall College, 2014

DISSERTATION

Submitted to the University of New Hampshire

in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science

December, 2021

ALL RIGHTS RESERVED

©2021

Madison Clark-Turner

ii

This dissertation has been examined and approved in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science by:

Dissertation Director, Momotaz Begum

Assistant Professor of Computer Science,

University of New Hampshire

Laura Dietz

Assistant Professor of Computer Science,

University of New Hampshire

Marek Petrik

Assistant Professor of Computer Science,

University of New Hampshire

Wheeler Ruml

Professor of Computer Science,

University of New Hampshire

Odest Chadwicke Jenkins

Professor of Computer Science and Engineering,

University of Michigan

On August 27th, 2021

Approval signatures are on file with the University of New Hampshire Graduate School.

iii

DEDICATION

To my wonderful wife, Katy, who has stuck with me through all the sleepless nights.

And to Fay, my beautiful daughter, who has been causing them.

iv

ACKNOWLEDGEMENTS

First, I extend my heartfelt gratitude to my mentor, Prof. Momotaz Begum, who has not

only provided informed guidance with the direction and writing of my dissertation, but has

been an enthusiastic advocate of me and my work from day one. Her dedication to ensuring

the highest standards in both the quality of the lab and my work have been inspirational. At

times this journey has been a challenge but your consistent help and support, both academic

and social, have helped to see it through. Thank you.

It is impossible to talk about Momotaz without also extending thanks to Mostafa Hussein,

Paul Gesel, and the rest of the Cognitive Assistive Robotics Lab. Though our group has been

small, I have had the luxury to watch it evolve and develop into a thriving, collaborative

community. We’ve celebrated in each others victories and wallowed in each others losses. I

truly hope that the friendships made here are lifelong and I look forward to hearing about

the future successes that will come out of our lab and your work.

I sincerely thank Profs. Laura Dietz, Marek Petrik, Wheeler Ruml, and Chad Jenkins all

of who volunteered their time to be members of my dissertation committee. I am especially

grateful for your feedback which has helped to refine not only the content of my dissertation

but also my skills as both an orator and a scientist. I also extend this thanks to the greater

Computer Science department at UNH whose vested interest in me extended beyond my work

to both my mental and physical well being. I have made many friendships with professors,

students, and staff alike and I appreciate all your help in my times of need. I must also

acknowledge the National Science Foundation which has funded part of this work (IIS-

1664554).

v

Finally, anything I put into writing could only ever be an understatement to the immense

role that my family has played in supporting me throughout this PhD. My parents, Jeremy

and Naomi, have dedicated time and resources and have consistently found new ways to help

me through all the writing and tough times. To my wife Katy, you have been by my side

through it all. Every success and rejection, every late night and last minute revision. Your

patience and love are without fault. Thank you for helping me get here, and thank you for

continuing to be a part of my life.

vi

TABLE OF CONTENTS

DEDICATION iv

ACKNOWLEDGEMENTS v

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xvi

GLOSSARY xviii

ABSTRACT xxii

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Challenges of Learning Temporal Features in Convolutional Architectures . . 3

1.2.1 Duration Invariance . 3

1.2.2 Video-Scale Features . 5

1.3 Proposed Solution . 6

1.4 Contribution . 7

1.5 Chapter Summary . 8

2 EXPLORATORYWORK: AN END-TO-ENDMODEL FORHIGH-LEVEL

TASK LEARNING FROM VIDEO DEMONSTRATIONS 11

vii

2.1 Introduction . 12

2.2 Related Work . 12

2.3 Background: Deep Q-Network . 13

2.4 An End-to-End Model for High-Level Task Learning 14

2.4.1 Feature Extraction . 14

2.4.2 Temporal Feature Modelling . 16

2.5 Experiments . 17

2.5.1 Dataset Description: Social Greeting Behavioral Intervention 17

2.5.2 Dataset Collection . 17

2.5.3 Training . 19

2.6 Results . 19

2.6.1 Simulated Results . 19

2.6.2 Real Time Results . 20

2.7 Conclusion . 22

2.8 Contributions . 24

3 LITERATURE REVIEW 26

3.1 Introduction . 26

3.2 Background . 27

3.2.1 Interval Algebra . 27

3.2.2 Graph Convolutional Network . 28

3.3 Classical Methods . 30

3.3.1 Time-Slice Models . 30

3.3.2 Grammar Parsing Models . 31

3.3.3 Time-Interval Models . 31

3.3.4 Validation . 32

3.4 Deep Learning Methods . 33

3.4.1 Recurrent Neural Networks . 33

viii

3.4.2 Convolutional Architectures . 34

4 DEEP INTERVAL TEMPORAL RELATIONSHIP LEARNER 35

4.1 Temporal Feature Learning Using D-ITR-L 35

4.1.1 Spatial Feature Extraction . 36

4.1.2 Formatting Interval Algebra Descriptors (IAD) 37

4.1.3 Event Detection . 38

4.1.4 Interval Temporal Relationship Identification 38

4.1.5 Learning From Temporal Features 41

4.2 Contributions . 42

5 TEMPORAL FEATURES FOR POLICY LEARNING 43

5.1 Related Works . 43

5.2 Extending D-ITR-L for use in Policy Learning 44

5.3 Block Stacking . 45

5.3.1 Problem Definition . 46

5.3.2 Demonstration Set . 46

5.4 Backbone Model Preparation . 48

5.4.1 Pre-processing . 48

5.4.2 Feature Bottleneck . 49

5.4.3 Training . 49

5.5 Results . 50

5.5.1 Duration Invariance . 51

5.5.2 Video-Scale Feature . 52

5.6 Contributions . 53

6 TEMPORAL FEATURE FOR HUMAN ACTIVITY RECOGNITION 55

6.1 Related Work . 55

6.1.1 Pre-Deep Learning Activity Recognition 55

ix

6.1.2 Activity Recognition Post Deep Learning 56

6.1.3 Datasets . 58

6.2 Datasets for D-ITR-L Evaluation . 61

6.3 Experiments . 65

6.3.1 Training . 65

6.3.2 Results . 67

6.4 Conclusion . 73

6.5 Contributions . 73

7 TEMPORALLY-GUIDED FEATURE SELECTION 74

7.1 Introduction . 74

7.2 Temporally-Informed Spatial Feature Selection 75

7.2.1 Feature Selection and Appraisal . 75

7.2.2 Dataset . 78

7.2.3 Training . 79

7.2.4 Results . 80

7.3 Feature Visualization . 81

7.4 Conclusion . 83

7.5 Contributions . 84

8 CONCLUSION 85

8.1 Future Directions . 86

8.1.1 Enhanced Temporal Representation 86

8.1.2 End-to-end Learning . 87

8.2 Contributions . 87

LIST OF REFERENCES 88

A Spatial Feature Bottleneck 98

x

B IRB Approval 100

xi

LIST OF TABLES

2.1 Real-time Results of Varied Responses . 22

5.1 Backbone-CNN Bottleneck Size in the Block Stacking Dataset 49

5.2 Total Accuracy of Baseline and D-ITR-L-based Policy Learning Applications

on Block Stacking given Consistently Timed Video Observations. 51

5.3 Total Accuracy of Baseline and D-ITR-L-based Policy Learning Applications

on Block Stacking given Inconsistently Timed Video Observations. 52

5.4 Action Accuracy of Baseline and D-ITR-L-based Policy Learning Applications

on Block Stacking. The results are generated from the VGG-16 Backbone model. 52

6.1 Popular CNN Models for Video Inference. 56

6.2 Average number of frames in Video Datasets 59

6.3 Crepe Recipes . 63

6.4 Lee et al.’s Results on the Crepe Sub-action Dataset 64

6.5 Accuracy on the IKEA Furniture Assembly Dataset 68

6.6 Accuracy on the Crepe Sub-Action Dataset 70

6.7 Accuracy on the Crepe Full-Recipe Dataset 70

6.8 ITR Graph Size in Best Performing D-ITR-L Models By Dataset 73

xii

LIST OF FIGURES

1.1 Activity Recognition Requires Temporal Understanding 2

1.2 Variance in the Duration of a “Wave” Action. 4

1.3 Simplified Examples of Video-Scale Features. 6

1.4 The D-ITR-L Pipeline. 7

2.1 Modified DQN for High-Level LfD . 15

2.2 Social Greeting Behavioral Intervention Data Collection 18

a Various Participant Responses . 18

b Data Collection Setup . 18

2.3 Simulation Results . 20

a Temporal Data Present . 20

b Temporal Data Absent . 20

2.4 Q-values of Videos Segmented at Different Lengths. 23

a Auditory Response . 23

b Gestural Response . 23

c Gaze Response . 23

d No Response . 23

3.1 The 13 Interval Temporal Relationships . 27

3.2 Progressing Convolutions in a GCN . 28

a l=0 . 28

b l=1 . 28

xiii

c l=2 . 28

4.1 The Deep Interval Temporal Relationship Learner Pipeline 36

4.2 Event detection using IAD. 40

a A raw IAD . 40

b A thresholded IAD . 40

4.3 Transformation from thresholded IAD (a) to a list of ITRs (b) to an ITR

Graph (c). ITR labels match those in Fig. 3.1. 41

a IAD Example . 41

b ITR List . 41

c ITR Graph . 41

5.1 The D-ITR-L policy learning pipeline. 44

5.2 The Data Collection Environment . 47

5.3 An Observation-Action Trace for Stacking 5 Blocks. 47

6.1 General Structures of Temporal Representation in Deep Learning Models . . 57

a Integrated . 57

b Interleaved . 57

c Separate . 57

6.2 Examples from Benchmark Video Datasets 58

a UCF-101 [1] . 58

b HMDB-51[2] . 58

c Kinetics [3] . 58

6.3 Example class labels from the Jester Video Dataset 60

6.4 Example class labels from the Something-Something Video Dataset 60

6.5 Actions in the IKEA Furniture Assembly Dataset 61

6.6 Actions in the Crepe Dataset . 64

6.7 Confusion Matrix of VGG-16 Backbone Results on the IKEA Dataset 69

xiv

a TCN Model . 69

b D-ITR-L Model . 69

6.8 Confusion Matrix of I3D Backbone Results on the Crepe Action Dataset . . 71

a TCN Model . 71

b D-ITR-L Model . 71

7.1 The Pipeline for Policy Learning in a Tea Making Task 76

7.2 Actions from the Tea Making Dataset . 78

7.3 Accuracy of the learned policy where the states are defined by the most highly-

ranked features according to the two different ranking methodologies. 80

a Spatial features . 80

b Temporal features . 80

7.4 Visual analysis of the features in the context of the ‘Add Water’ action. . . . 81

a Spatial features . 81

b Temporal features . 81

c Spatial features . 81

d Temporal features . 81

7.5 Visual analysis of the features in the context of the ‘Add Sugar’ action. . . . 82

a Spatial features . 82

b Temporal features . 82

c Spatial features . 82

d Temporal features . 82

7.6 Visual analysis of the features in the context of the ‘Stir’ action. 83

a Spatial features . 83

b Temporal features . 83

c Spatial features . 83

d Temporal features . 83

7.7 Visual analysis of the features in the context of the ‘Add Milk’ action. 84

xv

a Spatial features . 84

b Temporal features . 84

c Spatial features . 84

d Temporal features . 84

xvi

LIST OF ABBREVIATIONS

ASD Autism Spectrum Disorder.

BC Behavioral Cloning.

CNN Convolutional Neural Network.

D-ITR-L Deep Interval Temporal Relationship Learner.

DBN Dynamic Bayesian Network.

DQN Deep Q-Network.

FSA Finite State Automata.

GCN Graph Convolutional Network.

HMM Hidden Markov Model.

IAD Interval Algebraic Descriptor.

ITBN Interval Temporal Bayesian Network.

ITR Interval Temporal Relationship.

LfD Learning from Demonstrations.

xvii

LSTM Long Short-Term Memory.

PTN Probabilistic Temporal Network.

R-GCN Relational-Graph Convolutional Network.

RNN Recurrent Neural Network.

TCN Temporal Convolutional Network.

xviii

GLOSSARY

Behavioral Cloning A policy learning approach where a policy is learned as a mapping of

states to actions.

Deep Interval Temporal Relationship Learner My novel contribution. A temporal

wrapper that identifies the temporal features present in a video using the pre-trained

spatial features in an underlying CNN architecture.

Deep Q-Network A popular deep reinforcement learning architecture. The original net-

work structure is based on a typical CNN. I modified a DQN as part of my exploratory

research allowing it to learn a social greeting behavioral intervention.

Durational Variance Variance in the number of frames, seconds, minutes, or other mea-

surement describing a period of time over which a given feature or action is expressed

in a video..

Dynamic Bayesian Network A Bayesian Network that connects concepts across time

steps.

Finite State Automata A graphical model that represents the world as one of a finite set

of states. Transitions can be made to other states along edges as the result of a given

stimulus.

Graph Convolutional Network A Convolutional Neural Network structure capable of

extracting discriminatory features from graphical structures.

xix

Hidden Markov Model A statistical model for representing a hidden state distribution

through observations expressed over time.

Interval Algebraic Descriptor An intermediary structure in D-ITR-L. The IAD is a two

dimensional matrix that denotes the relative expression of a set of features over time

in a video input.

Interval Temporal Bayesian Network A probabilistic temporal model that leverages in-

terval algebra based representations. The description of temporal relationships in this

model are stochastic.

Interval Temporal Relationship A named relationship between two events that describes

the degree and order of their overlap. Interval Temporal Relationships compromise the

basis for the D-ITR-L temporal wrapper.

Long Short-Term Memory A common pattern learning structural unit found in deep

learning architectures.

Probabilistic Temporal Network A probabilistic temporal model that leverages interval

algebra based representations in a FSA. The description of temporal relationships in

this model are deterministic and bi-directional.

Recurrent Neural Network A neural network design that captures the presence of pat-

terns in temporal or time series data.

Relational-Graph Convolutional Network A Graph Convolutional Network extension

that allows for more judicious merging of labels using discrete edge labels.

Temporal Convolutional Network A convolution-based temporal reasoning model that

performs 1D convolutions across the duration of a video.

xx

Temporal Features A discriminatory property of a video defined by the expression or

co-expression of spatial features in time. In this thesis a temporal feature explicitly

captures an Interval Temporal Relationship as it exists between two spatial features..

Video-Scale Features A temporal feature that can span the full duration of a video. This

work investigates two categories of video-scale features: long-term dependencies and

cyclical activities..

xxi

ABSTRACT

HIGH LEVEL LEARNING USING THE TEMPORAL FEATURES OF HUMAN

DEMONSTRATED SEQUENTIAL TASKS

by

Madison Clark-Turner

University of New Hampshire, December, 2021

Modelling human-led demonstrations of high-level sequential tasks is fundamental to a

number of practical inference applications including vision-based policy learning and activity

recognition. Demonstrations of these tasks are captured as videos with long durations and

similar spatial contents. Learning from this data is challenging since inference cannot be

conducted solely on spatial feature presence and must instead consider how spatial features

play out across time. To be successful these temporal representations must generalize to

variations in the duration of activities and be able to capture relationships between events

expressed across the scale of an entire video.

Contemporary deep learning architectures that represent time (convolution-based and

Recurrent Neural Networks) do not address these concerns. Representations learned by

these models describe temporal features in terms of fixed durations such as minutes, sec-

onds, and frames. They are also developed sequentially and must use unreasonably large

models to capture temporal features expressed at scale. Probabilistic temporal models have

been successful in representing the temporal information of videos in a duration invariant

xxii

manner that is robust to scale, however, this has only been accomplished through the use

of user-defined spatial features. Such abstractions make unrealistic assumptions about the

content being expressed in these videos, the quality of the perception model, and they also

limit the potential applications of trained models. To that end, I present Deep Interval Tem-

poral Relationship Learner (D-ITR-L), a temporal wrapper that extends the spatial features

extracted from a typically CNN architecture and transforms them into temporal features.

D-ITR-L-derived temporal features are duration invariant and can identify temporal re-

lationships between events at the scale of a full video. Validation of this claim is conducted

through various vision-based policy learning and action recognition settings. Additionally,

these studies show that challenging visual domains such as human-led demonstration of high-

level sequential tasks can be effectively represented when using a D-ITR-L-based model.

xxiii

CHAPTER 1

INTRODUCTION

Temporal features play a critical role in understanding and interpreting the visual world.

However, capturing and learning from temporal features in a data-driven manner from vi-

sual data (video) is a complex task. This dissertation presents Deep Interval Temporal

Relationship Learner (D-ITR-L), a wrapper that autonomously crafts descriptive temporal

features from the learned spatial features of a backbone convolutional neural network (CNN).

I demonstrate how leveraging the D-ITR-L derived representation of temporal features leads

to improved performance in both policy learning and activity recognition using video data.

1.1 Motivation

Temporal features describe the abstract relationships that occur between visual spatial fea-

tures as they are expressed over time. They are particularly important when making in-

ferences about observations collected from visually similar environments where the presence

of spatial features alone is insufficient to make distinctions between different observations.

For example, consider the task of making tea. Concepts such as order (the teabag was

added before the water), temporal overlap (the milk was poured while the tea was being

stirred), and cyclical patterns (sugar was added to the tea twice) can only be understood

by analyzing their expression in time. The critical role that temporal features play in mak-

ing data-driven inference is best understood in the context of multi-step sequential tasks

including most activities of daily living, furniture assembly, and structured social interac-

tions. Here, the ubiquitous presence of common spatial features across many observations

1

Figure 1.1: Activity Recognition Requires Temporal Understanding

(e.g. in the background) makes it difficult to differentiate specific activities within a task.

For instance, a teacup, spoon, and teabag are all likely to be visible during different stages

of making tea. However, using only that information, it is difficult to distinguish between

adding a teabag to a cup versus removing it. Instead, by using temporal features a more

informed representation of the visual data can be crafted that is both discriminatory and

usable in more complex inference tasks. For example, in Fig. 1.1, the overlap between the

teabag and the spoon can be used to distinguish between the actions of “Add Teabag” and

“Remove Teabag”. When adding the teabag, the spoon and teabag are initially visible at

the same time until the teabag is dropped into the cup whereupon it becomes obscured and

is no longer visible. When removing the teabag, the spoon and teabag are both visible from

the beginning of the video until they have exited the scene. Identification of and inference

from temporal features is the contribution presented in this dissertation.

Historically, identification of temporal features has been accomplished with probabilistic

temporal models [4, 5]. These models perform their inference using the temporal features

generated from user-defined spatial feature extractors. In contrast, CNNs capture discrimi-

natory features in an autonomous and data-driven fashion. Recent advances in CNNs have

extended their feature learning capabilities from images to videos, triggering extensive re-

search interest in activity recognition from raw video data [6]. Although temporal features

are a hallmark of human activities, current video-recognition architectures do not leverage

2

them when making inferences. Despite this, existing video recognition architectures gener-

ate impressive results, primarily because of the spatial nature of the majority of standard

benchmark video datasets upon which they are validated. Cao et al. [7] specifically address

the spatial focus of contemporary models and their evaluation criteria. They argue that

current benchmark video datasets can be classified primarily by their spatial content and

they do not challenge video-recognition architectures when it comes to representing tem-

poral information. I echo this sentiment and assert that the properties of these datasets

have encouraged state-of-the-art video-recognition architectures to adopt designs that are

ill-suited for long-form and visually similar video settings. Understanding typical human ac-

tivities (e.g. multi-step, sequential tasks) in natural settings demands an even greater degree

of temporal representation than what is currently required of the most temporally-focused

benchmark video datasets presented in the computer vision literature. Learning robust tem-

poral features while leveraging the CNN’s ability to learn spatial features is an unexplored

research domain and is the focus of my work.

1.2 Challenges of Learning Temporal Features in Convolutional Architectures

Two critical challenges impede temporal feature learning within CNN architectures: the

absence of duration invariant feature representation and the use of ad hoc solutions to capture

video-scale features.

1.2.1 Duration Invariance

Video observations, especially those that focus on human participants, are prone to variations

in the temporal dimension. When and how long a feature is expressed is rarely consistent.

Fig. 1.2 captures an example of this phenomenon. The act of waving is one activity that can

vary dramatically in its length (and start time) depending on the person performing the task

(frame numbers are depicted in the top left of each image). The act of waving is not defined

by its duration; (in some cases a single flick of the wrist might be sufficient). Consequently

3

Figure 1.2: Variance in the Duration of a “Wave” Action.

we could anticipate that a single representation would suffice for both examples. Such a

representation would be identified as duration invariant, and would be ideal as it generalizes

better to the data regardless of the time that a person spends waving.

Regrettably, convolutional architectures represent temporal features in a duration depen-

dent manner. Features are defined in concrete expressions such as the number of frames,

seconds, and/or minutes over which they are expressed. To capture temporal variations of

the same activity, these models must generate multiple latent representations of the activ-

ity, one for each duration. Recurrent Neural Network (RNN) architectures possess greater

potential to capture temporal features in a duration invariant manner. RNNs aggregate

features in a sequential frame-by-frame manner and maintain a representation that does

not use duration by merging periods of similar expression together [8, 9]. In practice, the

presence of noisy feature expression in real world video data encourages the development of

low-level feature patterns. These patterns are defined by explicit durations and are therefore

limited in the same manner as convolutional approaches. Duration dependent concerns are

an extension of the well known scale invariant limitations of traditional 2D-CNNs extended

to the third dimension [10]. Finally, the default solution when CNN models falter, to accrue

additional samples, is naive and infeasible for many researchers whose ability to create new

data is limited by physical constraints and human fatigue.

Describing temporal features in a duration invariant fashion requires the use of abstract

relationships. This can be accomplished by placing greater focus on the moments when a

spatial feature starts and stops being expressed and giving less consideration for the period

4

of expression between these points. Assuming the set of spatial features that capture the

start of a wave as “X” and the set of features that conclude the wave as “Y”, you can use

the abstract terminology of X before Y to represent both of the video observations depicted

in Figure 1.2.

1.2.2 Video-Scale Features

Temporal features can be expressed over the course of an entire video. For example, making

tea occurs in several stages: boiling water, adding the teabag to the cup, and pouring water

into the cup. To identify that tea was made correctly, all three sub-tasks must be present

and specific temporal constraints, such as ordering, cannot be violated (e.g. water must be

boiled before it is poured). Similarly, cyclical activities, such as adding spoonfuls of sugar

to a teacup, can be expressed over an extended duration. An explicit number of repetitions

can sometimes convey meaning and should be clearly represented when developing temporal

features from video. Fig. 1.3 depicts simplified examples of these two categories of video-

scale features. These examples show frames of videos in which colored blocks (blue, green,

and red) are moved from one opaque container to another. Frames proceed left to right and

are colored when blocks are visible. Long-term dependencies such as order are represented by

movement of the blue and green blocks. Cyclical activities are represented by the movement

of one, two, and three red blocks. Distinguishing between the two examples of long-term

dependencies and the three cyclical activities requires a robust way to model the relationships

between these spatial features given that these videos last upwards of 200 frames.

Capturing video-scale temporal features is challenging for contemporary video recognition

architectures. Deep learning-based approaches are built upon hierarchical design: construct-

ing larger and more complex representations from smaller, low-level representations. The

same tenant has been adopted when modelling temporal data, which is problematic for videos

of long duration. Capturing distant relationships in the data requires a network that is deep

enough to span the distance between the composite aspects of a video-scale temporal feature.

5

Figure 1.3: Simplified Examples of Video-Scale Features.

Convolution-based networks are notorious for their computational demands. In order to man-

age the structural requirements of a long-form video, these architectures have had to make

accommodations. Depending on the implementation, these models sacrifice either fidelity

or robustness to work. Models that sacrifice fidelity employ frame-skipping approaches that

linearly sample frames from throughout a video to avoid performing computations at every

time step [9, 11]. However, in order for these approaches to select appropriate frame strides,

they use computationally expensive (and redundant) ensembles of models. Approaches that

sacrifice robustness perform frame-level inference, but are instead more vulnerable to vari-

ances in the duration of activities in the video input [12, 13]. The natural inclination to

segment the video input into manageable chunks is also ill-conceived as it requires either

expert knowledge or heavy annotation of the dataset [14].

Capturing video-scale temporal features is best accomplished using a graphical imple-

mentation. A graph can directly relate the features in the video regardless of their temporal

location, allowing for easy recognition of distant connections regardless of scale.

1.3 Proposed Solution

CNN architectures are capable of autonomously learning spatial features, but lack the ability

to capture and infer from temporal features. Probabilistic approaches make their inference

using temporal features, but are designed to operate only on hand-crafted spatial features. I

6

Figure 1.4: The D-ITR-L Pipeline.

merge these two disparate approaches in Deep Interval Temporal Relationship Learner (D-

ITR-L), a wrapper that uses the spatial features learned by CNN architectures in concert

with the descriptive and powerful representations common among probabilistic temporal

modelling approaches.

D-ITR-L operates as a pipeline (Fig. 1.4) transforming spatial features, identified by a

CNN backbone, into a graph of abstract relationships that are used as the basis for further in-

ference. This process happens in three stages. First, spatial events (discrete durations where

spatial features are expressed) are detected within the output of a traditional CNN backbone.

This is accomplished by the generation and subsequent thresholding of an Interval Algebraic

Descriptor, a custom representation of spatial features across time. After the spatial events

have been detected they are used to generate an exhaustive list of abstract temporal relation-

ships through a pairwise combination of events. Finally, the corpus of temporal features is

organized into a graphical structure termed an Interval Temporal Relationship graph. This

final representation is duration invariant, a result of using abstract-terms to define temporal

relationships, and is capable of representing video-scale features, due to the properties of a

graphical structure at inference time. Inference using an ITR graph is accomplished through

the use of a Graph Convolutional Network (GCN).

1.4 Contribution

The critical contribution of this work is D-ITR-L a temporal wrapper fashioned as a pipeline

that extracts temporal relationships present in a video observation. These temporal rela-

tionships are formatted in an ITR graph, a novel structure that conveys the expression of

7

temporal features across the duration of a full video and in a duration invariant manner.

Furthermore, this representation can be used as a substitute for pixel-based deep learn-

ing inference tasks. Through the ITR graph’s combined use of abstract relationships and

graphical format, D-ITR-L can describe features that span the duration of a video. This is

accomplished without the use of concrete terms describing the duration (i.e. the number of

frames, seconds, or minutes) that a feature is expressed.

D-ITR-L-based inference results in more effective state estimation in applications that

use long-duration videos of visually-similar environments, such as human demonstrated se-

quential tasks. This works is of particular interest to Learning from Demonstration research

where activities of daily living are concerned such as service robot applications. This claim

is defended through several experiments (Chapters 5, 6, and 7). Conversely, it is expected

that D-ITR-L will perform poorly in applications that require representations that capture

duration or those that are well defined by a large selection of spatial features. Video datasets

that capture these properties are not investigated in this dissertation.

1.5 Chapter Summary

This dissertation is separated into the following chapters:

Chapter 2: Exploratory Work: An End-To-End Model For High-level Task

Learning From Video Demonstrations

I describe my exploratory work in which I developed an end-to-end deep learning architec-

ture designed to learn how to perform a high-level sequential task policy from human-led

demonstrations. My implementation used a Deep Q-Network and leveraged a RNN in the

form of a Long Short-Term Memory cell to model the temporal dynamics of an audio-visual

input. This exploratory work not only generated publications in both RO-MAN 2017 and

HRI 2018 but also identified two challenges in vision-based task learning from demonstra-

tions: 1) that perceptual aliasing is a critical problem that can jeopardize task learning and

8

2) learning temporal information from vision data is a precondition for conducting temporal

reasoning and there is no effective data-driven tool that can accomplish this. I collaborated

with a fellow Master’s student on his attempt to solve the first challenge which produced a

co-authored papers in RO-MAN 2019 and ICRA 2019. The research I performed to address

the second challenge has become my dissertation.

Chapter 3: Literature Review

As context for my work I define Interval Algebra and Graph Convolutional Networks. I also

provide a literature review detailing the current research as it pertains to identifying and

learning from temporal features collected from raw video data. I describe the various limi-

tations of existing architectures and how contemporary and classical models fail to provide

a holistic model that can learn video-scale features, in a duration invariant manner.

Chapter 4: Deep Interval Temporal Relationship Learner

The chapter presents Deep Interval Temporal Relationship Learner (D-ITR-L), the proposed

method for learning video-scale features in a duration invariant way.

Chapter 5: Temporal Features for Policy Learning

D-ITR-L presents temporal features in a manner designed to specifically address concerns

relating to duration invariance and video-scale features. I validate this claim in the context

of state estimation for a policy learning model. Included in this chapter is a description of

the steps taken to establish D-ITR-L as a state estimator and the steps taken to capture

and investigate the challenges of temporal features.

9

Chapter 6: Temporal Features for Human Activity Recognition

Contemporary deep-learning activity-recognition architectures perform well as a result of

the spatially-focused benchmark video datasets on which they are evaluated. The challenges

of learning temporal features (duration invariance and video-scale features) are poorly rep-

resented in such data. Instead, these obstacles are most evident in video domains where

humans perform activities in natural settings. I illustrate how examples from these domains

challenge contemporary models and, as a result of the specific design choices employed in

D-ITR-L, how these challenges can be overcome by robust temporal representation.

Chapter 7: Temporally-Guided Feature Selection

Temporal representations are necessary to effectively represent video data. The latent tempo-

ral representations used by D-ITR-L are dependent on clear recognition of a set of informative

spatial features. I conduct a rigorous quantitative analysis to measure the contribution that

a temporal information-guided approach can effect in spatial feature selection. Additionally,

I investigate how the properties of human understandable features selected in this way can

contribute to temporal feature learning in D-ITR-L.

Chapter 8: Conclusion

The dissertation concludes with a summary of my completed work and an assessment of

future directions.

10

CHAPTER 2

EXPLORATORY WORK: AN END-TO-END MODEL FOR HIGH-LEVEL

TASK LEARNING FROM VIDEO DEMONSTRATIONS

I started my PhD research by investigating the feasibility of learning high-level, multi-step,

human-robot interaction tasks from visual observations where demonstration videos can be

long in duration, e.g. several hundred seconds. The specific task that I focused on learning

was a structured educational intervention consisting of multiple steps where activities at a

given step depend on the activities executed in the distant past. Learning such a task there-

fore requires understanding temporal information from visual data. I developed a general

end-to-end model, consisting of a Deep Q Network that leveraged LSTM, for learning high-

level multi-step tasks from user-segmented video demonstrations [15, 16]. This preliminary

work unearthed two challenges in vision-based task learning from visual demonstrations:

1) that perceptual aliasing is a critical problem that can jeopardize task learning and 2)

learning temporal information from vision data is a precondition for conducting temporal

reasoning and there is no effective data-driven tool that can accomplish this. Investigations

into the former would branch into research on temporal reasoning and hidden state informa-

tion. Meanwhile, investigations into the later laid the foundation for my current dissertation.

This chapter describes the generic end-to-end model and its evaluation with an educational

intervention task.

11

2.1 Introduction

I designed a framework to teach a robot how to learn a high-level sequential task policy after

observing tele-operated demonstrations. This work is prototypical and, to establish its via-

bility, it is evaluated within the confines of a single application: a social greeting behavioral

intervention designed as a therapy for individuals with Autism Spectrum Disorder (ASD).

The responses of this population, when exposed to the same stimuli, can vary dramatically

among individuals and it is naive to assume that hand-picked features would suffice to cap-

ture all possible observations. A more reasonable approach is to use a data-derived set of

features to identify the specific responses of particular individuals. This motivation, along

with the recent successes of deep learning, not only as an image processing architecture but

also as a tool for policy learning, encouraged an end-to-end model for learning this high-

level task from visual observations. Specifically, my model adheres to the structure of a

state-of-the-art deep reinforcement learning architecture: the Deep Q-Network (DQN).

2.2 Related Work

In contrast to other high-level learning from demonstration models, my adoption of deep

learning is novel. Prior works made simplifying assumptions regarding their perception

including leveraging a set of hand-picked visual features that captured the location of a set of

discrete utensils in a table setting application [17], using object detectors to recognize specific

objects in a pick-and-place task [18], or absolving perception altogether by associating robot

actions with ground truths when sorting objects by shape and color [19]. Subsequently, there

was little precedent for structuring a policy learner that could draw inference from long video

observations and make policy decisions in a partially observable domain; learning high-level

sequential task policies requires both.

The most similar research direction when considering the representation of long video

observations was human activity recognition. However, learning of abstract reasoning from

12

data (i.e. high-level LfD) is subtly different than video labeling through deep learning.

Video labeling is specific to a video dataset and allows for the discrimination of observations

based on the many (potentially unique) properties of an observation. In contrast, high-level

LfD hopes to re-use learned components to explain novel perceptions and is interested in

capturing the objects and rules of an observation (effectively leading to the same explanation

through a different direction). That being said, the two most popular methods among these

works were two-stream models [2] and signal inference based methods [20]. Two-stream

models combined RGB data with alternative information that capture movement across

frames such as optical flow. Signal inference methods implemented common time sequence

tools, most frequently Long Short-Term Memory (LSTM). I incorporate both of these design

elements into my model.

Representation of partially observable information in the state estimation of an end-to-

end deep reinforcement learning model was still an unexplored research domain when this

research was being conducted. In this work I adopted a simple strategy (use of a discrete

value denoting an action history) to demonstrate the importance of this information and the

need for a more complex representation.

2.3 Background: Deep Q-Network

The DQN is a popular CNN-based model for developing policies in deep reinforcement learn-

ing environments [21]. The model, rather than performing a traditional classification oper-

ation, is tasked with generating action value estimates (q-values) for a given state represen-

tation (image/video). A DQN differs from a traditional CNN in three regards. 1) DQNs

generate q-values instead of predictions over given actions by ensuring that the network

terminates with a regression layer rather than a softmax operator. 2) To avoid divergent

learning, a common issue when training neural networks using sequential observations col-

lected from the same source, Minh et al. [21] used a buffer of training examples. Training

examples were randomly sampled from this buffer to vary the order of the data that the

13

model is exposed to. 3) DQN training is performed using two separate networks to teach

stable q-values. One network that is updated frequently is used to define the policy. The

other, updated infrequently, is used to generate state reward estimates.

My model makes several edits to the original DQN structure. Notably I train the model

in a supervised approach using a set of known trajectories. I forgo the sample buffer (#2

above) that traditional DQNs possess and instead sample state-action pairs randomly from

my observed demonstrations. Work by Hester et al. [22] also broached the topic of deep

q-learning from demonstration but their approach is applied only to learning how to play

Atari video games, as opposed to real-world applications.

2.4 An End-to-End Model for High-Level Task Learning

The visual input from a high-level skill learning task involving human participants differs

from the typical input a CNN architecture would expect in three regards. First, it is multi-

modal (containing both verbal and non-verbal attributes) either of which could be significant

to the task being learned. Secondly, demonstrations are likely to be performed over an

extended duration as human responses and actions can take several seconds to be fully

delivered. Finally, responses could be composed of separate parts (i.e. looking at the robot

and gesturing). These aspects could be fleeting and to avoid missing them requires evaluating

the entire video. With these considerations in mind I adapt the DQN to better accommodate

the challenges of the data. The modified architecture is depicted in Fig. 2.1 and discussed

in the following sections. Model parameters are included in the provided figure with F

defining the kernel size, S capturing the stride, N the number of features, and O the output

dimensions where relevant. The code for this implementation is available here: [23]

2.4.1 Feature Extraction

Each demonstration can be separated into a sequence of actions (at) and observations (where

ot = (Vt, pt)) that last for t ∈ T timesteps. In this interaction ot is a composition of an

14

Figure 2.1: Modified DQN for High-Level LfD

audio-video sequence (Vt; composed of i ∈ I frames) collected through the robot’s egocentric

camera and the robot’s microphone, and hidden state information encoded in pt. I mod-

elled my approach on existing deep human activity recognition design principles that had

performed well on benchmark video datasets. I emulate a 2-stream approach [2] by con-

catenating the latent representation that the convolutional layers learned from the raw RGB

data (Ci) with the latent features that parallel convolutional layers extract from the video’s

optical flow (Pi, the movement that occurred between adjacent frames) [24]. Theorizing

that the co-expression of verbal and non-verbal information is likely to illicit an even more

accurate response from the model, I extend this concept to include information present in

the audio input as well. To that end I transform the audio signal into a Mel-Spectrogram

to provide a 2D spectral representation of the data [25] and proceed to separate it into

packets to coincide with the number of frames in the input video (Ai). Mel-Spectorgrams

better represent frequencies in the range of human voice than traditional spectral models

and are therefore a natural consideration given the strong human presence in demonstrations

of sequential tasks. The data (RGB, optical flow, and audio frames) are passed into three

convolutional stacks to identify relevant discriminatory features present in the observation.

This work employs the concept of transfer learning by leveraging features in a trained deep

learning architecture for a novel application [26]. This is accomplished through the use of

15

(InceptionResNetV2/IRNV2) an image inference architecture that has performed well on a

popular image classification benchmark: ImageNet [27]. The RGB frames are passed through

IRNV2. No such pre-trained network existed for the optical flow and audio channels at the

time that this work was completed so I pass these data-types through CNNs of my own de-

sign (PCNN and ACNN respectively). These architectures were composed of 3 convolutional

layers that each terminate in a 2048 length feature vector. This output matches that of the

IRNV2 architecture giving equal influence to each of the different modal inputs.

2.4.2 Temporal Feature Modelling

The extended duration of these interactions made capturing temporal information in the

videos of critical importance. Once the latent spatial features have been extracted from

all three data channels they are concatenated and fed sequentially into a Long Short-Term

Memory (LSTM) layer. LSTM cells are a popular tool among natural language processing

and signal inference architectures and their usefulness in video inference is still being explored

in the context of activity recognition [20]. A LSTM cell can capture patterns in the data

such as the waving of a hand or auditory patterns. The result of this inference is passed

into a fully connected/inference layer (FC1) to develop preliminary q-values: estimates of

the action values based solely on the most recent observation (ot) of the task.

In contrast to the simulated reinforcement learning tasks learned by the DQN models

(i.e. Atari games [21] and Go [28]), it is rarely the case that the entire world state can

be observed directly from observations of high-level tasks. This is a challenge referred to

as perceptual aliasing and describes how visually similar observations can carry different

meaning in context. My system addresses this concern by incorporating an action history

into my model’s inference. I include an integer (pt) that increments each time a specific

action is called (specifically the prompting action, PMT, as defined in Section 2.5.1). This

information is concatenated with the preliminary q-values generated from the observation

before they are fed through a final linear layer (FC2) to generate the final q-value prediction.

16

The action with the highest q-value is selected as the action to execute in the next step of

the policy (at+1).

2.5 Experiments

The effectiveness of my approach towards learning a high-level task from demonstrations is

evaluated in the context of a social greeting behavioral intervention.

2.5.1 Dataset Description: Social Greeting Behavioral Intervention

My end-to-end model is evaluated on a social greeting focused behavioral intervention in

which human participants are encouraged to respond to a greeting provided by a robot.

The robot begins the intervention by waving and verbally greeting the participant who can

respond in either a compliant or non-compliant manner as defined by the clinician (a human

who remotely operates the robot). Having observed the response the robot can execute one

of three actions: a prompting action (PMT), a verbal reward followed by the end of the

interaction (REW), or an unrewarded conclusion to the interaction (END). If a compliant

response is observed then the robot is expected to execute the REW action to reward

expected behavior. If the response is non-compliant then the robot should first execute

PMT and encourage the human participant to perform in the expected manner. If a second

non-compliant observation is observed the robot should terminate the interaction with END.

2.5.2 Dataset Collection

I collected data to train the DQN model through an IRB-approved user study. Volunteers

were recruited to take the role of a student while a tele-operated NAO humanoid robot took

the role of a teacher to conduct the social greeting behavioral intervention.

Six volunteer participants without ASD from the University of New Hampshire (4 male,

2 female) were recruited for the purpose of collecting demonstration data. Participants

performed a total of 18 interactions with the robot. In 12 of the interactions the participant

17

(a) Various Participant Responses (b) Data Collection Setup

Figure 2.2: Social Greeting Behavioral Intervention Data Collection

complied with the robot’s requests, and either ignored or refused to greet the robot in the

remaining sessions. Half of the compliant interactions were delivered in order to elicit at

least one prompt.

The participants were told to respond to the robot using a specific combination of

• Gaze: maintaining visual contact with the robot

• Gesture: responding to the robot’s prompt with a gesture (a wave)

• Audio: responding to the robot’s prompt audibly (saying “hello”).

Example inputs of the different response types are depicted in Fig. 2.2a. Each row of

the figure captures a different modal input: RGB video, optical flow, and audio as a Mel-

Spectrogram (Ci, Pi, and Ai respectively). In this intervention responses that consisted of

only gaze were considered to be non-compliant as the participant had failed to follow the

robot’s directions (to say “hello” to them).

The complete dataset is composed of 155 videos depicting the PMT action, 118 videos

depicting the REW action, and 73 videos depicting the END action. The RGB data in the

REW and END actions is mirrored to increase the size of the under-represented actions.

The videos were recorded at approximately 10fps and varied between 106 and 184 frames in

length. Fig. 2.2b shows a birds-eye view of the data collection setup.

18

2.5.3 Training

In contrast to traditional DQNs which learn in an unsupervised domain, my network is

trained in a supervised manner. The collected tele-operated demonstrations of the behavioral

intervention are separated into state-action pairs and the model is trained to associate a given

video observation with a particular action. Anticipated future directions of this work consider

policy learning of sequential tasks that can be expressed through multiple trajectories. In

these applications the role of expected value and cumulative reward may be important when

considering the most effective approach to completing a task. However, within the context

of the social greeting application reward is synonymous with mapping of states to actions.

Given this motivation I hand-engineered a reward function that captures the intent of a

clinician performing this therapy. A reward value of 1 is given for the correct execution

of terminal actions (REW or END) and a reward of 0.1 is awarded for the appropriate

execution of the PMT action. A discount factor of 0.9 was used to penalize the length of

the interaction. When evaluating the model in simulation 18 videos from each action were set

aside for validation and training was conducted on the remainder. All of the demonstrations

were used to train the real-time model and all are assumed to show correct and optimal

behavior (i.e. no adversaries).

2.6 Results

The effectiveness of this end-to-end model is assessed in simulation and in real time. The

simulated results are used to ascertain the importance of representing partially observable

information in the state representation.

2.6.1 Simulated Results

I compare the accuracy of a model that possesses and a model that lacks the temporal

information provided by pt. The model that lacks the temporal information is identical in

19

(a) Temporal Data Present (b) Temporal Data Absent

Figure 2.3: Simulation Results

structure to the model depicted in Fig. 2.1 with the exception that pt is not concatenated

with the output of FC1 and instead the 1×3 output of FC1 is passed directly to FC2. The

model’s ability to correctly select an action for a given input is measured as accuracy.

When comparing these two models (Fig. 2.3), identical accuracy is observed when select-

ing the REW action indicating that both models are able to recognize the features necessary

to identify a compliant response in the human participants. This is expected as the delivery

of the REW action is independent of the presence of pt. However, identification of non-

compliant responses differs between the models. When pt is present the overall accuracy of

the model is higher and the END action is labelled correctly 83.3% of the time. When this

information is absent the model has a harder time differentiating PMT from END and is

only able to correctly identify END actions 28.6% of the time. Without the the hidden state

information (the action history) the model is unable to correctly replicate the demonstrated

skill.

2.6.2 Real Time Results

Observation Accuracy

When evaluated in real time on human participants (Table 2.1) the modified DQN is able

to achieve an overall accuracy of 67.8% (as a measure of correct action predictions) demon-

20

strating that the model has learned many of the features required to perform the activity. In

most situations it was able to correctly select the appropriate action to respond to a given

human response. The model performs most effectively when auditory responses are delivered

(75% with no other expression and 81.3% with gaze but no gesture) since the participants

show greater uniformity in their vocalizations (they all responded by saying “hello” without

additional modification or inflection). In contrast poorer accuracy is observed when inferring

gestures (25.0% by itself and 6.3% with gaze but no audio). I attribute this loss in accuracy

to the more variant manner in which people wave, including between two successive gestural

responses. Some waves, despite being visually similar, are delivered over different durations

or start at different times relative to the beginning of the video. From these results it can be

inferred that the model’s representation of a wave is overly specific and generalizes poorly to

variations in duration. Given how common such scenarios are in real world observations it is

critical that a duration invariant alternative to the current standard for temporal inference

be employed. This work leverages an LSTM layer to learn temporal representations from

the data and is subsequently responsible for correctly recognizing temporal patterns, such as

auditory signals and gestural response, as they are expressed in the data. Later works that

leverage LSTMs for video inference agree that LSTM models can easily fixate on frame level

variations in the data [9, 29, 30] which can define temporal patterns in terms of an explicit

duration. My results, reinforce this assertion.

Sequence Inference

My hesitations about the LSTM layer required further analysis and a subsequent investiga-

tion indicated that the layer may have learned patterns that were not ideal for representing

the task. Fig. 2.4 depicts how the q-values of the different actions change over the course

of an observation (green, red, and blue depict the REW, END, and PMT actions respec-

tively). It can be observed that after an auditory response acknowledging the robot (Fig.

2.4 (a) at frame 105) there is a mandatory period of silence that has to follow the audio

21

Responses
Gaze Gestural Auditory Accuracy

No No No 95.8%
No No Yes 75.0%
No Yes No 25.0%
No Yes Yes 68.8%
Yes No No 87.5%
Yes No Yes 81.3%
Yes Yes No 6.3%
Yes Yes Yes 37.5%

Total 67.8%

Table 2.1: Real-time Results of Varied Responses

signal before it can be correctly identified as a compliant response. In Fig. 2.4 (b), when

a gesture is performed (frames 105-130) it is only when the wave has concluded that the

observation is correctly classified. I consider these two responses to be inconsistent with

what a teacher of the activity would consider as compliant criteria for participant responses.

Furthermore, these results indicate that the model has developed specific, duration depen-

dent representations of these activities. This prompts the question that, if a response had

been performed at a more modest pace or been delivered after some hesitation would that

activity have been incorrectly identified using the current model? The incongruity between

what is expected and observed given the entire video as a visual input suggests that the

sequential, frame-aggregation approach employed by the LSTM layer may inhibit its ability

to recognize the truly important parts of the video observation. A solution to this involves

looking at the video from a global scale in order to recognize where the important aspects

of the observation start and end and what long-term dependencies exist among the data.

2.7 Conclusion

My exploratory work into modelling a high-level skill with an end-to-end deep learning

framework sheds light on two specific limitations where inadequate temporal modelling can

hinder model performance. The first, is in capturing hidden aspects of the world state not

22

(a) Auditory Response

(b) Gestural Response

(c) Gaze Response

(d) No Response

Figure 2.4: Q-values of Videos Segmented at Different Lengths.

23

visible in observations. I leveraged action history information in the definition of pt to prove

the importance that this data represents. A more complex representation would represent

not only prior action histories but potential loops within a policy. This research direction

was explored in collaborative efforts with a Master’s student [14, 31] who would later go onto

defend this work as his final thesis. The other aspect of high-level tasks in need of robust

temporal modelling is the observations themselves. Specifically, the absence of duration

invariant structures prevents robust generalization of activities as they are expressed over

different time periods. This is evident in the gestural responses depicted in the social greeting

behavioral intervention domain. Furthermore, the reluctance of contemporary approaches

to investigate full-length video in a single architecture results in a breakdown in the ability

to model long-term dependencies, at least where the LSTM layer is concerned.

2.8 Contributions

The described work was presented in the 26th (2017) IEEE International Symposium on

Robot and Human Interactive Communication (RO-MAN) [15] and the 2018 ACM/IEEE

International Conference on Human-Robot Interaction [16]. Compared to earlier litera-

ture on high-level LfD, the approach described here does not make simplifying assumptions

about perception nor does it rely on user-defined visual feature extraction. Rather, it di-

rectly learns the discriminatory visual features from the data. This work represented one

of the first real-world applications of DQN and the first automated delivery of a behavioral

intervention. Furthermore, it established two critical challenges when modelling temporal

features: 1) perceptual aliasing and a need to develop temporal reasoning solutions that

could incorporate hidden state information into the state estimation and 2) the need to rep-

resent temporal information as it is expressed in video observations in a duration invariant

and scalable manner. The former challenge would be investigated in collaborative works pub-

lished in the 28th (2019) IEEE International Symposium on Robot and Human Interactive

Communication (RO-MAN) [31] and the 2019 IEEE International Conference on Robotics

24

and Automation (ICRA) [14]. The later challenge is the basis for this dissertation.

25

CHAPTER 3

LITERATURE REVIEW

3.1 Introduction

Many inference architectures use representations of time to model sequential information

such as video. Traditionally, this has been accomplished using probabilistic temporal models

[4, 32, 33, 34, 35] , frameworks for temporal reasoning that leverage principled definitions

of temporal logic. As these models and their temporal representations have increased in

complexity, they have become better suited to representing time in a general sense and

modelling temporal representations at scale. However, the advent of deep learning has had

a profound change in the manner in which temporal features are developed. Rather than

adhere to the tried and true temporal logic used in classical models, new approaches attempt

to learn unique temporal descriptors from the data. This approach has been successful when

validated on thousands of short clips from benchmark video datasets, but does not scale to

longer videos or sparse datasets.

As context for my literature review I describe Allen’s Interval Algebra and Graph Con-

volutional Networks. Allen’s Interval Algebra has been leveraged by Time-Interval Models

(Section 3.3.3) and Graph Convolution Networks play a critical inference role in my pro-

posed approach to overcoming the challenges of representing temporal features in video data

(Chapter 4). Following this background information, I provide an overview of various clas-

sical temporal learning models and discuss the factors that led to their fall from popularity.

This is followed by a discussion of deep learning-based approaches to modelling temporal data

and their weaknesses in the face of inconsistent action durations and video-scale features.

26

Figure 3.1: The 13 Interval Temporal Relationships

3.2 Background

I begin by discussing the background concepts of Interval Algebra and Graph Convolutional

Network, the two tools used by my proposed approach for learning temporal features.

3.2.1 Interval Algebra

Allen’s Interval Algebra is a temporal logic that describes 13 interval temporal relationships

(ITRs) that can occur between two events, periods of feature expression with explicit start

and stop times [36]. Allen defines thirteen different temporal relationships: 6 forward rela-

tionships, 6 inverse relationships, and ‘equals’. Fig. 3.1 depicts the different relationships

visually. Two distinct spatial events ‘A’ and ‘B’ are related by the manner in which they

begin and conclude.

Describing temporal features in terms of Allen’s Interval Algebra has several ideal prop-

erties, the most significant to my work is that the relationships are duration invariant. ITRs

are defined by how two different event’s start and stop times relate to one another. Sub-

sequently, the representation of an ITR does not need to explicitly capture the time when

each event occurs and the duration that extends between them. This property has been the

basis for prior probabilistic temporal modelling approaches that aim to learn discriminatory

aspects of video [4]. However, each instance in which a probabilistic temporal model used

interval algebra did so in conjunction with user-defined features. No works have explored

the use of ITRs with data-derived features. This is likely a combination of the storage de-

27

(a) l=0 (b) l=1 (c) l=2

Figure 3.2: Progressing Convolutions in a GCN

mands of this approach which increases quadratically with the inclusion of additional spatial

features, and the typically large and uninformative output generated by standard spatial

feature extractors. I address these issues by leveraging bottleneck structures [37] to refine

the selection of data-driven features and Graph Convolutional Network (GCN) to identify

which of the many extracted ITRs are discriminatory given the visual data.

3.2.2 Graph Convolutional Network

Graph Convolutional Networks are a recent advancement in neural networks that allows for

deep learning on graphical structures [38]. GCNs operate under the same principles as a

CNN: discriminatory features of the graph are learned in a local area and through subse-

quent convolutions a hierarchy of more complex, and more distant features are developed.

The D-ITR-L pipeline extracts the ITRs present across an entire video and presents them in

a graphical format. I use a GCN to learn the discriminatory ITRs present in this graphical

representation for inference tasks. GCNs trained on ITRs are able to recognize complex tem-

poral relationships that are unique to specific inference labels. The representations learned in

this fashion are duration invariant (in that a single representation can capture the presence

of an action regardless of the explicit duration over which it is expressed) and can identify

long-term dependencies as they are expressed across the entire length of a video.

The design of the GCN is similar in principle to that of traditional convolution-based

architectures in that the GCN attempts to match a kernel feature representation (in this

28

case a sub-graph) to an input (the input graph) and develops an output that denotes where

and how well the kernel matched parts of the input. The critical difference being that in

CNNs the local area is defined spatially by adjacent pixels or matrix locations. Whereas,

in the GCN the local area is defined by edges to adjacent nodes. Consider the graph in

Fig. 3.2a which is composed of a set of nodes (i ∈ I), each of which is defined by a

vector of properties (hli where l ∈ L indicates the layer/depth of the GCN) and a set of

un-directed edges connecting nodes together. A single convolutional operation applied to

node hli of the graph identifies and aggregates the feature vectors of the central node and

the nodes that are directly attached to it (j denotes a node in the neighborhood of node i,

Ni). The aggregation method is user-defined but in the context of this work is an averaging

operation. The aggregated vector is then multiplied by weight values Wl and passed through

an activation function (σ) generating a new more complex feature representation (hl+1
i) that

will go on to define node i in the next convolution (Fig 3.2b). This operation is formalized

in equation 3.1 where cij is a constant normalizing factor. This work uses the average as an

aggregation method and therefore cij can be defined as the degree (number of edges) of node

i.

hl+1
i = σ

(∑
j∈Ni

1

cij
hljW

l

)
(3.1)

Each convolution of a GCN aggregates the information in vertices that are an additional

hop away from the source (or starting) vertices. Therefore, each convolution operation serves

to develop a more complex latent representation that considers more distant nodes (Fig 3.2c).

However, this does restrict the information that a singular node representation can capture

to a neighborhood of nodes that is up to a maximum of L edges away. Many extensions to

the general GCN structure exist. My work uses the Relational-Graph Convolutional Network

(R-GCN) [39] which allows for more control when aggregating edge labels by redefining the

neighborhood function to include only those with a given edge label. New representations

are defined using equation 3.2.

29

hl+1
i = σ

W l
0h

l
j +
∑
r∈R

∑
j∈Nr

i

1

cir
hljW

l
r

 (3.2)

3.3 Classical Methods

Traditional approaches to modelling temporal features have been addressed by a selection

of probabilistic graphical models that focus on modelling time. These architectures have

evolved in complexity and their representations of time have become increasingly rich in

order to model a greater breadth of data. Probabilistic Temporal Models initially developed

temporal relationships in the context of singular time-slices, but have since developed to

represent relationships over intervals [35, 36, 40, 41]. I consider three general approaches to

representing time in probabilistic models: time-slice approaches, grammar parsing models,

and time-interval models.

3.3.1 Time-Slice Models

The simplest and most well-known approaches to modelling time are the Hidden Markov

Model (HMM) and Dynamic Bayesian Network (DBN). HMMs capture the expression of

a hidden state by evaluating observations generated by the system over time. DBNs are

Bayesian networks that capture stochastic changes between timesteps. Both of these meth-

ods, and their derivatives (Dynamically Multilinked HMM[42], Switching Hidden Semi Markov

Model [43], Coupled HMMs [44], Propagation Nets [45], etc.) relate information using singu-

lar time-slices and do not consider concepts such as duration. Modelling of temporal features

using time-slices is accomplished through point-based relationships [46] and can only capture

concepts such as before, during, and after, they are unable to express complex relationships

such as the overlap of different concurrent events.

30

3.3.2 Grammar Parsing Models

Grammar parsing methods derive from natural language processing methods and attempt

to learn a temporal representation that matches observed temporal data. These models lack

an explicit temporal logic but are capable of mimicking more complex relationships using a

combination of point-based relationships. Some examples of methods that fall within this

category are Probabilistic Time Petri Nets [47, 48] and Suffix Trees [49]. Both methods

use concepts of before, during, and after in the context of when features begin and end.

These implementations are effectively precursors to time-interval calculus, a temporal logic

employed in time-interval models.

3.3.3 Time-Interval Models

The richest and most complex representation of time in probabilistic temporal models are

those that consider relationships between events in the context of intervals. These ap-

proaches leverage the temporal calculus of Allen’s Interval Algebra (discussed at length in

Section 3.2.1). Interval algebra describes temporal features as a measure of their temporal

overlap. The Probabilistic Temporal Network (PTN) [40] develops a Finite State Automata

(FSA) that captures the overall temporal structure of an activity using interval algebra. The

FSA in this work is similar in structure to the ITR graph generated by D-ITR-L, as both

represent spatial events as the nodes of a graph and use temporal relationships when defining

the graph’s edges. However, while the FSA in PTN is a learned representation of a class,

my implementation is an encoding that captures an exhaustive description of all observed

relationships within a video. The ITR graph is used for inference within D-ITR-L which

is conducted through the use of a GCN. The Interval Temporal Bayesian Network (ITBN)

[4] extends the concepts of PTN further by using stochastic representations of the inter-

val relationships within the FSA. Stochastic temporal descriptions are a non-deterministic

method for representing temporal relationships and provide the ITBN greater flexibility and

robustness in representing complex domains. Models developed using time-interval based

31

representations such as the ITBN and PTN are complex and checking temporal consistency

of triangle-based temporal relationships and their need to evaluate all possible network struc-

tures can become computationally intractable with an increase in network complexity [4, 35].

Nevertheless, ITBN and PTN continue to act as benchmarks for comparing probabilistic

temporal models and are referenced frequently in the context of modern activity recognition

works [50, 51, 52, 53, 54].

3.3.4 Validation

Probabilistic temporal models have been applied to many cross-disciplinary problems that

challenge their ability to represent temporal features in a duration invariant and scalable

fashion. The tasks being addressed are challenging domains composed of visually similar,

real world observations such as emerging sports strategies [4, 55], transforming facial expres-

sions [33, 34], and vehicle loading and unloading [4]. However, in each of these applications

temporal features have been developed using spatial feature information that has been ex-

tracted according to hand-picked methods. For example, transforming facial expressions

were identified by combining probabilistic temporal models with engineered features that

can identify parts of a face. Another example is present in identification of different plays

in an American football game which were learned from frame-level annotations that capture

the position of individuals on a football field. A common approach when modelling human

activities is to overlay a skeletal model on an individual and perform inference using human

joint angles [56, 57] but this makes assumptions about the video content of the observation.

Namely, that it contains a human, that the human demonstrates skills that can be matched

by the skeletal model being employed, and that the quality of the video is good (i.e. that

there is little occlusion and that the skeletal model will perform well). These methods are

not data driven and while they provide examples of what can be achieved with the rich repre-

sentation of temporal features they also make strong assumptions regarding the capabilities

of modern perception systems.

32

3.4 Deep Learning Methods

The remarkable success of deep learning architectures in visual inference domains, such as

image classification [58] and policy learning [21], have stirred renewed interest in tasks that

model complex temporal data such as signal processing and video recognition. The data

driven spatial feature finding abilities of deep learning architectures has been critical to their

many achievements. However, the approaches taken to capture temporal information using

deep learning models disregard the accomplishments of earlier works. Rather than leverage

established temporal representations, such as time-interval or time-slice concepts, deep mod-

els attempt to learn temporal concepts from the ground up. Temporal representations in

deep learning architectures are generated through two methods: Recurrent Neural Networks

and convolution-based approaches. I discuss both and elaborate on the design flaws that

prevent these models from being duration invaraiant and representing video-scale features.

3.4.1 Recurrent Neural Networks

Recurrent Neural Network (RNN), and its derivatives Long Short-Term Memory [20, 59, 60]

and Gated Recurrent Units [61, 62], can be used for signal processing and time series inference

in a duration invariant manner given specific criteria. These methods aggregate feature

expression sequentially and periods of consistent feature expression are conglomerated into a

single representation. But, this is unrealistic given a real world input, and RNNs frequently

over fit on sparse and noisy data[8, 9]. Subsequently, these models are limited to representing

short-term patterns in the data rather than variable duration, long-term dependencies. This

was observed in my exploratory work (Chapter 2), in which my use of LSTM-learned patterns

generalized poorly to novel data and adopted inconsequential properties of human responses

into its latent representation.

33

3.4.2 Convolutional Architectures

The image processing properties of CNNs have encouraged research into convolution-based

representations of time [63, 64]. This has been accomplished in two variations: temporal

inference using 1D convolutions filters [13, 63] and spatio-temporal inference using 3D con-

volutional filters [9, 65]. Both variations adhere to a hierarchical design in which larger

and more complex representations are derived from lower level concepts. Temporal repre-

sentations captured in this manner have a fixed duration, duration invariant inference, and

a limited scale defined by the depth of the convolutional network. In order to capture a

video-scale feature, a deep enough representation must exist in the deep learning architec-

ture to span the duration between the component feature expressions [63]. For example,

when making tea a video-scale feature might capture a relationship between adding sugar

to a cup at the beginning of the video (frame 1) and stirring the cup at the end (frame

100). Using 1D convolutional filters that cover a duration of 5 frames, representing this

video-scale feature as a latent representation would require a model that is 25 layers deep.

For comparison many of the deepest architectures today such as ResNet-50, ResNet-101, and

ResNet-157 are used in image recognition [66]. These models despite possessing hundreds of

layers of convolutions only collapse their representation a handful of times (between 3 and 10

times). By refusing to expand the size over which they develop their representation they can

develop a greater number of spatial features without incurring large computational costs.

Even when considering these accommodations these architectures perform tens of billions

of floating point operations per second and must be distributed between 4 and 16 GPUs.

The challenges of developing broad spatial features (features that span the entire spatial

dimensions of a frame) are well-established and have developed a number of ad hoc solutions

[67].

34

CHAPTER 4

DEEP INTERVAL TEMPORAL RELATIONSHIP LEARNER

This chapter discusses Deep Interval Temporal Relationship Learner (D-ITR-L): a temporal

wrapper that transforms autonomously learned spatial features from a video, as identified

by a data-driven architecture (in this work a CNN), and converts them into a graphical

representation depicting the temporal relationships expressed across a video input. D-ITR-

L is the core contribution of my work.

4.1 Temporal Feature Learning Using D-ITR-L

Algorithm 1 D-ITR-L

Input: M , a four dimensional tensor < F,H,W, T >, where F : number of features, H:
height, W : width, and T : time

Output: A, an ITR Graph
1: IAD ← maximum function applied to M over H and W . O(F ×H ×W × T)
2: IAD ← IAD thresholded using Φf . O(F × T)
3: E ← a set of events are extracted from M . O(F × T)
4: A← IdentifyingTemporalFeatures(E) . O(E2))
5: return A

Deep Interval Temporal Relationship Learner (D-ITR-L) is a wrapper that extends the

feature learning abilities of traditional CNN architectures. D-ITR-L operates as a pipeline as

shown in Fig. 4.1 (and broadly described in Algorithm 1) transforming the spatial features

identified by a CNN backbone model into temporal features (in the format of an Interval

Temporal Relationship (ITR) graph) which are used as the basis for training a GCN as part

of a greater end-to-end model, e.g., for state estimation.

35

Figure 4.1: The Deep Interval Temporal Relationship Learner Pipeline

D-ITR-L begins by leveraging the output of the CNN backbone to develop a novel format

that I term an Interval Algebraic Descriptor (IAD). The IAD denotes events, periods of

time in a video when spatial features identified by the CNN are expressed. These events

are combined to define temporal features which are described in the context of abstract

temporal relationships defined by Allen’s Interval Algebra [36] (Section 3.2.1), a duration

invariant temporal logic. Temporal features collected across the video are organized into a

graphical format allowing for direct inference of distant temporal relationships (ITR Graph).

The graph of temporal features generated by D-ITR-L can be used as a superior alternative

to the standard, pixel-based input of modern neural network inference architectures. A graph

convolutional network (GCN; Section 3.2.2) is used to infer the discriminatory aspects of the

temporal features present in this graphical presentation and the resulting logits, a vector or

raw prediction values, can be used in various applications including activity recognition and

policy learning.

4.1.1 Spatial Feature Extraction

The first step in the D-ITR-L pipeline is identifying a set of informative spatial features

from which to build complex temporal relationships. These spatial features are obtained

from a pre-trained, user-selected CNN backbone. It is assumed that the CNN backbone has

been fine-tuned to recognize spatial features that occur in the dataset upon which the D-

ITR-L will be evaluated. The structure and steps to train the backbone networks is outside

the scope of my contribution and is elaborated in Sections 5.4 and 6.3.1 when describing

hyper-parameter tuning in the context of specific applications.

36

A common modification made to all spatial feature extractors that leverage D-ITR-L is

their use of a bottleneck to constrain the number of spatial features used to generate an ITR

Graph. Identifying ITRs generates a pairwise number of edges when given a fixed set of

spatial features. I reduce the number of features output by the backbone model by inserting

a 1 × 1 convolutional bottleneck layer [66] prior to the model’s inference layer. A more

detailed discussion of how the bottleneck is implemented is provided in Appendix A.

4.1.2 Formatting Interval Algebra Descriptors (IAD)

Passing a video into a traditional CNN video architecture generates an activation map (M):

a 4-dimensional tensor (F ×H×W ×T) denoting the relative expression of learned features,

where F : the number of feature, H: height, W : width, and T : time. Each activation

map is transformed into a novel structure that I term an Interval Algebraic Descriptor

(IAD) for further processing. The IAD describes when spatial features are expressed in the

duration of a video. The IAD reduces the four-dimensional activation map down to a two-

dimensional structure (F × T) by collapsing the spatial dimensions (H and W) to a single

value. This is accomplished using a maximum operation, applied over the spatial dimensions.

The maximum function operates in O(n) time as it must investigate each location in the

activation map. Therefore, it operates in O(F × H ×W × T) time, though this operation

is typically expedited through parallelism. Compared to other operations the maximum

function effectively captures relative feature expression at a time step regardless of how

sparse the feature expression is across the spatial dimensions. The reduced representation

clearly indicates the relative expression of each feature at each time. Fig. 4.2a shows an

example IAD constructed from a video lasting 195 frames. The relative expression of the 32

different spatial features, identified using a VGG-16 backbone CNN, is depicted in greyscale

(with darker shades denoting increased expression). Time is expressed along the x-axis and

the features as independent rows along the y-axis. Zoomed regions are identified in red for

clarity.

37

4.1.3 Event Detection

Event detection can be performed from the IAD by determining the explicit start and stop

times when a spatial feature is actively expressed. This distinction is useful for recognizing

the nature of the temporal relationship that exist between two spatial features. A different

threshold value (Φf) is selected for each feature (f ∈ F) using the average expression of that

feature over the entire dataset. I investigated more complex threshold values by varying the

average by a factor of the standard deviation, but none were as effective as the one described.

Alternative threshold values exist and identifying if a better value exists is a potential future

research direction. This requires a single pass over the training dataset to identify Φf and

a subsequent pass to threshold the data. Values in the IAD that fall below (Φf) are set

to 0. The thresholding operation occurs in O(n) time, this equates to an operating time of

O(F × T)

Each event (the regions greater than Φf) is defined with a four-tuple < ts, te, f, fmx >

denoting the timestamps when the event started (ts) and ended (te), and a description of the

content of the event using the feature label (f) and the maximum expression of that feature

across the event (fmx). Fig. 4.2b depicts the events present in the IAD shown in Fig. 4.2a.

The intensity of the shaded regions matches the value of fmx. Extraction of events takes

place over O(F × T) time as each location in the IAD must be checked to identify whether

the value is active or not. The event extraction process generates E unique events. In the

worst case there will be (F × T
2
) events in E in the unlikely case that an spatial feature is

expressed on every odd time increment and is not expressed on every even time increment.

4.1.4 Interval Temporal Relationship Identification

The events (E) identified in Fig. 4.2b are the basis for recognizing the presence of ITRs in

the input video. Pseudocode describing this process is provided in Algorithm 2. Additional

clarification is provided by Fig. 4.3a which shows a simplification of a thresholded IAD of

a video. The example captures four example events expressed across time. Identification of

38

Algorithm 2 IdentifyingTemporalFeatures

Input: E, a list of spatial events each defined by a tuple < ts, te >
Output: List of Temporal Features
1: A← [] . List of ITRs
2: E ← E.sort() . Sorted in order of ts followed by te
3: for i in range (0, length(E)) do
4: r ← None
5: for j in range (i, len(E)) do
6: if r != ‘before’ then
7: r ← IdentifyITR(E[i], E[j])
8: end if
9: A← (E[i], r, E[j]) . Temporal Feature added to List
10: end for
11: end for
12: return A

Algorithm 3 IdentifyITR

Input: x, y, two spatial events each defined by a tuple < ts, te >
Output: r, an ITR Relationship
1: if x.te < y.ts then
2: return ‘meets’
3: end if
4: if x.ts < y.ts & x.te < y.te & x.te > y.ts then
5: return ‘overlaps’
6: end if
7: if x.ts < y.ts & x.te > y.ts then
8: return ‘during’
9: end if
10: if x.ts > y.ts & x.te == y.te then
11: return ‘finishes’
12: end if
13: if x.te < y.te & x.ts == y.ts then
14: return ‘starts’
15: end if
16: if x.ts == y.ts & x.ts == y.ts then
17: return ‘equals’
18: end if
19: return ‘before’

39

(a) A raw IAD

(b) A thresholded IAD

Figure 4.2: Event detection using IAD.

temporal features requires a pairwise comparison between the spatial events (E(E−1)) and is

an O(E2) task, but heuristics learned in an earlier collaborative work [14] can be leveraged

to reduce the number of computations that must be performed. The first consideration

when reducing complexity is to only investigate forward ITRs (listed in Fig. 3.1) and avoid

redundant calculations from inverse relationships. Directed relationships between events

are replaced with undirected connections effectively reducing the number of unique ITR

relationships from 13 to 7 (Alg. 3). The second approach to expediting temporal relationship

identification is the application of an algorithm to sort the events in ascending order of ts

and te (line 2 of Alg. 2), and then iterating through the events in a pairwise manner to

find the ITR that relates each pair of events (line 7). This approach takes advantage of

logical truths about Interval Algebra, for example, if event ‘A’ is related to event ‘B’ by a

before relationship, then an event ‘C’ that starts at the same time or later than event ‘B’

will also be related to event ‘A’ by that same ITR (i.e. before; Alg. 2 line 6). The algorithm

limits the number of comparison operations that must be conducted to generate the entire

set of temporal features from a video. Fig. 4.3b demonstrates the resulting list of identified

ITRs, where we have related event 1 to event 2 by an “overlaps” ITR, event 1 and event 3

by a “meets” ITR, so on and so forth. This list of ITRs is subsequently assembled into an

ITR graph. Events become the nodes (labelled with fi, and weighted by fmx) and the ITRs

40

(a) IAD Example (b) ITR List (c) ITR Graph

Figure 4.3: Transformation from thresholded IAD (a) to a list of ITRs (b) to an ITR Graph
(c). ITR labels match those in Fig. 3.1.

become the edges. Fig. 4.3c depicts an ITR graph. The ITR graph is the collection of all

temporal features in an input video.

4.1.5 Learning From Temporal Features

A GCN is used to perform inference on the ITR graph. The relational GCN (R-GCN)

[39] learns the discriminatory relationships present in a graph whose edges are defined by a

discrete set of labels rather than continuous values. This offers a more natural integration of

the data. In my work I used the same R-GCN architecture defined in [39]. Modification of

the hyper-parameters in this architecture may generate better inference from the ITR graph

but would also represent an additional uncontrolled variable in the subsequent evaluation of

this architecture. GCN inference begins at the nodes and with further convolutions extends

a hierarchy to neighboring nodes. Through the use of the R-GCN different weights provide

a bias to how different ITRs relate events, for example an ‘equals’ ITR is a less common

ITR and is therefore more likely to carry greater temporal significance than the ‘before’

ITR which is relative common. The use of a GCN in inference allows for sufficiently deep

GCNs to create a network of ITRs that describe complex dependencies among the temporal

features. In the context of Fig. 4.3c, the combined relationships of event 1 “overlaps” event 2

which “finishes” at the same time as event 3 might be considered a discriminatory temporal

feature compared to the other relationships in the graph. With an ITR graph as input,

the output of the GCN is akin to the output of a regular CNN, a vector of values that

41

represent the contents of the video (logits). Using a real world example, logits describe the

relative presence of high-level concepts in the video input such as evidence that someone is

pouring water or turning on the stove in a tea making sequential task. Logits are raw and

unrefined values and it is expected that they will be used in concert with other deep learning

architectures to perform a specific function such as activity recognition (through the use of a

softmax layer) or policy learning (through the use of a specific policy learning architecture).

4.2 Contributions

The D-ITR-L pipeline is the foundation upon which the rest of the work in this thesis has

been established. D-ITR-L is a tool that transforms the pixel representation of a video into

a graphical representation of interval temporal relationships. This representation presents

information in a duration invariant and a scalable video-scale fashion. To the best of the

authors knowledge no other models can capture video-scale features in a duration invari-

ant manner using a data-driven architecture. D-ITR-L is validated in three experiments

distributed over the next 3 chapters. Two descriptions of this work have been included in

separate submissions to the IEEE International Conference of Robotics and Automation

2022.

42

CHAPTER 5

TEMPORAL FEATURES FOR POLICY LEARNING

Temporal features captured in an ITR Graph describe how spatial features are expressed in

time and can be substituted in any inference task that would typically be modelled using

spatially-derived features. I demonstrate this in the context of policy learning from visual

demonstrations. Training robots to learn from long video observations with redundant spatial

features represents a markedly different visual format than what is encountered among other

computer vision tasks, and other CNN-driven policy learning architectures. The emphasis

on visually-similar video observations creates two challenges of this learning environment:

durational variance (how features can be expressed at different scales of time) and video-scale

features (feature expression at the scale of a full video as opposed to a over short snippets), I

employ D-ITR-L to address both. In this chapter, I discuss how the D-ITR-L framework can

be extended for use in policy learning and validate D-ITR-L’s capabilities when tackling the

challenges that dominate this visual domain. The code for this implementation is available

at [68].

5.1 Related Works

Contemporary vision-based LfD architectures leverage the discriminatory feature learning

properties of CNNs in their design. Many of these architectures are designed for low-level

control applications and as a result use single frames or short clips of video (lasting fewer

than 10 frames) for inference [69, 70]. By focusing on shorter-form video input these works do

not require solutions to the challenges generated by long duration videos. These approaches

43

Figure 5.1: The D-ITR-L policy learning pipeline.

are often reactionary in nature, encouraging the learned model to respond to specific spatial

stimuli as soon as they are observed. In contrast, vision-based high-level policy learners must

perform inference over longer observations including video. These models typically rely on

simplifying assumptions [19] or user knowledge [71] when implementing robot perception.

The exception being my earlier work [16] which extracted useful features from full-length

video input using a CNN-architecture (Chapter 2).

5.2 Extending D-ITR-L for use in Policy Learning

I present an architecture that relies on D-ITR-L for state estimation when learning the policy

of a sequential task from visual demonstration. Through this approach performance of D-

ITR-L and the critical role that temporal features play in learning vision-based task policies

can be quantitatively evaluated when learning temporal features.

D-ITR-L was extended for policy learning in a manner consistent with Behavioral Cloning

(BC) [72] in which the policy is learned as a mapping of states to actions using a set of la-

beled state-action pairs [73]. CNN-based architectures are often used for state estimation in

44

contemporary BC approaches that learn from vision data [73]. D-ITR-L uses temporal fea-

tures, instead of raw pixel data, providing it with a greater state estimation ability which, in

turn, contributes to better policy learning. A simple extension of D-ITR-L is described that

uses a Long Short-Term Memory (LSTM) cell to infer actions over the state-action history,

the entire system (D-ITR-L and LSTM) is trained in an end-to-end manner. LSTMs have

been used for action selection in prior vision-based BC works [16, 74], where the discrete

time steps and short duration observations have been particularly effective. In this appli-

cation the LSTM is not used to infer information from the observation but instead from

logits expressed in discrete time steps. The aforementioned challenges and criticisms of the

recurrent architecture related to duration invariance and video-scale features do not apply

here as this input does not deal with raw video input.

The D-ITR-L-assisted policy learning architecture operates as a pipeline (Fig. 5.1). A

video-based observation of arbitrary duration taken at time (ot) is fed as input into D-ITR-L

to generate an I length vector of logits (oit where i ∈ I). The length of I is user-defined and

should be large enough to capture all of the potential observation states needed to define the

policy. These logits (Section 4.1.5) are combined with the logits generated by observations

in previous time steps and a one hot encoding of prior actions (ajt where j ∈ J). The length

of J is defined by the number of available actions in the task. Zeros are used to represent

the action to be inferred (at). The resulting two dimensional matrix is an estimation of the

state (S) and is fed sequentially into an LSTM layer. The LSTM generates values for each

of the policy’s actions and the action with the highest value is selected to be performed in

the subsequent time step (at).

5.3 Block Stacking

The strength of D-ITR-L at learning temporal features and, in turn, sequential task policy

from visual demonstrations is best demonstrated through a task (and environment) where

the same actions are executed over variable durations (duration invariance) and where task-

45

relevant spatial features are distributed over the entire length of the video and may even

appear multiple times (video-scale features). Existing publicly available benchmark video

datasets do not match these criteria. Additionally, the strong spatial bias exhibited by

existing datasets allows them to be modeled using only their spatial features [7] (this is

elaborated upon in Section 6.1.3). To that end, I designed a sequential block stacking task

to evaluate D-ITR-L and its role in policy learning.

5.3.1 Problem Definition

In this task, a human moves colored blocks between two opaque containers while following

any of the following rules at each step: move no blocks (n); move one red (r), blue(b), or

green(g) block; move a blue block followed by a green block (bg) or vice versa (gb); or move

two or three red blocks (rr and rrr respectively). These last two are examples of video-scale

features. The use of opaque containers focuses learning on temporal features, preventing

a single frame or short clip of the video from fully defining the observation. The goal of

the experiment is for a robot to stack colored blocks in an order that matches the pattern

demonstrated by the human, as shown in Fig. 5.3. The robot is allowed to select one action

during each phase of the interaction to either stack a single colored block (R, B, or G) or

pass (N).

5.3.2 Demonstration Set

Expert demonstrations are collected with a single human demonstrator and a tele-operated

Sawyer robot (Fig. 5.2). Using a RealSense camera I recorded ten RGB videos in which a

human moved blocks according to the eight aforementioned observations for a total of 80

videos. Three videos from each observation are set aside for testing purposes and the rest

are used for training. To investigate the duration invariance aspect of D-ITR-L, I compared

two variants of the dataset: one where the movement of blocks and collection of video

was consistently timed using a metronome, and another where movements were executed

46

Figure 5.2: The Data Collection Environment

Figure 5.3: An Observation-Action Trace for Stacking 5 Blocks.

inconsistently.

Collecting full demonstrations in the block stacking task is time consuming. It requires

several minutes of video to capture observations needed to stack a single tower. Further-

more, contemporary health concerns (COVID-19) required that all demonstrations be col-

lected through a single individual (the author). To limit complications such as participant

fatigue, demonstrations were generated in a procedural manner. This was accomplished by

sampling one example from each of the eight observations (b,g, r, bg, gb, rr, rrr, or n). These

observations were then shuffled together and mapped to appropriate robot action choices (R,

G, B, or N). Each demonstration lasts 13 actions allowing each of the observations to be

depicted once. Observations depicting no action (n) were used to pad the observation trace

47

to match the length of the action trace. An example demonstration lasting five action steps

is depicted in Fig. 5.3. Due to tower instability real world evaluation on a robot was con-

ducted using demonstrations trimmed to allow for the placement of only five blocks. A total

of 100 demonstrations were generated of which 90 were used for training and the remainder

were reserved for evaluation. Trajectory learning is beyond the scope of this work and it is

assumed that the robot knows where the blocks are located and how to grasp and stack the

blocks, the focus of this work is to generate a strong representation of the state using the

latent temporal information present in the videos of this sequential task.

5.4 Backbone Model Preparation

Four CNN backbone structures are contrasted in this work. I selected two popular image

inference (VGG-16 [75] and WideResNet [76]) architectures and two video inference archi-

tectures (I3D [65] and Temporal Shift Module (TSM) [11]). D-ITR-L and other temporal

inference models described in Section 5.5 use the fixed spatial features identified by these

architectures in their inference. It is entirely possible that a different selection of backbone

models could generate a better set of spatial features and subsequently achieve better per-

formance than the reported results. However, the merit of this work is not on improving

the spatial representation but rather on developing strong temporal representations from

available spatial features regardless of their quality.

5.4.1 Pre-processing

Due to the sparse nature of our videos the input is pre-processed using Gaussian blur and

background subtraction [77]. Gaussian blur reduces the per-pixel variances common in ob-

servations from real-world video allowing for smooth application of additional pre-processing

functions. Background subtraction masks static, background features such as the environ-

ment in an observation and instead highlights the information present in dynamic moments,

those being moments when features move. The visual input was resized to match the archi-

48

Backbone Inconsistent Consistent
I3D 8 16

Temporal Shift Module 16 16
Wide ResNet 16 16

VGG-16 32 32

Table 5.1: Backbone-CNN Bottleneck Size in the Block Stacking Dataset

tecture it was being fed into.

5.4.2 Feature Bottleneck

Identifying ITRs generates a pairwise number of edges when given a fixed set of spatial

features (Section 4.1.1). I reduce the number of features output by the backbone model

by inserting a 1× 1 convolutional bottleneck layer [66] prior to the model’s inference layer.

The number of features to reduce down to is user-defined. I performed a grid-search to find

the best value for each model from 8, 16, 32, and 64 spatial features. Given the resource

consumptive nature of D-ITR-L I identified that 64 spatial features was the most I was

able to consistently place on a computer using 2 Titan X GPUs without instituting ad hoc

solutions to limit the number of times that a given feature could be expressed as a unique

event. Three instances of each backbone models were developed at each bottleneck size.

The highest performing bottleneck was leveraged when comparing the different temporal

inference models. The CNN-backbone models were all trained on the consistently timed and

inconsistently timed datasets separately to better fit the learned spatial features to the data

within each datasets. Subsequently, identical backbone models could achieve better accuracy

with different bottleneck sizes. The bottleneck sizes used with these datasets are listed in

Table 5.1.

5.4.3 Training

Each backbone network came with a pre-trained model which was fine-tuned to recognize

discriminatory visual features in the block stacking dataset. The sparse expression of infor-

49

mative spatial features in the videos impedes learning. This limitation can be overcome by

temporarily applying a max pooling layer to the back-end of my backbone, reducing along

the temporal dimension when fine-tuning the backbone models. This process removes the

expression of temporal features and focuses solely on the expression of spatial (in the case

of image inference models) and spatio-temporal features (in the case of video inference mod-

els). The backbone network is trained to predict observation labels over 50 epochs, using

a batch size of 8 videos, with an Adam optimizer utilizing a learning rate of 0.0001 and a

cross entropy loss. After fine-tuning the network I discard the max pooling layer to allow for

expression of features in time and allow the temporal inference architectures to function. I

also fix the learned CNN features to prevent them from being further modified. Subsequent

inputs to the backbone model generate activation maps (described in Section 4.1.2) and de-

pict when the learned features occur in the input. The full policy learning model is trained

to predict the appropriate action from state S using the same parameters used to fine-tune

the spatial features.

5.5 Results

I compare D-ITR-L, which learns from temporal features, against three other data-driven

deep learning approaches: linear inference (no temporal consideration), LSTM (a RNN),

and Temporal Convolutional Network (TCN) [13] (a convolution-based approach). Many

variations of RNNs and convolution-based models exist but they all suffer from the same

structural limitations mentioned in Section 3.4. LSTM and TCN represent the most classic

versions of their architectures and serve to demonstrate the fundamental weaknesses in their

respective design principles. I investigate how these four implementations improve upon

spatial features learned by two image-based (WideResNet and VGG-16) and two video-

based (Temporal Shift Module and I3D) backbone architectures. As previously mentioned,

vision-based LfD has not developed any specific novel tool for representing time or inferring

from long-form video, subsequently, I do not include any specific LfD-based architecture

50

Backbone Linear LSTM TCN D-ITR-L
I3D 53.3% 53.3% 46.7% 60.0%

Temporal Shift Module 46.6% 70.0% 90.0% 90.0%
Wide ResNet 46.6% 76.6% 90.0% 90.0%

VGG-16 66.6% 90.0% 86.6% 90.0%

Table 5.2: Total Accuracy of Baseline and D-ITR-L-based Policy Learning Applications on
Block Stacking given Consistently Timed Video Observations.

in this work. Each architecture generates state estimation logits from video observations

which are used in the same end-to-end architecture described in Section 5.2. I investigate

how D-ITR-L compares against the baseline models at capturing temporal features given

the aforementioned challenges.

5.5.1 Duration Invariance

Variance in duration is present across all observations and I measure the accuracy (as a

percentage of correct action predictions) across the entire dataset as opposed to a specific

observation. When trained on the consistently timed dataset (Table 5.2), the linear, LSTM,

and TCN models outperformed architectures trained on inconsistently timed data. This is

expected given the many duration dependent architectures evaluated. Models using LSTM

and TCN learned patterns that can shift (translate) along the time axis. These models

outperformed the static representations of linear models. TCN was particularly effective

when the duration of events was consistent. Among the CNN backbones, the video-based

architectures (I3D and Temporal Shift Module) performed worse than the image-based ar-

chitectures (WidesResNet and VGG-16). I attribute this to the increased challenge present

in generalizing spatio-temporal features to video compared to just spatial features.

D-ITR-L dominated all other methods when task duration varied (inconsistently timed

data; Table 5.3). I attribute this to the duration invariant feature representation that other

models lack. Curiously, D-ITR-L tended to perform better using the more variable data

than the easier to model consistently timed data. Feature expression (though inconsistent)

51

Backbone Linear LSTM TCN D-ITR-L
I3D 38.0% 38.0% 30.0% 40.0%

Temporal Shift Module 40.0% 82.0% 73.3% 94.0%
Wide ResNet 40.0% 65.8% 90.0% 96.7%

VGG-16 56.0% 72.0% 73.3% 98.0%

Table 5.3: Total Accuracy of Baseline and D-ITR-L-based Policy Learning Applications on
Block Stacking given Inconsistently Timed Video Observations.

Obs. Linear LSTM TCN D-ITR-L

gb 100.0% 100.0% 66.7% 100.0%
bg 0.0% 100.0% 66.7% 100.0%

r 0.0% 0.0% 100.0% 100.0%
rr 0.0% 0.0% 33.3% 66.7%
rrr 100.0% 100.0% 33.3% 100.0%

Table 5.4: Action Accuracy of Baseline and D-ITR-L-based Policy Learning Applications on
Block Stacking. The results are generated from the VGG-16 Backbone model.

may have been more easily delineated in the variable data.

Block movement events in the consistently timed dataset were sometimes performed

in faster succession than in the inconsistently timed dataset. This caused similar feature

expression to bridge adjacent block movement events. Identifying when features begin and

end from this concentrated data is more challenging and can prevent accurate identification

of temporal features. Regardless, where consistently timed data is concerned, D-ITR-L

matched or improved upon the results of other methods.

5.5.2 Video-Scale Feature

Video-scale feature representation is assessed by how well a model distinguishes between

the bg and gb observations (long-term dependencies) and the r, rr, and rrr observations

(cyclical motifs). Accuracy is a measure of the model’s ability to correctly select the next

three actions following an observation. Three examples were used for each observation. The

analysis in this section is presented in the context of the inconsistently timed results and the

VGG-16 CNN backbone model (Table 5.4). Inconsistently timed results were collected with

fewer constraints and are, subsequently, a better representation of real world data. VGG-16

52

performed the best of the backbone models investigated on this dataset according to Table

5.3.

The linear model failed to learn the video-scale features and moved the green block

followed by the blue block for both bg and gb. Similarly, it moved three red blocks regardless

of how many were actually depicted in the observation. LSTM was able to learn the visually

dissimilar long-term dependencies, but was unable to learn the visually similar cyclical motifs

and again moved three blocks in all instances. The feature expression in cyclical motifs

is the same and thus distinguishing patterns from their frame-to-frame transition is more

challenging. TCN was able to capture both video-scale features, but did so poorly. TCN

uses duration dependent 1D convolutional layers and could represent the short r observation

well, but when the distance between features increased the latent representation was unable

to generalize.

D-ITR-L was able to distinguish between both long-term dependencies and all three

cyclical motifs. D-ITR-L’s results are not perfect and one instance of the rr observation was

mis-interpreted as rrr. This inaccuracy can be traced to the CNN-backbone’s inability to

consistently recognize the red block feature. Noisy feature expression in the activation map

cascaded through the D-ITR-L pipeline resulting in inaccurate event detection and subse-

quently incorrect feature recognition. D-ITR-L is a wrapper that acts upon the information

provided to it by the CNN backbone. The quality of its temporal features is fundamentally

tied to the quality of the spatial features present in the backbone model.

5.6 Contributions

The evaluations on the Block Stacking dataset empirically show that the D-ITR-L-driven

approach to temporal feature modelling can overcome the two challenges being addressed in

this dissertation: duration invariance and video-scale features. The block stacking dataset

was developed to demonstrate this failing in contemporary works. While it is possible that

alterations to the hyper-parameters or general architectures of the backbone CNN models

53

could improve their accuracy I demonstrate that in all cases the D-ITR-L temporal wrapper

achieved improved accuracy over the baseline despite using the same set of spatially-learned

features. This work has been submitted to the IEEE International Conference of Robotics

and Automation 2022.

54

CHAPTER 6

TEMPORAL FEATURE FOR HUMAN ACTIVITY RECOGNITION

Probabilistic temporal model-based approaches to activity recognition achieved state-of-the-

art performance on visually challenging domains through the use of hand-crafted features. I

show that the same is possible when using the data-derived spatial features of a backbone

convolutional neural network in conjunction with D-ITR-L. The code for this implementation

is available at [68].

6.1 Related Work

Deep learning is the de facto approach to data-driven human activity recognition and has

spawned a multitude of different approaches and derivatives that align with consistent design

principles. I describe these general architectures and their approach to learning temporal fea-

tures. I also discuss the state of contemporary benchmark video datasets and their limitations

when validating an activity recognition model’s ability to represent temporal information.

6.1.1 Pre-Deep Learning Activity Recognition

Approaches to activity recognition that do not leverage deep learning but which do use data

driven spatial features do not generate representations of time. Methods such as visual bag of

words [78, 79, 80, 81, 82], dense trajectories [83, 84], and histograms of oriented gradients [85,

86] are spatial feature extractors that have been leveraged for activity recognition. However,

inference in these methods is often accomplished through the use of simple classification

models that ignore time such as Support Vector Machines [6, 82], Nearest Neighbors [56], and

55

Integrated Methods Interleaved Methods Separate Methods
MML [93] TPN [94] Asyn-TF [64]

SlowFast [95] TSM [11] Multiscale TRN [12]
ECO [9] STM [96] ConvGRU [62]
I3D [65] TrajectoryNet [97] TCN [13]

2-stream [2] R(2+1)D [98] CNN-LSTM [20]

Table 6.1: Popular CNN Models for Video Inference.

Random Forest [84]. More complex models have leveraged the use of space-time volumes [87,

88], space-time trajectories [89], and shape motion hybrid models [90, 91]. These approaches

do not explicitly represent time but rather make inferences from the spatial expression of

the features across a video. Many of the methods described in these works have since been

combined into deep architectures to leverage the greater spatial feature detection properties

of deep learning with earlier inference methods [79, 92].

6.1.2 Activity Recognition Post Deep Learning

Table 6.1 lists three broad categories of deep learning-based video inference architecture: In-

tegrated, Interleaved, and Separate. These general structures address the possible approaches

to combining spatial and temporal information that may be present in video. Included in

the table are several popular CNN-driven deep learning architectures that represent these

categories. Fig. 6.1 visualizes the general structure of each approach, which take video as

input and generate logit values with the aid of a fully connected (FC) linear layer. Inside

the network, inference is conducted using either spatial (red) or temporal (blue) feature

representation layers. Integrated models combine spatial and temporal inference in a single

approach.

Integrated Methods

Integrated models represent spatial and temporal features using a single structure. This

is accomplished primarily through the use of 3D convolutional filters (ECO [9], SlowFast

56

(a) Integrated

(b) Interleaved

(c) Separate

Figure 6.1: General Structures of Temporal Representation in Deep Learning Models

[95], I3D [65]) or by the modifying the information in the input such that 2D convolutions

perform 3D inference (i.e. convolutions of optical flow; 2-stream [2], MML [93]). These

representations are rich, but they are also cumbersome. In order to generalize effectively

they often require very large training datasets to overcome variances not just in time, but

also simultaneously in space.

Interleaved Methods

Interleaved models alternate spatial and temporal feature learning. These models vary in

their implementation. Structures such as R(2+1)D [98] take a straightforward approach

and literally interweave 2D spatial convolution layers with 1D temporal convolution layers.

Others, such as the Temporal Shift Module (TSM) [11], rely only on 2D convolutions, but

in-between spatial convolutions they shift features along the temporal dimension to smooth

the representations across time. These models are lightweight and typically generalize better

to variances in time than integrated models [98].

Separate Methods

Separate methods learn temporal features after spatial features have been extracted. They

are closest in structure to classical methods and rely on strong representation of spatial

features to perform deeper temporal reasoning. Separate models frequently fall into one of

57

(a) UCF-101 [1] (b) HMDB-51[2] (c) Kinetics [3]

Figure 6.2: Examples from Benchmark Video Datasets

two sub-categories described in detail in Section 3.4: convolution-based approaches (TCN

[13]) and recurrent neural network based models (LSTM [20] and GRU[62]). D-ITR-L follows

the design principle of a separate method.

6.1.3 Datasets

Contemporary benchmark activity recognition datasets span the gamut in terms of their con-

tent and properties and, subsequently, can be used to assess a myriad of different challenges

related to video inference. Many of the standard benchmark activity recognition datasets

capture a broad selection of class labels and examples within those classes. These datasets

are manicured to capture activities in a handful of frames, from a variety of view points,

and a different array of sources. As a result, they challenge a model’s ability to identify and

generalize the spatial concepts that define these activities. For example, Fig. 6.2 captures

several examples of classes within three popular benchmark video datasets: UCF-101 [1],

HMDB-51[2], and Kinetics [3]. These examples are all distinguishable using a single frame

as opposed to information regarding their temporal content. A specific example is the ‘bil-

liards’ class from within the UCF-101 dataset (Fig. 6.2a) which can be easily distinguished

58

Dataset Avg. Frames per Example
Jester 35.63± 2.31

Something-Something 45.59± 12.56
IKEA Furniture Assembly 62.29± 75.92

Crepe Sub-Actions 248.12± 194.07
Crepe Full-Recipes 3949.27± 703.21

Table 6.2: Average number of frames in Video Datasets

from other class labels based on the presence of an explicit spatial cue: a billiards table.

In recognition of the “spatial focus” of benchmark activity recognition datasets Cao

et al. [7] encourage the use of temporally challenging datasets such as Jester [99] and

Something-Something [100]. These datasets focus expressly on actions. Jester focuses on

hand movements and gestures while Something-Something captures actions that manipulate

objects in the environment. Despite Cao et al.’s assertions, these datasets still pale in

comparison to the temporal content found in human demonstrations of high-level tasks.

Jester and Something-Something are both short in duration (see Table. 6.2), limiting the

potential for durational variance when compared to longer videos. The videos also focus on

simple short-term transformations (either translation or deformations, Fig. 6.3 and Fig. 6.4)

as opposed to long-term actions. Since the strength of D-ITR-L is its ability to capture video-

scale features in a duration-invariant manner, it is counterintuitive to evaluate D-ITR-L on

the vast majority of standard video benchmark datasets. Furthermore, the use of a bottleneck

in the D-ITR-L architecture limits the expression of spatial features in these models and will

likely result in poorer accuracy given the strong spatial focus of these benchmark video

datasets.

Instead, I follow suit with earlier temporal feature learning work and focus on videos

that have similar spatial content and which are long in duration (lasting more than 50

frames). Prior probabilistic temporal modelling approaches intent on capturing temporal

features followed similar reasoning in their dataset collection [4, 33, 34, 55], but none of these

datasets are available for public use. Consequently, I have selected two publicly available

datasets that capture human-led demonstrations of tasks: IKEA furniture construction and

59

Figure 6.3: Example class labels from the Jester Video Dataset

Figure 6.4: Example class labels from the Something-Something Video Dataset

60

Figure 6.5: Actions in the IKEA Furniture Assembly Dataset

Crepe recipe following. These datasets have so far been explored in the context of visual

inference applications, not for activity recognition. I have modified them for use in this

activity recognition.

6.2 Datasets for D-ITR-L Evaluation

The Crepe and IKEA datasets capture human-led demonstrations of two high-level multistep

tasks: furniture construction and recipe following. This section discusses the content of these

datasets and how I modified them to evaluate D-ITR-L’s ability to capture temporal features

and employ them for activity recognition.

IKEA: Furniture Assembly

The IKEA furniture assembly domain captures participants as they construct and decon-

struct a table. The dataset is composed of 101 videos and captures 14 actors as they perform

the necessary steps to complete the furniture assembly task (Fig. 6.5): picking up and screw-

ing the four legs onto a table, flipping the table upright and then upside down, and then

unscrewing and replacing the four legs of the table. The video has been timestamped to

indicate when each of the actions is being performed and captures participants constructing

61

the table on the floor and on a raised work station. In the original data annotation, specific

labels are attributed to the order in which the legs are added. This captures purely spatial

features identifiable by the number of legs that remain secured in the table. I merge the

individual labels into the less specific action classes of attach leg and remove leg to reduce the

datasets reliance on spatial features and better focus on temporally-oriented actions. Rather

than selecting a range of frames from the full video on which to do inference (the approach

employed by the dataset’s authors), I separate the videos into their individual actions which

are labelled and used to train and validate my models. The video was recorded at 30fps and

down sampled to 10fps.

Actions from the IKEA dataset are generally twice as long as videos in other benchmark

activity recognition datasets (Table 6.2) and vary dramatically in size from between 8 frames

up to 502 frames in length. The wide range in the duration of activities within this dataset

is ideal for assessing the robustness of learned models when generalizing different durations

of activities. Many of the observed actions capture video-scale features. Videos within the

class labels of ‘attach leg’/‘detach leg’ demonstrate long-term dependencies in the order that

low-level actions are expressed. Attaching the leg to the table can be summarized in the

following stages: 1) angle the table leg above the table and 2) insert the table leg into a hole

in the base of the table. The detachment of the leg inverses these operations. Videos within

the class labels of ‘spin in’/‘spin out’ capture cyclical patterns as they generally require a

human to re-position their hand repeatedly in order to secure or loosen the table leg.

Originally this dataset was used for human action forecasting by Han et al. [101] and

then later for human pose forecasting using skeletal models by Toyer et al. [102]. Despite the

author’s claim that the dataset can be used for long-term video dependency understanding,

little is done to evaluate the dataset from this perspective. Han et al.’s work is closest to my

own and investigates the ability to predict actions using short clips of raw video lasting up to

50 frames. Their model uses an ensemble of LSTM models in coordination with a combined

RGB/optical flow feature extractor and achieves an accuracy of 51.7% when predicting

62

Recipe Name Task Order
Lemon Sugar Stir, Pour, Spread, Flip, Pour, Sprinkle, Fold

Banana Chocolate Stir, Pour, Spread, Cut, Flip, Transfer, Grate, Fold
Cheese Ham Stir, Pour, Spread, Cut, Grate, Flip, Transfer, Fold

Cheese Ham Parsley Stir, Pour, Spread, Cut, Grate, Flip, Transfer, Sprinkle, Fold
Goat Cheese Spinach Stir, Pour, Spread, Cut, Flip, Transfer, Fold

Goat Cheese
Spinach Nutmeg

Stir, Pour, Spread, Cut, Flip, Transfer, Sprinkle, Fold

Table 6.3: Crepe Recipes

subsequent actions. Action forecasting is a different task from action recognition in that

inference is made on partial action executions rather than full activities. Subsequently, action

forecasting does not need to represent the full action dynamics in its latent representation and

does not need to consider variable duration as it tries to identify periods of transition between

different atomic actions in an observation [103]. My work focuses on action recognition and

should not be compared directly with the results given in Han et al. [101] since the format

of the videos and the inference task are different.

Crepe Dataset

The Crepe dataset contains videos that capture volunteer chefs as they prepare 53 crepe

meals according to 6 possible recipes. The recipes (listed in Table 6.3) are each composed

of 9 potential sub-actions (Fig. 6.6). Each video captures three volunteers preparing crepes

adjacent to one another and has frame level annotations to identify the sub-action, the

recipe being performed, and a bounding box centered on the chef. The developers of the

dataset, Lee et al., used the crepe-making application as validation for an application on

attention relocation and multi-person action recognition [84]. Their implementation used a

hierarchy of machine learning methods: dense trajectories for spatial feature extraction and

bounding box generation, random forest for action recognition, and a novel person tracking

method. The authors evaluated their model at two scales: sub-action recognition and recipe

recognition. Lee et al. report their per-label accuracy when evaluating the sub-actions within

63

Figure 6.6: Actions in the Crepe Dataset

Cut Grate Pour Spread Sprinkle Stir Transfer
70.6% 96.2% 64.8% 87.8% 5.6% 81.8% 63.6%

Table 6.4: Lee et al.’s Results on the Crepe Sub-action Dataset

the Crepe dataset, I have included their results in Table 6.4. Unfortunately, their reporting

is incomplete (missing the ‘flip’ and ‘fold’ actions). Recipe recognition performance was

measured as a value of Area Under the Curve and is reported to be 0.697. The code-book of

dense trajectories used by Lee et al.’s implementation has not been made publicly available.

I evaluate my work in the same two-part approach as Lee et al.: I first investigate

recognition of sub-actions and then I investigate recognition of full-recipes. One of the

original applications of this dataset was multi-person activity recognition. Therefore, the

dataset contains videos that capture 3 chefs preparing different recipes in parallel. To perform

traditional activity recognition, I modify the original videos to focus on the activities of a

single chef as they perform either a sub-action or as they complete a recipe. To accomplish

this I use the frame-level bounding box information to isolate the region where each chef is

64

performing and then crop the video in duration to focus on the specific skill, again using the

frame-level information to determine when a given task is being performed. When training to

recognize these datasets, I exposed spatial feature extractors only to the sub-action dataset.

Spatial features learned from the sub-action dataset were then used in the development and

evaluation of temporal features on the same dataset and the full-recipe dataset.

The videos in the sub-action dataset were collected at 30fps and down-sampled to 10fps,

but are still far longer in duration than any of the earlier mentioned benchmark video datasets

(Table 6.2) averaging 248 frames in length. Many of these tasks exhibit durational variance

with individuals displaying assorted levels of confidence and deliberation when performing

different tasks. Several of the sub-actions also capture long-term dependencies and cyclical

patterns. Actions such as ‘cut’ and ‘grate’ are defined by features representing both a quick

repetitive motion and the slow deliberate movement of ingredients. These skills are most

easily distinguished by the order in which these skills are portrayed. In ‘cut’, the ingredients

are cut then placed into the pan, whereas in ‘grate’ the ingredients are collected and grated

before being left in place for later use. Cyclical Actions are also represented by the ‘sprinkle’

and ‘transfer’ tasks. The ‘sprinkle’ task involves a singular “pick up and deposit” visual cue

whereas the ‘transfer’ task typically occurs in two-repetitions of this pattern.

The full-recipe version of this dataset scales up these temporal challenges as they are

composed of several sub-actions. The ordering of these actions is itself a type of long-

term dependency and the long scale of these videos (the shortest video is 2630 frames and

the longest is 5838 frames) captures not only the durational variance of the sub-actions

themselves, but delays between when those sub-actions are expressed.

6.3 Experiments

6.3.1 Training

In this work I use the same four spatial feature extractors/CNN-backbones as described in

Section 5.4: Temporal Shift Module, Wide ResNet, I3D, and VGG-16. Using their origi-

65

nal ImageNet learned features, these models are fine-tuned to recognize features on these

new datasets: IKEA and Crepe Sub-Actions. Frames in both datasets are resized to a

format compliant with the original architecture. Background subtraction and smoothing

pre-processing steps are applied only on the Crepe sub-actions dataset. Pre-processing is

not applied on the IKEA dataset as many of the actions displayed in the video are subtle

with little bodily movement (‘screw in’ and ‘screw out’ for example). The lack of move-

ment in these demonstrations would cause a background subtraction approach to occlude

the critical information in these activities. While there is some difference in the spatial back-

ground characteristics of these videos, they are both inconsequential to recognizing different

activities and are uniformly expressed across the classes in the dataset.

This work employs a bottleneck to constrain the complexity of the ITR graphs. A grid-

search is used to identify the most effective bottleneck size from options of 16, 32, and 64. In

all cases a bottleneck of 64 produced the best results for both datasets. These tasks are more

complex than the block demonstration depicted in Chapter 5 and must be represented by a

greater selection of spatial features in order to effectively generate a reasonable performance.

It is possible that an even wider bottleneck could have generated better results, but each

additional spatial event generates a pairwise increase in the number of temporal features

captured within the ITR graph, a computational limitation given the D-ITR-L’s current

architecture and the specifications of the machine used to run these experiments (using 2

Titan X Pascal GPUs). Regardless, this bottleneck is applied only to the inference conducted

by D-ITR-L and does not impact the performance of other temporal inference models.

All of the models in this work (both backbone spatial extractors and temporal feature

learners) were trained for 50 epochs using an Adam optimizer with a learning rate of 1e-3

and a cross entropy loss function. In both datasets 70% of the examples for each class were

used for training and the remaining 30% were used to evaluate the models. A batch size of

4 was used with the IKEA and Crepe Sub-Action datasets, but due to space limitations a

batch size of 1 was used when training on the Full-Recipe version of the Crepe Dataset.

66

6.3.2 Results

The spatial feature extractors supply a fixed set of visual features expressed in videos of

the evaluation datasets. I contrast D-ITR-L’s temporal inference using these sets of features

against other data-driven temporal inference approaches. This work investigates a linear,

a recurrent (LSTM), and a convolution-based (TCN) model. These inference architectures

were previously discussed in Section 5.5.

IKEA

When evaluated within the confines of the IKEA dataset, D-ITR-L outperforms all other

data-driven temporal inference mechanisms (Table 6.5) regardless of the features extracted

by the CNN-backbone. A brief summary of these results finds that the linear model performs

the most poorly across all CNN backbones. This is expected given that the linear model lacks

the ability to represent temporal information in an informed way. The convolution-based

(TCN) and recurrent (LSTM) models perform similarly. These architectures are duration

dependent and ill-suited to modelling long-term dependencies, two properties that the IKEA

dataset captures. In all cases D-ITR-L shows an improvement over the baseline models,

with margins of between 2.38% in I3D and 21.57% in Temporal Shift Module. The highest

accuracy achieved on the IKEA dataset is 65.27% when D-ITR-L used the spatial features

extracted from the VGG-16 backbone model. The performance of the TCN model and the

D-ITR-L model on this set of spatial features are investigated more deeply in Fig. 6.7.

TCN (Fig. 6.7a) has the second highest results when analyzing the IKEA dataset using

spatial features from the VGG-16 backbone and represents a baseline when comparing the

performance of D-ITR-L (Fig. 6.7b). Both models are able to effectively represent the

‘pick leg’ class label. This action is particularly short and is not easily confused with other

actions. The classes that showed the greatest improvement in quality are those previously

established to contain video-scale features: ‘attach leg’/ ‘detach leg’ and ‘spin in’/‘spin out’.

These examples are often misconstrued in the TCN model, but are more easily delineated

67

Backbone Linear LSTM TCN D-ITR-L
I3D 53.20% 56.49% 56.49% 58.87%

Temporal Shift Module 24.86% 27.06% 25.59% 48.63%
Wide ResNet 17.92% 21.94% 21.39% 42.60%

VGG-16 43.69% 50.63% 51.00% 65.27%

Table 6.5: Accuracy on the IKEA Furniture Assembly Dataset

in the D-ITR-L approach. Recognition of the ‘detach leg’ action increased from 59% to

82% and while the accuracy of the ‘attach leg’ action did not improve, the number of times

the action is mislabelled as ‘detach leg’ decreased from 14% to 3.3%. Interestingly, both

models incorrectly label the ‘flip over’ actions using either the ‘attach leg’ or ‘detach leg’

class labels. This is likely due to difficulty in modelling the spatial features that represent

the movement of the table. Individuals rotated the table in a variety of ways according to

their preference and the class-label is broad capturing both flipping the table upright and

upside down. The actions of the human required to flip the table parallel those of someone

attaching and removing a table leg (i.e. squatting and standing) which could contribute to

this inaccuracy. The ‘spin in’ and ‘spin out’ labels capture cyclical actions and improve from

an accuracy of 51% and 47% respectively to 69% in both examples. Mislabelling of the ‘spin

in’ and ‘spin out’ actions is reduced from 27% and 24% to 2.6% and 3.8% respectively.

Crepe

The Crepe dataset is evaluated at two scales: shorter sub-actions and the longer full recipes.

Crepe Sub-Action

I evaluate the ability of different models to represent the sub-actions expressed in the Crepe

dataset. My investigation found that a D-ITR-L-based approach to representing temporal

features from this dataset is superior to other baseline models (Table 6.6). The results of this

experiment generally align with those of the IKEA dataset. Specifically that the linear model

in most cases performs the worst, that inference using TCN and LSTM is comparable, and

68

(a) TCN Model

(b) D-ITR-L Model

Figure 6.7: Confusion Matrix of VGG-16 Backbone Results on the IKEA Dataset

69

Backbone Linear LSTM TCN D-ITR-L
I3D 61.67% 67.07% 70.64% 73.05%

Temporal Shift Module 57.49% 67.07% 53.29% 72.46%
Wide ResNet 29.98% 52.10% 61.67% 70.06%

VGG-16 58.68% 56.28% 59.28% 66.46%

Table 6.6: Accuracy on the Crepe Sub-Action Dataset

Backbone Linear LSTM TCN D-ITR-L
I3D 10.53% 10.53% 21.05% 36.84%

Temporal Shift Module 15.79% 15.79% 15.79% 26.32%
Wide ResNet 15.79% 15.79% 15.79% 21.05%

VGG-16 15.79% 21.05% 21.05% 31.58%

Table 6.7: Accuracy on the Crepe Full-Recipe Dataset

that D-ITR-L shows improvement over the nearest baseline video architecture regardless of

the type of backbone model used (between 2.4% and 8.39% using the I3D and Wide ResNet

backbone’s respectively).

A confusion matrix capturing the per-action accuracy of the best performing model (D-

ITR-L using an I3D backbone) and the nearest baseline (TCN) is presented in Fig. 6.8.

The D-ITR-L shows a reduction in the mislabelling of several classes. With regards to the

classes that capture video-scale features, there is an improvement of 24% in the ‘sprinkle’ and

14% in the ‘transfer’ classes which capture a cyclical activity. There is similarly a reduction

of 8% when mislabelling the ‘sprinkle’ action as ‘transfer’. The sub-actions of ‘cut’ and

‘grate’ capture long-term dependencies, but both models of this dataset show a high mis-

classification rate recognizing ‘grate’ actions as ‘cut’ (20% in TCN and 30% in D-ITR-L). An

inspection of these videos suggests that mislabelled examples of ‘grate’ demonstrate low-level

action ordering that better resembles that used in many of the ‘cut’ examples: fast rhythmic

movement, followed by an action (to return the grating utensil to its original location).

Crepe Full Recipe

Finally, a study was done on the full crepe recipe dataset Again D-ITR-L outperformed

earlier models, however, the accuracy of these models is more muted in comparison to the

70

(a) TCN Model

(b) D-ITR-L Model

Figure 6.8: Confusion Matrix of I3D Backbone Results on the Crepe Action Dataset

71

results on the IKEA and Crepe Sub-Action datasets. Many of the baseline models in this

dataset fail to generalize to the data and achieve a random accuracy (15.79%) or over fit to

a single class label that is under-represented in the validation dataset (10.53%). In contrast,

D-ITR-L creates a more robust representation of the data and is able to recognize some of

the demonstrated recipes, specifically those with the ‘sprinkle’ sub-action (see Table 6.3)).

When using the I3D baseline, the ‘sprinkle’ sub-action demonstrate the greatest improvement

in recognition when transitioning from a TCN-based inference model to a D-ITR-L-driven

approach. Correctly identifying this action label reduces the potential recipes that the

observation could belong to by half.

The large scale of the full-recipe dataset is formidable and demonstrates the current

computational limits of the D-ITR-L architecture. ITR graphs from the full-recipe dataset

number in the thousands of nodes and hundred of thousands of temporal relationships/edges

(Table 6.8). With this increased complexity there is more of an inference challenge when

identifying which of the many temporal relationships are discriminatory. These concerns

can be addressed in one of two ways. The first demands an increase in computational

power. By removing or relaxing the bottleneck, a greater variety of temporal features and

a richer representation can be used to describe the contents of a video. This incurs a

massive computational demand on these systems as the graphical representation experiences

a pairwise increase in the number of edges with the inclusion of more spatial features.

With further improvements to computational architectures, especially as they relate to GPU

design, more data can be stored in memory allowing for more elaborate architectures. My

work specifically used 2 Titan X GPUs and was restricted to using a bottleneck of size

64 to ensure all data could be correctly loaded and manipulated at run time. The second

approach requires structural changes to the method by which GCN operates. A stochastic

representation of ITRs, similar to the one used in [4], would allow for more flexibility in the

representation of temporal features. This would require changes to the GCN architecture

to facilitate inference on the new graphical structure. Specifically, the inference operation

72

Dataset Backbone Avg. Nodes Avg. Edges
IKEA VGG-16 56.21± 46.20 1, 509.06± 1, 671.23

Crepe Sub-Action VGG-16 353.24± 228.45 10, 588.73± 8, 475.32
Crepe Full-Recipe I3D 2, 975.09± 725.13 159, 286.47± 61, 722.03

Table 6.8: ITR Graph Size in Best Performing D-ITR-L Models By Dataset

(Section 3.2.2) would need to not only focus on specific temporal relationships but would

also need to consider partial expression of specific relationship. This change is complex and

represents an entirely new research direction.

6.4 Conclusion

Effective temporal feature representation addresses concerns of duration invariance and

video-scale features. However, the current benchmark video datasets do not challenge these

properties and instead validate a model’s ability to generalize to a selection of spatial fea-

tures. Instead, video datasets that focus on human demonstration of sequential tasks can be

used to challenge a model’s ability to represent temporal features. Using the IKEA and Crepe

datasets, I have validated D-ITR-L’s ability to extrapolate temporal features from complex,

real world observations of human activities. I have also summarized new research directions

that would enhance the descriptive power of D-ITR-L on more challenging datasets.

6.5 Contributions

The experiments presented in this chapter demonstrate D-ITR-L’s ability to extract video-

scale features in a duration-invariant manner from two benchmakrk video-datasest. D-ITR-L

outperforms all backbone models for all datasets. These results have been submitted to the

IEEE International Conference of Robotics and Automation (ICRA) 2022.

73

CHAPTER 7

TEMPORALLY-GUIDED FEATURE SELECTION

Compared to a purely spatial alternative, temporal features are empirically better when

conducting inference tasks from video data. Temporal features are defined not only by

rich representation of temporal relationships, but also by the informed selection of spatial

features upon which they are based. I perform a rigorous quantitative analysis to measure

the contribution of a temporal information-guided approach to spatial feature selection.

Features selected in this manner are used to train a policy learning architecture where they

achieve better accuracy using fewer features and a smaller training dataset when compared

to an approach that focuses on spatial feature selection. Following this study, I qualitatively

analyze the properties of spatial features that are desirable when constructing a temporal

model, providing insight into the representations encoded by a D-ITR-L-driven model.

7.1 Introduction

Spatial feature extractors, such as the CNN backbones used in Chapters 5 and 6 generate

a monolithic semantic representation of the contents of a video. Many of these features

identified in this manner are uninformative, redundant, or capture features that are unique

to specific observations throughout the duration of videos [104, 105, 106]. The presence of

these low quality features complicates learning in video recognition models by reducing their

ability to generalize effectively and by inflating the number of computations that must be

performed. These concerns are exacerbated in videos of visually similar environments such

as demonstrations of high-level sequential tasks, where the discriminatory power of spatial

74

features is weakened.

Models that lack a representation of time do not consider the implications of order and

duration. These models are likely to overlook specific, short-duration features in favor of

features that capture more general contents and are expressed over long-durations as they

are more heavily represented in the data. A temporally cognizant approach is capable of rec-

ognizing the importance of when and how long features are expressed. Video demonstrations

are often described by a sequence of critical sub-goals rather than a single super-concept.

For example, when pouring water from a pitcher you must engage in the following sequence

of briefly expressed steps: pick-up a pitcher, tilt the pitcher, pour the water, and then return

the pitcher. This chapter explores the importance of the spatial features that compose latent

temporal representations, and then using those learned temporal structures to reciprocally

improve and prune the set of spatial features used for inference tasks.

This work can be separated into two parts: 1) Section 7.2, a quantitative study investi-

gating the significance of spatial features recognized by a temporal model (D-ITR-L) and 2)

Section 7.3, a qualitative analysis of those features to identify consistent properties that are

ideal in developing temporal features.

7.2 Temporally-Informed Spatial Feature Selection

I discuss the feature ranking approach used to determine the most significant features in a

spatial (linear) and temporal (D-ITR-L) driven model. These features are then used to train

a separate policy learning model.

7.2.1 Feature Selection and Appraisal

Spatially and temporally-ranked features are used to train a policy learning approach de-

signed by a collaborator [107]. The policy learning model is not a contribution of this

dissertation but is designed by a collaborating PhD student. The feature selection and ap-

praisal process is denoted in Fig. 7.1. Videos are used to generate a set of fixed spatial

75

Figure 7.1: The Pipeline for Policy Learning in a Tea Making Task

features according to a backbone CNN. These features are used to train both a linear model

and GCN using D-ITR-L-derived spatial features. These models are used to rank the im-

portance of the input features. The most highly ranked features by each model are masked,

and then used to train the aforementioned policy learning model.

Feature Ranking

I use a popular ranking approach, erasure ranking [106], to identify the most important fea-

tures in two video-recognition architectures by class label (c ∈ C). Erasure ranking iterates

through each of the input features (f ∈ F) and evaluates the trained model’s performance

when a specific feature is removed. The greater the impact on the model’s logit values (V)

the greater the significance that the given feature contributes towards the trained model.

The ranking (R) of a feature is evaluated as a normalized sum over all examples (e) of a

given class in the demonstration set (D) can be calculated using

R(f, c) =
∑
e∈D

V (e, c, f)− V (e, c,¬f)

V (e, c, f)
(7.1)

To rank the temporally-grounded visual features extracted using the temporal model (D-

ITR-L) erasure search is applied over all of the feature labels that compose an ITR graph,

removing each node (and all connected edges) that have the given feature label f . When

ranking features that are purely spatial in nature, as is the case of a linear model, the model

is trained using an IAD, which do not capture the explicit temporal relationships between

76

Algorithm 4 Using Feature Ranking to Guide Policy Learning

Input: D, the set of video demonstrations
Input: Qs, a CNN backbone model
Input: Qt, a D-ITR-L temporal wrapper
Input: fn, a limit on the number of features to use when training the model
Input: π, a policy learning model
Output: πs, a policy learning model trained using highly-ranked spatial features
Output: πt, a policy learning model trained using highly-ranked temporal features
1: F0, Q

′
s ← Qs(D) . Train the CNN Backbone with D

2: Q′
t ← Qt(D, F0) . Train D-ITR-L with D and the spatial features F0

3: Rs ← ErasureRanking(Q′
s,D) . Rank the Spatial model

4: Rt ← ErasureRanking(Q′
t,D) . Rank the Temporal model

5: Fs ← sort(F0, Rs) . Sort the features according to high spatial model ranking
6: Ft ← sort(F0, Rt) . Sort the features according to high temporal model ranking
7: πs ← π(Fs[: fn]) . Mask the low-ranked features and train π
8: πt ← π(Ft[: fn]) . Mask the low-ranked features and train π
9: return πs, πt

features, and investigate how the accuracy performs when each feature is removed. The goal

of this method is to compare the efficacy of temporally-grounded and purely spatial features

in policy learning.

Policy Model

The policy learning architecture used in this work (π) is a Behavioral Cloning approach

designed and developed by a collaborator [107]. This policy learning architecture is their

contribution and its implementation has been intentionally omitted from this thesis. A

detailed description of the policy learner is available at [107] and the associated code for the

experiments discussed in this chapter can be located at [108]. The policy learning model

uses a set of user-defined features when representing the state and leverages the information

theory principles of Feature Expectation Maximization and the Maximum Entropy Principle

when representing and updating probability distributions over the model’s actions. Feature

Expectation Maximization is a popular method of ensuring that a policy learning model

matches the observed distribution of states and actions [109, 110] and the Maximum Entropy

Principle asserts that when provided with a choice of multiple distributions when representing

77

Figure 7.2: Actions from the Tea Making Dataset

a policy that the one with the greatest entropy should be chosen [111, 112]. The stochastic

policy learned here is the solution to a convex optimization problem and therefore, unlike

neural network policies, offers a convergence guarantee.

I train π using features that were either highly-ranked according to a spatial model (Fs) or

a temporal model (Ft). Algorithm 4 describes the process used to conduct feature selection

and policy training. Given a dataset of video demonstrations D I train a spatial model (a

CNN Qs; line 1). The spatial features identified by this model F0 are then used to train a

temporal model (D-ITR-L Qt; line 2). I apply erasure ranking to the trained spatial (Q′
s)

and temporal (Q′
t) models to ascertain the importance each model attributed to the spatial

features Rs and Rt (lines 3 and 4). This importance is used to order the spatial features

and the fn most highly-ranked features are used to train π (lines 5-8). This process results

in two versions of the policy learner: one in which the the policy is learned from features

highly-ranked by a spatial model (πs) and another where features are highly ranked by a

temporal model (πt). These models are evaluated in Section 7.2.4.

7.2.2 Dataset

This work is evaluated on human-led demonstrations of a high-level sequential task: making

tea (Fig. 7.2). Tea Making has been used as an example when describing temporal features

78

throughout this dissertation as it well-represents many of the challenges of inferring features

from similar tasks in this domain. Four volunteers participated in an IRB-approved user-

study to capture video demonstrations of the tea making process. Participants in the activity

were asked to demonstrate the procedure they would follow for making a cup of tea using the

following atomic actions: toggle on/off the oven, add water, add sugar, add milk, add teabag,

and stir. The participants had access to a number of tea making tools (e.g. cups, teabag,

and sugar) which were placed in fixed locations on a table. A total of 12 demonstrations were

collected from each individual for a total of 48 videos which were subsequently segmented

and labeled by hand. Videos were collected at 30fps and down-sampled to 10fps.

7.2.3 Training

Based on the high performance observed in earlier chapters (Chapter 5 and Chapter 6), I use

VGG-16 [75] to capture the presence of spatial features as they are expressed in the atomic

actions of the Tea Making dataset. VGG-16 (originally trained on ImageNet) is fine-tuned

to recognize the action labels of videos in the tea-making dataset. Frames are reduced to

224× 224 and subject to background subtraction before being fed into the CNN. The model

is trained using an Adam optimizer with a learning rate of 1e − 3 over 50 epochs and with

a batch size of 4. This model employs a bottleneck to reduce the number of spatial features

from 2048 to 32 for use in inference of D-ITR-L. For consistency visualizing the contents of

spatial features I used this bottleneck to evaluate the spatial model.

An R-GCN was again used to learn from the temporal features extracted by D-ITR-L. A

simple linear layer was used to make class inference when training using an explicitly spatial

model. In both cases, the networks were trained using the same optimizer (Adam), learning

rate (1e− 3), number of epochs (50), batch size (4), and loss function (Cross Entropy).

79

(a) Spatial features (b) Temporal features

Figure 7.3: Accuracy of the learned policy where the states are defined by the most highly-
ranked features according to the two different ranking methodologies.

7.2.4 Results

I investigate the benefits that temporally-driven feature selection afford to state estimation

in a policy learner. I compare increasing subsets of features that are highly-valued by either

a temporal model and a spatial model. This investigation observed how policy performance

decreases with a reduction in the set of available features used to describe the state of the

videos in the dataset, and the number of samples per action label used to train the model.

Figs. 7.3a and 7.3b show findings from these experiments. For the same number of

samples and task-features, the policy accuracy is higher when task-features are temporally-

grounded as compared to when they are purely spatial in nature. The full accuracy can be

achieved with n = 30 temporally grounded task-features collected only from 15 demonstra-

tions whereas 30 demonstrations are needed to achieve the same accuracy with the same

number of spatial task-features. Even with only 5 demonstrations, 5 temporally grounded

task-features can achieve an accuracy of 60%. But more than 25 spatially-grounded features

are required to achieve the same accuracy. These results demonstrate the potential role tem-

porally grounded features play in learning good policies from complex video domains using

only a handful of video demonstrations.

80

7.3 Feature Visualization

I perform a visualization-based analysis to try and discern the properties of the temporally-

grounded features that lead to their greater significance. I contrast some of the highly ranked

spatially-grounded and temporally-grounded features identified by the ranking system. I

investigate two examples from four of the actions in the tea making task: ‘add water’ (Fig.

7.4), ‘add sugar’ (Fig. 7.5), ‘stir’ (Fig. 7.6), and ‘add milk’ (Fig. 7.7). Frames and features

have been hand-selected for clarity. In all figures a and b and c and d capture the same

frames from the same video. The background video has been depicted in greyscale in order

to highlight the location of feature expression which are depicted in a variety of colors. Color

denotes a particular feature as identified by each architecture. Brighter colors are features

ranked highly by the temporal model and dimmer colors are features ranked highly by the

spatial model. The same colors are used in examples of a singular action (i.e. the color and

feature labels used in (a) and (c), and (b) and (d) are the same).

(a) Spatial features (b) Temporal features

(c) Spatial features (d) Temporal features

Figure 7.4: Visual analysis of the features in the context of the ‘Add Water’ action.

In most examples, I observed that spatially-grounded features capture similar spatial

81

features that are expressed in a majority of frames. When spatial features are not observed

in a frame it was common for those features to be missing in the other highly-ranked spatially-

based features. Temporally-grounded features captured more specific features related to the

task being demonstrated. In the ‘add water’ task we see that the features capture picking up

and returning the pitcher (red) and features for the pouring of the water (blue and yellow).

The features in the ‘add sugar’ action capture those frames where the individual deposited

the spoon into the mug (blue) and the reorientation (green) and return of the spoon (orange).

The temporally-grounded features in the ‘stir’ action were intermittently expressed as the

stir action was performed (lime and purple) capturing the cyclical pattern of the participants

hand.

(a) Spatial features (b) Temporal features

(c) Spatial features (d) Temporal features

Figure 7.5: Visual analysis of the features in the context of the ‘Add Sugar’ action.

However, it is not always the case that features in the spatial and temporal rankings

are different. In the case of the ‘add milk’ action a spatial feature is ranked highly by both

methods (blue) as it captures a significant aspect of the task: rotating the milk carton. But

the supporting features in each method differ. The spatially-grounded features (dark orange,

dark yellow) capture ambient features about the participants general location. In contrast,

82

(a) Spatial features (b) Temporal features

(c) Spatial features (d) Temporal features

Figure 7.6: Visual analysis of the features in the context of the ‘Stir’ action.

the temporally-grounded features focus specifically on the milk task including picking up

and returning the milk carton (orange, yellow).

7.4 Conclusion

Temporal features are defined both in the unique representation given to them by the tem-

poral inference approach used to model them and by the spatial features from which they

are developed. A quantitative analysis demonstrated that at several different scales the fea-

tures selected by a temporally-cognizant model were superior to those selected by a standard

linear model. In the experiments described, these features better represent the state of the

tea making application than spatial features allowing for greater accuracy when using fewer

training examples. A qualitative analysis revealed these features to be scattered throughout

the video capturing critical moments of the tea making activity. In contrast, features ranked

by the linear model were redundant and ambient, capturing concepts expressed across the

full length of the video.

83

(a) Spatial features (b) Temporal features

(c) Spatial features (d) Temporal features

Figure 7.7: Visual analysis of the features in the context of the ‘Add Milk’ action.

7.5 Contributions

This work was a collaborative project with another member of the Cognitive Assistive

Robotics Lab and has been submitted to the IEEE International Conference of Robotics

and Automation (ICRA) 2022. The results of this investigation highlight the role that tem-

poral features can play in feature selection and vice versa. Furthermore, I investigate the

properties of spatial features that make them good fits for use with the D-ITR-L represen-

tation.

84

CHAPTER 8

CONCLUSION

My dissertation has proposed a novel temporal representation that is built upon the state-

of-the-art data-driven deep learning approaches to video recognition. This work directly ad-

dressed challenges involved with the processing of video data that posses long durations and

similar visual content. Such videos are prolific in human-led demonstrations of high-level

skills. The temporal representations of probabilistic temporal models have demonstrated

proficiency in modelling these activities, however, they do so using hand-picked spatial fea-

tures. User selection of spatial features assumes expert knowledge of the domain and limits

the future application of learned models. Conversely, the most effective data driven ap-

proaches towards learning spatial features, Convolutional Neural Networks, rely on weaker

representations of time when conducting video inference.

CNN-based video recognition architectures have largely been evaluated on spatially fo-

cused video benchmarks that do not adequately challenge their ability to represent temporal

features. Given the more difficult video data investigated in this work, they must overcome

two challenges related to this domain: variance in the duration of activities and representa-

tion of temporal features that span the entire length of a video. Standard CNN-driven tem-

poral modelling approaches, such as Recurrent Neural Networks and convolution-over-time,

represent features in a duration dependent and hierarchical fashion. Duration dependent

architecture are not designed to address variances in duration in any meaningful manner.

And the use of hierarchical design scales poorly requiring unreasonably deep networks to

capture them in their entirety. These challenges can be addressed by employing the repre-

85

sentation of time established in probabilistic temporal models. These works used abstract

terms to describe spatial events and temporal relationships in terms not related to a fixed

duration. They also leveraged graphical structures to relate distant concepts from across an

entire video.

My dissertation has described D-ITR-L, a temporal wrapper that presents CNN-learned

spatial features using the temporal representation of probabilistic temporal models. I used

this inference to conduct effective learning in challenging video domains. Validation of

the claims has been accomplished in three studies. They demonstrated: 1) that D-ITR-L

generated features are both robust to variations in duration and can model temporal features

expressed across the length of a video, 2) that challenging video domains possessing long

duration and similar visual contents are described most effectively using the aforementioned

representation, and 3) that temporal feature information can be used retroactively to improve

upon the spatial representation of a model. I supported these points using a combination of

policy learning and action recognition problem settings.

8.1 Future Directions

Following the success of D-ITR-L, it is important to address future directions that may be

taken with this work.

8.1.1 Enhanced Temporal Representation

One limitation of D-ITR-L is the use of spatial feature bottlenecks to address the quadratic

growth of the ITR graph. Addressed in Section 6.3.2, advancements in computational ca-

pabilities or the extensions to the design of Graph Convolutional Networks could allow for

richer representation of videos. These would allow for the removal or reduction in the use of

bottlenecks and the inclusion of stochasticity into the temporal representation respectively.

Either approach would improve upon the ability of these models to represent the contents

of a video.

86

8.1.2 End-to-end Learning

Finally, I investigated the properties of those spatial features identified as useful to the

representation generated by D-ITR-L. Features that were specific to sub-actions within a

video generated the informed representation of the task being demonstrated. A natural

extension of my work would be to include D-ITR-L into an end-to-end architecture. This

would refine the spatial feature extractor symbiotically improving the strength of the spatial

and temporal representations used by the model.

8.2 Contributions

Deep Interval Temporal Relationship Learner (D-ITR-L) provides a novel representation

of temporal features for video recognition tasks. These features leverage the data driven

spatial feature extraction abilities of Convolutional Neural Networks and are useful when

modelling videos with long durations and similar spatial content. The D-ITR-L-derived

representation is both robust to variations in the duration of activities and can scale to

capture critical information expressed across the entire-length of a video. D-ITR-L has been

neither designed nor evaluated on video observations that are defined by either an explicit

duration or a strong spatial properties. Subsequently, it should be anticipated that this

approach may preform poorly under such circumstances. This work has been the focus of

several submitted (ICRA 2022 and CoRL 2021) and published works (RO-MAN 2017 [15]

and HRI 2018 [16]) and has galvanized research into temporal reasoning within our lab that

has influenced a number of collaborative works (submitted to CoRL 2021 and published in

RO-MAN 2019 [31] and ICRA 2019 [14]).

87

LIST OF REFERENCES

[1] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101
human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

[2] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action
recognition in videos. In Advances in neural information processing systems, pages
568–576, 2014.

[3] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra
Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The
kinetics human action video dataset. arXiv preprint arXiv:1705.06950, 2017.

[4] Yongmian Zhang, Yifan Zhang, Eran Swears, Natalia Larios, Ziheng Wang, and Qiang
Ji. Modeling temporal interactions with interval temporal bayesian networks for com-
plex activity recognition. IEEE transactions on pattern analysis and machine intelli-
gence, 35(10):2468–2483, 2013.

[5] Vladimir Ryabov and André Trudel. Probabilistic temporal interval networks. In Pro-
ceedings. 11th International Symposium on Temporal Representation and Reasoning,
2004. TIME 2004., pages 64–67. IEEE, 2004.

[6] Djamila Romaissa Beddiar, Brahim Nini, Mohammad Sabokrou, and Abdenour Hadid.
Vision-based human activity recognition: a survey. Multimedia Tools and Applications,
79(41):30509–30555, 2020.

[7] Kaidi Cao, Jingwei Ji, Zhangjie Cao, Chien-Yi Chang, and Juan Carlos Niebles. Few-
shot video classification via temporal alignment. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10618–10627, 2020.

[8] Jingran Zhang, Fumin Shen, Xing Xu, and Heng Tao Shen. Temporal reasoning graph
for activity recognition. IEEE Transactions on Image Processing, 29:5491–5506, 2020.

[9] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas Brox. Eco: Efficient con-
volutional network for online video understanding. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 695–712, 2018.

[10] Bharat Singh and Larry S Davis. An analysis of scale invariance in object detection
snip. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3578–3587, 2018.

88

[11] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video
understanding. In Proceedings of the IEEE International Conference on Computer
Vision, pages 7083–7093, 2019.

[12] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Torralba. Temporal relational
reasoning in videos. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 803–818, 2018.

[13] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager. Tem-
poral convolutional networks for action segmentation and detection. In proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 156–165,
2017.

[14] Estuardo Carpio, Madison Clark-Turner, Paul Gesel, and Momotaz Begum. Leveraging
temporal reasoning for policy selection in learning from demonstration. In 2019 In-
ternational Conference on Robotics and Automation (ICRA), pages 7798–7804. IEEE,
2019.

[15] Madison Clark-Turner and Momotaz Begum. Deep recurrent q-learning of behavioral
intervention delivery by a robot from demonstration data. In 2017 26th IEEE In-
ternational Symposium on Robot and Human Interactive Communication (RO-MAN),
pages 1024–1029. IEEE, 2017.

[16] Madison Clark-Turner and Momotaz Begum. Deep reinforcement learning of abstract
reasoning from demonstrations. In Proceedings of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction, pages 160–168, 2018.

[17] Kalesha Bullard, Baris Akgun, Sonia Chernova, and Andrea L Thomaz. Grounding
action parameters from demonstration. In Robot and Human Interactive Communica-
tion (RO-MAN), 2016 25th IEEE International Symposium on, pages 253–260. IEEE,
2016.

[18] Staffan Ekvall and Danica Kragic. Robot learning from demonstration: a task-level
planning approach. International Journal of Advanced Robotic Systems, 5(3):33, 2008.

[19] Richard Cubek, Wolfgang Ertel, and Günther Palm. High-level learning from demon-
stration with conceptual spaces and subspace clustering. In Robotics and Automation
(ICRA), 2015 IEEE International Conference on, pages 2592–2597. IEEE, 2015.

[20] Jin Wang, Liang-Chih Yu, K Robert Lai, and Xuejie Zhang. Dimensional sentiment
analysis using a regional CNN-LSTM model. In Proceedings of the 54th annual meeting
of the association for computational linguistics (volume 2: Short papers), pages 225–
230, 2016.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Os-
trovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

89

[22] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,
Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from
demonstrations. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[23] Madison Clark-Turner. Deep reinforcement abstract lfd, 2017.
https://github.com/AssistiveRoboticsUNH/deep reinforcement abstract lfd.

[24] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-stream
network fusion for video action recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1933–1941, 2016.

[25] Li-Chia Yang, Szu-Yu Chou, Jen-Yu Liu, Yi-Hsuan Yang, and Yi-An Chen. Revisiting
the problem of audio-based hit song prediction using convolutional neural networks.
arXiv preprint arXiv:1704.01280, 2017.

[26] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359, 2010.

[27] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning. In
AAAI, pages 4278–4284, 2017.

[28] Fei-Yue Wang, Jun Jason Zhang, Xinhu Zheng, Xiao Wang, Yong Yuan, Xiaoxiao Dai,
Jie Zhang, and Liuqing Yang. Where does alphago go: From church-turing thesis to
alphago thesis and beyond. IEEE/CAA Journal of Automatica Sinica, 3(2):113–120,
2016.

[29] Xindi Shang, Donglin Di, Junbin Xiao, Yu Cao, Xun Yang, and Tat-Seng Chua. An-
notating objects and relations in user-generated videos. In Proceedings of the 2019 on
International Conference on Multimedia Retrieval, pages 279–287, 2019.

[30] Mengmeng Xu, Chen Zhao, David S Rojas, Ali Thabet, and Bernard Ghanem. G-tad:
Sub-graph localization for temporal action detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10156–10165, 2020.

[31] Estuardo Carpio, Madison Clark-Turner, and Momotaz Begum. Learning sequential
human-robot interaction tasks from demonstrations: The role of temporal reasoning.
In 2019 28th IEEE International Conference on Robot and Human Interactive Com-
munication (RO-MAN), pages 1–8. IEEE, 2019.

[32] Eran Swears, Anthony Hoogs, Qiang Ji, and Kim Boyer. Complex activity recognition
using granger constrained dbn (gcdbn) in sports and surveillance video. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 788–795,
2014.

[33] Zhi Zeng and Qiang Ji. Knowledge based activity recognition with dynamic bayesian
network. In European conference on computer vision, pages 532–546. Springer, 2010.

90

[34] Yongqiang Li, S Mohammad Mavadati, Mohammad H Mahoor, Yongping Zhao, and
Qiang Ji. Measuring the intensity of spontaneous facial action units with dynamic
bayesian network. Pattern Recognition, 48(11):3417–3427, 2015.

[35] Li Liu, Li Cheng, Ye Liu, Yongpo Jia, and David S Rosenblum. Recognizing complex
activities by a probabilistic interval-based model. In Thirtieth AAAI conference on
artificial intelligence, 2016.

[36] James F Allen and George Ferguson. Actions and events in interval temporal logic.
Journal of logic and computation, 4(5):531–579, 1994.

[37] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1251–1258, 2017.

[38] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

[39] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov,
and Max Welling. Modeling relational data with graph convolutional networks. In
European Semantic Web Conference, pages 593–607. Springer, 2018.

[40] Eugene Santos Jr and Joel D Young. Probabilistic temporal networks: A unified frame-
work for reasoning with time and uncertainty. International Journal of Approximate
Reasoning, 20(3):263–291, 1999.

[41] Alexander Artikis, Evangelos Makris, and Georgios Paliouras. A probabilistic interval-
based event calculus for activity recognition. Annals of Mathematics and Artificial
Intelligence, 89(1):29–52, 2021.

[42] Shaogang Gong and Tao Xiang. Recognition of group activities using dynamic prob-
abilistic networks. In Proceedings ninth IEEE international conference on computer
vision, pages 742–749. IEEE, 2003.

[43] Thi V Duong, Hung Hai Bui, Dinh Q Phung, and Svetha Venkatesh. Activity recog-
nition and abnormality detection with the switching hidden semi-markov model. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 838–845. IEEE, 2005.

[44] Matthew Brand, Nuria Oliver, and Alex Pentland. Coupled hidden markov models for
complex action recognition. In Proceedings of IEEE computer society conference on
computer vision and pattern recognition, pages 994–999. IEEE, 1997.

[45] Yifan Shi, Yan Huang, David Minnen, Aaron Bobick, and Irfan Essa. Propagation
networks for recognition of partially ordered sequential action. In Proceedings of the
2004 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, 2004. CVPR 2004., volume 2, pages II–II. IEEE, 2004.

91

[46] Michael H Bohlen, Renato Busatto, and Christian S Jensen. Point-versus interval-
based temporal data models. In Proceedings 14th international conference on data
engineering, pages 192–200. IEEE, 1998.

[47] Massimiliano Albanese, Rama Chellappa, Vincenzo Moscato, Antonio Picariello,
VS Subrahmanian, Pavan Turaga, and Octavian Udrea. A constrained probabilis-
tic petri net framework for human activity detection in video. IEEE Transactions on
Multimedia, 10(8):1429–1443, 2008.

[48] Yrvann Emzivat, Benoit Delahaye, Didier Lime, and Olivier H Roux. Probabilistic
time petri nets. In International Conference on Applications and Theory of Petri Nets
and Concurrency, pages 261–280. Springer, 2016.

[49] Raffay Hamid, Siddhartha Maddi, Aaron Bobick, and Irfan Essa. Structure from
statistics-unsupervised activity analysis using suffix trees. In 2007 IEEE 11th Inter-
national Conference on Computer Vision, pages 1–8. IEEE, 2007.

[50] Imen Jegham, Anouar Ben Khalifa, Ihsen Alouani, and Mohamed Ali Mahjoub. Vision-
based human action recognition: An overview and real world challenges. Forensic
Science International: Digital Investigation, 32:200901, 2020.

[51] Daniele Liciotti, Michele Bernardini, Luca Romeo, and Emanuele Frontoni. A se-
quential deep learning application for recognising human activities in smart homes.
Neurocomputing, 396:501–513, 2020.

[52] Li Liu, Shu Wang, Bin Hu, Qingyu Qiong, Junhao Wen, and David S Rosenblum.
Learning structures of interval-based bayesian networks in probabilistic generative
model for human complex activity recognition. Pattern Recognition, 81:545–561, 2018.

[53] Li Liu, Shu Wang, Guoxin Su, Zi-Gang Huang, and Ming Liu. Towards complex
activity recognition using a bayesian network-based probabilistic generative framework.
Pattern Recognition, 68:295–309, 2017.

[54] Kyle Lund, Sam Dietrich, Scott Chow, and James Boerkoel. Robust execution of
probabilistic temporal plans. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31, 2017.

[55] Behjat Siddiquie, Yaser Yacoob, and Larry Davis. Recognizing plays in american
football videos. University of Maryland, Tech. Rep, 111, 2009.

[56] Junwu Weng, Chaoqun Weng, and Junsong Yuan. Spatio-temporal naive-bayes
nearest-neighbor (st-nbnn) for skeleton-based action recognition. In Proceedings of
the IEEE Conference on computer vision and pattern recognition, pages 4171–4180,
2017.

[57] Sijie Song, Cuiling Lan, Junliang Xing, Wenjun Zeng, and Jiaying Liu. An end-to-end
spatio-temporal attention model for human action recognition from skeleton data. In
Proceedings of the AAAI conference on artificial intelligence, volume 31, 2017.

92

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing sys-
tems, 25:1097–1105, 2012.

[59] Klaus Greff, Rupesh K Srivastava, Jan Koutńık, Bas R Steunebrink, and Jürgen
Schmidhuber. LSTM: A search space odyssey. IEEE transactions on neural networks
and learning systems, 28(10):2222–2232, 2016.

[60] Shi Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-
chun Woo. Convolutional LSTM network: A machine learning approach for precipita-
tion nowcasting. In Advances in neural information processing systems, pages 802–810,
2015.

[61] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[62] Debidatta Dwibedi, Pierre Sermanet, and Jonathan Tompson. Temporal reasoning
in videos using convolutional gated recurrent units. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops, pages 1111–1116,
2018.

[63] Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and
Daniel J Inman. 1d convolutional neural networks and applications: A survey. Me-
chanical systems and signal processing, 151:107398, 2021.

[64] Gunnar A Sigurdsson, Santosh Divvala, Ali Farhadi, and Abhinav Gupta. Asyn-
chronous temporal fields for action recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 585–594, 2017.

[65] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model
and the kinetics dataset. In proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6299–6308, 2017.

[66] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1–9, 2015.

[67] Lichen Zhou, Chuang Zhang, and Ming Wu. D-linknet: Linknet with pretrained en-
coder and dilated convolution for high resolution satellite imagery road extraction.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 182–186, 2018.

[68] Madison Clark-Turner. Temporal feature lfd, 2021.
https://github.com/AssistiveRoboticsUNH/temporal feature lfd.

93

[69] Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra Malik,
and Sergey Levine. Combining self-supervised learning and imitation for vision-based
rope manipulation. In 2017 IEEE international conference on robotics and automation
(ICRA), pages 2146–2153. IEEE, 2017.

[70] Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra Malik. State-only imi-
tation learning for dexterous manipulation. arXiv preprint arXiv:2004.04650, 2020.

[71] Radoslav Skoviera, Karla Stepanova, Michael Tesar, Gabriela Sejnova, Jiri Sedlar,
Michal Vavrecka, Robert Babuska, and Josef Sivic. Teaching robots to imitate a
human with no on-teacher sensors. what are the key challenges? arXiv preprint
arXiv:1901.08335, 2019.

[72] Jonathan Ho, Jayesh Gupta, and Stefano Ermon. Model-free imitation learning with
policy optimization. In International Conference on Machine Learning, pages 2760–
2769. PMLR, 2016.

[73] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation.
arXiv preprint arXiv:1805.01954, 2018.

[74] Zhicheng Gu, Zhihao Li, Xuan Di, and Rongye Shi. An LSTM-based autonomous
driving model using a waymo open dataset. Applied Sciences, 10(6):2046, 2020.

[75] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[76] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[77] Antoine Vacavant, Thierry Chateau, Alexis Wilhelm, and Laurent Lequievre. A bench-
mark dataset for outdoor foreground/background extraction. In Asian Conference on
Computer Vision, pages 291–300. Springer, 2012.

[78] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[79] Alexander Richard and Juergen Gall. A bag-of-words equivalent recurrent neural net-
work for action recognition. Computer Vision and Image Understanding, 156:79–91,
2017.

[80] Fahad Shahbaz Khan, Joost Van De Weijer, Andrew D Bagdanov, and Michael Fels-
berg. Scale coding bag-of-words for action recognition. In 2014 22nd International
Conference on Pattern Recognition, pages 1514–1519. IEEE, 2014.

[81] Saima Nazir, Muhammad Haroon Yousaf, and Sergio A Velastin. Evaluating a bag-of-
visual features approach using spatio-temporal features for action recognition. Com-
puters & Electrical Engineering, 72:660–669, 2018.

94

[82] Alexandros Iosifidis, Anastastios Tefas, and Ioannis Pitas. Discriminant bag of words
based representation for human action recognition. Pattern Recognition Letters,
49:185–192, 2014.

[83] Josep Maria Carmona and Joan Climent. Human action recognition by means of
subtensor projections and dense trajectories. Pattern Recognition, 81:443–455, 2018.

[84] Kyuhwa Lee, Dimitri Ognibene, Hyung Jin Chang, Tae-Kyun Kim, and Yiannis
Demiris. Stare: Spatio-temporal attention relocation for multiple structured activi-
ties detection. IEEE Transactions on Image Processing, 24(12):5916–5927, 2015.

[85] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), volume 1, pages 886–893. IEEE, 2005.

[86] Hossein Rahmani, Arif Mahmood, Du Q Huynh, and Ajmal Mian. Hopc: Histogram
of oriented principal components of 3d pointclouds for action recognition. In European
conference on computer vision, pages 742–757. Springer, 2014.

[87] Muhammet Fatih Aslan, Akif Durdu, and Kadir Sabanci. Human action recognition
with bag of visual words using different machine learning methods and hyperparameter
optimization. Neural Computing and Applications, 32(12):8585–8597, 2020.

[88] Piotr Dollár, Vincent Rabaud, Garrison Cottrell, and Serge Belongie. Behavior recog-
nition via sparse spatio-temporal features. In 2005 IEEE International Workshop on
Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pages
65–72. IEEE, 2005.

[89] Heng Wang and Cordelia Schmid. Action recognition with improved trajectories. In
Proceedings of the IEEE international conference on computer vision, pages 3551–3558,
2013.

[90] Tej Singh and Dinesh Kumar Vishwakarma. A hybrid framework for action recognition
in low-quality video sequences. arXiv preprint arXiv:1903.04090, 2019.

[91] Hueihan Jhuang, Thomas Serre, Lior Wolf, and Tomaso Poggio. A biologically inspired
system for action recognition. In 2007 IEEE 11th international conference on computer
vision, pages 1–8. Ieee, 2007.

[92] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional net-
works for skeleton-based action recognition. In Thirty-second AAAI conference on
artificial intelligence, 2018.

[93] Stepan Komkov, Maksim Dzabraev, and Aleksandr Petiushko. Mutual modality learn-
ing for video action classification. arXiv preprint arXiv:2011.02543, 2020.

[94] Ceyuan Yang, Yinghao Xu, Jianping Shi, Bo Dai, and Bolei Zhou. Temporal pyra-
mid network for action recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 591–600, 2020.

95

[95] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast net-
works for video recognition. In Proceedings of the IEEE International Conference on
Computer Vision, pages 6202–6211, 2019.

[96] Boyuan Jiang, MengMeng Wang, Weihao Gan, Wei Wu, and Junjie Yan. Stm:
Spatiotemporal and motion encoding for action recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 2000–2009, 2019.

[97] Xiang Jiang, Erico N de Souza, Ahmad Pesaranghader, Baifan Hu, Daniel L Silver, and
Stan Matwin. Trajectorynet: An embedded gps trajectory representation for point-
based classification using recurrent neural networks. arXiv preprint arXiv:1705.02636,
2017.

[98] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar
Paluri. A closer look at spatiotemporal convolutions for action recognition. In Pro-
ceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages
6450–6459, 2018.

[99] Joanna Materzynska, Guillaume Berger, Ingo Bax, and Roland Memisevic. The jester
dataset: A large-scale video dataset of human gestures. In Proceedings of the IEEE
International Conference on Computer Vision Workshops, pages 0–0, 2019.

[100] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Su-
sanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz
Mueller-Freitag, et al. The” something something” video database for learning and
evaluating visual common sense. In ICCV, volume 1, page 3, 2017.

[101] Tengda Han, Jue Wang, Anoop Cherian, and Stephen Gould. Human action forecasting
by learning task grammars. arXiv:1709.06391, 2017.

[102] Sam Toyer, Anoop Cherian, Tengda Han, and Stephen Gould. Human pose forecasting
via deep Markov models. In DICTA, 2017.

[103] Yu Kong and Yun Fu. Human action recognition and prediction: A survey. arXiv
preprint arXiv:1806.11230, 2018.

[104] Yue Fan, Yongqin Xian, Max Maria Losch, and Bernt Schiele. Spatial information is
overrated for image classification. 2019.

[105] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang
Ye, Feiyue Huang, and David Doermann. Towards optimal structured CNN pruning
via generative adversarial learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2790–2799, 2019.

[106] Jiwei Li, Will Monroe, and Dan Jurafsky. Understanding neural networks through
representation erasure. arXiv preprint arXiv:1612.08220, 2016.

[107] Mostafa Hussein, Brendan Crowe, Marek Petrik, and Momotaz Begum. Robust max-
imum entropy behavior cloning. arXiv preprint arXiv:2101.01251, 2021.

96

[108] Madison Clark-Turner and Mostafa Hussein. Hierarchical learner, 2021.
https://github.com/AssistiveRoboticsUNH/hierarchical learner.

[109] Sonia Chernova and Andrea L Thomaz. Robot learning from human teachers. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 8(3):1–121, 2014.

[110] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel,
and Jan Peters. An algorithmic perspective on imitation learning. arXiv preprint
arXiv:1811.06711, 2018.

[111] Shun-ichi Amari. Information geometry and its applications, volume 194. Springer,
2016.

[112] Edwin T Jaynes. Information theory and statistical mechanics. Physical review,
106(4):620, 1957.

97

APPENDIX A

Spatial Feature Bottleneck

A common modification made to all spatial feature extractors that leverage D-ITR-L is their

use of a bottleneck to constrain the number of spatial features used to generate an ITR

Graph. Identifying ITRs generates an pairwise number of edges when given a fixed set of

spatial features. This can be problematic for a deep learning video inference approach which

must simultaneously store the initial pixel-based video input, CNN architecture, ITR graph,

GCN architecture, and necessary gradients for a batch-grouped set of data in GPU memory.

Unfortunately, the output of a CNN contains a great many spatial features many of which

are redundant or uninformative [104, 105, 106]. I reduce the number of features output by

the backbone model by inserting a 1 × 1 convolutional bottleneck layer [66] prior to the

model’s inference layer. The use of this bottleneck is popular and wide-spread in the design

of Residual Network based deep learning models [65]. The number of distinct feature labels

to reduce down to is user-defined in this approach but this does not limit the number of

times a spatial feature can be expressed through D-ITR-L. Feature expression can rise and

fall throughout a video which can lead to multiple events in which a feature with the same

label can be expressed. This is necessary to capture cyclical expression of a given feature in a

video. The maximum number of times a feature of a specific label can be expressed is equal

to half the number of frames in a video (if the feature is expressed on every odd frame and

is not expressed on every even frame), though this is highly unlikely given that real world

data is rarely so polarized. Given this limitation I established (through trial and error) that

a maximum of 64 unique spatial features should be used when conducting inference on a

98

computer using 2 Titan X GPUs. This value assumes input of videos of up to 5000 frames

in length and is dependent upon both the resource demands of the Backbone CNN and

hyper-parameters such as batch size.

99

APPENDIX B

IRB Approval

100

	High Level Learning Using the Temporal Features of Human Demonstrated Sequential Tasks
	Recommended Citation

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	GLOSSARY
	ABSTRACT
	 INTRODUCTION
	Motivation
	Challenges of Learning Temporal Features in Convolutional Architectures
	Duration Invariance
	Video-Scale Features

	Proposed Solution
	Contribution
	Chapter Summary

	EXPLORATORY WORK: AN END-TO-END MODEL FOR HIGH-LEVEL TASK LEARNING FROM VIDEO DEMONSTRATIONS
	Introduction
	Related Work
	Background: Deep Q-Network
	An End-to-End Model for High-Level Task Learning
	Feature Extraction
	Temporal Feature Modelling

	Experiments
	Dataset Description: Social Greeting Behavioral Intervention
	Dataset Collection
	Training

	Results
	Simulated Results
	Real Time Results

	Conclusion
	Contributions

	LITERATURE REVIEW
	Introduction
	Background
	Interval Algebra
	Graph Convolutional Network

	Classical Methods
	Time-Slice Models
	Grammar Parsing Models
	Time-Interval Models
	Validation

	Deep Learning Methods
	rnns
	Convolutional Architectures

	DEEP INTERVAL TEMPORAL RELATIONSHIP LEARNER
	Temporal Feature Learning Using D-ITR-L
	Spatial Feature Extraction
	Formatting Interval Algebra Descriptors (IAD)
	Event Detection
	Interval Temporal Relationship Identification
	Learning From Temporal Features

	Contributions

	TEMPORAL FEATURES FOR POLICY LEARNING
	Related Works
	Extending D-ITR-L for use in Policy Learning
	Block Stacking
	Problem Definition
	Demonstration Set

	Backbone Model Preparation
	Pre-processing
	Feature Bottleneck
	Training

	Results
	Duration Invariance
	Video-Scale Feature

	Contributions

	TEMPORAL FEATURE FOR HUMAN ACTIVITY RECOGNITION
	Related Work
	Pre-Deep Learning Activity Recognition
	Activity Recognition Post Deep Learning
	Datasets

	Datasets for D-ITR-L Evaluation
	Experiments
	Training
	Results

	Conclusion
	Contributions

	TEMPORALLY-GUIDED FEATURE SELECTION
	Introduction
	Temporally-Informed Spatial Feature Selection
	Feature Selection and Appraisal
	Dataset
	Training
	Results

	Feature Visualization
	Conclusion
	Contributions

	CONCLUSION
	Future Directions
	Enhanced Temporal Representation
	End-to-end Learning

	Contributions

	LIST OF REFERENCES
	Spatial Feature Bottleneck
	IRB Approval

