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ABSTRACT 

THE APPLICATION OF IRON-BASED MATERIALS IN 

AQUEOUS ENERGY STORAGE 

 

By 

Fenghua Guo 

University of New Hampshire, December 2021 

 

Aqueous energy storage has been an important part of battery research for its cost-effective, 

environmentally benign, and robust nature. Iron-based materials, including iron hydroxides and 

iron oxides, are widely investigated as electrode materials for their extremely low cost and 

sufficient discharge capacity. Iron-based electrode materials were often operated in strong 

alkaline electrolytes, experiencing either slow reaction kinetics, severe side reactions, or 

significant capacity loss over cycling. This research focused on the application of iron-based 

materials in aqueous electrolytes with low alkalinity.  

This research showed that the synthesized 𝛾-FeOOH measured with a cocktail electrolyte of 

sodium sulfate and sodium hydroxide demonstrated an enhanced discharge capacity and 

improved capacity retention, compared with the results measured in sodium hydroxide 

electrolyte. The investigation on the charge storage mechanism using in-situ XRD, XPS, as well 

as electrochemical methods showed that a green rust phase formed in the discharge stage in the 
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cocktail electrolyte played an important role in the enhancing of electrochemical performance of 

𝛾-FeOOH, promoting Fe2+/Fe3+ one-electron transfer reaction with an enhanced capacity. The 

green rust phase also reduced the formation of the electrochemically inert Fe3O4 phase during the 

discharge process, promoting cycling performance. This research on the performance of iron-

based materials in cocktail electrolytes opens up a new field in utilizing iron-based materials for 

aqueous battery applications. 
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CHAPTER 1  INTRODUCTION 

1.1 THE DEVELOPMENT OF BATTERY  

The battery has been an important part of human society ever since its invention, and 

considerable developments in battery materials have been made over the years. The first electric 

battery was the Volta Pile, invented by Alessandro Volta in 1798.[1] Several types of batteries 

made their way into wide applications, including the Lead-Acid battery invented by G. Planté in 

1859 and the Nickel-Iron battery developed initially in 1901 by Thomas Edison and Jünger.[2-4] 

With the wide-growing applications of portable electronics and electric vehicles in the past few 

decades, there has been an increasing demand for high-performance batteries. Since Sony 

developed the first commercial lithium-ion batteries in 1991, lithium-ion batteries have been 

widely used for their high volumetric energy cyclability.[5-8]  

The demand for high-performance batteries is also increasing with the development of renewable 

energy. Figure 1.1 shows that fossil fuels still contribute to most energy consumption; however, 

the amount of renewable energy production increases over the years. On the other hand, it is of 

vital importance to couple energy storage systems with electricity generation from renewable 

sources, such as solar and wind, for their intermittent nature.[9-12] Moreover, with smart grid 

systems, it is critical to managing electricity production to better accommodate ever-changing 

electricity consumption. Therefore, one of the approaches a modern grid system adopts is to 

couple the renewable energy generation with the energy storage system, accommodating the 

mismatch between electricity consumption and production.[13,14]  
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Figure 1.1 Primary energy consumption in the United States, 1949 to 2020 (source: U.S. Energy 

Information Administration).[15]  

Intensive research efforts have been focused on nearly every aspect of a battery system to 

enhance its performance. These efforts include a better understanding of the fundamental 

electrochemical chemistry, finding new electrolytes with wide and stable potential window, and 

new types of electrode materials with enhanced redox activity and stability.[16-19]  

1.2 MECHANISM OF A BATTERY SYSTEM 

An electric battery is a device that can transform chemical energy into electrical energy upon 

discharging. Some of the batteries can also reversely transform electrical energy into chemical 

energy during the charging process. The battery was first invented by Alessandro Volta in 1798. 

In the famous Volta Pile, layers of zinc metal and copper were separated by cloth soaked with 

saltwater. The Volta Pile contains all the major parts of a battery: electrolyte and electrodes 

(including anode and cathode). The saltwater served as the electrolyte, the zinc electrode as the 

anode, and the copper as the cathode. John Frederic Daniell modified the Volta Pile later to 

1950 1960 1970 1980 1990 2000 2010 2020

0

20

40

60

80

100


1
0

1
5
 B

T
U

Year

 Renewable energy

 Nuclear electric power

 Fossil fuels



3 
 

avoid gas formation on the cathode in 1836, which led to the invention of the Daniell cell.[20] 

Battery reaction involves electron transfer. But unlike a typical redox reaction where the oxidant 

is in direct contact with the reductant and receives the electrons from the reductant, in a battery 

system, the redox reaction was ‘separated’ into two half-reactions to occur on each electrode 

respectively, as shown in Equations 1.1, 1.2 and 1.3, as well as in Figure 1.2 for a typical Zn-Cu 

battery. 

 

Figure 1.2 Scheme of a typical Zn-Cu battery. 

Figure 1.2 shows that the electrons were transferred through an external circuit (e.g., copper 

wire), and the charge was balanced by the ion transfer between the electrodes and electrolyte, as 

well as the transport of ions within the electrolyte. Ideally, the electrolyte should only support 

ionic transport and separate the two electrodes as an electronic insulator. 

Anode: 𝑍𝑛(𝑠) → 𝑍𝑛2+(𝑎𝑞) + 2𝑒−                                                                               Equation 1.1 

Cathode: 𝐶𝑢2+(𝑎𝑞) + 2𝑒− → 𝐶𝑢(𝑠)                                                                            Equation 1.2 



4 
 

Overall: 𝑍𝑛(𝑠) + 𝐶𝑢2+(𝑎𝑞) → 𝐶𝑢(𝑠) + 𝑍𝑛2+(𝑎𝑞)                                                     Equation 1.3 

The overall cell reaction can be derived by combing two half-reactions. The standard electrode 

potential of each half-reaction and the overall reaction is an intrinsic thermodynamic property 

and can be calculated from the standard Gibbs free energy of the related cell reaction by 

Equation 1.4: 

 𝐸𝐶𝑒𝑙𝑙
0 =

∆𝐺𝐶𝑒𝑙𝑙
0

−𝑛𝐹
                                                                                                                 Equation 1.4 

in which n is the charge transfer number, F is the Faradic constant (96485 Coulomb/mol). Since 

the Gibbs free energy at non-standard conditions can be calculated by Equation 1.5, the potential 

at different temperatures, pressure, and concentrations can thus be calculated by Equation 1.6 

(the Nernst equation). 

 ∆𝐺 = ∆𝐺⊖ + 𝑅𝑇𝑙𝑛𝑄𝑟                                                                                                  Equation 1.5 

 𝐸𝐶𝑒𝑙𝑙 = 𝐸𝐶𝑒𝑙𝑙
⊖ −

𝑅𝑇

𝑛𝐹
𝑙𝑛𝑄𝑟                                                                                                Equation 1.6 

in which T is the temperature in Kelvin, and 𝑄𝑟 is the reaction quotient. It is worth mentioning 

that the reaction involved within the Volta Pile is irreversible. Once the discharge process is 

completed, the electrode materials will be consumed, and the battery will not be re-charged. The 

non-rechargeable battery is categorized as a primary battery, while the secondary battery refers 

to rechargeable batteries, as the electrochemical reactions are reversible to allow the charging 

and discharging processes. Both primary and secondary batteries have significant applications in 

modern life. Primary batteries are popular for occasions when recharging is not necessary or 

challenging, such as implantable cardioverter defibrillator.[21] Secondary batteries are preferred 

for many other applications such as electric vehicles and portable electronic devices. 
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Notably, the standard cell potential at which the redox reactions happen can be calculated by 

reaction Gibbs free energy, as it is equilibrium potential. However, the potential at which a 

reaction practically happens is different from the equilibrium potential. The difference is called 

overpotential, which determines reaction kinetics by the Butler-Volmer equation (Equation 

1.7).[22,23] 

𝑖 = 𝑖0 ∙ {exp (
𝛼𝑎𝐹𝜂

𝑅𝑇
) − exp (−

𝛼𝑐𝐹𝜂

𝑅𝑇
)}                                                                            Equation 1.7 

where 𝑖 is the generated current, 𝑖0 is the exchange current, 𝜂 is the difference between applied 

potential and equilibrium potential, 𝛼𝑎 is the dimensionless anodic charge transfer coefficient, 𝛼𝑐 

is the dimensionless cathodic charge transfer coefficient, F is the Faradic constant, R is the gas 

constant, and T is the temperature in Kelvin. The reaction kinetics of an electrochemical reaction 

affect the reaction rates. A fast electrochemical reaction usually yields a high power density of a 

battery, but it also requires a high overpotential. Requirements on batteries are different 

depending on their applications, but in general, higher energy density, power density, and better 

cycle life are highly desired.[24] Therefore, tremendous efforts have been devoted to these goals, 

especially on developing electrolytes and electrodes.[25-27] 

1.2.1 ADVANCES IN THE UNDERSTANDING OF REACTION MECHANISM 

1.2.1.1 PHASE TRANSITION IN A REDOX REACTION 

Fast reaction kinetics is critical for a battery’s practical application. Phase changes, namely, 

whether or not the electrochemical reaction would cause structural changes within the electrode 

materials, are among the most important characteristics that would impact the reaction 

mechanism. With the development in material characterization techniques, especially the 
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development in crystallography with the wide application of X-ray diffraction, researchers can 

look more in detail at how the structure changes while the electrochemical reaction proceeds.  

The redox reactions in the early batteries, such as the lead-acid battery and the nickel-iron 

battery, often involved irreversible phase changes during the conversion from the reactants to the 

electrochemical products. For example, in the Nickel-iron (Ni-Fe) battery, the reaction on the Fe 

anode during discharging involves the oxidation of a body-centered cubic metallic iron to 

layered Fe(OH)2, as described by Equation 1.8.   

𝐹𝑒 + 2𝑂𝐻− → 𝐹𝑒(𝑂𝐻)2 + 2𝑒−                                                                                   Equation 1.8 

This so-called conversion-type of electrochemical reaction usually has slow reaction kinetics and 

poor reversibility due to its large energy barrier for the phase transition and slow ion diffusion 

within the electrode particle. As described in previous work, a typical battery reaction that 

involves phase change usually results in sharp redox peaks in a cyclic voltammetry measurement 

or a long discharge plateau in a chronopotentiometry measurement.[28] On the other hand, the 

conversion-type of electrochemical reactions generally results in high energy density. 

Over the past few decades, researchers have been devoted to the insertion-type of 

electrochemical reaction, in which the electrode material can host the insertion/extraction of ions 

without changing its crystal structure (no phase transition). Materials with a layered structure are 

among the most studied insertion-type of electrode materials, as shown in Figure 1.3. Graphite is 

a typical layered material, which is still used in Lithium-ion batteries.[29] Usually, the layered 

materials have a relatively large interlayer distance, and their molecular layers are held together 

by van der Waals force. Thus, the electrochemical reaction is fulfilled by the reversible 

insertion/extraction of ions at the interlayer space without destroying the layer structure. 
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Figure 1.3 Illustration of conversion type and insertion type of reaction mechanism. 

 The distance between adjacent layers would be altered during the redox reaction (insertion and 

extraction of ions), but the main structure would still be maintained. Since there are no drastic 

phase changes and the ions would only have coulombic interactions instead of chemical bonding 

with the intra-layer atoms, electrochemical reactions with layered structure materials usually 

have relatively fast kinetics and better reversibility.[30,31]  

Notably, although materials with a layer structure are the most used materials for the insertion-

type of reaction, a layer structure is not a requirement for the insertion-type of reaction. Some 

other materials with large cavities in the structure could also host the insertion and extraction of 

ions, such as LiFePO4 with an ordered olivine structure, which will be discussed later in this 

chapter (Section 1.3.3).[32] Other layered materials that have been widely investigated include 

layered transition metal oxides and layered double hydroxides.[30] 

1.2.1.2 ION SIZE IN A REDOX REACTION 

On the other hand, it is also beneficial to have inserted ions with smaller size, as in theory, it 

would cause few structural changes to the host materials. Lithium-ion batteries have been 

popularly investigated and commercially applied because lithium-ion has the smallest radius of 
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all metal ions. However, in aqueous electrolytes, metal ions usually accompany several water 

molecules, also known as hydration. Even though the lithium-ion is smaller than the sodium ion 

or potassium ion, it is more strongly hydrated with water molecules and thus possesses a larger 

hydrated radius (Stockes radius) than Na+ and K+ ions.[33,34] Thus, it is expected that sodium ions 

or potassium ions are used as intercalated ions in aqueous systems. 

One challenge with the application of Lithium-ion batteries is the uneven distribution of lithium 

reserves around the globe and the high price, limiting its application in energy storage devices. 

Therefore, researchers have been studying Na+ and K+ charge carriers over the years, even for 

non-aqueous energy storage systems.[35,36] Although Na+ and K+ have significantly larger radii 

than Li+, as shown in Table 1.1, and are also heavier in atom weight, it is still beneficial in terms 

of cost, especially for large-scale energy storage devices.  

Table 1.1 Radius of different ions.  

Ion 𝐿𝑖+ 𝑁𝑎+ 𝐾+ 𝐶𝑙− 𝑆𝑂4
2− 

Radius (Å) 0.76[37] 1.06[37] 1.64[38] 1.81[39] 2.15[39] 

 

Notably, anions are generally not considered ideal for the insertion-type of electrochemical 

reactions because anions typically have large radii (Table 1.1) compared to cations. However, 

the application of layered materials with large interlayer spacing in anion-intercalation batteries 

is also being investigated, especially in chloride-ion batteries (CIB). It is also worth mentioning 

that although insertion-type of materials are getting popular over the years for the merits 

mentioned previously, the drawbacks are also apparent: the insertion-type of battery materials 

typically have a smaller capacity compared with conversion-type of batteries, as the redox 

reaction are usually not complete. 
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1.2.1.3 PARTICLE MORPHOLOGY IN REDOX REACTION 

Another essential factor that can affect the reaction kinetics is the morphology of the electrode 

particle, particularly the particle size. The reaction kinetics also can be improved mainly by 

reducing the diffusion length for ions during an electrochemical reaction. With the development 

in imaging techniques, especially the wide application of electron microscopy, researchers could 

better control the morphology of the materials. Whether the electrode materials go through an 

insertion- or conversion-type of reaction, the ion transport between the electrode and electrolyte 

interface is inevitable, and the ion diffusion within the particle was often the rate-limiting step. In 

general, a shorter diffusion length for the ions in the particles would result in better reaction 

kinetics. Therefore, nano-sized electrode materials have been heavily investigated for their 

improved transport properties during battery reactions.[40,41]  

The control of particle morphology goes beyond particle size. Efforts have been made on 

synthesizing materials with different morphologies such as 2D nanosheets and hollow 

nanostructure. 2D nanosheets are beneficial in many different ways, especially for their large 

specific surface area, which favors fast reaction kinetics.[42,43] Hollow nanostructure also results 

in a large surface area and short diffusion length.[44]  

1.2.1.4 PSEUDO CAPACITANCE IN REDOX REACTION 

It is worth mentioning that with the wide application of nano-sized electrode materials and 

materials that could have fast reaction kinetics, supercapacitors have become a new type of 

electrochemical energy storage device that emerges over the years.[45,46] In a supercapacitor, also 

called a pseudo capacitor, charges are stored at the electrode surface with a much faster 

electrochemical reaction rate than traditional batteries where the charges are stored mainly inside 

the particles. On the other hand, the capacity of supercapacitors is still higher than traditional 
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capacitors, where the charges are only absorbed in the surface via a non-Faradic process (double-

layer capacitance). Notably, both supercapacitor and capacitor show a linear relationship 

between the capacity and applied potential, while their charge storage mechanisms are not 

identical.[47,48] 

1.2.2 ADVANCES IN THE UNDERSTANDING OF THE ROLE OF ELECTROLYTES 

Electrolytes are an essential part of a battery system, serving as the host for the charge carriers 

and allowing ionic transport between the cathode and the anode. An electrolyte should also be an 

electronic insulator to avoid shorting.  

Another critical feature of an electrolyte is its stable potential window. A battery should be 

operated within the stable potential window of the electrolyte to avoid the continuous 

decomposition of the electrolyte. Therefore, the potential window of the electrolyte often 

determines the potential window of an electrochemical device, influencing the energy density of 

the device (Equation 1.9), 

𝐸 =
1

2
× 𝐶 ×

(∆𝑉)2

3600
                                                                                                          Equation 1.9 

where C is the volumetric capacitance, and ∆𝑉 is the potential window.[49,50] The potential 

window of water-based electrolytes is usually limited by the stable potential window of water, 

which is 1.23 V according to the Pourbaix Phase Diagram of the water.[51] Researchers have been 

investigating different types of electrolytes over the years to develop electrolytes with a large 

stable potential window.[52-54] 
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1.2.2.1 LIQUID ELECTROLYTES 

Liquid electrolytes have a long history of applications in batteries. Typically, the electrolyte 

consists of solvent and salt. Depending on the solvent, the electrolyte can be categorized as an 

aqueous electrolyte where the solvent is water or an organic liquid electrolyte where the solvent 

is one or more kinds of organic compounds. 

AQUEOUS ELECTROLYTES 

Aqueous electrolyte refers to electrolytes that use water as solvent. Aqueous electrolytes have 

been utilized since the Volta Pile, in which saltwater is used as an electrolyte. The lead-acid 

battery was the first rechargeable aqueous battery invented by G. Planté in 1859, of which the 

electrolyte was sulfuric acid. The famous Nickel-Iron Battery developed by Thomas Edison and 

Jünger in 1901 used potassium hydroxide solution as an electrolyte. Aqueous electrolytes have 

been widely used since the early stage of battery application, as they are generally 

environmentally friendly, cost-effective, relatively easy to produce, and of high ionic 

conductivity.  

Despite the merits, aqueous energy storage devices have some limitations that bottleneck their 

application. The thermodynamically stable potential window for water is only 1.23 V, beyond 

which the gas evolution reaction described by Equations 1.10 and 1.11 (Alkaline environment) 

would happen. The limited operational potential window of aqueous energy storage devices 

results in a relatively low energy density, limiting their applications in the fields where high 

energy density is critical.  

4𝑂𝐻− → 𝑂2 + 2𝐻2𝑂 + 4𝑒−                                                                                        Equation 1.10 

 𝐸0 = 1.23 − 0.0591 ∙ 𝑝𝐻                          
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 4𝐻2𝑂 + 4𝑒− → 2𝐻2 + 4𝑂𝐻−                                                                                    Equation 1.11        

 𝐸0 = −0.0591 ∙ 𝑝𝐻                          

There have been great efforts to extend the potential window in aqueous energy storage. An easy 

way to avoid the gas evolution reaction is to change the pH of the electrolyte.[55,56] In some cases 

where hydrogen evolution reaction (HER) is the limiting side reaction, it usually is beneficial to 

increase the pH so the HER could be suppressed to a lower potential. But this method would not 

enlarge the potential window since the oxygen evolution reaction would be shifted to a lower 

potential at the same time as described by Equation 1.10, and the potential window remains at 

1.23 V. Notably, the practical potential window of an aqueous electrochemical device is usually 

higher than the equilibrium potential window of water (1.23 V) since overpotential is always 

incurred to the electrochemical reactions when the reaction proceeds under off-equilibrium 

conditions.   

Besides pH, recent efforts have been devoted to developing the kinetically inert interphase to gas 

evolution reactions at electrode and electrolyte interface. Shan’s work showed that hydroxylated 

interphase formed on the Mn5O8 electrode surface upon the interaction between water and Mn2+ 

components during the electrochemical cycling. Such interphase significantly increases the 

energy barrier for water decomposition and results in a stable potential window of 2.5 V in a 

half-cell reaction.[57]  

Another approach to expand the aqueous potential window is to develop new types of aqueous 

electrolytes. Recently, researchers found that aqueous electrolytes with an extremely high 

concentration of salts exhibited a much-enlarged stable potential window. Suo’s initiative work 

on the ‘water-in-salt’ system showed that the potential window could be expanded to ~3.0 V by 
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the formation of a solid-electrolyte interphase (SEI) and reduced activity of water in a highly 

concentrated aqueous electrolyte (> 20 M of lithium bis(trifluoromethane sulfonyl)imide), which 

is a considerable improvement comparing with the 1.23 V stable potential window of water.[52]  

ORGANIC LIQUID ELECTROLYTES 

Some electrolytes using organic solvents could offer a potential window over 3.0 V due to their 

stable chemical properties under a high electric field.[58] One of the most commonly used salts in 

organic electrolytes for lithium-ion batteries is Lithium Hexafluorophosphate (LiPF6).
[59] 

Notably, an SEI layer would form in the presence of organic electrolytes after the initial cycle at 

the surface of the anode, protecting the electrolyte from further decomposition.[59,60] SEI 

formation plays an important role in the properties of a battery, especially cyclability and 

columbic efficiency. The challenge of lithium metal as an anode is lithium dendrites formation 

that would damage the SEI layer.[61,62] Many researchers have been working on a better 

understanding of the SEI layer.[60, 63-65] In general, the SEI layer was formed with the 

decomposition product of the solvent and the salts. The layer is an electrical insulator that can 

block the solvent molecules from contacting the electrode to permit lithium-ion transport. 

 The higher energy density batteries with organic electrolytes are popularly used in portable 

electronic devices, such as cell phones and laptops, where high volumetric energy density is 

critical. However, despite the wide potential window and high energy density that organic 

electrolytes provide, their drawbacks include their high cost and flammable and toxic nature.  

1.2.2.2 SOLID-STATE ELECTROLYTES 

Besides liquid electrolytes, researchers also focused on solid-state electrolytes, which are less 

flammable and could handle a much larger potential window than the organic electrolyte.  
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Similar to liquid electrolytes, solid-state electrolytes are ionic conductors and electronic 

insulators and can facilitate the transport of charge carriers between anode and cathode. Solid-

state ionic conductors were discovered in the 19th century, and their first application as a solid-

state electrolyte was in 1960s.[66] It is worth mentioning that when the solid-state electrolytes are 

employed in a battery device, a separator that is commonly required in liquid electrolytes is no 

longer needed because solid-state electrolytes can also serve as separators.  

While a solid-state electrolyte offers a large potential window, its ionic conductivity is generally 

inferior to liquid electrolytes since the ions are more ‘confined’ in the solid-state. Many efforts 

have been reported on improving the ionic conductivity of solid-state electrolytes, where a 

plausible ionic conductivity in the range of 10-3 S cm-1 is achieved. Such performance is close to 

the typical ionic conductivity of organic liquid electrolytes (around 10-2 S cm-1).[67,68] 

In summary, understanding how electrolytes interact with electrodes helps discover new types of 

electrolytes that are stable over a wide potential window and ionically conductive. As a result, 

novel electrolyte systems improve the electrochemical performance of the existing battery 

materials and allow more materials to be used as battery electrodes if their redox potentials fall 

into a more expanded potential window.  

1.2.3 ADVANCES IN THE DESIGNING OF ELECTRODE MATERIALS 

Electrode materials play a vital role in the storage capacity, cycle life, and coulombic efficiency 

of a battery device. With a more thorough understanding of reaction mechanisms, researchers 

have been making progress in finding and designing battery materials that have a higher energy 

density, higher power density, and improved cyclability. 



15 
 

1.2.3.1 CATHODE MATERIALS 

The performance of a battery device is often bottlenecked by the lack of high-capacity transition 

metal oxide cathode materials because anode materials, such as lithium metal or graphite, usually 

possess a much higher storage capacity than cathode counterparts. Transition metal-based 

materials are among the most studied cathode materials due to their multiple valence states 

during the redox reactions. For example, Mn2+/Mn3+/Mn4+ are the typical valence states for Mn-

based materials, and the chemistry caused by the insertion/extraction of Li+ with spinel Mn3O4 is 

the redox couple between Mn2+ and Mn3+, the insertion /extraction of Li+ with layered 𝛼-MnO2 

was accompanied with the redox couple between Mn3+ and Mn4+. Most transition metals also 

have a large abundance, as iron and magnesium have 4.7% and 1.9% in the earth’s crust, 

respectively. Many transition metal elements, particularly iron and manganese, have low toxicity 

and are environmentally benign.[69] 

Over the past few decades, with the tremendous development in the lithium-ion battery, many 

transition metal oxides and hydroxides with the layered structures have been extensively studied, 

including 𝛿-MnO2, layered V2O5, and layered double hydroxide (LDH).[70-73] 𝛿-MnO2 has an 

interlayer spacing of around 7 Å, while interlayer spacing for V2O5 is as high as 11.5 Å, and can 

be further enlarged by additional intercalation of water molecules and even organic molecules.[74-

76] The weak Van der Waals forces between the adjacent 2D layers and the large interlayer 

spacing are ideal for ion intercalation in the layered materials. On the other hand, LDHs have the 

general formula of [𝑀𝑥
2+𝑁𝑦

3+(𝑂𝐻)2(𝑥+𝑦)](𝐴𝑛−)𝑦/𝑛 ∙ 𝑚𝐻2𝑂, where 𝑀𝑥
2+ and 𝑁𝑦

3+ are metal ions 

and can be from the same species. 𝐴𝑛− are the anion groups that reside between the hydroxide 

layers and neutralize the positive charged hydroxide layers. Different from the aforementioned 

layered 𝛿-MnO2 and V2O5, where cation intercalation and deintercalation occur during 
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electrochemical reactions, LDHs are widely used as an anion host during energy storage 

reactions.[77,78]  

A major challenge in utilizing transition metal oxides and hydroxides as battery electrodes is 

their intrinsic poor electric conductivity, which would result in low storage capacity and poor 

cyclability. Researchers have been studying different methods to improve their conductivity. The 

most used approach is physically mixing the transition metal oxides or hydroxides with 

conducting materials like active carbon. In addition, doping transition metal oxides or hydroxides 

with more conductive species during material synthesis is another approach to improve the 

conductivity of the electrode materials, such as doping Ni or Co species in the manganese- or 

vanadium-based oxides.[79-83] Such binary or ternary transition metal oxides or hydroxides could 

potentially improve the conductivity by synergistic effect.[84,85] Moreover, synthesizing materials 

with certain morphologies such as 1D nanowires also could improve the electronic conductivity 

because the bulk-like properties in the elongated direction offer a low percolation threshold for 

electron transport.[86] Besides the oxides, transition metal phosphides, transition metal sulfides, 

and transition metal nitrides have also been studied over the years for their generally better 

conductivity.[87-89] 

1.2.3.2 ANODE MATERIALS 

Graphite and lithium metal are the most used anode materials in lithium-ion batteries. Lithium 

metal is an ideal anode due to its low reduction potential (-3.05 V vs. SHE) among alkali metals 

and high theoretical capacity (3860 mAh g-1).[59, 90, 91] However, the formation of Lithium 

dendrites is problematic, including the consumption of lithium and causing short circuits inside 

the battery. Layered graphite becomes a more popular anode material than lithium metal for its 

large surface and ability to host lithium-ions between layers, as described in Equation 1.12.[59,92]  
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 𝐶6 + 𝑥𝐿𝑖+ + 𝑥𝑒− ⇌ 𝐶6𝐿𝑖𝑥                                                                                         Equation 1.12 

It is worth mentioning that great efforts have been spent on reducing the formation of lithium 

dendrites over the years to better utilize lithium metal as the anode.[61,93] Some researches 

showed that electrolytes with a high concentration of lithium salts would reduce or even 

eliminate the formation of lithium dendrites.[94,95] Some additives to the electrolytes, including 

fluoroethylene carbonate, nanodiamond, triblock polyether (Pluronic P123), and some others, 

also showed significant effects on reducing the formation of lithium dendrites.[96]  

There also have been efforts to develop anode materials beyond lithium metal and graphite. 

Other carbon-based materials such as carbon nanotubes have also been investigated as anodes 

and showed promising performance due to their unique 1D morphology.[97] A few other 

materials have been investigated as the anode, including zinc and iron metals. Traditionally, Zn 

was used in Zn-MnO2 primary batteries with an alkaline electrolyte due to the irreversible 

reactions on the manganese oxide electrodes, such as the formation of electrochemical-inert 

Mn3O4. However, in a mild acidic electrolyte, Zn2+ can reversibly intercalate/deintercalated in 

the cathode materials, making the Zn-MnO2 battery become rechargeable where zinc metal 

functions as the anode. Iron-based materials were also widely used as anode both in organic 

electrolyte systems and aqueous systems. One of the first applications of the iron-based anode 

was the metallic iron used in Ni-Fe alkaline batteries because Fe/Fe2+ and Fe2+/Fe3+ redox 

couples happen at relatively low potentials. However, it is worth mentioning that some iron-

based materials can also be used as cathode materials, such as Prussian blue, which will be 

discussed later in this chapter (Section 1.3.3).  
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1.3 THE APPLICATION OF IRON-BASED ELECTRODE MATERIALS 

Although iron is the fourth most abundant element on earth’s crust and iron-based materials are 

also environmentally benign, there are challenges for their application as electrode material. The 

application of iron in Nickel-Iron alkaline batteries is a good example. First, the redox reaction 

between Fe0 and Fe2+ involves the two-electron transfer and phase changes, which leads to 

intrinsically slow reaction kinetics. Secondly, the reduction potential from Fe2+ to Fe is very 

close to the hydrogen evolution reaction, which inevitably resulted in the gas formation 

accompanying the battery reaction when in aqueous electrolytes. Finally, like other transition-

metal-based materials, iron oxides and hydroxides are in general of poor conductivity.  

Over the past few decades, many works have been done on using iron-based materials as 

supercapacitors using Fe2+/Fe3+ redox couple by employing a high concentration of the alkaline 

solution, controlling the particle morphology, or coupling iron materials with conductive 

substrates.[98-100] Beyond the traditional iron oxides and hydroxides, other iron-based materials 

have also been widely used as electrode materials, including LiFePO4, as well as Prussian blue. 

1.3.1 FUNDAMENTAL CHEMISTRY OF IRON IN AQUEOUS ELECTROLYTE 

Better utilization of iron-based materials requires a fundamental understanding of iron-based 

materials’ behavior in aqueous electrolytes, especially in alkaline solutions. The Pourbaix 

diagram of iron in Figure 1.4 (the concentration of soluble species were assumed to be 10-4 M) 

shows that iron species are generally soluble under acidic conditions, insoluble under a neutral or 

basic environment, and become soluble again in highly alkaline solutions. As a result, most 

studies on iron battery chemistry have been conducted under basic or neutral environments. Iron 

can have multiple valence states, including Fe0, Fe2+, and Fe3+. And the redox reaction usually 
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happens between Fe0/Fe2+ and Fe2+/Fe3+. For example, as shown in Equations 1.13, 1.14, and 

1.15, metallic iron can be oxidized to Fe(OH)2 or to Fe3O4, depending on the conditions. 

𝐹𝑒 + 2𝑂𝐻− → 𝐹𝑒(𝑂𝐻)2 + 2𝑒−                                                                                  Equation 1.13 

𝐸0 = −0.047 − 0.0591𝑝𝐻                                  

3𝐹𝑒(𝑂𝐻)2 + 2𝑂𝐻− → 𝐹𝑒3𝑂4 + 4𝐻2𝑂 + 2𝑒−                                                               Equation 1.14 

𝐸0 = −0.197 − 0.0591𝑝𝐻             

3𝐹𝑒 + 8𝑂𝐻− → 𝐹𝑒3𝑂4 + 4𝐻2𝑂 + 8𝑒−                                                                      Equation 1.15 

 𝐸0 = −0.085 − 0.0591𝑝𝐻                             

Both Fe(OH)2 and Fe3O4 could be further oxidized to Fe(OH)3, as shown in Equations 1.16 and 

1.17. 

𝐹𝑒(𝑂𝐻)2 + 𝑂𝐻− → 𝐹𝑒(𝑂𝐻)3 + 𝑒−                                                                           Equation 1.16 

𝐸0 = 0.271 − 0.0591𝑝𝐻                            

𝐹𝑒3𝑂4 + 𝑂𝐻− + 4𝐻2𝑂 → 3𝐹𝑒(𝑂𝐻)3 + 𝑒−                                                                Equation 1.17 

𝐸0 = 1.208 − 0.0591𝑝𝐻                       
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Figure 1.4 Simplified Pourbaix diagram of iron.[51]  

Notably, the area between the red lines (Equations 1.10 and 1.11) is the thermodynamically 

stable potential window of water. As shown in Equation 1.13, metallic iron formation from the 

reduction of Fe(OH)2 happens at a slightly lower potential than the hydrogen evolution reaction 

(Equation 1.11). This also explains the long-standing issues with the iron electrode, namely, the 

formation of iron is inevitably accompanied by hydrogen production from water reduction. 

In Ni-Fe alkaline battery, the reactions at the negative terminal are dominated by Fe0/Fe2+ redox 

couple. Although further discharging to form FeOOH is possible, Fe3O4 often forms following 

Equation 1.14. The Fe3O4 has a close-packed crystal structure and is electrochemically inert, 

lowering the cyclability of the iron anode. 

Other than a pure alkaline solution, the more complicated electrolyte systems have also been 

studied, showing that iron-based materials undergo various redox reactions. Genn’s work 

showed different oxidization products formed in the presence of various anion groups, in which a 
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different intermediate species called green rust (GR) formed during the oxidization from Fe2+ to 

Fe3+, as shown in Equations 1.18 and 1.19.[101]  

6𝐹𝑒(𝑂𝐻)2 + 𝑆𝑂4
2− ↔ 𝐹𝑒6(𝑂𝐻)12𝑆𝑂4 + 2𝑒−                                                             Equation 1.18 

𝐸ℎ = −0.57 − 0.0296log (𝑆𝑂4
2−)    

𝐹𝑒6(𝑂𝐻)12𝑆𝑂4+6𝑂𝐻− ↔ 6𝛾 − FeOOH + 𝑆𝑂4
2− + 6𝐻2𝑂 + 4𝑒−                             Equation 1.19 

𝐸ℎ = 0.59 + 0.0148 log(𝑆𝑂4
2−) − 0.0887𝑝𝐻    

GR has a layer structure where the brucite-like iron hydroxide layers are separated by the 

interlayer species, including water molecules and intercalated anion groups. It is an LDH, where 

the 𝑀𝑥
3+ and 𝑁𝑦

2+ are from the same metal atom. Depending on the intercalated anion groups and 

the corresponding difference in the structure, GR can be further categorized into GR1 and 

GR2.[102] GR1 refers to the green rusts where the intercalated anion groups are planar anions 

such as 𝐶𝑙− and 𝐶𝑂3
2− and resides as one layer between the hydroxide layers, whereas GR2 refers 

to the green rust where the intercalated anions are non-planar anions such as  𝑆𝑂4
2− and resides as 

two layers between the hydroxide layers. GRs can be synthesized by the oxidization of ferrous 

hydroxide or the reduction of iron oxyhydroxide.[103,104] It has been used for heavy metals 

remediation.[105,106] But its role in energy storage has yet to be reported. 

1.3.2 IRON OXIDES/HYDROXIDES 

Like most transition metals, iron has multiple valance states. FeO or Fe(OH)2 consists of Fe2+. 

Fe2O3 or FeOOH consists of Fe3+, and both Fe2O3 and FeOOH have multiple crystalline phases. 

Fe3O4 consists of both Fe2+ and Fe3+. FeO/Fe(OH)2 can be easily oxidized into Fe3O4, Fe2O3, or 

FeOOH when exposed to air, and the latter two products are relatively stable in the atmosphere. 
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Of the aforementioned iron oxides/hydroxides, only Fe(OH)2 and 𝛾-FeOOH had a layered 

structure with the layer spacing was around 5 Å. However, employing these layered materials as 

electrodes for intercalation charge storage reaction remains a challenge since both are less stable 

during the redox process. Other close-packed iron oxides/hydroxides are typically not used as 

insertion-type of battery materials but still commonly used in conversion-type battery reactions 

in aqueous and non-aqueous systems. 

Iron oxides/hydroxides also face the challenge of poor electric conductivity. Combining iron 

oxides/hydroxides nanoparticles with more conductive materials improves electrochemical 

performance.[107-109] For example, Qu’s research showed that the specific capacitance of 

electrochemically obtained Fe3O4 grown on reduced graphene oxide (RGO) is much higher than 

Fe3O4 without RGO.[99]  

1.3.3 OTHER IRON-BASED ELECTRODE MATERIALS 

Iron-based materials are not limited to oxides or hydroxides. Other iron-based materials, 

including Prussian blue and its analogs, as well as LiFePO4, are important electrode materials 

with more complicated crystalline structures and charge storage mechanisms.[110,111] Unlike other 

iron-based materials that are commonly used as anode materials, Prussian blue and LiFePO4 are 

usually used as cathode materials.  

Prussian blue has a general formula of 𝐴𝑥𝐹𝑒3+[𝐹𝑒2+(𝐶𝑁)6]𝑦 ∙◻1−𝑦∙ 𝑧𝐻2𝑂, and with a face-

centered cubic arrangement of iron atoms, where 𝐹𝑒3+ and 𝐹𝑒2+ atoms are connected by -C≡N- 

ligands, A is alkali metals reside at interstitial sites, ◻ represents the 𝐹𝑒2+(𝐶𝑁)6 vacancy sites 

occupied by water molecules, and 𝐻2𝑂 is the uncoordinated interstitial water molecules.[112,113] 

The iron atoms can be replaced with other metal atoms to form Prussian blue analogs. Although 



23 
 

it did not have a layered structure, Prussian blue analogs could host charges via the intercalation 

storage mechanism, owing to their large spacing for alkali cations insertion. Prussian blue 

analogs have been studied using different intercalated ions, including Na+ and K+, under both 

aqueous and organic electrolytes. However, their battery performance is limited by poor 

cyclability and low coulombic efficiency, strongly related to their molecular structures. You’s 

work showed that a lower number of 𝐹𝑒2+(𝐶𝑁)6 vacancies in the structure would result in a 

much better cyclability.[112]  

LiFePO4 is another iron-based electrode material widely investigated and applied in industrial 

applications as an insertion-type of cathode material. LiFePO4 has an olivine structure, where Fe 

atoms sit at the center of FeO6 octahedra units, P atoms sit at the center of PO4 tetrahedra, and Li 

atoms sit at the center of LiO6 octahedra units.[114] Li atom could leave the structure with the 

olivine structure kept upon delithiation. Apart from the benefit of being cost-effective, LiFePO4 

has the advantage of a relatively stable structure, resulting from the strong bonding among 

oxygen, iron, and phosphorus atoms and the small volume changes of LiFePO4 between the 

charge/discharge processes (6.77%). There are also several limitations of LiFePO4, including 

poor electronic and ionic conductivities. Unlike layered materials that can provide a 2D diffusion 

pathway for lithium ions, the diffusion of lithium ions in LiFePO4 can only be a 1D diffusion.[32] 

Researchers have minimized the diffusion limitation and improved the conductivity by reducing 

the particle size and coating carbon with LiFePO4 particles.[115] Some researchers also tried to 

replace lithium-ion with sodium-ion. NaFePO4 with the same olivine structures have been used 

in sodium-ion batteries, showing promising results.[116,117]  
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CHAPTER 2  EXPERIMENTAL METHODS 

2.1 MATERIAL SYNTHESIS 

γ-FeOOH was synthesized by a method modified from a literature-reported way.[118] 8 mL of 

ammonium hydroxide solution (28-30%, Certified ACS plus, Fisher Chemical) was first diluted 

10 times by volume, then 8 mL of the diluted solution was continuously injected by a syringe 

pump (HSW Inc.) at 0.16 mL/min into a 250 mL solution of 0.01 M FeCl2 (99.5%, metal basis, 

Alfa Aesar) and 0.1 M NaCl (≥99.5%, Sigma Aldrich), along with bubbling with compressed air. 

The precipitant was collected 30 min after the injection finished by centrifuging and then washed 

with deionized water (18.2 MΩ, Millipore, Inc.) twice and ethanol (190 Proof, ACS Grade, 

Pharmco) once, then vacuum dried. The vacuum product was then heated 100℃ for 3 hours 

under the standard atmosphere, then soaked in deionized water for one week with stirring. The 

product was then collected by centrifuge, washed 3 times with deionized water, and vacuum 

dried to get the final product. 

2.2 MATERIAL CHARACTERIZATION 

Multiple techniques, including Scanning Electron Microscope (SEM) and X-ray Photoelectron 

Spectroscopy (XPS), and X-ray diffraction (XRD) were utilized for the material characterization 

to have a better understanding of the morphologies, valance states, as well as the crystal 

structures of the materials being studied. Particularly, the application of XRD in material 

characterization helped researchers understand the energy storage mechanism by analyzing the 

crystal structure of electrode material and its evolution during electrochemical reactions. For 

example, XRD measurements can illustrate whether the battery reaction is a conversion- or 

insertion-type reaction mechanism. 
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Depending on the intensity of the X-ray source and the crystallinity of the target material, it takes 

a different amount of time for the detector to collect enough counts to generate reliable XRD 

patterns, usually in minutes. However, with the application of X-ray sources that can generate a 

high X-ray flux, it is possible to obtain high-quality XRD data within seconds. It is thus possible 

to collect the XRD patterns while the electrochemical reactions occurring (so-called in-situ 

measurement). In-situ XRD measurement is highly beneficial to understanding the reaction 

mechanism. Its ability to detect the unstable reaction intermediates during the redox reaction 

provides a leap forward in understanding reaction pathways, which wouldn't be possible by ex-

situ measurements.  

In this project, in-situ XRD was conducted at Beamline 28-ID-1, National Synchrotron Light 

Source II (NSLS-II), located in Brookhaven National Laboratory, and the scheme of the 

experimental setup is shown in Figure 2.1.  

 

Figure 2.1 Scheme of in-situ XRD measurement setup. 

The high-energy X-rays source can not only have X-rays with smaller wavelength, but also 

provide high flux X-rays. The high flux of X-rays ensured a quick acquisition of XRD patterns. 

The scan rate for both measurements were 0.5 mV∙ 𝑠−1, the XRD patterns were collected with a 
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potential interval of 12.3 mV for the measurement with the electrolyte consisting of 0.1 M NaOH 

and 0.45 M Na2SO4, and 25.2 mV for the measurement with the electrolyte consisting of 0.25 M 

NaOH. It was possible to track the phase changes in detail during the electrochemical reactions 

with such a high resolution on potential. 

It is worth mentioning that the detector used in this research was a 2D detector, which makes it 

possible to collect the diffracted X-ray at different angles all at once. Thus, unlike single crystals 

where the diffracted X-ray from the same series of atom planes that meet Bragg’s law (Equation 

2.1) would be a spot on the detector, the diffracted X-ray from the same series of atom planes 

would be in all directions for powder X-ray diffraction and generate a circle on the detector. 

𝑑 =
𝑛𝜆

2𝑠𝑖𝑛𝜃
                                                                                                                        Equation 2.1 

𝜆 is the wavelength, and 𝑛 is a positive integer. 

It is essential to point out that during in-situ XRD measurement, electrode materials, electrolytes, 

the supporting carbon paper, and Kapton tape used for sealing are penetrated and scattered by X-

ray. Therefore, it is necessary to subtract the background signal (signal from any substance 

except the electrode materials) before analyzing the data. 

As mentioned previously, electrode materials in the form of nanoparticles can generally reduce 

the diffusion length and are usually preferred. For nanoparticles, the crystalline size can be 

estimated by analyzing the XRD patterns using Equation 2.2, the Scherrer equation.[119-121]]  

𝐷ℎ𝑘𝑙 =
𝐾∙𝜆

𝐵ℎ𝑘𝑙∙𝑐𝑜𝑠𝜃
                                                                                                              Equation 2.2 

Where hkl is the Miller index of the targeted lattice plane, 𝐷ℎ𝑘𝑙 is the crystallite size 

perpendicular to the lattice plane, 𝐵ℎ𝑘𝑙 is the corrected full width at half maximum (FWHM) of 
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the diffraction peak in radians, K is the dimensionless shape factor, 𝜆 is the wavelength, and 𝜃 is 

the Bragg angle. 

2.3 ELECTROCHEMICAL MEASUREMENTS 

2.3.1 THREE-ELECTRODE HALF-CELL MEASUREMENTS 

2.3.1.1 THE SETUP 

An electrochemical reaction can be separated into two half-reactions, which can be studied 

separately using a three-electrode half-cell system. The scheme of a typical three-electrode half-

cell is illustrated in Figure 2.2,   

  

Figure 2.2 Scheme of a three-electrode half-cell system. 

As shown in Figure 2.2, a three-electrode system includes the working electrode, counter 

electrode, and reference electrode. Materials to be investigated would be loaded on the working 

electrode connected to a rotator to reduce the transport limitation if needed. The counter 
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electrode is made of conducting material and inert to electrochemical reactions. The most used 

counter electrodes are platinum wire and graphite. The function of the counter electrode is to 

balance the charge transfer on the working electrode and complete the current circuit. Finally, the 

reference electrode serves as a reference point in determining the potential of the working 

electrode. The three-electrode half-cell measurements were conducted with CHI electrochemical 

workstation using a Hg/HgO reference electrode.  Notably, the Hg/HgO reference electrode 

contains 1 M NaOH electrolyte, and thus 0 V vs. Hg/HgO corresponds to 0.14 V vs. Standard 

Hydrogen Electrode (SHE).  Pt wire was used as the counter electrode. 

2.3.1.2 THE PREPARATION OF ELECTRODES 

A mixture of active material and carbon black ( acetylene, 99.9+%, metal basis, Alfa Aesar) with 

a mass ratio of 7:3 was prepared for the working electrode prepared for CV and CP 

measurements. Since FeOOH itself has poor conductivity, the addition of carbon black improves 

the electric conductivity of the resulting mixture. Then an ink of the mixture in water was 

prepared and sonicated for half an hour before use to ensure a homogenous suspension. Next, the 

active material was loaded on the working electrode by drop-casting the ink suspension on glassy 

carbon, then vacuum dried before drop-casting again with 20 𝜇𝐿 of Nafion solution (0.05% by 

mass, diluted from original ~ 5% Nafion 117 contaioning solution, Sigma Aldrich), and then 

vacuum dried before use. For CV measurements, the amount of active material loaded on the 

working electrode was 7 𝜇𝑔.   For CP measurements, it was 28 𝜇𝑔. During the CV 

measurements, the rotating disc was used at a speed of 500 RPM.  

2.3.1.3 THE PREPARATION OF ELECTROLYTES 

The electrolytes were prepared with deionized water (18.2 𝑀Ω ∙ 𝑐𝑚) and high purity chemicals, 

including sodium hydroxide (99.99%, metal basis, Alfa Aesar), sodium sulfate (99.9955%, metal 
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basis, Alfa Aesar). Notably, electrolytes containing NaOH were made right before use, and the 

cocktail electrolytes containing both NaOH and Na2SO4 were prepared and stored in a 

volumetric glass flask for 3 days before use (except for the electrolyte prepared for in-situ X-ray 

Diffraction measurement, where the electrolytes were prepared and used without stored in glass 

flask). The cocktail electrolytes may contain a trace amount of silicate ions, as the electrolyte 

could react with the silicon dioxide from the glass flask. It is reported that silicate ions would 

form a protective layer on the surface of iron oxides/hydroxides, which may result in better 

performance.[122-124] 

2.3.1.4 CYCLIC VOLTAMMETRY (CV) AND CHRONOPOTENTIOMETRY (CP) 

Depending on the electrode material properties, different electrochemical methods can be 

applied. In this research, Cyclic Voltammetry (CV) and Chronopotentiometry (CP) are the two 

methods that are used to investigate the electrochemical properties of the targeted materials. 

In a typical CV measurement, the working electrode is applied with a constant changing 

potential between two potential points at a specific scan rate. The difference between applied 

potential and the equilibrium potential, namely the overpotential, is the driven force for the 

generated current, described in the Butler–Volmer equation (Equation 1.7, in Section 1.2).  

CV measurements are widely used to investigate the kinetics of an electrochemical reaction. In 

this research, the electrochemical kinetics analysis was done based on the CV measurements 

conducted with a rotating disc loaded with microgram level of material, where the external 

diffusion limitations can be significantly minimized.  
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CP measurement is the most used electrochemical method in battery research, where a constant 

current is applied to the working electrode, and the corresponding changes of potential are 

recorded.  

2.3.2 ASYMMETRIC FULL-CELL MEASUREMENTS  

Full-cell measurements are usually used for studying the long-term performance of battery 

devices. Unlike the three-electrode system for half-cell measurements, full-cell measurements 

test two-electrode systems only containing the cathode and anode electrodes without a reference 

electrode. During the two-electrode test, the applied potential is the potential difference between 

anode and cathode, which is not equivalent to the absolute electrode potential. Two-electrode 

full-cells work under conditions similar to commercial battery devices. 

In this research, the full-cells were prepared with FeOOH as anode and XC-72 carbon as cathode 

materials. The reason to choose XC-72 as anode materials is that the charge storage mechanism 

of XC-72 is primarily surface double-layer capacitance and remains stable over the cycles. Also, 

XC-72 has a plausible specific capacity due to its large surface area. Therefore, when excess 

amounts of XC-72 are used in the cathode, overall full-cell performance (e.g., storage capacity 

and potential) can be primarily decided by the anode. 

The full-cells were prepared with ECC-AQU electrochemical cells (EL-Cell GmbH, Germany) 

and measured with a BT-G Battery Analyzer (Arbin Instruments, USA). For the two-electrode 

full-cell measurements, 20 mg of XC-72 carbon loaded on Toray carbon paper (18 mm in 

diameter) as anode and 2 mg γ-FeOOH/carbon black (with a mass ratio of 2:8) mixture loaded on 

Toray carbon paper as the cathode, both cathode and anode electrode were prepared with 2.25% 
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of Styrene-Butadiene Rubber (SBR, MTI Corporation, USA) as the binder, 2.7 mL electrolyte 

was used. The filter paper was used as the separator.  

2.3.3 ACQUISITION OF ELECTROCHEMICAL DATA 

For the half-cell CV measurements except for the kinetics analysis, the measurements were done 

four times at the same condition to obtain the averaged data. The kinetics analysis in Section 

3.2.2 and 3.2.6 were both calculated on one CV measurement conducted under a series of current 

densities, the measurements however were done three times for each condition with a standard 

deviation of the calculated b value less than 5%. For the half-cell CP measurements, the 

measurement was done four times under each condition with the standard deviation of capacity 

under 20 %, but only one dataset was used to analyze on and shown in the discussion in Chapter 

4, unless otherwise ststed. For the full cell measurements, three runs were done for each 

condition, and the values for discharge capacity and coulombic efficiency were the averaged 

values from three runs. The individual CP profiles and the corresponding dC/dV curve were 

chosen from one of the three runs. 

2.4 IN-SITU X-RAY DIFFRACTION MEASUREMENTS 

The scheme of the in-situ XRD is shown in Figure 2.1. In-situ XRD measurements provide the 

ability to look at the changes in crystal structure during the electrochemical process, which was 

extremely helpful to a better understanding of the reaction chemistry. Several iron 

oxides/hydroxides were unstable under the standard atmosphere; traditional ex-situ 

measurements would likely not provide reliable information on the reaction chemistry.  

In-situ XRD measurements were conducted with a wavelength of  0.166 Å. The homemade 

electrochemical cell was used with an Ag/AgCl micro-reference electrode. γ-FeOOH/carbon 
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black (mass ratio=7:3) mixture was drop-casted onto a thin Toray carbon paper (0.11 mm in 

thickness), along with Nafion as the binder. A platinum wire was used as a counter electrode. 

Two different electrolytes were used: 0.1 M NaOH with 0.45 M Na2SO4, 0.25 M NaOH, 

respectively. The electrolytes were prepared with the glass bottle and transferred to a plastic 

container without soaking in the glass bottle for an extended time. The thickness of the 

electrolyte was approximately 2 mm, which was penetrated by X-ray during the measurements. 

Before each in-situ XRD measurement, a blank cell that was identical to the actual cell but 

without the mixture of active material and carbon black was used for background diffraction 

image collection. The in-situ measurements were conducted without Argon flow, although the 

electrolytes were purged with Argon before using. 

The images collected by the 2D detector during the measurement were first integrated into XRD 

patterns and then analyzed using Rietveld refinement to identify the phases and the 

corresponding ratio between each phase. The data processing was conducted using the software 

GSAS-II.[125]  
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CHAPTER 3  ELECTROCHEMICAL PROPERTIES OF 

LEPIDOCROCITE 

3.1 MATERIAL CHARACTERIZATIONS 

The synthesized material was in the form of power and had a brownish color, as shown in Figure 

3.1 (a). Figure 3.1 (b, c, d) were the SEM images collected on the synthesized sample to 

investigate the particle size and morphology. The particles had a spherical shape with a diameter 

under 100 nm. Figure 3.1 (b, c) showed that the nano-sized particles generally aggregate to form 

larger clusters.  

 

Figure 3.1 (a) Optical image and (b, c, d) SEM image of the synthesized material. 
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Figure 3.2 XRD patterns of the synthesized material. 

XRD patterns are shown in Figure 3.2. The synthesized material has a dominant phase of 

lepidocrocite (𝛾-FeOOH, JCPDS no. 74-1877), as all the major peaks except the peak at 

2𝜃=1.93° can be identified from 𝛾-FeOOH. In addition to the dominant 𝛾-FeOOH phase, there 

were also noticeable peaks that belong to hematite (𝛼-Fe2O3, JCPDS no. 33-0664), as labeled in 

Figure 3.2. The sharp peak at 2𝜃=1.93° (d=4.95 Å) is likely from polytetrafluoroethylene 

(PTFE) impurity introduced into the product during synthesized from the PTFE coating of 

stirring bar.[126,127] As shown in Figure 3.3, 𝛾-FeOOH has a layered structure consisting of 

[FeO6] octahedral units, where Fe atoms reside in the center and oxygen atoms located at the 

corners. As shown in Figure 3.2, the diffraction peak at 2𝜃=1.33° is identified as the (2 0 0) 

peak from 𝛾-FeOOH, suggesting a layer spacing of 7.18 Å. 
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Figure 3.3 Illustration of the structure of 𝛾-FeOOH: red dot represents an oxygen atom, black 

dot represents an iron atom. Hydrogen atoms are not shown in the structure.[128]  

The crystallinity of the synthesized materials was also estimated from the XRD data with the 

Scherrer equation (Equation 2.2). Nickel powder was used as standard material to estimate the 

instrumental peak broadening using the averaged FWHM of selected peaks, and the value was 

calculated to be 0.00154. The peaks at 2𝜃=1.32°, 2.89° and 4.92° from 𝛾-FeOOH were chosen 

for the calculation of crystallite size. A straight line was applied as the baseline for each peak in 

order to determine the FWHM. The estimated crystallite sizes are shown in Table 3.1. The 

estimated crystallite sizes with all three peaks were under 10 nm, which was in accordance with 

estimation from SEM data. 

Table 3.1 Estimated crystallite size for the synthesized material. 

Peak position (2𝜃) 1.32° 2.89° 4.92° 

Estimated crystallite size (nm) 2.57 3.88 7.19 
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3.2 CV MEASUREMENTS OF LEPIDOCROCITE IN IN THREE-ELECTRODE 

HALF-CELL SYSTEM 

3.2.1 ELECTROCHEMICAL PERFORMANCE OF LEPIDOCROCITE IN PURE 

ALKALINE ELECTROLYTES 

The synthesized material was first tested with CV in 0.01 M NaOH electrolytes (pH=12) at a 

scan rate of 1 mV∙s-1 under a potential window of -1.2 V to 0.2 V (vs. Hg/HgO).  Three complete 

CV cycles were conducted, and the results are shown in Figure 3.4. The first segment was the 

cathodic scan (reduction process) from 0.2 V to -1.2 V, showing three reduction peaks at -0.87 

V, -0.99 V and -1.11 V, respectively. However, during the second segment, the anodic scan 

(oxidation process) from -1.2 V to 0.2 V, only had one sharp peak around -0.60 V.  

  

Figure 3.4 The first three cycles of CV results of 𝛾-FeOOH measured in 0.01 M NaOH. 

Notably, the reduction scan in the first cycle was different from the following reduction scan in 

the second cycle and third cycle, as both last two reduction scans only showed one reduction 
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peak at around -0.93 V. Therefore, the first reduction was thus considered as the activation 

process. The difference between the first reduction and the following reduction curves was likely 

due to the fact that the starting materials (made by a wet-chemistry method) had a different 

crystalline structure from the materials formed electrochemically. Specifically, the first reduction 

scan in this measurement started with the synthesized materials with a dominant phase of 𝛾-

FeOOH and minor phase of 𝛼-Fe2O3. In contrast, the later in-situ XRD illustrated that the second 

reduction scan started with a dominantly Fe3O4 phase, with a minimal amount of 𝛼-FeOOH. In 

the following analysis of half-cell CV measurements, all the analyses were conducted on the data 

collected from the second cycle, unless otherwise stated. It was worth mentioning that the 

overlapped CV curves between the second and third cycles suggested a stable redox process.    

3.2.1.1 EFFECT OF THE CONCENTRATION OF SODIUM HYDROXIDE ON THE 

ELECTROCHEMICAL PERFORMANCE OF LEPIDOCROCITE 

Besides 0.01 M NaOH electrolyte, 0.1 M NaOH electrolyte was also used for the CV test. As 

shown in Figure 3.5, the peak position of the reduction scan remained at roughly the same 

potential around -0.93 V, while the peak position of the oxidization scan shifted from -0.60 V in 

0.01 M NaOH to -0.65 V in 0.1 M NaOH. The electrode capacity was calculated based on half of 

the area between the oxidization scan and the reduction scan, following Equation 3.1 and 

Equation 3.2: 

Mass-specific capacitance: 𝐶𝑀𝑆 =
𝑖

(𝑑𝑉 𝑑𝑡⁄ )∗𝑚
= ∫

𝑖

∆𝑉∗𝑚
𝑑𝑡

𝑡𝐹

𝑡0
                                         Equation 3.1 

Electrode capacity: 𝐶𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 =
𝐶𝑀𝑆∗∆𝑉

3.6
                                                                        Equation 3.2 

where i (A) is the measured current at the time of t (s), m (g) is the mass of the active 

material, ∆𝑉 (V) is the potential window. 𝑡0 (s) and 𝑡𝐹 (s) are respective times at the initial 
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potential and the final potential.[129] The electrode capacity shown in the following sections in 

CV measurements is the average of capacity of reduction scan and oxidization scan. 

 

Figure 3.5 (a) CV results of 𝛾-FeOOH in electrolytes with different pH and (b) the calculated 

capacities. 
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It was 161 mAh∙g-1 in 0.01 M NaOH and 162 mAh∙g-1 in 0.1 M NaOH electrolyte. The capacity 

remained almost the same after increasing the concentration of the alkaline solution by ten times, 

suggesting 0.01 M NaOH was sufficient in providing enough OH- to the reaction in the current 

system. Despite the difference in peak position, there was no noticeable difference between the 

electrochemical performance of the synthesized material in pH=12 and pH=13 environments. 

3.2.1.2 REACTION KINETICS OF LEPIDOCROCITE IN PURE SODIUM 

HYDROXIDE ELECTROLYTE 

The reaction kinetics was an important aspect of an electrochemical reaction and was decided by 

the intrinsic reaction rate and the mass transfer rate associated with the diffusion of the charge 

carriers. The reaction kinetics of the electrochemical reactions were investigated by analyzing 

CV plots measured at different scan rates. In a CV measurement, the observed current can be 

described by the power-law (Equation 3.3): 

𝑖 = 𝑎𝜐𝑏                                                                                                                            Equation 3.3                               

where both a and b are adjustable parameters.[130] The value of b is an indication of the 

mechanism of the charge transfer process: when b value equals 1, the current is in a linear 

relationship of the scan rate, indicating that the current was generated from double-layer 

capacitance; when b value equals 0.5, the current is in a linear relationship of the square root of 

the scan rate, indicating the electrochemical charge storage process was a diffusion-limited 

process. When the b value falls between 0.5 and 1, the charge storage mechanism is a hybrid 

process that includes the double-layer capacitive and diffusion-limited processes.  
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Figure 3.6 Kinetics analysis of the electrochemical process of 𝛾-FeOOH in 0.01 M NaOH. 

Figure 3.6 shows the CV measurements at a series of scan rates ranging from 0.5 mV∙s-1, 1 

mV∙s-1, 2 mV∙s-1, 5 mV∙s-1, to 10 mV∙s-1. As shown in Figure 3.6, the major redox peak in both 

oxidization scan and reduction scan had a b value close to 0.5, indicating the related 

electrochemical reaction was a diffusion-limited process. When the scan rates increased from 0.5 

mV∙s-1 to 10 mV∙s-1, the peak positions in the oxidization scans shifted to higher potential and 

also shifted to lower potential in the reduction scan. The peak separation between oxidization 

and reduction scans increased from 0.28 V at 0.5 mV∙s-1 to 0.40 V at 10 mV∙s-1. An increasing 

peak separation indicated that the redox process became less reversible when the scan rates 

increased.  

3.2.2 ELECTROCHEMICAL PERFORMANCE OF LEPIDOCROCITE IN COCKTAIL 

ELECTROLYTES 

Figure 3.7 shows the CV measurements conducted with a cocktail electrolyte containing NaOH 

(0.01 M) and Na2SO4 (0.2 M). The choice of Na2SO4 was made based on the following 
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considerations. First, 𝑆𝑂4
2− is electrochemically stable under the reducing environment applied in 

this project; Second, it carries two negative charge, beneficial for an insertion-type of redox 

reaction. For the same amount of anions the host materials could accommodate, a higher storage 

capacity would achieve when multi-valance ions were used than mono-valene ions. When pure 

NaOH electrolyte was used, there was only one redox couple at -0.60 V/-0.93 V (anodic 

scan/cathodic scan), as previously discussed. However, in addition to the major redox peaks at -

0.58 V/-0.89 V,  a new redox feature appears at -0.48 V/-0.54 V in the cocktail electrolyte. The 

major redox peaks also showed a change in potential from -0.60 V/-0.93 V in 0.01 M NaOH to -

0.58 V/-0.89 V in the cocktail electrolyte.  

The overall capacity increased from 161 mAh∙g-1 to 242 mAh∙g-1 in the cocktail electrolyte, 

approximately 50% higher than that measured in NaOH electrolyte. The overall capacity could 

be from two charge storage processes: double-layer capacitive process and diffusion-limited 

electrochemical redox reaction. The previous results (Figure 3.6) suggested that the diffusion-

limited redox reactions dominated the charge storage process. Therefore, the capacity increase in 

cocktail electrolytes likely resulted from diffusion-limited redox reactions. Moreover, a new 

redox peak couple in CV measurement indicated a new redox reaction due to NaSO4 addition.  

More details on this new redox reaction will be discussed later during in-situ XRD measurement 

(Section 3.3). 
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Figure 3.7 (a) CV results of 𝛾-FeOOH measured in different electrolytes at pH=12 and (b) the 

calculated capacities. 
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3.2.2.1 EFFECT OF ALKALINITY OF THE COCKTAIL ELECTROLYTE ON THE 

ELECTROCHEMICAL PERFORMANCE OF LEPIDOCROCITE 

 

Figure 3.8 (a) CV results of 𝛾-FeOOH measured in different electrolytes at pH=13 and (b) the 

calculated capacities. 
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The effect of adding Na2SO4 into the electrolyte was also investigated in electrolytes with higher 

pH, as shown in Figure 3.8. The cocktail electrolyte did not incur an observable new couple of 

redox peaks at a higher pH environment. However, it is evident that the oxidization peak in the 

cocktail electrolyte was asymmetric and had a tail around -0.45 V, while in the pure NaOH 

electrolyte, it was nearly symmetric. The capacity increased from 162 mAh∙g-1 to 219 mAh∙g-1, 

an approximately 35% increase, less significant than that observed in cocktail electrolytes with a 

lower pH.   

The electrochemical performance of 𝛾-FeOOH was studied in cocktail electrolytes with different 

concentrations of Na2SO4 under two pH conditions at a scan rate of 1 mV∙s-1. The results are 

shown in Figure 3.9. It was clearly shown that the new redox feature (~ -0.5 V during the anodic 

scan) became more distinct in cocktail electrolytes with 0.01 M NaOH than that with 0.1 M 

NaOH. The results suggested the new redox feature and much-improved storage capacity is 

strongly associated with SO4
2- anion, and on the other hand, is also inhibited by OH- involved 

charge-storage process. Notably, the following half-cell measurements were reported in pH=12 

electrolytes.  
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Figure 3.9 CV measurements of 𝛾-FeOOH in electrolytes at pH=12 and pH=13 environments 

with different concentrations of Na2SO4: (a) 0.0075 M Na2SO4; (b) 0.02 M Na2SO4; (c) 0.05 M 

Na2SO4; (d) 0.1 M Na2SO4. 

3.2.2.2 EFFECT OF THE CONCENTRATION OF SODIUM SULFATE OF THE 

COCKTAIL ELECTROLYTES ON THE ELECTROCHEMICAL PERFORMANCE OF 

LEPIDOCROCITE 

The CV profiles of different concentrations of Na2SO4 at pH=12 are shown in Figures 3.7 and 

Figure 3.9. The capacity under each condition was summarized in the following Figure 3.10. It 

was shown that the increase of c(Na2SO4) from 0.0075 M to 0.2 M resulted in an increase in 

capacity, from 201 mAh∙g-1 to 242 mAh∙g-1. As discussed previously, both SO4
2- anion and OH- 

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

-6

-3

0

3

6

9

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

-6

-3

0

3

6

9

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

-6

-3

0

3

6

9

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

-6

-3

0

3

6

9

 0.01 M NaOH+0.0075 M Na2SO4

 0.1 M NaOH+0.0075 M Na2SO4

Potential (V, vs Hg/HgO) Potential (V, vs Hg/HgO)

Potential (V, vs Hg/HgO) Potential (V, vs Hg/HgO)

C
u

rr
en

t 
d

en
si

ty
 (

A
g

-1
)

a b

c d

C
u

rr
en

t 
d

en
si

ty
 (

A
g

-1
)

C
u

rr
en

t 
d

en
si

ty
 (

A
g

-1
)

C
u

rr
en

t 
d

en
si

ty
 (

A
g

-1
)

 0.01 M NaOH+0.02 M Na2SO4

 0.1 M NaOH+0.02 M Na2SO4

 0.01 M NaOH+0.05 M Na2SO4

 0.1 M NaOH+0.05 M Na2SO4

 0.01 M NaOH+0.1 M Na2SO4

 0.1 M NaOH+0.1 M Na2SO4



46 
 

impacted the new redox feature. Therefore, under the same OH- concentration, more SO4
2- anion 

likely favored the new redox feature and resulted in an improved capacity. 

 

Figure 3.10 Capacity at different concentrations of Na2SO4 (c(Na2SO4)) under pH=12. 
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distinguishable with increased scan rates. As it was challenging to separate this new redox 

feature from the main anodic peaks, the analysis of the b value of this redox couple was not 

conducted.  

 

Figure 3.11 Kinetics analysis of the electrochemical process of 𝛾-FeOOH in the cocktail 

electrolytes consisting of 0.01 M NaOH and 0.2 M Na2SO4. 
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3.2.3 CONTRIBUTION TO CV RESULTS FROM THE SIDE REACTION AND THE 

BACKGROUND. 

 

Figure 3.12 CV measurements conducted under a wide potential window with two electrolytes: 

(a) 0.01 M NaOH, (b) 0.01 M NaOH with 0.2 M Na2SO4. 
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According to the Nernst Equation, HER equilibrium potential at pH=12 is -0.85 V vs. Hg/HgO, 

within the potential window for FeOOH electrochemical measurements (-1.2 V to 0.2 V). 

Though the actual HER might happen at the potential lower than -0.85 V by considering the 

overpotential, the possible contribution of hydrogen evolution reaction (HER) to the overall CV 

signal needs to be studied.  

Figure 3.12 shows the CV measurements of FeOOH under a wide potential window between -

1.5 V and 0.2 V in pure 0.01 M NaOH and cocktail electrolytes. HER occurred in both 

electrolytes when the potential approached -1.5 V. However, above the potential of -1.2 V, the 

current signal was close to zero, suggesting no significant current from HER. 

 

Figure 3.13 Contribution from background for the CV measurements with two electrolytes: (a) 

0.01 M NaOH, (b) 0.01 M NaOH with 0.2 M Na2SO4. 
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contributes little signal compared to FeOOH active materials. Moreover, the background signal 

had no redox feature in the potential window, suggesting background contribution mainly 

resulted from double-layer capacitance occurring on the electrode surface. Notably, the 

contribution from the background was only identified and shown in Figure 3.13. The CV data 

shown previously in this chapter were without background subtraction. 

3.3 INVESTIGATION ON THE REACTION MECHANISM OF 

LEPIDOCROCITE IN ALKALINE SYSTEM USING IN-SITU XRD 

3.3.1 CV TESTS OF LEPIDOCROCITE FOR THE IN-SITU XRD MEASUREMENTS 

The reaction mechanism was investigated with in-situ XRD measurements. CV was used as the 

electrochemical method with a potential window of -1.2 V to 0.2 V, the same conditions as half-

cell measurements. A lower scan rate (0.5 mV∙s-1) and higher concentration of electrolytes (0.1 

M NaOH with 0.45 M Na2SO4, and 0.25 M NaOH) were chosen since the loadings of active 

materials in XRD measurement were in a milligram level, nearly 1000 times higher than the 

loading in half-cell measurements. High loading of active material was used to generate adequate 

X-ray diffraction signals for more accurate data analysis, as the diffraction counts were related to 

the mass loading. 
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Figure 3.14 CV results for the in-situ XRD measurements with different electrolytes: (a) 0.1 M 

NaOH with 0.45 M Na2SO4; (b) 0.25 M NaOH. 
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from -1.2 V to -1.06 V for the measurement with NaOH as electrolyte was included for a better 

illustration of phase changes. CVs showed an oxidation peak at -0.6 V in both electrolytes.  

However, an additional oxidization peak was around -0.45 V in the cocktail electrolyte, missing 

in the pure NaOH electrolyte. Similar differences were also observed from half-cell 

measurements. It was notable that the CV curves from in-situ XRD were slightly unbalanced in 

total charges and showed more discernable negative current contributions. Oxygen reduction 

reaction (ORR), as shown in Equation 3.4, may contribute negative current during the in-situ 

measurements.  

𝑂2 + 4𝑒− + 2𝐻2𝑂 → 4𝑂𝐻− (in an alkaline environment)                                           Equation 3.4 

The equilibrium potential for the ORR in 0.25 M NaOH was around 0.3 V vs. Hg/HgO. Thus, 

theoretically, the ORR could happen during the measurement in the presence of oxygen gas. The 

inert gas protection wasn’t employed during in-situ measurements due to the complex sample 

environment when setting up an in-situ XRD test, although the electrolytes were purged with 

inert gas before use.   

There could be two sources of dissolved oxygen in the electrolyte. The first one was that the 

oxygen might diffuse into the electrolyte from the air, as the experiment was conducted without 

inert gas protection. The second one was that the oxygen could form on the counter electrode 

during the CV measurements. The counter electrode used in the measurement was a Pt wire, 

which had a limited surface area. In the reduction scan of the working electrode, there would be 

OER on the counter electrode simultaneously to account for the charge balance. Thus, some 

oxygen gas formed on the counter electrode could dissolve into the electrolyte and diffuse 

toward the working electrode. 
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3.3.2 DATA ANALYSIS ON THE RESULTS FROM IN-SITU XRD MEASUREMENTS 

 

Figure 3.15 Background XRD patterns for different electrolytes: (a) 0.1 M NaOH with 0.45 M 

Na2SO4; (b) 0.25 M NaOH. 
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the X-ray needs to penetrate a series of supporting materials, including layers of Kapton tape 

used for sealing, Toray carbon paper where the material was loaded, and most importantly, the 

aqueous electrolyte around 2 mm in thickness along the pathway of the X-ray. Since the 

electrolytes with different compositions could have different scattered X-ray signals, an 

individual background pattern was obtained for each electrolyte. 

The background scattering patterns for each electrolyte are shown in Figure 3.15. The two 

background patterns were very similar as they are both dominated by water scattering, even 

though they have different dissolved salts. 

The scattering peaks at around 2𝜃=3∘, 4.5∘, 7∘ were identified from water scattering.[131,132] The 

difference below 2𝜃=1.5∘ was likely due to the difference in the effect of air scattering. The two 

sets of data were collected at different settings, even though at the same beamline. And we 

believe the position of the beam stop might attribute to the scattering at the low 2𝜃 angle.  It is 

worth noting that beam stop was used in X-ray scattering measurements to block the X-ray that 

directly penetrates the sample without being scattered. In the measurement shown in Figure 3.15 

(a), the beam stop was put right after the sample. While in the second measurement shown in 

Figure 3.15 (b), the beam stop was located near the detector. Thus, the X-ray that directly 

penetrated the sample likely incurred air scattering before hitting the beam stop close to the 

detector. However, the air scattering was minimal in the first measurement, as the penetrated X-

ray was blocked right after the sample.  

This air scattering was not an issue for later data refinement, as it would be subtracted from the 

raw scattering data, along with other background signals. No discernable peak could be 

identified as scattering from Kapton tape or Toray carbon paper, as their scattering signals were 

relatively marginal than the background signal from water.   
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Figure 3.16 XRD patterns before subtracting background file at -1.2V for different electrolytes: 

(a) 0.1 M NaOH with 0.45 M Na2SO4; (b) 0.25 M NaOH. 
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was impossible to conduct accurate structure refinement to obtain helpful information such as 

phase fractions or lattice parameters without background subtraction. 

 

Figure 3.17 XRD patterns after subtracting background file at -1.2V for different electrolytes: 

(a) 0.1 M NaOH with 0.45 M Na2SO4; (b) 0.25 M NaOH. 
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Figure 3.17 shows the XRD data after background subtraction. After subtracting background, it 

was clear that more peaks were observable under both conditions, and more information on the 

crystal structure could be obtained from data analysis. 

A perfect diffraction pattern, in theory, would have a flat baseline. As shown in Figure 3.17, 

there were still significant background signals. Also, the diffraction peak at 2𝜃=2.73∘ was 

identified from carbon black additive by comparing the ex-situ XRD patterns measured on the 

carbon black, as shown in Figure 3.18. Thus, a chebyschev function was used to fit the 

background during the Rietveld refinements using software GSAS-II. The in-situ XRD patterns 

presented in the following figures were after the subtraction of the fitted background. The phases 

were identified with published structures.[128, 133-136] 

 

Figure 3.18 XRD patterns of carbon black. 
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Bragg’s Law to be 0.95 Å to 15.85 Å. To better demonstrate the changes in the scattering 

patterns, a 2𝜃  range from 0.6∘ to 6∘ was presented in the following figures, as it already 

contained sufficient scattering features. 

 

Figure 3.19 Waterfall plot of in-situ XRD patterns and picked individual XRD patterns from the 

cocktail electrolytes consisting of 0.1 M NaOH with 0.45 M Na2SO4. 
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-0.54 V to -0.29 V in the oxidization scan, a declining peak intensity of Fe(OH)2 was 

accompanied by the formation of a Green Rust (GR) phase, and a 𝛿-FeOOH phase started to 

form at -0.35 V. In Region 2 from -0.29 V in the oxidization scan, the diffraction signal from GR 

phase decreased and disappeared at 0.15 V, accompanied by the increase of 𝛿-FeOOH phase 

from -0.29 V to around 0.15 V. From 0.15 V to 0.2 V, the intensity of 𝛿-FeOOH phase and 

Fe3O4 phase remained roughly stable. In Region 3 from -0.79 V 𝛿-FeOOH started to diminish 

and disappeared at -0.98 V, Fe3O4 became the only phase from -0.98 V to -1.02 V, a trace 

amount of Fe(OH)2 was formed from -1.03 V. 

 

Figure 3.20 Picked regions of the in-situ XRD patterns from the cocktail electrolytes consisting 

of 0.1 M NaOH with 0.45 M Na2SO4 
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Figure 3.19 and Figure 3.20 clearly showed that phase changes (emerge or disappearance of 

crystalline phases) happened during the electrochemical process, drastically different from 

insertion-type of reactions where only peak shifting happened during the electrochemical process 

as the structure of the host material did not change during the insertion/extraction of ions. 

Table 3.2 Lattice parameters of green rust obtained from refinement using GSAS-II. 

Phase Space group 

Lattice parameters 

a (Å) b(Å) c(Å) α(°) β(°) γ(°) 

Green rust P -3 1 m 5.5074 5.5074 11.026 90 90 120 

 

 

Figure 3.21 Modified structure of green rust: red dot represents an oxygen atom, black dot 

represents an iron atom, yellow dot represent sulfur atom. Hydrogen atoms are not shown in the 

structure. Site occupancy was represented by the dot occupancy.  
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Notably, the new phase of green rust was identified and fitted with a published structure file, 

which was built from Simon’s work.[133] The structure file was modified with the XRD pattern 

obtained at -0.31 V, around which potential the GR phase showed the most significant diffraction 

peaks. The obtained lattice cell parameters of GR phase were listed in Table 3.2, and the 

corresponding atomic structure generated by the software VESTA was shown in Figure 3.21.[137]  

  

Figure 3.22 Waterfall plot of in-situ XRD patterns and picked individual XRD patterns from the 

0.25 M NaOH electrolyte. 

A waterfall plot of the in-situ XRD patterns and some selected individual patterns from pure 

NaOH electrolyte were shown in Figure 3.22 and Figure 3.23. The potential window also 

ranged from -1.2 V to 0.2 V, following -1.2 V → 0.2 V →-1.2 V. An additional region of -1.2 V 
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to -1.06 V was included to better illustrate the formation of Fe(OH)2. At -1.0 V, the identified 

phases were Fe3O4 and Fe(OH)2, the same phase compositions in cocktail electrolytes. In Region 

1 from -0.78 V to -0.66 V in the oxidization scan, the decreasing of Fe(OH)2 was observed but 

without a new phase formation and from -0.66 V to -0.27 V. The individual pattern at -0.32 V 

and the picked Region 2 from -0.27 V to 0.18 V in the oxidization scan also showed only Fe3O4 

existed after the Fe(OH)2 phase diminished. At -0.89 V and the whole Region 3 from -0.64 V to -

1.14 V in the reduction scan, the XRD patterns were exclusively attributed to Fe3O4.  

  

Figure 3.23 Picked regions of the in-situ XRD patterns from the 0.25 M NaOH electrolyte. 
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A minor amount of 𝛼-FeOOH was formed during the oxidization stage with pure NaOH 

electrolyte and later reduced to Fe3O4, evidenced in Figure 3.24. However, the signal was too 

weak to get a reliable refinement with 𝛼-FeOOH. Thus, 𝛼-FeOOH phase fraction was not 

included in the refinement. 

Clearly, the difference between the two electrolytes was the formation of GR in the cocktail 

electrolyte and a significant amount of FeOOH formed in the cocktail electrolyte. It was worth 

pointing out that the Fe3O4 phase existed in all the potential regions in both electrolytes. 

 

Figure 3.24 Evidence of the existence of 𝛼-FeOOH. 

A thorough refinement of the entire region of each electrolyte shown in the above figures was 

conducted, and the results were shown in Figure 3.25 and Figure 3.26. As mentioned before, the 

Fe3O4 phase existed in all potential regions. For the sake of clarity, only the part of Fe3O4 that 

was involved in the electrochemical process was considered in the phase analysis. Specifically, 

during the reduction region and the beginning part of the oxidization scan, where the current was 

still negative, Fe3O4 was reduced to Fe(OH)2. Eventually, part of Fe3O4 would not participate in 
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the redox process and be considered inert. This portion would then be subtracted from the 

analysis and setting the molar fraction of Fe(OH)2 as 100 % at this point. The results of phase 

analysis were presented in the form of molar fraction of total Fe atoms. 

In the oxidization scan with cocktail electrolyte, Fe(OH)2 can be directly oxidized to Fe3O4, 

following Equation 3.5: 

3Fe(OH)2 +2OH−
 

→ Fe3O4 + 4H2O +  2e−                                                                      Equation 3.5 

With the potential increase to ~ -0.48V, Fe(OH)2 can be oxidized alternatively to Green Rust 

(GR), following Equation 3.6: 

6Fe(OH)2 + SO4
2−  

→ Fe2+
4 Fe3+

2(OH−)12SO4 + 2e−                                              Equation 3.6 

Approximately 42 % of GR would be further oxidized to 𝛿-FeOOH, with the rest being oxidized 

to Fe3O4, following Equation 3.7 and Equation 3.8, respectively. 

Fe2+
4 Fe3+

2(OH−)12SO4 + 6OH− → 6FeOOH + SO4
2− + 6H2O + 4e−              Equation 3.7 

Fe2+
4 Fe3+

2(OH−)12SO4 + 4OH− → 2Fe3O4 + SO4
2− + 8H2O + 2e−              Equation 3.8 

The phase fraction of 𝛿-FeOOH remained roughly stable after the GR diminished at 0.15 V.  The 

formation of 𝛿-FeOOH could likely entirely be attributed to the oxidization of GR. Fe3O4 would 

unlikely be oxidized to 𝛿-FeOOH. Otherwise, the phase fraction of 𝛿-FeOOH would be 

increasing with the potential increase to higher values. 

In the following reduction scan, 𝛿-FeOOH was reduced to Fe3O4, following Equation 3.9. With 

the potential continued to decrease, Fe3O4 was further reduced to Fe(OH)2, following the 

reversed reaction described in Equation 3.5.  

3FeOOH + e− → Fe3O4 + H2O + OH−                                                                         Equation 3.9 
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Figure 3.25 Phase analysis of in-situ XRD with cocktail electrolyte consisting of 0.1 M NaOH 

and 0.45 M Na2SO4. 

In contrast, the redox reaction only involved Fe(OH)2 and Fe3O4 phases without forming green 

rust when pure NaOH electrolyte was used. It was because Fe3O4 was a relatively stable phase 
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reduction region. Overall, the redox reaction in pure NaOH electrolyte was limited to 

Fe(OH)2↔Fe3O4. 

 

Figure 3.26 Phase analysis of in-situ XRD with 0.25 M NaOH as electrolyte. 
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3.3.3 PROPOSED REACTION MECHANISM OF LEPIDOCROCITE IN ALKALINE 

SYSTEM  

In summary, a reaction mechanism can be proposed as following: in the pure NaOH electrolyte, 

the oxidization reaction followed reaction pathway 1: 

𝐹𝑒(𝑂𝐻)2 → 𝐹𝑒3𝑂4                                                                                            Reaction pathway 1 

While in the cocktail electrolyte, the presence of 𝑆𝑂4
2−, there was alternative reaction pathway 2 

in addition to reaction pathway 1 for the oxidization of Fe(OH)2: 

𝐹𝑒(𝑂𝐻)2 → 𝐺𝑅 → 𝐹𝑒𝑂𝑂𝐻                                                                               Reaction pathway 2 

Although GR could partially be oxidized to Fe3O4, this portion, however, could be included in 

reaction pathway 1. Reaction pathway 2 competed with reaction pathway 1. The previous half-

cell CV measurements indicated that lower pH favored reaction pathway 2. 

Reaction pathway 2 was beneficial in two aspects. First, it ensured a more significant charge 

transfer in the redox reaction, resulting in a larger capacity, as shown in previous CV 

measurements.  Second, this reaction pathway avoided the formation of Fe3O4 in the oxidization 

scan, which was beneficial for the long-term cyclability as Fe3O4 was relatively 

electrochemically inert. 

To further prove that the cocktail electrolyte helps form FeOOH, which is beneficial for a battery 

reaction since it provides more charge transfer, XPS measurements were conducted to see the 

valance states of the oxidized materials from both electrolytes. 
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Figure 3.27 Electrochemical preparation for XPS measurement: (a) step 1: CV at 0.5 mV∙s-1 

from 0.2 V to -1.2 V; (b) step 2: holding at -1.2 V for 30 min; (c) step 3: CP at 0.021 A∙g-1 form -

1.2 V to 0.2 V; (d) step 4: holding at 0.2 V for 30 min. 

Specifically, to collect enough amount of samples for XPS measurements, the working electrode 

was prepared differently: the working electrode was prepared with drop-casting ~ 4 mg γ-
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μL of Nafion solution (~ 5% of Nafion by mass). The measurements were conducted with 0.1 M 

NaOH with and without 0.45 M Na2SO4. The sample was first reduced to -1.2 V by CV 

measurement and hold at -1.2 V for 30 min, followed by a CP measurement at a current density 

of 0.021 A∙g-1 from -1.2 V to 0.2 V, and finally hold at 0.2 V for 30 min. The results from the 

electrochemical preparation stages were shown in Figure 3.27. The relatively low discharge 
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capacity shown in Figure 3.27 (c) suggested that a limited amount of active materials were 

involved in the reaction, likely due to poor contact and ion transport limitations resulted from 

large loading. Based on the relatively significant differences shown in the XRS data, it was likely 

that the reactions only happened at the near surface of the electrodes. 

The XPS data of Fe 2p of the oxidized samples were shown in Figure 3.28, and the C 1s spectra 

were shown in Figure 3.29. The XPS data of the oxidized sample from the cocktail electrolyte 

showed a much stronger satellite peak at 719 eV, which was the signature peak from Fe3+, 

indicating a higher ratio of Fe3+/Fe2+.[138,139]  

The XPS data demonstrated that the oxidization product from the cocktail electrolyte had a 

higher valance state, congruent with the XRD results showing the formation of FeOOH at high 

voltage when the cocktail electrolyte was used.   

 

Figure 3.28 XPS of Fe 2p from oxidized sample measured with different electrolytes. 
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Figure 3.29 XPS of C 1s from oxidized sample measured with different electrolytes. 
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CHAPTER 4  PERFORMANCE OF LEPIDOCROCITE AS THE 

ANODE FOR BATTERY APPLICATIONS 

With the understanding of the reaction mechanism of 𝛾-FeOOH under the alkaline system, it is 

also critical to investigate its performance for battery application. As mentioned previously, CP 

measurements worked at a similar condition with an actual battery device. It was important to 

investigate the performance of the studied material under CP measurements and evaluate the 

long-term cyclability. Two forms of CP measurements were conducted. One was conducted in a 

three-electrode half-cell, and the other was conducted using a two-electrode asymmetric full-cell. 

4.1 CP MEASUREMENTS IN THREE-ELECTRODE HALF-CELL SYSTEM 

4.1.1 THE EXPLORATION OF OPERATIONAL POTENTIAL WINDOW 

CP measurements were first conducted in a three-electrode half-cell system. Similar to half-cell 

CV measurements, half-cell CP measurements were ideal for investigating the intrinsic 

electrochemical properties of the studied material, as external diffusion limitations can be 

significantly minimized due to a small amount of the active electrode materials on the surface of 

a working electrode (microgram-level loading). To explore the potential window that can be used 

for CP measurements, the lower limit of the potential window was first set at -1.7 V. As shown 

in Figure 4.1, the lowest potential during reduction that can be reached was around -1.2 V, and 

the following plateaus were both at even higher potentials. Since complete reduction from 

FeOOH to Fe(OH)2 yields a theoretical capacity of ~300 mAh∙g-1, the following plateau 

extended to 800 mAh∙g-1 was likely from HER and/or metallic iron formation. The formation of 

metallic iron from Fe(OH)2 occurs at -0.90 V when pH is equal to 12 during reduction, 

accompanying HER that happens at -0.85 V. Therefore, the potential increase during reduction 



72 
 

likely resulted from iron formation, whereas iron could catalyze HER and decrease the potential 

during the CP test.  

Thus, the lower limit of the potential window chosen for half-cell CP measurements was set to 

be -1.05 V to avoid HER. Previous CV measurements showed that the peaks in the oxidization 

scan were around -0.6 V and -0.48 V in a mixture of 0.01 M NaOH and 0.2 M Na2SO4 

electrolytes at a scan rate of 1 mV∙s-1. Therefore, the upper potential limit of CP measurements 

was set at -0.35 V so that the potential window was large enough to cover the redox reactions. 

 

Figure 4.1 Exploration of the potential window for CP measurements of 𝛾-FeOOH in (a) 0.01 M 

NaOH; (b) 0.01 M NaOH with 0.2 M Na2SO4. 
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0.5 V and -0.85 V in the following reduction segments, respectively. The difference between the 

first reduction segment and the following reduction segments was likely due to the structural 

difference between the materials as-synthesized and the oxidization product formed during the 

electrochemical process. The synthesized material was identified as a mixture of iron oxide and 

iron oxyhydroxide, dominantly 𝛾-FeOOH. However, as suggested by in-situ XRD 

measurements, the oxidization product was Fe3O4 in pure NaOH electrolyte and a mixture of 

Fe3O4 and 𝛿-FeOOH in the cocktail electrolyte. Thus, the first reduction segment would be 

regarded as the activation process. 

 

Figure 4.2 First 3 cycles of CP measurements of γ-FeOOH in different electrolytes: (a) 0.01 M 

NaOH; (b) 0.01 M NaOH with 0.2 M Na2SO4. 
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dC/dV curve shown in Figure 4.3 (b) has an intensive but incomplete peak at potential below -

1.0 V, possibly due to the incomplete reduction from Fe3O4 to Fe(OH)2.   

 

Figure 4.3 (a) 2nd cycle of CP measurement of γ-FeOOH and (b) the corresponding dC/dV curve 

in in 0.01M NaOH. 
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Figure 4.4 CP results of γ-FeOOH in 0.01 M NaOH: (a) The first 6 discharge segments; (b) the 

first 6 charge segments; (c) the coulombic efficiencies of the first 6 cycles. 
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the oxidization of Fe(OH)2 to Fe3O4. The disappearance of this plateau suggested that Fe(OH)2 

formation was incomplete in the previous reduction segments. 

 

Figure 4.5 (a) 2nd cycle of CP measurement of γ-FeOOH and (b) the corresponding dC/dV curve 

in 0.01 M NaOH with 0.2 M Na2SO4. 
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The effect of the addition of Na2SO4 was also investigated using CP measurements. The second 

cycle of the charge/discharge profile of γ-FeOOH in the cocktail electrolyte and the 

corresponding dC/dV curves were plotted in Figure 4.5.  

Unlike in the CV measurements, where the addition of Na2SO4 attributed to a 50% increase in 

capacity, the addition of Na2SO4 in CP measurement increased the discharge capacity from 31 

mAh∙g-1 to 207 mAh∙g-1 in the second cycle. Also, unlike the CV measurements where the 

second oxidization peak at -0.48 V was relatively small, the plateau at around -0.46 V from CP 

tests was more significant and contributed roughly the same capacity to the overall capacity as 

the first plateau at around -0.6 V. This significant increase could be attributed to the nearly 

complete formation of Fe(OH)2 during the reduction segments, providing more reactants to 

oxidize in the discharge segment. Notably, the CP measurements were typically conducted in 

slower charge transfer rates than CV measurements, and the redox reaction in the CP test would 

be nearly thorough due to the decreased overpotential.   

As suggested from the in-situ XRD results, there were likely two reaction pathways during the 

oxidization in the cocktail electrolytes. The reduction product Fe(OH)2 could directly be 

oxidized to Fe3O4, and it could also be first oxidized to GR and further oxidized to either Fe3O4 

or FeOOH. The two reaction pathways likely resulted in different reaction kinetics. Therefore, 

discharging at various current densities were also conducted to investigate the effect of reaction 

kinetics on the distribution of these two reaction pathways and would be discussed later in this 

section. 

The first 6 charge and discharge cycles of γ-FeOOH in the cocktail electrolyte and the 

corresponding columbic efficiencies were plotted in Figure 4.6. In contrast to the sharp decrease 

in discharge capacity from the first to the second cycle in pure NaOH electrolyte, the capacity 
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remained roughly stable around 200 mAh∙g-1 over the first 6 cycles. It was worth mentioning that 

the coulombic efficiency was under 80% in both electrolytes, which was still unsatisfactory for a 

battery system.  

 

Figure 4.6 CP results of γ-FeOOH in 0.01 M NaOH with 0.2 M Na2SO4: (a) The first 6 

discharge segments; (b) the first 6 charge segments; (c) the coulombic efficiencies of the first 6 

cycles. 
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measurements were conducted under the protection of Argon, the formation of oxygen on the 

counter electrode still could not be avoided. ORR as the side reaction could occur during the 

entire reduction segment. These issues could be improved by using a two-electrode full-cell 

system that was well sealed and without a counter electrode. The electrochemical measurements 

conducted with full-cells showed a better coulombic efficiency, which will be discussed later in 

Section 4.2. 

 

Figure 4.7 2nd cycle of CP measurement of γ-FeOOH at different current densities in 0.01 M 

NaOH. 
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contributed less to the overall discharge capacity while the second oxidization plateau increased 

with decreasing current densities.  

 

Figure 4.8 2nd cycle of CP measurement of γ-FeOOH at different current densities in 0.01 M 

NaOH with 0.2 M Na2SO4. 

Figure 4.9 further highlights the capacity distribution resulting from two discharge plateaus. The 
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Figure 4.9 Capacity distributions at different current densities in 0.01 M NaOH with 0.2 M 

Na2SO4 electrolyte. 

It was worth mentioning that lowering down current density in both electrolytes did not increase 
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Figure 4.10 2nd discharge curves of CP measurements of γ-FeOOH at different current densities 

in 0.01 M NaOH. 

 

Figure 4.11 2nd discharge curves of CP measurements of γ-FeOOH at different current densities 

in 0.01 M NaOH with 0.2 M Na2SO4. 
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The reason to set the charging current density all at 0.2 A∙g-1 was to eliminate the difference 

from the charge segment and focus on the discharge segment. Increasing discharge current 

density from 0.2 A∙g-1 to 1 A∙g-1 did not cause a significant difference between the discharge 

profile in either of the two electrolytes at the second cycle. However, a higher current density 

showed a decrease in capacity retention in the cocktail electrolyte.  

 

Figure 4.12 Cyclability of γ-FeOOH at a series of current densities in different electrolytes: (a) 

0.01 M NaOH; (b) 0.01 M NaOH with 0.2 M Na2SO4. 
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Figure 4.12 shows the capacity retention of FeOOH in both electrolytes (average of four runs) at 

the current density ranging from 0.2 A∙g-1 to 1 A∙g-1. There was no noticeable difference in 

capacity retention when 0.01 M NaOH was used, where a large capacity drop occurred under all 

three current densities. In the cocktail electrolyte, the capacity retention was significantly 

improved. At a discharge rate of 0.2 A∙g-1, the first discharge segment had an averaged value of 

209.4 mAh∙g-1, and the sixth discharge cycle had an averaged value of 197.3 mAh∙g-1, a 94.2% 

capacity retention. When the discharge rate increased to 0.5 A∙g-1 and 1 A∙g-1, the capacity 

retention after 6 cycles dropped to 81.1% and 77.6%, respectively. 

4.1.3 CP MEASUREMENTS OF LEPIDOCROCITE WITH A POTENTIAL WINDOW 

FROM -1.1 V TO 0.2 V 

As discussed previously, the capacity in 0.01 M NaOH measured with a potential window from -

1.05 V to -0.35 V was much lower than in the cocktail electrolyte. One possible reason for that 

was that the reduction was uncompleted in the potential window. Therefore, CP measurements 

with a wide potential window from -1.1 V to 0.2 V were conducted using the same current 

density of 0.2 A∙g-1. As shown in Figure 4.13, both charge and discharge capacity were 

significantly increased when a wider potential window (-1.1 V to 0.2 V) was used, increasing 

from 46.6 mAh∙g-1 and 30.7 mAh∙g-1 to 152.0 mAh∙g-1 and 118.5 mAh∙g-1, respectively. The 

dC/dV curve showed that the reduction was close to complete when the potential limit was 

decreased from -1.05 V to -1.1 V, and the oxidization feature around -0.6 V was significantly 

enhanced accordingly. Thus, the results suggested that the low capacity from previous 

measurements was likely due to incomplete reduction. 
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Figure 4.13 (a) 2nd cycle of CP measurement of γ-FeOOH and (b) the corresponding dC/dV 

curve in 0.01 M NaOH with a larger potential window at 0.2 A∙g-1. 

Figure 4.14 showed the charge/discharge profiles of the first seven CP cycles and the 

corresponding coulombic efficiencies at a current density of 0.2 A∙g-1 when the 0.01 M NaOH 

electrolytes and wide potential window were used. The capacity decayed from 137.6 mAh∙g-1 at 
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the 1st cycle to 77.9 mAh∙g-1 at the 7th cycle, a 43.4% loss after 7 cycles, and the coulombic 

efficiency remained around 80% after the first cycle. The capacity retention and initial capacity 

were improved significantly comparing the results measured previously with a smaller potential 

window with pure NaOH electrolyte. 

 

Figure 4.14 CP results of γ-FeOOH in 0.01 M NaOH at 0.2 A∙g-1 with a larger potential 

window: (a) The first 7 discharge segments; (b) the first 7 charge segments; (c) the coulombic 

efficiencies of the first 7 cycles. 
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Figure 4.15 (a) 2nd cycle of CP measurement of γ-FeOOH and (b) the corresponding dC/dV 

curve in 0.01 M NaOH with 0.2 M Na2SO4 with a larger potential window at 0.2 A∙g-1. 

Figure 4.15 shows the CP measurement conducted in cocktail electrolytes with a wide potential 

window. Expanding potential window did not significantly affect the charge/discharge 

performance compared with the previously discussed CP measurements with a smaller potential 
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window, as the redox reactions were completed within the potential window of -1.05 V to -0.35 

V.  

The discharge capacity at the 2nd cycle was increased from 118.5 mAh∙g-1 in pure NaOH 

electrolyte to 210.7 mAh∙g-1 in the cocktail electrolyte. As shown in Figure 4.15, the discharge 

capacity in the cocktail electrolyte contributed from the first discharge stage in the 2nd cycle 

around -0.6 V was about 135 mAh∙g-1, which was close to the overall capacity from pure NaOH 

electrolyte. The capacity difference was mainly contributed from the new plateau around -0.46 

V.  

The charge/discharge profiles of seven CP cycles and the corresponding coulombic efficiencies 

in the cocktail electrolyte are shown in Figure 4.16. The discharge capacity decreased from 215 

mAh∙g-1 at the 1st cycle to 201 mAh∙g-1 at the 7th cycle, showing a 93.5% capacity retention after 

seven cycles. While in pure NaOH electrolyte, the discharge capacity decreased from 138 

mAh∙g-1 at the 1st cycle to 78 mAh∙g-1 at the 7th cycle, showing a 56.6% capacity retention after 

seven cycles. Compared with the rapid capacity loss in pure NaOH electrolytes, the addition of 

Na2SO4 increased the overall capacity and improved capacity retention. 
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Figure 4.16 CP results of γ-FeOOH in 0.01 M NaOH with 0.2 M Na2SO4 at 0.2 A∙g-1 with a 

larger potential window: (a) The first 7 discharge segments; (b) the first 7 charge segments; (c) 

the coulombic efficiencies of the first 7 cycles. 
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Figure 4.17 The distribution of discharge capacity of γ-FeOOH at 0.2 A∙g-1 in different 

electrolytes: (a) 0.01 M NaOH; (b) 0.01 M NaOH with 0.2 M Na2SO4. 
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different potentials in the same profile are usually from different electrochemical reactions. The 

capacity decrease in the first plateau and increase in the second plateau suggested that the first 

reaction was less favored, and the second reaction was gradually more favored over cycling. As 

discussed previously, the formation of GR in the oxidization process was a kinetically slow 

process, and low current density favored this reaction. Therefore, we hypothesize that the 

electrode particles might break down to smaller sizes during the cycling, improving mass transfer 

and the formation of GR. 

The contributions from the background in half-cell CP tests were also measured, and the results 

are shown in Figure 4.18. Both the charge and discharge segments showed negligible capacities. 

Especially the discharge capacities were both below 5 mAh∙g-1 and showed no plateau. Thus, the 

contribution from the background was neglected and not included in the capacity calculations for 

half-cell measurements. 

 

Figure 4.18 Contribution from the background in half-cell CP measurements with different 

electrolytes: (a) 0.01 M NaOH with 0.2 M Na2SO4; (b) 0.01 M NaOH. 
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performance, as it is a closed system where contact with air is minimized. It also ensures better 

contact between activate material and the current collector.   

4.2 FULL CELL MEASUREMENTS 

Two-electrode full-cell measurement is the most frequently used electrochemical method to 

evaluate the long-term performance of battery devices. Unlike the three-electrode half-cell tests, 

full-cell measurements use two electrodes (the cathode and the anode) without employing a 

reference electrode. Therefore, during the two-electrode test, the absolute potential of electrode 

reaction often cannot be controlled without a reference electrode. Instead, only the potential 

difference between the two electrodes could be measured and controlled. In this research, the 

potential range was set from 0.1 V to 1.5 V, corresponding to a 1.4 V potential window, the same 

potential difference as in half-cell measurements. Full cells usually go through a complicated 

activation process that lasts more than one cycle.[140-142] The activation process for each full-cell 

measurement was excluded from the data shown in this chapter. 

4.2.1 BALANCING OF THE CAPACITY OF ELECTRODES 

In full-cell measurements, it is critical to have the two electrodes with balanced capacities, or a 

smaller capacity on the electrode of interest so performance the full cell could be dominated by 

that electrode. The cathode material used in the full-cells was carbon black (XC-72). XC-72 was 

chosen for its relatively large specific surface area, which could lead to a reasonable capacity. 

The discharge capacity of XC-72 was measured in full-cell with the two different electrolytes, 

and the results are shown in Figure 4.19. It showed an average discharge capacity of 8.0 mAh∙g-1 

in cocktail electrolyte and 6.3 mAh∙g-1 in pure NaOH electrolyte. Considering the FeOOH active 

materials had a much higher storage capacity (> 100 mAh∙g-1) than XC-72, the mass loading of 
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anode and cathode were set at different values to have larger capacity from the cathode. In this 

research, the loading of the anode contained ~ 0.4 mg of 𝛾-FeOOH. So, the highest capacity the 

cathode could provide was 0.4 𝑚𝑔 × 215 𝑚𝐴ℎ ∙ 𝑔−1 = 0.086 𝑚𝐴ℎ in the cocktail electrolyte, 

and 0.4 𝑚𝑔 × 138 𝑚𝐴ℎ ∙ 𝑔−1 = 0.055 𝑚𝐴ℎ in pure NaOH electrolyte. While the loading on the 

cathode contained ~ 20 mg of XC-72. Thus, the capacity it can provide was  20 𝑚𝑔 × 8.0 𝑚𝐴ℎ ∙

𝑔−1 = 0.16 𝑚𝐴ℎ in the cocktail electrolyte, and 20 𝑚𝑔 × 6.3 𝑚𝐴ℎ ∙ 𝑔−1 = 0.126 𝑚𝐴ℎ in pure 

NaOH electrolyte. The above calculations show that the anode in both electrolytes had around 

50% of the theoretical capacity of the cathode. It was clear that a higher mass loading is needed 

in the cathode to exceed the anode in capacity.  

 

Figure 4.19 The discharge capacity of XC-72 measured in full-cell with different electrolytes. 

One of the benefits of choosing XC-72 as the cathode is that the charge storage mechanism with 

XC-72 was majorly double-layer capacitance, which was a fast process and would unlikely be 

the limiting step of the full-cell reactions. As shown in Figure 4.20, there was no plateau in 
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0 50 100 150 200 250 300
0

2

4

6

8

10

D
is

ch
ar

g
e 

ca
p
ac

it
y
 (

m
A

h
g

-1
)

Cycle

 0.01 M NaOH

 0.01 M NaOH + 0.2 M Na2SO4



94 
 

double-layer capacitance which was a highly reversible process, the capacity of XC-72 was fairly 

stable over cycling, as shown in Figure 4.19. 

 

Figure 4.20 CP results of the 1st cycle of XC-72 measured in full-cell with different electrolytes: 

(a) 0.01 M NaOH; (b) 0.01 M NaOH with 0.2 M Na2SO4. 
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4.2.2 LONG-TERM CYCLABILITY OF LEPIDOCROCITE IN FULL CELLS 

High discharge capacity and good cyclability are two important features that a good battery 

should have. The assembled full-cells were measured over 300 cycles at a current density of 0.2 

A∙g-1, and results were shown in Figure 4.21. The current density was calculated based on the 

mass loading of the active material (𝛾-FeOOH). Although the carbon black consisted 80% of the 

mass, its capacity was minimal compared with 𝛾-FeOOH.   

The discharge capacity of 𝛾-FeOOH anode (based on the mass loading of the 𝛾-FeOOH) in the 

cocktail electrolyte had an initial value of 67.8 mAh∙g-1 and was maintained at 62.9 mAh∙g-1 after 

300 cycles, showing capacity retention of 92.8%. While the discharge capacity of 𝛾-FeOOH 

anode in the pure NaOH electrolyte showed a much lower initial capacity of 41.2 mAh∙g-1 and 

dropped down to 19.5 mAh∙g-1 after 300 cycles, showing capacity retention of 47.3% over 300 

cycles. Similar to the results from half-cell CP measurements, the addition of Na2SO4 increased 

the initial capacity by about 64.6% and significantly improved the capacity retention. 

Another important feature was coulombic efficiency. A higher coulombic efficiency means 

higher energy efficiency and usually indicates more reversible battery reactions. Adding Na2SO4 

also significantly improved the coulombic efficiency of the full-cells, as shown in Figure 4.21. 

The full-cell measured in cocktail electrolyte showed a coulombic efficiency of 92.6% at the 

initial cycle and 94.2% for the 300th cycle, averaged at 93.3%. In the meantime, the full-cells 

measured with pure NaOH electrolyte showed an initial coulombic efficiency of 66.7% and 

increased to 90.6% at the 300th cycle, averaged at 84.5%.  
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Figure 4.21 Discharge capacity of the 𝛾-FeOOH anode and the coulombic efficiency of the full-

cells with two different electrolytes. 

Figure 4.22 shows the CP profiles of the initial cycle and the 300th cycle. In the full-cell with 

cocktail electrolyte, the initial cycle had a more significant charge/discharge plateaus than the 

300th cycle. One of the reasons could be the capacity loss over cycling, resulting in a smaller 
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0.4 V, similar to CP profiles measured in half-cells. Unlike the potentials in three-electrode half -

cells, the voltages in the full-cells only represented the potential difference between two 

electrodes and may not be identical to the potential observed in half-cell tests (the potentials of 

the oxidization peaks were -0.6 V and -0.46 V, vs. Hg/HgO in half cell CP measurement).  

 

Figure 4.22 CP profiles of the full cells and the corresponding dC/dV curve with two different 

electrolytes: (a) 0.01 M NaOH with 0.2 M Na2SO4; (b) 0.01 M NaOH, 
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In the full-cell measured with pure NaOH electrolyte in Figure 4.22 (b), there was only one 

major redox couple at 0.8 V (discharge) /1.4 V (charge) in the initial cycle and almost 

diminished after 300 cycles. The low coulombic efficiency in the initial cycles could possibly 

result from gas evolution at 1.4 V. At 1.4 V (the potential difference between anode and 

cathode), the anode was at reduced state (and HER could happen), while the cathode was at 

oxidized state (and OER could happen).   

4.2.3 RATE CAPABILITY OF LEPIDOCROCITE IN FULL CELLS 

 

Figure 4.23 The discharge capacity of the γ-FeOOH anode in rate capability measurement in 

full-cells with the cocktail electrolytes consisting of 0.01 M NaOH and 0.2 M Na2SO4. 
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rate capability measurements of 𝛾-FeOOH were conducted with the cocktail electrolyte only.  

The results were shown in Figure 4.23.  

 

Figure 4.24 (a) CP profiles of first and last cycle from rate capability measurement of γ-FeOOH 

with the cocktail electrolyte consisting of 0.01 M NaOH and 0.2 M Na2SO4 and (b) the 

corresponding dC/dV curves. 
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The measurement was conducted with a series of current densities starting from 0.1 A∙g-1 to 1 

A∙g-1 and then back to 0.1 A∙g-1. A total of twenty charge and discharge cycles were measured 

under each step with a constant current density. The first twenty cycles showed an average 

capacity of 76.4 mAh∙g-1 for the γ-FeOOH anode. When the current density increased to 1 A∙g-1, 

the discharge capacity dropped to an average value of 42.3 mAh∙g-1, maintaining 55.4% of the 

discharge capacity after the current density increased by one-fold. After the current density 

gradually decreased back to 0.1 A∙g-1, an averaged discharge capacity of 71.9 mAh∙g-1 was kept, 

about 6% of capacity loss compared with the starting stage of the measurement at the same 

current density. Thus, unlike in the half-cell CP measurements where lowering current density 

did not result in a capacity increase, discharge capacities for the γ-FeOOH anode in full-cells 

increased with decreasing current densities. 

The CP profile of the first cycle and the 140th cycle and their derivatives are shown in Figure 

4.24. Compared to the first cycle data, the discharge capacity at the 140th cycle was benefited 

greatly from the plateau around 0.4 V, though the overall capacity from the 1st and the 140th 

cycles stayed roughly the same. The dC/dV curve also showed the relative intensity of the peak 

at 0.4 V became larger compared with the peak at 0.7 V from the first cycle to the last cycle. 

The contribution from the background of the full cells are measured, and the results are shown in 

Figure 4.25. The discharge capacity shown in Figure 4.21 and Figure 4.23 were all obtained 

after subtracting the contribution from the background. The background was majorly contributed 

from the carbon black used to improve the conductivity. The measurement of the background 

was done by excluding the active material and everything else was kept the same. The current 

density was calculated based on the ‘imaginary’ loading of active materials. For example, if in 

the full-cell measurement with 0.4 mg loading of 𝛾-FeOOH and 1.6 mg of carbon black, the 
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absolute current would be set to 0.08 mA to set the current density as 0.2 A∙g-1 based on the mass 

of 𝛾-FeOOH, the measurement on the background would be conducted only with 1.6 mg 

loadings of carbon black but with the same absolute current. The result could thus be directly 

used as the contribution from the background. Following the observation from half-cell 

measurements, 𝛾-FeOOH showed a higher initial discharge capacity and better capacity retention 

over 300 cycles in full-cell measurements when cocktail electrolyte was used than when pure 

NaOH was used as electrolyte. The full-cell measurements also showed that 𝛾-FeOOH had a 

good rate capability in the cocktail electrolyte. 

 

Figure 4.25 Background contributed from the carbon black with two different electrolytes: (a) 

the discharge capacity over 300 cycles; (b) the CP profiles of the 1st cycle. 
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additional salt into the electrolyte to improve the electrochemical performance of 𝛾-FeOOH was 

not limited to Na2SO4.  

By replacing Na2SO4 with NaCl, a similar phenomenon was observed. Half-cell CP measurement 

of 𝛾-FeOOH was done with a cocktail electrolyte of 0.01 M NaOH with 0.2 M NaCl, and the 

result was shown in Figure 4.26 and Figure 4.27. 

As shown in Figure 4.26, adding NaCl into NaOH electrolyte also incurred the new redox 

features at -0.46 V (discharging)/ -0.51 V (charging), roughly similar potentials in 

NaOH/Na2SO4 electrolytes. As a result, the overall capacity was 205.1 mAh∙g-1, close to the 

value obtained from NaOH/Na2SO4 system (210.7 mAh∙g-1). It also showed a similar change in 

the distribution of capacity, but with a slightly higher initial contribution at the 2nd cycle from the 

second discharge plateau: 45.6% of the total discharge capacity, compared with 36.2% with 

NaOH/Na2SO4 as electrolyte.  

 

Figure 4.26 2nd cycle of charge/discharge profile of 𝛾-FeOOH measured at 0.2 A∙g-1 in 0.01 M 

NaOH with 0.2 M NaCl. 
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Figure 4.27 First 7 discharge curves of 𝛾-FeOOH measured at 0.2 A∙g-1 in 0.01 M NaOH with 

0.2 M NaCl. 
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CHAPTER 5  CONCLUSIONS AND FUTURE WORK 

5.1 CONCLUSIONS 

This project focused on the application of iron-based materials in an aqueous system. The 

electrochemical performance of synthesized of  𝛾-FeOOH in an alkaline environment was 

thoughtfully studied in a three-electrode half-cell system and asymmetric full-cell system. In 

addition, the phase transitions during the reactions were investigated with in-situ XRD 

measurements, and a reaction mechanism was proposed. 

The results showed that 𝛾-FeOOH as cathode materials could deliver a limited discharge 

capacity and poor capacity retention, possibly due to the formation of an electrochemically inert 

Fe3O4 phase. The cocktail electrolytes containing Na2SO4 and NaOH resulted in a higher initial 

discharge capacity and improved capacity retention. This was likely due to another reaction 

pathway that was made possible by the addition of Na2SO4. The intermediate species of green 

rust formed in the oxidization made it possible for the oxidization of Fe(OH)2 to FeOOH through 

a reaction pathway of Fe(OH)2→GR→FeOOH, in addition to the less reversible reaction pathway 

of Fe(OH)2→Fe3O4.  Fe(OH)2→GR→FeOOH pathway led to a higher charger transfer number 

and better discharge capacity. The results also showed that the green rust formation was favored 

in lower pH environments, which  justified why mild alkaline electrolytes were used in this 

research. 

5.2 FUTURE WORK 

As discussed previously, the cocktail electrolyte was not limited to Na2SO4/NaOH. Salts that 

could provide anions to form green rust would likely serve as an excellent additive to pure NaOH 
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solution. More kinds of salts could be investigated to study the effect on the electrochemical 

performance of  𝛾-FeOOH in future work. 

As the starting material of 𝛾-FeOOH did not exist in the following cycles, it was also possible 

that more iron-based materials could be used in this system. As this study showed that the 

reduction product was Fe(OH)2, ion-based materials that could be reduced to Fe(OH)2 were 

worthwhile to study under this system in future work. 

The results showed that the formation of green rust was favored in lower pH environments. 

Therefore, it was meaningful to investigate the performance of iron-based materials under the pH 

range below 12, where more green rust could form and lead to a higher capacity. 
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