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ABSTRACT 
Sound can propagate great distances underwater and is an important mode for marine life 

to obtain information.  Human activities in the ocean such as global shipping, coastal 

construction, gas and oil exploration, and mapping navigation routes intentionally and 

unintentionally emit sound into the ocean, potentially interacting with marine life.  Therefore, it 

is essential that the effects of anthropogenic noise on marine life and the ambient marine acoustic 

environment be understood. Most of the work, to date, has focused on the impact of low-

frequency (<1 kHz) sources such as shipping noise, which is ubiquitous in the ocean, and mid-

frequency (1-10 kHz) sources such as naval sonar, to which many marine mammals have shown 

to be sensitive. The effect of these sources can be as salient as a mass stranding event or as 

benign as an animal swimming away from a source of noise with no other effect. Less work has 

focused on higher frequency sources (>10 kHz), including ocean-mapping sonar systems. 

However, most marine mammals, namely toothed whales (odontocetes), are capable of hearing 

mapping-sonar signals.  The exposure of marine mammals to anthropogenic sound sources in the 

open ocean is regulated by the National Marine Fisheries Services through the Marine Mammal 

Protection Act (MMC 2015), the Endangered Species Act (DoI 2003), and the National 

Environmental Policy Act. Without a better understanding of the interaction of mapping sonar 

with marine mammals, the current guidelines imposed for marine mammal protection may not be 

protective enough, or alternatively, may be too conservative. 

 To gain a better understanding of the potential effect of mapping sonar and marine 

mammals, a scenario was examined that is possible to occur and has a high potential for a 

biologically meaningful interaction between mapping sonar and a sensitive marine mammal 

species: a 12-kHz multibeam echosounder (MBES) mapping survey and beaked whale foraging.  

This represents a possible interaction since 1) the relatively low frequency of the 12 kHz MBES 
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propagates further in the ocean environment than other mapping sonar frequencies (>30 kHz), 

and 2) beaked whales commonly reside in the deep-water environments where mapping with 

such a system would occur. Due to 1) the overlap of the frequency of this mapping system with 

beaked whales hearing, and 2) the life-sustaining nature of the behavior under consideration, this 

interaction has the potential to be biologically meaningful.  

 To understand the effect of deep-water multibeam mapping activity on beaked whale 

foraging, the temporal and spatial foraging behavior of beaked whales was assessed during two 

three-day ocean mapping surveys over the Southern California Antisubmarine Warfare Range 

hydrophone array (SOAR, featuring 89 bottom-mounted receivers over a 1800 km2 area) 

utilizing a 12-kHz deep-water multibeam echosounder.  Echolocation clicks recorded on the 

hydrophone receivers from foraging Cuvier’s beaked whales were used as a proxy to assess their 

foraging behavior. In addition, a soundscape analysis was conducted using the acoustic data from 

the hydrophone array to provide context for the behavior study findings, as well as provide a 

more general perspective on the contribution of the deep-water mapping activity to the marine 

acoustic environment. 

 In the first phase of this work, passive acoustic monitoring data was used to identify 

foraging events of beaked whales.  Four characteristics of the foraging events were used as 

proxies for foraging behavior and were subsequently compared Before, During, and After two 

deep-water ocean mapping surveys. These included 1) the number of foraging events (Group 

Vocal Periods, or GVPs), 2) the number of clicks per GVP, 3) GVP duration and 4) click rate per 

GVP.  The findings of this effort revealed that only the number of GVPs increased during the 

deep-water mapping surveys, largely driven by the observations in just one of the survey years. 

This temporal analysis showed no impact on beaked whale foraging except for an increase in 
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foraging effort during mapping activity.  In addition, this finding was a stark contrast to foraging 

behavior of beaked whales during MFAS activity, during which the number of foraging events 

decreased. 

 In the second phase of this work, an approach --the Global-Local-Comparison Approach 

(GLC)--was developed and tested that uses existing disparate spatial statistics and statistical 

hypothesis testing to assess whether a change in spatial behavior has occurred. Using three-

prongs of assessment—global, local, and comparison—the approach provided knowledge about 

1) the general distribution of observations over the entire area of study (i.e., clustered, random, 

dispersed), 2) identification of local hot and cold spots of activity, and 3) order-of-magnitude 

differences across distinct analysis periods, respectively.  The approach was demonstrated on 

synthetic data and empirical case studies of marine mammal behavior to determine its 

effectiveness and limitations in assessing change in spatial observations across analysis periods.  

The results revealed that the approach was effective at identifying visually identifiable spatial 

changes, with robust statistical support.   

 The GLC Approach was then used to assess spatial change in beaked whale foraging 

behavior before, during, and after ocean mapping activity using the spatial data from the foraging 

events used in the first phase of work. The analysis revealed that for one of the years of study 

there was no obvious change in foraging behavior globally, locally, or in magnitude in response 

to the mapping activity, whereas a local change in beaked whale foraging effort was identified 

during the second mapping survey year. There were obvious differences in the spatial use of the 

array by foraging animals between the two years outside of the survey work, which in addition to 

the differences in results between the two years of study, provided little support that the local 

change identified was necessarily a response to the mapping activity.  
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 The final phase of research was to characterize the contribution of one of the two ocean 

mapping surveys to the marine soundscape utilizing the acoustic data from the SOAR array, with 

a particular emphasis on understanding the contribution of the 12 kHz deep-water MBES. A 

comprehensive, multi-analysis approach focused on amplitude and frequency features of the 

changing soundscape across a nine-hydrophone subset of the array and across four analysis 

periods with respect to the survey activity: No Activity, Vessel Only, Vessel and MBES, and 

Mixed Acoustics was conducted.  The analyses revealed that the contribution of the deep-water 

MBES to the acoustic environment was very stereotyped: contributing most substantially to the 

loudest sound levels in the soundscape, particularly in the 12.5 kHz decidecade band. These 

results aligned well with the physical characteristics of the system, i.e., nominal frequency, duty-

cycle, transmission geometry, etc., suggesting these parameters can be reliably used to identify 

this source in subsequent soundscape studies.  The assessment revealed that the MBES was the 

most consistent loud source throughout the survey period, but was intermittently present. There 

were other loud acoustic sources detected throughout the survey period, most frequently other 

vessels and biological activity.  Several of the metrics used were weighted based on the hearing 

sensitivity of a mid-frequency cetacean, chosen specifically to provide context for what a 

Cuvier’s beaked whale may have heard if in the area where the survey was conducted. The most 

important finding related to this aspect of the work was that the survey activity, particularly the 

MBES sound, did not contribute uniformly in space, time, or frequency to the SOAR soundscape 

of the mapping survey: it had a very local and transient effect. 

 In summary, at the resolution of the SOAR hydrophone array, this empirical work 

assessing beaked whale foraging during deep-water MBES mapping activity demonstrated: 

1) no adverse changes in Cuvier’s beaked whale foraging behavior, and  



xv 

 

2) no clear response to the deep-water MBES mapping activity. 

Deep-water MBES mapping activity contributed substantially to the change in sound levels 

at a finite scale around the survey vessel. This led to a temporally intermittent impact on the 

soundscape at a given location. Within these spatio-temporal bounds, deep-water MBES 

mapping activity has the potential to be detected by a Cuvier’s beaked whale due to its 

spectral overlap with the frequencies of best hearing sensitivity of this species, as well as its 

loudness. However, no adverse effects on Cuvier’s beaked whale foraging were observed 

here. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

Marine Mammal Protection Legislation 
Until the 1970’s, subsistence and commercial hunting of marine mammals was common 

practice around the world (Sahrhage and Lundbeck 1992). Many coastal communities relied on 

marine mammal harvesting for food, clothing, and fuel to survive (Hertz and Kapel 1986). 

Marine mammals that were harvested include seals, whales, manatees, walruses, and polar bears 

(Hertz and Kapel 1986). Initially, the impact to mammal populations due to harvesting for 

subsistence was small, but as technology and harvesting methods advanced, the harvesting of 

these animals was exploited for commercial use. Commercial exploitation included harvesting 

blubber, tusks, meat, oil, and skin of various mammals. The negative impact to marine mammal 

populations quickly became obvious as numerous stocks of marine mammals were hunted to 

depletion (Hertz and Kapel 1986).  

Several attempts at regulating and protecting whale stocks were made in the early 1930’s 

(Fitzmaurice, 2017), culminating in 1946 with a legal frame work set forth by the International 

Convention for the Regulation of Whaling and the establishment of the International Whaling 

Commission (ICRW 1946). Growing public concern about the environment and the effects of 

increased anthropogenic activities on both land and sea led to several major pieces of legislation 

during the 1970s, including the National Environmental Policy Act (1969), the Marine Mammal 

Protection Act (1972), and the Endangered Species Act (1973). The National Environmental 

Policy Act (NEPA) requires all groups with federally funded activities to prepare environmental 

assessments and impact statements detailing the potential effects of proposed activities on the 

environment. The Endangered Species Act was a domestic response to the Convention on 

International Trade in Endangered Species of Wild Fauna and Flora (CITES), which serves to 

protect species from extinction and recover populations that are threatened. The Marine Mammal 



2 

 

Protection Act mandates marine mammal management through an ecosystem-based approach. It 

also includes a moratorium on the take and import of all marine mammals in United States 

waters (MMPA 1972), with some permitted exceptions.  

Take of marine mammals is defined as the harassment, hunting, capturing, collecting, or 

killing of marine mammals in US waters by U.S. citizens (MMPA 1972). There are some 

exceptions to the take of marine mammals through a permitting process of either direct or 

incidental take, which requires information on the specific activity, region, and potential species 

or stocks that will be affected. A large portion of incidental take authorizations are related to 

anthropogenic underwater noise activities such as sonar, gas exploration, construction, or 

scientific research. The effectiveness of these policies and permitting of incidental takes requires 

that the ocean user have a firm understanding of how the anthropogenic sounds they emit into the 

ocean impacts marine mammals. Thus, these acts necessitate research on marine ecosystems and 

species that may be vulnerable to such human activities. 

Marine Anthropogenic Sound 
Sound is an acoustic wave formed when an external force is applied to a medium, initially 

compressing and dilating it at the site of the perturbation. As the energy propagates outward from 

the site of disturbance the particles that make up the medium move back and forth in the 

direction of propagation; this is referred to as particle motion.  The variation in hydrostatic 

pressure caused by particle motion is a pressure wave.  As sound propagates through a medium, 

some of its intensity is lost due to spreading and absorption, where energy is converted to heat. 

High-frequency sound is more susceptible to absorption compared to low-frequency sound, thus 

the range of propagation will be different for different frequencies of sound. In an oceanic 

environment, lower frequency sound generally travels farther than higher frequencies. The speed 



3 

 

of sound is determined by the variation of oceanographic properties, such as temperature, 

salinity, and pressure. Changes in the sound speed of the medium can alter the path of 

propagation of an acoustic wave. One example of this is the SOFAR (Sound Fixing and 

Ranging) channel, which is a region of the water column defined by a sound speed minimum. In 

this channel, horizontally propagating sound refracts toward the layer of lower sound speed 

which allows the wave to propagate on great distances without losing energy to the seafloor or 

sea surface. Thus, sound can travel across ocean basins if the source level is loud enough, the 

frequency is low enough, and the oceanographic conditions are favorable.   

Due to the complexities of underwater sound propagation, understanding and managing 

the effect of anthropogenic sounds on the marine environment can be challenging. 

Anthropogenic sounds in the ocean come from numerous sources ranging in loudness, frequency, 

repetition, prevalence, and location.  These vary from high energy but short impulsive sounds, 

like pile driving and explosions, to continuous and persistent but lower energy sounds, like 

vessel engine noise.  Most anthropogenic sounds are generated in coastal areas where human 

activity including recreational boating, marine development, and construction is at its highest.  

But there are anthropogenic activities including offshore construction, seismic exploration, and 

international shipping where large vessels transit across ocean basins, all of which bring sound to 

deeper offshore locations. 

Several studies have stemmed from the desire to understand how noisy the oceans have 

become due to increasing anthropogenic activity in the oceans.  Andrew et al. (2002) showed 

that sound pressure levels in the Pacific, measured at a California site, between 1963-1965 were 

10 dB lower than during the period from 1994-2001 in the 20-80 Hz and 200-300 Hz bands. 

These findings were in agreement with McDonald (2006) who found a 10-12 dB increase in the 
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30-50 Hz band and 1-3 dB increase in the 100-300 Hz band at the same southern California site 

as the Andrew et al. (2002) study. These, as well as other early studies, led to the idea that global 

ocean noise levels were increasing with time.  However, several other long term studies utilizing 

hydrophones distributed in multiple oceans (Miksis-Olds and Nichols 2016), and at multiple 

locations within an ocean (Andrew et al. 2011; Chapman and Price 2011), revealed that there is 

not a single global trend in ocean sound.  The ambient noise floor of the Indian Ocean measured 

south of Diego Garcia, for example, increased during 2002-2012 in the 85-105 Hz band where 

sound from sources such as shipping, wind speed, and blue whale vocalizations dominate 

(Miksis-Olds et al. 2013). However, within the same decade, the ambient sound floor (5-115 Hz) 

in the South Atlantic decreased but at variable rates depending on the location of the 

hydrophones and the sound level metric under consideration (Miksis-Olds and Nichols 2016).  

Sirovic and Hildebrand (2016) compared sound pressure levels centered at 44 Hz south of 

Bermuda and found an increase of roughly 3 dB between the years of 1966 and 2013.  These 

later studies suggest that where trends do exist, they are within a specific frequency band, a 

region, or a season, and have variable rates of change (Chapman and Price 2011; Miksis-Olds 

and Nichols 2016; Miksis-Olds et al. 2013; Sirovic and Hildebrand 2016).   

Marine Mammals 
Marine mammals include any mammals that rely solely on the ocean for at least one 

attribute of their existence (e.g., food, habitat). This group includes 1) amphibious animals such 

as walruses and pinnipeds (seals and sea lions), 2) animals that spend all of their time in water 

such as manatees, dugongs, and cetaceans (dolphins, porpoises, and whales), and 3) animals that 

rely on the ocean for food, such as polar bears and sea otters.  The group of cetaceans can be 
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further broken down into odontocetes (toothed whales), which actively hunt for food using 

echolocation, and mysticetes (baleen whales), which filter feed.  

Many marine animals, in particular social and sexually reproducing marine mammals, 

rely heavily on sound to communicate (Tyack 1986).  Sound travels faster and farther in water 

(~1500 m/s) than it does in air (~350 m/s), making this a reliable mode of communication across 

large distances and in dark environments where visual communication is more difficult. Sound is 

used between conspecifics for foraging, attracting mates, communicating to young, or conveying 

other relevant information (Bradbury and Vehrencamp 1998). Environmental sound cues, like 

ambient sounds from a reef, are also used by animals to understand and navigate their 

environment (Tolimieri et al. 2000). Additionally, some animals produce sound to communicate 

information to themselves, such as echolocation signals for finding food or navigation (Madsen 

et al. 2013).  

Effects of Marine Anthropogenic Sound on Marine Mammals 
 Research has shown there is an array of possible effects of anthropogenic noise on marine 

mammals. These can be broken down into two broad categories: acute and chronic effects 

(Williams et al. 2015). Acute effects range from behavioral changes, such as an abrupt change in 

swimming pattern away from a noise source (Miller et al. 2012; Sivle et al. 2015; Isojunno et al. 

2016; Manzano-Roth et al. 2016), to physiological injuries ranging from permanent damages of 

the auditory system to death. Certain anthropogenic noises can also cause permanent (PTS) or 

temporary threshold shifts (TTS) (Kastelein et al. 2017), where an animal exposed to noise will 

temporarily or permanently be less able to detect signals at particular frequencies post-exposure. 

Chronic effects of anthropogenic noise pollution are harder to characterize but can include 

behavior changes that alter the natural history of a species, such as long-term changes in habitat 
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use (Richardson et al. 1987) that have the potential to cause population level changes. Other 

chronic effects may include acoustic masking, where effective acoustic communication is 

decreased due to raised background noise intensity at the same frequency of the acoustic signal 

used by an animal (Erbe et al. 2015), which can lead to a shift in the frequency at which an 

animal or population vocalizes (Parks and Clark 2007). If masking occurs for a long enough 

duration, it can result in the loss of critical information that may have individual or population 

level consequences. Chronic physiological effects can also arise due to an increase in noise-

induced stress levels, which have the potential to impact life processes such as reproduction 

(Kellar et al. 2015; Rolland et al. 2017). 

The effect that anthropogenic noise will have on marine life depends in part on the 

animal’s ability to hear it and on the context for which the animal is exposed.  An animal’s 

physical ability to hear a sound depends on the sound being within the frequency range of 

hearing sensitivity of the species.  This information is generally derived from either 1) behavioral 

response experiments where animals are trained to respond when they hear a sound, or 2) 

auditory evoked potential tests where the brain waves of an animal are monitored during 

exposure to pure-tone sounds at differing frequencies and amplitudes (Andre and Nachtigall 

2007, Lucke 2008).  This information is summarized into an audiogram, or a curve that shows 

the minimum sound intensity that an animal responded to for each frequency (Nedwell et al. 

2004). In addition to the anatomical and hearing requirements of the animal to hear a sound, the 

animal must also be within an appropriate range of the sound to hear it (Richardson 1995). This 

range for an animal to be able to detect a sound is partly dependent on the properties of the sound 

(frequency, intensity, duration, direction of propagation) but will also depend on the ambient 

acoustic conditions at the time of exposure, or signal-to-noise ratio.  Within the range of 
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detection, auditory injury is likely to occur at only very close distances, while behavioral affects 

may begin anywhere from the source out to the range of detection. The severity of the effect can 

also vary based on factors specific to the marine mammal, such as its previous exposures to 

noise, the biological significance of the noise to the animal (Tyack et al. 2011), the context of its 

exposure (e.g., foraging, mating, traveling, etc.), or its life stage (e.g., mother, calf).  

The significant increase in our level of understanding about the acute effects of 

anthropogenic noise on marine life over the last several decades has led to the development of 

noise exposure criteria to regulate damaging sounds that can cause injury, PTS, and TTS. As 

such, the research priority has shifted to understanding the chronic effects of anthropogenic noise 

exposure, including questions related to behavioral effects, population level consequences, and 

how to predict their likelihood of occurring (Southall et al. 2007, Houser et al. 2013, Henderson 

et al. 2014, Southall et al. 2021).  

Sonar and Multibeam Echosounders 
There have been a number of government and private research programs created to study 

the impact of low (LFAS; <1 kHz) and mid-frequency (MFAS; 1-10 kHz) active sonar used in 

naval operations on marine mammals (Jarvis et al. 2014; Miller 2014; Harris and Thomas 2015), 

due to numerous marine mammal stranding events linked to these noisy activities (Hohn et al. 

2006, Filadelfo et al. 2009, Ketten 2014). In comparison, little is known about how higher 

frequency (>10 kHz) active sonar, such as ocean-mapping multibeam sonar, impacts marine 

mammals despite the ability of some marine mammals to hear and communicate at these 

frequencies (Ketten 1998).  

There are key differences between naval sonar and multibeam echosounders.  Naval 

sonar was developed to detect submarines during times of warfare (D’Amico and Pittenger 
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2009).  As a result, the ensonified area is broad, propagates horizontally, and due to the low 

frequencies (1-10 kHz) extends great distances (Figure 1.1).  Multibeam echosounders (MBES) 

were developed to resolve fine-scale features in the ocean for seafloor mapping and natural 

resource exploration.  The geometry of a multibeam echosounder’s ensonified area is vertical 

below the vessel, with a wide across-track swath, but narrow along-track swath (Figure 1.1).  

The source levels of these systems are comparable but the radiated energy is on the order of 1000 

times higher in MFAS due to longer pulse lengths and shorter duty cycles (Table 1.1). The exact 

ensonified area for both systems is a function of the water depth and frequency of the signal.   

 

Figure 1.1. Simplified transmission beam geometries of the active acoustic systems used in the 

2017 mapping survey, in addition to MFAS for comparison. Note the schematic depicts relative 

differences in length and width, where the length of the beam for each indicates, relative to one 

another, how far the signal could be detected based on the nominal frequency of the system. 

Although simplified here, the EM 122 can also be operated using two transmission swaths like 

the one shown here, i.e., Dual-swath mode, and/or with multiple transmission sectors in a swath.  
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Table 1.1. Comparison of mid-frequency active sonar (MFAS) signals used in naval operations 

to multibeam echosounder signals used for ocean mapping.  The information in this table is 

generalized and may not be accurate for every system under every possible operational mode. 

 MFAS  MBES  

System example AN/SQS-53 EM 122 

Frequency range (kHz) 3-4 11-13 

Maximum source level (dB 

re 1 μPa @ 1m) 

235-239 241 

Propagation loss rate due to 

absorption (dB/km) 

0.15-0.2 1 

Signal duration (s) 1 0.002-0.02 CW 

<0.05 FM 

Time between pings (s) 20-30 

(Subject to target range) 

20 

(Subject to water depth) 

Signal content Long pulses either CW 

and/or FM with broad 

bandwidth (ratio of about 0.3 

to the center frequency) 

Short pulses either CW 

and/or FM with narrow 

bandwidth (ratio about 0.04 

to the center frequency) 

Duty Cycle (on the order of) 1/10 1/1000 

Typical Beam Pattern 

(vertical x horizontal) 

40° x 120-360° 1° x 150° 

Beam Direction Generally horizontal, can be 

tilted 

Generally vertical, can be 

tilted 

 

The original MBES utilized advanced beamforming techniques to generate a narrow, 

angularly constrained swath of sound that propagates to the seafloor.  Present day systems have 

undergone significant technological advancement in electronic and beamforming capabilities, 

resulting in the development of multi-swath and multi-sector capabilities which greatly 

complicate the transmission pattern of these systems. With respect to a multi-swath/multi-sector 

system, a single ping is comprised of a train of short independent pulses with non-overlapping, 

narrow bandwidths.  Additionally, state-of-the-art multibeam systems are dynamic and can be 

operated under various permutations of several operating modes: 1) single/dual swath, 2) auto-

ping mode/manually-selected mode (note: this feature does not impact the sound radiation 
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characteristics), 3) depth-specified modes, 4) with/without motion compensation, 5) various 

angular swath widths, 6) gated continuous-wave (CW)/frequency-modulated (FM) pulses, 

among other options which can further complicate the radiation pattern (Kates Varghese et al. 

2019).   

Most of these parameters are dictated by the need of the survey and the environment 

being mapped.  Dual-swath coverage enables the user to obtain a higher density of pings in a 

fixed area, which can be important for the quality of data required for a survey and/or for the 

survey speed.  Similarly, the use of various swath widths and motion compensation capabilities 

allow the ocean user to adapt to rough seas, survey at a faster or slower speeds, and still maintain 

or ensure quality data collection. Essentially the options available with state-of-the-art multibeam 

allow the ocean user to adapt to dynamic conditions in a variety of ways.   

As an example, the Kongsberg EM 122, a deep-water MBES operates using either single 

or dual swath with 4-8 sectors per swath.  The EM 122 can be manually or automatically 

changed to different operational modes as the depth of the water changes, which includes higher 

source levels, longer pulse lengths, more sectors, and frequency-modulated pulses at deeper 

depths.  Pulse lengths may vary from 3 ms (CW) in the shallowest depths (i.e., <450 m water) to 

100 ms (FM) in very deep water (i.e., up to 11,000 m). A typical deep-water survey (i.e., Deep 

mode is defined as 1000-2600 m depth) operates with 8 sectors ranging from 8-15 ms pulses and 

inter-ping interval of about 5-10 seconds. 

 In addition to military sonars and multibeam echosounders, there are other active acoustic 

sources commonly used and/or associated with ocean mapping and geophysical survey work 

(Masson 2003, Mayer 2006).  These include systems designed specifically to identify acoustic 

scattering in the water column (e.g., scientific echosounders), to systems that are designed for 
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penetrating the seafloor (e.g., sub-bottom profilers), among others.  Often classified together as 

scientific or geophysical sonar, there are differences between these active acoustic sources that 

certainly relate to the potential effects they may have on the marine acoustic environment and the 

life that inhabits it.  Due to the rapid innovation in this field and the abundant and diverse 

systems, only generalities of the systems relevant to the work in this dissertation are discussed 

here, which include a scientific echosounder (e.g., Simrad EK-80), multibeam echosounders 

(MBES e.g., Kongsberg EM 122 and EM 712), and a sub-bottom profiler (SBP e.g., Knudsen 

3260).   

The main differences pertinent to the context of this work are their source levels, 

frequency range, pulse characteristics, and radiation patterns.  Source levels are generally highest 

for MBES (~230-242 dB re 1 µPa @1 m), followed by the SBP (~199-208 dB re 1 µPa @1 m, 

Crocker et al. 2019) and the scientific echosounder (~188-226 dB re 1 µPa @1 m) (Crocker et al. 

2019, Schuster et al. 2020).  Frequencies for these systems also vary where SBP tend to be the 

lowest frequency (2 to 10 kHz) due to their need to penetrate the seafloor, followed by MBES 

and scientific echosounders (12 to 200 kHz and above).  The frequency used for any one of these 

sources will be dictated by the purpose of the survey and the ocean depth, where a deeper depth 

requires a lower frequency.  For identifying scattering in the water column, smaller targets 

require higher frequencies to resolve well. Pulse characteristics will also vary based on the 

purpose of the survey and ocean environment, but pulse durations tend to be longest for SBP. 

Although MBES tend to have the broadest swath, ~150° across-track, they are narrow along-

track, 0.5-2°, whereas the other aforementioned sources have a conical radiation pattern with 

typical narrow apertures of 7° (scientific echosounder e.g., EK-80) to 30° (e.g., Knudsen SBP) 
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(Figure 1.1).  All of these factors directly influence how the signal manifests in the marine 

acoustic environment. 

Beaked Whales  
Ziphiidae, or beaked whales, are pelagic deep-diving odontocetes, found in all oceans 

with the most studied populations in Hawaii, Southern California, and the Mediterranean (Baird 

et al. 2006, Aguilar Soto et al. 2006, DeRuiter et al. 2013). Beaked whales are the deepest and 

longest diving marine mammals known, diving to depths up to 3000 meters for over an hour at a 

time (Schorr et al. 2014).  Beaked whales are commonly found in deep water habitats with 

complex topography, indicating dynamic oceanographic conditions such as strong currents, 

upwelling, and biological productivity (MacLeod et al. 2005, Mead 2009). Beaked whales prefer 

deep water habitats for foraging (MacLeod and Zuur 2005, Mead 2009). These animals show 

high site fidelity, as they are repeatedly sighted in the same area throughout the year 

(McSweeney et al. 2007, Aguilar Soto et al. 2006, DeRuiter et al. 2013). 

Due to their deep-diving abilities, beaked whales have been difficult to study, as they do 

not spend much time at the surface, therefore little is known about their life history and behavior. 

A distinctive feature of beaked whales are the tusks on males of this family and on both sexes in 

the genus Berardius. Males are known to interact with other males in aggressive encounters that 

leave them covered with scars.  Little is known about reproduction, but it is thought that it takes 

a decade to reach maturity.  A single offspring is born at a time and likely remains with its 

mother for up to a year or more.  Among the 22 species of beaked whales, two social structures 

exist: small groups of less than 10 individuals and larger groups of 5-20 individuals, with as 

many as 100. (Mead 2009) 



13 

 

Passive acoustic monitoring has been a primary method used for remotely studying the 

behavior of animals in the ocean that are difficult to observe directly, such as beaked whales 

(Zimmer 2011).  Most of what is known about beaked whale behavior relates to their foraging 

behavior, since they are only known to emit sound while foraging.  Beaked whales use 

echolocation to find prey, producing short, directional upsweeping clicks in frequencies ranging 

between 2-200 kHz, with the most energy between 20-60 kHz (Johnson et al. 2004).  Inter-pulse 

intervals (ICI) last between 200-400 ms, click durations between 200-600 µs, and on-axis source 

levels range between 214-224 dB re 1 μPa @ 1 m (Baumann-Pickering et al. 2013, Baumann-

Pickering et al. 2014, Gassmann 2015).  Beaked whales forage in groups at depths greater than 

200 meters (MacLeod and Zuur 2005) on prey consisting mostly of squid, fish, and occasionally 

crustaceans (Santos et al. 2001).  Several studies have been conducted to determine diel variation 

in beaked whale foraging behavior, and have found that the exact foraging strategy (i.e., dive 

depth) may change from day to night (dive depth), while there is little difference in the amount 

of foraging that takes place between day and night (Baird et al. 2008, Arranz et al. 2011, Shearer 

et al. 2019).  These studies hypothesized that the differences in diel foraging are directly related 

to region-specific prey distribution and behavior in the water column.  

Few studies have assessed the hearing sensitivity of beaked whales due to the difficulty in 

capturing and safely containing a beaked whale (Cook et al. 2006, Finneran et al. 2009, Pacini et 

al. 2011).  An auditory evoked potential (AEP) hearing measurement test on a live-stranded 

Blainville’s beaked whale (Mesoplodon densirostris) revealed they can detect sounds between 5-

80 kHz, with the strongest evoked potentials at modulation rates between 600-1200 Hz, though 

higher frequencies and modulation rates greater than 1800 Hz were not tested (Cook et al. 2006). 

Another AEP study of a stranded Blainville’s beaked whale revealed that the animal produced 
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evoked potentials from 5 kHz up to about 160 kHz with best hearing sensitivity between 40-50 

kHz (Pacini et al. 2011). Other studies have suggested that toothed whales, in general, have a 

broad range of hearing sensitivity, from about 10-120 kHz (Finneran et al. 2009, Pacini et al. 

2011).  

Soundscapes and Sound Source Characterization 
The concept of a soundscape is used in a range of fields, including music, psychology, 

ecology, health care, etc. (Krause 2008), and in a variety of applications, such as environmental 

noise and quality of life in hospitals (Busch-Vishniac and Rhyerd 2019) to mitigating noise 

pollution in national parks (Olson and Reid 2013). Soundscape studies are often implemented in 

order to gain a better understanding of the acoustic environment from the perception of a sound 

receiver. Soundscapes are often thought of in the context of human perception but more recently 

have been applied with other animals in mind (Lindseth and Lobel 2018, Van Opzeeland et al. 

2018).  Although understanding the perception of sounds by other animals is arguably 

impossible, soundscape studies can provide insight about characteristics of an acoustic 

environment that may be relevant to a non-human receiver.  

In the marine environment, many marine animals rely on acoustic cues as reliable sources 

of information, whether it be for communication with conspecifics (Sorensen et al. 2018), 

finding food (Johnson et al. 2004), finding suitable habitat (Lillis et al. 2014), among other 

reasons. Aside from the relatively greater distances that sound propagates underwater compared 

to on land, the geographical habitat of many marine animals coincides with areas of extensive 

anthropogenic and noise-generating activity. Accordingly, the likelihood that anthropogenic 

noise will interact with marine life is different compared with terrestrial environments and 

inherently more difficult to evaluate. Monitoring the marine acoustic environment and assessing 
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any changes is an important aspect of understanding an ecosystem’s health as well as the health 

of the marine life within it.   

In recognizing the importance of the marine acoustic environment on the ecology of 

marine mammals, an entire field of study has arisen to understand the information the acoustics 

represent (Lin and Tsao 2018), as well as to develop legislation to manage anthropogenic input 

to an acoustic environment (Van Opzeeland and Boebel 2018).  Studies of the acoustic 

environment have been used to assess ecosystem health (Parks et al. 2014), identify and 

characterize acoustic sources present in an environment (Hatch et al. 2008), assess the effect of 

acute and chronic changes in the acoustic environment on acoustically active marine life (Wall 

Bell et al. 2016; Van Opzeeland and Boebel 2018), and monitor long-term changes in an 

environment (Andrew et al. 2011; Chapman et al.  2011; Miksis-Olds et al. 2013; Miksis-Olds 

and Nichols 2016). 

Due to the infancy of soundscape ecology in marine studies, agreement on a robust, 

cohesive terminology, and set of comprehensive metrics to describe an acoustic environment has 

been a challenge (Erbe et al. 2016). For example, some studies take a more qualitative approach: 

identifying acoustic sources in long time series and characterizing them into anthrophony 

(human-generated), geophony (geology-related) and biophony (biology-related) categories 

(Putland et al. 2017a). Other studies take a quantitative approach: assessing overall sound levels 

across multiple sites (Putland, et al. 2017b) comparing trends in sound levels across seasons 

(Miksis-Olds et al. 2013), years, or decades (Andrews et al 2011; Miksis-Olds and Nichols 2016; 

Sirovic and Hildebrand 2016). Alternatively, marine researchers use adapted terrestrial 

ecoacoustic metrics as proxies for biodiversity, habitat complexity and habitat health in marine 

environments of interest (Parks et al. 2014; Harris et al. 2015). Aside from research-specific 
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reasons for such variable methodology, specific metrics at specific resolutions may be more 

valuable than others.  There are a few common threads however, largely that soundscape metrics 

1) tend to provide some information about space, time, or both, and 2) they are generally related 

to sound pressure amplitude and/or frequency. 

With varying degrees of funding and resources, it can be challenging to acquire software 

and hardware that can meet a set of universal standards (e.g., minimum sample length or rate). 

Nonetheless, researchers and regulators recognize the need for an international set of standards to 

be able to compare and synthesize acoustic data across projects and environments (e.g., effect of 

noise on marine life, ecosystem health) (Southall et al. 2009, Boyd et al. 2011). An example of 

this recognition is that the International Organization for Standardization has now defined an 

underwater soundscape as, “the characterization of the ambient sound in terms of its spatial, 

temporal and frequency attributes, and the types of sources contributing to the sound field,” and 

has defined numerous important terms frequently used in soundscape studies (ISO 2017).  

Additionally, the International Quiet Ocean Experiment (IQOE) successfully gained the approval 

of the United Nations project, Global Ocean Observing System, to add ocean sound to its 

Essential Ocean Variables, meaning it will be a sanctioned measurement for this global project 

(Jones, 2019). 

The concept of a “soundscape,” from the perception of a human (Schafer 1969; Yost 

2015) has been adapted to other animals in terrestrial studies (Pijanowski et al. 2011), and now 

marine mammal studies by applying frequency-specific weightings, or auditory functions, to 

place sound measurements in the context of specific species or functional hearing groups 

(Houser et al. 2017).  Auditory weighting functions are used to emphasize the frequency-range in 

which a specific species, or group of species is most sensitive.  The range of frequencies is 
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rigorously determined either by psychophysical methods and auditory evoked potentials on 

individuals of a species, from behavioral studies, or modeled from assumptions about a species’ 

auditory anatomy (Houser et al. 2017). 

The current guidelines used by regulators to predict the impact of a sound on a marine 

life is to classify sound sources into distinct sound types based on the signal structure of the 

sound at its source and then to consider the functional hearing group of the animal and apply 

specific sound level thresholds based on both the functional hearing group and sound type 

(NMFS et al. 2018). Sound sources are categorized as impulsive (single pulse or multiple pulse) 

or non-impulsive (Southall et al. 2007; NMFS 2016). Characterizing a sound at its source is 

considered to be the most conservative approach since propagation effects typically cause a 

sound to be less damaging with greater distance from the source.  This classification has 

repercussions on which regulatory criteria should be used for exposure assessment.  For 

example, impulsive sounds, are regulated at lower threshold levels for the same metric relative to 

non-impulsive sounds due to the fact that these sounds are more likely to cause acoustic injury to 

an animal than non-impulsive sounds. In the current regulatory framework, marine mammals are 

divided into five functional hearing groups, based on the frequencies of sound to which they are 

most sensitive (NMFS 2018).  These groups are low-frequency cetaceans, mid-frequency 

cetaceans, high-frequency cetaceans, phocid pinnipeds and otariid pinnipeds (NMFS 2018).  

Thus, existing law and recommended guidelines (NMFS 2018) necessitate the collection of 

information inherent to both the exposed animal, as well as the source to be able to predict 

exposure.  It is worth noting that the latest scientific recommendation on this topic is to divide 

marine mammals into six functional hearing groups, including low-frequency cetaceans, high-

frequency cetaceans (previously listed as mid-frequency cetaceans), very high-frequency 
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cetaceans (previously listed as high-frequency cetaceans), sirenians, phocids, and other 

carnivores (Southall et al. 2019). New science continues to inform these demarcations and is 

used to periodically update the regulatory guidelines. 

The division of sound types into impulsive and non-impulsive sounds is based 

specifically on the premise that an impulsive sound is more likely to be physically damaging to 

an animal than a non-impulsive one. This delineation results in the application of a regulatory 

threshold 15-20 dB lower for a non-impulsive sound than for an impulsive sound (assuming all 

other delineations are kept equal, i.e., –functional hearing group and acoustic injury, e.g., TTS or 

PTS). Even with a simplified approach for such a specific application, there are challenges.  In 

the regulatory framework, neither impulsive nor non-impulsive is explicitly or comprehensively 

defined (NMFS 2018), despite this important consequence in how the sound types are regulated.  

Impulsive is defined as a signal with high peak sound pressure, short duration, fast rise-time, and 

broad frequency content, whereas a non-impulsive sound is any steady-state sound (NMFS 

2018). As such, even subject–matter experts have trouble placing certain sound sources into a 

specific category (Southall et al. 2007). For example, sonar signals, fall into both categories 

(Southall et al. 2007). This is largely because of the lack of a clear definition, but also because 

many sound sources can be operated in dynamic ways, resulting in variable signal characteristics 

such as pulse lengths, duty-cycles, and signal structure. The MBES, for example, can be operated 

in different modes based on the purpose of its use, or environmental factors, such as the weather 

or water depth. Consequently, MBES signals could be classified into more than one sound type 

category depending on how it is operated and on the impulsiveness definition (i.e., 

impulsive/non-impulsive) that is applied. It is also not clear whether the current demarcation of 

sounds into two sound types is appropriate or accurate beyond this very specific application in 
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the context of acoustic damage, such as extending its use for predicting the effect of a sound on 

the behavior of an animal. Understanding this will require substantial research about how a 

sound is perceived and integrated by an animal.  This is a field of research that is ripe for 

advancement.   

Despite this, in a majority of research reports looking at behavioral impacts of 

anthropogenic sounds on marine mammals, the noise sources are either not well described, or are 

reported only based on their source level, center frequency, and/or duration (Gomez et al. 2016, 

Southall et al. 2021). Several sound sources used in ocean exploration entail complicated 

systems with many sound producing parts that have dynamic operational modes and cannot be 

adequately described based on a few characteristics. For one, some systems are designed to 

operate within a specific frequency, but due to complicated and imperfect hardware designs can 

result in a wide bandwidth of spectral content. For example, the spectral ramp up of a 200 kHz 

echo sounder to its operational frequency within a short finite time period caused significant 

energy to be transmitted at sub-harmonic frequencies between 90 and 130 kHz (Deng et al. 

2014). Secondly, the environment in which these sounds are transmitted can also have a 

significant impact on the propagation of the sound. For example, air gun sounds in a shallow 

environment have a high pass filter effect from the shallow water depth, whereas in a deep-water 

environment the higher frequencies are lost with greater propagation distances (Hermannsen et 

al. 2015).  Current regulation is based on certain standards for reporting, such as root-mean-

square (rms) pressure levels for exposure criteria (NMFS 2018).  However, rms pressure levels 

do not represent short transient sounds well, such as sonar pulses, and relies heavily on the 

averaging window length used in its calculation (Madsen 2005).  In defining safety criteria for 

exposure to low-frequency active sonar, Kastelein et al. (2014) showed that temporal patterning, 
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including the inter-pulse interval, and the energy of exposure (cumulative sound exposure level) 

of a sound had important repercussions on the likelihood of an animal to experience a threshold 

shift. Accordingly, sound sources are not well captured by reporting only the source level, 

duration, and center frequency. It can be difficult to report the characteristics of a sound source, 

especially when the study arises out of opportunity. For this reason, carefully characterizing 

commonly used and complicated anthropogenic sound sources with a comprehensive set of 

metrics is required to generate a first order understanding of how such sounds can influence an 

acoustic environment.  This information is important for propagation modeling, which is often 

used in environmental impact assessments required by regulators. 

Scientific Landscape and Significance of Dissertation Research 
In 2008, a mass stranding of melon-headed whales occurred off of Antsohihy, 

Madagascar in an area that had been mapped a few weeks prior by a MBES 12 kHz system 

(Southall et al. 2013). This stranding event raised concern about the potential interaction of this 

source with marine mammals. Lurton (2016) along with DeRuiter (2011), modeled the radiation 

patterns of high-frequency sonar (seafloor-mapping echosounders), concluding that the risk of 

direct ensonification from MBES that can lead to auditory damage is low.  Although the beam 

geometry of a single-beam echosounder is different from a multibeam (Figure 1.1), two recent 

field studies have shown high-frequency single-beam echosounders have a behavioral effect on 

some toothed whale species. In one study, significantly fewer beaked whale echolocation clicks 

were detected when a single beam EK-60 scientific echosounder was active compared to inactive 

(Cholewiak et al. 2017). Reduced echolocation clicks, produced when beaked whales forage, 

indicated that foraging behavior changed when the echosounder was active. In a study of tagged 

short-finned pilot whales, the animal’s heading variance increased in the presence of an active 
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echosounder EK-60, suggesting the animals increased their vigilance to the sound (Quick et al. 

2017). Two controlled experiments have been performed that assessed the impact of high-

frequency multibeam sonar on marine mammal behavior in captivity (Hastie et al. 2014, Deng et 

al. 2014). In one study, grey seals in a tank where a 200-kHz sonar was actively transmitting 

spent more time hauled out than in the water compared to when the MBES was inactive (Hastie 

et al. 2014). The other study assessed the potential for MBES to impact marine mammals by 

looking at the spectral properties of MBES pulses, revealing that sub-harmonic sounds were also 

generated from three commercial echosounders with center frequency around 200 kHz, in 

addition to the nominal frequency sounds (Kongsberg SM2000 multibeam imaging sonar, 

BioSonics DT-X Digital Scientific Echosounder and Imagenex 965 multibeam imaging sonar) 

(Deng et al. 2014). These sub-harmonics are well within the hearing range of several marine 

mammal groups and at a level high enough to be detected by marine mammals. The combination 

of these field and opportunistic studies show that high frequency multibeam sonar has the 

potential to affect marine mammal behavior.  

Hearing tests from select beaked whale species (Cook et al. 2006, Finneran et al. 2009, 

Pacini et al. 2011) show that the hearing sensitivity of beaked whales (5-160 kHz) has substantial 

overlap with the range of high frequency sources (> 10 kHz) typically used for ocean mapping 

(i.e., 10-400 kHz).  Beaked whales are also known to inhabit environments where deep-water (12 

kHz) MBES operate with bandwidths that intersect with the audible range of the whales. In 

addition, beaked whales are known to be sensitive to other anthropogenic sounds. Thus, beaked 

whales appear to be a particularly susceptible group to disturbance from such an anthropogenic 

sound source. 
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The extent of the effect of high-frequency echosounder sound on marine mammals, 

including beaked whales, is not well understood. It likely depends on a multitude of factors 

including those intrinsic to the exposed animal or species, as well as those relating to the 

operation of the sonar, the physical environment, and the interactions of all of these factors.  In 

the few opportunistic field studies (Cholewiak et al. 2017, Quick et al. 2017), the exposure level 

and range from the source that elicited behavioral response were not well characterized, making 

it challenging to use these studies to predict future responses. Furthermore, due to the variable 

modes and frequencies used in operation, there is no consensus on what metrics should be used 

to characterize ocean mapping sound sources and their contribution to the ambient soundscape, 

or what aspects of their operation may elicit a response by a marine mammal (Southall et al. 

2007). 

Ocean mapping is necessary in coastal areas where routine surveying is needed for 

accurate charting of dynamic port bathymetries and identifying navigation hazards (Chiocci et al. 

2011, Battista and O’Brien 2015). It is also needed for geological surveying of natural resources 

in offshore waters and will expand into underexplored areas, such as the Arctic as the climate 

changes. In addition, there is a global initiative to map the world’s oceans by 2030 (Mayer et al. 

2018). Thus, these sources will continue to be used at the same, or a greater capacity than they 

are today, and it is imperative that we understand how they may affect vulnerable marine life, if 

at all. With targeted research to assess the effect of ocean-mapping sonar on marine life and the 

ambient marine environment, we can begin to understand how this sound source fits in to 

existing regulation, and/or provide insight for how existing policy should be modified to further 

protect marine mammals from this sound source, if necessary at all. 
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To date, there have been no studies explicitly examining the effect of deep-water 

multibeam echosounder activity on free-ranging wild marine mammals.  Hence, the broad aim of 

this research was to contribute to this gap in understanding by providing knowledge on the effect 

of ocean-mapping multibeam echosounder sounds on wild free-ranging marine mammals. The 

specific goal of this dissertation was to assess the effect of deep-water mapping activity, utilizing 

MBES, on the foraging behavior of Cuvier’s beaked whales and the marine acoustic 

environment. 

Study Site and System 
On January 4-7th 2017 and again January 2-6th 2019, ocean-mapping surveys were 

conducted in order to characterize the radiation pattern of a Kongsberg EM 122 (12 kHz) deep-

water multibeam echosounder. Each survey utilized the R/V Sally Ride and was conducted over 

the Southern California Antisubmarine Warfare Range (SOAR) of the United States Navy 

Southern California Offshore Range (SCORE), a multi-warfare training complex off of San 

Clemente Island, California in the San Nicolas Basin.   

SOAR contains a hydrophone array containing 177 bottom-mounted omni-directional 

hydrophones covering an 1800 km2 area. The area surrounding the hydrophone range varies from 

~200 m deep near San Clemente Island to ~1800 m deep at the northwest part of the range. 

Acoustic features, including anthropogenic and biologic sounds, at frequencies below 48 kHz 

produced over the range can be recorded on the hydrophone receivers.   

SOAR, used year-round for naval training exercises, is also home to a highly resident 

population segment of Cuvier’s beaked whales (Schorr et al. 2019).  An estimate for the number 

of animals utilizing the range is likely more than 100 animals.  In one year, 88 animals were 

sighted through ship-based surveys, 23 were seen over multiple years, and several have been 
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sighted in the area for more than 10 years (Schorr et al. 2019).  A more recent longitudinal study 

looking at the eleven years between 2007 and 2018 suggests that the number of animals present 

in a year is around 121 (Curtis et al. 2020).  Much of what is known about this population 

segment is through experiments related to MFAS use on the SOAR (Falcone et al. 2017, Tyack 

et al. 2011, DiMarzio et al. 2010). Despite observed behavioral effects of the naval activity, the 

animals still show high site fidelity to the area (Schorr et al. 2019).  Since Cuvier’s beaked 

whales are known to produce sound when they forage, the 2017 and 2019 mapping survey over 

the SOAR hydrophone array provided an ideal opportunity to study the effect of MBES survey 

activity on the foraging behavior of the beaked whales.  

Dissertation Outline 
 In order to provide knowledge on the potential effects of deep-water MBES activity on 

free-ranging marine mammals, this dissertation examines the effect of two mapping surveys, 

utilizing deep-water MBES, on beaked whale foraging behavior and the marine acoustic 

environment via three distinct perspectives. Chapter 2 provides insight on the temporal foraging 

behavior of Cuvier’s beaked whales by assessing changes in four group vocal period 

characteristics across distinct analysis periods related to two ocean mapping surveys. Chapter 3 

describes and demonstrates a robust and comprehensive statistical approach for assessing change 

in marine mammal behavior spatial observations with respect to distinct analysis periods which 

capitalizes on the use of a large-scale passive acoustic monitoring hydrophone array. Chapter 4 is 

an application of the statistical spatial approach presented in Chapter 3, and provides insight on 

spatial foraging effort of Cuvier’s beaked whales during two ocean mapping surveys. Chapter 5 

is a comprehensive documentation of the amplitude and frequency, spatial and temporal changes 

in sound pressure levels of a deep-water ocean mapping survey, which includes the identification 



25 

 

of sound sources attributing to those changes and a contextualization of the changing sound 

pressure levels to the hearing of a mid-frequency cetacean, such as Cuvier’s beaked whales. 

Chapter 6 summarizes the work completed in this dissertation, including a discussion of the 

differing effect of deep-water MBES to the effect of MFAS on beaked whale foraging. 

  



26 

 

CHAPTER 2: TEMPORAL FORAGING BEHAVIOR OF 

CUVIER’S BEAKED WHALES DURING A DEEP-WATER 

MAPPING SURVEY 
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Abstract 

 The impact of multibeam echosounder (MBES) operations on marine mammals has been 

less studied compared to military sonars.  To contribute to the growing body of MBES 

knowledge, echolocation clicks of foraging Cuvier’s beaked whales were detected on the 

Southern California Antisubmarine Warfare Range (SOAR) hydrophones during two MBES 

surveys, and assembled into foraging events called group vocal periods (GVPs).  Four GVP 

characteristics were analyzed Before, During, and After 12 kHz MBES surveys at the SOAR in 

2017 and 2019 to assess differences in foraging behavior with respect to the mapping activity. 

The number of GVP per hour increased During and After MBES surveys compared with Before.  

There were no other differences between non-MBES and MBES periods for the three other 

characteristics: the number of clicks per GVP, GVP duration, and click rate. These results 

indicate that there was not a consistent change in foraging behavior during the MBES surveys 

that would suggest a clear response.  The animals did not leave the range nor stop foraging 

during MBES activity.  These results are in stark contrast to those of analogous studies assessing 

the effect of Naval mid-frequency active sonar on beaked whale foraging, where beaked whales 

stopped echolocating and left the area.  

Introduction 
Over the last 20 years there has been an increase in research focusing on mid-frequency 

(1-10 kHz) active sonar (MFAS) and its effect on toothed whales (McCarthy et al. 2011, 

DeRuiter 2013, Jarvis et al. 2014, Manzano-Roth et al. 2016, Falcone et al. 2017, DiMarzio et 

al. 2019). This is largely due to concerns raised after several mass stranding events were linked 

to naval activities using high intensity MFAS sources (Frantzis 1998, Evans and England 2001, 

Fernandez et al. 2004, D’Amico et al. 2009).  Less research has focused on the effect of higher 
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frequency (>10 kHz) sonar (Vires, 2011, Cholewiak et al. 2017, Quick et al. 2017), such as 

multibeam echosounders (MBES), on toothed whales, despite similar source levels (216-245 dB 

re 1 µPa @1 m) to MFAS, and an overlap in frequency range (10-400 kHz) with the most 

sensitive hearing range of toothed whales (10-150 kHz) (Ketten 2004).  In 2008, a stranding 

event of melon-headed whales in Antsihohy, Madagascar raised concern about the potential 

impact of MBES on marine mammals due to the temporal (< 24 hours) and spatial association 

(65 km away) of the stranding event with a 12 kHz ocean mapping survey (Southall et al. 2013). 

While no direct cause of the stranding was determined, the investigators concluded that the 

animals most likely changed their behavior in response to the mapping survey, indirectly leading 

to the stranding (Southall et al. 2013). This stranding event as well as other observational studies 

of wild marine mammal reactions to high frequency echosounders (Cholewiak et al. 2017, Quick 

et al. 2017) has warranted further investigation into the potential effects that MBES signals may 

have on toothed whales.  Furthermore it raises the question, are MBES surveys any different than 

Naval sonar activity in terms of eliciting behavioral responses from toothed whales?   

There are inherent differences in MFAS and MBES aside from operational frequency 

differences. MFAS are used to detect targets, like submarines, at distant ranges (10s of km).  

These systems generally have a wide vertical ensonification beam (40°) with 360° horizontal 

coverage, producing pings (1-2 s in length) for several minutes at intervals ranging from 6 to 15 

min apart, and source levels in excess of 235 dB re 1 µPa @1 m (Hildebrand 2009, Falcone et al. 

2017). MBES are primarily used for seafloor mapping, requiring precise beam positioning and 

high horizontal and vertical resolution. These requirements equate to narrow (0.5° to 2°) 

downward directed beams in the ship’s along-track direction, wide swaths across-track 

(commonly, 120° to 150°), and short operational pulse lengths (10-100 ms) that vary based on 
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the ocean depth (Lurton and DeRuiter 2011, Lurton 2016, Kates Varghese et al. 2019). The 

resulting MBES geometry leads to a much smaller area of direct ensonification and orders of 

magnitude shorter pulses in comparison to MFAS, where exposure to harmful levels of sound are 

most likely to occur (Lurton 2016).  While the effect of MFAS on wild marine mammal behavior 

has been studied for some species with a controlled experimental design (McCarthy et al. 2011, 

Martin et al. 2015, Manzano-Roth et al. 2016), the effect of MBES on wild marine mammal 

behavior has not. The goal of this study was to assess the effect of MBES activity on beaked 

whale foraging behavior with a controlled experimental design. 

In an effort to better characterize the radiation pattern of a Kongsberg EM 122 (12 kHz) 

multibeam echosounder, two MBES mapping surveys utilizing this system were run over the 

Southern California Antisubmarine Warfare Range (SOAR) hydrophone array of the U.S. Navy 

Southern California Offshore Range (SCORE), a multi-warfare training complex off of San 

Clemente Island, California (Mayer 2017, Smith, 2019).  A resident population of Cuvier’s 

beaked whales (Ziphius cavirostris) are known to inhabit this region and produce sound when 

they forage (DiMarzio and Jarvis 2016).  This provided an opportunity to collect complimentary 

beaked whale data to assess the foraging behavior of beaked whales during the echosounder 

characterization study.  The design of this study was analogous to studies assessing the effect of 

MFAS on the foraging behavior of beaked whales on the same (DiMarzio et al. 2019) and other 

Navy hydrophone ranges (McCarthy et al. 2011, Manzano-Roth et al. 2016), informing 

discussion and allowing for the comparison of results.  

Cuvier’s beaked whales generally forage in groups of 1-4 animals generating groups of 

echolocation clicks, collectively referred to as group vocal periods (GVPs).  Animals have been 

tracked to depths up to 2992 meters during foraging dives, foraging for an hour or more at a time 
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(Schorr et al. 2014).  During these foraging dives, Cuvier’s beaked whales produce frequency-

modulated echolocation clicks to detect and capture prey (Tyack 2006). These highly directional 

clicks sweep through frequencies from 20 - 90 kHz, with most of the energy concentrated 

between 40-60 kHz, and which last between 200-600 µs.  Inter-click intervals for this species 

range between 200-500 ms, and on-axis source levels for these clicks are between 214-224 dB re 

1 μPa m (Johnson, et al. 2004, Zimmer, et al. 2005, Baumann-Pickering et al. 2013, Baumann-

Pickering et al. 2014, Gassmann 2015).  

In previous work at SOAR comparing beaked whale click detections with visually 

sighted groups, an estimated horizontal detection range of 6.3 km over the course of a foraging 

dive cycle was used for Cuvier’s beaked whales (DiMarzio and Jarvis, 2016). This detection 

distance was similar to the 6.5 km detection distance measured for Blainville’s beaked whales in 

the Bahamas (Ward et al. 2008, 2011), a species with similar foraging clicks and dive behavior 

(Johnson et al. 2004, Tyack et al. 2006), and was assumed to be true for this study on the SOAR 

range as well. Since beaked whales generally begin foraging below 200 meters and produce 

several thousand clicks in a foraging event, the spatial layout of the SOAR hydrophone range 

(<2000 m depth, < 6.5 km between adjacent hydrophones) was conducive for detecting a 

foraging event if it occurred on the range. 

A previous review by DeRuiter (2010) suggests the hearing threshold of toothed whales 

is most sensitive between 10-150 kHz, indicating high sensitivity to the frequency range of deep-

water MBES systems such as the one used in this study, which was the Kongsberg EM 122 with 

a 12 kHz center frequency. Understanding that Cuvier’s beaked whales have been associated 

with MFAS-related stranding events on multiple occasions (Evans and England 2001, Cox et al. 
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2006, D’Amico et al. 2009), Cuvier’s beaked whales were an appropriate species to assess the 

effect of MBES activity, as well as compare with the effects of MFAS.  

Methods 
 In order to assess the effect of MBES activity on beaked whale foraging behavior, 

echolocation clicks from Cuvier’s beaked whales were detected and classified into GVPs, and 

compared across three exposure periods (Before, During, and After) with respect to MBES 

activity on the SOAR.  This was an analogous design to studies that looked at beaked whale 

foraging behavior in response to MFAS exercises (McCarthy et al. 2011, Manzano-Roth et al. 

2016, DiMarzio et al. 2019). In the present study, the EM 122 (12 kHz) MBES surveys were 

conducted on the hydrophone range of the SOAR located off of San Clemente Island, California. 

The hydrophone array consists of 177 bottom-mounted hydrophones at depths ranging from 840-

1750 m spanning an 1800 km2 area (Figure 2.1).  The hydrophones, spaced between 2.5 and 6.5 

km apart, have a receive bandwidth between 50 Hz and 48 kHz (DiMarzio and Jarvis 2016), are 

sampled at 96 kHz, and are capable of receiving both the beaked whale clicks and the signals 

from the EM 122 MBES.  
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Figure 2.1. Bathymetry of the Southern California Antisubmarine Warfare Range hydrophone 

array. 88 hydrophones are shown, indicated by circles.  The position of the other 89 hydrophones 

have a similar but offset arrangement to those shown here. 

 

Sonar and Surveys 
Two surveys, one in January 2017 (Mayer 2017, Smith 2019) and the other in January 

2019, were conducted as part of a MBES characterization project, each utilizing the UNOLS 

vessel R/V Sally Ride and its Kongsberg EM 122, a deep-water MBES. According to the 

manufacturer’s specification, the EM 122 has a maximum source level of 239-242 dB re 1 µPa 

@1 m and emits sound at center frequencies between 11 and 13.25 kHz.  The EM 122 can be 

operated in single or dual swath mode, meaning each ping contains 8 or 16 pulses (Figure 2.2), 

respectively, which are either continuous wave (gated, single-frequency) or frequency-

modulated.  The exact signal depends on user-defined input as well as depth information, which 

will vary based on the survey design and location (Kates Varghese et al. 2019).  For the SOAR 

surveys, pulse lengths were between 8-15 ms, and each ping was spaced roughly 6-7 seconds 

apart.  These were typical parameters for a mapping survey in the deep-water environment at the 

SOAR. 
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Figure 2.2. Simplified representation and nomenclature for the structure of a possible EM 122 

single swath mode ping.  Each of the eight lines represents a pulse, while the series of eight 

pulses together constitutes a ping. This ping example contains only continuous wave pulses.  An 

EM 122 single swath ping produces pulses at discrete frequencies between 11 and 13.25 kHz.  

An individual pulse length is between 2-100 ms, where longer pulses are used for deeper depths. 

A complete ping can last between 8- 400 ms, again with longer ping durations associated with 

deeper depth modes. 

 

The first MBES mapping survey was conducted 1/5/17 08:15-1/7/17 07:15 UTC.  The 

majority of the survey was run in a ‘mowing-the-lawn’ fashion (Figure 2.3 Left) using the EM 

122 in deep, dual swath mode with CW pulses only. The vessel’s survey speed was 10 knots 

except when turning the ship, when the speed was dropped to 5 knots.  This was followed by a 

shorter period when multiple acoustic sources were in use. These included the EM 122, a 

Kongsberg EM 712 MBES (40 kHz), a Simrad EK 80 wide-band echo sounder (18, 38, 70, 120, 

200 kHz), and a Knudsen sub-bottom profiler (3.5 kHz).  

The second MBES mapping survey was conducted 1/4/19 12:00-1/6/19 16:00 UTC 

during which the majority of the work was carried out in the southeastern corner of the range, 

restricting the EM 122 to single swath, CW only mode (Figure 2.3 Right).  Following this, the 

EM 122 was set to operate in dual swath mode with FM pulses enabled and lines were run from 

the southeastern corner of the range to the center of the range and back twice before switching to 
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‘mowing-the-lawn’ type survey lines.  To the best of our knowledge, no MFAS activity was 

taking place on the range during either of these surveys. 

  

Figure 2.3. Hydrophone range overlaid with the ship track lines. Left: 2017, Right: 2019. Dots 

(green) indicate placement of the hydrophones. Lines (black) indicate track lines of the vessel.  

 

GVP Detection on Hydrophones  
The SOAR hydrophone data were processed at the Naval Undersea Warfare Center using 

a series of algorithms to obtain Cuvier’s beaked whale group vocal periods (GVPs) (DiMarzio 

and Jarvis 2016). These were similar processing procedures used to analyze the impact of MFAS 

on marine mammals (McCarthy et al. 2011, DiMarzio et al. 2019).  Cuvier’s beaked whale 

foraging clicks were first detected and classified from the hydrophone data with a class-specific 

support vector machine (CS-SVM) classifier.  The clicks were then formed into click-trains on a 

per hydrophone and per class basis using a Java-based click train processor (CTP) program. 

Clicks were added to each click train until at least three minutes passed without a click detection. 

If the click train had at least five clicks it was saved; otherwise it was discarded. The click trains 

were then used as input to a Matlab-based Autogrouper (AG) program which associated the 

click-trains into groups using a set of rules based on the time and location of the click trains 
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(Moretti 2019). The AG program was set to only use Cuvier’s beaked whale click trains with 

inter-click intervals (ICIs) between 0.35 and 0.75 sec (Frantzis et al. 2002).   

A group vocal period (GVP) is the time period from the first detected foraging click from 

the group to the group’s last detected foraging click. The initial AG output was reformatted, 

filtered and summarized in R (R Core Team 2018) to produce a final AG output, which 

contained a list of Cuvier’s beaked whale GVPs detected along with information about each 

detected GVP. The filtering removed GVPs with group click counts less than 300 or greater than 

43200 clicks, and GVPs less than 5 min or greater than 90 min long. This was done to remove 

longer delphinid GVPs that may have been misidentified as Cuvier’s beaked whales. ‘Edge-only 

groups’, or groups only detected on hydrophones on the edge of the range, were also removed.  If 

an event was only detected on edge hydrophones, it was most likely from a group off the range 

and outside of the survey area. The detection statistics for the AG with the ‘edge-only groups’ 

removed are 0.759 for the probability of detection, 0.241 for the probability of false negatives 

and 0.185 for the probability of false positives (DiMarzio and Jarvis 2016). 

For each GVP the output included 1) a timestamp for the start and end of each GVP, 

thereby providing the duration of the GVP;  2) ‘center hydrophone,’ or hydrophone with the 

most detected clicks; 3) number of clicks detected on the center hydrophone; and 4) the sum of 

all clicks detected on all hydrophones in the group (‘group click count’). This dataset provided 

information on the number of GVPs that occurred on the range, as well as specific details about 

each GVP, but did not discern whether these events were made by unique foraging groups or 

individuals.  

The GVP is defined as “a temporally and spatially unique set of vocalizations that 

represent a single group of beaked whales vocalizing during a deep foraging dive” (McCarthy et 
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al. 2011).  Four GVP characteristics were used to assess foraging behavior: 1) number of GVP 

per hour, 2) number of clicks per GVP, 3) GVP duration, and 4) click rate.  Click rate is defined 

as the number of clicks per minute of the GVP, whereas the ‘number of clicks’ is the total 

number of clicks for a single GVP event.  Each GVP characteristic was computed by summing 

(number of GVP per hour) or averaging (GVP characteristics 2, 3, 4) the detections from all of 

the range hydrophones for each of the three exposure periods, Before, During, and After, with 

respect to each mapping survey.  Therefore, these metrics provide information about the 

temporal but not spatial distribution of foraging on the range throughout the study period. 

Experimental Design 
The During period included the time when the EM 122 was first turned on until it was 

last turned off.  The length of time of the During period in each year dictated how many hours of 

observation were selected for analysis Before and After the MBES activity to have a balanced 

analysis. So, for 2017 each of the three periods had 47 hours of observation and for 2019 the 

three periods were each 52 hours. To rule out potential diel foraging or diel differences in 

detectability (DiMarzio et al. 2019) as factors for differences between the time periods, each of 

the three periods started and ended at the same time of day, with respect to one another.  The 

exposure periods were separated by approximately 24 hours to ensure appropriate comparison.   

For 2017, the Before period was 1/2/17 08:15-1/4/17 07:15 UTC and the After period was 1/8/17 

08:15-1/10/17 07:15 UTC. The time separating each adjacent exposure period in 2017 was 25 

hours.  In 2019, the Before period was 1/1/19 12:00-1/3/19 16:00 UTC, and the After period was 

1/7/19 12:00-1/9/19 16:00 UTC. The time separating each adjacent exposure period of 2019 was 

20 hours. 

Given that Cuvier’s beaked whales forage on average for 40-60 minutes (Schorr et al. 

2014, DiMarzio et al. 2019), an hour was chosen as the unit over which to average detections. 
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Therefore all detections within each hour of observation of a given exposure period were binned 

to compute each GVP characteristic hourly.  Detections were binned based on the start time of 

each GVP, so that if a GVP started in a specific hour interval it was only accounted for once in 

that hour of observation, even if it lasted more than an hour.  Using all hour observations in the 

analysis can increase the likelihood for temporal autocorrelation which increases the risk of a 

Type I error -- i.e., incorrectly concluding that there is a difference in foraging behavior across 

the Before, During, and After periods, when there is none.  For this reason, a 99% confidence 

level for hypothesis testing was employed that is more stringent than the conventional 95% level. 

The effect of MBES activity on foraging behavior of Cuvier’s beaked whales was 

assessed by testing the following hypotheses with appropriate analysis of variance tests, either 

one-way ANOVA or, if the assumptions of the ANOVA were not met, a Kruskal-Wallis test:  

H01- the number of GVP per hour was the same Before, During, and After MBES 

activity; 

H02- the number of clicks per GVP was the same Before, During, and After MBES 

activity; 

H03- the GVP duration was the same Before, During, and After MBES activity; and  

H04- the click rate per GVP was the same Before, During, and After MBES activity. 

In each case where the null hypothesis was rejected, a post-hoc multiple comparison test 

was used to determine which of the exposure periods were different from one another.  

Based on previous information about the foraging behavior of this resident population of 

Cuvier’s beaked whales, it was hypothesized that the two years of data would not be different 

from one another.  To test this, independent t-tests were run to compare each of the three 
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exposure periods of 2017 to the respective exposure periods of 2019.  Provided the two data sets 

were not different, they could be combined to add statistical power to the overall analysis.   

Results 
GVP detection reports including 141 hours of data were processed from 2017 and 156 

hours from 2019: 47 hours for each of the three periods in 2017 and 52 hours for each of the 

three periods in 2019.  For any hour increment in which no GVPs were detected, the other GVP 

characteristics could not be calculated, reducing the number of observations for analysis for 

those characteristics. 

2017 Versus 2019 
There were 575 GVP detections made over the course of the 2017 study and 394 GVP 

detections in 2019.  In general, there were significantly (p<0.01) more GVPs per hour in 2017 

(4.078 ± 2.36) than there were in 2019 (2.52 ± 1.95).  Particularly in 2017, there were more 

(p<0.01) GVPs per hour both During and After MBES activity compared with 2019 (Figure 2.4 

Center and Right), but no difference Before between the two years (Figure 2.4 Left).  Compared 

across years, this metric may provide broader insight about foraging in this area, specifically, the 

inter-annual variability in animal presence on the range (DiMarzio et al. 2019). This could 

indicate that there were simply more animals overall on the range during 2017 in comparison to 

2019.  There was no difference between 2017 and 2019 in 1) the number of clicks per GVP, 2) 

GVP duration, or 3) click rate for any of the three exposure periods (Table 2.1).  Since there 

were no differences in the other GVP characteristics, the two years of data were assumed to 

come from similar distributions and were combined into one data set for further analysis.  Figure 

2.5 shows the hourly binned data across the three exposure periods for each year for comparison. 

However, an additional analysis was performed separately for each survey year which assessed 
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the GVP characteristics across a finer-temporal scale with respect to the mapping activity that 

took place each year.  These analyses are contained in Appendix 2.1. 

 

Figure 2.4. Boxplots of the number of GVP per hour for each exposure period by year.  Left: 

Before, Center: During, Right: After. Center line indicates the median, top of the box indicates 

75th percentile, bottom of box indicates 25th percentile, whiskers cover 99.3% of the data and 

plus signs indicate outliers. Presence of an asterisk on a plot indicates that the two years were 

significantly different at a 99% significance level for that period. 

 

 

Table 2.1. Mean and standard deviation of each GVP characteristic for each year in each 

exposure period.  

Exposure 

Period 

Before During After 

Year 2017 2019 2017 2019 2017 2019 

Number of 

GVP per 

hour 

2.7 ± 

1.56 

2.21 ± 

2.00 

4.43 ± 

2.26 

2.87 ± 

1.9 

5.11 ± 

2.51 

2.5 ± 

1.91 

Number of 

clicks per 

GVP 

2646 ± 

1402 

1903 ± 

1046 

2465 ± 

1652 

2327 ± 

1197 

3038 ± 

1479 

2853 ± 

1889 

GVP 

duration 

(min) 

48.02 ± 

14.25 

35.85 ± 

11.82 

40.43 ± 

12.35 

37.81 ± 

12.54 

43.77 ± 

10.35) 

40.48 ± 

16.28 

Click rate 

(clicks/min) 

58.39 ± 

30.88 

57.47 ± 

42.57 

58.90 ± 

31.76 

59.36 ± 

25.92 

68.04 ± 

24.28 

70.47 ± 

42.30 
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Figure 2.5. Barplots showing the hourly data of the four GVP characteristics across the three 

exposure periods of 2017, left column and 2019 right column. First row: number of GVP per 

hour; second row: number of clicks; third row: GVP duration in minutes; last row: click rate. 

Color transition across each plot on the x-axis shows transition between Before, During and After 

periods from left to right, respectively. 
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Number of GVP per Hour 
The combined dataset contained 99 hours of observation for each of the three exposure 

periods. The average number of GVP per hour Before was 2.44 (SD=1.81), which increased to 

3.61 (SD=2.21) During, and increased further to 3.74 (SD=2.56) After (Table 2.2). The data for 

this GVP characteristic met the assumptions of an ANOVA, so a one-way ANOVA was used to 

compare the exposure periods. The number of GVP per hour was not the same for the three 

exposure periods [F (2, 294) =10.18, p=0.00005].  There were more (p=0.00067) GVP per hour 

During and more (p=0.0001) GVP per hour After MBES activity than there were Before (Table 

2.3).  

There were several hours within the study when there were no GVPs detected.  Since the 

remaining GVP characteristics could only be calculated if there were GVP detections within a 

given hour bin, there were fewer observation hours for the other three GVP characteristics 

compared to the number of GVP per hour.  In particular, there were 81 hours with at least 1 GVP 

per hour Before, 94 hours During, and 92 hours After used to analyze the final three GVP 

characteristics.  (Table 2.2) 

Table 2.2. Descriptive statistics for the four GVP characteristics of the combined analysis, 

including the mean and standard deviation for each exposure period and number of samples used 

to compute those values in parentheses. 

 Before During After 

Number of GVP per hour 2.44 ± 1.81  

(n=99) 

1.61 ± 2.21  

(n=99) 

3.74 ± 2.56  

(n=99) 

Number of clicks per GVP 2312 ± 1301  

(n=81) 

2395 ± 1432 

 (n=94) 

2946 ± 1690  

(n=92) 

GVP duration (min) 42.6 ± 14.49  

(n=81) 

39.1 ± 12.45  

(n=94) 

42.12 ± 13.67  

(n=92) 

Click rate (clicks/min) 57.98 ± 36.29 

 (n=81) 

59.14 ± 28.77  

(n=94) 

69.26 ± 34.32  

(n=92) 
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Table 2.3. ANOVA tables for the four GVP characteristics of the combined analysis, including 

post-hoc comparison p-values. SS= sum of squares, DF=degrees of freedom, MS= mean square, 

F= F-statistic, Chi-sq=Chi-square statistic, Prob > test statistic = the significance of the test.  

Number of GVP per hour 

Source SS DF MS F Prob > F   Post-hoc  

p-values 

Groups 100.26 2 50.1313 10.18 0.00005  Before vs. During 0.00067 

Error 1447.25 294 4.9226    Before vs. After 0.0001  

Total 1547.52 296     During vs. After 0.91 

Number of Clicks per GVP 

Source SS DF MS Chi-sq Prob > 

Chi-sq 

  Post-hoc  

p-values 

Groups 46523.5 2 23261.8 7.86 0.0196  Before vs. During 0.96 

Error 1521879 264 5786.6    Before vs. After 0.034 

Total 1568402.5 266     During vs. After 0.051 

GVP Duration 

Source SS DF MS F Prob > F   Post-hoc  

p-values 

Groups 659.2 2 329.58 1.8 0.1665  Before vs. During 0.2 

Error 48212.8 264 182.62    Before vs. After 0.97 

Total 48872 266     During vs. After 0.28 

Click Rate 

Source SS DF MS Chi-sq Prob > 

Chi-sq 

  Post-hoc  

p-values 

Groups 76023 2 38022.5 12.75 0.0017  Before vs. During 0.67 

Error 1510135 264 5720.2    Before vs. After 0.002 

Total 1586158 266     During vs. After 0.022 

 

Number of Clicks per GVP 
The average number of clicks per GVP Before was 2312 (SD=1301), 2395 (SD=1432) 

During, and 2946 (SD=1690) After (Table 2.2). A Kruskal-Wallis test was used to compare the 

number of clicks per GVP since the data for this metric did not satisfy the normality assumption 

of an ANOVA. The test showed no difference between the three exposure periods [H (2) =7.86, 

p=0.02] at the 99% significance level (Table 2.3). 

GVP Duration  
The average GVP duration Before was 42.6 minutes (SD=14.49), 39.1 minutes 

(SD=12.45) During, and 42.12 minutes (SD=13.67) After (Table 2.2). The data for this GVP 
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characteristic met the assumptions of an ANOVA, so a one-way ANOVA was used to compare 

the exposure periods. The test showed that there was no difference in GVP duration between the 

three exposure periods [F (2, 264) =1.8, p=0.1665] (Table 2.3).   

Click Rate 
The average click rate Before was 57.98 clicks per minute (SD=36.29), 59.14 clicks per 

minute (SD=28.77) During, and 69.26 clicks per minute (SD=34.32) After (Table 2.2). The 

Kruskal-Wallis test was used to compare the click rate data between exposure periods since the 

data did not satisfy the normality assumption of an ANOVA. There was a difference between the 

three exposure periods [H (2) =12.75, p=0.0017]. The click rate was higher (p=0.0021) After 

MBES activity than Before (Table 2.3).  

Discussion 
Of the four metrics used to assess beaked whale foraging behavior, only the number of 

GVPs per hour was statistically different During MBES activity versus a non-MBES period. In 

this case, there were more GVPs per hour During MBES activity than there were Before. This 

clearly shows that the animals did not stop foraging during the MBES surveys and did not leave 

the range since GVPs were still being detected on the range. More foraging events During the 

MBES survey is a stark contrast to the results of analogous studies assessing the effect of Naval 

sonar on foraging beaked whales (McCarthy et al. 2011, Manzano-Roth et al. 2016, DiMarzio et 

al. 2019).  In the McCarthy study (2011), Blainville’s beaked whales not only stopped 

echolocating, but left the hydrophone range as well during a multi-ship naval sonar exercise on 

the range (Tyack et al. 2011). A decrease in the number of GVPs during Naval MFAS exercises 

was also seen for groups of beaked whales from populations inhabiting waters on the Pacific 

Missile Range Facility in Hawaii (Manzano-Roth et al. 2016) and at the SOAR in southern 

California (DiMarzio et al. 2019). 



44 

 

The number of GVPs per hour and click rate both statistically differed between the 

Before and After periods, with more GVPs and an increased click rate occurring After than 

Before.  The means of both of these GVP characteristics increased across the three exposure 

periods, while a similar trend was seen in the average number of clicks per GVP, although not 

statistically significant (Table 2.2).  Of the four GVP characteristics, three increased over the 

time period evaluated, which implies an overall increase in foraging effort during this study.  The 

increase in foraging effort over time, even after MBES activity, suggests that this trend is most 

likely a function of some other change in the environment, either on or off the range, rather than 

a response to the MBES survey itself.  Alternatively, this result may be viewed as a lag in 

response by the foraging animals to the MBES survey. For example, in the McCarthy et al. 

study, though the number of GVPs decreased during the MFAS period, it was not until roughly 

30 hours into the exercises that there was a pronounced decrease in the number of GVPs 

compared to pre-exposure numbers (2011). These surveys were operated as typical deep-water 

mapping efforts using surface-borne MBES, so the duration of MBES activity in this study 

represents a typical length survey for this type of environment (and perhaps even longer as other 

sources were used when the survey was completed).  Conducting an even longer survey in a 

controlled study may provide insight into whether the increase in the number of GVPs per hour 

and click rate After compared with Before is a lagged response to MBES. However, performing a 

longer survey would also not be an accurate representation of exposure to this noise source under 

normal operating conditions.   

Regardless of whether the results are from a lagged response to the MBES survey, or an 

effect of some other factor not studied here, it is valuable to explore what an increase in foraging 

effort may mean.  One explanation is that the MBES survey may have affected the behavior of 
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the prey, squid, of the beaked whales. A recent study of squid abundance and distribution at the 

SOAR revealed large differences over small spatial scales that can have huge repercussions on a 

predator’s decision to forage in a given area (Southall et al. 2018).  Beaked whale foraging 

behavior is heavily dictated by prey abundance and distribution, so if MBES activity changed the 

dynamics of the prey, making them easier to hunt and/or capture, this could have led to the 

increase seen in foraging effort. Alternatively, it is possible that prey distribution at the SOAR, 

or the surrounding area, changed over the course of this study due to some external factor, such 

as the oceanographic conditions, that led to more favorable foraging conditions on the range. 

Local environmental conditions can affect prey densities and position in the water column. Due 

to the opportunistic nature of this work with the echosounder characterization study, only 

environmental parameters directly related to acoustic propagation were collected to support the 

source characterization work, which was not directly applicable to questions about prey 

dynamics. A third consideration is that the increase in foraging effort could represent 

unsuccessful or aborted foraging attempts, compensated for by an increase in the number and 

intensity of foraging attempts. One explanation for aborted foraging attempts could be that the 

signal from the MBES masks or jams the animal’s ability to discern its own echolocation signal.  

This seems unlikely for two reasons: 1) the MBES signal frequency falls outside the octave band 

in which the echolocation signal of this species lies, and 2) by this argument, an individual GVP 

would be shorter in duration and contain fewer clicks, which was not observed. In the absence of 

tagging or tracking individual animals and prey dynamics, these hypotheses or any additional 

interpretations of the cause and/or effect of increased foraging effort cannot be verified.   

There can be significant variability in marine mammal behavior at the species, group, and 

individual level that can confound comparing results across studies.  Environmental and physical 
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conditions of the study site, such as the geometry of the seafloor, can affect how sound 

propagates and consequently how an animal will hear, perceive, and respond to a sound. Yet 

DiMarzio et al. (2019) showed a similar decreasing trend in the number of GVPs of Cuvier’s 

beaked whales at the SOAR during MFAS activity as two other studies looking at a different 

species (Blainville’s) of beaked whale (McCarthy et al. 2011, Manzano-Roth et al. 2016) at two 

other geographical locations (the Bahamas and Hawaii). Despite the potential for variability in 

marine mammal behavior, the equivalent results of the three MFAS studies (Manzano-Roth et al. 

2016, McCarthy et al. 2011, DiMarzio et al. 2019) suggest a clear cessation of foraging response 

to MFAS activity by foraging beaked whales.  Given the high site fidelity of Cuvier’s beaked 

whales at the SOAR, it is likely that at least some of the animals in the DiMarzio et al. study 

(2019) were the same as those in the present study. Recognizing this, the decrease in all 

indicators (number of GVP and GVP duration) of foraging effort during MFAS activity in 

comparison to the lack of a statistical difference in three of the four foraging metrics and the 

increase in the number of GVP per hour During and After MBES activity is a notable difference 

in response by foraging Cuvier’s beaked whales at the SOAR. 

MFAS naval sonar had a clear measurable effect on beaked whale foraging (McCarthy et 

al. 2011, Manzano-Roth et al. 2016, Falcone et al. 2017, DiMarzio et al. 2019) in comparison to 

12 kHz MBES mapping sonar despite comparable source levels and fairly similar frequencies (3-

10 kHz for MFAS) from a toothed whale hearing sensitivity perspective.  This is quite 

reasonable given the distinct differences between these two sonar types: the directivity of 

transmission, the limited area of ensonification, and the short pulse lengths of MBES as 

compared to MFAS.  These differences have a profound impact on the likelihood of interaction 

of these sources with marine life, and are important to consider in an animal’s ability to detect, 
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process, and potentially be affected by a signal (Southall et al. 2007). Additionally, the MFAS 

naval sonar exercises (McCarthy et al. 2011) involved multiple ships, sources, and occupied a 

specific location on the range for several days at a time. A typical ocean mapping survey 

includes one vessel with mapping sonar that continuously moves in a ‘lawn-mowing’ fashion 

over the survey area. Assuming the described operational paradigms are characteristic for these 

sonar types, along with the differences in pulse duration and ensonification volume, the two 

active sonar operations are inherently different which would factor into the different responses 

seen by foraging beaked whales.  

Conclusion 
This study took a coarse approach (1800 km2 area) to assessing the effect of MBES 

mapping sonar on foraging behavior of Cuvier’s beaked whales in order to compare to the 

approach taken in studies assessing MFAS (McCarthy et al. 2011, Manzano-Roth et al. 2016, 

DiMarzio et al. 2019). Therefore, this study did not elucidate changes within a particular group 

of foraging animals or responses by individuals. Individual responses are an important 

consideration when assessing the full impact of an anthropogenic noise source on marine life. A 

few studies have reported changes in individual (Quick et al. 2017) and group (Cholewiak et al. 

2017) behavior of marine mammals in response to high frequency scientific echosounders, 

though there are none to date on individual response to MBES.  The value of this study is a 

coarse look at how MBES activity affects groups of beaked whales in an area (i.e., the SOAR), a 

species known to be highly sensitive to other sonar types. The results of this study show an 

increase in the number of GVP During and After MBES, an increase in the click rate After 

MBES, and no change in the number of clicks or the duration of the average GVP for Cuvier’s 

beaked whales Before, During, or After MBES activity at the SOAR.  There was not uniform 
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change in the four GVP characteristics During MBES activity, and two of the significant 

differences were found in relation to GVP characteristics during non-MBES periods.  Both of 

these findings highlight the large amount of variability found among foraging events on the 

range and through time, while the later result may suggest a lagged response to MBES activity.  

If the increase in foraging effort is in fact a response, albeit lagged, to MBES activity, this is the 

opposite response that beaked whales had to MFAS sonar.  Since it is recognized that MFAS has 

a negative impact on beaked whale foraging, this result would suggest that there is not a negative 

impact of MBES activity on beaked whales foraging at the SOAR.   If the significant differences 

in foraging behavior found in this study are due to the high variability seen in foraging activity, 

this would also suggest that there is no clear negative impact of MBES activity on beaked whale 

foraging at the SOAR.  A finer temporal scale analysis of each year was conducted to assess 

some of these hypotheses and is provided in a supplementary section. This should be the first of 

many studies that take varying approaches (e.g., group/population versus individual, varying 

context and behaviors, environments, and mapping systems) to assessing the potential effects of 

MBES activity on marine mammals with a controlled experimental design.  
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CHAPTER 3: UNDERSTANDING MARINE MAMMAL 

SPATIAL BEHAVIOR BY APPLYING SPATIAL 

STATISTICS AND HYPOTHESIS TESTING TO PASSIVE 

ACOUSTIC DATA 
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Abstract 
Technological innovation in underwater acoustics has progressed research in marine 

mammal behavior by providing the ability to collect data on various marine mammal biological 

and behavioral attributes across time and space. But with this comes the need for an approach to 

distill the large amounts of data collected. Though disparate general statistical and modelling 

approaches exist, here, a holistic quantitative approach specifically motivated by the need to 

analyze different aspects of marine mammal behavior within a Before-After Control-Impact 

framework using spatial observations is introduced: the Global-Local-Comparison (GLC) 

approach. This approach capitalizes on the use of data sets from large-scale, hydrophone arrays 

and combines established spatial autocorrelation statistics of (Global) Moran’s I and (Local) 

Getis-Ord Gi* (Gi*) with (Comparison) statistical hypothesis testing to provide a detailed 

understanding of array-wide, local, and order-of-magnitude changes in spatial observations. This 

approach was demonstrated using beaked whale foraging behavior (using foraging-specific 

clicks as a proxy) during acoustic exposure events as an exemplar. The demonstration revealed 

that the Moran’s I analysis was effective at showing whether an array-wide change in behavior 

had occurred, i.e., clustered to random distribution, or vice-versa. The Gi* analysis identified 

where hot or cold spots of foraging activity occurred and how those spots varied spatially from 

one analysis period to the next. Since neither spatial statistic could be used to directly compare 

the magnitude of change between analysis periods, a statistical hypothesis test, using the 

Kruskal-Wallis test, was used to directly compare the number of foraging events among analysis 

periods. When all three components of the GLC approach were used together, a comprehensive 

assessment of group level spatial foraging activity was obtained. This spatial approach is 

demonstrated on marine mammal behavior, but it can be applied to a broad range of spatial 

observations over a wide variety of species. 
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Introduction 
 Studies investigating marine mammals in the wild have historically relied on human 

observers (Mann 1999, Acevedo-Gutierrez et al. 2000). Visual surveys are often conducted from 

land (Piwetz et al. 2018), or boats which limits the types of animals (e.g., coastal, amphibious) 

and/or behavioral states (e.g., hauled-out, surface-feeding, migrating, surface-swimming, etc.) 

that can be studied due to the limited range in which an observer can see an animal (e.g., distance 

from shore, at or near the surface of the water, etc.).  

Over the past few decades, technological advancements have led to the ability to track 

animals further at or near the water’s surface, at a wider range of depths and distances, in remote 

locations, and over longer periods of time than previously possible (Costa 1993). Technological 

developments have been used to enhance the study of marine mammals, including drones (Torres 

et al. 2018, Landeo-Yauri et al. 2020, Frouin-Mouy et al. 2020), telemetry devices and other 

biologgers (Fedak et al. 2002, Hart and Hyrenback 2009, Bograd et. al. 2010, McIntyre 2014, 

Joyce et al. 2019, Barlow et al. 2020), and gliders fitted with acoustic receivers (Johnson et. al. 

2009, Baumgartner et al. 2013, Kowarski et al. 2020). Passive acoustic technology has also 

exploded with innovation (e.g., acoustics tags, autonomous acoustic receivers, towed 

hydrophone arrays) providing information at a range of scales on acoustically active marine 

mammals (Miller and Tyack 1998, Wahlberg 2002, Carstensen et al. 2006, Giraudet and Glotin 

2006, Madsen et al. 2006, Wiggins and Hildebrand 2007, Miller et al. 2008, Barlow et al. 2008, 

Tyack et al. 2011, Southall et al. 2012, Gassman et al. 2013, Rettig et al. 2013, Sousa-Lima et 

al. 2013, Mate et al. 2016, DiMarzio et al. 2018, DiMarzio et al. 2019, Giorli and Goetz 2019, 

Caruso et al. 2020a, Caruso et. al. 2020b, Kates Varghese et al. 2020, Malinka et al. 2020, and 

countless more). Consequently, the potential to assess more challenging and complex questions 
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related to marine mammal behavior and population level impacts has also increased. For 

example, several U.S. Navy range hydrophone receiver arrays exist for tracking underwater 

vehicles (Moretti et al. 2016, DiMarzio et al. 2019) that house 10’s of hydrophone receivers 

spread over a couple thousand square kilometers. These large arrays have been used to study the 

foraging behavior of groups of beaked whales during naval training exercises with mid-

frequency active sonar (MFAS) and other noise-generating activities (McCarthy et al. 2011, 

Henderson et al. 2014, Manzano-Roth et al. 2016, Moretti et al. 2016, DiMarzio et al. 2019, 

Henderson et al. 2019, Jacobson et al. 2019, Kates Varghese et al. 2020).  

With the ability to ask new and more complex questions related to marine mammal 

acoustic behavior comes the need to be able to analyze data collected to answer previously 

intractable questions. The goal of this work was to demonstrate a quantitative and comprehensive 

approach for examining and comparing group level marine mammal spatial behavior, the Global-

Local-Comparison (GLC) approach. This approach was specifically developed for utilizing the 

spatial information derived from large-scale hydrophone receiver arrays and passive acoustic 

monitoring systems that receive, detect, and classify sounds emitted by marine mammals (e.g., 

Ward et al. 2000, Jarvis et al. 2014). This is not the introduction of a novel statistical method. 

Rather it is a novel bundling of existing and established statistical methods for an assessment of 

group level marine mammal spatial behavior. This approach includes a global (e.g., array-wide) 

and local (e.g., hydrophone) assessment, as well as an order-of-magnitude comparison of spatial 

observations across distinct analysis periods through the use of spatial-autocorrelation statistics 

(Moran’s I, Getis-Ord Gi*) and hypothesis testing (Kruskal-Wallis).  

The GLC approach was applied to 10 simulated pattern data sets to provide examples of 

the utility, limitations, and benefits of the approach. Datasets from large spatial arrays, like those 
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from navy ranges, set within a Before-After Control-Impact (BACI) framework, provided ideal 

empirical examples upon which to demonstrate this multi-faceted approach for assessing spatial 

change across analysis periods. Thus two BACI studies, McCarthy et al. (2011) and Manzano-

Roth et al. (2016) assessing beaked whale foraging with respect to MFAS on U.S. Navy 

hydrophone ranges were used. Spatio-temporal data from these studies were visually extracted 

from heat map images produced in the original studies and the GLC approach applied.  

While the aforementioned BACI studies incorporated coarse spatial modeling (i.e., edge 

versus inner hydrophone comparison), the focus of the original studies was on the temporal 

analysis of beaked whale foraging behavior. The GLC approach fills a need for a more 

comprehensive and quantitative approach for assessing the spatial aspects of group level marine 

mammal behavior. Other quantitative spatial methods have been used to examine specific study 

population attributes -- e.g., local decrease/increase of populations (McCarthy et al., 2011, 

Manzano-Roth et al. 2016), or spatial re-distribution assuming no change in population numbers 

(Scott-Hayward et al. 2014)—but the three analyses combined in the GLC approach bring a 

comprehensive perspective to assessing spatial change in group level marine mammal 

observations.  

Materials 
This spatial analysis approach to assessing changes in marine mammal behavior 

capitalizes on the spatial detections representing a specific behavioral state of the study 

population –referred to here as group level behavior-- across distinct time periods. Group, here, 

refers to a number of animals (typically 10s of animals as opposed to a few individuals) of one 

species that occupy a local area. Group is used rather than population (Hammond 2002), as 

sufficient knowledge of what portion of a larger population a group of marine mammals 
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represents is often lacking. However, the use of group level does not exclude the study of an 

entire population, where that knowledge exists.  

To demonstrate the GLC approach, spatial detections of acoustic signals consistent with 

foraging, or Group Vocal Periods (GVPs), were used as a proxy to assess beaked whale foraging 

behavior. A GVP is a vocal event of at least one, up to several, animals foraging together in close 

proximity to one another. During a GVP, beaked whales echolocate to find prey, producing 

several hundred species-specific echolocation clicks. If the animals are foraging within a 

sufficiently spaced hydrophone array, such as the U.S. Navy hydrophone arrays, there is a high 

probability that at least some of the thousands of highly directional echolocation clicks will be 

received on at least one hydrophone. Using detection and classification algorithms (e.g., Ward et 

al. 2000, Jarvis et al. 2014, DiMarzio et al. 2018) these clicks can be grouped into GVPs and 

assigned to a central hydrophone (e.g., the hydrophone that received the most clicks for a given 

timestamp) for the event, providing the basis of a GVP time series with associated spatial 

location information (McCarthy et al. 2011, Manzano-Roth et al. 2016, DiMarzio et al. 2019). 

The GLC approach does not provide detail for how to process hydrophone data but instead 

assumes the availability of such a data set prior to undertaking this protocol. In addition, some 

level of uncertainty exists with regards to the automated detection of species-specific GVPs and 

their corresponding assignment to a central hydrophone. It was assumed that the probability of 

detection of a GVP was constant over time and equal for all hydrophones. 

Two types of data were examined: 1) simulated GVP data representing specific spatial 

patterns, and 2) extracted GVP data from two previously published exemplar marine mammal 

behavior studies (McCarthy et al. 2011, Manzano-Roth et al. 2016). For each data type, the total 

number of GVPs were summed by hydrophone for each analysis period. The total number of 
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GVPs per hydrophone served as the feature of interest for the spatial analysis, and the 

hydrophone location served as the spatial data of the feature. This information provided the 

necessary input for the spatial analysis.  

GVPs were analyzed here, but the approach is not limited to the study of marine mammal 

foraging behavior. Any spatial feature could be studied assuming both a feature value and its 

spatial location information are available. In addition, the spatial layout of the observation array 

must be conducive to an examination of that feature. For example, a specific array with fixed and 

coarsely-spaced acoustic recorders may be appropriate for studying certain features over others, 

i.e., high frequency acoustic signals versus lower, or vice-versa.  

Methods 
The GLC approach entails calculating two spatial statistics, Moran’s I and Getis-Ord Gi* 

for each analysis period, along with a data appropriate hypothesis test for comparing all analysis 

periods. The Moran’s I statistic provides a global view of the spatial behavior over the entire 

region under study, i.e., the hydrophone receiver array, while the Getis-Ord Gi* statistic provides 

a more localized view of spatial behavior and spatial use, i.e., hot spots and cold spots of activity, 

within the array that would not otherwise be captured through the global statistic. Due to inherent 

differences in distributions and variances of observations across analysis periods, the spatial 

statistics cannot be directly compared across analysis periods. Thus, the statistical hypothesis test 

is required to provide insight about order-of-magnitude differences across analysis periods in the 

feature of interest. 

Global Behavior/Spatial Autocorrelation  
The Moran’s I statistic is used to assess the global spatial pattern of the feature of 

interest, i.e., number of GVPs, over the entire array. The Moran’s I statistic (Equation 3.1) 

characterizes spatial patterns by measuring the overall spatial autocorrelation of a data set, 
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producing a single value. The spatial correlation coefficient is normalized by the sum of the 

variance of the data so that the values of I range between (-1, 1) (Odland 1998, Goodchild 1986). 

A value of negative one corresponds to perfect dispersion, where very different values are found 

next to one another (Figure 3.1, left). A value of positive one corresponds to perfect clustering, 

where similar values are found next to one another (Figure 3.1, right). A value of zero represents 

no spatial autocorrelation and describes a perfectly spatially random distribution of values 

(Figure 3.1, middle). The variance of the expected value of Moran’s I, under an assumption of a 

random spatial distribution (Odland 1998, Goodchild 1986), is calculated to test for statistically 

significant clustering or dispersion. 

 

Figure 3.1. Spatial depiction of ideal Moran’s I values: left- perfect dispersion, Moran’s I value=-

1; middle- perfect randomness, Moran’s I value=0; right- perfect clustering, Moran’s I value=+1. 

 

The Moran’s I statistic is given by the formula (Odland 1998, Goodchild 1986):  

𝐼 =
𝑁

𝑊

∑𝑖∑𝑗𝑤𝑖,𝑗(𝑥𝑖 − 𝑥)(𝑥𝑗 − 𝑥)

∑𝑖(𝑥𝑖 − 𝑥)2
                                              Equation (3.1) 

where 𝑊 = ∑ ∑ 𝑤𝑖,𝑗
𝑛
𝑗=1

𝑛
𝑖=1 , 𝑤𝑖,𝑗 is the weighting between the ith and jth spatial units, and w 

represents the weighting matrix with i rows and j columns. 𝑥𝑖 refers to the ith feature value, (e.g., 

the total number of GVP of the ith spatial unit (e.g., hydrophone)), and 𝑥 is the mean of all of a 

feature’s values (e.g., the mean number of GVP across all hydrophones).   

The weighting matrix (w) is a contiguity matrix representing the relationship between 

each pair of spatial units, e.g., hydrophones (the ith row and jth column). The weighting (𝑤𝑖,𝑗 ) 

determines the contribution that each set of hydrophones (the ith and jth) makes to the final spatial 
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autocorrelation value. For example, a “Queen’s case” (Figure 3.2) contiguity weighting scheme 

considers all hydrophones (j) that are directly perpendicular, horizontal, and diagonal to a 

particular hydrophone (i) to be adjacent neighbors to that hydrophone, while the other 

hydrophones are not, i.e., 𝑤𝑖,𝑗 = { 
1, 𝑖𝑓 𝑗 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖

0, 𝑖𝑓 𝑗 𝑛𝑜𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖
.  Those hydrophones that are not 

adjacent neighbors therefore do not contribute (𝑤𝑖,𝑗=0) to the Moran’s I statistic. The “Bishop’s 

case” (Figure 3.2) only considers hydrophones that are directly diagonal to be adjacent 

neighbors, while the “Rook’s case” (Figure 3.2) only considers hydrophones directly 

perpendicular or horizontal to be adjacent neighbors. In open ocean beaked whale habitat, it was 

not expected that there would be any restrictions in how a whale would move so the “Queen’s 

case” was determined to be the most realistic representation of hydrophone adjacency and was 

employed when testing both the simulated pattern and exemplar data sets. The use of this 

specific criterion also assumes that the hydrophones are omnidirectional and therefore able to 

fully capture this expectation. To ensure the Moran’s I values fall within the (-1, +1) scale, the 

weighting matrix is row-standardized by dividing each row value by the row sum so that the sum 

of values in each row totals to one.  

 
Figure 3.2. Three examples of contiguity weighting schemes for generating weighting matrices. 

“Queen’s case” (left) was used in this study, while “Bishop’s case” is in the middle, and “Rook’s 

case” is on the right. Colored arrows indicate which hydrophones would be considered an 

adjacent neighbor to the same colored hydrophone. Notice: not all hydrophones will have the 

same number of neighbors. 
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To determine if the observed spatial pattern deviates significantly from random (i.e., I=0) 

the Moran’s I statistic is converted to a z-statistic (𝑧𝐼) (Equation 3.2) with a standard normal 

distribution upon which significance is determined. The formula for this is given by: 

𝑧𝐼 =
𝐼 − 𝐸[𝐼]

√𝑉[𝐼]
                                                                                 Equation (3.2) 

where 𝐸[𝐼] =
−1

(𝑛−1)
  is the expected value for a spatially random distribution and 𝑉[𝐼] =

𝐴−𝐵

𝐶
  is 

the variance of the expected value. Note that the variance of Moran’s I can be calculated based 

on an assumption of normality, or randomization (Odland 1998, Goodchild 1986). The former is 

appropriate when data follows a normal distribution, but in cases where the distribution is not 

normal or is unknown, the less restrictive randomization assumption can be used. For skewed 

data-- as is often the case with marine mammal detections and was true in this study-- the 

randomization assumption is more appropriate. This should be reconsidered for the specific 

application of this statistic. The formula for variance when normality is assumed can be found in 

Odland (1998). The variance under the randomization assumption is calculated by the following 

set of equations (Odland 1998, Goodchild 1986) (Equations 3.3-3.8):  

 

𝐴 = 𝑛[𝑆1(𝑛2 − 3𝑛 + 3) − 𝑛𝑆2 + 3𝑊2]                                  Equation (3.3) 

  

𝐵 = 𝐷[𝑆1(𝑛2 − 𝑛) − 2𝑛𝑆2 + 6𝑊2]                                         Equation (3.4) 

 

𝐶 = 𝑊2(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)                                                Equation (3.5) 
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𝐷 =
∑ (𝑥𝑖 − 𝑥)4𝑛

𝑖=1

(∑ (𝑥𝑖 − 𝑥)2)𝑛
𝑖=1

2                                                                 Equation (3.6) 

 

𝑆1 =
1

2
∑ ∑(𝑤𝑖,𝑗 + 𝑤𝑗,𝑖)2

𝑛

𝑗=1

𝑛

𝑖=1

                                                      Equation (3.7) 

 

𝑆2 =  ∑(∑ 𝑤𝑖,𝑗 + ∑ 𝑤𝑗,𝑖)

𝑛

𝑗=1

𝑛

𝑗=1

2𝑛

𝑖=1

                                                Equation (3.8) 

 

A p-value is obtained by matching the z-statistic to a standard normal distribution look-up table 

for the designated level of significance. A 5% significance level (95% confidence level) was 

used here. The analysis conducted with the Moran’s I statistic is a hypothesis test, where the test 

hypothesis is that the spatial distribution of the observations is no different from “perfectly” 

random (I=0). If the p-value associated with the Moran’s I statistic is less than 0.05, then the 

distribution is interpreted as statistically different from random: either significantly clustered 

(I=+1) (Figure 3.1, right), or significantly dispersed (I=-1) (Figure 3.1, left).   

In the demonstration of the GLC approach, a change in significance of the Moran’s I z-

statistic from one analysis period to another is interpreted as a change in mammal behavior 

globally – e.g., from spatially random to spatially clustered. However, no change would be 

detected if, for example, all mammals were on the east side of the array as in Figure 3.1 (right) at 

time t1 and moved to the west side at time t2.  Hence, a coupled analysis of behavior at a local 

scale is necessary. 
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Local Behavior/Spatial Autocorrelation  
The Getis-Ord Gi* statistic (Getis and Ord 1992) is used to identify pockets of high 

spatial association, e.g., clustering of similar feature values, or in this demonstration, the number 

of GVPs.  For the remainder of the paper this analysis will be referred to as Gi*. The Gi* z-

statistic is computed for each spatial unit, or hydrophone, using the following formula (Getis and 

Ord 1992): 

𝐺𝑖
∗ =

∑ 𝑤𝑖,𝑗𝑥𝑗 −𝑛
𝑗=1 𝑋 ∑ 𝑤𝑖,𝑗

𝑛
𝑗=1

𝑆√
𝑛 ∑ 𝑤𝑖,𝑗

2 − (∑ 𝑤𝑖,𝑗
𝑛
𝑗=1 )2𝑛

𝑗=1

(𝑛 − 1)

                                      Equation (3.10) 

 

where 𝑆 = √
∑ 𝑥𝑗

2𝑛
𝑗=1

𝑛
− (𝑋)2  and 𝑋 =

∑ 𝑥𝑗
𝑛
𝑗=1

𝑛
 and all other variables are as described for the 

Moran’s I statistic. Note that the use of the Gi* statistic assumes that the data examined are 

asymptotically normal (i.e., as the number of observations increases the distribution approaches 

normality) (Getis and Ord 1992). When using a binary adjacency weighting, such as the queen’s 

criterion used here, ‘as long as the distance is not too small and the weights are not too uneven, 

approximate normality is a reasonable assumption’ (Ord and Getis 1995). Thus in using a 

contiguity weighting scheme, it is recommended that the number of adjacent sites per feature 

location be eight or more (Ord and Getis 1995). This was achieved for interior hydrophones in 

the array.  

Using a two-tailed test, a p-value is determined and used to identify and interpret areas of 

either high and/or low feature values, e.g., number of GVPs. In particular, a significant hot spot – 

a non-random cluster of high feature values--will be identified if any hydrophone has a very high 

z-statistic (>+1.96, or 2 standard deviations) and associated p-value ≤0.025, while a significant 

cold spot –a non-random cluster of low values--will be identified if any hydrophone has a very 
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low z-statistic (<-1.96, or 2 standard deviations) and associated p-value ≥0.975. Clusters of high 

and low feature values are used to track how spatial behavior changes on the array through 

subsequent analysis periods.  

Examining locational changes of areas of clustering from one analysis period to the next, 

provides insight into spatial behavior not captured by the global Moran’s I result. In the 

exemplars, if all mammals move from the east to the west from one period to the next, as 

described earlier, a clear change in the location of hot and cold spots would be observed which 

would not have been detected by using only the global Moran’s I statistic. 

Comparison Analysis 
Each spatial statistic takes into account the distribution and variance of only a single set of 

observations from one unit of time, or analysis period. Since the distribution and variance of a 

feature (e.g., number of GVPs) can change across analysis periods, it is not appropriate to 

compare the spatial statistic (i.e., Moran’s I or Gi*) values across analysis periods (i.e., a 

comparison of a Moran’s I value of 0.2 for one period to a Moran’s I value of 1.2 in another 

period is meaningless if the distribution and variance of each period is different). In addition, the 

Gi* z-statistic is scale-invariant (Ord and Getis 1995), meaning the same results may occur for a 

similar pattern despite a different range of feature values for two or more analysis periods. For 

example with beaked whale foraging behavior, neither Moran’s I nor Gi* will detect that there 

has been a substantial change if there are two analysis periods where the hot spot cluster remains 

in the western corner of the array. But if one cluster has 30 GVPs, while in the next analysis 

period the cluster only has one GVP, a substantial change has occurred. This would be detected 

by comparing the order-of-magnitude across analysis periods. A comparison test is necessary for 

determining if the number of observations across analysis periods has changed (i.e., do the two 

samples come from a similar population or not). It is recommended that statistical test-specific 
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assumptions be evaluated to decide the most appropriate statistical hypothesis comparison test to 

use for a specific data set.  

Here, the non-parametric Kruskal-Wallis test (Kruskal and Wallis 1952) was used to 

compare the data sets of spatial observations (i.e., the number of GVPs per hydrophone) in the 

different analysis periods. The test hypothesis in the Kruskal-Wallis test is that the samples come 

from similarly shaped distributions (Kruskal and Wallis 1952). However, the test does not 

assume that the data are normally distributed, which is the primary driver for its use here. The 

distribution of the number of GVPs per hydrophone was skewed, with many hydrophones having 

zero observations. One other assumption of the Kruskal-Wallis test is that the samples compared 

are independent (i.e., both in and across analysis periods). The exemplar data sets were assumed 

to be independent as both temporal and spatial autocorrelation were tested and found to be low or 

non-existent in the original studies (McCarthy et al. 2011, Manzano-Roth et al. 2016).   

The Kruskal-Wallis test works by ranking the observations in each analysis period and 

comparing the mean ranks of each (Kruskal and Wallis 1952). A significance level is used to 

statistically identify the compatibility between the observed data and what is expected under the 

test model and its assumptions (Greenland et al. 2016). For ease in interpretation, a 5% 

significance level (α =0.05) was used here. A p-value smaller than 0.05 suggests that the data are 

rare under the model, in other words, that the samples come from different distributions, while a 

p-value larger than 0.05 suggests the data are not unusual under the model, or that the samples 

come from similar distributions. If differences in the number of spatial observations (i.e., number 

of GVPs) across analysis periods are detected, a post-hoc multiple comparison test is used to 

determine which analysis periods are different from one another. Here, Tukey’s honest 

significant difference criterion was used due to its effectiveness with data of equal sample sizes 
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(i.e., there were 89 observations, one for each hydrophone, per analysis period) (The MathWorks 

2020). A significance level of 5% was used again to interpret which analysis periods differed 

from one another. 

Finally, difference plots are generated to show the relative change (e.g., increase, 

decrease, or no change) in the number of observations on a per hydrophone basis between 

consecutive analysis periods. It is worth noting that the difference plots are based on binary 

rather than continuous values; a hydrophone that has a change of positive 1 between two periods 

will be represented the same as a hydrophone that has a change of positive 0.1 from one period 

to the next. Thus, these plots, as well as visualizing the original data, are only used to aid in the 

interpretation of the spatial statistics. 

  Note that the choice of statistical hypothesis test and post-hoc test may vary depending 

on the nature of the data. For example, if the data follow a normal distribution and satisfy the 

other assumptions of a parametric test, a test such as the analysis of variance (ANOVA) can be 

more powerful, although Andrews (1954) found the Kruskal-Wallis test to have a power 

efficiency of 0.955 relative to the parametric ANOVA’s F test. 

Data  

Simulated Data Sets 

Several patterned GVP data sets were created and tested to reveal how this approach 

would perform on known types of spatial distributions. The types of spatial distributions tested 

were chosen because they represent simple but realistic patterns of what might be expected of 

marine mammal foraging. This was conducted on a mock 50 “hydrophone” (10 row by 5 

column) equi-spaced array. The simulated GVP data sets included seven patterned data sets 

(Alternate, Diagonal, Striped, Steep Grade, Graded, Cluster, and Graded Cluster) and three 

randomly generated data sets (Random 1-3).  The ten simulated data sets tested are shown in 
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Figures 3.5 & 3.6, column 1. These figures will be introduced in full in the Results section. The 

Alternate, Diagonal, Striped, and Cluster pattern data were all generated using hydrophone 

values of zero (to represent a low value) or ten (to represent a high value) only to ensure the 

pattern was clear and not confounded by varying degrees of low and high values. For the 

Alternate pattern, every other hydrophone was either a zero or a ten so that no two hydrophones 

next to one another in the horizontal or vertical direction would have the same number, though 

they would diagonally. The Diagonal pattern consisted of three diagonal rows of zeros while the 

values of the remaining hydrophones were ten. The Striped pattern consisted of five alternating 

columns of ten hydrophones with a value of either zero or ten. The Steep Grade pattern consisted 

of five columns with values of ten, seven, four, zero, five, moving from left to right, while the 

Graded pattern consisted of five columns with values of ten, nine, eight, seven, eight, from left to 

right. The Cluster pattern consisted of a set of three by three hydrophones each with a value of 

ten in the center of the array and zeros for the remaining hydrophones. The Graded Cluster 

pattern included the same cluster pattern in the center of the array with a surrounding ring of 

hydrophones around this cluster with value of five and the remaining hydrophones with value 

zero. The three random data sets were randomly generated integer values between zero and ten 

for each of the 50 hydrophones.  

 Specific to the Moran’s I statistic, the Alternate design was hypothesized to represent a 

scenario of dispersed foraging (i.e., I<0), while the remaining simulated patterns were 

hypothesized to represent different configurations of clustered foraging (i.e., I>0). The random 

data sets were hypothesized to show spatial patterning no different from random (i.e., I=0). The 

Gi* results were hypothesized to statistically identify the areas of high and low GVP activity (hot 

and cold spots, respectively) intentionally designed into each of the simulated spatial patterns. 
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For example, it was expected that the Diagonal pattern, consisting of low values in a diagonal 

pattern across the array would lead to a diagonal pattern of cold spot hydrophones in the same 

location as the low GVP values. It was expected that the cluster of high values in the center of 

the Cluster and Graded Cluster patterns would be identified as a cluster of hot spots in the Gi* 

analysis. It was also hypothesized that there would be a noticeable difference in the resulting Gi* 

values and significance, for the Steep Grade versus the Graded patterns, as well as the Cluster 

versus Graded Cluster patterns due to differences in grading, despite the similar overall pattern 

within these two sets of patterns. The random patterns were expected to show no significant hot 

or cold spots. 

Exemplar Studies 

The data from two previously published marine mammal behavior studies were extracted 

and tested to demonstrate how the GLC approach performed on empirical spatial behavior data. 

One study assessed Blainville’s beaked whale foraging behavior during mid-frequency active 

sonar (MFAS) Naval exercises in 2007 on the Atlantic Undersea Test and Evaluation Center 

(AUTEC) in the Bahamas (McCarthy et al. 2011). The AUTEC study compared foraging 

intensity Before, During, and After MFAS activity on an 82 hydrophone array. The second study 

involved the same species and MFAS exposure between 2011 and 2013 on the Pacific Missile 

Range Facility (PMRF) off of Hawaii (Manzano-Roth et al. 2016). The PMRF study compared 

foraging intensity Before, During Phase A, During Phase B, and After navy sonar activity on a 

62 hydrophone array. The difference between the two During phases of the PMRF study was that 

Phase A only included submarine-on-submarine activity without MFAS, while Phase B used 

surface ship MFAS, sonobuoys, and dipping sonars (Manzano-Roth et al. 2016). The length of 

and timing between analysis periods of the two studies was on the order of hours to days. For 

more specific details on the activities and characteristics of the analysis periods in these studies, 
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see the respective publications (McCarthy et al. 2011, Manzano-Roth et al. 2016). In both 

studies, the authors performed a visually quantitative spatial assessment generating the heat maps 

of GVP activity reproduced in Figure 3.3. The intention in using the McCarthy et al. (2011) and 

Manzano-Roth et al. (2016) data was not to serve as a reanalysis of those efforts, but rather 

specifically to demonstrate the GLC approach on an empirical data set. If one is explicitly 

interested in the effect of MFAS on beaked whale behavior, the McCarthy et al. (2011) and 

Manzano-Roth et al. (2016) papers should be reviewed. 

Since the original data from the McCarthy et al. (2011) and Manzano-Roth et al. (2016) 

studies were not available for use in this study due to military data access, foraging intensity 

values were visually extracted from the heat maps (Figure 3.3). Note that both studies display the 

foraging intensity, but the AUTEC metric units (McCarthy et al. 2011) were GVPs per hour, 

whereas the PMRF metric units were GVPs normalized by the total hours of effort (Manzano-

Roth et al. 2016). Thus, there was an order of magnitude difference between the data values of 

the two studies. In this study, white grid lines were overlaid on the AUTEC and PMRF data 

images (Figure 3.4), and the value at each grid intersection was visually extracted. Values at the 

white grid locations indicated by a yellow ‘x’ were ignored to achieve a similar number of 

hydrophone observations as the original studies (Figure 3.4). These grid patterns were designed 

to provide a representative sampling of the original study area. However, the heat maps in the 

original studies were generated using interpolation between hydrophones, so the extracted values 

do not necessarily align with the hydrophone data values of the original studies. The extracted 

values were then associated with a mock hydrophone array with 84 hydrophones for the AUTEC 

exemplar (Figure 3.4 - top) and 62 for the PMRF exemplar (Figure 3.4 - bottom). The mock 

arrays were designed to mimic the original array designs, with staggered rows and a similar 
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number of rows and columns to the original hydrophone arrays. The actual layouts of the 

AUTEC and PMRF hydrophone arrays deviate from this simplified design. Rather than matching 

the precise layouts of the AUTEC and PMRF arrays, the simplified designs were chosen because 

the purpose of this study was a proof-of-concept and demonstration of the GLC approach rather 

than definitively quantifying the spatial behavior of beaked whales on AUTEC and PMRF 

during those studies. The extracted data and neighbor-weighting matrices generated for both the 

AUTEC and PMRF exemplars can be found in the supplementary material. It was hypothesized 

that for the AUTEC exemplar, the Moran’s I analysis would show spatial clustering for all three 

periods (Before, During, After), but that the Gi* analysis would reveal a cluster of hot spot 

hydrophones in the southwest corner of the array Before, a cluster of cold spot hydrophones in 

the middle of the array During, and a hot spot cluster again in the southwest corner of the array 

After navy MFAS activity. For the PMRF exemplar, it was hypothesized that the Moran’s I 

analysis would show spatial clustering for all four analysis periods (Before, Phase A, Phase B, 

After), but that the Gi* analysis would reveal a change in where the clustering took place on the 

array. In particular, During Phase B and After the hot spot of activity would shift southward on 

the array, and a cold spot of activity would be located in the center of the array During Phase B. 
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Figure 3.3. A) Reproduced from Figure 5.3.1 in McCarthy et al. 2011, which shows the foraging 

intensity, as the average number of GVPs per hour, of Blainville’s beaked whales on the AUTEC 

hydrophone array Before, During, and After MFAS activity. Red circles indicate positions of the 

hydrophones in the McCarthy et al. 2011 study. Color bar values and label have been rewritten 

for legibility from original figure. B) Reproduced from Figure 3 in Manzano-Roth et al. 2016, 

which shows the foraging intensity in GVPs per hours of effort of Blainville’s beaked whales on 

the PMRF array Before, during Phase A, during Phase B, and After naval sonar activity. Color 

bar label has been added and was not present in original figure.  
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Figure 3.4. Schematic of how the data were extracted from the heat maps in the original studies 

(left figures) --AUTEC (top) and PMRF (bottom)-- and mapped onto the mock hydrophone 

arrays (right figures). For this study the white grid lines were added to each of the analysis period 

data images in Figure 3.3. The values at the grid intersections were extracted to create the 

exemplar data sets. Gridlines marked by a yellow ‘x’ indicate values that were not extracted.  

Each circle on the right represents the location of a hydrophone on the mock arrays.  The 

numbers in the left figures correspond to the same number in the right figures and show where 

the value on the heat map was extracted from and to. In addition, the right figures provide 

examples of adjacent neighbor assignments for each of the hydrophone array layouts. Red arrows 

point to hydrophones that would be considered an adjacent neighbor to the respective 

hydrophone centered within the arrows.  
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Results 

Simulated Data Sets 
The Moran’s I analysis results including the Moran’s I value, z-statistic, and p-value are 

shown for the seven patterns and three randomly generated data sets in Table 5.3.1. The 

Diagonal, Steep Grade, Graded, Cluster, Graded Cluster, all exhibited significant spatial 

clustering as expected. In addition Random 2 was also significantly clustered, contrary to 

expectation, while Random 1 and Random 3, as expected, could not be statistically differentiated 

from a random spatial distribution. The Alternate and Striped patterns were statistically no 

different from random, which was also not expected. 

Table 3.1. Moran’s I analysis results by exposure period for the patterns and random data sets, 

including Moran’s I value (I), the z-statistic (zI), and the associated p-value. 

Exposure 

Period 

Moran’s 

I (I) 

Z-statistic 

(zI) 

p-value Spatial 

Distribution 

Alternate 0.053 0.9818 0.1635 random 

Diagonal  0.583 8.0393 <0.001 clustered 

Striped -0.222 -2.687 0.9803 random 

Steep Grade 0.638 8.7665 <0.001 clustered 

Graded 0.705 9.6615 <0.001 clustered 

Cluster 0.494 6.8501 <0.001 clustered 

Graded Cluster 0.773 10.5593 <0.001 clustered 

Random 1 0.0459 0.8823 0.189 random 

Random 2 0.241 3.4836 <0.001 clustered 

Random 3 0.039 0.7852 0.218 random 

 

Despite some of the unexpected Moran’s I results, with all ten simulated data sets the Gi* 

analysis corroborated the findings of the Moran’s I analysis (Table 5.3.1) and provided further 

insight into the results. The spatial pattern of the Gi* z-statistics and significance results (Figure 
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3.5 and 3.6, columns 2 and 3) matched intuitively to the values in the original pattern. For every 

clustered pattern, clusters (i.e., several hydrophones next to one another) of hot spots and/or cold 

spots were identified, while for every random pattern only a few or no hot/cold spot hydrophones 

were detected. As an example, in the graded patterns (i.e., Steep Grade and Graded) the highest 

number of GVPs were on the western hydrophones and lowest were on the eastern hydrophones 

of the array. The Gi* analysis identified a column of hot spots in the western-most column and 

cold spot hydrophones in the eastern-most two columns.  

The results of the Gi* analysis of the Alternate and Striped patterns provided further 

insight into the unexpected result of the Moran’s I analysis that showed these patterns had a 

random distribution. These patterns had low z-statistic variability with values that deviated little 

from the mean (Figure 5.4B and H, respectively). Because of the narrow range of z-statistic 

values, both patterns were non-significant and no hot or cold spots were identified (Figure 5.4C 

and I). The lack of z-statistic variability can be explained by the fact that each hydrophone was 

surrounded by roughly the same number of high and low value neighbors and there was no 

variability in what those high and low values were (either ten or zero). The exception to this was 

the middle column in the Striped pattern that was surrounded by high values on either side 

thereby producing a larger z-statistic for the middle hydrophones of the pattern. A random result 

for Moran’s I and non-significant result for the Gi* analysis suggest that the observable patterns 

in these examples were not sufficiently pronounced to be detected statistically with this analysis.   
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Figure 3.5. Visualization of the Gi*results for the Alternate, Diagonal, Striped, Steep Grade and 

Graded Patterns (top to bottom).  From left to right: first column: average GVP per hour with 

color bar ranging from 0 (dark blue) to 10 (red); second column: Gi* z-statistic with color bar 

ranging from -3.5 (dark blue) to 3.5 (dark red); third column: 95% confidence level, where red 

indicates a significant hot spot and blue indicates a significant cold spot, while green is not 

significant. Note: For ease in displaying, individual hydrophone values were rounded to the 

closest number on the color bar for columns one and two. The numbers provided on Figure 3.5C 

correspond to hydrophones discussed in the Results. 
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Figure 3.6. Visualization of the Gi* results for the Cluster, Graded Cluster, Random 1, Random 2 

and Random 3 patterns (top to bottom).  From left to right: first column: average GVPs per hour 

with color bar ranging from 0 (dark blue) to 10 (red); second column: Gi* z-statistic with color 

bar ranging from -3 (dark blue) to 7 (red) for the Cluster and Graded Cluster patterns and from -3 

(dark blue) to 3 (red) for the random arrangements; third column: 95% confidence level, where 

red indicates a significant hot spot and blue indicates a significant cold spot, while green is not 

significant. Note: For ease in displaying, individual hydrophone values were rounded to the 

closest number on the color bar for columns one and two. 
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The results of the Gi* analysis of the Alternate and Striped patterns provided further 

insight into the unexpected result of the Moran’s I analysis that showed these patterns had a 

random distribution. These patterns had low z-statistic variability with values that deviated little 

from the mean (Figure 3.5B and H, respectively). Because of the narrow range of z-statistic 

values, both patterns were non-significant and no hot or cold spots were identified (Figure 3.5C 

and I). The lack of z-statistic variability can be explained by the fact that each hydrophone was 

surrounded by roughly the same number of high and low value neighbors and there was no 

variability in what those high and low values were (either ten or zero). The exception to this was 

the middle column in the Striped pattern that was surrounded by high values on either side 

thereby producing a larger z-statistic for the middle hydrophones of the pattern. A random result 

for Moran’s I and non-significant result for the Gi* analysis suggest that the observable patterns 

in these examples were not sufficiently pronounced to be detected statistically with this analysis.   

The spatial distribution of the hot/cold spot hydrophones in the simulated patterns that 

were identified by the spatial analysis as clustered (i.e., Diagonal, Cluster, Graded Cluster, Steep 

Grade, and Graded) generally overlapped the designed observable pattern (e.g., a diagonal 

pattern of cold spot hydrophones was indeed present on the hydrophone array in the Diagonal 

example). However, with each pattern there were a few exceptions. For example in the Diagonal 

pattern, there was a cold spot cluster of hydrophones almost entirely overlapping the area of the 

zero-valued diagonal pattern (Figure 3.5F), with the exception of two perimeter hydrophones 

(hydrophones 3 and 48) which were not identified as cold spots, despite being a part of the 

original diagonal pattern. As another example, the entire cluster plus the two middle 

hydrophones on the lateral edges of the cluster (hydrophones 5 and 45) were identified as 

significant hot spots in the Cluster pattern (Figure 3.6C). There were similar cases of this in the 



75 

 

other clustered patterns where some hydrophones were or were not identified as being significant 

hot/cold spots, despite what one may expect based on visual expectation. This was an effect of 

the neighbor-weighting aspect of the Gi* z-statistic calculation. Edge hydrophones generally 

have fewer neighbors, meaning the value of those neighbors has a greater weight in comparison 

to the neighbors of hydrophones in the center of the range and therefore a different contribution 

to the z-statistic calculation.   

 The matching Gi* spatial distribution of hot and cold spots for the Steep Grade and 

Graded patterns (Figure 3.5L and O) exemplified the scale-invariant nature of the Gi* analysis. 

There were no obvious differences between the two patterns upon which the magnitude 

difference between the two patterns could be differentiated, supporting the need for the 

comparison analysis when comparing two data sets or analysis periods. 

For the three random patterns the spatial distribution of the Gi* z-statistic values 

appeared random, except for Random 2 which had a more graded pattern with high Gi* z-

statistic values toward the south and southeast corner and a row of low values along the northern 

perimeter of the hydrophone array (Figure 3.6K). As a result, two hot spot hydrophones were 

identified in Random 2 near the southeast corner of the array and three cold spot hydrophones 

were identified along the northern perimeter of the array (Figure 3.6L). There were no hot or 

cold spot hydrophones identified in Random 1 or 3 (Figure 3.6I and O, respectively), matching 

the Moran’s I result that these patterns were random.   

To further explore the likelihood of the Random 2 results, an ad hoc simulation test was 

run to compute the Moran’s I analysis on 1000 randomly generated data sets. On average, the 

Moran’s I value was 0.1283, the z-statistic was 2.0583 (SD=±0.88), and the p-value was 0.0587 

(SD=±0.09).  Based on a 5% significance level, a random data set would, on average, not result 
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in statistical significance and therefore would be interpreted as no different from random. 

However, implicit in the use of a significance level to detect statistical significance, is the 

acceptance that there may be times when the data do not match the underlying model. Thus on an 

array of 50 hydrophones and a 5% significance level, it is acceptable that 5%, or 2.5 

hydrophones, may be identified as hot or cold spots despite an underlying random distribution, 

which the Random 2 pattern demonstrates.  

Exemplar Studies 

AUTEC Exemplar 

Visual interpretation of the GVP data (Figure 3.7, column 1) indicated that Before MFAS 

activity the most GVPs occurred on hydrophones in the southwest corner of the array. During 

MFAS activity there were very few GVPs on the array compared to the Before period and the 

few GVPs that were present appeared highest along the edges of the array. After MFAS activity 

the level of activity appeared to match the Before period, with a shift toward the south-center of 

the array.   

The Moran’s I, z-statistic, and p-value component of the GLC approach for Before, 

During, and After in the AUTEC study are listed in Table 3.2. The Moran’s I values all suggest 

clustering of GVP activity on the array in each analysis period. From an array-wide perspective, 

there was no clear change in global foraging behavior.   

Table 3.2. Moran’s I analysis results by analysis period for the AUTEC exemplar, including 

Moran’s I value (I), the z-statistic (zI), and the associated p-value. 

Exposure 

Period 

Moran’s I 

(I) 

Z-statistic 

(zI) 

p-value Spatial 

Distribution 

Before 0.77 12.37 <0.001 Clustered 

During 0.7 11.24 <0.001 

After 0.83 13.28 <0.001 
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The Gi* portion of the GLC analysis corroborated the results of the Moran’s I test since 

both hot and cold spot hydrophone clusters were found in all analysis periods. In particular, a 

cluster of hot spot hydrophones were identified by the Gi* analysis in the southwest of the array 

for each analysis period (Figure 3.7C, F, I). The exact location and number of hot spot 

hydrophones did vary from period to period, but drawing upon the results of the simulated 

patterns, some variation is expected due to the neighbor-weighting component of the analysis. 

The GLC approach consistently identified a cluster of hot spot hydrophones in the southwest of 

the array that accords with a visual assessment, suggesting that the animals continued to forage 

predominantly in the same area throughout all analysis periods. The significance test of the Gi* 

analysis also revealed a cluster of cold spots in each of the analysis periods, which clearly 

changed location on the array from one analysis period to the next. Before, there were only a few 

cold spot hydrophones along the northern perimeter of the array; During, there was a large 

cluster of cold spot hydrophones in the center of the array; After there was a large cold spot 

cluster in the northeastern corner of the array (Figure 3.7C, F, I). In both the During and After 

periods there were roughly double the number of cold spot hydrophones compared to the Before 

period. These cold spots were also all clustered together, unlike in the Before period where they 

were more spaced out along the northern perimeter (Figure 3.7C). The results of the Gi* portion 

of the GLC approach suggest there was a change in where GVP activity was absent on the array 

During MFAS activity. It also shows that there was an increase in the number of hydrophones 

upon which no GVP activity took place.   
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Figure 3.7. Visualization of the Gi* results for the AUTEC exemplar: Before, During, and After, 

from top row to bottom row, respectively.  From left column to right: 1) the average GVP/hour 

with color bar ranging from 0 (dark blue) to 0.5 (red) GVP/hour, 2) the Gi* z-value with color 

bar ranging from -4 (dark blue) to 6 (red), and 3) hot (red) and cold spots (blue) at a 95% 

confidence level. Note: For ease in displaying, individual hydrophone values were rounded to the 

closest number on the color bar for columns one and two. 

 

As discussed, the Moran’s I and Gi* statistics alone do not confirm the change in overall 

activity. Hence the ability to detect changes in the global level of activity through the comparison 

test is an integral part of the GLC. The Kruskal-Wallis test showed that there was a difference 

across the mean ranks of the analysis periods [H (2) =48.48, p=2.97x10-11]. The post-hoc test 

showed that there were fewer (p< 0.001) GVPs on the array During MFAS activity than Before 

or After. So although the location on the array with the highest foraging activity (i.e., hot spot 

cluster) relative to a particular analysis period did not change, the absolute number of foraging 

events within a period did change. The difference plots supported this finding; there was a 
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decrease in the number of GVPs on most of the hydrophones from Before to During and an 

increase or no change in the number of GVP from During to After (Figure 3.8). Due to the scale-

invariant nature of the Gi* statistic and the global nature of the Moran’s I analysis, this overall 

understanding about the spatial behavior and magnitude of change was not completely realizable 

through the spatial statistics alone. This emphasizes the importance of considering each of the 

three parts to the GLC approach in interpreting and understanding spatial behavior change. 

 

Figure 3.8. Spatial layout of mock AUTEC hydrophone array, where the circles represent the 

hydrophones of the array, and the color represents the change in the number of GVP on each 

hydrophone from one analysis period to the next: blue=decrease, red= increase, black=no 

change. Left- the change from Before to During MFAS activity, and Right- the change from 

During to After MFAS activity.   

PMRF Exemplar 

A visual analysis of the PMRF exemplar revealed that the most GVP activity appeared in 

the top part of the southern half of the array. During Phase B and After, there was a shift 

southward in where the most activity occurred in comparison to the earlier periods (i.e., there 

was also high GVP activity along the bottom southwest edge of the array). The least amount of 

GVP activity appeared to be along the southern edge of the array Before, but then shifted to the 

northern edge of the array during Phase A, and then to the center of the array during Phase B and 

After (Figure 3.9, column 1). 
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Figure 3.9. Visualization of the Gi* results for the PMRF exemplar: Before, Phase A, Phase B, 

and After, from top row to bottom row, respectively.  From left column to right: 1) the average 

GVP/hour standardized to total time where the color bar ranges from 0 (dark blue) to 3.5 (red) 

GVP/hour) the Gi* z-value with color bar ranging from -3 (dark blue) to 6 (red), and 3) hot (red) 

and cold spots (blue) at a 95% confidence level. Note: For ease in displaying, individual 

hydrophone values were rounded to the closest number on the color bar for columns one and 

two. 

 

The Moran’s I values, associated z-statistics, and p-values for Before, Phase A, Phase B, 

and After are listed in Table 3.3. For all analysis periods of the PMRF study, the Moran’s I 
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results suggested significant spatial clustering of GVP activity, or lack of activity, on the array. 

From the Moran’s I analysis alone there was no indication that the beaked whales changed their 

global foraging behavior on the array. 

Table 3.3. Moran’s I analysis results by analysis period for the PMRF exemplar, including 

Moran’s I value (I), the z-statistic (zI), and the associated p-value. 

Exposure 

Period 

Moran’s I 

(I) 

Z-statistic 

(zI) 

p-value Spatial 

Distribution 

Before 0.60 8.3 <0.001 Clustered 

Phase A 0.65 8.9 <0.001 

Phase B 0.66 9.09 <0.001 

After 0.73 10.03 <0.001 

 

 The Gi* analysis provided further insight about the clustering result of the Moran’s I 

portion of the GLC approach analysis. There were clusters of hot and cold spot hydrophones 

identified in each of the analysis periods. In all four periods there was a large cluster of hot spot 

hydrophones that spanned across nearly all columns in the southern half of the array (Figure 3.9, 

column 3). However, the Phase B period was the only period in which hot spots were identified 

on some of the southern perimeter hydrophones. Though there were differences in the exact 

hydrophones that were identified through the GLC analysis as hot spots, based on this 

information alone, there was no compelling reason to suggest these differences were outside of 

the variation expected due to natural variation in behavior, or due to the sensitivity in the GLC 

analysis, discussed previously.   

 Overall the Gi* z-statistic plot for each period had a similar appearance: lower values 

dominated the northern half of the array (Figure 3.9, column 2), suggesting this area was 

consistently not used for foraging. There were subtle differences in how far this low-value space 

extended. In particular, it was confined mostly to the northern half of the array Before (Figure 
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3.9B), but extended further south in Phase B (Figure 3.9H). In terms of significance, the GLC 

approach identified five or fewer hydrophones as cold spots in the first three analysis periods, 

while in the After period a more substantial cluster of 11 cold spot hydrophones was identified. 

In addition, the cold spots moved from the southern perimeter of the array Before to a more 

northern location during Phase A, and a more central location of the array during Phase B and 

After. These results closely matched the visual assessment and suggest that the animals may not 

have used the middle of the array as widely during these periods as they did Before. 

 Using the spatial statistics of the GLC approach alone, it was difficult to tell whether the 

small changes in location of hot spots were an actual change in spatial behavior over the array or 

within the natural variation to be expected in marine mammal behavior. It is also possible that 

the resolution of the hydrophone spacing was not fine enough to fully capture the potential 

spatial behavior change – a danger present in all spatial studies. However, the comparison 

analysis provided further insight. The Kruskal-Wallis test revealed that there was a difference in 

the mean ranks of the four analysis periods [H(3) =9.53, p=0.0231]. The post-hoc test showed 

that there were fewer GVPs on the array overall during Phase B compared to Phase A (p=0.043) 

and After (p=0.035). This finding was also corroborated visually in the difference plots which 

showed the center of the array had an overall decrease in GVP activity from Phase A to Phase B, 

but had an increase again from Phase B to After (Figure 3.10). The results of the comparison 

portion of the GLC approach provided support that a change in spatial behavior did occur. There 

were fewer animals foraging and the location of foraging shifted southward during Phase B. This 

exemplar of the GLC approach further highlights the value of using all three analyses of the GLC 

approach together to fully understand group level spatial behavior change. It also draws attention 
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to the importance of having the correct spatial resolution to be able to identify spatial behavior 

patterns. 

 

Figure 3.10. Spatial layout of PMRF hydrophone array, where the circles represent the 

hydrophones of the array, and the color represents the change in the number of GVPs on each 

hydrophone from one analysis period to the next: blue=decrease, red= increase, black=no 

change.  Left- the change from Before to Phase A, Middle-the change from Phase A to Phase B, 

and Right- the change from Phase B to After.   

Discussion 
The results of the spatial analysis for the simulated data sets offered unique insight into 

how the GLC approach performed and provided guidance on how to interpret the more complex 

results of the empirical exemplars of group level marine mammal spatial detections representing 

foraging behavior. The results of the exemplar data sets conveyed the importance and necessity 

of using all components of the GLC approach together to achieve a comprehensive 

understanding of spatial behavior patterns. Moreover, the weakness of examining individual 

statistics in isolation of the others was demonstrated. When the underlying mechanism of the 

spatial pattern is not known, the insight gained in this three-pronged approach, along with 

knowledge of the context, can help support or refute potential hypotheses explaining the 

observations.  

Several instances arose within the simulated data sets where edge hydrophones were 

either non-intuitively identified or not identified as being significant by the Gi* analysis of the 
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GLC approach in comparison to the visual assessment of the original data. For example, the Gi* 

analysis of the Diagonal pattern did not identify some perimeter hydrophones that made up the 

diagonal pattern as significant, while in the Cluster pattern some hydrophones outside of the 

cluster pattern were significant. This is because edge hydrophones have fewer neighbors than 

center hydrophones, so the contribution of each neighbor in the edge hydrophone case, has a 

larger weight in the Gi* statistic calculation than in the case of a center hydrophone (Ord and 

Getis 1995). This has important implications in analyzing hydrophone arrays that are long and 

narrow rather than square or circular. This is also an important aspect to keep in mind when 

choosing the number of hydrophones in the array. For example, in a square array of only four 

hydrophones the weighting contribution of all neighbor hydrophones would be the same, but in a 

square of 16 hydrophones, all but the center four would be considered “edge” hydrophones. The 

edge hydrophone effect will occur with any of the contiguity weighting schemes shown in Figure 

2.  However, if the weighting scheme is more constrained (i.e., choosing “Rook’s” over 

“Queen’s”), the edge hydrophone calculation will be different (i.e., a more constrained neighbor 

scheme means less neighbors and less neighbors equates to a higher weight for each neighbor in 

the overall calculation) in comparison to a center hydrophone, than if the weighting is less 

constrained (i.e., “Queen’s” over “Rook’s”) (Ord and Getis 1995). This is an important aspect of 

the calculation to consider when interpreting the outcome of the GLC Gi* significance test using 

an adjacent neighbor weighting scheme. When using a similar weighting scheme it is 

recommended that the general area of hot/cold spot hydrophone clusters be compared rather than 

scrutinizing differences between individual hydrophones. Alternatively, a distance weighting 

scheme can be used, where every pair of hydrophones within some distance of the hydrophone of 

interest is represented in the Gi* calculation for that hydrophone. As the distance from the 
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hydrophone of interest increases, the contribution of other hydrophones (i.e., the weighting 

coefficient) toward the Gi* value decreases. It is therefore possible to minimize the edge effect 

(i.e., ensure all hydrophones have the same number of neighbors) using this scheme, since the 

number of weights is no longer a function of edge versus non-edge hydrophone, but rather a 

function of distance. Whether this is realized would depend on the exact parameter (i.e., distance 

threshold) and array layout used. A distance weighting scheme is especially appropriate for 

observations that change on a gradient. This was not assumed to be the case for beaked whale 

foraging behavior, which is strongly linked to--often patchy and heterogeneous--prey 

distributions (Benoit-Bird et al. 2013, Southall et al. 2018).   

The type of neighbor-weighting rule can also have significant implications on the overall 

outcome of the Moran’s I statistic. The Moran’s I analysis of the simulated pattern data sets 

revealed that it was difficult to attain a perfectly dispersed pattern (i.e., I=-1). The only pattern 

for which a negative Moran’s I value was achieved was the Striped pattern, though it was not 

statistically different from random. This is understandable given the “Queen’s case” neighbor-

weighting rule, which takes into account all adjacent hydrophone values. The more hydrophones 

that are considered a neighbor to a particular hydrophone, the more dependence the result for that 

particular hydrophone will have on surrounding values. To achieve a truly dispersed pattern a 

particular hydrophone either has to have less dependence on neighboring values, which can be 

achieved with a more constrained neighbor-weighting rule (i.e. “Rook’s” or “Bishop’s”), or the 

array needs to be larger so that similar values are more separated. The array sizes used in the 

exemplars were already quite large, rare in reality, and resource intensive. Given these 

challenges, the ability to detect perfect dispersion (I=-1) may not be possible without modifying 

certain parameters of the GLC approach, such as the neighbor-weighting rule. However, the 
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neighbor –weighting rule should be chosen based on the specific assumptions of the research 

question. In the exemplars, the “Queen’s case” most accurately described hydrophone adjacency 

with respect to beaked whale foraging. If, for example, the more restrictive “Rook’s case” 

neighbor-weighting rule was used for the Alternate pattern it would have likely elicited a 

dispersed Moran’s I result. The hydrophones in only the perpendicular directions would have 

been considered adjacent neighbors to a particular hydrophone. This would have resulted in 

adjacent neighbors with a value that was always opposite to the center hydrophone, characteristic 

of a dispersed pattern.  

In the case of beaked whale foraging, these animals have been shown to consistently 

forage in the same areas where aggregations of their prey exist (Henderson et al. 2016, Southall 

et al. 2018, Baird 2019). Hence a clustered distribution for beaked whale foraging was expected, 

and any change from this was seen as a deviation from typical behavior. When looking for a 

spatial change using the Moran’s I analysis with the parameters described here, one is primarily 

testing to see whether the distribution shifts from clustered to random between analysis periods, 

or vice-versa. Despite the limitation in detecting dispersion, it would have been possible to detect 

a change in global (i.e., array-wide) behavior, should there have been any. 

Many marine mammals forage on organisms, such as fish and plankton, that tend to 

aggregate either based on favorable environmental conditions (Quetin et al. 1996, Davis et al. 

1999), or as a survival mechanism (Castro et al. 2002). Marine mammal foraging behavior is 

often closely associated with the distribution of these aggregations (Piatt and Methven 1992, 

Bowen et al. 2002, Maxwell et al. 2011, Benoit-Bird et al. 2013), so a clustered distribution to 

describe foraging behavior seems probable. However, marine mammals employ diverse foraging 

strategies (e.g., in groups versus individually) and/or social strategies (e.g. may demonstrate site 
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fidelity) that regardless of prey distribution may lead to different patterns in global spatial 

behavior than as seen in these examples with foraging beaked whales. Hence a critical part of 

extending the GLC approach to other species, and/or other behaviors is a thorough understanding 

of the behavioral strategies employed by the species under study, research-specific assumptions, 

and an appropriate choice of a contiguity rule based on those assumptions.  

For hydrophone arrays that are regularly spaced, the binary neighbor-weighting rules 

(e.g., Queen’s, Bishop’s and Rook’s), which do not require a distance measure, is appropriate. 

However, a neighbor-weighting rule that takes distance into account may be more fitting for 

other applications, such as irregularly spaced data where the spatial distribution between 

hydrophones is not uniform.  Different neighbor-weighting rules and irregular hydrophone 

spatial arrangements were not addressed in this study. Scott-Hayward et al. (2014) address this 

type of data by using spatial interpolation to convert irregularly spaced tracks to persistent grid 

locations. Nonetheless, because the GLC approach is not constrained to grids, it can be applied to 

other hydrophone patterns with minor modification. Future work should investigate the use of 

other neighbor-weighting rules, e.g., distance-weighting, other binary weighting schemes, etc., 

along with various hydrophone arrangements for studying spatial behavior with the GLC 

approach.  

The observed significance of a few of the hydrophones in the Gi* analysis of the Random 

2 data recalls the need to understand the assumptions made in the hypothesis test. One way to 

interpret the use of a 95% confidence level is that if the study were repeated over and over again, 

the results may match the underlying model 95% of the time (Greenland et al. 2016). It is 

therefore important not to strictly use the statistical results, rather use them to guide the 

interpretation of the underlying data within the full context of the study. As a consequence, it is 
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most appropriate to interpret the statistical designation of hot and cold spots more holistically 

than on an individual hydrophone level. The precise hydrophones that are identified as 

significant should be emphasized less compared to the general pattern or area of significance, 

such as a cluster of several hydrophones. The number of hydrophones, their spatial resolution, 

and the expected scale of change one might expect to find are all important considerations when 

determining the appropriate design for this type of spatial analysis.   

Synthesizing these findings from the simulated patterned and random data sets, the 

exemplars of marine mammal spatial behavior were more easily understood. For example, the 

issue of scale-invariance with the Gi* analysis (Ord and Getis 1995) was evident when the same 

spatial significance pattern resulted for the Steep Grade and Graded patterns, despite their 

differing values. This highlighted the need for the additional comparison analysis to identify 

order-of-magnitude differences undetectable by the spatial analyses. In the AUTEC exemplar, a 

hot spot cluster was found in the same general area in all three analysis periods, suggesting no 

spatial change in foraging activity. But after applying the comparison analysis it became clear 

that there were statistically fewer GVPs During MFAS activity.  Thus an overall change had 

occurred, which would have been missed if the comparison analysis had not been applied. 

Though this approach provides a way to view group level behavior over a large spatial 

scale, the ability of the test to identify spatial patterns is constrained to the resolution and layout 

in which the data are sampled. If a hypothesis test leads to the conclusion that no spatial 

autocorrelation exists, this only means that a spatial pattern does not exist at the resolution the 

data were sampled, but it does not mean spatial patterns at a smaller scale do not exist. The 

PMRF exemplar serves as a good case to this point. Though a spatial change was detected, it 

might have been more obvious with a finer spatial sampling resolution. Tagging efforts and other 
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approaches (Houser 2004, Gallagher et al. 2021) that focus on individual behavior can provide 

vital information about disturbance at finer scales that can complement these larger-scale efforts. 

Not detecting spatial autocorrelation may also mean that the sample size is too small, either not 

enough observations on individual hydrophones (i.e., too many zeros) or not enough 

hydrophones in the area where the spatial change is occurring to provide adequate resolution. 

These design constraints should be considered when drawing conclusions about whether spatial 

behavior has been affected or not.   

Observations of marine mammals can be limited, which raises the question of whether a 

statistical test applied to such data has enough power to detect an effect (Hawkins et al. 2017). 

The exemplar data sets were chosen in part because the original analyses demonstrated there was 

an effect. Thus, the simulated data sets and mock arrays were designed to represent array sizes 

and observation numbers with a similar magnitude to the exemplars to be confident that there 

were a sufficient number of degrees of freedom to provide enough statistical power to detect 

meaningful differences without a formal analysis. However, tools exist (e.g., G*Power and 

MRSeaPower) for determining effect size and statistical power (Faul et. al. 2007 and MacKenzie 

et al. 2017, respectively) and should be used when relevant for a particular research question.  

It is worth reiterating that the purpose of this paper was strictly to introduce and 

demonstrate the GLC approach on empirical data, and not to reassess the spatial effect of the 

MFAS activities on beaked whale foraging behavior in the McCarthy et al. (2011) and Manzano-

Roth et al. (2016) studies. Though the intention of visual extraction of the data from the original 

studies was to obtain as similar a data set as possible, it is not the same data set. The use of 

similar but not identical data would lead to unknown differences, which would make a 
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comparison misleading. As such, a comparison of the results presented here was not made to the 

original results of the exemplar studies.  

 Inherent in any analysis is the need to interpret the results. The spatial analyses of 

previous studies assessing marine mammal spatial behavior using hydrophone arrays during 

noise-generating activities heavily relied on heat maps to visually assess differences in the spatial 

distribution of animals across analysis periods (McCarthy et al. 2011, Manzano-Roth et al. 

2016). This has been a powerful tool for easily communicating the results of the research. 

However, visual results can be very subjective. A certain color bar theme may make the results 

appear more stark than the value of the color bar implies, or vice-versa. Spatial modelling has 

also been used to assess marine mammal spatial behavior, sometimes in conjunction with heat 

maps (McCarthy et al. 2011, Manzano-Roth et al. 2016) or as a stand-alone (Thompson et al. 

2013). Generalized linear models, generalized additive models, and mixed models are commonly 

used (Thompson et al. 2013, McCarthy et al. 2011, Manzano-Roth et al. 2016, Henderson et al. 

2019, Jacobson et al. 2019). These models consider factors such as spatial site (e.g. hydrophone 

location), distance to the activity of interest, received sound level, and identifying differences 

with respect to perimeter versus center hydrophones in an array to assess and characterize spatial 

change. But the results of statistical models by themselves can be non-intuitive to interpret.  

Henderson et al. (2019) and Jacobson et al. (2019) have made parallel efforts to those 

presented here to assess local spatial changes in marine mammal behavior with respect to noise-

generating events. A multi-stage generalized additive model was used to quantify the spatial 

response of beaked whales to various periods related to naval mid-frequency active sonar. The 

modelled results were also visualized by using tessellation of a non-uniform hydrophone array. 

Scott-Hayward et al. (2013) designed an approach for marine mammal detection data collected 



91 

 

along a line transect, which was used in an environmental impact assessment in wind-farm 

construction (Scott-Hayward et al. 2014). Their approach used a spatial smoothing model 

(CReSS) to identify spatial differences in animal densities from one period to another. This 

approach is especially fitting for data that is not tied to a geographically fixed position, whereas 

the GLC approach was designed for data that is geographically fixed. Data in either form could 

easily be modified to fit either approach. If an interpolation approach is adopted, however, it is 

imperative that the observations of the study species are spatially continuous within the 

resolution upon which the data were collected (e.g., this may be more difficult for animals that 

move in pods or are aggregated heterogeneously across space). One of the benefits of 

establishing a spatial model instead of testing empirical data (like that of the GLC approach) is 

that, if well-supported by empirical evidence, it can be used to predict or forecast changes 

(Redfern et al. 2013, Scott-Hayward et al. 2014). With any approach there are advantages and 

disadvantages, depending on the specific research question. As such, several approaches should 

be considered when deciding the optimal way to answer a given research question.  

The significance of establishing the GLC approach is that it combines many of the 

strengths of existing methods (visual and statistical, global and local) in an organized manner, 

providing a comprehensive assessment of empirical spatial observations of marine mammals and 

objective descriptions of different group level animal behaviors. It builds off approaches that use 

visual representations of quantitative data by statistically quantifying patterns that can be 

illustrated through visual representations. The Gi* analysis essentially performs the same job as 

our eyes when looking at a heat map: it identifies spatial patterns and changes to those patterns, 

but without subjectivity. In evaluating the effects of anthropogenic noise on marine mammal 

behavior, visuals can be extremely intuitive, providing a powerful tool for communicating the 
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statistics to policy makers and other stakeholders. Thus the GLC approach incorporates 

visualizations of the local results. Other efforts largely focus on the local scale. But the global 

analysis provides a quick way to assess whether a broad-scale change has occurred, which is one 

way of assessing whether animal behavior in the system under study was disturbed. Finally, the 

comparison analysis brings another dimension to the spatial question providing insight about the 

degree of change identified, or standalone knowledge when spatial change is not identified. 

Together, the three-prongs of the GLC approach provide a reliable, objective, and standardized 

approach to assessing spatial change in marine mammal behavior. It ensures a robust 

statistically-backed analysis without compromising on the ability to effectively communicate the 

findings. 

Not only is this approach applicable to a BACI data set-- for which it was originally 

designed and demonstrated here-- but a final strength of the GLC approach is that it is not 

limited to the study of marine mammal behavior, or the assessment of anthropogenic noise 

impact. For example, the value of spatial autocorrelation analyses has been demonstrated in other 

applications, such as marine spatial planning (Redfern et al. 2013, Jossart et al. 2020). Within a 

large-scale hydrophone receiver array framework, some examples of ways the GLC approach 

can be extended could include spatially analyzing sound levels over different periods of time in a 

changing soundscape, or assessing changes in marine mammal vocalizations that are not directly 

linked to behavior. In addition, there are many ways in which this three-pronged approach of 

established statistical methods can be extended or modified to answer other spatially-driven 

research questions by using different observation types and observation platforms.  
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Conclusion 
The GLC approach serves as a tool to quantitatively measure spatial patterns, or lack 

thereof, allowing for the identification of changes in group level spatial behavior on large 

observational arrays. Within the approach are two scales of spatial assessment: global and local. 

The global statistic, Moran’s I, provides a coarse overview of the type of spatial distribution of a 

set of features which can be used to quickly evaluate whether an array-wide change in behavior 

has occurred when comparing two or more analysis periods. The local statistic, Getis-Ord Gi*, 

provides the visual and spatial detail about change within an array by identifying local hot and 

cold spots of activity. An additional statistical hypothesis test (e.g., Kruskal-Wallis test) and 

difference plots, are used to detect potential differences in the overall level of activity on the 

array not identified by the spatial statistics alone. 

The GLC approach was demonstrated using simulated patterned data sets that revealed 

the global analysis, utilizing a Queen’s case neighbor-weighting, would be most effective at 

detecting a shift from clustered to random distributions, or vice-versa. The exemplar data sets 

provided two empirical examples of how to use this spatial analysis approach to evaluate spatial 

change in group level marine mammal behavior Before-During- After anthropogenic noise 

events. Overall the GLC approach provides a quantitative and intuitive way to assess group level 

spatial behavior change, but with careful consideration of the assumptions discussed herein, its 

use can be much broader than just this application.  
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CHAPTER 4: SPATIAL FORAGING EFFORT OF CUVIER’S 

BEAKED WHALES DURING A DEEP-WATER MAPPING 

SURVEY 
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This chapter was published as part of a Research Topic in the Marine Ecosystem Ecology 

section in Frontiers in Marine Science on ‘Before-After Control-Impact (BACI) Studies in the 

Ocean.’ The article is reproduced here with the permission of Frontiers in Marine Science.  The 

complete citation of the published work is: 

Kates Varghese, H., Lowell, K., Miksis-Olds, J., DiMarzio, N., Moretti, D., and Mayer, L. 

(2021). Spatial Analysis of Beaked Whale Foraging During Two 12 kHz Multibeam 

Echosounder Surveys. Frontiers in Marine Science 8:654184. doi: 10.3389/fmars.2021.654184 
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Abstract 
To add to the growing information about the effect of multibeam echosounder (MBES) 

operation on marine mammals, a study was conducted to assess the spatial foraging effort of 

Cuvier’s beaked whales during two MBES surveys conducted in January of 2017 and 2019 off of 

San Clemente Island, California. The MBES surveys took place on the Southern California 

Antisubmarine Warfare Range (SOAR), which contains an array of 89 hydrophones covering an 

area of approximately 1800 km2 over which foraging beaked whales were detected. A spatial 
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autocorrelation analysis of foraging effort was conducted using the Moran’s I (global) and the 

Getis-Ord Gi* (local) statistics, to understand the animals’ spatial use of the entire SOAR, as 

well as smaller areas, respectively, within the SOAR Before, During, and After the two MBES 

surveys. In both years, the global Moran’s I statistic suggested significant spatial clustering of 

foraging events on the SOAR during all analysis periods (Before, During, and After). In addition, 

a Kruskal-Wallis (comparison) test of both years revealed that the number of foraging events 

across analysis periods were similar within a given year. In 2017, the local Getis-Ord Gi* 

analysis identified hot spots of foraging activity in the same general area of the SOAR during all 

analysis periods. This local result, in combination with the global and comparison results of 

2017, suggest there was no obvious period-related change detected in foraging effort associated 

with the 2017 MBES survey at the resolution measurable with the hydrophone array. In 2019, 

the foraging hot spot area shifted from the southernmost corner of the SOAR Before, to the 

center During, and was split between the two locations After the MBES survey. Due to the 

pattern of period-related spatial change identified in 2019, and the lack of change detected in 

2017, it was unclear whether the change detected in 2019 was a result of MBES activity or some 

other environmental factor. Nonetheless, the results strongly suggest that the level of detected 

foraging during either MBES survey did not change, and most of the foraging effort remained in 

the historically well-utilized foraging locations of Cuvier’s beaked whales on the SOAR. 

Introduction 
It is well understood that underwater anthropogenic sound can impact marine life 

(Hildebrand 2005, Wright et al. 2007, Gomez et al. 2016).  The exact effect will vary based on a 

multitude of factors (NRC 2003) including but not limited to, characteristics inherent to the 

animal, the specific characteristics of the source of noise (Southall et al. 2007), the proximity of 
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the animal to the source (Richardson et al. 1995, Erbe and Farmer 2000, Falcone et al. 2017), 

whether the source and/or the animal is moving, and the behavioral state of the animal (Isojunno 

et al. 2016). The effect may also vary with different species (Miller et al. 2012) and among 

individuals of the same species (Sivle et al. 2015). Therefore, carefully controlled studies are 

necessary (Popper et al. 2020) to build an understanding about which species, behaviors, 

contexts, and interactions are most vulnerable to negative impacts during exposure to various 

anthropogenic underwater sound sources. Significant work has focused on understanding factors 

that lead to acute injury and death (Kastelein et al. 2017, Ketten 2014), but arguably an equally 

concerning effect is behavioral change to a group or population that may ultimately lead to 

injury, death, or population decline (Johnson 2012).  This would include potential changes to 

important behaviors for an animal’s livelihood such as foraging (Croll et al. 2006, McCarthy et 

al. 2011, Manzano-Roth et al. 2016), mating (Blom et al. 2019), and migrating (Malme 1984).   

Much of the work addressing the effect of anthropogenic noises on marine life has focused 

on marine mammals, for which the research has been heavily motivated by the protection of 

marine mammals under the Marine Mammal Protection Act (MMC 2015). One of the most 

vulnerable groups of marine mammals to anthropogenic noise appears to be beaked whales, as 

evidenced by the numerous strandings often linked to naval training exercises (Frantzis 1998, 

Evans and England 2001, Fernandez et al. 2012, D’Amico and Pittenger 2009). As a result, there 

have been several studies investigating beaked whale foraging behavior during exposure to mid-

frequency active sonar (MFAS) used during naval training exercises (McCarthy et al. 2011, 

Tyack et al. 2011, DeRuiter et al. 2013, , Manzano-Roth et al. 2016, Falcone et al. 2017, 

DiMarzio et al. 2019). Several of these studies capitalized on the use of expansive hydrophone 

arrays found on United States Navy training ranges that are capable of receiving the echolocation 
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clicks of foraging beaked whales (Jarvis et al. 2014). A Group Vocal Period (GVP), which 

represents a group of beaked whales foraging together in time and space, is a set of species-

specific echolocation click trains associated to a central hydrophone of the foraging event 

(McCarthy et al. 2011). The GVP has been used as a proxy to assess foraging behavior across 

different time periods related to MFAS activity (McCarthy et al. 2011, Manzano-Roth et al. 

2016, DiMarzio et al. 2019). 

The spatial extent of the U.S. Navy hydrophone arrays extends over a couple thousand 

square-kilometer area. The MFAS and beaked whale foraging studies utilizing these arrays has 

included a temporal analysis (DiMarzio et al. 2019) in addition to a spatial analysis in some 

cases (McCarthy et al. 2011, Manzano-Roth et al. 2016). In the McCarthy et al. (2011) and 

Manzano-Roth et al. (2016) MFAS studies, heat maps of where the foraging events took place 

Before, During, and After MFAS activity were generated to provide insight into how the spatial 

use of the hydrophone arrays changed during the analysis periods. The lack of a more robust 

spatial analysis was likely the result of a clear temporal and spatial change in beaked whale 

foraging effort due to MFAS activity that did not require statistics to validate the obvious visual 

response reflected in the heat maps. The temporal analyses showed that the number of foraging 

events decreased on the array During MFAS activity, while the spatial analyses showed that 

most of the foraging effort shifted toward the edge (Manzano-Roth et al. 2016) or completely off 

the hydrophone array (McCarthy et al. 2011). 

 While it is clear that MFAS has an impact on beaked whales, the question has arisen as to 

the potential impact of other sonar signals on marine mammals, in particular, scientific 

echosounders.  There have been several observational studies that suggest marine mammals react 

to high frequency scientific echosounders, either ceasing echolocation transmissions (Cholewiak 
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et al. 2017), or increasing their heading variance (Quick et al. 2017). In 2008, there was a 

stranding event of melon-headed whales off of Madagascar that was associated in time with an 

offshore deep-water multibeam echosounder (MBES) mapping project 65 km away from the 

stranding site, though it was never conclusively determined to be the cause of the stranding 

(Southall et al. 2013). The increase in prevalence of these systems due to their expanding use in 

scientific work, geophysical surveys, and ocean mapping efforts has warranted further 

investigation of the potential effects echosounders may have on marine mammals.  

This paper builds off of a recent study investigating the effect of deep-water MBES (12 

kHz) activity on Cuvier’s beaked whale foraging behavior (Kates Varghese et al. 2020), of 

which the analysis was modeled after similar MFAS work (McCarthy et al. 2011). Kates 

Varghese et al. (2020) presented a temporal assessment of foraging behavior Before, During, and 

After two MBES surveys conducted over the Southern California Antisubmarine Warfare Range 

(SOAR) hydrophone array of the U.S. Navy Southern California Offshore Range (SCORE). The 

temporal assessment of beaked whale foraging During MBES did not show a clear change in 

behavior with regards to MBES activity like that of the MFAS studies. Only one of the four 

metrics (number of GVPs, number of clicks per GVP, GVP duration, and click rate per GVP) 

used to assess foraging behavior changed During MBES activity; there was an increase in the 

number of GVPs per hour. A finer temporal analysis of each survey showed that the increase in 

the number of GVPs occurred during only one of the two surveys (Kates Varghese et al. 2020). 

And the number of GVPs increased again after the survey was complete, thereby providing no 

clear indication that the change was associated with the anthropogenic activity like that of the 

MFAS studies. Moreover, the increase in the number of GVPs during the MBES survey was a 

stark contrast to the decrease in the number of GVPs seen during the MFAS exercises. 
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In the MBES study, it was unclear through the temporal analysis alone whether the 

increase in the number of GVPs during one of the two MBES survey periods was associated with 

the MBES activity. In order to provide a more complete picture of the potential effect of deep-

water MBES as a sound source on beaked whale foraging behavior, a spatial analysis of beaked 

whale foraging behavior was conducted herein for the same two MBES surveys as the Kates 

Varghese et al. study (2020). In the MFAS studies, spatial distribution maps of foraging events 

were used and provided another perspective on the effect that MFAS had on beaked whale 

foraging behavior. Not only did many of the animals decrease vocalizations but they visibly 

changed where they were predominantly foraging (McCarthy et al. 2011, Manzano-Roth et al. 

2016), and sometimes left the U.S. Navy range where the MFAS was actively transmitting, 

clearly indicating a response to the MFAS activity. Here a robust spatial analysis, beyond spatial 

distribution maps, was conducted to provide greater insight and to complement the temporal 

results in a comprehensive understanding of the potential impact of MBES on beaked whale 

foraging. In particular, the Global-Local Comparison (GLC) method described in Kates 

Varghese et al. (2021a) was used, which was developed to robustly assess spatial marine 

mammal behavior across large-scale hydrophone arrays using spatial statistics and analysis of 

variance tests.  

Materials and Methods 
This work utilized data from 89 hydrophones from the SOAR hydrophone array. The 

bottom-mounted hydrophones placed two to six km apart are found at depths ranging from 840 

to 1750 m over an area of approximately 1800 km2 off of San Clemente Island, California. The 

SOAR is shallowest along San Clemente Island in the southeast region, near which a shallow 

canyon is found before dropping off to 1500 m or greater over most of the rest of the range 
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(Figure 4.1). The omnidirectional hydrophones were sampled at 96 kHz, and had a receiver 

bandwidth between 50 Hz and 48 kHz (DiMarzio and Jarvis 2016). Due to their high site fidelity 

at the SOAR (Falcone et al. 2017), Cuvier’s beaked whales and echolocation clicks from these 

animals, transmitted during foraging events, are routinely detected on the SOAR hydrophones.  

 

Figure 4.1. Bathymetry of the SOAR with overlaid 89 hydrophone (red circles) sensors in the 

array. Depth scale is in meters. (Published first in Kates Varghese, H., Miksis-Olds, J., 

DiMarzio, N., Lowell, K., Linder, E., Mayer, L.A., Moretti, D. (2020). The Effect of Two 12 

kHz Multibeam Mapping Surveys on the Foraging Behavior of Cuvier’s Beaked Whales Off of 

Southern California. J. Acoustic. Soc. Am. 147(6), 3849-3858, reproduced with the permission of 

the Acoustical Society of America.) 

 

As a follow-on to earlier work assessing the effect of MBES activity on the temporal 

aspects of Cuvier’s beaked whale foraging behavior (Kates Varghese et al. 2020), the same 

detection and data processing schemes used in that study were used here. Echolocation clicks 

from several marine mammal species at the SOAR were detected using a class-specific support 

vector machine. Those that were classified as Cuvier’s beaked whale foraging clicks were 

formed into click trains on a per hydrophone basis. Then a MATLAB-based auto-grouper 

program used a set of rules based on the time and location of the click trains to form the GVPs 

(DiMarzio et al. 2018, Moretti 2019). A GVP may be detected on multiple hydrophones, but the 

hydrophone that records the highest click density is defined as the center hydrophone of the 

https://ccom.unh.edu/publications?f%5Bauthor%5D=6708
https://ccom.unh.edu/user/2529/publications
https://ccom.unh.edu/publications?f%5Bauthor%5D=6629
https://ccom.unh.edu/publications/foraging-behavior-cuvier%E2%80%99s-beaked-whales-ziphius-cavirostris-during-12-khz-multibeam
https://ccom.unh.edu/publications/foraging-behavior-cuvier%E2%80%99s-beaked-whales-ziphius-cavirostris-during-12-khz-multibeam
https://ccom.unh.edu/publications/foraging-behavior-cuvier%E2%80%99s-beaked-whales-ziphius-cavirostris-during-12-khz-multibeam
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event. The center hydrophone was used as the location of a GVP in this study. The maximum 

detection range of Blainville’s beaked whale clicks was measured at 6.5 km at a U.S. Navy range 

in the Bahamas by cross-correlating the pattern of clicks identified on a DTAG, produced by the 

tagged animal, against the click patterns on surrounding bottom-mounted range hydrophones 

(Ward et al. 2008). These animals have a similar click source level and dive behavior to Cuvier’s 

beaked whales (Johnson et al. 2004, Tyack et al. 2006). Previous studies at the SOAR have used 

an estimated horizontal detection distance of 6.3 km in defining a spatial range for Cuvier’s 

beaked whale clicks detected from a single group (Kates Varghese et al. 2020). This detection 

range was assumed to be true for this study as well. The number of GVPs, per hydrophone, was 

used as a proxy to assess spatial foraging effort. For complete details on the detection and 

processing of GVPs see DiMarzio et al. (2018) and for its application to this work see the 

Materials and Methods section of Kates Varghese et al. (2020).  

The method and data of this research study provide the opportunity to assess the change 

in overall spatial foraging behavior amongst Cuvier’s beaked whales on the SOAR i.e., the 

“foraging effort.” This broad-stroke term is used because it emphasizes that this approach is 

agnostic to group size and composition, as both attributes can be ephemeral, in addition to other 

unknown factors such as foraging rates.  Past studies of Cuvier’s beaked whales have shown that 

this species is known to forage in small groups that can vary in composition (Moulins et al. 

2007) and change in size (McSweeney et al. 2007). Animals may leave one foraging group and 

begin foraging with another. A group of animals may leave an area, while another group arrives, 

and numerous groups could be foraging simultaneously in a particular location (Falcone et al. 

2009). Frequently at SOAR it appears that multiple small groups are foraging in the same general 

area, ensonifying some common hydrophone. Therefore it is important to note that a GVP 
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represents a single detected period of a group of beaked whales foraging, but a GVP is not tied to 

a specific group of animals. The formation of GVPs is an automated process based on a fixed set 

of rules, but the group of individuals it represents may differ. Thus this is not an assessment of 

specific individuals or the behavior of a specific group, rather overall group-level foraging effort.  

Two MBES surveys were conducted, one in January 2017 (Mayer 2017, Smith 2019) and 

the other in January 2019 (Mayer 2019), as part of a MBES characterization project for the 

Kongsberg EM 122, a deep water MBES. Both surveys utilized the UNOLS research vessel R/V 

Sally Ride and its hull-mounted EM 122 (12 kHz center frequency) operating with typical 

parameters used for mapping a deep-water environment such as the SOAR (Table 4.1). The 

survey in 2017 followed a characteristic mowing-the-lawn pattern across the entire SOAR 

(Figure 4.2 left), whereas the efforts of the 2019 characterization survey required a tighter 

mowing-the-lawn pattern confined to the canyon in the southeastern corner of the SOAR in 

addition to a few cross-range lines (Figure 4.2 right). These surveys served as an opportunity to 

assess the effect of MBES on the spatial foraging effort of Cuvier’s beaked whales. Because the 

exact movement of a vessel and hull-mounted MBES will vary from survey to survey based on 

the needs of the operation, the assessment of the two surveys provided a chance to observe 

potential variability in beaked whale spatial foraging effort during two separate MBES surveys.  
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Figure 4.2. Track lines from the 2017 (left) and 2019 (right) MBES surveys. (Published first in 

Kates Varghese, H., Miksis-Olds, J., DiMarzio, N., Lowell, K., Linder, E., Mayer, L.A., Moretti, 

D. (2020). The Effect of Two 12 kHz Multibeam Mapping Surveys on the Foraging Behavior of 

Cuvier’s Beaked Whales Off of Southern California. J. Acoustic. Soc. Am. 147:6, 3849-3858, 

reproduced with the permission of the Acoustical Society of America.) 

 

Table 4.1. MBES signal attributes and the estimated value for the 2017 and 2019 MBES surveys. 

MBES Signal Attribute Estimated value 

Source Level (SPLrms) 239-242 dB re 1 µPa @1 m 

Center Frequency of Transmission 11-13.25 kHz 

Transmission length  on the order of 100 ms 

Time between pulses 6-7 s 

Beam width (-3dB relative to reported source level) 

and geometry 

1º along-track by ~150 º across-track; 

directed vertically toward seafloor 

 

In order to assess the effect of MBES activity on the spatial foraging effort of Cuvier’s 

beaked whales, the number of GVPs were summed by hydrophone over each analysis period: 

Before, During, and After for each of the two MBES surveys. The same analysis periods assessed 

in the temporal analysis (Chapter 2, published in Kates Varghese et al. 2020) were used here for 

consistency (Tables 4.2 and 4.3 for the 2017 and 2019 surveys, respectively).  In the 2017 

survey, each analysis period was 47 hours long, whereas in 2019, each analysis period was 52 

hours long. These analysis periods were based on and equivalent to the length of time that the 

MBES was operating in each year.  

 

https://ccom.unh.edu/publications?f%5Bauthor%5D=6708
https://ccom.unh.edu/user/2529/publications
https://ccom.unh.edu/publications?f%5Bauthor%5D=6629
https://ccom.unh.edu/publications/foraging-behavior-cuvier%E2%80%99s-beaked-whales-ziphius-cavirostris-during-12-khz-multibeam
https://ccom.unh.edu/publications/foraging-behavior-cuvier%E2%80%99s-beaked-whales-ziphius-cavirostris-during-12-khz-multibeam
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Table 4.2. Analysis period times and details of the 2017 data set. 

Analysis 

Period 

Date Time Details 

Before 1/2/17 08:15-

1/4/17 07:15 

47 hour period ending 25 hours before MBES activity started 

on the array 

During 1/5/17 08:15-

1/7/17 07:15 

47 hours, MBES activity on the array 

After 1/8/17 08:15-

1/10/17 07:15 

47 hour period starting 25 hours after MBES activity ended on 

the array 

 

Table 4.3. Analysis period times and details of the 2019 data set. 

Analysis 

Period 

Date Time Details 

Before 1/1/19 12:00-

1/3/19 16:00 

52 hour period ending 20 hours before MBES activity started 

on the array 

During 1/4/19 12:00-

1/6/19 16:00 

52 hours, MBES activity on the array 

After 1/7/19 12:00-

1/9/19 16:00 

52 hour period starting 20 hours after MBES activity ended on 

the array 

 

Though it was not explicitly addressed in this study, previous research has shown that 

environmental and oceanographic conditions can affect prey availability on various 

spatiotemporal scales, impacting marine predator-prey relationships (Sims et al. 2006, Thayer 

and Sydeman 2007, Embling et al. 2012, Santora et al. 2014, Cox et al. 2018). Based on this 

knowledge, it was expected that environmental conditions and prey distributions that could drive 

the beaked whales’ spatial use of the SOAR would vary on a timescale of less than two years 

(the time between the two surveys). Thus each survey year was assessed individually.  

The Global-Local-Comparison (GLC) Approach (Chapter 3, published in Kates Varghese 

et al., 2021a), a spatial assessment for analyzing marine mammal behavior on large hydrophone 

arrays, was used here. This method included two statistical spatial analyses: a global and local 

approach, as well as comparison analysis of variance tests and visualization tools for interpreting 

the statistical results. The global analysis used the Moran’s I statistic (Moran 1948) to provide a 

coarse assessment of the type of spatial distribution, i.e., clustered, random, or dispersed, of the 
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foraging events over the SOAR as a whole. The local approach used the Getis-Ord Gi* statistic 

(Getis and Ord 1992), a local indicator of spatial association (Anselin 1995), which identifies 

where relative hot and cold spots of foraging activity occurred on a per hydrophone basis. The 

comparison analysis used the Kruskal-Wallis test (Kruskal and Wallis 1952) to identify order-of-

magnitude differences in the number of GVPs per hydrophone among analysis periods. 

Global Analysis 
In order to assess the spatial distribution of the foraging events over the entire SOAR, the 

global statistic, Moran’s I, was used.  Moran’s I measures the overall spatial autocorrelation of a 

data set, producing a value between (-1, 1).  A value of negative one corresponds to perfect 

dispersion (Figure 4.3 left), a value of positive one corresponds to perfect clustering of like 

values (Figure 4.3 right), and zero represents no autocorrelation, or a perfectly random 

distribution (Figure 4.3 middle).  

 
Figure 4.3. From Kates Varghese et al. (2021a, also Chapter 3). Spatial configurations that 

would result in ideal Moran’s I values: left- perfect dispersion, Moran’s I value=-1; middle- 

perfect randomness, Moran’s I value=0; right-perfect clustering, Moran’s I value=+1. 

 

Moran’s I is given by the formula:  

𝐼 =
𝑁

𝑊

∑𝑖∑𝑗𝑤𝑖,𝑗(𝑥𝑖−𝑥)(𝑥𝑗−𝑥)

∑𝑖(𝑥𝑖−𝑥)2         (Equation 4.1) 

where 𝑊 = ∑ ∑ 𝑤𝑖,𝑗
𝑛
𝑗=1

𝑛
𝑖=1  with 𝑤𝑖,𝑗 being the weighting between the ith and jth hydrophone and 

w represents the neighbor weighting matrix of i rows and j columns. 𝑥𝑖 refers to the ith 

hydrophone value, in this case the number of GVP of the ith  hydrophone and 𝑥 is the mean 

number of GVPs over all of the hydrophones. A queen’s contiguity neighbor weighting rule was 
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used here as was recommended for similar data in Kates Varghese et al. (2021a, also Chapter 3). 

The queen criterion defines neighbors as spatial units that share a boundary with the hydrophone 

of interest (i.e., all hydrophones immediately horizontal, vertical, or diagonal). Thus, the 

maximum number of neighbors an interior hydrophone could have is eight, whereas edge and 

corner hydrophones will have fewer. 

The Moran’s I statistic for each analysis period was converted to a z-score. To aid in the 

interpretation of the global results, p-values were computed for each z-score. The smaller the p-

value, the greater the discrepancy between the observed data and the null hypothesis being tested 

(Tanha et al. 2017). The null hypothesis for the Moran’s I analysis was that the spatial 

distribution of GVPs under consideration, for any of the analysis periods, was no different from 

random (I=0). Alternatively, it was hypothesized that the spatial distribution was clustered 

(I=+1) during each analysis period, Before, During, and After, since beaked whales are known to 

primarily forage in the deepest part of the SOAR (Falcone et al. 2009, Schorr et al. 2014, 

DiMarzio et al. 2019, Southall et al. 2019). The Moran’s I statistic, along with the p-value, was 

used to make a statement about whether the GVPs were clustered or not.   

Local Analysis 
If global spatial correlation – clustering or dispersion -- was detected, the Getis-Ord Gi* 

(Gi*) local statistic was also computed. The Gi* statistic was found for each hydrophone using 

the formula: 

𝐺𝑖
∗ =

∑ 𝑤𝑖,𝑗𝑥𝑗−𝑛
𝑗=1 𝑋 ∑ 𝑤𝑖,𝑗

𝑛
𝑗=1

𝑆√
𝑛 ∑ 𝑤𝑖,𝑗

2 −(∑ 𝑤𝑖,𝑗
𝑛
𝑗=1 )2𝑛

𝑗=1

(𝑛−1)

        (Equation 4.2), 

where 𝑆 = √
∑ 𝑥𝑗

2𝑛
𝑗=1

𝑛
− (𝑋)2  and 𝑋 =

∑ 𝑥𝑗
𝑛
𝑗=1

𝑛
 and the remaining variables were the same as 

described for the Moran’s I statistic. This statistic was used to understand where, i.e., on which 
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specific hydrophones, the spatial correlation (relative hot or cold spots) occurred within the 

SOAR. For example, to be a relative hot spot, a hydrophone must be surrounded by other 

hydrophones that also exhibit a high number of GVPs and vice-versa for a relative cold spot. 

What constitutes a high or low number of GVPs will change depending on the specific set of 

data, their distribution and variance, which are all considered in the Gi* calculation.  

P-values associated with each Gi* statistic, which is itself a z-score, were computed to help 

understand how the observed Gi* results differed from the null hypothesis. The null hypothesis 

was that GVPs were randomly distributed and thus that there were no relative hot or cold spots 

of foraging activity. A small p-value indicated a greater discrepancy from this null hypothesis 

suggesting a spatial anomaly – i.e., an area of congregation or absence. Since there are 89 

hydrophones on the SOAR, alternative hypotheses were not made about individual hydrophones. 

However, it was hypothesized that the northwest part of the SOAR, which has the deepest 

depths, and where the animals are historically known to forage (Falcone et al. 2009, Schorr et al. 

2014, DiMarzio et al. 2019, Southall et al. 2019), would be an area of high foraging activity (i.e., 

hot spots), while the shallow area in the southeast along San Clemente Island would have low 

foraging activity (i.e., cold spots). It was hypothesized that the relative hot and cold spots, with 

respect to foraging, would remain in these respective areas throughout the three analysis periods, 

which would indicate the spatial distribution of GVPs did not change during MBES activity. 

Comparison Analysis 
Although the spatial statistics provided insight into spatial changes on the SOAR, they did 

not provide information about differences in scale, i.e., the average number of GVPs per 

hydrophone occurring on the SOAR in the various analysis periods. In addition to, or in the 

absence of a spatial change, understanding potential order-of-magnitude differences in the 

number of GVPs detected provided further information about the extent of change. Following the 



108 

 

GLC method from Kates Varghese et al. (2021a, also Chapter 3) for similar data, the Kruskal-

Wallis test was used to compare the magnitude of observations among different analysis periods. 

For both years of study, the null hypothesis was that there was no difference in the number of 

GVPs per hydrophone on the SOAR among the analysis periods. Difference plots of the 

hydrophone array were also generated to show spatially what the relative change (e.g., increase, 

decrease, or no change) was in the number of GVPs between consecutive analysis periods. 

The GLC approach is further developed and described in more detail in Kates Varghese et 

al. (2021a, also Chapter 3). 

Results 

2017 
Of the 47 hours analyzed for each of the three analysis periods in 2017, there were 127 

GVPs detected across the 89 hydrophones Before, 135 During, and 148 After. The results of the 

global analysis are provided in Table 4.4. For all analysis periods of 2017, the Moran’s I value 

suggested strong spatial clustering of GVPs on the SOAR. 

Table 4.4. Global analysis results by analysis period for 2017, including Moran’s I value (I), the 

z-score (zI), and the associated p-value. A positive I indicates a clustered distribution, a negative 

I represents a dispersed distribution, and the p-value associated with each. 

 

Analysis 

Period 

Moran’s I 

(I) 

z-score (zI) p-value Conclusion 

Before 0.2472 4.6851 <0.001 

Clustered During 0.2108 4.0260 <0.001 

After 0.3706 6.9217 <0.001 

 

The total number of GVPs detected and the respective Gi* z-score for each hydrophone 

was calculated and is shown in the map presented in the first and second columns, respectively, 

of Figure 4.4 for each analysis period of 2017. To aid in the designation and interpretation of hot 
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and cold spots in the Gi* results, p-values equal to or less than 0.1, or equal to and more than 0.9 

were mapped along-side the Gi* results (Figure 4.4, column 3).  Hydrophones with p-values of 

0.1 or less provided the strongest evidence of hot spots on the Gi* plot, while a p-value of 0.9 or 

more provided the strongest evidence of a cold spot on the Gi* plot. Exact Gi* and p-values for 

all hydrophones are provided in the data section of this publication. Ultimately, a critical alpha 

level of 0.05 was used to guide the final interpretation of the Gi* results. Because of the two-

tailed nature of this analysis (hot and cold spots), the authors focused on areas with p-values less 

than or equal to 0.025 (hot) or greater than or equal to 0.975 (cold) in the descriptive 

interpretation of the Gi* results that follows. 

In each analysis period, there was a clustering (i.e., a group of several adjacent 

hydrophones) of hot spots in the northwest corner of the SOAR (Figure 4.4, column 3), 

overlapping the deeper waters of the SOAR (Figure 4.1). This result matched expectations since 

this area has historically been noted as favorable foraging grounds for these animals due to the 

deep-water conditions (Falcone et al. 2009, Schorr et al. 2019), providing ideal habitat for the 

squid that Cuvier’s beaked whales prey upon (Santos et al. 2001). The exact cluster of hot spot 

hydrophones shifted slightly between analysis periods. However, based on the recommendation 

of Kates Varghese et al. (2021a, also Chapter 3) in the development of the GLC method, the 

general area of hot/cold spot clusters should be compared rather than employing a precise 

comparison of individual hydrophones. Since many of the hydrophones in the hot spot cluster 

were the same across analysis periods and remained in the same general area in the deepest part 

of the SOAR, this result suggested no obvious change occurred in spatial foraging effort in the 

2017 study.   
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Figure 4.4. Results of the 2017 Gi* analysis for local hot/cold spots. Column 1: visual depiction 

of the number of GVP by hydrophone; column 2: visual depiction of the Gi* z-values by 

hydrophone; column 3: visual depiction of the p-values associated with the Gi* results by 

hydrophone. p<0.025 were considered relative hot spots, whereas p>0.975 were considered 

relative cold spots.  Each row represents a different analysis period: top-Before; middle-During; 

bottom-After. 

 

With respect to where there were very few GVPs, there was one cold spot hydrophone in 

the central-western part of the SOAR in the Before period and a small cluster of hydrophones 

signifying cold spots in the southeast corner of the SOAR During and After. Overall the 

southeastern corner – the relatively shallow and historically least-used area (Falcone et al. 2009, 

Schorr et al. 2014) -- was not a high-use area for foraging beaked whales (Figure 4, column 1). 

Thus, the Gi* analysis further suggested no obvious spatial change occurred in beaked whale 

foraging effort among analysis periods in 2017 at a local level. This finding was supported by the 
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difference plots for which the spatial distribution of hydrophones that exhibited no change, 

increase, or decrease in the number of GVPs appeared random (Figure 4.5).  

 

Figure 4.5. Difference plots showing the direction of change in the number of GVPs per 

hydrophone from one period to the next of the 2017 survey. Left: difference plot showing change 

from Before to During; Right: difference plot showing change from During to After. 

 

Not only was there no overall change in the spatial location of relative hot/cold spots 

among analysis periods, but the Kruskal-Wallis comparison test revealed that the total number of 

GVPs per hydrophone among the three analysis periods were similar [H (2) =1.24, p=0.5369].  

Overall the GLC spatial analysis of the 2017 study showed a consistent pattern, both 

globally and locally, in spatial clustering of GVPs and a similar number of GVPs for non-MBES 

and MBES analysis periods.  

2019 
52 hours of hydrophone data were analyzed for each of the three analysis periods in 2019.  

There were 60 GVPs detected Before, 93 During, and 77 After. The global analysis results are 

provided in Table 4.5. For each of the three analysis periods the Moran’s I value strongly 

suggested GVPs were spatially clustered on the SOAR.  
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Table 4.5. Global analysis results by analysis period for 2019, including Moran’s I value (I), the 

z-score (zI), and the associated p-value. A positive I indicates a clustered distribution, a negative 

I represents a dispersed distribution, and the p-value associated with each. 

Analysis 

Period 

Moran’s I 

(I) 

z-score (zI) p-value 
Conclusion 

Before 0.1105 2.2082 0.0139 

Clustered During 0.2078 3.9711 <0.001 

After 0.1265 2.4991 0.0064 

 

The total number of GVPs detected, the Gi* z-score, and associated p-values were 

calculated and are shown by hydrophone in Figure 4.6, columns 1-3, respectively. Exact Gi* and 

p-values for all hydrophones are provided in the data section of this publication. A similar 

interpretation of Figure 4.6 was conducted as described for the interpretation of the 2017 local 

results. There were no obvious cold spots identified in the 2019 analysis periods, suggesting 

widespread use of the SOAR by foraging beaked whales in 2019 (Figure 4.6). There were 

distinct hot spot clusters identified in each analysis period. In the Before period the hot spot 

cluster was in the southwestern corner of the SOAR, During MBES activity the hot spot cluster 

was in the center, and After MBES activity there were several hot spot hydrophones in the center 

and a cluster of hot spot hydrophones in the southwestern corner of the SOAR (Figure 4.6). 

These results suggested that local spatial foraging effort did change during the 2019 study, a 

finding that was supported by a distinguishable spatial pattern visible in the 2019 difference plots 

(Figure 4.7). That is, there was a cluster of hydrophones in the center of the SOAR that all 

recorded an increase in GVPs from Before to During (Figure 4.7 left), while from During to 

After (Figure 4.7 right) there was a cluster of hydrophones in the center that all decreased in the 

number of GVPs. 
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Figure 4.6. Results of the 2019 Gi* analysis for local hot/cold spots. Column 1: visual depiction 

of the number of GVP by hydrophone; column 2: visual depiction of the Gi* z-values by 

hydrophone; column 3: visual depiction of the p-values associated with the Gi* results by 

hydrophone. p<0.025 were considered relative hot spots, whereas p>0.975 were considered 

relative cold spots.  Each row represents a different analysis period: top-Before; middle-During; 

bottom-After. 
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Figure 4.7. Difference plots showing the direction of change in the number of GVPs per 

hydrophone from one period to the next of the 2019 survey. Left: difference plot showing change 

from Before to During; Right: difference plot showing change from During to After. 

 

The Kruskal-Wallis comparison test showed that the number of GVPs per hydrophone 

were similar between the three analysis periods [H (2) =3.95, p=0.1387].  

Overall the GLC spatial analysis of the 2019 study showed foraging effort was consistently 

clustered, and the overall magnitude of foraging effort was similar throughout the 2019 analysis 

periods. But, the location of the foraging hot spot cluster changed through time. 

Discussion 
The global analysis revealed that GVPs on the SOAR were notably clustered spatially in 

all analysis periods in both 2017 and 2019. In addition, the comparison tests for both years 

revealed that the overall number of GVPs detected per hydrophone was equivalent among 

analysis periods within each year. These results suggest that no obvious range-wide change in 

foraging effort occurred during MBES activity. The local results for the two surveys were not the 

same. In 2017, foraging hot and cold spots were respectively identified in the same general area 

of the SOAR during all three analysis periods. In 2019, foraging hot spots were identified in each 

analysis period, but the location shifted through time. Like the temporal analysis of foraging 
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behavior during the two MBES surveys (Chapter 2, also Kates Varghese et al. 2020), the 

difference in local spatial results between the two years brings in to question whether the MBES 

activity (i.e., different spatial usage of the SOAR) could have contributed to the differences 

identified, or if the differences were related to variability in some other factor, such as prey 

distribution during the two years of study. 

The results of the 2017 local analysis identified relative hot and cold spots in the same 

general area of the SOAR, but during each period on a slightly different set of hydrophones in 

the array. There are likely multiple interacting reasons for the slight difference in cluster 

locations. Firstly, even if the animals tend to forage in the same area throughout time, it is within 

reason to expect some amount of variation due to the natural variability in behavior (e.g., the 

animals are mobile, peaks and lulls in foraging are observed even in the absence of 

anthropogenic activity) (Falcone et al. 2017, Schorr et al. 2014), and because a cluster likely 

represents numerous groups foraging, each with their own movements over the wider area. 

Additionally, there may have been small changes in the distribution of prey, due to varying 

environmental conditions, which could have affected exact foraging locations. Lastly, the Gi* 

statistic, the statistic used in the local analysis, is a function not only of the number of GVPs at a 

specific hydrophone, but of its neighboring hydrophones as well. This can lead to a slightly 

different spatial z-score pattern, despite a generally very similar spatial data set. For this reason 

Kates Varghese et al. (2021a, also Chapter 3) recommended that it is most appropriate to 

interpret change in spatial behavior using the GLC method more holistically than on a single 

hydrophone basis to account for some of the sensitivity in the Gi* statistic. Most of the GVPs 

occurred in the northwest and north-central parts of the array and were lacking in the southeast. 

Since many of the hot spot hydrophones overlapped from one period to the next, there was no 
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indication from this analysis that the area used for foraging had changed in an obvious way that 

would suggest the 2017 MBES survey had an effect. 

The interpretation of the local analysis result for 2019 was less clear. Before the MBES 

survey, a distinct cluster of foraging hot spots was identified in the southwestern corner of the 

SOAR, During the survey a distinct cluster of foraging hot spots was identified in the center, and 

After there was a distinct hot spot cluster in the southwestern corner and potentially another hot 

spot cluster in the center of the SOAR. In general, the hot spot clusters had minimal overlap 

across abutting analysis periods, suggesting there was a change in foraging effort at the local 

level. But the pattern of two potential hot spot clusters identified in the After period was 

perplexing. Specifically, the potential cluster in the center of the array After was not as obvious 

as other clusters, raising the question of whether the center of the SOAR was in fact a highly 

used area by the animals during this period. Whether it was or not would provide information 

that could help in ruling out certain potential drivers of the 2019 result.  

Referring to the spatial distribution of the 2019 raw data, z-scores, and difference plots 

provided further insight in interpreting the local result. The spatial distribution of high versus 

low GVP values After appeared random in the center area, suggesting it was only a few 

hydrophones where many GVPs occurred and not the entire area. In addition, the z-scores of 

hydrophones in the center in the After period were lower in comparison to all of the other hot 

spot clusters from any of the 2019 analysis periods -- i.e., the center area hydrophones of the 

After period had a z-score value of mostly twos, while all other hot spots had z-scores of mostly 

threes or fours. This suggests that although there were a high number of GVPs in the center, it 

was not the most highly used area relative to the rest of the SOAR. In fact, the southwestern 

corner had higher z-score values during the same period. In examining the difference plots, none 
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of the center hot spot hydrophones increased in the number of GVPs from During to After, and 

most of the GVP values on surrounding hydrophones in the center either decreased or stayed the 

same, whereas those in the southwestern corner had an increase in GVPs detected. Again, this 

result suggests that the center was not as active as the southwestern corner of the SOAR After the 

survey. Together, these results best support the interpretation that the center area was no longer 

as favored by the animals for foraging as it was in the During period.  

If the spatial change was due to the MBES survey, one would expect a more discrete 

difference between each set of analysis periods, and thus a clear change back to the southwestern 

corner After. For example, in the McCarthy et al. study (2011) in which the analysis periods 

abutted temporally, there was a distinct spatial change between the Before, During, and After 

analysis periods. In a finer temporal analysis of the spatial data, the researchers found that the 

animals returned to their normal spatial use of the range after 35 hours. In the study herein, there 

were 20 hours between each set of analysis periods in 2019, and each analysis period lasted 52 

hours. If the MBES was the cause of spatial change, assuming a similar response time as in the 

MFAS study, the temporal spacing in this study (i.e., time between analysis periods plus the 

duration of an analysis period) should have been more than adequate to capture distinct 

differences in foraging effort location. If the spatial change was due to a factor that was primarily 

a function of time rather than related to the MBES survey, one might expect a more gradual 

spatial change across all three analysis periods. But what occurred was a distinct change in 

foraging effort (i.e., relative hot spots) location from Before to During and a spatial pattern 

suggestive of a gradual change from During to After, a response somewhere in between the two 

scenarios that were expected. Thus, it is not readily obvious what the cause of the shift was.  
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There is no standard definition of what constitutes a meaningful shift in habitat use, 

especially in the context of response to anthropogenic activity or some other external factor. A 

meaningful shift in habitat use depends on a number of factors including the behavioral or 

ecological context for which the shift occurs, the species, suitable habitat connectivity, among 

many other factors. In the case where a group of animals is negatively affected by a disturbance, 

there may exist circumstances where either no suitable alternative habitat exists for the animals 

to move to, or the animals endure the disturbing activity despite potential and realized biological 

consequences (Claridge 2013, Moretti 2019). In addition the degree to which an easily 

observable response, such as behavior change, correlates with a meaningful effect, such as 

biological or physiological change, is not often known (Beale 2007). Our ability to understand 

the degree to which a measured behavioral response is indicative of something meaningful 

requires comprehensive integration of the information available regarding the factors under 

which the behavioral change took place, as well as consideration of other known analogs. With 

this in mind, potential explanations for the observed shift in spatial use of the SOAR by beaked 

whales were explored. 

Since the 12 kHz MBES sound is within the hearing range of beaked whales (Cook et al. 

2006, Pacini et al. 2011), one explanation for a shift in foraging location is that the whales were 

disturbed by the anthropogenic activity on the SOAR, e.g., vessel presence, vessel noise, or 

MBES activity. In the case of a disturbance, movement would be expected away from the 

disturbing activity. This was the case with beaked whales in response to other sources within 

their hearing range, such as MFAS (McCarthy et al. 2011, Manzano-Roth et al. 2016) and 

acoustic pingers (Carretta et al. 2008). In both the McCarthy et al. (2011) and Manzano-Roth et 

al. (2016) studies, where a clear negative response to MFAS activity was concluded, the number 



119 

 

of GVPs of Blainville’s beaked whales was reduced and the majority of foraging shifted to the 

edge or off the range during MFAS activity. In the case of the acoustic pingers (10-12 kHz), 

bycatch of several beaked whale species was reduced to zero after the implementation of the 

pingers on gillnets in the California drift gill net fishery (Carretta et al. 2008). Neither of these 

were similar to the result seen here.  

Alternatively, a shift in foraging effort location could also be due to attraction of the 

whales to the anthropogenic activity. During the first 24 hours of the 2019 MBES survey (i.e., 

roughly half of the During period) the MBES survey was confined to the southeast corner of the 

SOAR (see Figure 2 and the supplementary results of Kates Varghese et al. 2020 for a detailed 

description of the MBES surveys—also Figure 2.2 and Appendix 2.1 in this dissertation). 

Therefore, one might expect if the whales were attracted to the MBES sound that they might 

move to the southeast corner. Yet, this was not where the foraging hot spots were found. The 

remainder of the During period involved lines that ran across the center of the SOAR in a 

“mowing-the-lawn” pattern. Given that the MFAS study results (McCarthy et al. 2011, 

Manzano-Roth et al. 2016) are viewed as an avoidance response, where many of the animals 

moved to the edge or off the range, one might view a shift in foraging effort to the center of the 

SOAR during anthropogenic activity as movement toward, or an attraction to, the activity. In this 

case it is worth considering the sound propagation of the deep-water MBES on the SOAR. 

MBES transmit sound toward the seafloor in a beam that is narrow along-track (1º) and broad 

(~150 º) across-track (Lurton 2016, Kates Varghese et al. 2019a). As a result, most of the energy 

is directed toward the seafloor directly below the vessel as lines are run over the survey area, 

reducing the acoustic footprint relative to an omni-directional or horizontally transmitting source 

(Lurton and DeRuiter 2011, Lurton 2016). A preliminary examination of some of the acoustic 
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data from the hydrophone array from the 2017 survey revealed that the signal from the MBES 

was only detectable above the noise floor when the vessel was within 10-15 kilometers, or 

roughly 2-3 hydrophones, from a given hydrophone (Mayer 2019, Kates Varghese et al. 2019b). 

The acoustic data from the array was not available for the 2019 survey as of the writing of this 

paper, but it is reasonable to expect that the sound propagation during the 2019 survey was 

similar to the 2017 survey since the survey utilized the same vessel, MBES, and was conducted 

in a similar sea state (Mayer 2019). Since the MBES was not stationary during the survey, a 

distance of 10-15 km or less between the vessel and a group of foraging whales was likely only 

met a small portion of the time. Based on this, one might expect that if the whales heard and 

were attracted to the MBES that the spatial pattern of their foraging would more closely follow 

the track lines. This would likely lead to the detection of a more random spatial pattern in the 

local results than the clustering in the center seen here. Thus it does not seem probable that an 

attraction to the sound was the cause of the spatial change. However, a full analysis of the 

soundscape with respect to the distribution of GVPs would be needed to rule this out completely.  

Another explanation for a shift in foraging location is due to a change in prey 

distribution, since foraging behavior in beaked whales is heavily driven by prey dynamics 

(Benoit-Bird et al. 2016, Southall et al. 2019, Benoit-Bird et al. 2020). The anthropogenic 

activity could have disturbed or attracted the prey, leading to a change in their distribution 

(Fewtrell & McCauley 2012), followed by a change in where the whales foraged. Beaked whales 

primarily forage on deep-water squid (Santos 2001) and some fish, both of which are thought to 

primarily detect low-frequency (<1 kHz) acoustic signals (in addition to particle motion) 

(Mooney et al. 2010, Popper and Hawkins 2018). Thus it seems unlikely that such prey species 

would respond to the 12 kHz MBES signal. It is possible that the prey could detect and respond 
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to vessel noise, which is lower in frequency (<1 kHz). Prey distribution and patchiness can also 

vary naturally due to normal prey movement over time and/or in response to spatially variable 

and temporally changing environmental conditions (Benoit-Bird et al. 2020). In fact, recent work 

has shown that within the SOAR, prey fields are heterogeneous over small distances (Southall et 

al. 2019). It is also possible that a specific prey patch was depleted by foraging whales, resulting 

in their movement to another prey patch elsewhere on the SOAR. Backscatter data from sonar 

systems can be used to identify squid and other prey items in the water column (Moline and 

Benoit-Bird 2016, Southall et al. 2019), and be used to explore these prey distribution 

hypotheses. However, the signal needed to achieve an adequate estimate of biological organisms 

at the depths relevant to beaked whale foraging is not feasible from a traditional hull-mounted 

MBES (Moline and Benoit-Bird 2016), like the one used in this study. Given the results of this 

study and the hypotheses explored here, the most probable explanation of the 2019 result is 

linked to the strong relationship between foraging behavior and prey field dynamics. Without 

complementary prey field information this cannot be concluded with certainty. 

Although there was a change in the spatial use of the array in 2019 and the cause remains 

unclear there are a few key observations to take away from the 2019 survey. First, the most 

highly utilized location by the foraging animals (i.e., relative foraging hot spot) remained in the 

deeper area of the SOAR during all analysis periods. Despite the deeper waters being identified 

in past studies as the area where these animals forage (Falcone et al. 2009, Schorr et al. 2014), 

there may still be negative implications for a shift within this area (i.e., from the southwest to the 

center). Southall et al. (2019) found that even within small areas of the SOAR (the west versus 

the east for example) prey density can be quite different, which can have huge repercussions on 

the energetic costliness of an induced spatial change from favorable to unfavorable foraging 
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grounds (Moretti 2019). However, the number of GVPs detected during the MBES survey period 

was no different than the non-survey periods. Assuming there was no change in the number of 

animals foraging, this would suggest that there was not an overall change in foraging effort. 

Furthermore, the fine-scale temporal analysis of the 2019 survey showed no difference in two 

other GVP characteristics (i.e., number of clicks per GVP, and click rate per GVP) during the 

MBES survey versus non-MBES periods (Kates Varghese et al. 2020, also Chapter 2 of this 

dissertation). These results further suggest that there was little change in how the animals were 

foraging. If there were obvious differences in the number of GVPs and intrinsic characteristics 

(i.e., number of clicks, click rate) of the GVP, this might suggest there was a change in the 

quality of the prey field with respect to foraging. In the absence of prey distribution data for this 

study, these results suggest that the spatial change identified may not be associated with a high 

energetic cost to the animals. Future studies assessing MBES impact should integrate prey field 

assessments to verify this. This is extremely important in being able to assess the biological and 

ecological relevance of a change in behavior.  

The spatial change in the 2019 study and absence of change in 2017 raises the question, 

why was there a difference between the two years?  Both surveys were conducted in January, 

removing potential seasonal differences in beaked whale ecology that might affect behavior. The 

surveys were also conducted using the same vessel and 12 kHz MBES, and occurred for similar 

lengths of time (47 hours in 2017 versus 52 hours in 2019). The only known difference between 

the two surveys were the line plans. The 2017 survey was conducted in a mowing-the-lawn 

pattern across the full length of the array, whereas the 2019 survey used a tighter mowing-the-

lawn pattern confined to the southeast corner of the SOAR before conducting a few full-length 

passes across the middle of the SOAR. As discussed previously, the spatial change found in the 
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2019 study does not appear to be driven by MBES activity, so it would seem unlikely that the 

different line plans were the reason for the inter-annual differences. However, without further 

evaluation of some or all of the hypotheses posed here, this hypothesis should not be 

disregarded. It should be noted though that while the “mowing the lawn” survey conducted in 

2017 is representative of a typical MBES mapping survey, the localized MBES survey in 2019 

was conducted particularly to assess the beam pattern of the MBES system and is not at all 

representative of the use of MBES in deep-water ocean mapping work. 

It is worth drawing attention to the spatial distribution of GVPs in the non-MBES periods 

before the surveys were conducted. These were also dissimilar between the two years. In 2017, 

there was relatively minimal GVP activity in the southeast portion of the SOAR, whereas in 

2019 there was more widespread use of the entire SOAR. These patterns were seen throughout 

each respective year, suggesting that there was simply variation in the use of the SOAR by the 

animals from one year to the next. If the spatial distribution Before MBES activity was different 

between the two years, one cannot therefore assume that the difference between the two years 

was related to the anthropogenic activity or differences related to the operation of the MBES. 

Again, since prey distribution heavily dictates where these animals forage, there were very likely 

differences between prey patches in the two years that led to differences in use of the range both 

during and outside of periods of anthropogenic activity. Though, this may not be the only 

possible explanation for differences in spatial use of the SOAR between the two years. 

Finally, it is important to keep in mind that the spatial statistics used here can only detect patterns 

at the resolution of the hydrophone array. Any potential changes in the spatial use of the array 

that happened on a scale finer than the hydrophone spacing of two to six kilometers were not 

detected. Spatial change in foraging behavior may occur on a different spatial resolution than 
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was measured here and may have a different consequence on foraging animals. Animal tagging 

studies and those that focus on individual behavior provide a necessary understanding of finer-

scale changes in behavior and potential impacts of anthropogenic noises and should be 

undertaken with respect to MBES impact where possible in the future. 

Conclusion 
The overall findings of this spatial analysis align with the conclusions of the temporal 

assessment (Kates Varghese et al. 2020, also Chapter 2 of this dissertation): foraging effort did 

not change in a stereotyped way that would suggest that the MBES surveys had a clear negative 

effect. In both years of study, neither the range-wide or order-of-magnitude comparisons 

revealed any obvious differences in beaked whale foraging during the MBES surveys. In the 

2017 MBES survey there was no indication that the overall foraging effort changed spatially on a 

local level. During the 2019 MBES survey there was a change detected in the local spatial use of 

the SOAR. The change was a shift in the most foraging activity toward the center of the range, 

which was unlike the typical avoidance response seen several times in studies assessing beaked 

whale foraging response to MFAS. It was also a shift that remained in the deep-water area of the 

SOAR, thought to be favorable foraging grounds for beaked whales. This best supports the prey-

dependence hypothesis as the cause of spatial change. However, the cause of this change and its 

overall impact cannot be stated with certainty. Future studies targeting the hypotheses posed here 

are needed to understand the 2019 result completely and should integrate animal tagging, prey 

field, and soundscape assessments to establish a more comprehensive picture.  
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CHAPTER 5: SOUNDSCAPE ASSESSMENT OF THE 

MARINE ACOUSTIC ENVIRONMENT DURING A DEEP-

WATER MAPPING SURVEY 
 

Introduction 
 In the context of anthropogenic noise and marine life, soundscape studies can provide 

insight into how, and the extent to which, an acoustic environment changes due to anthropogenic 

noise-generating activity.  When possible, baseline assessments are made to provide a foundation 

upon which to assess the extent of change beyond expected natural variation. Soundscape studies 

are imperative for providing context to our understanding of the interplay between anthropogenic 

activity and marine life, in addition to understanding and assessing changes due to natural 

phenomena. 

 The goal of this chapter was to understand how the activity of the 2017 mapping survey 

impacted the overall marine soundscape of the Southern California Antisubmarine Warfare 

Range (SOAR). The motivation for this was two-fold. While modelling efforts (Lurton and 

DeRuiter 2011, Lurton 2016) show that the EM 122 multibeam echosounder - the primary 

system used in the 2017 mapping survey - has a finite impact on the acoustic environment, a 

thorough assessment of its impact on the marine acoustic environment in the field during typical 

operations had not been undertaken prior to this work. And in fact, parallel work characterizing 

the radiation pattern of the Kongsberg EM 122 system (Smith 2019) showed that this particular 

model produced grating lobes due to an error in the firmware (which has since been corrected). 

The presence of unintended grating lobes in the acoustic environment further justifies the need to 

assess acoustic sources in situ, which provides important ground-truthing of modelling efforts 

and theoretical expectations. This is especially necessary when such unintended outcomes (i.e., 

grating lobes) may have consequences on vulnerable marine life. Thus, the first motivation for 
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this chapter was to provide empirical observations of the spatial, temporal, and frequency impact 

on the marine soundscape of the acoustic sources (vessel sound and active acoustic sources) 

associated with a typical deep-water multibeam mapping survey. Although multiple active 

acoustic systems (EM 122, EM 712, Knudsen SBP, and EK-80) were used at different times 

during the 2017 survey, the primary mapping system was the EM 122 MBES.  As such, the 

emphasis of this soundscape chapter was on characterizing the impact of this system on the 

marine acoustic environment. However, where possible, the impact of the other systems was 

examined and discussed. The second motivation for understanding the impact of the mapping 

survey on the acoustic environment was to provide context and inform the interpretation of 

results of the earlier behavior chapters, in particular, to understand how the acoustic environment 

evolved through the various survey-related activities. However, the results of this and the former 

behavior chapters will not be synthesized here, rather they will be synthesized in the final 

chapter.  

 Much of the concern surrounding the relationship between marine life, often marine 

mammals, and anthropogenic noise is with respect to hearing damage that certain sounds may 

cause.  Significant knowledge has been gained on this topic over the last several decades, helping 

to determine which aspects of sound are physically most damaging to an animal. These signals 

tend to be high-amplitude, impulsive, and broadband sounds. Thus, many soundscape studies 

focus heavily on characterizing and analyzing the changes in sound pressure level amplitudes 

(Sanchez-Gendriz and Padovese 2016, Putland et al. 2017).  Research has also shown that the 

mechanism of marine mammal hearing functions is an energy detector rather than an intensity 

detector (Tougaard and Beedholm 2018). Thus, the total amount of sound energy contained in a 

signal over a specified time period, i.e., the sound exposure level, is particularly relevant when 
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assessing the impact on marine mammals (Martin 2019).  More recently, research has shed light 

on other metrics that can be used to identify physically damaging sounds, such as kurtosis, 

uniformity, and other measures of impulsiveness (Martin 2019, Wilford et al. 2021), although 

the mainstream use of these for assessing soundscapes has yet to be adopted.   

Sounds can have non-injurious impacts on marine life as well, including direct and 

indirect behavioral and/or ecological effects. For example, anthropogenic sounds can mask 

important signals such as in conspecific communication, or in auto-communication. These 

communication signals tend to be species-specific based on the frequencies of best hearing (most 

sensitive) and overlap with frequencies the animals are able to produce. Thus, another aspect of 

soundscape studies often focuses on frequency-specific metrics most relevant to the species or 

acoustic sources under study (Codarin and Picciulin 2015, Haver et al. 2019). Octave bands or 

decidecade bands are commonly used in soundscape assessments motivated by understanding 

impacts on marine mammals, as this way of summarizing frequency content into bands aligns 

with how mammals hear (Merchant et al. 2012, Erbe et al. 2016). Research has shown that there 

may be other features of sound that make it more or less salient to a specific group of animals 

(Gotz and Janik 2010, Mikkelsen et al. 2017), including the ecological relevance of the signal, 

how long the sound is present in the soundscape, or its periodicity (Sanchez-Gendriz and 

Padovese 2016, Wilford et al. 2021).  For example, marine mammals, that are often the prey of 

killer whales, respond quite drastically to the sounds of killer whales versus other sounds of 

similar amplitude (Harris et al. 2017); the signals used in acoustic deterrent devices have been 

optimized to be aversive to particular marine mammal groups, thus deterring them from an area 

(Mikkelsen et al. 2017).  Although these attributes of acoustic signals have been identified as 
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relevant in the discussion of how sound will affect marine life, the specific features that cause 

such responses are still not fully understood.  

 One of the most rudimentary and fundamental ways of understanding a soundscape is to 

review the acoustic data in detail using tools such as spectrograms, long-term spectral averages, 

and spectral probability density plots, to help contextualize the results (Kaplan and Mooney 

2015, Erbe et al. 2016, Haver et al. 2019).  When it comes to comparing soundscapes, large 

comprehensive data sets must be distilled to a few practical and representative metrics, such as 

percentiles, medians, and averages (Erbe et al. 2016, Haver et al. 2019). Many soundscape 

studies involve manually or automatically identifying contributing sources (Haver et al. 2019, 

Lin, et al. 2019) and classifying or quantifying them into categories such as biophony, geophony, 

and anthropophony (Erbe et al. 2016, Putland et al. 2017).  The specific analyses employed are 

generally driven by the project-related goals and context, many of which are motivated by a 

specific time or spatial dimension of interest, or a combination of both (Kaplan and Mooney 

2015, Bertucci et al. 2015). Statistical hypothesis testing using ANOVA or non-parametric tests 

is commonly employed (Kaplan and Mooney 2015, McWilliam and Hawkins 2013, Bertucci et 

al. 2015) to identify differences across temporal or spatial metrics that describe the soundscape, 

such as sound level amplitude metrics, or across acoustic indices such as those that describe 

biodiversity, complexity, and entropy (Sueur et al. 2018, McWilliam and Hawkins 2013, Parks et 

al. 2014).  (For a more complete picture of the field of underwater soundscape studies, metrics, 

and shortcomings, see the review paper by Lindseth and Lobel, 2018.) 

 Although there are several metrics and types of analyses commonly used in underwater 

soundscape analyses, including statistical comparisons, there is no defined standard today for 

processing or reporting soundscape parameters, leaving room for innovative ways to examine 
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and compare acoustic data. Distilling and comparing large and rich data sets is not unique to the 

field of underwater acoustics. As such there is a lot to be gained by stepping outside the field and 

bringing in tools that work elsewhere. As a secondary objective in this chapter, additional 

analysis tools--beyond those commonly used in underwater soundscape studies-- were explored 

and used to assess the impact of the mapping survey on the acoustic environment. The strengths 

and limitations of these tools in addition to more traditional approaches will be discussed. 

To achieve the project goals, a comprehensive soundscape study was pursued that 

provided both temporal and spatial information through amplitude and frequency-based sound 

level analyses applied to characterize the acoustic environment. The amplitude assessment-- 

which was also considered with respect to frequency (i.e., decidecade bands levels and the 

application of frequency-weighting)-- was divided into four parts beginning with a time series 

annotation which provided the most local and detailed perspective of the evolution of sound 

levels at the SOAR array across the entire study period. To characterize the changing sound 

pressure levels, several metrics --identified in the time series annotation as clearly changing with 

respect to the multibeam mapping activity --were examined further in period-specific sound level 

percentile and sound level distribution comparisons. The sound levels were also considered with 

respect to acoustic impact on marine mammals and anthropogenic noise regulation thresholds.  

And finally, a frequency-based correlation analysis was performed providing insight into the 

how sound pressure levels varied across the frequency domain.  

The specific metrics used in the aforementioned analyses were tailored to their relevance 

to the acoustic sources used in the mapping survey and what may be considered most detectable 

to a foraging beaked whale. Specifically, peak sound pressure levels, sound exposure levels, and 

selected decidecade band levels were used. The sound level metrics were also weighted using the 



130 

 

National Marine Fisheries Services (NMFS) marine mammal weighting (M-weighting) curve for 

mid-frequency cetaceans, the functional hearing group to which beaked whales belong (NMFS 

2018). The weighting serves as a filter over the acoustic data, which de-emphasizes frequencies 

that are outside the range of best hearing sensitivity of a functional marine mammal hearing 

group. In addition, the temporal window for which the sound pressure level metrics were 

computed was chosen to closely match the hearing integration time of marine mammals. Finally, 

the sound level metrics used to assess noise impact on marine mammals with respect to marine 

anthropogenic activities were calculated and compared to marine mammal noise impact 

thresholds used by regulators in the United States. It is also worth noting that the acoustic 

observations used in this soundscape study were collected on hydrophone receivers mounted to 

the seafloor, which makes this assessment especially relevant to beaked whales that generally 

forage near the seafloor.  

 While the time series annotation and sound level percentile comparison components of 

the amplitude analyses are methods frequently used in characterizing and comparing 

soundscapes, the probability distribution and frequency correlation analyses are not and warrant 

further background information. The probability distribution analysis utilized statistical 

hypothesis testing based on the Wasserstein Distance as a test metric. The Wasserstein Distance 

(W), also known as the Earth Mover’s Distance in computer science (Rubner et al. 2000), can be 

thought of as the minimum cost of transforming (i.e., location, size, and shape) one pile of dirt 

into another. In other words, the value of W indicates how different two distributions are. The 

Earth’s Mover’s Distance has been used in computer science to compare images and in-pattern 

recognition applications (Rubner et al. 2000), as well as in optimal transport problems (Li et al. 

2016). It has also recently been used to examine the distribution of RNA sequencing data 
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(Schefzik 2020).  This metric is particularly useful for comparing complex distributions, such as 

those that are not unimodal. When a distribution is unimodal, the mean and variance are often 

adequate descriptors, but when multimodal, the mean may not change despite other clear 

differences between the two distributions. The squared version of the Wasserstein Distance, the 

2-Wasserstein Distance, can be decomposed into location, size, and shape terms, providing 

further information about how two distributions differ. The 2-Wasserstein Distance 

decomposition was used here to holistically characterize the distribution of sound pressure level 

observations during the multibeam mapping activity and determine whether the distributions 

significantly differed between distinct analysis periods with and without survey activity. If there 

were differences, the decomposition provided insight into how they differed.  In terms of a 

soundscape, the location term (difference of means) indicates whether one distribution consists 

of sound levels that are louder or quieter than the other.  The size term, represented by the 

difference in standard deviation, indicated how dispersed the sound level data were. If one 

distribution was more dispersed than the other, that analysis period could be considered dynamic, 

whereas a less dispersed distribution would be considered static. The shape term, or correlation 

coefficient of the two distributions, describes the skewness and/or modality of the distributions. 

For example, a left-skewed sound level distribution is mostly quiet, with intermittent loud 

periods, whereas a right-skewed distribution is mostly loud, with intermittent quiet periods. The 

use of this approach for comparing sound levels therefore was not in assessing the absolute 

sound levels, but in how the distributions of the different analysis periods compared to one 

another.  

The frequency analysis of this work focused on frequency correlation of sound levels. 

Frequency correlation has been used to interpret ocean ambient sound (Nichols and Bradley 
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2019) and understand changes in source contributions to a soundscape (Miksis-Olds and Nichols 

2016). Frequency correlation is therefore not new to underwater acoustics, but its utility has not 

been fully captured.  Frequency correlation matrices are a tool that can be used to understand 

how different frequencies relate to one another (Miksis-Olds and Nichols 2016, Nichols and 

Bradley 2019).  If two frequencies are highly correlated, it means the sound levels at both 

frequencies vary at the same times, either increasing or decreasing, which can indicate that they 

are being driven by the same source mechanism (e.g., vessel noise, MBES signal, biological 

acoustic activity, etc.). To identify changes, two frequency correlation matrices representing 

distinct periods are subtracted and compared. The resulting matrix shows how the periods differ.  

Frequency correlation matrices and difference matrices were generated for distinct analysis 

periods and used here to understand the frequency contribution of the EM 122 and other active 

acoustic sources to the soundscape.  

Common Methodology 

SOAR Hydrophone Array 
The SOAR hydrophone array spans an approximately 1800 km2 area and contains a subset of 

89 bottom-mounted hydrophones that were used in the work presented in this chapter. These 

hydrophones range in depth from 850 to 1750 meters, and are sampled at a rate of 96 kHz. The 

omnidirectional hydrophones have a roughly flat sensitivity response between 50 Hz and 48 kHz 

(Smith 2019). The acoustic data from all 89 hydrophones were collected from January 04, 2017 

20:13 until January 07, 2017 06:55 UTC, a time period that spanned before until the end of the 

2017 deep-water MBES mapping survey of the SOAR. 

Acoustic Data Processing 
The raw acoustic data were extracted in a duty cycle of 5 minute ON/10 minute OFF to 

reduce processing time and memory.  The acoustic data were then converted to various 
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frequency-specific and broadband sound level metrics. This was generally done by taking the 

raw voltage time series data and converting it to the frequency domain using MATLAB®’s fft 

function. Then the amplifier gain (gn) and frequency-specific sensitivity of the system (ocr(f)) 

were applied (Equation 5.1).  

𝑃(𝑓) = 𝑉(𝑓) ×
1

𝑜𝑐𝑟(𝑓)
×

1

𝑔𝑛
× 𝑊(𝑓)       (Equation 5.1) 

where 𝑜𝑐𝑟(𝑓) = 10𝑂𝐶𝑅(𝑓), 𝑔𝑛 = 10
𝐺𝑛

20 , V(f)  is the frequency-dependent voltage after taking the 

Fourier transform (fft function in MATLAB®); OCR(f) is the open circuit response curve; the 

amplifier gain (Gn) of the system was 66 dB; and the OCR(f) curve for frequencies between 2-50 

kHz was provided by the Naval Undersea Warfare Center and is roughly flat between these 

values. The curve was extended to 10 Hz by assuming a constant response from 10 Hz to 2 kHz.  

Worth noting, the dynamic range of the hydrophones was limited, resulting in maximum 

recordable level of 138 dB re 1µPa; all signals above this limit value were clipped. For 

broadband metrics, the frequency components were summed in the frequency domain to a 

broadband value based on Parseval’s Theorem, which says that the sum of energy in the time 

domain equals the sum of energy in the frequency domain (Lurton 2002). This holds true for 

both power and energy metrics and was used consistently here to avoid unnecessary processing 

to convert the acoustic data back to the time domain (Smith et al. 2021).   

The exception to this process was the conversion of voltage data to unweighted peak 

sound pressure levels (SPLpk) (discussed further below), which was handled in the time domain 

by applying a single average open circuit response value (ocrmean), instead of using the 

frequency-specific response curve (Equation 5.2).  

𝑝(𝑡) = 𝑣(𝑡) ×
1

𝑔𝑛
×

1

𝑜𝑐𝑟𝑚𝑒𝑎𝑛
        (Equation 5.2) 
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where v(t) is the voltage value in the time domain, and 𝑜𝑐𝑟𝑚𝑒𝑎𝑛 is the average value of the OCR 

curve. This estimate of SPLpk resulted in a difference of no more than 1 dB from the precise 

value (Michael Smith, personal communication) and was an acknowledged trade-off to reduce 

processing time.  Note: the calculation of weighted SPLpk followed the process of Equation 5.1 

and required conversion back to the time-domain using the inverse Fourier transform. 

W(f) refers to either W(f) =1 for unweighted sound levels, or the frequency-specific 

weighting function coefficient derived from Equation 5.3 (NMFS 2018) for weighted sound 

levels: 

𝑊(𝑓) = 𝐶 + 10 {
(

𝑓

𝑓1
)

2𝑎

[1+(
𝑓

𝑓1
)

2
]

𝑎 

[1+(
𝑓

𝑓2
)

2
]

𝑏}        (Equation 5.3) 

where 𝑎 = 1.6, 𝑏 = 2, 𝐶 = 1.2, 𝑓1 = 8.8, 𝑓2 = 110. These are the low- and high-frequency cut-

off exponents (dimensionless), weighting function gain (dB), and low- and high-frequency cutoff 

frequencies (kHz), respectively; these values correspond with the mid-frequency cetacean 

functional hearing group (NMFS 2018). For specific details on these parameters, the NMFS 

Technical Guidance should be referenced (2018).  

Multiple sound level metrics across the entire study period were generated with the acoustic 

data including: 

● Weighted and unweighted peak sound pressure levels (wSPLpk and SPLpk, respectively) 

● Weighted and unweighted sound exposure levels (wSEL, SEL) 

● Weighted and unweighted decidecade band levels (BL) with center frequencies between 

50 Hz and 40 kHz.*   

* Broadband metrics for this study included frequency content inclusive of the 50 Hz to 40 kHz 

decidecade BLs.  
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These metrics were generated using the following definitions and formulas: 

The peak sound pressure level, SPLpk (dB re 1 μPa), identifies the maximum pressure 

amplitude in a given time window. This was calculated by taking 10 times the log of the 

maximum of the absolute value of the instantaneous squared pressure p2(t) in a specified time 

window:   

𝑆𝑃𝐿𝑝𝑘 = 10log(max(|𝑝(𝑡)|2)/𝑝0
2 )         (Equation 5.4) 

where 𝑝0
2 refers to the reference square pressure value.  

Sound exposure level, SEL (dB re 1 μPa2 s), measures all of the energy within a specific 

time window (T), in other words, integrating the squared signal over the time window of interest. 

In the discrete case, SEL was computed by summing the absolute value of the squared pressure 

observations (normalized to 𝑝0
2 ) contained in a specific time window with respect to a reference 

duration of 1 second (Equation 5.5). The value in decibels therefore is: 

𝑆𝐸𝐿 = 10𝑙𝑜𝑔 (∑ |𝑃𝑑𝑓𝑡(𝑘)|
2
/𝑝0

2 ∗
𝛥𝑡

𝑁

𝑁−1
𝑘=0 )       (Equation 5.5) 

where 𝑃𝑑𝑓𝑡(k) represents the spectral output of the fast Fourier transform with N samples 

contained in the time window analyzed. 

Lastly, the decidecade band levels (BLs) represent the mean square sound pressure 

spectral density level in each decidecade, or one tenth of a decade band (ISO 18405) with units 

of μPa2/Hz.  These were computed by summing the squared sound pressure over each decidecade 

band and accounting for the bandwidth of the spectral content contained in the band (Equation 

5.6). The BLs were chosen to directly align with the Atlantic Deepwater Ecosystem Observatory 

Network (ADEON) project, as one of the primary objectives of that project was to develop 

standardized measurement and processing methods for underwater acoustic projects (Ainslie et 
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al. 2017). There, decidecade bands were aligned with the 1 kHz band (band index n=0). The 

same banding was used here.  

𝐵𝐿_𝑓𝑐,𝑛 = 10log (
1

𝑁2
∑ |𝑃(𝑘)|2/𝑝0

2)
𝑘𝑚𝑎𝑥,𝑛

𝑘𝑚𝑖𝑛,𝑛
− 10log (𝑏𝑤)    (Equation 5.6) 

where 𝑘𝑚𝑎𝑥,𝑛 and 𝑘𝑚𝑖𝑛,𝑛 are the indices of the upper and lower frequencies of each band, which 

are 0.5 decidecade above and below the center frequency of the band (𝑓𝑐,𝑛),  i.e., 𝑓𝑚𝑎𝑥,𝑛 =

𝑓𝑐,𝑛10
1

20, 𝑓𝑚𝑖𝑛,𝑛 = 𝑓𝑐,𝑛10−
1

20,  𝑓𝑐,𝑛 = (1 kHz)10
𝑛

10, and bw represents the bandwidth of the 

decidecade band in Hz (Ainslie et al. 2017). As no formal standard exists yet for computing and 

reporting broadband quantities, a decision was made to maximize the spectral observations 

available with this data set. Consequently, broadband was defined here as the 30 bands inclusive 

of the 50 Hz through 40 kHz center frequency decidecade bands (i.e., 𝑛 = −13 to 16). 

A purposeful selection of the BLs were chosen for detailed analysis, which represented 

specific acoustic source expected to contribute to the SOAR soundscape. These were the BLs 

with center frequencies of 50 Hz, 500 Hz, 3.2 kHz, 12.5 kHz, and 40 kHz. The 12.5 kHz band 

(11.2-14.1 kHz) was selected because it encompasses the majority of the frequency content of 

the EM 122 MBES signal (11-13.25 kHz). This band also contains biological sounds, such as 

from vocalizing marine mammals. The 40 kHz band (35.5-44.7 kHz) was chosen as it contains 

the peak frequency of beaked whale foraging clicks (Baumann-Pickering et al. 2013). It also 

contains the signal of the EM 712 used during the Mixed Acoustic period of the mapping survey 

(40 kHz). The 50 Hz (44.7-56.2 Hz), 500 Hz (447-562 Hz), and 3.2 kHz (2.8-3.5 kHz) bands 

were chosen as they each represent a distinct regime of the low-frequency signals that often 

dominate a soundscape. The 50 Hz band represents vessel engine sound, the sound from 

propellers, as well as the low frequency harmonics of these sources (Hildebrand 2009). The 500 

Hz band includes other ship-radiated sound, as well as other natural and ambient sources such as 



137 

 

marine mammals that communicate at low frequencies (Wenz 1962). The 3.2 kHz band was 

selected because it can contain higher frequency radiated vessel noise, as well as significant 

energy from the SBP (center frequency of 3.5 kHz, with bandwidth up to 12 kHz) used during 

the Mixed Acoustic period of this study.   

The aforementioned metrics were computed using a 100-ms time window, which was 

motivated by the need to interpret the sound levels with respect to marine mammal hearing and 

the MBES signals. Several temporal windows for hearing integration times of marine mammals 

have been reported, including 35, 50, and 125 ms, as well as the conjecture that some, if not all, 

marine mammals may have frequency-dependent hearing integration (Johnson 1991, Kastelein et 

al. 2010a,  Kastelein et al. 2010b, Tougaard et al. 2015).  Due to the uncertainty around the exact 

integration time of marine mammal hearing and in recognition of the time-frequency resolution 

trade-offs of this specific data set (i.e., shorter time windows equates to coarser frequency 

resolution), a 100-ms time window was chosen as the primary temporal window upon which to 

assess sound levels with respect to beaked whale hearing. The MBES signal duration is on the 

order of 10’s of milliseconds (due to the multisector transmission), thus the 100 ms temporal 

window was relevant in consideration of the MBES signals as well. Thus, the 100 ms window 

was primarily used throughout this work, but did vary in a few circumstances (i.e., computation 

of 24-h cumulative sound exposure levels). Where it diverged from this, the choice of temporal 

window will be further explained.  The acoustic data processing was done in collaboration with 

Michael Smith at the Center for Coastal Ocean Mapping who performed the essential MATLAB 

processing of the acoustic data set into the sound level time series used in the rest of this work. 

Mapping Activity and Designation of Analysis Periods 
The goal of this chapter was to examine sound level metrics and compare them across 

time and space in order to characterize the anthropogenically-modified and natural sound levels 
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of the marine soundscape. Thus, the sound level metric time series were partitioned into four 

analysis periods based on the anthropogenic activities during those periods.  These included 1) 

No Activity (NA), a time immediately preceding the mapping survey when no activity related to 

the mapping survey was occurring on the SOAR array, 2) Vessel Only (VO), a period when only 

the survey vessel was known to be on the array and all active acoustic systems related to 

mapping were off, 3) Vessel and MBES (VM), a period which included the presence of the 

survey vessel and the active EM 122 MBES on the SOAR array, and 4) Mixed Acoustics (MA), 

a period that included the survey vessel on the array with transmitting Kongsberg EM 122, 

Kongsberg EM 712 MBES (40 kHz), Simrad EK 80 wide-band echosounder at various 

frequencies (18 kHz), and a Knudsen sub-bottom profiler (3.5 kHz) at various times throughout 

the period. More detail will be provided on the nature of the activities conducted during each of 

these periods in the Results section. 

 Aside from the known active acoustic sources used during the three-day survey, there 

may have been other acoustic sounds incidentally recorded on the array hydrophone receivers.  

These may have included sounds inherent with the safe operation of the research vessel, sounds 

from other vessels transiting near the array, and/or biological, mechanical, or geophysical 

activity. Additionally, there may have been sounds related to any activity occurring on or near 

San Clemente Island, the U.S. Navy base, directly adjacent to the SOAR. However, it is worth 

noting that the survey took place during the first week of January when activity at the SOAR was 

very limited, if at all. As such, there was no way of excluding other potential sound sources from 

the soundscape assessment of the survey activity. But the presence of other sounds to some 

degree—anthropogenic or natural—would be a reasonable expectation for the SOAR 

soundscape. Due to the sporadic and intermittent use of the various active acoustic systems 
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together and separately throughout the MA period, a thorough characterization and comparison 

of all active acoustic sources in this period was not undertaken. The emphasis of the soundscape 

study was on characterizing the contribution of the 12-kHz EM 122 MBES, the system primarily 

used for the mapping survey. 

Spatially, analyses were conducted either from an array-wide perspective, utilizing all of 

the sound level data from all 89 hydrophones, or individually by assessing the sound levels from 

nine select hydrophones, which provided perspective about the variability in sound levels across 

the array, due to the bathymetry, depth of the hydrophones, and exposure of the hydrophones to 

the various anthropogenic activities related to the mapping survey. The nine hydrophones were 

selected to provide a representative spatial coverage of the array, while avoiding peripheral (or 

edge) hydrophones. The hydrophones examined were numbers 14, 16, 19, 22, 45, 57, 63, 70, and 

85 (Figure 5.1), with roughly 5-15 km horizontal distance between two adjacent hydrophones 

examined. Hydrophone 14 is located in the northeast, hydrophone 16 in the north center, 

hydrophone 19 in the northwest, hydrophone 22 in the center-east, hydrophone 45 in the center, 

hydrophone 57 in the west center, hydrophone 70 in the southeast, hydrophone 63 in the south 

center and hydrophone 85 in the southwest (Figure 5.1).  A closer inspection and comparison of 

each of the 89 hydrophones individually was beyond the scope of this study.  
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Figure 5.1. SOAR hydrophone array and the 9 hydrophones selected (blue filled circles) for 

examination. 

Amplitude Analyses  

Time Series Annotation 

Analysis-specific Methodology 
In order to understand how the MBES mapping survey impacted the local soundscape, 

the sound level metric time series were examined to identify acoustic events during the study 

period. This was done on a per hydrophone basis for each of the nine selected hydrophones. 

Because of its location in the center of the SOAR and proximity to repetitive passes of the survey 

vessel during the mapping survey, the sound level time series of hydrophone 45 were annotated 

first. Sound level percentiles, i.e., 1, 5, 10, 25, 50, 75, 90, 95, and 99th, were computed for the 

following sound level metrics for the hydrophone 45 acoustic data set: SPLpk, SEL, 50 Hz, 12.5 

kHz, 40 kHz BL for each analysis period, i.e., NO, VO, VM, and MA. An acoustic event was 

defined a priori as a point in the SPLpk time series when the 95th percentile was exceeded in a 

given analysis period. The SPLpk time series had to return to or below baseline conditions --

defined here as the 50th percentile of the SPLpk metric for a given analysis period --before 

another acoustic event was triggered. Changes in the other sound level metrics were discussed 

with respect to the 50th percentile level value for the same metric being discussed for a specific 
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analysis period. The 50th percentile level value was referred to throughout as the baseline sound 

level. For those BL metrics where the percentiles were not calculated, changes in the sound 

levels were discussed relative to a local baseline, defined here as the approximate static sound 

level value for a given metric before and/or after an acoustic event. 

Acoustic events were identified across the entire study period and described. Several 

animations of the sound levels were generated and visually referenced for interpreting the nature 

(source, amplitude, duration, spatio-temporal characteristics) of the acoustic event. In particular, 

animations iterating through the spectral probability density (SPD) of every minute, spatial 

animations iterating through the one-minute broadband and individual decidecade BLs (Smith et 

al. 2021), and spectrograms of specific events were generated. The SPD plots provided a 

temporal and frequency perspective of how the sound levels varied over time by showing the 

empirical probability density of the spectral level observations across all decidecade bands in 

each one-minute window. To obtain the empirical probability density, the 100-ms temporal 

observations of each minute, in each of the 30 decidecade bands were partitioned into 1/10th dB 

bins constituting each SPD plot. Broadband and decidecade band spatial animations were created 

by Michael Smith at the Center for Coastal and Ocean Mapping and were used to understand if 

the acoustic event was present only on the hydrophone under assessment, or if the event was a 

more spatially broad phenomenon (e.g., elevated sound levels on all hydrophones or over a 

larger vicinity). Spectrograms corresponding to the time of the acoustic events were created in 

Audacity® and were examined to aid in the identification of the sound-generating source and the 

nature of each acoustic event. 

In addition, sound level metric time series plots were generated to clearly display the 

acoustic events and summarize the time series annotation effort for each hydrophone. The 100 
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ms sound level time series were smoothed over each 5-minute window and plotted. To provide 

context for and aid in the interpretation of the source of the acoustic events with respect to the 

mapping activity, the oblique range (R) of the survey vessel to each hydrophone (Equation 5.7), 

and the expected transmission loss (TL in dB) at those ranges (Equation 5.8) were also plotted, 

based coarsely on spherical spreading loss and frequency-specific attenuation with the same time 

resolution as the sound level time series.  

𝑅 = √(𝑠𝑒 − ℎ𝑒)2 + (𝑠𝑛 − ℎ𝑛)2 + (𝑑𝑒𝑝𝑡ℎ)2    (Equation 5.7)  

TL= 20𝑙𝑜𝑔𝑅 + 𝛼𝑅         (Equation 5.8) 

where the variables in Equation 5.7 refer to the ship and hydrophones’ easting (se, he, 

respectively) and northing (sn, hn, respectively) location in the Universal Transverse Mercator 

coordinate system (UTM). Depth corresponds to the hydrophone depth (mean sea level), with the 

unit of each variable and the resulting oblique range in meters. The attenuation coefficient (𝛼) 

used in Equation 5.8 for each BL was determined based on the center frequency of the respective 

BL (Francois and Garrison 1982). These were 𝛼 = (0, 2.4 × 10−5, 1.92 × 10−4, 1.5 ×

10−3, 1.12 × 10−2 in dB/m) for the 50 Hz, 500 Hz, 3.2 kHz, 12.5 kHz, and 40 kHz BLs, 

respectively. 

 Based on the results of the initial, detailed annotation of hydrophone 45, a more efficient 

procedure was established for annotating the acoustic data from the other hydrophones with 

respect --specifically--to the survey activity. It was expected that there would be obvious features 

in the sound level time series that could be used to identify the acoustic events related to the 

mapping activity (e.g., distinct peak or extended elevated levels in the 12.5 kHz BL). Sound level 

percentiles (1, 5, 10, 25, 50, 75, 90, 95, and 99th) for the SPLpk, SEL, 50 Hz, 12.5 kHz and 40 

kHz BLs were also computed for each analysis period for each of the other eight hydrophones 
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and used in subsequent analyses. However, the sound level percentiles for the other hydrophones 

were not used for the identification of acoustic events, as they were for hydrophone 45.  

Results 

Chronological summary of study activities 

The No Activity (NA) period was based on the amount of time prior to the survey 

vessel’s presence on the SOAR array for which acoustic data could be obtained. This was an 

approximately 3 hour and 40 minute period from 1/4/17 20:13-23:51 UTC (note: all times 

presented in UTC).  

The Vessel Only (VO) period, which began 1/4/17 23:51 and ran until 1/5/17 08:16 for a 

total of 8.5 hours, consisted of two across the array lines by the survey vessel from the south 

center to the north center of the array and back to the south.  The survey vessel was operated at 

roughly 10 knots throughout this period. All other active acoustic sources were off.  The track 

lines of the VO period are shown in blue in Figure 5.2.  

 

Figure 5.2. Track lines of the vessel during the analysis periods containing anthropogenic 

activity: blue lines correspond to the Vessel Only period, red with the Vessel and MBES period, 

and green with the Mixed Acoustics period. 

The Vessel and MBES (VM) period consisted of the primary mapping survey utilizing 

the hull-mounted Kongsberg EM 122, a MBES with a 12-kHz center frequency. The VM period 
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began at the end of the VO period on 1/5/17 at 08:16, and ran until 1/6/17 13:48, for a total of 

approximately 29.5 h (Table 5.1). The survey was conducted as a typical mapping survey in a 

‘mowing-the-lawn’ fashion (Figure 5.2, red lines) using the EM 122 in Deep, Dual Swath mode 

with continuous wave pulses only -- i.e., not frequency-swept.  The survey was conducted in a 

calm sea state with 1–2-foot swells.  Generally, the swath width of the EM 122 transmission was 

fixed to 130° for each swath.  However, there were times when it was decreased to 90° or 

increased to 144° to optimize data collection for mapping purposes. The vessel’s survey speed 

was 10 knots except when turning the ship, during which the speed was dropped to 5 knots.   

The Mixed Acoustics (MA) period lasted from 1/6/17 13:48- 1/7/17 06:55, approximately 

18.33 h (Table 5.1) and included a few diagonal lines across the array, as well as a few shorter 

lines (Figure 5.2, green lines). This period consisted of multiple acoustic sources which were in 

use intermittently. The acoustic sources included the Kongsberg EM 122, a Kongsberg EM 712 

MBES (operating frequency of 40 kHz), a Simrad EK 80 wide-band echo sounder (with 

operating frequency of 18 kHz), and a Knudsen sub-bottom profiler (3.5 kHz).  

Table 5.1. Extraction times (UTC) and duration of each analysis period. 

Analysis Period Start Time End Time Total Time 

NA 1/4/17 20:13 1/4/17 23:51 3 h 38 min 

VO 1/4/17 23:51 1/5/17 08:16 8 h 25 min 

VM 1/5/17 08:16 1/6/17 13:48 29 h 32 min 

MA 1/6/17 13:48 1/7/17 06:55 18 h 17 min 

 

The detailed events of the MA period that were logged in the cruise report are provided 

here. The EM 712 was turned on auto mode at 1/6/17 13:48, initially turning on in Very Deep 

mode with a single 112° swath. Auto-ping mode was turned off 1/6/17 14:32 and fixed in Extra 
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Deep mode with a 90° swath until 1/6/17 15:16 when it was turned off for a series of calibration 

exercises with the EM 122 in the center of the array (Hydrophones 36, 55, and 65 in Figure 5.1) 

that lasted until 1/6/17 19:20. At this time, the EK-80 was turned on and run intermittently from 

1/6/17 19:33-20:17, and again from 21:19-22:36. When the EK-80 was operational, the 18-kHz 

frequency was used with 8-ms pulse lengths, 2000 W power, and a 5-s interval between pings. 

At 20:56, the EM 122 was turned back on and operated in Deep, Dual Swath, CW Only mode 

with 144° swaths. At 22:41, the EM 122 was switched to Very Deep, FM-enabled mode, which 

forces the system into single swath only with a reduced swath width of 108°. The EM 122 was 

turned off at 1/7/17 1:42, when simultaneously the Knudsen Chirp 3260 SBP was turned on. 

There were some issues initially that led to its intermittent use until 02:20, at which time it was 

operated continuously until 1/7/17 06:55 (i.e., the end of the survey activity). At, 04:29 the EK-

80, EM 122 (Very Deep, FM mode), EM 712 (Extra Deep mode), and the Knudsen SBP were all 

operated together until 1/7/17 6:55 when the survey was considered complete. At this point, the 

survey vessel transited off the SOAR array and continued to survey along nearby San Clemente 

Island using the EM 122 and EM 712 in Auto-ping mode. A summary of this narrative is 

provided in Figure 5.3. 
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Figure 5.3. Top. Timeline of four temporal analysis periods and description of acoustic sources 

related to mapping activity. Bottom. Finer-temporal timeline of the operation of active acoustic 

sources during the Mixed Acoustic Period.  

SPD animations (archived in the soundscape folder share drive repository in 

RES2019SCORE housed at the Center for Coastal and Ocean Mapping at the time of dissertation 

publication, henceforth termed the repository), spatial animations iterating through the one-

minute broadband and individual decidecade band levels (located in the repository, created by 

Michael Smith), and spectrograms of specific events were generated and saved (Appendix 5.1). 

Audio files (.wav) of a selection of the acoustic events from each hydrophone were also archived 

(located in the repository).  

Hydro 45 

 The results of the hydrophone 45 annotation follow. Acoustic events were identified 

when the 95th percentile SPLpk was exceeded for each analysis period (Table 5.2). Where 

possible, changes in the sound level metrics were discussed with respect to the baseline sound 
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level i.e, the 50th percentile level, for a given metric. These values are contained in Table 5.2. For 

those BL metrics where the percentiles were not calculated, changes in the sound levels were 

discussed relative to the local baseline, defined here as the approximate static sound level for a 

given metric before and/or after an acoustic event.  

Table 5.2. SPLpk percentile values (dB re 1 µPa) for each analysis period used for annotating the 

sound level time series on hydrophone 45, and select baseline decidecade band levels (dB re 1 

µPa2/Hz). These values are also contained in Appendix 5.2. 

 Percentile Value 

Percentile NA VO VM MA 

SPLpk 50th  (baseline) 101 99 103 102 

SPLpk 95th  (i.e., threshold for 

triggering an acoustic event) 

111 113 112 117 

50 Hz band 50th (baseline) 68 60 55 56 

12.5 kHz band 50th (baseline) 19 21 31 24 

40 kHz band 50th (baseline) 13 14 16 14 

 

NA period 

 The SPLpk of the NA period was higher than the baseline sound level (i.e., the 50th 

percentile of 102 dB re 1 μPa) of the entire study period over much of the NA period (Figure 5.4, 

first plot). Two acoustic events in SPLpk were detected in this period, one of 116 dB re 1 μPa 

(event 1, Figure 5.4) and the other of 113 dB re 1 μPa (event 2, Figure 5.4). An examination of 

the recreated SPLpk through time and space on the entire array (online repository) revealed that 

event 1 was an array-wide phenomenon, whereas the second event appeared to be isolated to the 

western edge of the array. Based on the spectrograms, the greatest spectral energy corresponding 

to these events was represented as spectral lines at very low frequencies (10’s of Hz) (event 1 

and 2, hydro 45, Appendix 5.1), suggesting the elevated levels may be driven by a passing vessel 

about:blank


148 

 

(see corresponding peaks in the 50 Hz and 500 Hz time series--Figure 5.4, second plot). The 

survey vessel, the Sally Ride, seems an unlikely source given it was more than 30 km away from 

the SOAR at these times.  However, the array-wide nature of event 1, in particular, raises 

uncertainty about whether a passing vessel was the source of this event. 

 

 

Figure 5.4. Sound level time series for hydrophone 45. First plot- Broadband sound level time 

series: SEL (blue), SPLpk (orange), wSEL (yellow), and wSPLpk (purple). Numbers indicate 

acoustic events identified in annotation. Asterisks indicate that the acoustic event was most likely 

attributed to the survey activity. Perpendicular lines on all graphs delineate the four analysis 

periods, NA, VO, VM, and MA, shown at the bottom of the figure, respectively. Second plot-

Select unweighted BL time series: 50 Hz (blue), 500 Hz (orange), 3.2 kHz (yellow), 12.5 kHz 

(purple), and 40 kHz (green). Third plot- Weighted decidecade BL time series. Line colors and 

frequencies are the same as in the second plot. Fourth plot-Time series of modelled frequency-

specific transmission loss (left axis) and range from hydrophone in kilometers (black line, right 

axis). Color of frequency-specific transmission loss corresponds to colors of frequencies 

described for the second plot. 

VO Period 

During the VO period, the first acoustic event (i.e., SPLpk > 113 dB re 1 μPa) 

corresponded with an increase in the 50 Hz, 500 Hz, and 12.5 kHz BLs (event 3), suggesting the 

event may be related to a passing vessel. The Sally Ride was over 20 km away from hydrophone 
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45 at this time and was unlikely to be the cause, especially as the sound levels decreased again 

despite a continuously decreasing distance between the survey vessel and hydrophone. An 

examination of the spatiotemporal animations of the SPLpk revealed that this phenomenon 

occurred across the array. Inspection of a spectrogram of this event (Appendix 5.1, hydro 45, 

event 3) suggested this event was largely driven by increased energy at frequencies of 5 kHz and 

below, noticeably centered around 400 Hz, 1.2 kHz, and 5 kHz. The cause for such a spatially 

broad phenomenon was unclear.  

The Sally Ride made its first relative closest point of approach (RCPA) during the VO 

period to within 2 km of the hydrophone, corresponding with a peak in SPLpk (event 4, 125 dB 

re 1 μPa). There was a clear rise in all of the BLs examined (Figure 5.4, event 4), suggesting this 

event was very likely associated with the proximity of the survey vessel to the hydrophone. 

Although the levels fluctuated in each band prior to this event, there was a steady monotonic 

increase in the BLs starting when the vessel was approaching from ~ 15 km away. The levels did 

not return to baseline (i.e., <99 dB re 1 μPa2/Hz) until the Sally Ride was again ~ 15 km away. 

There was a similar increase in all of the BLs examined, correlated with the increase in SPLpk. 

The peaks in the various BL time series were consistently narrower as the frequency increased.  

Narrower peaks corresponded to shorter time periods that the particular BL was elevated, which 

makes sense given that lower frequency signals attenuate less over the same distance compared 

with higher frequency signals (see Figure 5.4, fourth plot for frequency-specific estimates of 

transmission loss). In other words, the lower frequency components of a signal are elevated for a 

longer time period than the higher frequency components as the source moves away from the 

hydrophone because the high frequency sounds attenuate more rapidly as they propagate. For 

event 4, the 50-Hz band varied by 26 dB from baseline levels (i.e., 60 dB re 1 μPa2 /Hz median 
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vs a peak in this band of 86 dB re 1 μPa2 /Hz), while the 40-kHz band increased by only 8 dB 

(i.e., 14 dB re 1 μPa2 /Hz median vs a peak in this band of 22 dB re 1 μPa2 /Hz). It is worth 

noting that a second, albeit smaller peak, occurred when the vessel was approximately 3 km 

away conducting a CTD cast to approximately 1600 meters, which took just over an hour to 

perform. The vessel changed orientation throughout this time, despite staying relatively 

stationary, with respect to hydrophone 45. This peak in the sound levels may be an artifact of the 

ship thrusters trying to hold position during the CTD cast when using dynamic positioning. 

Alternatively, this secondary peak in the sound levels could be due in part to differences in 

directivity of vessel-radiated sound (Mitson 1993, Arveson and Vendittis 1999, McKenna et al. 

2011, Gassman et al. 2017). It is worth noting that differences in directivity are more pronounced 

at higher frequencies. For example, McKenna et al. (2011) showed that ship noise from several 

commercial ship types radiates asymmetrically, with louder noise from the stern versus the bow. 

The activity of the survey vessel was distinguishable in the time series for about 3.5 hours of the 

VO period, which was generally when the vessel was within 8 km of the hydrophone. 

VM Period 

 The first acoustic event during the VM period (i.e., SPLpk of 129 dB re 1 μPa, note: the 

acoustic event trigger for the VM period was 112 dB re 1 μPa) visually correlated with a peak in 

the 40 kHz band (Figure 5.4, event 5). Because the survey vessel was ~15 km away and the 

transmission loss in this band at that range was over 140 dB, this event was very unlikely related 

to the survey vessel.  Rather it was likely related to a source much closer to the hydrophone. 

Upon reviewing a spectrogram of the event (Appendix 5.1, hydro 45, event 5) it appeared to be 

clicks potentially from foraging beaked whales, known to produce signals at this frequency 

(Baumann-Pickering et al. 2013). There was also significant energy centered around 1 and 5 
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kHz, but with no discernable temporal pattern, that likely also contributed to the high SPLpk 

value. The next acoustic event (event 6) was visible as elevated levels in all of the metric time 

series. This event corresponded with when the survey vessel was transiting from the south to the 

north by hydrophone 45, with the closest approach to hydrophone 45 at 5.3 km. At the peak, the 

sound levels were 25-35 dB over baseline (Table 5.2) for the 12.5 kHz, 40 kHz, SEL, and SPLpk 

metrics (e.g., for the 12.5 kHz band the peak was 64 dB re 1 μPa2/Hz and the median for the 

period in this band was 31 dB re 1 μPa2/Hz). For the lower frequency BLs, the respective peak 

magnitudes of the event were ~15 dB or less over baseline (e.g., in the 50 Hz band the peak was 

69 dB re 1 μPa2/Hz and the 50th percentile, i.e., baseline, was 55 dB re 1 μPa2/Hz). The 

maximum SPLpk reported at this time was likely conservative, as the hydrophone clipped (i.e., 

SPLpk 138 dB re 1 μPa). This acoustic event very clearly correlated with the vessel and MBES 

activity due to the strong response in the 12.5 kHz band, which was noticeably different than the 

sound level signature of event 4 in the VO period when the MBES was not on. 

Event 7 (SPLpk peak of 114 dB re 1 μPa) corresponded with a peak in the 40 kHz band 

(17 dB re 1 μPa2/Hz), and appeared to be related to clicks near the hydrophone, potentially from 

a marine mammal (Appendix 5.1, hydro 45, event 7). The next RCPA of the survey vessel was ~ 

10 km from the hydrophone, which corresponded with another peak in SPLpk (120 dB re 1 μPa) 

and the 12.5 kHz band (31 dB re 1 μPa2/Hz median vs 46 dB re 1 μPa2/Hz peak) (event 8). There 

were not clear peaks in the other select frequency bands at this time.  During event 9, SPLpk 

reached 114 dB re 1 μPa. The only obvious signal in the corresponding spectrogram was a very 

loud low frequency signal (around 50 Hz) that occurred roughly every twenty seconds for a 

duration of one second (Appendix 5.1, hydro 45, event 9). The source of this event is unknown, 

about:blank
about:blank


152 

 

but appears unrelated to the survey vessel which was beyond 30 km from the hydrophone at this 

time.  

Event 10 corresponded with the next RCPA of the survey vessel to the hydrophone at 

~14 km. The MBES signal was again noticeable in the spectrogram of this event (Appendix 5.1, 

hydro 45, event 10).  There was simultaneously a very loud signal present between 50-100 Hz 

(likely in-part related to the low frequency ship-radiated sounds), which also contributed to the 

peak observed in SPLpk (i.e., 115 dB re 1 μPa). The same peak in the 12.5 kHz band (38 dB re 1 

μPa2/Hz), corresponded with a level 7 dB above baseline (Table 5.2).  A similar low frequency 

signal also seemed to be the driving mechanism of peak event 11 (SPLpk 133 dB re 1 μPa), but 

at this time the survey vessel was more than 25 km away making it unlikely to be the only source 

(i.e., the low frequency ship-radiated sound) for such a loud event. There were also short 

regularly repetitive pulses in the 40 kHz band (Appendix 5.1, hydro 45, event 11) that 

contributed to this acoustic event.  

Event 12 very clearly correlated with the next RCPA of the survey vessel passing from 

west to east by the hydrophone at ~3.5 km (SPLpk of 135 dB re 1 μPa). The event was 

dominated by energy in the 12.5 kHz band (64 dB re 1 μPa2/Hz peak), but there were smaller 

peaks in the lower frequency BLs. Similarly, event 13 (SPLpk peak of 121 dB re 1 μPa) 

corresponded with a peak in the 12.5 kHz BL (43 dB re 1 μPa2/Hz) when the vessel was 12.5 km 

away. Between 1:15 and 1:35 on 1/6/17, position data were lost for the survey vessel. While 

these were restored, the vessel spun around roughly in the same position about 10 km to the east 

of hydrophone 45.  The timing of this activity corresponded with the pattern in the 12.5 kHz BL 

time series just before event 14 (Figure 5.4). Event 14 corresponded with the next RCPA of the 

survey vessel to 9.3 km from hydrophone 45, characterized by a peak in SPLpk of 123 dB re 1 
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μPa and in the 12.5 kHz band of 48 dB re 1 μPa2/Hz, which were above baseline levels (Table 

5.2) for the period by 20 and 17 dB, respectively. Events 15, 16, and 17 all corresponded to 

RCPAs of the survey vessel to under 6 km (4.7 km, 1.6 km, and 5.7 km, respectively) of the 

hydrophone, where each time the SPLpk peak recorded was 138 dB re 1 μPa, the receiver’s 

clipping threshold. These events corresponded with peak values in the 12.5 kHz band of 64, 73, 

and 66 dB re 1 μPa2/Hz, respectively (i.e., 33, 42, and 35 dB above baseline (Table 5.2, 

respectively). At each of these times, there were also peaks in the 50 Hz and 40 kHz band (i.e., 

local increases of 12-45 dB), with a visible increase in the other bands (i.e., local increases of 3-

12 dB).  In fact, the change at these time points (events 15, 16, and 17) in the 40 kHz band sound 

levels was more relative to the change in the 12.5 kHz BLs. An examination of the spectrograms 

of these events (Appendix 5.1, hydro 45, events 15-17) revealed the most clipping occurred 

during event 16, which is when the vessel was closest to the hydrophone, 1.6 km away, and 

clipping occurred the least during event 17 when the vessel was 5.7 km away from the 

hydrophone. There were also clicks present during event 17, centered around 40 kHz, but not 

during events 15 and 16. Therefore, at least part of the peak in the 40 kHz band was attributed to 

a source other than the mapping activity, most certainly marine mammal clicks. 

 It is also worth noting that immediately preceding and following event 17, there were 

smaller peaks in SPLpk and the 12.5 kHz BL when the vessel was ~ 9 km away approaching 

hydrophone 45 obliquely rather than straight on (as in event 15 and 16). These peaks were of 115 

and 116.5 dB re 1 μPa in SPLpk, and 45 and 44 dB re 1 μPa2/Hz in the 12.5 kHz BL, before and 

after event 17, respectively. One hypothesis for these peaks in the time series is that they were 

due to grating lobes, or replicas with comparable intensity to the main transmission beam of the 
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EM 122. This artifact, which is not normally present, has since been fixed in the latest version of 

the 12-kHz Kongsberg system, i.e., the EM 124 (Kongsberg, personal communication).  

Events 18 and 19 (SPLpk of 132 and 131 dB re 1 μPa, respectively) both corresponded 

with peaks in the 50 Hz and 40 kHz bands. These events did not appear to be correlated with the 

vessel activity, as the 40 kHz peaks were practically of identical levels despite the survey vessel 

constantly moving away during these times (i.e., 9 km away during event 18 and 24 km away 

during event 19), in addition to the transmission loss at these distances being extremely severe, 

i.e., >140 dB. Spectrograms of these events revealed presumably marine mammal clicks centered 

around 40 kHz, as well as a longer, louder, and more irregular signal around 50 Hz (Appendix 

5.1, hydro 45, events 18-19). 

MA Period 

The first acoustic event of the MA period (event 20, SPLpk of 122 dB re 1 μPa; note the 

SPLpk 95th percentile for this analysis period was 117 dB re 1 μPa) corresponded with a peak in 

the 40 kHz band (27.5 dB re 1 μPa2/Hz) when the vessel was more than 25 km away. Due to the 

transmission loss at this range (>>140 dB), it is implausible that it could have been the 40 kHz 

signal of the EM 712 transmitting at the time. The spectrogram revealed that the source was most 

likely clicks near the hydrophone, presumably from a marine mammal (Appendix 5.1, hydro 45, 

event 20). Event 21 (SPLpk of 138 dB re 1 μPa) also corresponded with a peak in the 40 kHz 

(26.5 dB re 1 μPa2/Hz) and 12.5 kHz band (40 dB re 1 μPa2/Hz, 16 dB over baseline, see Table 

5.2). This, again, seemed unrelated to the survey vessel which was still over 17 km away (TL 

>>140 dB for 40 kHz and >110 dB for 12.5 kHz). An examination of the spectrogram of event 

21 and the SPD animation revealed elevated levels related to regularly spaced pulses with 

spectral content between 3-20 kHz, which lasted about 30 milliseconds each. Additionally, there 
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were clicks centered around 40 kHz, which appeared to be similar to those presumed to be 

marine mammal clicks in other instances (Appendix 5.1, hydro 45, event 21). The source of the 

broader pulses was not identified, as no known signal at these frequencies was being transmitted 

in relation to the survey activity at this time. Event 22 (SPLpk of 135 dB re 1 μPa) also contained 

pulses of an unidentified source. These were more broadband, between 200 Hz and 40 kHz, but 

with the highest energy below 2 kHz. These pulses occurred every 400-600 ms and lasted 

approximately 50 ms (Appendix 5.1, hydro 45, event 22). This event occurred when the vessel 

was stationary about 6 km away and just before the calibration tests with the EM 122 were 

conducted. It is possible that there were signals transmitted during the calibration testing that 

were not comprehensively noted in the survey report. 

During the calibration tests, pure tones at 500 Hz steps between 10-14 kHz, as well as a 

2-20 kHz and 2-40 kHz chirps were transmitted from the EM 122. These tests were performed 

first over hydrophone 55, then hydrophone 65, and finally over hydrophone 36. There were 

breaks between each of the hydrophone tests as the vessel transited to the next location. Event 23 

(SPLpk of 125 dB re 1 μPa) appeared to be related to the calibration event 5.5 km away on 

hydrophone 55, as there were noticeable pulses in the spectrogram of this event that match the 

signals being transmitted at this time (Appendix 5.1, hydro 45, event 23). There were no peaks in 

the SPLpk that coincided with the second calibration event 12 km away from hydrophone 45. 

Between the second and third calibration events the EK-80 (18 kHz) was turned on and the 

vessel made a close pass by hydrophone 45 to within 2.6 km. This was visible as a peak (event 

24, SPLpk of 121 dB re 1 μPa) across all of the selected frequencies (Figure 5.4, second plot), 

characteristic of other very close passes by vessels in this annotation. The EK-80 signal was also 

clearly visible in the spectrogram of the event, and manifested as an elevated 99th percentile 
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around 18 kHz in the SPD animation at this time. A distinct acoustic event was not triggered at 

the time of the third calibration event occurring ~6 km from hydrophone 45, although there was 

a very small peak in SPLpk between events 24 and 25 that may be attributed to this event. 

Immediately after the last calibration test the EM 122 was turned on again while the vessel was 6 

km away, corresponding with a peak of 121 dB re 1 μPa in SPLpk (event 25). This event was 

especially prominent in the 12.5 kHz band (48 dB re 1 μPa2/Hz peak, 24 dB above baseline), and 

at frequencies of 500 Hz and lower (Appendix 5.1, hydro 45, event 25). 

 The next acoustic event (event 26, SPLpk of 132.5 dB re 1 μPa) was closely associated 

with the next RCPA of the survey vessel to the hydrophone at ~3.7 km (event 26). At this time 

the EM 122 was on in Very Deep, FM-enabled single swath mode, which corresponded most 

prominently with an elevated 12.5 kHz BL (65 dB re 1 μPa2/Hz, 34 dB over baseline). There 

were also elevated lower frequency BLs, most likely corresponding to vessel noise from the close 

approach. Immediately following event 26, there was a strange spike in both the SPLpk and 12.5 

kHz BL time series.  It is unclear what this may be, but one hypothesis is that it may be related to 

the EM 122 grating lobes, which may have resulted in clipped signals at the receiver as the 

survey vessel was approximately 8 km from the hydrophone. The next acoustic event (SPLpk of 

123 dB re 1 μPa) occurred when the vessel made another RCPA to hydrophone 45 at 5.8 km 

while the Knudsen SBP was on (event 27). This event was associated with peaks in the 500 Hz, 

3.2 kHz (i.e., 46 dB re 1 μPa2/Hz peak, 10 dB over the local baseline), and 12.5 kHz BLs (i.e., 31 

dB re 1 μPa2/Hz peak, 7 dB over baseline), although the EM 122 was not on at this time (Figure 

5.4, second plot, event 27).  Event 28 (SPLpk of 120 dB re 1 μPa) was characterized by small 

peaks in the 50 Hz and 40 kHz BLs. Inspection of the spectrogram of this event revealed high 

amplitude clicks centered around 40 kHz (Appendix 5.1, hydro 45, event 28). This event was not 
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correlated with the survey activity as the vessel was 14 km away and transmission loss at this 

range was greater than 140 dB. The final peak event detected (event 29, SPLpk 125 dB re 1 μPa) 

occurred when the survey vessel passed within 5.6 km of hydrophone 45 with all active acoustic 

sources turned on (EM 122, 712, EK 80 and SBP). This corresponded with peaks in the 12.5 kHz 

band (55 dB re 1 μPa2/Hz, 31 dB over baseline), the 500 Hz band (~10 dB over the local 

baseline), and the 3.2 kHz band (~5 dB over the local baseline). It is worth noting that all of the 

acoustic sources had been turned on an hour prior to this peak event when the vessel was >20 km 

away from hydrophone 45 and remained on for the remainder of the study period. The levels in 

all bands decreased by the time the vessel was beyond 15 km, suggesting even this loud event 

was local in nature. 

In the unweighted time series, the 50 Hz band was the dominant signal for all but the 

west-to-east RCPA (event 12) when the 12.5 kHz band was elevated more than the 50 Hz band. 

After weighting the sound levels, the 3.2 kHz band and 12.5 kHz band were similarly the most 

distinguishable across the entire study period (i.e., all analysis periods), except during the 

majority of the events identified as related to the survey activity when the 12.5 kHz band 

dominated. During event 27, the 3.2 kHz levels, presumably related to the SBP, were slightly 

elevated over the 12.5 kHz levels. There were also a few times when the 12.5 kHz band was 

elevated over the other bands, but not because of the survey activity.  In addition, there were 

times when the 40 kHz band also exceeded the 3.2 kHz band, coinciding with events related to 

RCPAs of the survey vessel and MBES under 5 km of the hydrophone (i.e., events 6, 15, 16, and 

17). The elevated 40 kHz band in this context, may be related to harmonics from the EM 122 in 

this band, which are generally much lower than the main signal in the 12.5 kHz band, but at this 
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distance may still be detectable. Lastly, the 50 Hz band signals were the least distinguishable 

with respect to the weighted sound level metrics.  

Hydrophone 45 Annotation Summary 

Several patterns were revealed through the annotation of hydrophone 45. First, there were 

times of elevated low frequency levels during the NA period, which was an array-wide 

phenomenon of unknown origin. The close approach of the survey vessel during the VO period 

corresponded with maximum increases in SPLpk and the 50 Hz band of 26 dB, however, this 

event also coincided with another array-wide increase in these levels. Local increases of 8-23 dB 

were observed in the other select bands that did not seem influenced by the array-wide 

phenomenon. During the VM period, close passes (i.e., ≤6 km) of the vessel by the hydrophone 

were characterized by maximum increases of 25-35 dB in the 12.5 kHz and SPLpk metrics, and 

maximum increases of 15 dB in the lower frequency bands. During these close passes, clipping 

did occur at times. Up to 10 km from the hydrophone, survey vessel passes with the active EM 

122 were characterized by increases of 15-20 dB over baseline in the 12.5 kHz band and SPLpk 

metrics. Up to 15 km away these maximum increases were between about 7-12 dB over baseline. 

During the MA period, the EK-80 signal was visible in spectrograms within only a few 

kilometers of the hydrophone, but did not seem to affect the overall SPLpk. When the SBP was 

on and the vessel was around 5 km from the hydrophone, the 3.2 kHz band levels were about 5-

10 dB over baseline for that analysis period. The signal of the EM 712 was not identified in the 

hydrophone 45 time series. This is most likely because even at its closest point while the EM 712 

was on, the survey vessel was still 5 km away. Aside from the directivity of the signal, at this 

range the 40 kHz signal also has an estimated transmission loss of about 120 dB.  There was not 

a discernible difference in the broadband levels when all of the active acoustic sources were on 
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versus when only one system was on. Furthermore, the elevated levels corresponding to acoustic 

events associated with the survey activity decreased again to baseline conditions within a similar 

time frame as when only one system was on. For example, with a 10-knot speed, even the closest 

RCPA of the vessel to the hydrophone was only visible in the sound level time series for about 

two hours, whereas some of the furthest RCPAs detected in the time series were only visible for 

a half an hour. In total, during the VM period, the activity of the survey vessel was clearly 

discernable on hydrophone 45 for about 11 hours and 45 minutes (i.e., about one third of the VM 

period), which was when the survey vessel was observed to be roughly within 17 km of the 

hydrophone. Of the 29 acoustic events detected in the hydrophone 45 SPLpk time series, 17 were 

identified as related to the survey activity.  During the VM period all of the acoustic events 

associated with the mapping activity clearly corresponded with a peak in the 12.5 kHz band.  

Focused Annotation  

In the hydrophone 45 annotation, the 12.5 kHz BLs were reliably indicative of the survey 

activity. Thus distinct peaks in the 12.5 kHz BLs were used to guide a more focused annotation 

of the other eight hydrophones, i.e., 14, 16, 19, 22, 57, 63, 70, 85, with respect to the mapping 

activity.  Due to the highly detailed nature of the annotation exercise and the repetitiveness of 

similar findings across hydrophones, the focused annotation results are contained in Appendix 

5.3. A summary of the annotation work, incorporating the findings from all nine hydrophones, 

follows here. 

Time Series Annotation Summary 

The detailed time series annotation of the nine hydrophones provided useful insight about 

how the various anthropogenic activities related to the mapping survey contributed to the sound 

levels of the SOAR soundscape. It also provided awareness about other sound sources present in 
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the acoustic data. In particular, during the NA and VO periods, there were epochs of low 

frequency sound present across the array, as demonstrated by a similar peak in the 50 Hz band on 

all nine hydrophones during both periods. There were also instances where vessels, other than 

the survey vessel, passed nearby to the array. These events were routinely detected on the 

northern and western edge hydrophones (i.e., hydro 14, 16, 19, 57, and 85) (which made sense 

given standard vessel traffic routes). There was also a lot of biological activity interspersed 

throughout the acoustic data on all of the hydrophones, particularly prominent in the 12.5 and 40 

kHz band levels. And finally there were many unknown sources and signals identified, some of 

which were equally as loud as some of the closest passes of the survey vessel to the hydrophones 

(e.g., hydro 22, event 3).  

 The NA period, during which the survey vessel was not on the array, was meant to 

provide information about the background SOAR soundscape without anthropogenic acoustic 

activity. However, there were several events on many of the hydrophones that indicated closely 

passing vessels, i.e., anthropogenic activity, during this period. For example, there seemed to be 

a vessel transiting across the north of the array visible on hydrophone 14 (event 2) and 19 (event 

1), and another event reminiscent of ship-radiated sound on hydrophone 85 (event 1). It was also 

expected that this period would be stable and quiet in comparison to the other periods. However, 

there was a high amplitude, low frequency (visible in 50 Hz band) signal detected across the 

entire array over much of the NA period. Because the assumptions about this period were not 

met, a comparison of the NA period with the other periods with these attributes in mind may be 

misleading. The assumption that the NA period was not influenced by substantial anthropogenic 

activity appears to hold better for hydrophones 22, 45, 63, 57, and 70 in comparison to the other 

hydrophones.  Ultimately, the characterization of the NA periods on each hydrophone and 
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comparison to the survey activity periods provides understanding of what the added input of a 

mapping survey would be on top of the typical SOAR background soundscape. 

 The other analysis periods served to provide understanding about how the sound levels 

were influenced by the various anthropogenic activities and how those activities differed from 

one another (i.e., vessel-related sound versus vessel and multibeam signals). Although the survey 

vessel was distinguishable in most of the selected hydrophone time series, it was not readily 

distinguishable on all (i.e., hydrophones 14, and 70), and in the case of hydrophone 85 the survey 

vessel made close approaches (i.e., <5 km) more than once.  In addition to the different exposure 

each hydrophone had to the VO activity, there were also instances where other suspected 

anthropogenic sources influenced the sound levels. For example, there were three events on both 

hydrophone 16 (events 2, 3, and 4) and 57 (events 2, 3, and 4) that appeared to be vessels 

transiting nearby, while only one of these events was the survey vessel. Similarly during the VM 

period, there appeared to be additional anthropogenic sources (i.e., transiting vessels) that 

influenced the sound levels. This included at least one documented event on hydrophone 19 

(event 7), 57 (event 9), and two on hydrophone 85 (events 6 and 7).  In terms of anthropogenic 

sources, the MA period seemed to be largely influenced by only the survey activity. However, 

there was a lot of biological activity identified during this period that appeared solely responsible 

for some of the changing sound levels (e.g., hydrophone 16, event 13; hydrophone 70, event 12), 

or was identified in addition to an anthropogenic source (e.g., hydrophone 85, event 14).  

 The time series annotations revealed that the various anthropogenic activities related to 

the survey had different and distinguishable sound level signatures. For example, events 4 and 16 

on hydrophone 45 represent the closest approach of the survey vessel during the VO and VM 

periods, respectively. In the VO period, the elevated sound levels in the five decidecade BLs 
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scaled similarly (i.e., the increase in levels parallel each other), whereas in the VM period, the 

close approach of the vessel and the actively transmitting EM 122 manifests as severely steep 

peaks in the high frequency bands (i.e., 12.5 kHz and 40 kHz) which surpass the peaks in the 

lower frequency bands (i.e., 3.2 kHz and 500 Hz). The 12.5 kHz band and the 50 Hz bands were 

similarly loud.  This matches expectation since the EM 122 signal is a known sound source in the 

12.5 kHz band.  

The peak in the 40 kHz band was unexpected but could be related to harmonics in the 40 

kHz band produced unintentionally from the transmission of the MBES. Harmonics are generally 

about 30 dB less than the fundamental frequency, and harmonics at 40 kHz should attenuate 

much more at the same distance as a 12.5 kHz signal. Thus a harmonic in the 40 kHz band 

should only be detected at very short distances from the source, so the presence of such a large 

peak in the 40 kHz band may be a function of some other phenomenon. One hypothesis is that it 

is a measurement artifact related to the times when the EM 122 signal clipped. This is reasonable 

given that the peak in the 40 kHz band is only visible when the survey vessel comes within close 

range of the hydrophone, which would be the times when the EM 122 signal clipped. If this is 

related to the clipping it would be a pure measurement artifact, and would not correspond to 

anything real in the soundscape. The increase in the 40 kHz band will need to be explored further 

to fully understand this phenomenon.  

Nonetheless, the sound level signature of the survey vessel and EM 122 varies with 

distance from the vessel to the hydrophone. During VM events where the vessel was ~6 km or 

less from the hydrophone the signature described above was visible (e.g., hydrophone 22, events 

4, 5, 6). For RCPAs that were closer to 10 km or greater, the 12.5 kHz peak was the only BL that 

was pronounced (e.g., hydrophone 45, events 8, 13, and 14). And at distances greater than 15 km 
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the sound levels were not clearly impacted by the survey and EM 122 activity (e.g., see the 

second half of the VM period on hydrophone 57, or event 7 on hydrophone 16). However it was 

not always so clear. For example, the signal did not clip during event 3 on hydrophone 85 when 

the vessel was 4 km away, but it did during event 5 when the vessel was 6 km away.  In both 

cases the survey vessel was transiting in the same direction from south to north, though, on the 

western side of the hydrophone in event 5, and on the eastern side during event 3. Undoubtedly, 

orientation of the vessel to the hydrophone also plays a role since the transmission beam of the 

MBES is strongly directional (0.5° aperture), downward-propagating and fan-like (i.e., not 

omnidirectional), which likely accounts for many of the inconsistencies identified here based on 

a range-only explanation. Not only is the transmission directional, but there are multiple beams 

that make up the transmission pattern. The main lobe of the transmission is the loudest and is 

generally directed vertically toward the seafloor, whereas side lobes are transmitted at oblique 

angles to vertical and are typically on the order of 20-30 dB lower in amplitude than the main 

beam. In addition, the EM 122 used in this survey had a flaw that caused grating lobes to occur 

(see hydrophone 45, event 17 as a possible example) at a level comparable to the nominal 

transmitted sector. Thus, some of the variability in the detection of the EM 122 signal in the 

sound level time series was related to 1) the orientation of the survey vessel as it approached 

and/or departed the hydrophone, and 2) whether the hydrophone was exposed to the main 

transmission beam, a side lobe, or a grating lobe. Thus, there was not a consistent range at which 

the EM 122 signal was present in the acoustic record at a particular level.  However, the signal of 

the EM 122 was most consistently distinguishable in the 12.5 kHz band sound level time series 

at ranges less than 17 km in this annotation (observed once, albeit faintly, in a spectrogram at a 

time when the vessel was up to ~20 km away). 
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 With regard to the changes in the sound levels, clipped peaks in SPLpk (i.e., 138 dB re 1 

µPa) occurred when the EM 122 was in use 6 km away or less from the hydrophones. These 

events had corresponding peaks in the 12.5 kHz band of 50-75 dB re 1 µPa2/Hz that were 19-42 

dB over baseline, and the 40 kHz band was elevated by a similar magnitude. It is worth noting 

that the peaks in the 40 kHz band identified with these very close approaches of the EM 122 

were puzzling. Although harmonics are produced with the MBES transmission, they typically 

account for only a few percent of the transmitted power and are commonly 20-30 dB lower than 

the intended signal when it is not clipped. This is a finding that needs further exploration. The 

lower select decidecade BLs were generally 10-15 dB over local baselines at close distances (i.e., 

< 6 km). At distances of 6-10 km, peaks in SPLpk ranged between 107-127 dB re 1 µPa and the 

12.5 kHz peaks were 30-54 dB re 1 µPa2/Hz, or 6-23 dB over baseline. At this range, the other 

decidecade BLs were only elevated by about 3-6 dB and there was no longer a similar magnitude 

peak in the 40 kHz band (though some events may have this because there were biological clicks 

present at the same time). Distinguishable peaks in the 12.5 kHz band time series that were 

clearly associated with the vessel and EM 122 activity were identified up to ranges of 13.5-17 

km between the vessel and hydrophone (although EM122 pulses were visible in spectrograms 

out to 20 km). At this range, SPLpk varied from 107-134 dB re 1 µPa with peaks in the 12.5 kHz 

band of 35-44 dB re 1 µPa2/Hz, or 2-14 dB over baseline.  And fluctuations in the other 

decidecade bands were less than 3 dB.  However, at this range, the peaks in SPLpk were not 

reliably indicative of solely the survey activity. For example, SPLpk was 134 dB re 1 µPa on 

hydrophone 70 during event 4, and although the EM 122 signal was present in the acoustic 

record while the survey vessel was 11.75 km away with an associated peak in the 12.5 kHz band 



165 

 

of 2 dB over baseline, there was also a very loud sound below 2 kHz recorded on the hydrophone 

receiver.  

 Although other active acoustic sources were used in the survey and identified in the 

annotation, their presence in the acoustic record was less pronounced. This is in part because 

they were used only intermittently during the MA period, but also because their source levels and 

duty cycles contributed to a much smaller impact. Thus, the acoustic contribution of these 

systems appeared to be even less than the EM 122.  For example, the activity of the EM 712, the 

40 kHz MBES, was detected only once during event 10 on hydrophone 70 and was only 

distinguishable in the sound level time series for a half hour while the survey vessel was within 5 

km of the hydrophone. At its maximum, SPLpk was observed at 131 dB re 1 µPa and the 40 kHz 

band peak was 50 dB re 1 µPa2/Hz when the survey vessel and hull-mounted EM 712 was within 

1 km of the hydrophone. Though this most certainly was not the only hydrophone with sound 

levels that were elevated due to the use of this system, it suggests that this source had a very 

local acoustic impact due to the substantial transmission loss of the high frequency signal, and its 

non-omnidirectional radiation pattern. Using the elevated 3.2 kHz sound levels as a proxy for the 

presence of the SBP, the SBP was detected on six of the nine hydrophones (16, 22, 45, 57, 70, 

and 85) when the survey vessel was within 8 km of the hydrophones. This was associated with 

levels 5-10 dB over the local baseline. At most, the SBP was documented as distinguishable in 

the 3.2 kHz time series of hydrophone 16, which covered an hour and 45 minutes while the 

survey vessel was within 7 km of the hydrophone.  Since the EK-80 is not a source primarily 

used for mapping deep-water environments, it was only used intermittently. Consequently, a 

comprehensive assessment of its contribution to the sound levels could not be made and the 

decidecade band most relevant to the EK-80 signal was not examined. Anecdotally, the EK-80 
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signal was detected during events when the vessel was within 3 km of a hydrophone (e.g., event 

24 on hydro 45; event 12 on hydro 14; event 15 on hydro 16) and the SPLpk levels were not 

noticeably different during these times, compared to when the EK-80 was not in use. Because the 

other systems were only in use during the MA period and used intermittently, it was difficult to 

make a complete assessment about their realized contribution to the marine acoustic environment 

beyond that which is known about propagation loss of these system’s signals. Despite 

comparable source levels, the EM 712 (40 kHz) and EK-80 (18 kHz) signals were of higher 

frequency than the EM 122, and thus attenuated more quickly in the acoustic environment, 

making them harder to observe. The SBP has a slightly lower source level of about 225 dB re 1 

µPa @ 1m than the EM 122 and also a lower nominal frequency (3.5 kHz center frequency), 

meaning its signal attenuates less quickly. However, this part of the frequency spectrum was 

often quite loud, potentially masking the SBP signal.   

The close passes of the survey vessel alone had a very characteristic sound level signature 

indicative of ship-radiated sound, i.e., elevated levels across a broad range of frequencies. A 

spectral analysis of the specific signature of the Sally Ride in comparison to other vessels present 

in the acoustic data was not made. However, based on the few decidecade band levels examined, 

the sound level signature of the survey vessel was quite similar to other passing vessels. When 

the survey vessel alone was within 3 km of a hydrophone, the peaks in the 50 Hz, 500 Hz, 3.2 

kHz, and 12.5 kHz bands were all about 15-25 dB over their respective local baselines, and this 

was similar for SPLpk. Beyond 10 km, it was difficult to distinguish just the survey vessel in the 

sound level time series, and there was only one hydrophone upon which to characterize the 

sound levels at intermediate distances (hydrophone 85). The first passage of just the vessel to 

within 5 km of hydrophone 85 was not easily identifiable, while the second instance was. At this 
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later time, the 50 Hz-12.5 kHz BLs were between 5-10 dB over the local baseline and SPLpk was 

about 12 dB over baseline (although SPLpk may have also been influenced by other active 

acoustic sources higher in frequency at the same time since there was also a peak in the 40 kHz 

band). 

Thus, the EM 122 signal appeared to be the most dominant source related to the survey 

activity. But there were other loud events of similar magnitude (e.g., hydrophone 45, event 11, 

SPLpk of 134 dB re 1 µPa) to the closest passes of the survey vessel with the EM122, frequently 

of unknown origin, although not attributed to the survey. It was unclear whether these were loud 

events far from the hydrophone, or potentially something brushing up against the hydrophone 

(e.g., hydrophone 22, event 3; hydrophone 70, event 4). There were also other repetitive pulses 

and clicking (e.g., hydrophone 45, event 21).  Biological activity--often dolphin whistles and 

beaked whale clicks—was also routinely detected at SPLpk in the 115-125 dB re 1 µPa range 

(e.g., hydrophone 45, event 18 and 20), as well as in the 12.5 kHz band (e.g. hydrophone 16, 

event 11 and 13).  

Despite other signals and periods of elevated levels from non-survey activity detected on 

the hydrophones, the survey activity was by far the most common source of acoustic events 

identified through the annotations. The survey vessel alone was detected on seven of the nine 

hydrophones (not on hydrophones 14 or 70), and discernible for 1 (hydrophones 63 and 85) to 

3.5 hours (hydrophone 45) of the VO period. The survey activity during the VM period was 

intermittently discernable in the sound level time series for 7.33 hours on average, ranging from 

as few as 5 hours (hydrophone 19) to at most 11.75 hours (hydrophone 45). The survey activity 

during the MA period was also intermittently distinguishable for 3.6 hours on average, ranging 

from zero hours (hydrophone 19) to 8.75 hours (hydrophone 45).   
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 From a weighted perspective, the contribution of the five decidecade band levels 

examined could generally be subdivided into three groups: the 3.2 kHz and 12.5 kHz bands as 

the most discernable (i.e., loudest), the 50 Hz band as the least discernible (i.e., quietest), and the 

40 kHz and 500 Hz bands as intermediaries. This was unlike the unweighted levels in which the 

50 Hz band was the most discernible. The extremely loud events (i.e., >> 40 dB re 1 µPa2/Hz) in 

the weighted levels aligned with when the survey vessel was within 5 km of the hydrophone and 

when the EM 122 was transmitting. At these times, the 12.5 kHz and 40 kHz bands dominated. It 

is worth noting that there were also other discernible acoustic events in the 12.5 kHz band that 

were not attributed to the EM 122 signal. These were generally much smaller peaks (i.e., 10 dB 

or less above the other bands), associated with biological activity and far less common. There 

were also times when either the 40 kHz band or 3.2 kHz band were most dominant, again, 

generally by no more than 10 dB more than the other bands. These events were often identified 

as marine mammal clicks (regarding the 40 kHz band) or a passing vessel nearby (regarding the 

3.2 kHz band). The 50 Hz band was consistently at least 30 dB lower than the intermediary 

bands (i.e., 500 Hz and 40 kHz), except during the two events that appeared to be array-wide 

phenomenon—one in the NA period and the other in the VO period—as well as different times 

in the MA period on certain hydrophones. 

Major Findings 

 The time series annotation was an essential step for understanding the complex acoustic 

data from the deep-water MBES mapping survey. The exercise revealed the strong 

temporal and spatial dependence of the survey activity to the soundscape. In other words, 

the change in the sound levels was closely tied to a finite spatial radius around the mobile 

survey vessel, which meant the temporal impact at any given location was also confined 

to the brief time period that the vessel was in the respective area. 
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 The EM 122 signal was detectable in the acoustic record (i.e., discernable peaks in the 

sound level time series data) only when the survey vessel was within 17 km of a 

hydrophone receiver (visibly faintly in spectrograms up to 20 km from a hydrophone 

receiver). 

 The EM 122 signal most clearly and consistently manifested in the elevated 12.5 kHz 

decidecade band levels, and was often—but not always-- associated with the peaks in the 

peak sound pressure level of the sound level metrics examined. 

 The other active acoustic systems were detected substantially less often in the annotation 

than the EM 122, suggesting that the EM 122 had the largest contribution to the 

soundscape of the active acoustic sources in the 2017 mapping survey. 

 The EM 122 was not the only detected source. There was consistently biological activity, 

other vessels passing on or near the array, as well as unidentified acoustic sounds. 

 Clipping occurred at times when the survey vessel and transmitting EM 122 were 6 km or 

less away from a hydrophone, which meant the true sound level could not be recovered at 

those times. 

Sound Level Percentiles 

Analysis-Specific Methodology 
Differences in the analysis period sound level percentiles (i.e., 1, 5, 10, 25, 50, 75, 90, 95, 

and 99th, Appendix 5.2) were computed both array-wide and on a per hydrophone basis for all of 

the sound level metrics (i.e., weighted and unweighted SPLpk and SEL, 50 Hz, 12.5 kHz, and 40 

kHz BLs) and used to understand the variability in the sound levels recorded across the array. 

The array-wide sound level percentiles were calculated for each analysis period by considering 

all of the sound level observations averaged over all 89 hydrophones. Array-averaged sound 

level percentile differences were then generated by subtracting the same percentile of two 

http://appendix_b_percentilesbyperiod.docx/
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different analysis periods. Local sound level percentile differences were similarly calculated on a 

per hydrophone basis for the nine select hydrophones but by only considering the observations 

from a particular hydrophone.  

Although sound level percentile differences were computed for each of the sound level 

metrics, the times series annotation findings (see Time Series Annotation section) were used to 

identify the most relevant metrics with respect to the survey activity, i.e., SPLpk and the 12.5 

kHz BLs. These were the focus of interpretation, whereas only broad stroke trends were gleaned 

for the other metrics, i.e., SEL, 50 Hz, and 40 kHz BLs. The difference results were interpreted 

by partitioning the results into four relative magnitude classes based on the findings of the time 

series annotation: 1) < 3 dB (negligible), 2) 3-10 dB (small change), 3) 10-20 dB (moderate 

change), 4) >20 dB (extreme change). The fourth class, 20 dB or more, corresponded to the most 

extreme changes identified in the annotation, which were primarily identified in association with 

the survey activity at very close distances, under a few kilometers.  The third class, 10-20 dB, 

often corresponded with survey activity within 10 km of a hydrophone, but there were other 

acoustic sources that also contributed to this level of change. The second class, 3-10 dB, 

corresponded to the smallest amount of change in the sound levels that was possible to associate 

with distinct acoustic events—survey or non-survey acoustic activity.  Although a change of 3 

dB indicates a doubling or halving of energy, it was difficult to clearly associate this magnitude 

of change with a distinct acoustic event.  Thus, changes less than 3 dB were considered 

negligible for the purpose of this study.  The higher magnitude changes were assumed to be most 

indicative of survey activity as changes of 20 dB or more were almost always associated with 

events corresponding with survey activity.  Whereas for classes of lesser magnitude, the 

confidence that the survey activity was driving the observed change was expected to decrease 
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step-wise.  It is worth reiterating that these difference classes and their descriptors i.e., 

negligible, small, moderate, extreme are used to describe the --relative --change in sound levels, 

as even a change of 3 dB represents a substantial change in acoustic intensity.  

Within each of these broader categories the weighted and unweighted results are 

described with respect to the four classes of relative difference examined. General trends were 

described rather than descriptions of what occurred on each hydrophone. As the nine 

hydrophones were selected to represent a homogenous spatial sampling of the entire array, the 

trends were described from a spatial perspective. Therefore, the top row of hydrophones (i.e., 19, 

16, 14) were described as the northern hydrophones, the middle row (i.e., 57, 45, 22) as the 

center hydrophones, and the bottom row (i.e., 85, 63, 70) as the southern hydrophones, whereas 

the left column (i.e., 19, 57, 85) were categorized as the western hydrophones, the middle 

column (i.e., 16, 45, 63) as the central hydrophones, and the right column (i.e., 14, 22, 70)  as the 

eastern hydrophones.   

 

Results 
The 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th percentile differences for SPLpk and 

the 12.5 kHz BLs were computed for each metric and are contained in Figure 5.5-Figure 5.8. The 

percentile difference results for the SEL, and other BL metrics are contained in Appendix 5.4. 

The individual hydrophone results are presented first, followed by the array-wide results.  

By hydrophone 

SPLpk 

 There were mostly negligible changes in the unweighted SPLpk percentiles across the 

analysis periods and hydrophones, with some small differences, commonly at the 75th or higher 

percentiles, and a few moderate changes, but only in the 95th or 99th percentiles (Figure 5.5, left). 

Only small differences were detected between the VO and NA periods, and these were mainly in 

http://appendix_c_heatmapsoundlevelpercentiledifferences.docx/
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the central (16, 45, and 63) or eastern side (14, 22, and 70) of the array, most consistently in the 

99th percentile. The lack of difference between these two periods on the western hydrophones 

was likely attributed to two factors, 1) there were vessels on/near the array documented in the 

sound levels during both periods, and 2) these hydrophones are bottom-mounted in the deepest 

part of the array where many high frequency signals generated close to the sea-surface are likely 

to attenuate to a great degree before reaching the receivers in comparison to the depth of some of 

the more shallow hydrophones.  

There were also only small differences detected in SPLpk between the VM and NA 

periods, most ubiquitously in the 99th percentile levels. Although the northern hydrophones (19, 

16, and 14) had small differences in SPLpk from the 75th percentiles and up-- the NA period was 

louder, whereas the VM period was louder in the 99th percentiles on the central and southern 

hydrophones. Between the MA and NA periods, the results varied by hydrophone, but 

differences were most consistently found in the 95th and 99th percentiles with the MA period 

louder. The lack of consistent differences found in lower percentiles (50th and below) suggests 

that it was really only for a short duration in the loudest levels that the anthropogenic periods 

differed from the NA period. Among the anthropogenic activity periods, there were fewer 

consistent changes across space. For example, the northern and southern hydrophones were 

slightly louder in the VO period than the VM period, while there was little difference in the 

center hydrophones. The MA/VO and MA/VM comparison results seemed even more random, 

with most differences detected in the 95th and 99th percentiles, but the period that was louder 

depended on the specific location.  This suggests that the anthropogenic periods were not reliably 

different from one another in terms of unweighted SPLpk, and in what way the periods differed 

really depended on the hydrophone and likely its spatial location with respect to the survey lines.  
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Overall, the differences identified in SPLpk were small and the most consistent differences were 

in the 99th percentile between the NA period and the periods of anthropogenic activity. (Figure 

5.5, left) 

wSPLpk 

 The trends in wSPLpk differed from the unweighted results (Figure 5.5, right). When 

unweighted, the sound levels in the NA period had a substantial contribution from low frequency 

sound (e.g., long periods of elevated levels in the 50 Hz band) which seemed to dwarf the other 

higher frequency signals present. The weighting process de-emphasized the very low frequency, 

and emphasized the higher frequency content, for which the multibeam mapping survey 

contributes. For wSPLpk, there were very few percentiles with negligible differences between 

NA and survey activity periods (i.e., VO, VM, and MA). There were many more moderate 

differences identified between periods and extreme differences, again, with respect to periods 

with and without survey activity. The survey activity periods were consistently louder, as 

expected. Between the VO and NA periods, the central and eastern side of the array had the most 

moderate and extreme differences, which were commonly in the 75th, 90th, and 95th percentiles. 

Between the VM and NA periods, the most extreme differences were in the 99th percentiles on 

the central hydrophones, albeit there were moderate differences in several percentiles on all but 

the northern corner (19, and 14) and southwestern corner (85) hydrophones.  This is unsurprising 

as it correlates well with where the most activity occurred during the VM period.  This was 

generally true for the MA and NA comparison too, where the hydrophones that were the furthest 

from the survey lines run during the MA period (hydrophones 19, 22, 57) had small differences 

relative to the other hydrophones closer to the survey activity. Although, there were only small 

differences with respect to hydrophone 85 between these two periods despite the survey vessel 
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closely passing this hydrophone during the MA period. There were small differences detected 

among the various periods of survey activity, with respect to wSPLpk. But again, there were not 

clear and consistent delineations in how the periods were different. This very likely reflects the 

other acoustic activities present that were not survey activity. The northern and southern 

hydrophones were generally slightly louder during the VO period than they were in the VM 

period. However, the center hydrophones were slightly louder in the VM period than they were 

in the VO period.  There were far fewer differences in wSPLpk, even small ones, between the 

VO and MA periods with no consistent patterns other than that the southeast corner 

(hydrophones 63 and 70) of the array was slightly louder in the lower 75th percent of the data 

during the VO period. This was not expected, given the survey activity during the VO period was 

mostly confined to the central or western side of the array.  However, a closer inspection of the 

sound level time series of these two periods revealed extended periods of elevated levels in the 

40 kHz band (see Time Series Annotation section), which was associated with substantial 

biological activity, i.e., marine mammal clicks.  

The comparison of wSPLpk between the MA and VM period was also telling. Albeit not 

consistently, the lower 50th percent of the data were slightly louder in the VM period, whereas 

the upper 50th percent of the data were slightly louder in the MA period.  This suggests that the 

ambient conditions of the VM period were slightly elevated (i.e., 3-6 dB) in comparison to the 

MA period, but the loudest times (i.e., upper 25%) of the VM period were generally slightly 

quieter than the MA period. This matches expectation since the EM 122 was consistently on 

during the VM period and the track lines comprehensively covered the array spatially. In the MA 

period, multiple loud acoustic sources were used, which elevated levels locally and slightly more 

than the VM period, but the track lines of the survey vessel during this period were not 
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comprehensive. Although there were other sound sources present during both periods that may 

have contributed to this result in an unknown way, this finding suggests that the additional 

acoustic sources, beyond just the EM 122, may have contributed to the changing sound levels in 

a noteworthy way.  However, the differing spatial coverage of the survey activity during these 

two periods is a confounding factor in fully understanding this result. (Figure 5.5, right)  
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Figure 5.5. Sound level percentile differences for SPLpk (left) and wSPLpk (right) across 

analysis periods. Each cell represents the specific percentile (grey row headings) difference by 

hydrophone (grey columns headings) between two analysis periods (white column headings): 

VO (Vessel Only), NA (No Activity), VM (Vessel and MBES), MA (Mixed Acoustics).  

Differences were identified in four classes: 1) < 3dB (white), 2) 3-10 dB (yellow), 3) 10-20 dB 

(orange), 4) >20 dB (red). Where differences were identified, the color (green/purple) of the 

value represents which analysis period was louder, corresponding with the color of the two 

specific analysis periods being compared.  
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12.5 kHz BLs 

There were mostly small and moderate differences between analysis periods in the 12.5 

kHz band level percentiles (Figure 5.6). Moderate differences were commonly found between 

periods with and without survey activity mostly in the upper 50 % of the data, whereas smaller 

differences were more commonly found between the different periods of survey activity (VO, 

VM, and MA). Extreme differences were found, mostly between the NA period and those when 

mapping sonar was in use (i.e., VM and MA). However, the 99th percentile was much louder in 

the VO period than the NA period on hydrophone 45. This was likely because of its location in 

the center of the array, which makes it 1) less susceptible to changes due to off-range activity, 

and 2) exposed to the VO activity more than any of the other select hydrophones. Between the 

VM and NA period, moderate or extreme differences were identified in the 99th percentile on all 

but hydrophone 19, which suggests the biggest differences were really only in about 1% of the 

sound level data.  However, most of the percentile differences between these two periods were at 

least moderate on the western and central part of the array, while the eastern side had mostly 

small differences, except at the 99th percentile. Because the survey lines during the VM period 

were generally spatially comprehensive over the entire array, it does not seem likely that this 

difference was related specifically to the spatial pattern of the survey activity. However, the 

differences in the MA/NA comparison may be attributed to the difference in exposure of the 

select hydrophones to the MA activity since the track lines during the MA period were not 

spatially comprehensive. Hydrophones 14, 16, 45, 63, and 85, which all had extreme differences 

in the 99th percentile levels, were all exposed to very close passes of the survey vessel during the 

MA period, whereas the other hydrophones were not. (The only exception to this was 

hydrophone 70 which also was within a very close distance to the survey vessel during the MA 

period, but only had moderate differences in the 99th percentile levels.) This result further 
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confirms the localized impact of the survey activity, i.e., the spatial impact is at a scale smaller 

than the spacing between the select hydrophones, and the most pronounced differences at the 

highest percentiles suggests a very finite, i.e., short and transient, temporal impact.  In other 

words, for hydrophones that were not within a very close distance of one of the MA survey lines, 

the sound level percentile differences were small to negligible.  

The pattern in the percentile differences between the VM and VO periods generally 

mirrored the VM/NA results, but at a lesser magnitude. There were mostly small differences 

identified between the two periods in all of the percentiles, except at the 99th percentile, which 

were mostly moderate differences. This suggests that the signals from the EM 122 only made a 

moderate difference to the 12.5 kHz band levels beyond the presence of the survey vessel alone. 

There were not clear patterns that came out of the comparison of the MA/VO periods in the 12.5 

kHz band, likely because the vessel had a very different spatial coverage during each of the two 

periods, making it difficult to tease apart interacting factors such as the amount of exposure to 

the anthropogenic activities and the actual anthropogenic activities themselves. The central 

hydrophones and hydrophone 85 were all within at least one track line of each the MA and VO 

periods, which generally all showed that the upper 5-10% of the data was slightly (i.e., small 

difference) or moderately louder in the MA period with largely negligible differences in the 

lower 50% of the data. The biggest differences in the MA/VM periods in the 12.5 kHz band were 

in percentiles 50 and lower, where the VM period was moderately louder. This was least 

pronounced on the central hydrophones, likely because of their centralized location to the survey 

activities during each period. (Figure 5.6) 
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Figure 5.6. Sound level percentile differences for 12.5 kHz BL across analysis periods. Each cell 

represents the specific percentile (grey row headings) difference by hydrophone (grey columns 

headings) between two analysis periods (white column headings): VO (Vessel Only), NA (No 

Activity), VM (Vessel and MBES), MA (Mixed Acoustics).  Differences were identified in four 

classes: 1) < 3dB (white), 2) 3-10 dB (yellow), 3) 10-20 dB (orange), 4) >20 dB (red). Where 

differences were identified, the color (green/purple) of the value represents which analysis period 

was louder, corresponding with the color of the two specific analysis periods being compared. 

 The sound level percentile difference figures for the 50 Hz BL, 40 kHz BL, and SEL 

metrics are contained in Appendix 5.4.  

50 Hz BL 

As expected, the NA period was slightly (VO) or moderately louder (VM and MA) than 

any of the anthropogenic periods in the 50 Hz BL. This makes sense given the extended time of 

elevated levels identified in this period and band. The periods with active acoustics (i.e., VM and 

MA) were generally slightly louder than the VO periods, but moderately louder in the top 10% of 

the data. There were only small differences between the two active acoustic periods (MA/VM), 



180 

 

for which the MA period was slightly louder than the VM period in the 50 Hz band. (Appendix 

5.4, Figure 5.4.1) 

40 kHz BL 

 The differences identified in the 40 kHz BL were almost exclusively in the upper 25th 

percent of the data (i.e., percentiles 75 and above). In comparing periods with and without survey 

activity, the most pronounced differences were in the south or north of the array, with the most 

extreme differences on hydrophones at the southern end of the array. The survey periods were 

always louder (moderately or extremely), in this respect, compared to the NA period.  But again, 

this was primarily in the upper –loudest--quarter of the data with little (i.e., small) difference in 

the quieter levels (i.e., 50th percentile and below).  Between periods of survey activity, small and 

moderate differences were identified at the 75th and higher percentiles. For example, between the 

VM and VO periods, the VO period was slightly/moderately louder on northern and southern 

hydrophones, but the VM period was slightly louder on center hydrophones. It is unclear why 

this was the case. There were few and inconsistent differences in the percentiles between the MA 

and VO periods.  This is reasonable given 1) the EM 712 was the only intentional survey signal 

transmitting at this frequency during the MA period, and its signal was expected attenuate 

rapidly in the environment, and 2) there were known biological sound sources contributing to 

this frequency band all across the array and throughout the entire study period (i.e., all analysis 

periods). Thus no consistent patterns were expected for this frequency band. The results for the 

40 kHz band further support the conclusion that the impact of the survey activity was localized—

with respect to space, time, and—as the results of this band show--frequency. (Appendix 5.4, 

Figure 5.4.2) 
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SEL 

 The trends in the SEL results (Appendix 5.4, Figure 5.4.3) mimicked the SPLpk results, 

albeit smoothed, as expected based on the definitions of these two metrics. In terms of 

unweighted SEL, there were mostly only negligible to small differences detected in any of the 

percentiles, largely in the upper 25th percent of the data and mostly restricted to the comparisons 

of the NA period with the periods with active acoustics, or between the VO period and the 

periods with active acoustics. There were hardly any differences between the NA and VO 

periods, and the two periods of active acoustics, suggesting there were two groupings with 

respect to SEL. One might hypothesize that this has to do with the prominent acoustic events of 

the NA and VO periods being more continuous (i.e., general quiet in the NA period and 

continuous vessel sound in the VO period), whereas the acoustic events of the VM and MA 

periods were more transient and pulsed (i.e., active acoustics in both periods).  For the weighted 

SEL there was a distinguishable difference between periods of survey activity (i.e., VO, VM, and 

MA) and those without (i.e., NA). For analysis periods with survey activity, there were generally 

small percentile differences among the periods. The VM period clearly contained the most 

energy of the three periods (i.e., higher wSEL in VM compared to both VO and MA). (Appendix 

5.4, Figure 5.4.3) 

Array-wide 

 Array-wide comparisons were made between each of the analysis periods for each of the 

sound level metrics (Figure 5.7-Figure 5.8; Appendix 5.4, Figure 5.4.4-5.4.7). The results 

generally corroborated the findings from the individual hydrophone comparisons.  For example, 

only the 99th percentiles of SPLpk were slightly elevated in the survey activity periods, i.e., VO, 

VM, and MA (3.5, 3.7, and 3.6 dB, respectively) over the levels of the NA period (Figure 5.7). 

For SEL, the main differences (up to 6 dB) were largely between the NA period and the active 
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acoustic periods, or between the VO period and the active acoustic periods (Figure 5.4.7). In 

either case, the sound level percentiles of the active acoustic periods were lower, again, likely 

because of the persistent and ubiquitous very low frequency energy in both the NA and VO 

periods. This trend was flipped for wSEL, where the sound levels in periods with survey activity 

were all elevated over the NA period.  When comparing wSEL across the three periods of survey 

activity, the VM period was loudest, followed by VO, then MA. But in terms of wSPLpk, the VO 

period was relatively loudest, followed by VM, then MA (Figure 5.7, right). As expected, the 

largest differences in wSPLpk were between periods with and without survey activity, with 

generally similar trends despite differences in the particular survey activity. There were small 

differences between the 25th-99th percentiles, and moderate differences between the 75th-95th 

percentiles in comparing the NA period to all periods of survey activity.  The VM period had 

small differences in comparison with the NA period at the other percentiles (i.e., 1-10th), whereas 

there were negligible differences between the MA/NA periods at these same percentiles.  The 

VO/ NA comparison had a similar trend as the comparison of VM/ NA, with moderate 

differences at the 50th percentile and negligible differences in the 1st percentile. These differences 

are likely largely due to the difference in spatial coverage of the various survey activities during 

these two periods.   
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Figure 5.7. Array-wide SPLpk (left) and wSPLpk (right) percentile differences between each set 

of analysis periods. Differences were identified in four classes: 1) < 3dB (white), 2) 3-10 dB 

(yellow), 3) 10-20 dB (orange), 4) >20 dB (red). Where differences were identified, the color 

(green/purple) of the value represents which analysis period was louder, corresponding with the 

color of the two specific analysis periods being compared. 

 

Figure 5.8. Array-wide percentile differences in the 12.5 kHz band between each set of analysis 

periods. Differences were identified in four classes: 1) < 3dB (white), 2) 3-10 dB (yellow), 3) 10-

20 dB (orange), 4) >20 dB (red). Where differences were identified, the color (green/purple) of 

the value represents which analysis period was louder, corresponding with the color of the two 

specific analysis periods being compared.  

From an array-wide perspective, two patterns were clear in the 12.5 kHz band percentile 

differences: 1) the VM period was loudest relative to the other periods of survey activity, and 2) 

all periods of survey activity were louder relative to the NA period.  Across the array, the VM 

period was louder at every percentile, in comparison to the same percentiles in either the NA or 

VO periods (Figure 5.8). There were small differences between the VO and NA periods in the 

upper 75th percent of the data, whereas there were small differences between the MA and NA 

period in only the upper 25th percent of the data. The MA and VM periods differed in small and 
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moderate ways in all but the 90th and higher percentiles which were not different. The difference 

in spatial coverage of the two survey periods (i.e., more survey lines in the VM period) likely 

contributes to these observed differences. Whereas for the MA and VO periods, the MA period 

was slightly louder at the 95th and 99th percentiles while the VO period was higher at the 10th and 

25th percentiles. As there were few survey lines in both periods, this difference is more likely 

attributed to the difference in acoustic activity rather than the difference in survey lines. 

The differences detected in the 50 Hz band (Appendix 5.4), again, confirm that the NA 

and VO periods were loudest and this can be attributed to the array-wide phenomena identified 

in the time series annotation.  The differences in the 40 kHz band from an array-wide perspective 

were in the upper 25th percentile, suggesting the observations in this frequency band were largely 

unchanged by the survey activity (Appendix 5.4). Because there were multiple known sources 

contributing to this band (i.e., EM 122 harmonics, EM 712, beaked whale clicks, unknown 

pulses), an interpretation beyond this with respect to the survey activity was unclear. It is worth 

noting that the results of the array-wide analysis do not provide further insight about the 

contribution of the survey activity beyond that of the select hydrophone analysis.  This 1) further 

confirms the local scale (spatial, temporal, and frequency) of impact that the survey had on the 

soundscape, and 2) suggests that an investigation of the changing sound levels at a scale smaller 

than the resolution of the nine select hydrophones would be more meaningful. 

Major Findings 

 The differences identified in SPLpk were small (<10 dB) and most consistently in the 99th 

percentile between the NA period and the periods of anthropogenic activity (i.e., VO, 

VM, and MA). The lack of consistent differences found in lower percentiles (50th and 

below) for SPLpk suggests that it was really only for a short duration in the loudest levels 

that the anthropogenic periods differed from the NA period. 
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 For the 12.5 kHz band, moderate (10-20 dB) or extreme (>20 dB) differences were only 

identified in the 99th percentile between the VM and NA period, suggesting the biggest 

changes related to the MBES mapping activity occurred in only a small portion of the 

observations and at the loudest sound levels. 

 The survey activity had a local impact. There was clear variation across hydrophones, 

indicating that the spatial impact was on a scale smaller than the spacing between the 

select hydrophones examined. The most pronounced differences occurred only at the 

highest percentiles (99th), indicating the limited temporal impact of the mapping activity.  

The clearest patterns in the sound level differences were observed in the 12.5 kHz band, 

reflecting the narrow frequency contribution of the MBES mapping activity. 

Probability Distribution Comparison 

Analysis-Specific Methodology 
In order to better characterize the impact of the primary mapping system, the EM 122, on 

the marine acoustic environment, the cumulative distribution functions (CDFs) of the 12.5 kHz 

decidecade band sound level observations were compared across space and time on a per 

hydrophone basis for the nine select hydrophones, as well as an array-wide average (i.e., using 

observations from all 89 hydrophones).  

A statistical hypothesis test using the Wasserstein Distance (W) as a test metric was used 

to compare distributions by testing whether the two samples, i.e., analysis period CDFs, came 

from a similar population. The Wasserstein Distance is defined as follows: 

𝑊 = (∫ (𝐹𝐴
−1(𝑢) − 𝐹𝐵

−1(𝑢))
2

𝑑𝑢
1

0
)

1/2

      (Equation 5.9) 
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where FA and FB represent the continuous CDFs of the two samples representing two different 

conditions, i.e., analysis periods. The 2-Wasserstein Distance (W2) was used to understand how 

the two analysis periods differed and is defined as: 

𝑊2 = (∫ (𝐹𝐴
−1(𝑢) − 𝐹𝐵

−1(𝑢))
2

𝑑𝑢
1

0
) = (𝜇𝐴 − 𝜇𝐵)2+(𝜎𝐴−𝜎𝐵)2 + 2𝜎𝐴𝜎𝐵(1 − 𝜌𝐴,𝐵)      (Equation 5.10) 

which can be decomposed into location, size, and shape terms. The location term is a function of 

the means (µ), the size term is a function of the standard deviations (𝜎), and the shape term is a 

function of both the standard deviations and the Pearson correlation coefficient (𝜌). (Schefzik et 

al. 2021)  

Here, discrete, empirical CDFs were used to approximate the distributions of the 

continuous CDFs. First, the empirical PDFs of the 12.5 kHz BLs of the four analysis periods 

were computed by partitioning the respective (i.e., for a given analysis period and 

hydrophone/array-wide) sound level observations, y (dB), into discrete sound level bins in 1-dB 

increments, i.e., y ∈ 𝑏𝑖𝑛𝑥  𝑖𝑓 𝑥𝑎 ≤ 𝑦 ≤ 𝑥𝑏, where 𝑥𝑎 and 𝑥𝑏 are 0.5 dB less or more, respectively, 

than the center point of the bin, 𝑥. The center points therefore were defined at 0.5 dB re 

1µPa2/Hz values. For example, if the first three bin center points were 0.5, 1.5, and 2.5 dB re 

1µPa2/Hz, then the range of the respective bins were from 0-1, 1-2, 2-3 dB re 1µPa2/Hz, and so 

on. The observations were summed by bin and divided by the total number of samples contained 

in the entire distribution to obtain the probability of a specific sound level in a sound bin for a 

specific analysis period. The minimum and maximum sound level bin magnitudes were defined 

based on the minimum and maximum sound levels over the entire study 12.5 kHz band level 

time series for the respective observations assessed. The data were then rearranged to form 

CDFs, i.e., y ∈ 𝑏𝑖𝑛𝑥  𝑖𝑓 𝑦 ≤ 𝑥𝑏 where 𝑥𝑏 is as defined previously. 
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The R package ‘waddR’ (Schefzik, 2020), was used to compute and compare the 2-

Wasserstein Distances due to its reported versatility across other fields (Schefzik et al. 2021). 

The ‘waddR’ package is based on a semi-parametric testing procedure, in which a series of 

permutations of the original data are computed and compared. The default number of 

permutations-- 10,000-- was used. The permutation procedure is based on a random sampling of 

the data. The semi-parametric procedure incorporates a generalized Pareto distribution 

approximation, which is optimal for modeling the tail of another distribution (MathWorks, 

R2021a).  The null hypothesis of the test was that the two samples came from the same 

distribution. If the null hypothesis was rejected, the 2-Wasserstein decomposition provided 

information about the percent of the difference that was explained by the location, size, or shape 

of the distribution.  Here, an alpha critical value of 0.1 was used to guide the interpretation of the 

results.  For test results with a p-value <0.1, the two distributions were interpreted as different 

from one another. 

It was hypothesized that the sound level distributions of all of the select hydrophones and 

an array-wide average would differ between the NA and VM period, since the 12.5 kHz BL was 

specifically used to identify changes with respect to the survey activity during the VM period 

and because the survey activity was distributed fairly homogenously over the array during this 

period.  By similar reasoning, it was expected that at least some of the hydrophone-specific 

sound level distributions would differ between the NA and MA period since the EM 122 was 

also used at times during this period, although the activity was not as spatially homogenous as in 

the VM period.  It was also hypothesized that there would be differences between the VO period 

and the VM and MA periods since there was also no known source transmitting in the 12.5 kHz 

band in the VO period. However, because of the nuanced spatial coverage of the survey during 
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both the VO and MA periods, it was not expected that the results would be as clear as in the NA 

and VM comparisons.  

Results 
 The 795,000 100-ms sound level observations (for each hydrophone) of the 12.5 kHz 

decidecade band spanned from 1 to 100 dB re 1 µPa2/Hz and were binned by 1 dB into 100 bins.  

The sound level distributions of the 12.5 kHz band were compared across the four analysis 

periods. The significant results of the hypothesis test for each of the nine hydrophones, as well as 

all of the array-wide results, are provided in Table 5.3 and Table 5.4, respectively, whereas the 

non-significant findings by hydrophone are contained in Appendix 5.5. Although the cumulative 

distribution functions were the input that were compared in the hypothesis testing, figures of the 

probability distributions are provided as they were more intuitive for interpreting the hypothesis 

test results. 

  

http://appendix_d_probabilitydistributionresultsbyhydrophone.docx/
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By hydrophone 

Table 5.3.  Summary of 12.5 kHz decidecade band level probability distribution comparisons 

with significant results. The two distributions compared are listed, followed by the p-value of the 

comparison test, the 2-Wasserstein distance (W2), and its decomposition into location, size, and 

shape terms, each as a percentage of the difference explained.  

Analysis periods compared, 

Hydrophone number 

P-value W2 Location 

(%) 

Size 

(%) 

Shape 

(%) 

NA vs. VO,  Hydro 63 0.0711 0.0529 15.62 3.32 81.06 

NA vs. VM, Hydro 16 0.0842 0.0524 17.79 4.73 77.48 

NA vs. VM, Hydro 45 0.0328 0.0772 19.77 3.63 76.6 

NA vs. VM, Hydro 57 0.0063 0.1044 21.82 6.36 71.82 

NA vs. VM, Hydro 63 0.0079 0.0974 22.04 4.58 73.37 

NA vs. VM, Hydro 85 0.0373 0.0552 24.93 9.56 65.52 

NA vs. MA, Hydro 63 0.0613 0.0404 16.77 0.25 82.98 

VO vs. VM, Hydro 45 0.0803 0.0407 22.84 10.69 66.47 

VM vs. MA, Hydro 22 0.0512 0.0554 23.33 11.58 65.09 

 

 Of the nine hydrophones, only the hydrophone 63 sound level distributions differed 

between the NA and VO periods (W2 =0.0529, p<0.0711).  This was not surprising since there 

were no known sound sources active in this band related to the survey activity. The shape of the 

distributions was predominantly driving this result: the NA distribution was mostly symmetrical, 

whereas the VO period was left-skewed.  The central tendencies of the two distributions were 

also clearly different (Figure 5.9); the VO period was shifted to the right of the NA period. The 

annotation of hydrophone 63 (Appendix 5.3, Figure 5.3.6) corroborates this, the 12.5 kHz band 

was quite stable in the NA period, whereas the VO period levels were noticeably elevated over 

the NA period and with larger fluctuations. Although the survey vessel did come within a few 

kilometers of hydrophone 63 during this period, it was only at the end and for a short period. 



190 

 

This hydrophone had a lot of biological activity during this period that likely was the driving 

mechanism for the difference between these two periods.   

 

Figure 5.9. 12.5 kHz decidecade band sound level probability distributions by hydrophone for 

each analysis period, where the NA period is indicated by black lines, the VO period by blue 

lines, the VM period by red, and the MA period by green.  Plot axes are the same in each plot. 

Sound level bins across the x-axis of each plot range from 0 to 60 dB re 1 µPa2/Hz and 

probability of the sound levels being in a bin are shown by the y-axis and range from 0 to 0.4. 

Hydrophone number is provided above the corresponding plot. 

Five of the nine hydrophone probability distributions differed between the NA and VM 

periods, i.e., hydrophones 16, 45, 57, 63 and 85 (See Table 5.3 for specific results). The 

decomposition again suggested these two periods largely differed in terms of shape, i.e., 65-78%, 

and to some extent location i.e., 17-25% (Table 5.3).  In each case, the VM period had a left-

skewed distribution and was shifted to the right of the symmetrical NA distribution (Figure 5.9).   

This suggests that the VM period was generally louder with intermittent loud periods in 

comparison to the more stable and quieter NA period, in terms of the 12.5 kHz decidecade band.  
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Of note, these hydrophones were all located in the western and central part of the array (Figure 

5.9). After a closer inspection of these results, it appeared that this spatial difference in results 

across hydrophones was due to the NA period being quieter on the central and western 

hydrophones (i.e., central peak in the distributions around 18 dB re 1 µPa2/Hz) than on the 

eastern hydrophones (i.e., central peak in the distributions around 23 dB re 1 µPa2/Hz), rather 

than a difference spatially in the VM period across hydrophones (i.e., central peak in the 

distributions around 38 dB re 1 µPa2/Hz). Although, no explicit comparisons were made within 

the same period across hydrophones.  

Only one hydrophone, hydrophone 63, differed between the NA and MA periods. In fact, 

this was the only hydrophone that differed between the NA period and all periods of survey 

activity.  In all three cases the decomposition reveals that this was largely with respect to the 

shape of the distributions: the NA period distribution was symmetrical, whereas the other periods 

were left-skewed and multi-modal indicating that there was some noise-generating activity 

during these other periods that affected the soundscape in the MBES band. Although there are 

other hydrophones (i.e., hydrophone 16 and 45) that lie on a track line in all three survey periods, 

hydrophone 63 was the shallowest.  By qualitatively comparing the distributions across 

hydrophones 16, 45, and 63, hydrophone 63 clearly has the most separation between 

distributions. This may be related in some part to the difference in attenuation of sound in this 

band because of the difference in depth among these hydrophones.  

Only one difference was detected between the VO and VM periods (hydrophone 45), and 

hydrophones differed between the distribution of sound levels in the 12.5 kHz band between the 

VM and MA periods (hydrophone 22).  This suggests that the EM 122 activity had little 

noticeable impact above and beyond the other anthropogenic activities in the 12.5 kHz band.  
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And in fact, it cannot be said with certainty that the EM 122 activity is what was driving these 

results.  Although other bands were not examined, this was anticipated to be the most likely band 

for which a difference related to the EM 122 activity would be detected among periods.  So a 

lack of difference between the periods of survey activity in this band was surprising.  

Interestingly, these differences were the only instances where 10% or more of the 

difference was attributed to differences in the size term, or the standard deviation of the 

distributions (Table 5.3).  In the case of the VO and VM periods on hydrophone 45, the VO 

period distribution was much broader and less peaked than the VM period distribution, 

suggesting it was quite dynamic. During the VO period, the survey vessel was at a constant 

position within 5 km of hydrophone 45 for 3.5 hours, whereas during the VM period the survey 

vessel was constantly moving to a close distance and away again and did not sit near the 

hydrophone for any long period of time.  Similarly in the latter case, the MA period distribution 

of hydrophone 22 was much broader and flatter than the VM period. The survey vessel never 

went within 7.5 km of hydrophone 22 during the MA period, whereas it did on three occasions 

during the VM period.  However, this was not the only hydrophone for which the survey vessel 

did not go within about 7 km of a hydrophone (e.g., hydro 19, hydro 57), so there appear to be 

other important factors at play.  For one, there is also biological activity that contributes to the 

energy in this frequency band.   

It is worth noting that despite differences detected, the VM distributions are noticeably 

more peaked than the MA period distributions, which are generally broader and flat (Figure 5.9).  

This characteristic distribution makes sense given the activities of the MA period.  There were 

many sources used intermittently and at times no active acoustic sources at all. So the 

hydrophones were exposed to a range of conditions, resulting in a roughly uniform coverage of 
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sound levels. The activity during the VM period on the other hand was very systematic and 

characteristic. The EM 122 was on during the entire period as the survey vessel moved back and 

forth across the array.  This difference in the distributions of the VM and MA periods, therefore, 

seems to align more with the way the active acoustics were operated, rather than the source 

levels or propagation characteristics of each of the different acoustic systems that were used.  

Some of these confounding factors (i.e., spatial coverage, length of time an active acoustic 

system is on, etc.) would need to be controlled for between various period of operation to fully 

understand this result.  

  

Array-Wide 

 

Figure 5.10. Array-wide sound level probability distributions of the 12.5 kHz decidecade band 

for each analysis period, where the NA period is indicated by black lines, the VO period by blue 

lines, the VM period by red, and the MA period by green.  Sound level bins across the x-axis of 

each plot range from 0 to 65 dB re 1 µPa2/Hz and the probability of the sound levels in each bin 

is shown along the y-axis, range from 0 to 0.1. 
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Table 5.4. Summary of the array-wide hypothesis test result using the 2-Wasserstein Distance for 

comparing the 12.5 kHz decidecade band sound level distributions. The two distributions 

compared are listed, followed by the p-value of the comparison test, the 2-Wasserstein distance 

(W2), and its decomposition into location, size, and shape terms.  

 P-value W2 Location 

(%) 

Size 

(%) 

Shape 

(%) 

NA vs. VO 0.529 0.007 15.8 8.5 75.7 

NA vs. VM 0.087 0.042 21.3 9.1 69.6 

NA vs. MA 0.661 0.004 15.4 0.1 84.5 

VO vs. VM 0.325 0.017 22.3 8.3 69.4 

VO vs. MA 0.897 0.001 4.6 32.2 63.2 

VM vs. MA 0.210 0.022 23 16.6 60.4 

 

From an array-wide perspective only the comparison between the NA and VM periods 

resulted in a p-value less than 0.1, suggesting these two periods were distributed most differently 

(Table 5.4). The decomposition of the 2-Wasserstein Distance suggested that these periods 

largely differed with respect to shape (75.7%). The VM distribution was more left-skewed, 

whereas the NA period was more symmetrical (Figure 5.10), suggesting the VM period had 

intermittent epochs that were loud.  The symmetrical distribution of the NA period in 

comparison to the left-skewed distribution of the VM period suggested that the NA period was 

quieter in the 12.5 kHz decidecade, and this was consistent across the period. The distributions 

also differed somewhat with respect to location; the VM distribution was shifted to the right of 

the NA distribution (Figure 5.10). In the context this meant that the VM period was generally 

louder than the NA period. There were no other differences detected between periods (i.e., 

p>0.1).  This matches the findings of the annotation work of this chapter, the EM 122 signal was 

most obvious in the sound level time series on a hydrophone when the vessel and MBES were 

within a close distance to the hydrophone.  The result here suggests the VM period was generally 
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louder with intermittent loud periods, which is likely heavily influenced by the closest passes of 

the survey vessel and the EM 122 signal at those times. 

Major Findings 

 The sound level distributions of the 12.5 kHz decidecade band between the NA and VM 

periods differed on five of nine hydrophones.  In each case, the VM distribution was left-

skewed and shifted to the right, indicating the VM period was loud, but intermittently so. 

o This result was more widespread on central and western hydrophones, a result 

that was driven by clear spatial differences in the 12.5 kHz band levels during the 

NA period, which were quieter on the central and western hydrophones than on 

the eastern hydrophones.   

 The sound level distributions of the 12.5 kHz decidecade band for the nine hydrophones 

examined were generally normally distributed in the NA period, left-skewed and shifted 

right of the NA period distribution for the VM period (i.e., loud, but intermittently so), 

uniformly distributed for the MA period (i.e., dynamic), whereas the VO period 

distribution looked like an intermediate of the NA period and VM period distributions, 

i.e., somewhat left-skewed and only slightly shifted to the right of the NA distribution. 

 Comparing sound level distributions for assessing changes to a soundscape is a novel 

approach that provides insight about relative differences between two sound level 

distributions.  
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Cumulative Sound Exposure Levels  

Analysis-Specific Methodology 

Observed SELcum24h 

Sound exposure level is the time integration of the squared acoustic pressure over a 

defined period.  To align with marine mammal acoustic impact thresholds, cumulative sound 

exposure levels were calculated for each analysis period of activity extrapolated to a 24-hour 

period.  Therefore, it was assumed that the survey activities defining each analysis period were 

representative of a 24-hour period of that activity.  In the discrete sense, SELcum24h was 

computed by accumulating the 5-minute SEL (SEL5min) time series data for each analysis period. 

In using a 5 minute on, 10 minute off sampling scheme, it was assumed that SEL was stable over 

a 15-minute period, and therefore that each SEL5min value was representative of its respective 15-

minute period. The SEL5min values were multiplied by three to account for the energy in the 

entire 15-minute period (Equation 5.11). (Note: this step was necessary to most accurately scale 

the available observations to a 24-hour period. This calculation was built on the assumption that 

the empirical observations within a 5 minute sample were stable enough to represent the longer 

15 minute period it represented. Because there were empirical observations at this 5 minute 

resolution, this was the smallest unit upon which this assumption could be confidently made. 

Therefore, this was the basis for extrapolating to a 24-hour period.) SEL was then extrapolated to 

a 24-hour cumulative value representing each analysis period by summing and then appropriately 

scaling (i.e., multiplying by 24/Th) the energy by multiplying by the ratio of 24 hours to the 

duration (hours) of an analysis period, Th (Equation 5.11).   

𝑆𝐸𝐿𝑐𝑢𝑚24ℎ,𝑝𝑒𝑟𝑖𝑜𝑑,ℎ𝑦𝑑𝑟𝑜 = (∑ (10
𝑆𝐸𝐿5𝑚𝑖𝑛,ℎ𝑦𝑑𝑟𝑜

10 ∗ 3)𝑁
𝑖=1 ∗ 24/𝑇ℎ)   (Equation 5.11) 
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where N is the analysis period-specific number of  SEL5min observations.  Unweighted and 

weighted SELcum24h were computed for each hydrophone and each analysis period, as were 

array-wide averages. 

Modelled SELcum24h 

As identified in earlier sections of this work, clipping occurred to some extent over the 

course of the study period and cannot be ignored. Clipping also occurred in some contexts 

unrelated to the survey activity. As such, there was no way to recover the missed energy due to 

clipping. To estimate the effect of clipping related to the survey activity, SELcum24h was 

modelled by considering various scenarios of receiver, i.e., stationary seafloor hydrophone 

receiver, exposure to the EM 122 activity. This was done with two goals in mind, 1) to 

understand the amount of cumulated energy with respect to this type of deep-water mapping 

survey that would be needed to surpass the marine mammal sound impact thresholds used by 

U.S. regulators (NMFS 2018), and 2) to realistically estimate what the levels may have been, had 

they not been clipped. 

The basis of this modeling effort follows on the work of Lurton (2016), and Lurton and 

DeRuiter (2011) who modelled the SEL of the signals from deep water (12 kHz) multibeam 

echosounders. In their work, SEL was obtained using Equation 5.12. 

 𝑆𝐸𝐿 = 𝑅𝐿 + 10𝑙𝑜𝑔(𝑇)= 𝑆𝐿 − 𝑇𝐿 + 10𝑙𝑜𝑔(𝑇),      (Equation 5.12) 

where RL is the receive level, SL is the source level, TL is the transmission loss, and T is the total 

exposure time. Transmission loss (TL) is a function of range (R in meters) and was estimated 

here by considering the spherical spreading loss and frequency-specific attenuation (α), i.e., 

𝑇𝐿 = 20𝑙𝑜𝑔(𝑅) + 𝛼𝑅 .  

To account for clipping in a 24-hour period, the RL was further broken down into the 

portion (a) of the acoustic data that was clipped and the portion (1-a) that was not (Equation 
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5.13). The non-clipped level was assumed to be the average observed instantaneous sound 

pressure level (SPLav) during the 24-hour period (T), estimated from the equality 𝑆𝐸𝐿𝑜𝑏𝑠 =

𝑆𝑃𝐿𝑎𝑣 + 10𝑙𝑜𝑔(𝑇) . The clipped sound level value and portion of time clipped were determined 

based on the context. Modifying Equation 5.12 to account for the effect of clipping resulted in 

Equation 5.13: 

𝑆𝐸𝐿𝑚𝑜𝑑 = (𝑅𝐿𝑜𝑏𝑠 + 𝑅𝐿𝑐𝑙) + 10𝑙𝑜𝑔(𝑇) = 10𝑙𝑜𝑔 (((1 − 𝑎) × 10
𝑆𝑃𝐿𝑎𝑣

10 ) + (𝑎 × 10
𝑆𝑃𝐿𝑐𝑙

10 )) + 10𝑙𝑜𝑔(𝑇)    (Equation 5.13) 

where a was the fraction of a day that the hydrophone clipped, SPLav was the average SPL over 

a day, SPLcl was the estimated magnitude of the level had it not been clipped during recording, 

and T was the total exposure time, i.e., the number of seconds in a day.   

A set of generalized but worst-case scenarios, in terms of the most clipping, were 

explored by constraining the clipping context to situations where transmission loss would be at a 

minimum and therefore RL would be most similar to SL, i.e., when the vessel and EM 122 were 

positioned directly overhead a receiver (i.e., a hydrophone). Therefore, the values obtained 

represented conservative, and louder, estimates of the actual received levels. Exposure durations 

(i.e., time that the EM 122 was on) and whether the received signal came from a main or side 

lobe transmission beam were also explored within this context (i.e., source transmitting directly 

overhead a receiver). These scenarios were assessed assuming the same operational conditions of 

the 2017 mapping survey (i.e., 10 ms pulse lengths, 1 pulse every 5 seconds duty-cycle, 16 

transmitting sectors, etc.).  

The worst case was assumed to be when the survey vessel was directly overhead of a 

hydrophone and TL was the lowest. The hydrophones were, on average, at 1300 m depth.  To be 

conservative the EM 122 was considered to be constantly 1000 m away for this exercise. The 

SEL was then modelled by varying the length of operation from zero transmissions to operating 
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the EM 122, in its typical capacity, for the entire 24-hour period.  It is important to note that 

typical capacity refers to the duty-cycled nature of the operation of the EM 122, which depends 

on the local water depth. In the deep-water environment at the SOAR, the EM 122 transmitted 

approximately every 5 s with pulse lengths of 10 ms.  Therefore, for continuous operation over a 

24-hour period, on the order of 104 pulses would be transmitted. The source level of the EM 122 

was assumed to be 243 dB re 1 µPa at 1 m, whereas the source level of a sidelobe transmission 

was assumed to be 30 dB lower, or 213 dB re 1 µPa at 1 m.  The EM 122 signal transmits 8 

sectors for a single swath and generally operates in Dual swath mode, i.e., 16 sectors in total. 

Accounting for all 16 sector transmissions, the cumulative side lobe source level can be 

approximated by 213 +10log10 (16) = 225 dB re 1 µPa at 1 m. The clipped and non-clipped 

levels were based on reception at 1000 m from the source and a frequency-specific attenuation 

coefficient of 1.2 dB/km was assumed based on the 12 kHz center frequency of the EM 122 

signal (Francois and Garrison 1982). The main transmission beam received level was therefore 

182 dB re 1 µPa and the received level from a single sidelobe transmission was 152 dB re 1 µPa, 

or 164 dB re 1 µPa when considering all 16 sidelobes together. SELmod was estimated for both 

weighted and unweighted conditions, for both main beam and side lobe assumptions. SPLav was 

assumed to be 90 dB re 1 µPa for the unweighted scenario and 75 dB re 1 µPa for the weighted 

scenario.  

In addition to these worst-case scenarios, a more realistic estimation of the effect of 

clipping was made using a modified version of Equation 5.13 (Equation 5.14) by considering 

multiple conditions in which clipping may have occurred: 

 𝑆𝐸𝐿𝑚𝑜𝑑2 = 10𝑙𝑜𝑔 (((1 − (𝑎 + 𝑏)) × 10
𝑆𝑃𝐿𝑎𝑣

10 ) + (𝑎 × 10
𝑆𝑃𝐿𝑐𝑙_𝑎

10 ) + (𝑏 × 10
𝑆𝑃𝐿𝑐𝑙_𝑏

10 )) + 10𝑙𝑜𝑔(𝑇)    (Equation 5.14)  
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where a and b refer to the amount of time the signal clipped for two different scenarios in which 

clipping may have occurred. These values, a and b, were obtained by computing the fraction of 

time the EM 122 signal was on over the duration of a day in each context, i.e., 

a=n*tp/24/3600/1000, where n= the number of pulses, tp = the duration of a pulse (i.e., 10 ms), 

and the same formula was used for b by varying n. All other variables were the same as for 

Equation 5.13. Though still simplified from reality, this model was used to provide a more 

realistic illustration of SELcum24 had the EM 122 signal not clipped during recording in certain 

circumstances. The observed and modelled cumulative sound exposure levels were compared to 

the 24-hour cumulative sound exposure level thresholds (Table 5.5) used by U.S. regulators and 

the results discussed. 

Table 5.5. 24-hour cumulative sound exposure level thresholds for a mid-frequency cetacean 

used in the United States. Note: all SEL thresholds listed below are weighted to the mid-

frequency cetacean hearing group. (Values obtained from NMFS, 2018, Table AE-1.) 

Threshold Description Threshold Value 

(dB re 1 µPa2s) 

Temporary threshold shift (TTS) – impulsive 

sound  

170 

Permanent threshold shift (PTS)- impulsive 

sound 

185  

TTS – non-impulsive sound  178 

PTS- non-impulsive sound 198 

 

Results 

Observed SELcum24h 

SELcum24h for each hydrophone and each analysis period were computed and are 

contained in Appendix 5.6. The unweighted and weighted SELcum24h array-wide average, 

standard deviations and values for each of the nine select hydrophones are presented in Table 5.6 

by analysis period. A boxplot summarizing the unweighted versus weighted SELcum24h by 

analysis period for all of the array hydrophones is contained in Figure 5.11.   

http://appendix_e_selcum24hrs.xlsx/
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The unweighted SELcum24h across analysis periods was no more than 153.3 dB re 1 

µPa2 s (on one hydrophone during the VM period), no less than 134.3 dB re 1 µPa2 s (on one 

hydrophone during the MA period), and the average across all periods and hydrophones was 

141.7 dB re 1 µPa2 s.  The average SELcum24h for the NA period was the highest at 142.5 dB re 1 

µPa2 s, whereas for the VO and MA periods it was 141.0 dB re 1 µPa2 s, and the VM period was 

142.1 dB re 1 µPa2 s.  This varied on individual hydrophones by a similar magnitude in all 

periods (SD = 2.3-2.8 dB), except the MA period, in which there was more variability across the 

89 hydrophones (SD = 3.7 dB). For the weighted SELcum24h, the VM period had the most energy 

on average at 137.0 dB re 1 µPa2 s, followed by the MA period at 131.1 dB re 1 µPa2 s, which 

was the most variable period in terms of weighted SELcum24h (SD = 8.0 dB). The average 

weighted SELcum24h during the VO period was 126.4 dB re 1 µPa2 s and for the NA period the 

average was 118.4 dB re 1 µPa2 s across the array (Table 5.6). (Figure 5.11) 

  

Figure 5.11. Boxplot of observed unweighted SELcum24h (left) and weighted SELcum24h (right) 

across the 89 hydrophones of the SOAR array by analysis period, i.e., NA=No Activity, 

VO=Vessel Only, VM=Vessel and MBES, MA=Mixed Acoustics. The blue box represents the 

25th through 75th quartiles, the red line represents the median, the whiskers extend to the most 

extreme data points, and the red plus signs indicate outliers, as defined by MATLAB boxplot 

function. The NMFS acoustic thresholds (2018) are indicated by the horizontal lines across the 

plots, i.e., black line = PTS, non-impulsive threshold; magenta line = PTS, impulsive threshold; 

blue line = TTS, non-impulsive threshold; red line=TTS, impulsive threshold. 
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Table 5.6. Observed weighted and unweighted SELcum24h (dB re 1 µPa2 s) for each of the 

analysis periods, array-wide and for the nine select hydrophones.  

Analysis 

Period 

Hydrophone 24hr-SEL 24hr-wSEL 

No Activity Array-wide 142.5 (2.3) 118.4 (5.3) 

 14 146.8 120.7 

 16 141.5 112.7 

 19 144.8 122.0 

 22 144.6 120.7 

 45 142.9 113.0 

 57 142.1 116.1 

 63 142.6 113.3 

 70 143.0 119.6 

 85 143.2 119.7 

Vessel Only Array-wide 141.0 (2.8) 126.4 (3.8) 

 14 145.9 127.0 

 16 141.3 122.0 

 19 142.3 125.5 

 22 143.7 128.8 

 45 142.0 124.3 

 57 141.2 123.7 

 63 140.8 130.9 

 70 140.9 132.7 

 85 140.2 129.1 

Vessel and 

MBES 

Array-wide 142.1 (2.4) 137 (3.8) 

 14 142.0 135.9 

 16 140.1 135.8 

 19 142.9 137.9 

 22 144.6 141.3 

 45 143.8 140.6 

 57 143.7 140.5 

 63 143.4 139.7 

 70 144.1 140.6 

 85 144.0 139.4 

Mixed 

Acoustics 

Array-wide 141.0 (3.7) 131.1 (8.0) 

 14 145.6 143.0 

 16 139.5 132.3 

 19 139.9 124.9 

 22 137.0 122.9 

 45 140.5 133.4 

 57 139.0 127.6 

 63 141.0 131.3 

 70 143.3 136.3 

 85 150.4 148.0 
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Modelled SELcum24h 

A worst-case scenario  

A summary of the results of the worst-case scenario modelling exercise is provided in 

Figure 5.12, where SELmod is shown as a function of the number of EM 122 pulses.  All of the 

impulsive and non-impulsive sound exposure thresholds for a mid-frequency cetacean, as well as 

the observed unweighted (cyan) and weighted (green) SELcum24h for hydrophone 45 (center of 

the array) were also plotted as horizontal lines in Figure 5.12 as a reference. Note that the 

unweighted scenarios were nearly identical to the weighted scenarios because the weighting 

curve is close to 0 dB at the frequency of the 12 kHz MBES signal.  Therefore, there is little 

difference between unweighted and weighted modelled SELcum24h values. 
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Figure 5.12. Modelled SELcum24h plotted as a function of the number of pings (no pings --far 

left-- up to 24 hours of pinging with the operational parameters of the 2017 mapping survey—far 

right) received on a stationary bottom-mounted hydrophone from 1 kilometer away for various 

permutations of the following assumptions: whether the clipped signal received was from the 

main beam, a sidelobe, weighted or unweighted conditions using SELmod equation. Realistic 

scenario results using SELmod2 equation, plotted as a single green horizontal line. The lower 

bound represents the scenario for if clipping occurred from sidelobe transmissions received at a 

constant distance of 3.5 km from the stationary receiver for one hour, in addition to three main 

beam transmissions received from a distance of 1 km. The upper bound represents clipping that 

may have occurred from sidelobe transmissions at a distance 1 km from the stationary receiver 

for 1 hour in addition to 3 main beam transmissions received from a distance of 1 km. 

 

The worst-case modelling exercise was based on the EM 122 transmitting at a constant 

distance of 1000 m from the stationary receiver, while the duration of transmission was varied. 

This again was a conservative illustration exercise that definitely produced levels louder than any 

realistic scenario since the average depth of the seafloor-mounted hydrophones was 1300 m and 

the survey vessel and hull-mounted EM 122 were almost never fixed to one location during the 

study period. It is important to keep in mind that most exposures would be with respect to the 

sidelobes, and exposure to the main transmission beam would be reserved to times when the 

survey vessel is directly overhead a receiver. Thus, the results are presented as 1) the number of 
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pings or temporal duration of exposure to the sidelobes, or 2) pings from the main beam with the 

notion that the survey vessel would be steaming directly overhead the receiver for an exposure to 

occur from the main beam.  

For the most conservative threshold, i.e., TTS for an impulsive sound, the worst-case 

modelling exercise revealed that ~404 sidelobe transmission pings (~ 34 min. of operation at the 

duty cycle of the EM 122 used in the 2017 survey) would be needed to reach the 170 dB re 1 

µPa2 s value; whereas for a main beam transmission, 6 pulses would be needed to reach this 

same threshold. For the TTS, non-impulsive threshold, 2590 pulses (~3.6 h of operation) would 

be needed from the sidelobe transmissions to reach the 178 dB re 1 µPa2 s value, or 40 main 

beam pulses. To reach the PTS, impulsive threshold of 185 dB re 1 µPa2 s, 12540 sidelobe pulses 

(17.4 h of operation) or 201 main beam pulses would be needed. And finally, to reach the PTS, 

non-impulsive threshold of 198 dB re 1 µPa2 s, much more than 24 hours of continuous exposure 

(>>>104 pulses) to the sidelobe transmissions would be needed, or 4027 main beam pulses to 

surpass the 24-h cumulative sound exposure threshold. (Figure 5.12) 

Realistic scenario 

To provide insight on what a more realistic—albeit simplified—accounting of the clipped 

levels would do to the SELcum24, the geometry of the acoustic transmission as well as a few 

findings of this study were considered.  First, clipping should occur mainly with respect to the 

transmission of sidelobes, as the main beam very rarely ensonifies the receiver hydrophone. 

Based on transmission loss, clipping (i.e., a received level of 138 dB re 1 µPa) from a side lobe is 

estimated to occur when the EM 122 is within 3.5 km. Based on the time series annotation work, 

the survey vessel, in standard operation (i.e., mowing the lawn configuration and continuously 

moving), was generally at or within 3.5 km of a hydrophone for no more than an hour, (i.e., 720 

pulses in an hour with 10 ms duration each, a=720 *10 /24/3600/1000  = 8.3 × 10−5).  For 
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example, the survey vessel was within 5 km of hydrophone 45 for about an hour of the VM 

period. But if the vessel runs directly overhead a hydrophone, the main transmission beam will 

also cause clipping. Thus this also needs to be considered.  Based on the typical line plans of a 

mapping survey, the survey vessel should not go over the same place more than a few times, if at 

all. Again, drawing on the exposure of hydrophone 45 in the 2017 mapping survey as an 

example, the survey vessel passed overhead about three times. Thus, the approximate amount of 

time used for the clipping of condition b--related to the main beam-- was 3 × 10−7 of the time 

(i.e., 3 pulses of 10 ms duration each, b=3*10 /24/3600/1000  = 3 × 10−7). Since the received 

level accounting for clipping will vary between 3.5 km and the closest point of approach, i.e., 1 

km, a range of possible SELcum24 were obtained (Figure 4.12, green horizontal line). The lower 

bound of this range represented clipping of the EM 122 signal at a receiver 3.5 km away, and the 

upper bound represented clipping related to the EM 122 signal detected at a receiver 1 km away.  

The result of this more realistic modelling exercise was a range of SELcum24 from 159-173 dB re 

1 µPa2 s (Figure 5.12). Again, the survey vessel was constantly moving so the actual value was 

most definitely somewhere in between. The 2017 mapping survey was primarily conducted in 

Dual-swath mode, such that there were 16 sectors active per transmission.  If instead it had been 

operating in Single-swath mode with only eight sectors, this would have reduced the reported 

modelled SELcum24 by 3 dB.  The upper bound (173 dB re 1 µPa2 s) of the more realistic 

estimate surpassed only the most conservative regulatory sound exposure threshold, i.e., TTS for 

an impulsive sound, by 3 dB. 

Discussion 
With this modelling exercise it is imperative to keep in mind that this was done to 

provide insight about the potential difference clipping made to the SELcum24, but it is a 

necessarily simplified accounting of the clipped levels and only an illustration of what the missed 
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signal may have contributed to the cumulative sound exposure levels at a stationary seafloor 

receiver. However, there are a few key points to take away from this exercise. First, the 

difference between observed and modelled levels was not negligible. When accounting for 

clipping, the modelled SELcum24, i.e., 159-173 dB re 1 µPa2 s, were approximately 19-33 dB 

higher than the observed values, i.e., ~141 dB re 1 µPa2 s. So the observed (clipped) values 

cannot be considered representative of the actual exposure levels. The clipping-modelled levels 

suggest the actual levels are louder than what was observed with the SOAR receivers, warranting 

an empirical measurement with a recording system capable of capturing the full signal dynamics. 

So although the EM 122 transmissions are very short and occur rarely, they are sufficiently loud 

to contribute significantly, even at the 24-hour scale.   

Despite this, the modelled SELcum24 values –accounting for clipping--are well below 

both PTS regulatory thresholds (i.e., 25-39 dB, below the 198 dB re 1 µPa2 s PTS non-impulsive 

threshold, and 12-26 dB below the 185 dB re 1 µPa2 s PTS impulsive threshold).  The modelled 

SELcum24 values –accounting for clipping--are also clearly below the TTS threshold for a non-

impulsive sound (i.e., 5-19 dB below the 178 dB re 1 µPa2 s TTS threshold).  Only the upper 

bound (173 dB re 1 µPa2 s) of the modelled SELcum24 values exceeded the threshold for TTS 

from an impulsive sound (i.e., 170 dB re 1 µPa2 s), whereas the lower bound of the modelled 

estimate was 11 dB below the same threshold. The actual SELcum24 was very likely somewhere 

in between this range.  Also, though this modelling exercise was done in order to provide a more 

realistic range of SELcum24 after accounting for clipping, a conservative approach was taken, 

such that even the range of values obtained should be higher than in reality.  

The worst-case scenario modelling exercise showed that the amount of energy required to 

exceed the regulatory thresholds for permanent acoustic injury (i.e., PTS) to a mid-frequency 
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cetacean would necessitate scenarios well outside the typical operation of the EM 122 for a deep-

water mapping survey. Such scenarios would have required the use of the EM 122 constantly at 

1 km from a receiver for more than 17 hours in a 24-hour period to exceed the impulsive sound 

PTS threshold, or a duration much longer than 24-hours to exceed the non-impulsive sound PTS 

threshold. Not only are these totally unrealistic scenarios for which the EM 122 would be 

operated, but the likelihood that a marine mammal would also be stationary for such periods is 

also very unlikely. The duration of required exposure of a stationary receiver to the EM 122 

signal to exceed the temporary (TTS) acoustic injury thresholds was shorter (i.e., 34 minutes at 1 

km for TTS to an impulsive sound, or 3.6 h at 1 km for TTS to a non-impulsive sound), but still 

unrealistic in the applied context. This is particularly true since neither the survey vessel or a 

marine mammal are stationary, so neither continuous exposure over even a half an hour or 

constant exposure at a range of 1 km would be likely. 

One point worth reiterating is that SELcum24 was calculated based on the sound levels 

observed at the seafloor and are therefore not valid for any other depth. An assessment of the 

sound levels at other depths was beyond the scope of this work.  The seafloor observations are 

representative of what foraging beaked whales may be exposed to as they generally forage very 

close to the seafloor. The results of this exercise suggest that the 2017 mapping survey could not 

have produced enough energy to cause permanent acoustic injury to a mid-frequency cetacean 

foraging at the depth of the hydrophones. It is possible that a stationary receiver at 1 km depth 

could have been exposed to enough acoustic energy to surpass the TTS threshold for an 

impulsive sound. However, this was a conservative result that was not only based on a simplified 

approach to addressing the movement of the sound source, but did not consider the mobility of 

the receiver. To truly understand the sound exposure of a marine mammal, a tagging study would 
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need to be conducted where the acoustic exposure could be calculated directly from a mobile 

marine mammal receiver.  

It is also worth revisiting the challenge of where the MBES signal fits in terms of sound 

source type and regulation.  In light of this challenge, both impulsive and non-impulsive 

thresholds were considered.  In the current regulatory framework, the results here suggest that a 

foraging beaked whale would not be exposed to a sound exposure level that exceeds the non-

impulsive thresholds, whereas the lower TTS impulsive threshold would be exceeded.  Based on 

these results, the placement of this sound source in one category over another would certainly 

have repercussions in terms of how this source is regulated.   

Major Findings 

 Observed (clipped) SELcum24 on the array was ~141 dB re 1 µPa2 s at the stationary 

seafloor receiver during the MBES mapping survey. 

 A modelling exercise  accounting for potential clipped signals from the EM 122 when the 

survey vessel was within 1-3.5 km of a stationary receiver resulted in estimated values 

for SELcum24  of 159-173 dB re 1 µPa2 s. 

 Observed and modelled SELcum24 did not exceed regulatory thresholds for a non-

impulsive sound. The upper bound of the range of modelled SELcum24, accounting for 

clipping at a stationary seafloor receiver exceeded the impulsive threshold for TTS by up 

to 3 dB. This was a conservative estimate that does not consider the mobility of a marine 

mammal receiver.  
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Frequency Correlation Analysis 

Analysis-Specific Methodology 
The frequency analysis methodology differed slightly from the amplitude analysis. The 

voltage data was extracted in a 5 minute on/5 minute off scheme to provide a closer to real-time 

sampling than the other analyses. The voltage data were then converted to absolute sound 

pressure levels as previously described by applying the gain and receiver sensitivity, but were 

then transformed to the frequency domain using the MATLAB function pwelch (MATLAB 

R2021a) in 1-s windows using a fast Fourier transform length of 1048 (50% overlap and 

Hamming window, the pwelch default).  

A frequency correlation coefficient (r) was calculated using Equation 5.15 from Miksis-

Olds and Nichols (2016, Equation 1) for each pair of frequencies (𝑓1, 𝑓2) from 91 Hz to 39.9 

kHz, at a resolution of 91 Hz: 

 

𝑟(𝑓1, 𝑓2 ) =
∑ [𝑥(𝑓1)𝑖−(𝑥(𝑓1)̅̅ ̅̅ ̅̅ ̅̅ ̅][𝑥(𝑓2)𝑖−(𝑥(𝑓2)̅̅ ̅̅ ̅̅ ̅̅ ̅]𝑛

𝑖=1

√∑ [𝑥(𝑓1)𝑖−(𝑥(𝑓1)̅̅ ̅̅ ̅̅ ̅̅ ̅]
2𝑛

𝑖=1
√∑ [𝑥(𝑓2)𝑖−(𝑥(𝑓2)̅̅ ̅̅ ̅̅ ̅̅ ̅]

2𝑛
𝑖=1

   (Equation 5.15) 

where x(f) are the frequency-specific sound levels in dB re 1 µ𝑃𝑎2.  The resulting matrix of 

correlation coefficients formed a diagonally symmetric matrix, where the diagonal was the 

autocorrelation of each frequency.  

Frequency correlation matrices were computed for each of the four analysis periods 

previously defined (NA, VO, VM, and MA) for hydrophone 45. Hydrophone 45 was selected 

because it was closely passed during all three survey activity periods and was central to the 

activity throughout each analysis period. Therefore, it was expected to be representative of the 

anthropogenic activities during the study. Frequency correlation difference plots were generated 

by subtracting one frequency correlation matrix from another. To aid in the interpretation of the 
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frequency correlation matrices and difference matrices, spectrograms and spectral probability 

density plots of each period were also generated.  

It was hypothesized that within the frequency correlation matrices there would be 

identifiable features related to the vessel-radiated sound, the EM 122, and potentially other 

distinguishable sources, like biological activity.  In particular, during the NA period, it was 

expected that there may be a lack of correlation in the very low frequency (10s of Hz) attributed 

to the very high amplitude sound detected there in earlier parts of this work.  For the VO period, 

it was expected that the lower frequencies would be highly correlated with one another attributed 

to vessel-radiated sound.  For the VM period, it was expected that frequencies between 11-13 

kHz, the frequency range of the EM 122 signals, would be highly correlated with one another but 

not with other frequencies.  Since the EM 122 was also used in the MA period, it was expected 

that any pattern attributed to the EM 122 in the VM correlation matrix would be present in the 

MA matrix as well.  In addition, it was hypothesized that there might be an area of correlation 

related to the SBP around 3.5 kHz in the MA correlation matrix, but not associated with the other 

active acoustic sources, which were hardly discernible in other analyses in this chapter.  

Results 

Frequency correlation matrices were generated for each analysis period and are contained 

in Figure 5.13. The corresponding spectrograms and spectral probability density plots for each 

analysis period are contained in Appendix 5.7. The NA period contained a few distinct but small 

areas of high correlation mostly of frequencies very close to one another in the spectrum (Figure 

5.13, A). For example, frequencies roughly between 1-5 kHz, 7-22 kHz, 20-25 kHz, 30-38 kHz, 

were highly correlated within those ranges. There was very little correlation between the lowest 

and highest frequencies e.g., 0-5 kHz had near zero correlation with frequencies higher than 30 
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kHz. And in visually comparing this matrix to the other analysis periods, there was the least 

correlation between frequencies in this period.  This can be attributed to the lack of 

distinguishable noise sources present on this hydrophone during this period.  The sound levels 

across the broader frequency space generally change randomly with respect to one another. 

No Activity

 A 

Vessel Only

 B 

 

Vessel and MBES 

C 

Mixed Acoustics 

D 

Figure 5.13. Hydrophone 45 – Frequency correlation plots.  Each frequency correlation plots 

contains frequencies from 91 Hz to 40 kHz, at a frequency resolution of 91 Hz, along both axes.  

The color bar represents the frequency correlation from 0 to 1.  A, B, C, D correspond to the No 

Activity, Vessel Only, Vessel and MBES, and Mixed Acoustic periods, respectively.  

 The VO period on the other hand was highly correlated in comparison to the other 

frequency correlation matrices of the other periods (Figure 5.13, B).  The sound levels were 

highly correlated in this period, and there were no distinct pockets of the spectrum lacking 

correlation.  There were two distinct areas of highest correlation: frequencies below ~ 20 kHz 
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and frequencies greater than about 25 kHz (Figure 5.13, B). In both cases, the further away on 

the frequency spectrum from a specific frequency, the less correlated it was with other 

frequencies.  This matches well with the known acoustic activity during this period. The 

presence of the survey vessel increased sound levels broadly, with the most energy concentrated 

at the lowest frequencies (Appendix 5.7, spectrogram of VO period).  The distinguishable small 

sub-regions from the NA period were no longer visible, masked by the louder broadband 

acoustic energy of the survey vessel.  Although still correlated, there was an area of lower 

correlation centered around 2 and 5 kHz, within the highly correlated sub-region of frequencies 

below 20 kHz. This was likely attributed to the vessel activity, as it becomes more prominent in 

the spectrogram as the vessel gets closer to the hydrophone under consideration, but may be 

related to a different mechanism than the broader sub-region. As in the NA period, the lowest 

frequencies and highest frequencies were the least correlated, which makes sense given there is 

very little acoustic energy in the higher parts of the spectrum, as most of it is concentrated in the 

lowest frequencies.   

 The frequency correlation matrix of the VM period had a similar structure to the VO 

period matrix: generally frequencies lower than 20 kHz were correlated and those higher than 25 

kHz were correlated, and the lack of correlation around 2 and 5 kHz was still present (Figure 

5.13, C).  Although the graded decrease in correlation with increasing distance between two 

frequencies on the spectrum was even more pronounced.  This suggests that the mechanism 

driving the higher correlation areas was even more pronounced during this period, i.e., present 

longer during the period.  The most distinguishable feature of the VM period frequency 

correlation matrix, however, was the area of lower correlation between frequencies in the 11-13 

kHz band and those either higher or lower and the distinct area of correlation within the range 
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11-13 kHz.  This can be attributed to the EM 122 signal that was distinct in comparison to any 

other sound source present in the data during this time (Appendix 5.7, spectrogram VM period).  

Lastly, the second high correlation area from 20-40 kHz, was even more correlated in this time 

period.  One potential explanation for this correlation was the presence of broadband clicks 

throughout the period. This was likely attributed to the foraging clicks of Cuvier’s beaked 

whales.   

 The MA period frequency correlation matrix had a very similar structure to the VM 

period, except there were several small areas of decorrelation across the spectrum (Figure 5.13, 

D).  In particular, some of the areas of local decorrelation that were most prominent were 

centered around 1.5 kHz, 18 kHz, and 22 kHz.  The EK-80 (18 kHz signal) was detected on this 

hydrophone during this period and is likely the source of decorrelation centered at 18 kHz.  A 

closer inspection of the 1 kHz and 22 kHz suggests there was a continuous sound in a very 

narrow band around these frequencies across the entire time series likely responsible for the 

decorrelation at these frequencies. Although the SBP was detected in the time series analysis on 

this hydrophone there is no clear pattern in the frequency correlation plot with respect to the 

known frequencies of this system (i.e., 3.5-12 kHz).  This may mean the signal was masked by 

other sources at the same frequency, or that it was not sufficiently strong in the time series to 

make a substantial impact.  
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A B 

 

C D 

E F 

Figure 5.14. Hydrophone 45 frequency correlation difference matrix plots. From top left to right 

bottom the analysis period comparisons are: A-NA vs VO, B-NA vs VM, C-NA vs MA, D-VO 

vs VM, E-VO vs MA, F-VM vs MA, where NA = No Activity, VO=Vessel Only, VM=Vessel 

and MBES, and MA=Mixed Acoustics. Frequency in kHz on both x and y axes. The color bar 

represents the absolute value of the correlation coefficient difference where blue equals no 

difference and red equals a difference of 0.5. The black boxes around sub-regions are referenced 

in the text. 
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Six difference plots were generated comparing each pair of frequency correlation 

matrices from the four analysis periods and are contained in Figure 5.14.  Red indicates the 

frequency correlation that most differed between periods, whereas blue indicates areas of the 

frequency spectrum that were most similar in terms of frequency correlation between periods.  In 

general, the NA period was the most different from the other analysis periods, which is 

reasonable given there was little activity except at very low frequencies (common in an ambient 

acoustic environment). The NA period differed from the three survey activity periods in three 

consistent areas, 1) at very low frequencies, < 1 kHz with respect to all other frequencies, 2) 

below 5 kHz and at frequencies 20 kHz and above, and 3) frequencies centered around 25 kHz 

and those 30-40 kHz. The first area can be attributed to the array-wide elevated levels during the 

NA period that was not present during other periods (Figure 5.14, 1). The second difference 

(Figure 5.4, 2) appears to be related to the presence of the survey vessel as this difference is 

absent in the plots comparing different periods of survey activity (i.e., Figure 5.14, D, E, F).  

And the final difference appears correlated with the high frequency clicks, presumably beaked 

whale foraging clicks, in all periods of survey activity, but which were mostly absent in the NA 

period (Figure 5.14, 3).   

There was only one area of frequency correlation in the NA vs VO comparison (Figure 

5.14, A) that was noticeably different from the other comparisons to survey activity (Figure 5.14, 

B and C).  This was between frequencies of ~7-22 kHz and those 30 kHz and higher. This result 

suggests that there were very different mechanisms driving the sound levels at these frequencies 

in each of these periods. The high frequency activity (~30 kHz and higher) appears to be related 

to the difference in beaked whale activity, whereas the activity in the 7-22 kHz range appears 

related to the absence of activity in the NA period and the presence of the survey vessel during 
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the VO period. During the VO period, the survey vessel was stationary near hydrophone 45 for 

several hours in a row (Figure 5.14), which likely explains this difference.  And this was not seen 

across comparisons with other survey activity because the survey vessel was continually moving 

throughout those other periods.  In the other comparisons (Figure 5.14 B, and C) there was less 

of a correlation difference in this same area.   

Between the NA and VM period, the only obvious difference not previously addressed is 

the frequency correlation difference around 11-13 kHz (Figure 5.14, 5). This difference is most 

certainly related to the EM 122 signal which was present frequently in the acoustic data on 

hydrophone 45. Within this area there are finer lines suggesting frequency correlation 

differences, which correspond with the sector specific center frequencies of the EM 122 signal.  

It is worth noting that the magnitude of difference is not as high as some of the other frequency 

correlation differences already identified.  This suggests that the EM 122 signal was not constant 

and that there were times when the energy in this area of the frequency spectrum matched the 

NA period (i.e., there were periods of relative quiet during the VM period, even at these 

frequencies. This is corroborated by inspection of the spectrogram of this period which only 

shows the EM 122 signal intermittently. The NA vs MA frequency correlation difference plot 

depicted similar patterns as the NA vs VM comparison. However, the correlation difference in 

the 11-13 kHz frequencies was even more prominent between these two periods (Figure 5.14, C). 

Miksis-Olds and Nichols (2016) suggest that although correlation does not perfectly relate to the 

intensity of a source, a strong correlation can mean that either the sound is frequently occurring 

or of higher intensity.  Based on the time series analysis earlier, the survey activity was detected 

during just under 50% of the MA period, whereas it was only detected for approximately a third 

of the time during the VM period. Thus it appears the stronger correlation (in Figure 5.14, B vs 
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C) is likely due to the difference in presence of the signal in the acoustic record for these two 

periods. It is worth noting that the two periods were not of the same duration, and the absolute 

time the signal was present was actually higher in the VM period (11.75 hours) than the MA 

period (8.75 hours). This difference in duration of source presence across analysis periods also 

explains the subtle differences in some of the difference areas identified (i.e., broader/narrower 

area of difference, smaller/larger differences, etc.). 

The difference in the VO and VM periods was most obviously related to the presence of 

the EM 122 signal in the VM period as the 11-13 kHz band was one of the only differences 

between these two periods (Figure 5.14, D).  In addition, the frequency area 2 identified 

previously (Figure 5.14) was also different between the VO and VM periods.  Between the VO 

and MA periods in this same area, there was even less of a difference. This suggests that this 

frequency correlation difference is likely attributed to the difference in how the survey activity 

was conducted in these periods.  In both the VO and MA period, the survey vessel was present 

for several hours in a row within a very close distance to hydrophone 45 at a constant distance 

(which was not the case during the VM period).  During these times there was broadband energy 

radiating from the ship.  This was more pronounced in the VO period when the survey vessel 

was closer, which appears to be driving the larger difference detected in this area (2) between the 

VO v VM difference plot (Figure 5.14, D) in comparison to the VO v MA difference plot (Figure 

5.14, E).  

One obvious difference between the VO and MA periods that was not present in the VO 

and VM comparison was between 18 kHz and all other frequencies (Figure 5.14, 6), which can 

be attributed to the EK-80 signal at 18 kHz. In addition, the difference at 22 kHz was also visible 

as a line of higher correlation difference with respect to all other frequencies.  Between the VM 
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and MA period there are many smaller regions representing a moderate difference between the 

two periods, but only one area of strong correlation difference (Figure 5.14, 7) centered around 

1.5 and 5 kHz with respect to frequencies between 11-12 kHz.  This appears to be related to the 

EM 122 signal and the acoustic activity centered around 1.5 and 5 kHz, the latter which is 

presumed to be related to the operation of survey vessel. However it is unclear what about the 

difference in these activities between the VM and MA periods could manifest in this way.  The 

largest region of correlation difference between the VM and MA period was between frequencies 

of 3-11 kHz and those 20-30 kHz (Figure 5.14, 8).  One explanation is that this could be related 

to the SBP signal which contributes significant energy between 3-11 kHz and was active during 

this period.  There was an area of slight decorrelation in this frequency region in the MA period 

frequency correlation plot (Figure 5.13).  However, it was not as distinguishable as other sources, 

such as the EM 122.  Thus it is unclear whether this is the cause of the correlation difference.  

The manifestation of the SBP signal in the frequency correlation plot was undoubtedly more 

subtle than the EM122 signal. The subtle manifestation of the signal would be expected since the 

SBP has a longer duration and is more broadband than the EM 122 signal. Thus it may be 

masked more easily by the more continuous ambient acoustic environment at similar 

frequencies. 

Major Findings 

 The EM 122 signal contributed to a very narrow frequency band between 11-13 kHz, 

whereas the vessel-radiated sound manifested most as correlation in the lowest 

frequencies (<5 kHz). 

 The other active acoustic sources contributed more subtly, i.e., lower correlation, to the 

frequency correlation than the EM 122 signal. The EM 712 was not distinguishable.  
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These results suggest the EM 122 had the clearest impact in terms of the active acoustic 

sources and frequency correlation. 

 The frequency correlation difference plots provide a useful way to separate the 

contribution of two or more sources, i.e., such as vessel sound from the EM 122 signal, or 

the other acoustic sources. 

Chapter Discussion and Summary  

A comprehensive soundscape assessment was conducted of the 2017 mapping survey, 

which included 1) a detailed annotation of several sound level metric time series from nine array 

hydrophones, 2) the calculation and comparison of sound level percentiles across the four 

analysis periods of survey activity, 3) the calculation and discussion of cumulative sound 

exposure levels with respect to noise impact thresholds, 4) a probability distribution analysis of 

the most relevant sound level metrics with respect to the activity of the EM 122, and 5) a detailed 

frequency analysis examining differences in frequency correlation among the four analysis 

periods of survey activity. Each analysis contributed to a more thorough understanding of the 

impact the 2017 mapping survey had on the marine acoustic environment at the SOAR.  While 

the annotation provided the most detailed and localized perspective of what acoustic sources 

contributed to the changing acoustic environment and how, the other analyses provided a more 

global perspective of how the natural soundscape was changed by the survey activity.   

 The acoustic sources contributing to the SOAR soundscape during the 2017 study 

included more than just the survey vessel and its active acoustic sources. There were other 

anthropogenic activities on or near the array, very likely including vessels passing by. There was 

also significant biological activity, particularly, mid-to high frequency (i.e., > 1 kHz) vocalizing 

marine mammals, and some contributions from unknown sources, mostly low frequency (< 1 
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kHz), that manifested as acoustic events throughout the time series. However, the acoustic events 

differed spatially. For example, there were instances in the time series of the western and 

northern edge hydrophones indicating other vessels passing, unrelated to the survey activity, 

whereas the time series of hydrophones in the southwest of the array, suggested significant 

biological activity (i.e., 12.5-kHz and 40-kHz band).  These other acoustic sources varied 

temporally irrespective of the designation of analysis periods. For example, despite the absence 

of survey activity in the NA period, there were other vessels present in the acoustic data during 

this period associated with some of the hydrophones.    

During the VO period, the presence of the Sally Ride at ranges of 6 km or less was 

typically associated with sound levels 5-15 dB over baseline (i.e., the 50th percentile sound level 

for a specific analysis period).  Beyond about 15 km, the Sally Ride alone was not clearly 

distinguishable in the time series.  In the VM period, the presence of the Sally Ride and EM 122 

at ranges of 6 km or less was typically associated with sound levels of 5-15 dB over baseline for 

all but the 12.5 kHz, 40 kHz, and SPLpk metrics, which were typically more than 20 dB and as 

high as 40 dB over baseline. Clipping also occurred within this range, though to varying degrees, 

when the EM 122 was on.  From 6-10 km only the 12.5 kHz and SPLpk metrics were elevated 

more than 15 dB, whereas the other BLs were about 3-10 dB higher than baseline.  Small peaks, 

i.e., 3-10 dB in these same metrics, were identified in association with the vessel and EM 122 

activity to a distance of about 17 km.  Due to the nature of the survey, it was not possible to 

characterize the impact of the other sound sources in a similar way.  All of the active acoustic 

survey sources, with the exception of the SBP, were of higher frequencies than the EM 122, 

hence subject to a higher attenuation effect in water. Their acoustic contribution to the 

soundscape is smaller by this fact alone. In addition, none of the other active acoustic sources 
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were on long enough to characterize their impact in a meaningful way.  The time series 

annotation revealed that the survey activity was, on average, detectable on a hydrophone for 

about one fourth of the study period, though intermittently. This varied spatially and was even 

more variable in the MA period consistently with the above remark—from as little as no 

detection of the survey activity to as much as 50% in the period.  Moreover, the higher 

variability in the amount of time the survey activity was discernible in the MA period was likely 

because the survey lines were not as spatially comprehensive as in the VM period. The findings 

of the time-series annotation motivated a more quantified approach and holistic perspective of 

how the sound levels were changed by the survey activity which led to a series of broader-stroke 

analyses.  

 In particular, the sound level percentile comparison partitioned percentile differences into 

three relative magnitude classes for interpretation, guided by the findings of the time-series 

annotations.  Changes of 20 dB or more corresponded to the most extreme changes which were 

rare in the time series annotation, for example, with respect to the survey activity at very close 

distances (i.e., under a few kilometers) of a hydrophone. Differences of 10-20 dB were 

considered moderate changes and occurred more often.  With respect to survey activity, this 

corresponded to activity at distances up to10 km, but was also frequently seen with respect to 

other acoustic sources not related to the survey activity. Changes of 3-10 dB corresponded to the 

smallest changes in the sound levels that were still easily associated with distinct acoustic events, 

in some cases attributed to the activity of the EM 122 at distances under 17 km. Changes less 

than 3 dB were not interpreted, as they were not easily associated with distinct acoustic events. 

One of the most insightful findings of this analysis was that the difference between the NA 

period and those with survey activity were generally larger with increasing percentile. In other 
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words, the survey activity appeared to be most impactful on the loudest levels. This also suggests 

that the survey impacted the soundscape at a local temporal and spatial resolution rather than 

across the entire SOAR or over the entire study period. The percentile difference magnitudes 

were larger after weighting, which is reasonable given the EM 122 signal is well within the 

highest sensitivity frequency band of the hearing range of a mid-frequency cetacean.  This 

implies that the EM122 survey activity is detectable by a mid-frequency cetacean. For the 12.5-

kHz band, extreme differences were primarily only found in the 99th percentile between the NA 

period and those with echosounder activity. For wSPLpk extreme differences were primarily in 

the upper 25th percent between the NA period and those with survey activity, although the most 

numerous extreme differences were found between the VO and NA period in this metric.  This 

suggests that 1) even the sounds inherent to the transiting vessel alone can cause extreme change 

to the soundscape, and 2) that external non-controlled sound sources were prevalent during these 

periods of observation. There were differences among the periods of anthropogenic activity, but 

the results varied and depended on the metrics being assessed and the exposure of the 

hydrophone to the particular survey activity.    

The probability distribution analysis focused solely on the 12.5 kHz BLs which were 

deemed the best proxy of the EM 122 activity, of those metrics explored herein.  The analysis 

revealed that largely only the NA and VM periods differed, with the VM period generally louder 

and intermittently loud in comparison to the NA period.  This was really only seen on western 

and central hydrophones, whereas no difference was detected between these periods on the 

eastern hydrophones. One explanation for this was that the baseline sound levels on the eastern 

hydrophones were generally louder because of their proximity to San Clemente Island and their 

relatively shallower depths in comparison to the rest of the array. The probability distribution of 
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the MA period sound levels was often flatter than the other periods, suggesting a more uniform 

distribution of sound levels and thus a more dynamic acoustic environment.  However, there 

were no statistical differences among the three periods of survey activity. Despite only one 

decidecade band being examined in the probability distribution analysis, the findings 

corroborated those of the time-series annotation: on a given hydrophone, the survey activity was 

intermittent and loud. This suggested that the 12.5 kHz band served as a good proxy to assess the 

impact of the survey activity, particularly because the EM 122 was the primary source used 

throughout the survey.    

 The frequency correlation analysis showed that there were several ways the frequency 

correlation differed among analysis periods. In particular, there were three areas that differed 

between the NA period and those with survey activity, two of which seemed unrelated to the 

anthropogenic activity-centric period designations, i.e., 1) the very low frequency array-wide 

phenomena and 2) the presence of high frequency biological acoustic activity. This left only one 

broad area of frequency correlation difference, which corresponded with ship-radiated sound.  

This suggests that the survey activity was among several acoustic events—biological, 

anthropogenic, and sources unknown-- that caused distinguishable differences in frequency 

correlation over the course of this study.  The VM period was largely only different from the VO 

period at the frequency range of the EM 122 (i.e., 11-13 kHz). Due to the more interspersed use 

of the EM 122 in the MA period, the MA and VO periods were even more different in this region 

than the VM and VO periods, highlighting the fact that increased correlation relates to time 

rather than intensity.  In other words, because the EM 122 was used continuously in the VM 

period and only intermittently in the MA period, the VM period was more similar in terms of 

frequency correlation to the VO period than the MA period was.  Although it was known from 
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the onset that it would be difficult to characterize the contribution of specific acoustic sources 

other than the EM 122, the frequency correlation analysis provided some insight.  In particular, 

the EK-80 signal made a noticeable contribution to the frequency correlation around 18 kHz. The 

correlation difference associated with this source was about a third of the magnitude in 

comparison to the correlation difference caused by the EM 122 signal. This suggests the EK-80 

contributed even less to the changing sound levels across time than the EM 122 signal, which 

makes sense given the higher frequency signal of the EK-80 and greater attenuation. There was 

also an area of higher correlation around the frequencies associated with the SBP, but a discrete 

area was not clear.  This was likely because there were other sources of sound in this part of the 

frequency spectrum that, at least partially, masked the signal. There were no clear frequency 

correlation differences associated with the EM 712 signal, suggesting this source did not 

contribute greatly to this metric.  

 Although significant insight was gained about deep-water mapping through this 

soundscape analysis, there are aspects of this particular survey at the SOAR that need to be 

acknowledged if using this insight more broadly. For one, the survey was not conducted in 

isolation of the natural acoustic activities that occurred at the SOAR.  So although broad stroke 

trends were gleaned about the survey activity, they were specific to the survey conducted at the 

SOAR and inclusive of the features that make up the current marine acoustic environment there. 

If one were to repeat the survey over a different hydrophone array, the local ambient acoustic 

activity would likely contribute in different and unknown ways.  Secondly, although the primary 

survey offered insight about the typical operation of the EM 122, the more arbitrary and sporadic 

use of the other acoustic sources in the MA period did not facilitate a clear assessment of these 

other sources.  Finally, by approaching this study holistically as an assessment of how the survey 
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activity impacted the entire SOAR soundscape, there were many confounding factors that 

necessarily made a clear characterization of all of the acoustic survey activities more difficult. In 

particular, the various differences in depth, bathymetry, and anthropogenic exposure of each 

hydrophone largely contributed to the variability seen through each analysis.  Nonetheless, 

identifying and considering these complexities was a necessary part of assessing the contribution 

of a real mapping survey in a real marine environment. These factors (i.e., depth, bathymetry, 

exposure) were discussed with respect to the sound level differences identified and were largely 

satisfactory in explaining the observed variation.  Future work could be done to account for these 

confounding factors in a more directed way, such as through exploring the data by controlling 

one or more of these factors, e.g., making comparisons across hydrophones of the same depth, or 

with similar anthropogenic exposure, etc.   

Along these lines, it was imperative that the time-series annotation was conducted to 

provide the detailed understanding of what acoustic sources were present in the SOAR 

soundscape and in what capacity. Without this it would have been difficult to accurately interpret 

the results of the other analyses.  For example, one of the biggest shortcomings of the percentile 

analysis was that the mechanism driving the results was not known.  The annotation results were 

relied heavily upon to interpret the findings.  However, it was difficult to quantifiably summarize 

the impact of the survey activity on the soundscape through the annotation alone, thus broader 

stroke analyses such as the probability distribution and sound level percentile comparisons 

served this purpose.  The calculation of cumulative sound exposure levels and the modelling of 

clipped signals helped to put the findings into the context of sound exposure regulation, forming 

an information base upon which regulators could pull to inform policy regulating mapping 

echosounders such as the 12 kHz multibeam echosounder.  The frequency correlation analysis 
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provided the most detailed frequency assessment helping to summarize the contribution of the 

other, lesser used, acoustic sources which had been difficult to glean through the other analyses. 

For these reasons, each of the five analyses were a necessary part of a comprehensive 

soundscape assessment. 

As previously alluded to, there are many analyses that could contribute understanding to 

an effective soundscape study.  The tools used here were selected to specifically understand the 

contribution of the EM 122 to the soundscape.  But not all of the tools used were optimized for a 

general soundscape assessment and each analysis had its limitations, thus necessitating the use of 

a comprehensive suite of tools. The probability distribution analysis, for example, identified 

differences between the VM and NA periods, as was anticipated, but it did not detect differences 

between the VM and MA periods, despite visually identifiable differences (i.e., flat versus 

peaked distributions).  It was not expected that there would be very significant differences 

between these two periods given they both contained activity from the EM 122. But future work 

could be conducted to explore these differences further, making the method more accessible for 

general use in soundscape studies. In particular, finding a more optimal range of bins for 

partitioning the data would be a good place to start. Here, the entire data set over the course of 

the study period was partitioned such that every sound level was considered in the comparison. 

Thus, the range of bin values were defined by the maximum and minimum over the entire study 

period, rather than with respect to a single analysis period. This choice--in addition to the 

assessment of decibel values rather than values on a linear scale-- may have unintentionally led 

to the distributions seeming more similar to one another.  One way to remedy this would be to 

choose only a subset of the data (e.g., only data between 1st and 99th percentiles) based on a 

reasonable set of carefully considered assumptions.  Additionally, the ‘waddR’ package is 
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capable of comparing two distributions with a different set of bins, so an alternative approach 

would be to compare distributions with bin value range optimized for the specific analysis 

period.  These approaches were not explored here, but may prove useful in being able to more 

closely match visually identifiable differences to statistically identifiable ones.  And finally, only 

the 12.5-kHz decidecade band was explored here.  In applying this approach more generally to 

soundscape studies, additional sound level metrics--particularly broadband metrics-- should be 

explored where relevant to the particular research question.  

The sound level percentile comparison also has the potential to be used more broadly in 

soundscape assessments.  Again, the relative magnitude classes used here were optimized for this 

specific application.  As was obvious between the individual hydrophone versus array-wide 

approach, the resolution and scale of the analysis must be carefully considered when using this 

technique, as well as really any tool.  The relative magnitude classes used here were chosen 

based on the changes identified in the time series annotation conducted on an individual 

hydrophone basis and with respect to the survey activity. Although the same relative magnitude 

classes were also applied in the array-wide sound level percentile comparisons, it was less clear 

that differences of those magnitude classes could be interpreted similarly. For example, a change 

in 3 dB at a spatial scale of 1000s of kilometers does not likely have the same meaning as a 

change in 3 dB at a spatial scale of 10s of kilometers.  The same can be said about differences of 

3 dB at various temporal scales.  Careful consideration of scale should be made when adopting 

or modifying this approach for use in other soundscape studies. 

One of the most useful aspects of the frequency correlation analysis is the ability to 

separate the contribution of two or more simultaneous sources from one another.  This was 

particularly useful in this analysis in separating the ship-radiated sound contribution from the 
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EM 122 signal.  Future work can extend this idea in identifying the distance from a fixed 

receiver that each source remains detectable, with respect to frequency correlation. For example, 

frequency correlation matrices could be computed and compared for periods associated with the 

vessel’s fixed distance from the receiver (e.g., 0-2 km, 2-5 km, 5-10 km, 10-20 km) to 

understand how frequency correlation differs for these two sources (ship-radiated noise versus 

MBES signal) as a function of distance. With this data set, this could be conducted across time 

using the acoustic data from a single hydrophone, or across space looking at the acoustic data 

from the same point of time across a line of hydrophones.  Although at face value frequency 

correlation clearly provides insight about the spectral nature of a changing soundscape, it is a 

function of time.  The strength of a correlation is about the temporal nature of two signals.  If one 

signal is represented in the time series for a different fraction of time than another signal, there 

will be a difference in their correlation. If one signal has a different duty-cycle (i.e., continuous 

versus pulsed) than another signal, there will be a difference in their correlation.  Thus the 

effectiveness of this --or any soundscape study-- comparison requires significant a priori 

understanding of the sources contributing to the soundscape.  Therefore, this tool is most useful 

for identifying areas of strong or lacking frequency correlation, and then looking to the data to 

uncover the contributing source mechanism. Finally, the frequency correlation analysis does not 

provide information about differences in sound level intensity, providing another reason for a 

suite of tools to be used for a comprehensive assessment of the soundscape. 

By the far the most insightful tool used to observe changes in the SOAR soundscape was 

the time-series annotation. It not only provided insight about the magnitude, duration, and 

frequency of changes associated with the survey activity, but it provided insight about other 

acoustic sources, their magnitude, duration, frequency, and identification.  This part of the 
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assessment provided a clear understanding of the strong time and space dependence of the 

contribution of the survey activity to the soundscape.  In other words, that the deep-water 

mapping activity impacted a local area of the time (i.e., intermittent), space (i.e., <<area of the 

SOAR), and frequency (i.e., largely 11-13 kHz) dimensions of the soundscape.  However, this 

was also the most time-intensive analysis.  It took over 40 hours of effort for the careful review 

of hydrophone 45, and there was undoubtedly much more that could be garnered from the 

acoustic data.  This is why automated tools exist for extracting characteristic information from 

comprehensive data sets.  Therefore, the findings from this annotation will provide a resource 

from which information can be extracted for future efforts to automatically identify and 

characterize the 12 kHz-MBES signal in acoustic data.  In particular, the physical characteristics 

of the EM 122 signal are reliable parameters that can be used with little if any uncertainty, i.e., 

11-13 kHz frequency, pulse length and duty cycle based on ocean depth, etc.  These 

characteristics within a roughly 17 km radius of a hydrophone can be reliably attributed to this 

acoustic source.  This is not new insight, but this study provides empirical support that these 

characteristics are valid in situ.  

The modelling exercise revealed that the EM 122 signal did significantly contribute to the 

cumulative sound exposure levels, as indicated by the 19-33 dB difference between observed and 

modelled SELcum24 (realistic scenario accounting for EM 122-related clipping).  This suggests 

that the energy in the EM 122 signal more than compensates for its infrequent and short duration 

attributes. One of the most important motivations for this particular piece of the soundscape 

assessment was to evaluate whether the observed changes would impact marine mammals at the 

SOAR. In this respect, the modelled 2017 mapping survey SELcum24 did not meet or surpass 

three of the four acoustic injury thresholds (i.e., PTS or TTS, for a non-impulsive sound, or PTS 
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for an impulsive sound) for mid-frequency cetaceans, thought to be the most vulnerable marine 

life to mid-frequency sonar sounds and hence to the deep-water MBES (12 kHz) mapping 

activity. The upper bound of the realistic scenario modelled SELcum24 did exceed the TTS 

impulsive threshold by 3 dB, but again, this was a conservative estimate for a stationary receiver. 

This result indicates that surpassing this threshold is possible in this specific way but for a 

mobile foraging marine mammal this is likely an overestimate of the potential exposure. These 

results indicate that acoustic injury at the depth of the hydrophones would be very unlikely in 

this group. As there are currently no accepted behavioral impact thresholds for this metric by the 

scientific community, an interpretation of these results with respect to behavior thresholds was 

not made here.  However, the behavioral impact study results presented in earlier chapters 

represent the best available assessment of the potential impact that deep-water MBES mapping 

has on the behavior of foraging beaked whales. The final chapter of this dissertation explores 

how the results of this soundscape chapter inform and contextualize the results of those earlier 

chapters on behavioral effects of the EM 122 signal on foraging Cuvier’s beaked whales. 
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CHAPTER 6: SUMMARY AND CONCLUSION  
 

Research Summary 

 With expanding human advancement and global connectivity, the use of the marine 

environment for such purposes as commerce, energy production, national security, and the 

exploitation of marine resources, has been growing for years.  With this comes the need to 

understand the marine environment and for tools like active acoustic systems that provide 

detailed and comprehensive information about the underwater environment.  However, vital 

information-gathering activities -- using sonar technology-- transmit acoustic energy into the 

marine environment. One form of sonar, mid-frequency active sonar (MFAS), has been observed 

to have clear adverse impacts on marine mammals, i.e., stranding events and reduced foraging 

behavior (McCarthy et al. 2011, Ketten 2014, Manzano-Roth et al. 2016, DiMarzio et al. 2019). 

The question has arisen whether other sonar types have a similar adverse effect, such as 

geophysical acoustic sources, like the deep-water multibeam echosounder studied herein. 

Multibeam echosounders are routinely used for providing critical bathymetric, backscatter, and 

water column data for a range of important applications, including habitat mapping, search and 

recover efforts, mapping safe navigational paths, as well as a multitude of scientific research 

applications. It is not only in our best interest to understand how these activities affect the marine 

acoustic environment as responsible stewards of the ocean environment, but it is also our 

obligation by mandate through such legislation as the Marine Mammal Protection Act.   

Prior to this work, no empirical studies had been conducted that specifically examined the 

effect of multibeam echosounder signals on free-ranging wild marine mammals or on the marine 

acoustic environment, in general. Thus the main goal of this work was to assess, through a 

dedicated experiment at sea, potential effects of deep-water multibeam echosounder signals on 
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beaked whales and the marine acoustic environment. This was a novel and important 

contribution to our understanding of this topic.  

The Kongsberg EM 122, a deep-water multibeam echosounder with center frequency of 

12 kHz was the primary multibeam echosounder considered in this study. The EM 122 

represents the most powerful and lowest frequency echosounders available and thus the worst-

case scenario for potential acoustic interactions of echosounders with marine mammals. Two 

ocean-mapping surveys using an EM 122, one in 2017 and the other in 2019, were conducted 

over the Southern California Offshore Antisubmarine Warfare Range hydrophone array, during 

which acoustic observations of marine mammals and the mapping survey were collected.  These 

surveys and their impact on the SOAR acoustic environment and marine life within it were the 

study system for examining this main goal. Cuvier’s beaked whales were the species of interest 

due to their consistent presence at the SOAR. This and other beaked whale species have 

repeatedly been sighted in stranding events associated with MFAS across the globe (Ketten 

1994), and through dedicated research, have been shown to clearly decrease their foraging effort 

and leave an area during MFAS exercises (McCarthy et al. 2011, Tyack et al. 2011, Manzano-

Roth et al. 2016, DiMarzio et al. 2019). Thus this was an ideal species for which to compare the 

known effect of MFAS on beaked whale foraging with the potential effect of MBES evaluated 

here.  

Therefore, a secondary goal of this research was to compare the behavioral response of 

foraging beaked whales to MBES mapping activity to the response of beaked whales to MFAS 

naval activity assessed by other researchers (McCarthy et al. 2011, Manzano-Roth et al. 2016, 

DiMarzio et al. 2019). Analogous methodologies to those studies were used here to be able to 

make such comparisons. Specifically, the temporal and spatial foraging behavior of beaked 
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whales was compared Before, During, and After MBES mapping activity.  Insight about the 

foraging behavior of beaked whales was gained through the echolocation clicks that beaked 

whales produce during a foraging event, called a group vocal period (GVP). Echolocation clicks 

were recorded on a large-scale hydrophone array over which the MBES mapping surveys were 

conducted and compared in the aforementioned framework. This was the same approach taken 

by researchers assessing the effect of MFAS naval activity on foraging beaked whales, i.e., 

GVPs recorded on large-scale hydrophone arrays were used to evaluate beaked whale foraging 

behavior Before, During, and After MFAS exercises (McCarthy et al. 2011, Manzano-Roth et al. 

2016, DiMarzio et al. 2019).  A summary of the research chapters is provided, giving insight on 

the effect of deep-water mapping activity on beaked whale foraging and the marine acoustic 

environment. Along the way, the results are compared to analogous studies on the effect of 

MFAS on beaked whales foraging. 

Three of the four research chapters of this dissertation explored potential avenues for 

which the deep-water multibeam echosounder (EM 122) may have affected the marine system 

under study.  Chapter 2 assessed the effect of the multibeam mapping surveys on the temporal 

foraging behavior of Cuvier’s beaked whales, whereas Chapter 4 examined the effect of the same 

mapping surveys on the spatial distribution of foraging activity.  Chapter 5 characterized the 

change in sound levels during a deep-water MBES mapping survey over the SOAR array.  

Although the aim of this work was to assess the effect, or lack thereof, of the multibeam 

mapping survey activities on beaked whales, wherever possible general findings were described 

such that the insight gained could be used for other applications, such as with a different species 

or sound source.  Thus Chapter 3 proposed and demonstrated a multi-pronged statistical 

approach for identifying changes in spatial observations across distinct periods of time from a 
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large-scale hydrophone array. The approach was used here to assess spatial change in Cuvier’s 

beaked whale behavior with respect to the ocean-mapping surveys (Chapter 4).   

 The objective of Chapter 2 was to identify, from the experimental data recorded on site, 

whether the activities of the two ocean-mapping surveys affected foraging behavior of Cuvier’s 

beaked whales. This was assessed by examining four GVP characteristics which were used as 

proxies of beaked whale foraging activity across distinct time periods with respect to the survey 

operations. In particular, 1) the number of GVPs, 2) the number of clicks per GVP, 3) the GVP 

duration, and 4) the click rate per GVP were examined.  Nearly 300 hours of data were assessed 

over the two mapping survey studies (~50 hours of activity for each survey) and several hundred 

GVPs were identified across both years (575 in 2017, 394 in 2019). There were two levels of 

temporal assessment undertaken. The first utilized a Before, During, and After design, which 

revealed that the number of GVPs increased During the mapping surveys and remained high 

After in comparison to Before (i.e., on average, 2.44 GVPs per hour Before, 3.61 During, and 

3.74 After). The GVP click rate also changed but only with respect to the Before and After 

periods (i.e., click rate increased from 58 clicks/min. Before to 69 clicks/min. After).  There were 

no other statistically significant differences detected in the GVP characteristics.  

A finer temporal assessment was also conducted separately for each survey year, which 

showed that the number of GVPs actually fluctuated across the study period, and that the 2017 

survey was driving the result presented in the coarse assessment—i.e., the number of GVPs 

increased During the mapping activity, specifically in the 2017 survey. These findings revealed 

that there was substantial variability in beaked whale foraging behavior even outside of the 

survey activity, suggesting the changes observed were most likely a response to some other 

factor, such as prey dynamics, than to the MBES mapping activity itself.   
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Overall, the temporal behavior study showed that the animals did not stop foraging and 

did not leave the range during either MBES mapping survey.  There were no differences detected 

between MBES and non-MBES periods in three of the four GVP characteristics assessed. The 

increase in foraging effort, i.e., in the number of GVPs, detected during one of the two MBES 

mapping surveys was a stark contrast to the effect that MFAS had on beaked whale foraging, 

where a monotonic decrease was observed in the number of GVPs during MFAS exercises 

(McCarthy et al. 2011, Manzano-Roth et al. 2016, DiMarzio et al. 2019).  Furthermore, the 

temporal fluctuation of the number of GVPs across time suggested that the statistical increase 

observed During the 2017 MBES survey was likely a function of some other factor than the 

MBES surveys, and was most certainly not the clear drawn-out response seen by beaked whales 

in response to MFAS. 

 Chapter 3 presented the Global-Local-Comparison (GLC) approach, motivated by the 

need to analyze the spatial aspects of marine mammal behavior within a Before-During-After 

framework. Chapter 3 was more of a methodological chapter, rather than addressing the main 

topic itself, but was applied in Chapter 4 to address the primary research question.  The three-

pronged GLC approach used established spatial autocorrelation statistics — Moran’s I and Getis-

Ord Gi*-- to 1) identify changes in clustering of observations in a study area, i.e., random, 

clustered, or dispersed, i.e., the global analysis, and 2) to identify changes in observation hot and 

cold spot distributions, respectively, i.e., the local analysis. A comparison test, here the Kruskal-

Wallis test, was used to assess whether there was an order-of-magnitude difference in the 

number of observations.  The GLC approach was tested on synthetic data of known spatial 

patterning and exemplar data sets extracted from peer-reviewed studies of marine mammal 

behavior during noise exposure events.  The demonstration with synthetic data revealed that 
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detection of change was possible, with some fine-tuning based on the study system being 

considered and with respect to the statistical input parameters used, mainly the neighbor-

weighting scheme.  The demonstration with exemplar data sets revealed that the approach 

resulted in similar findings to the original studies, but now backed by a robust statistical analysis.  

The demonstration also shed light on the importance of combining the three analyses, because 

any one analysis in isolation was limited.  However, when combined the three analyses provided 

a comprehensive assessment of spatial change.  

 The GLC approach was applied in Chapter 4 to assess whether there was a change in the 

spatial distribution of foraging Cuvier’s beaked whales Before, During, and After the same two 

ocean mapping surveys at the SOAR.  This analysis offered a second context upon which to 

assess whether the mapping surveys affected foraging behavior of Cuvier’s beaked whales.  The 

spatial analysis revealed that foraging was consistently clustered throughout both study periods, 

and within each study year, the magnitude of foraging effort was not different on a per 

hydrophone basis across analysis periods.  In 2017, there was large overlap in the foraging hot 

spots identified, indicating no obvious change to the spatial distribution of foraging whales at a 

local level. In 2019, the cluster of foraging hot spots was in the southernmost corner Before the 

survey, in the center During, and was split between these two locations After.  Despite the clear 

difference in foraging hot spots across 2019 analysis periods, the foraging hot spots remained in 

the historically well-utilized areas of the SOAR (Falcone et al. 2009, Schorr et al. 2019) 

throughout the study. Differences in the Before periods between the two years point to the 

natural variability in the usage of the SOAR by foraging beaked whales, suggesting the cause for 

the differences During the 2019 survey cannot automatically be attributed to the survey activity.  

Although beyond the scope of this study to test, the most probable reason for the shift in foraging 
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hot spots in 2019 was that foraging behavior in beaked whales is largely driven by their field of 

prey, which can be extremely patchy over finite areas. 

Overall, the spatial analysis of beaked whale foraging behavior revealed no global, local, 

or order-of-magnitude change in foraging effort during the 2017 mapping survey.  There was 

also no global or order-of-magnitude change during the 2019 mapping survey.  There was a 

change locally, but it was a shift in foraging effort toward the center of the array which remained 

in the historically well-utilized area of the array (Falcone et al. 2009, Schorr et al. 2019). This 

was unlike the avoidance response seen by beaked whales in response to MFAS, where animals 

not only stopped foraging on the array (McCarthy et al. 2011, Manzano-Roth et al. 2016), but 

left the area of the MFAS exercises entirely (Tyack et al. 2011). Here, the animals remained on 

the range and continued to forage throughout both MBES mapping surveys. 

 The final research chapter (Chapter 5) provided a third perspective from which to 

consider the possible effect of deep–water mapping activity on beaked whale foraging, in 

addition to the effect on the marine acoustic environment. This perspective was gained through a 

detailed documentation and characterization of the changing sound levels during the 2017 

mapping survey, providing a general understanding of the spatial, temporal, and frequency 

attributes of a typical deep-water MBES mapping survey. The comprehensive soundscape 

assessment examined four analysis periods with respect to the mapping activity, i.e., No Activity, 

Vessel Only, Vessel and MBES, and Mixed Acoustics, across nine select hydrophones from the 

SOAR array. The assessment included: 

 A detailed annotation of several sound level metric time series-- SEL, SPLpk, and five 

decidecade bands (centered at 50 Hz, 500 Hz, 3.2 kHz, 12.5 kHz, and 40 kHz) --informed 

by spectrograms, spatio-temporal animations, and spectral-temporal animations. 
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 A quasi-spatial, relative-magnitude comparison of sound level percentiles across the four 

analysis periods. 

 The calculation of observed and modelled 24-hour cumulative sound exposure levels and 

comparison to regulatory sound exposure thresholds. 

 A comparison of the 12.5 kHz decidecade band sound level probability distributions 

among the four analysis periods. 

 A full-spectrum frequency correlation assessment of the four analysis periods. 

The assessment revealed that the sound from the EM 122 was distinguishable within a 

maximum radius from the Sally Ride of about 17 km, which illustrated the expected dependence 

between the sound pressure level received at a SOAR hydrophone and the propagation range 

from the sonar to the hydrophone. The sound from the EM 122 was consistently prominent in the 

acoustic record when the Sally Ride was within this finite radius of a hydrophone receiver, but in 

a very specific capacity. That is, the EM 122 activity manifested most in the loudest levels (i.e., 

99th percentile) in the 12.5 kHz band, the operating frequency band of the echosounder.  The EM 

122 signals were detectable on a given hydrophone for a quarter of the survey period, on 

average, but intermittently across the study period.  Observed 24-h cumulative sound exposure 

levels were calculated for the various analysis periods of anthropogenic activity, but at very close 

passes of the Sally Ride to a hydrophone the dynamic range of the SOAR receiver was 

insufficient at capturing the full energy of the MBES signal.  To account for this, a modelling 

exercise was conducted resulting in a conservative estimation of the 24 h-cumulative sound 

exposure levels at a stationary seafloor receiver of 159-173 dB re 1 µPa2 s. These values were 

below three of four of the mid-frequency cetacean acoustic injury thresholds, but the upper 

bound did exceed the current U.S. regulatory threshold for TTS to a mid-frequency cetacean 
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exposed to an impulsive sound (i.e., 170 dB re 1 µPa2 s) (NMFS 2018). This conservative 

estimate assumed exposure to a stationary seafloor receiver, which serves as an appropriate 

proxy of what a foraging beaked whale at the seafloor may be exposed to, except that it did not 

account for the mobility of marine mammals. So, this is likely a conservative overestimation of 

the potential exposure of a mobile marine mammal receiver. This finding serves as a critical 

reminder of the ambiguity in how MBES signals are currently classified in the U.S. regulatory 

framework (NMFS 2018). MBES signals are not clearly defined as being non-impulsive or 

impulsive signals, and this has important repercussions on how this sound source is regulated. 

This is an important topic that needs careful consideration by both the scientific and regulatory 

community. The findings of this chapter confirm that the deep-water survey activity had a very 

local and well-defined impact on the SOAR soundscape. The deep-water MBES mapping 

activity was the most recurrent, loud source of sound across the three-day survey, but 

intermittently present at any specific location. The MBES contributed to the acoustical energy 

field only within the frequency band of the echosounder and at a finite distance around the Sally 

Ride (~17 km). 

The soundscape assessment provided integral insight about the detectability of the MBES 

mapping survey and therefore the ability to relate any observed behavioral response to the MBES 

mapping activity.  First, the acoustic environment was only impacted by the MBES signal within 

a finite radius (i.e., ~17 km) around the Sally Ride. Although it is not fully known what the 

auditory performance is of a beaked whale (and this is also an important topic for future work), it 

is reasonable to expect that if a behavioral response were to occur as a result of the MBES 

activity, it might begin within a roughly similar radius of detection. However, the Sally Ride—

and therefore the radius of detection—was constantly moving. In addition, the marine mammals 
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were most certainly moving, and their movement likely varied on a time scale different than the 

mapping activity. One might therefore expect any spatial response to the mapping survey would 

be linked to the mapping survey lines, thereby requiring observations to be made on a scale 

much smaller than the SOAR hydrophone array. Therefore, it was nearly impossible to 

reasonably associate any observed changes in behavior with the mapping survey at the temporal 

and spatial resolution used in the behavior assessments here. Because behavioral responses have 

been observed for the same and other beaked whale species (McCarthy et al. 2011, Manzano-

Roth et al. 2016, DiMarzio et al. 2019) at a similar scale to that studied here in response MFAS, 

it was a reasonable scale to use.  

But there was a local spatial change detected in where the most foraging effort was 

detected in the 2019 spatial assessment, so this needs to be discussed. Based on 1) the 

understanding that the MBES signal had a very local spatial and temporal contribution to the 

soundscape that was constantly shifting around the SOAR, and 2) that During the 2017 MBES 

mapping survey there was no spatial change detected, it seems most unlikely that the shift in 

foraging activity from the southeast corner of the array Before the 2019 mapping survey toward 

the center of the array During the survey was a response to the mapping activity. Furthermore, 

the foraging activity remained on the array in a historically well-utilized area by foraging beaked 

whales (Falcone et al. 2009, Schorr et al. 2019), suggesting this observation was 1) not an 

adverse response--whatever the cause-- and 2) most likely a response to the animals’ prey field.  

An important additional notion to consider is that the detectable area of a stressor does 

not necessarily indicate the potential spatial scale over which a behavioral response may extend.  

In fact, in cases of clear adverse effect, marine mammals have been observed to respond over 

great distances to a stressor (Miller et al. 2012).  Therefore, one of the values of these SOAR-
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wide behavior assessments was that they provided the ability to identify whether spatially large 

and temporally drawn-out responses occurred, which can be indicative of whether the interaction 

and response came with substantial cost to the animals, and/or elicited a widespread response 

from a group of animals. The existence or absence of such a response can be helpful in linking 

observed effects to a clear impact. So, a key result that can be gleaned from the spatial and 

temporal resolution available from the behavior assessments here is that there were no large and 

drawn-out changes, either spatially or temporally, that would suggest the survey activity had a 

clear or lasting effect on foraging behavior at a group or array-wide level. This again, is a stark 

contrast from the MFAS studies that showed a very clear adverse temporal and spatial change 

(i.e., animals stopped foraging and left the area) in foraging behavior at the resolution of the 

large-scale hydrophone arrays used during the MFAS studies (McCarthy et al. 2011, Manzano 

Roth et al. 2016, DiMarzio et al. 2019). 

 The difference in behavioral results between these two sonar types is not surprising, 

given the very different characteristics of the two sources (see Table 1.1), which leads to a very 

different potential for direct ensonification between the two sources, as well as differences in 

how the signal propagates into the environment. This includes differences in the radiation 

geometry of the two systems, i.e., near-horizontal conical beam (MFAS) vs vertical swath 

(MBES), which is directly linked to the very different purposes for using the two sonar types. 

MFAS is commonly used for surveillance purposes, which necessitates ensonifying a broad 

search area, whereas MBES --used here for mapping the seafloor-- requires precise 

measurements and a narrow aperture.  In addition, the frequency differences, i.e., 3-8 kHz 

(MFAS) vs 12 kHz (MBES), and signal characteristic differences (i.e., shorter duty-cycle and 

longer pulse lengths for MFAS) also play a role in how much energy is transmitted and how 
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large an area the signals will propagate. The soundscape assessment of this dissertation very 

clearly demonstrated the local temporal, spatial, and frequency contribution of the deep-water 

MBES to the acoustic environment, which is a direct result of how these MBES characteristics 

manifest in the environment.   

As discussed in Chapters 2 and 4, there are other factors that may play an important role 

in the behavioral results observed, such as prey distribution and behavior, or oceanographic 

conditions. These data were either not available or not at the resolution needed to fully assess the 

impact of such factors.  In addition, there is most certainly a degree of natural variation in 

behavior that needs to be considered, such as diel variation or other natural factors in an 

undisturbed system.  An attempt was made to account for such factors by considering longer 

analysis periods and the same start times from one period to the next.  In any opportunistic study, 

there are limitations in study design.  Here, there was a limit in how much data representing 

undisturbed times could be analyzed because the hydrophone array is part of a naval facility.  

Thus, extending the GVP time series further before or after the survey to get a better 

understanding of the natural variability in GVP characteristics was not possible. The time period 

for these studies was specifically chosen because no other anthropogenic activities were 

occurring on the array during that time. It seems most certain that there are other important 

factors, unaccounted for here, which dictated the observed changes in beaked whale foraging 

behavior.   

 Past modelling work of MBES radiation (Lurton 2016) has suggested that based on the 

transmission geometry, duty cycle, signal duration, and frequency content there should be 

minimal occurrences of interaction between MBES and marine mammals.  What sonar 

modelling efforts cannot predict is whether those infrequent chances of interaction could have 
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meaningful effects. The empirical work here demonstrated no adverse changes in Cuvier’s 

beaked whale foraging behavior, and no clear response to the deep-water MBES mapping 

activity. 

 The work conducted here was on a single species and a single multibeam echosounder 

during two three-day mapping surveys, meaning any extrapolation of these results, broadly, to 

other species and echosounders needs to be carefully considered. The scientific community 

recognizes that there is a myriad of factors that need to be considered on a case-by-case basis in 

predicting the effect a sound will have on marine life beyond just the physical characteristics of 

the signal. This includes the behavioral state of the animal, the frequency range of best hearing of 

an animal, the duration of exposure, the proximity to the source, the perception of the character 

of a sound by the receiver, and the ambient acoustic conditions of the environment, among other 

factors (Southall et al. 2021). But the results presented from this empirical study assessing the 

effect of deep-water 12 kHz MBES mapping activity on Cuvier’s beaked whale foraging 

behavior should serve as an upper bound on the potential effect of geophysical echosounders on 

marine mammals. That is because the deep-water 12 kHz MBES is the loudest and lowest-

frequency mapping system available, meaning its signals will have the largest spatial and 

temporal impact of any current geophysical echosounder. Cuvier’s beaked whales have a 

frequency range of best hearing sensitivity that directly overlaps with the 12 kHz signal. In 

addition, this species has been shown to be quite vulnerable (i.e., stranding, reduced foraging) to 

other sonar sources (i.e., MFAS). And finally foraging behavior, studied here, represents a 

critical life-sustaining behavior of this species. Therefore, based on our current understanding of 

the myriad of important factors to consider when predicting the effect of anthropogenic sounds 

on marine life, the assessment of Cuvier’s beaked whale foraging behavior during deep-water 
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MBES mapping should represent the potential worst-case interaction, or upper bound, on the 

potential behavioral effects on marine mammals related to echosounder signals.   

The results here showed that foraging continued and the animals did not leave the area 

during the deep-water MBES mapping surveys. This suggests there was no clear effect of the 

mapping surveys on the foraging behavior of Cuvier’s beaked whales. Thus, for other less 

sensitive marine mammal species the expected effect would be negligible. Of course, there is still 

a lot to be learned about the effect that sounds may have on marine mammals, particularly with 

regards to perception which is, arguably, impossible to measure for a marine mammal.  But this 

work serves as the best available assessment, backed by empirical evidence, and based on the 

current state of understanding on the effect of echosounder signals on marine mammals. These 

findings can be used to help scientists and regulators better evaluate how this anthropogenic 

sound source fits into the bigger issue of biologically meaningful effects of anthropogenic 

sounds on marine life.   

Future Work Recommendations 

A unique and valuable aspect of the behavior studies conducted here was the ability to 

capitalize on observations from a large-scale hydrophone array of the U.S. Navy representing a 

subpopulation of beaked whales over an extensive area.  This study resolution, broader than 

individual behavioral assessments, provides a stepping-stone toward our understanding of 

population level impacts. Studies that focus on individual behavior or that are conducted over 

finer spatial scales provide important ground-truthing about the results of such larger scale 

efforts. For example, tagging efforts in this study might have provided important insight into 

what an increase in the number of foraging events during the 2017 mapping survey meant.  Tags 

exist that include passive acoustic monitoring (PAM), swim speeds, acceleration, dive patterns, 
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and other relevant information that could be used to better understand what changes in small-

scale processes manifest as specific large-scale trends. Tags that include PAM can also provide 

relevant data to assess individual sound exposure information. Also, to most clearly understand 

what an increase in the number of foraging events meant for the animals, information about the 

success rate (i.e., prey captured or not) of those foraging events is needed. It is not clear that 

tagging information would explicitly provide this, but this is an area ripe for technological 

advancement. Large-scale hydrophone arrays, such as those of the U.S. Navy, should continue to 

be used to gain insight toward population level effects of anthropogenic sounds, but where 

possible, future studies should strongly consider incorporating complementary tagging efforts 

and other fine-scale monitoring ground-truthing efforts.   

The behavioral studies here were opportunistic. Future more controlled studies utilizing 

PAM to remotely study behavior of marine life during anthropogenic activities should make 

every effort to include observations of other relevant environmental and ecological factors.  For 

example, the prey field of the whales was hypothesized as the most likely driver of the changes 

to foraging behavior observed herein, but no observations of the current prey field were available 

to confirm this in this work.  For environmental factors that are temporally and spatially 

dynamic, it is imperative to sample at the time of the study and with adequate resolution to be 

able to integrate the observations meaningfully into the analysis. In addition, long-term studies of 

these factors as well as monitoring studies of foraging characteristics will help to build a better 

understanding of the natural variability in beaked whale foraging and what drives that variability.  

Finally, if controlled studies are undertaken in the future, power analyses can help to understand 

the minimum sample size needed to see a statistically significant effect, should there be one.  

This would be particularly important for assessing changes in behavior with a similar resolution 
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(i.e., 2-6 km) but over a smaller overall spatial scale (<<1800 km2) where the expected number 

of observations of foraging events would likely be less. Given there were observed effects at the 

significance level used in the work presented here, this was not an issue in this study, but most 

certainly can be for similar work where there are fewer observations. 

Modelling research exists on the relationship between beaked whale feeding energetics 

and population level effects (New et al. 2013).  Although work has been done to characterize the 

prey field of beaked whales at the SOAR and that was considered in the interpretation of the 

behavior studies (Southall et al. 2018), a complete assessment of the energetics of the whales 

observed in this study was not made.  If those data were collected in future studies alongside 

foraging behavior data, such energetic models could continue to be refined to obtain a clearer 

understanding of the energetic expenditure associated with beaked whale foraging and the 

relationship to population growth.  This is important baseline information to have when relating 

the potential biological meaning of an effect on such a critical life-sustaining behavior. 

Localizing and tracking foraging groups is critical, but outside the scope of this work. 

There is a lot to consider in trying to localize a foraging group beyond designating a central 

hydrophone to a foraging event. A foraging event may begin with one set of animals and end 

with another set, and consist of an unknown number of animals that likely do not stay in the 

same position relative to one another throughout the event. For animals like Cuvier’s beaked 

whales with high site fidelity at the SOAR, continued long-term monitoring studies of group 

foraging characteristics may prove useful in identifying features that can be used to localize 

foraging groups or animals within a foraging group and building out appropriate methods for 

doing so. 
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The findings of the soundscape study suggested that the contribution of the deep-water 

MBES to the marine acoustic environment were very clearly characterized by its reported 

physical signal characteristics (i.e., nominal frequency, pulse length, etc.). Future work should 

consider developing automated detection algorithms for identifying this sound source in passive 

acoustic data. This is presumably routine work in naval operations, but less so in the scientific 

research community, despite its potential usefulness. This can be useful in remote and long-term 

monitoring studies where there is a need to understand the frequency and prevalence of certain 

sound sources, such as in longitudinal studies assessing changing ocean soundscapes.  

Because the signal of the EM 122 recorded on the SOAR hydrophone receiver clipped at 

times, sound exposure modeling was done to obtain otherwise irretrievable sound pressure levels 

from certain times over the 2017 mapping survey. Future work should be done to verify the 

validity of these modelled estimates. This could be done using the survey work in 2019, which 

included the deployment of a higher-dynamics receiver, avoiding clipping issues. These data 

could be used for such a verification effort.  The sound pressure levels when the vessel was at 

various ranges to the wide-dynamics receiver can be used to understand similar distance 

scenarios (i.e., the received sound pressure levels at various distances) in which clipping 

occurred on the SOAR hydrophones during the 2017 survey.  

A soundscape assessment was conducted for the 2017 mapping survey.  An additional 

soundscape assessment of the 2019 study would provide further insight about the variation that 

could be expected with different survey plans. For example, the 2019 SOAR survey included a 

concentrated survey of the southeast corner of the array, within a canyon.  A characterization of 

the soundscape during this part of the survey could provide further insight about how the MBES 

signal manifests differently when it propagates in the acoustic environment in the presence of 
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bathymetric features. This would be interesting from both a soundscape perspective, as well as 

looking at beaked whale foraging behavior in this concentrated area specifically.  For the case of 

beaked whales at SOAR, the southeast corner was not a well-utilized area of the array for 

foraging, so this may be less insightful to consider retroactively for the behavior data sets 

examined in this dissertation, which is one reason why it was not explored here.   

The emphasis of the soundscape study was on understanding the contribution of the deep-

water MBES, the EM 122. As such, the analyses were optimized to identify and characterize its 

contributions to the soundscape. However, there were several other active acoustic sources that 

were used.  The findings here suggested those sources did not substantially contribute beyond the 

use of the EM 122. This observation warrants further thought, particularly for those seeking to 

regulate underwater sound from multiple concurrent acoustic sources. The sound source with the 

most substantial (temporal and spatial—amplitude and frequency) contribution to the acoustic 

environment could be used as the worst-case scenario for acoustic effect by assuming that all of 

the other sound sources would be adequately accounted for if the most substantial source was 

addressed.  Work would need to be done to fully understand the repercussions of such a choice 

since sounds of various frequency content and with various duty cycles and pulse lengths and 

other temporal patterning may have unknown and significant biological relevance to an animal 

receiver that is not captured by the physically relevant characteristics of the signal alone.  In this 

respect, it would be interesting to assess the effect of sub-bottom profilers which work at similar 

frequencies to MFAS, although they have different operational paradigms. 

A valuable applied direction for future work is to explore the various and dynamic signals 

that state-of-the art MBES use.  Depending on the water depth, survey needs, and oceanographic 

conditions MBES can be operated in several different modes.  These modes manifest as different 
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signals ranging in duration, inter-ping intervals, and even frequency content (i.e., frequency-

modulated versus continuous wave). It is unclear what, if any, the effect of these dynamic signals 

may have on marine mammals, but they could lead to differences in behavioral response.  

Carefully controlled studies, likely on captive animals would be needed to fully understand if 

there is any difference in response by marine mammals related to different MBES signals.  

Another topic related to the perception of sound by marine mammals that needs better 

understanding is the detectability of the sonar signals by a marine mammal. This would not only 

include research to understand the range-dependence of the detectability of the sonar signals by a 

marine mammal, but would include research to better assess the hearing integration time of a 

marine mammal receiver, as there are currently a range of unique values being used in the 

scientific community, including here (i.e., 100 ms).  There is also some indication that 

integration time may vary with species and more specifically depending on the frequency or 

frequencies of a signal. The question related to the range-dependence of detectability of a signal 

is, how does a marine mammal extract a signal from ambient noise?  We have a good 

understanding of how this can be done with computer-processing and even based on a human-

detector, but less is known about how a marine mammal receiver does this. This is an important 

question for consideration since to elicit a behavioral change, a signal must first be detected.  

This is a relevant question when assessing behavioral change at the scale of the SOAR. This 

could be studied using captive animals and measuring their detection to sonar-like signals mixed 

with broadband noise at various signal-to-noise ratio (SNR) values. The measured SNR could 

then be extrapolated to propagation ranges. The topic of signal detection and signal perception in 

marine mammals has a lot of potential for future research. 
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As part of the larger MBES characterization project, another radiation pattern 

characterization experiment was conducted over the U.S. Navy Atlantic Undersea Test and 

Evaluation Center (AUTEC) hydrophone range off of Andros Island in the Bahamas in 

December 2018 (Mayer 2019) using the Kongsberg EM 302 (30 kHz) mounted to the Research 

Vessel, Okeanos Explorer. This experiment provides another potential data set with similar 

structure to the SOAR January 2017 study. Blainville’s beaked whales are known to be highly 

resident on the AUTEC range and could provide insight about the effect of a different MBES on 

another species (Claridge 2013).  During the Mayer (2019) study, a higher-frequency multibeam 

system with a nominal frequency of 30 kHz was used, in comparison to the studies herein 

conducted at SOAR. The nominal frequency of the 30 kHz MBES is also in line with the range 

of best hearing sensitivity of beaked whales, but due to the high-frequency nature of the system 

the signal is more susceptible to attenuation in the marine environment (i.e., 5-6 dB/km for the 

30 kHz system versus 1 dB/km for the 12 kHz MBES).  Thus, the resolution of the AUTEC 

hydrophone array may not be ideal for either a behavioral effect study or a well-resolved 

soundscape assessment. In addition, the AUTEC mapping survey took place at night during the 

same period of time when the U.S. Navy was also present and active on the range during the day.  

This project would provide an opportunity to assess beaked whale behavior during multiple 

concurrent anthropogenic activities, which may provide insight about cumulative effects of 

anthropogenic activity on beaked whale foraging.  The specifics of the activities and data 

availability should be considered first. 

Another avenue for future research is to test the applicability of the GLC approach to a 

spatial observation other than beaked whale foraging events, such as a sound pressure level 

metric.  This would not only provide insight into whether the GLC approach is appropriate for 
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non-behavioral observations, but could serve as an additional tool upon which to understand the 

contribution of a sound source to a spatially broad soundscape.  If conducted in parallel with a 

behavior assessment using the GLC approach, this could provide further clarity on the 

relationship between the two sets of observations. In addition, some of the other GVP 

characteristics assessed in the temporal study, that more intrinsically describe a foraging event, 

could be examined using the GLC approach. For example, looking at how echolocation click rate 

changes spatially may indicate something about the quality of the prey field in particular 

locations, which may serve as a reasonable proxy of the prey field where explicit prey field data 

are unavailable. It seems reasonable to expect the GLC approach would work for other spatial 

features but modifications may be necessary (i.e., neighbor-weighting rule) to optimize the 

approach for other spatial features. The spatial scale that these other features vary on also needs 

to be considered when determining if this is an appropriate approach. 

One final area for recommended future research pertinent to the topic of research here is 

on the ambiguity of how MBES signals, among some other sound source signals, are classified.  

Even with the current binary U.S. regulatory delineation of sound sources into either impulsive 

or non-impulsive sounds it is unclear where this sound source should fall. This is in part due to 

the dynamic nature of the MBES signal, which can be operated at different pulse lengths, with 

multiple sectors, and in different depth-dependent modes, and all have repercussions on the 

actual physical signal that is transmitted into the environment.  It is also a challenge to classify 

types of sound sources because the regulatory framework does not explicitly define the 

characteristics of an impulsive or non-impulsive sound.  This is a challenging task because these 

designations have very specific meanings for very specific applications.  The designation of a 

sound type for a source with respect to acoustic injury is generally much clearer than with 
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respect to behavioral impacts.  In addition, the impulsiveness of a signal may be species-specific 

and this is not well understood. Therefore, the first step that is needed is to explicitly define the 

terms impulsive and non-impulsive with respect to acoustic injury of a marine mammal.  With 

respect to behavioral impacts, the current binary delineation of sound types needs to be revisited 

and a discussion needs to be had on whether this delineation is appropriate for assessing the 

effect of a sound on marine mammal behavior.  A dialogue needs to be had between both 

scientific experts and the regulatory community on this topic. Eventually, substantial empirical 

work will be needed to identify what specific metrics can be used to properly characterize the 

sound type designations with respect to marine mammal behavior and what appropriate 

thresholds would be for each of those metrics. 

Conclusion 

At the resolution of the SOAR hydrophone array, the empirical work here assessing  

Cuvier’s beaked whale foraging behavior during deep-water 12 kHz MBES mapping activity 

demonstrated:  

1) Cuvier’s beaked whales did not stop foraging and did not leave the SOAR array 

during two deep-water MBES mapping surveys of the SOAR. 

2) There was no adverse change observed in Cuvier’s beaked whale foraging behavior, 

and no clear response to the deep-water MBES mapping activity. 

Deep-water MBES mapping activity contributes substantially to a local marine acoustic 

environment. The EM 122 signal was only distinguishable at a finite scale (i.e., <17 km) around 

the Sally Ride and the effect on the changing sound levels had a clear range-dependence within 

this radius (i.e., louder with decreasing distance). This led to a temporally intermittent impact on 



254 

 

the soundscape at any given location. Within these spatio-temporal bounds, deep-water MBES 

mapping activity has the potential to be detected by a mid-frequency cetacean due to its spectral 

content and loudness. However, no adverse effects on beaked whale foraging behavior were 

observed here. This is a stark contrast to the observed adverse behavioral effect of MFAS on 

beaked whale foraging where a reduction in foraging was observed and animals left the area 

during MFAS exercises. This stark contrast in results was an unsurprising finding, given the very 

different physical and operational characteristics of these two sonar types and their impact on the 

marine acoustic environment.  This was the first empirical study of the effect of multibeam 

echosounder signals on freely ranging wild marine mammals and the results should serve as an 

upper bound of the potential effect multibeam echosounders have on marine mammals. 
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Appendix 2.1. Finer temporal results of beaked whale foraging behavior 

during the two MBES mapping surveys. 
 

INTRODUCTION 

There are many confounding factors that can be eliminated from coarse-scale (e.g., 

Before, During, and After) impact studies through a finer temporal analysis (e.g. Before, After, 

Control, Impact).  Response differences related to noise source operational use, including length 

of time, spatial distribution of the activity, or use of multiple versus single sources are not 

necessarily considered in coarse-scale impact studies. For example, though the trend of 

decreasing foraging activity during MFAS exercises was the same in the three MFAS studies, 

there were different degrees of response by foraging beaked whales (McCarthy et al. 2011, 

Manzano-Roth et al. 2016, DiMarzio et al. 2019).  In particular, at the SOAR, the number of 

GVPs After was no different than the number of GVPs Before, whereas at AUTEC the recovery 

to pre-MFAS GVP numbers lagged by several days. The SOAR Naval exercises (DiMarzio et al. 

2019) were considerably shorter than the AUTEC Naval exercises (McCarthy et al. 2011), which 

could be a contributing factor as to why the response at AUTEC was stronger.  And even within 

the SOAR MFAS study there were differences with regards to the type of MFAS source used.  

For example, the decline in GVPs was larger during MFAS exercises with hull-mounted sonar in 

comparison to helicopter-deployed dipping sonar (DiMarzio et al. 2019). A similar distinction 

was made in the MFAS study on the Hawaii range, where only Naval exercises with MFAS, 

versus Naval exercises without, had a clear impact on the spatial use of the Hawaii range by 

foraging beaked whales (Manzano-Roth et al. 2016). These results highlight the importance and 

relevance of examining the finer details of a noise-generating activity.  Taking a careful look at 
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operational differences in how certain anthropogenic activities are conducted, including MBES 

surveys, may provide insight into what factors contribute most when there is an exhibited effect. 

METHODS 

 In addition to the Before-During-After analysis, a finer temporal analysis was conducted 

for each year in order to elucidate potential changes in foraging behavior as it relates to the 

different spatial mapping configurations and/or source frequencies that were used.  This analysis 

followed a Before-After-Control-Impact (BACI) design.  Work in both years started with a 

control survey of the range, where the vessel was present but the MBES was inactive.  There 

were differences in the ‘Impact’ periods between the two years. In particular, in 2017, there were 

two distinct periods of MBES activity, one where only the EM 122 was active and another where 

the EM 122, as well as several other active acoustic sources including another MBES were also 

active (Table A2.1).  In 2019, only the EM 122 was used. However, various spatial mapping 

configurations, as well as single versus dual swath modes were used (Table A2.1).   This 

included a survey confined to a small portion of the range, repeat lines over the same area, and a 

traditional ‘mowing-the-lawn’ configuration. The results of the BACI comparison for beaked 

whale foraging behavior during each survey year are described here. 

Table A2.1. Descriptions of MBES settings during the exposure periods from 2017 (left) and 

2019 (right), including duration of exposure period, acoustic systems that were active, and other 

operator inputs. The vessel was on the range during all periods where vessel location is not noted 

explicitly. 

2017 2019 

Exposure 

Period 

Date 

and 

Time 

(UTC) 

Description Exposure 

Period 

Date 

and 

Time 

(UTC) 

Description 

Before  1/3/17 

17:51:00

-1/4/17 

23:51:00 

 

30 hours, 

immediately 

preceding control 

survey, MBES 

Before 1/3/19 

07:11:00

-1/4/19 

07:11:00 

 

24 hours, 

immediately 

preceding control 

survey; MBES 
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inactive, vessel off-

range 

inactive; vessel off-

range 

Control 

Survey 

1/4/17 

23:51:00

-1/5/17 

08:51:00 

~9 hours, MBES 

inactive 

Control 

Survey 

1/4/19 

07:11:00

-1/4/19 

12:11:00 

~5 hours; MBES 

inactive 

EM 122 

Survey 

1/5/17 

08:16-

1/6/17 

13:48:00 

 

~30 hours, EM 122 

active in dual swath 

CW only mode, 

motion 

compensation on 

Corner 

Survey 

1/4/19 

12:19:00

-1/5/19 

12:19:00 

 

~24 hours; EM 122 

active in single swath 

CW only mode for 1st 

19 hours, final hours 

forced tilt between 

2°-10°; motion 

compensation off 

throughout 

Mixed 

Active 

Acoustics 

1/6/17 

13:48-

1/7/17 

06:55:00 

 

~ 18 hours, EM 122 

active as in EM 122 

Survey; other 

sources active 

intermittently 

including 

Kongsberg EM 712 

(40 kHz), Simrad 

EK 80 wide-band 

echo sounder (18, 

38, 70, 120, 200 

kHz), Knudsen sub-

bottom profiler (3.5 

kHz) 

Across 

Range 

Survey 

1/5/19 

14:58:00

-1/5/19 

22:58:00 

 

~ 8 hours; EM 122 

active 1st-2nd lines: 

single swath CW 

only mode, motion 

compensation on; 3rd-

4th lines: dual swath 

FM-enabled mode, 

motion compensation 

on 

Immediately 

After 

1/7/17 

06:55:00

-1/7/17 

21:30:00 

 

~15 hours, EM 122 

active off-range 

Traditional 

Survey 

1/6/19 

02:00:00

-1/6/19 

16:00:00 

 

~ 14 hours, EM 122 

active in dual swath 

FM-enabled mode, 

motion compensation 

on 

After 1/7/17 

21:30-

1/9/17 

03:30:00 

 

30 hours, 

immediately 

following MBES 

activity off-range, 

MBES inactive, 

vessel off-range 

After 1/6/19 

16:00:00

-1/7/19 

16:00:00 

 

24 hours, 

immediately 

following vessel 

leaving the range, 

MBES inactive, 

vessel off-range 

For each mapping survey, a comparison of each of the four GVP characteristics was 

made across the six exposure categories described in Table A2.1 using the same methodology 

discussed in the main text of Chapter 2. See Figure A2.1-Left for the lines driven during the 
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different exposure periods of the 2017 mapping survey and Figures A2.1-Right for the lines of 

the 2019 survey. 

 
Figure A2.1. Left: Track lines of the 2017 study when the vessel was on the range during the 

Control Survey, EM 122 Survey, and Mixed Active Acoustics periods. Right: Track lines of the 

2019 study when the vessel was on the range during the Control Survey, Corner Survey, Across 

Range Survey, and Traditional Survey. 

 

 2017 SURVEY 

Predictions 

 By looking at the survey over a finer time-scale it was possible to evaluate differences in 

effect due to the presence of the vessel itself on the range versus the vessel plus the MBES, and 

differences between the various periods of MBES activity.  It was hypothesized that if there was 

an effect due to just the presence of the vessel there would be a difference in the Control Survey 

GVP characteristics with respect to the Before and After time periods, but no difference in 

comparison to the MBES periods (EM 122 Survey and Mixed Active Acoustics).  If there was an 

effect due to the use of the MBES, there should be a difference in the GVP characteristics 

between the Control Survey and the MBES periods.  Further, if there was an effect on foraging 

behavior due to the MBES, it was hypothesized that the trend would be exacerbated during the 

Mixed Active Acoustic period.  Multiple acoustic sources may be louder and span a broader 
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frequency range than one active source.  Therefore the Mixed Active Acoustic period may be 

more disruptive to foraging whales, resulting in a larger effect than one active source alone. 

Results 

Number of GVPs per hour 

A Kruskal-Wallis test was used to examine the number of GVP per hour across the six 

exposure periods since the data failed to satisfy the normality assumption required for an 

ANOVA test. There was a statistically significant difference between the exposure periods [H (5) 

=29.79, p=0.000017]. There were fewer GVPs Before the mapping survey compared with both 

during the EM 122 Survey (p=0.0037) and After (p=0.0000339).  See Table A2.2 for descriptive 

statistics on this metric and Figure A2.2, which shows the hourly GVP data across the six 

exposure periods. 

Table A2.2. Descriptive statistics for the four GVP characteristics during the 2017 MBES study, 

including the mean and standard deviation for each exposure period and number of samples used 

to compute those values in parentheses.  

 Before Control 

Survey 

EM 122 

Survey 

Mixed 

Active 

Acoustics 

Immediately 

After 

After  

Number of 

GVP per hour 

2.47 ± 

1.55 

(n=30) 

2.94 ± 

2.15  

(n=9) 

4.56 ± 

2.24 

(n=30) 

4.17 ± 

2.46 

(n=18) 

3.03 ±  

2.02  

(n=15) 

5.23 ± 

2.16 

(n=30) 

Number of 

clicks per GVP 

3267 ± 

1745 

(n=27) 

2558 ± 

2095 

(n=9) 

2011 

±1286 

(n=30) 

3934 ± 

2262 

(n=17) 

3396 ±  

2675  

(n=15) 

3138 ± 

1273 

(n=30) 

GVP duration 

(min) 

47.15 ± 

12.9 

(n=27) 

35.2 ± 

12.49 

(n=9) 

39.02 ± 

13.26 

(n=30) 

44.58 ± 

9.95 

(n=17) 

38.74 ± 

17.03 

(n=15) 

44.82 ± 

9.26 

(n=30) 

Click rate 

(clicks/min) 

68.67 ± 

26.96 

(n=27) 

72.59 ± 

62.66 

(n=9) 

49.3 ± 

20.32 

(n=30) 

83.81 ± 

44.75 

(n=17) 

96.21 ± 

74.71  

(n=15) 

71.92 ± 

27.25 

(n=30) 
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Figure A2.2. Bar graph showing the number of GVPs per hour during each exposure period for 

the 2017 survey. The arrows indicate statistically significant differences at the p-value indicated 

between the two exposure periods with which the arrows correspond.  

 

Number of clicks per GVP 

A Kruskal-Wallis test was used to compare the exposure periods for the number of clicks 

per GVP since the data failed to satisfy the normality assumption required for an ANOVA test. 

There was a difference in the exposure periods [H (5) =18.95, p=0.002]; there were more 

(p=0.0047) clicks per GVP during the Mixed Active Acoustics than there were during the EM 122 

Survey period. See Table A2.2 for descriptive statistics and Figure A2.3, which shows the hourly 

averages across the six exposure periods for this metric. 
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Figure A2.3. Bar graph showing the number of GVPs per hour during each exposure period for 

the 2017 survey. The arrows indicate statistically significant differences between the two 

exposure periods the arrows correspond with at the p-value indicated. 

 

GVP duration  

Since all of the assumptions of the ANOVA were met, a one-way ANOVA was used to 

compare the exposure periods for GVP duration. There were no statistically significant 

differences between exposure periods for this metric [F (5, 122) =2.43, p=0.0388]. See Table 

A2.2 for descriptive statistics and Figure A2.4, which shows the hourly averages of this metric 

across the six exposure periods. 
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Figure A2.4. Bar graph showing the average GVP duration (minutes) per hour of each exposure 

period for the 2017 survey.  

 

Click rate 

The click rate data failed the normality assumption of an ANOVA, so a Kruskal-Wallis 

test was used to compare exposure periods for this metric. There was a statistically significant 

difference between the exposure periods [H (5) =15.84, p=0.0073]. However, the post-hoc 

multiple comparison test showed no difference between any of the exposure periods at a 99% 

significance level. See Table A2.2 for descriptive statistics and Figure A2.5, which shows the 

hourly averages of this metric across the six exposure periods. 
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Figure A2.5. Bar graph showing the average GVP duration (minutes) per hour of each exposure 

period for the 2017 survey. 

 

Discussion  

There were no statistically significant differences among any of the exposure periods and 

the Control Survey for any of the GVP characteristics, which suggests the presence of the vessel 

alone did not affect the foraging metrics examined in this study.  

The only metric where there was a difference between non-MBES periods and MBES 

periods was in the number of GVP per hour.  There were fewer GVP per hour Before than during 

the EM 122 Survey, but there were also fewer GVP per hour Before compared with After.  This 

was the same general result seen in the main study. However, the finer temporal analysis shows 

that between these three periods the number of GVP fluctuated.  In particular, during the Control 

Survey and EM 122 Survey the number of GVPs increased and then during the Mixed Active 

Acoustic and Immediately After periods the number of GVPs decreased before increasing again 

After (Figure A2.2).  This result differs from the monotonic decrease seen in the number of 
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GVPs during and immediately after exposure to MFAS sonar in the McCarthy study (2011).  

Therefore, it appears more likely that the mechanism driving the number of GVPs per hour is 

something other than what was tested for in this study (i.e., MBES activity), rather than a lagged 

response to MBES activity. The fluctuations observed in this GVP characteristic may be better 

described by variability in oceanographic conditions or prey behavior during the study period.   

There were no GVP characteristics with an exacerbated effect from the EM 122 Survey to 

the Mixed Active Acoustics period. For the number of GVPs per hour where there was a 

statistically significant increase between Before and the EM 122 Survey, there was a decrease 

from the EM 122 Survey to the Mixed Active Acoustic period (Figure S2), though this was not 

statistically significant.  The trend in the number of clicks per GVP was the opposite: a decrease 

between the Before period through the EM 122 Survey, and a significant increase into the Mixed 

Active Acoustics period (Figure S3). And there were no differences across any of the exposure 

periods for both GVP duration and click rate (Figure S4 and Figure S5).  In general, there was 

not a clear and consistent relationship in the change of foraging behavior between the periods 

using a single MBES versus multiple acoustic sources.   

However, there were more clicks per GVP during the Mixed Active Acoustic period than 

during the EM 122 Survey.  This might suggest that having multiple active acoustic sources on at 

a time has a noticeable effect on foraging in a way that a single MBES source does not.  The 

scientific community is now recognizing the need to examine the effect of aggregate (e.g., 

multiple noise sources) and cumulative stressors on marine mammal behavior (NASEM 2017). 

This may have been a contributing factor for why Naval exercises, which commonly use 

multiple active acoustic sources, have often been associated with significant reactions from 

beaked whales. However, neither the EM 122 Survey nor the Mixed Active Acoustics periods 



289 

 

were significantly different from the non-MBES periods for this metric; this does not provide 

strong support that this finding is a result of aggregate stressors. Nevertheless, this result may be 

worth further exploration, especially if multiple MBES are used in spatiotemporal proximity in 

the future.   

2019 SURVEY 

Predictions 

 By looking at the 2019 survey on a finer time-scale it was possible to evaluate potential 

differences in effect due to 1) presence of the vessel alone versus presence of vessel and MBES, 

and 2) the various spatial configurations that were run during the MBES survey.  It was expected 

that if the presence of the vessel alone had an effect on foraging behavior there would be a 

difference in GVP characteristics between the Control Survey, and the Before and After periods, 

and there would be no difference between the Control Survey and MBES periods (Corner 

Survey, Across Range Survey, and Traditional Survey).  If the presence of the vessel plus the 

actively transmitting MBES had an effect, significant differences in the GVP characteristics 

during the MBES periods compared to non-MBES periods would be expected.  Of the three 

MBES periods, it was hypothesized that the survey restricted to the corner location might elicit 

the largest effect on foraging since animals in that area would be in the vicinity of the MBES for 

several hours at a time.  However, based on where this species primarily forages, the area for that 

survey (Corner Survey) was not a heavily used area by these animals (DiMarzio et al. 2019).  

Both the Across Range and Traditional Surveys went into deeper water where the animals are 

more commonly found.  As such, it was hypothesized that foraging behavior during these 

surveys would be most likely to significantly differ from non-MBES periods. 

Results 
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Kruskal-Wallis tests were used to compare exposure periods for each of the GVP 

characteristics since none of the variables satisfied the normality assumption of an ANOVA.  

There were no statistically significant differences across the exposure periods for the number of 

GVP per hour [H (5) =5.77, p=0.3292]; the number of clicks per GVP [H (5) =2.82, p=0.7276], 

or click rate [H (5) =3.54, p=0.6169].   See Table A2.3 for descriptive statistics and Figure A2.6, 

which shows the hourly binned data across the six exposure periods for each of these three GVP 

characteristics. 

Table A2.3. Descriptive statistics for the four GVP characteristics during the 2019 MBES study, 

including the mean and standard deviation for each exposure period and number of samples used 

to compute those values in parentheses. 

 Before Control 

Survey 

Corner 

Survey 

Across 

Range 

Survey 

Traditional 

Survey 

After  

Number of 

GVP per hour 

2.46 ± 

2.43 

(n=24) 

3.6 ±  

1.52 

 (n=5) 

2.67 ± 

2.06 

(n=24) 

4.38 ± 

2.77  

(n=8) 

2.57 ±  

1.34  

(n=14) 

2.42 ±  

1.93 

(n=24) 

Number of 

clicks per GVP 

3002.3 ± 

2042.18  

(n=17) 

2975.85 ± 

1289.52 

(n=5) 

2424.13 ± 

1510.87 

(n=21) 

2248.53 ± 

923.14 

(n=8) 

2287.23 ± 

1226.76 

(n=13) 

2478.17 ± 

1229.01 

(n=20) 

GVP duration 

(min) 

49.53 ± 

12.42 

(n=17) 

40.54 ± 

14.65 

(n=5) 

40.41 ± 

11.46 

(n=21) 

36.60 ± 

12.29  

(n=8) 

31.83 ± 

11.91 

 (n=13) 

42.88 ± 

9.54 

(n=20) 

Click rate 

(clicks/min) 

63.19 ± 

39.82 

(n=17) 

69.96 ± 

14.35 

(n=5) 

56.12 ± 

29.11 

(n=21) 

59.59 ± 

19.93 

(n=8) 

65.48 ± 

31.66 

 (n=13) 

56.19 ± 

34.34 

(n=20) 
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Figure A2.6. Bar graphs of the three GVP characteristics where no differences were found across 

exposure periods in the 2019 survey. Each graph shows the data binned into hour increments for 

each of the six exposure periods. Top: the number of group vocal periods; Middle: the average 

number of clicks per GVP; Bottom: the average click rate.  From left to right: Before, Control 

Survey, Corner Survey, Across Range Survey, Traditional Survey, and After. 



292 

 

There was a statistically significant difference among exposure periods for GVP duration 

[H (5) =14.53, p=0.0126]. GVPs were shorter in duration during the Traditional Survey than 

Before (p=0.004).  See Table A2.3 for descriptive statistics and Figure A2.7, which shows the 

hourly averaged data across the six exposure periods for this metric. 

 
Figure A2.7. Bar graph showing the average GVP duration in minutes for each hour during the 

six exposure periods of the 2019 survey. The arrows indicate statistically significant differences 

at the p-value indicated between the two exposure periods corresponding with the arrows. From 

left to right: Before, Control Survey, Corner Survey, Across Range Survey, Traditional Survey, 

and After. 

 

Discussion 

 The only significant difference observed in any of the GVP characteristics during the 

2019 survey was in GVP duration. The GVP duration steadily shortened from the Before period 

through the Traditional Survey and then increased again After (Table A2.7). The only significant 

difference in this trend was between the Before period and the Traditional Survey (Figure A2.7). 

One interpretation of this is that the particular lines run may have affected this foraging behavior 
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metric in line with predictions.  The Corner Survey, which was confined to a small part of the 

range where animals are not as commonly observed, had no effect on this characteristic. But 

during the Across Range and Traditional Surveys, which were run over larger and deeper 

portions of the range, there was a decreasing trend in GVP duration.  The Traditional Survey 

covered the broadest area on the range, potentially leading to the interaction of MBES with more 

foraging groups. Alternatively, this decreasing trend in GVP duration could be explained by 

some variable(s) not examined in this study, such as a change in prey behavior that consequently 

impacted foraging behavior, or an underlying bias in the time of day for foraging.  Without 

tagging data and/or studying prey dynamics it is difficult to say whether this decrease over time 

is biologically meaningful. The anticipated spatial analysis of this same data set should provide 

insight into this result and its interpretation. 

 There were no differences between the Control Survey and the Before and After periods, 

which was a similar finding to that of 2017.  This suggests that the presence of the vessel alone 

did not elicit a change in the GVP characteristics examined in this study.   

CONCLUSION 

There were no consistent changes in GVP characteristics exhibited in both years. The 

finer scale analysis of the two years reveals that the difference observed in the main study 

between the number of GVPs per hour Before and During MBES activity is largely driven by the 

2017 study. There, the same trend was observed between the Before and EM 122 Survey periods 

in the finer-scale analysis, while in 2019, there were no differences in the exposure periods for 

this GVP characteristic. In 2019, the only significant result was seen in GVP duration between 

the Before and Traditional Survey periods.  The Traditional Survey of 2019 was conducted 

similarly to the EM 122 Survey in the 2017 study, where there was no difference in GVP 
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duration. The only difference between these two surveys was that during the Traditional Survey 

FM signals were enabled, versus CW only signals during the EM 122 Survey.  This may be an 

important consideration in the detection and reaction of this noise source by a receiver (Kates 

Varghese et al. 2019), but as of yet, it is unclear whether this difference in signal type has an 

effect on beaked whales.  Additionally, part of the Across Range Survey was also run in FM-

enabled mode which was not statistically different from any other exposure period for this 

metric. Thus these differences in results between the two years are likely an effect of the large 

underlying temporal variability seen in foraging behavior that exists regardless of outside factors 

such as anthropogenic activity.  

Of the four GVP characteristics, there were only one (2019) or two (2017) that had 

significant differences between exposure periods.  It was expected that if there was an effect of 

MBES on beaked whale foraging that there would be widespread change in all of the GVP 

characteristics. Additionally, it was expected that there would be a monotonic change across the 

various MBES periods, rather than fluctuations, as was primarily seen here.  This suggests that 

there is not a clear relationship between the MBES activity of these surveys and the changes 

exhibited in beaked whale foraging behavior at the SOAR.  

Overall, the BACI analysis provided insight into beaked whale foraging behavior during 

two MBES surveys at a finer temporal scale.  There was no change in foraging behavior due to 

vessel presence alone.  There were differences in foraging behavior during various periods of 

MBES activity in the two years. But, as these results were not widespread across GVP 

characteristics, and not in line with expectations of behavioral changes during similar types of 

noise exposure, the results may be better explained by factors other than MBES activity.  Future 

work related to MBES activity should consider 1) examining differences in MBES surveys using 
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multiple sources versus a single source, as well as 2) taking a holistic approach when assessing 

beaked whale foraging behavior by incorporating prey dynamic information.  The overall trend 

remains clear from the main study, the animals continued to forage during both years of MBES 

mapping work and did not leave the SOAR range.  
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Appendix 5.1. 

Spectrograms 

associated with 

acoustic events 

described in the 

time series 

annotation.  

All spectrograms made in 

Audacity ® with the 

following settings: window 

size, 4096; Hanning 

window; 20 dB gain; 80 

dB range. The default, 

20dB gain, corresponds to 

a -20 dB signal at a 

particular frequency being 

displayed as "white". 

Affects the range of signal 

sizes that will be displayed 

as colors. The default, 80 

dB range, means that you 

will not see anything for 

signals 80 dB below the 

value set for "gain". Note 

the default spectrogram in 

Audacity does not have a 

visual color map, but with 

the default settings of Gain 

= 20 dB and Range = 80 

dB used here, the colors 

correspond to the 

following levels:  

 anything above -20 dB 

is indistinguishably 

white 

 levels from -40 dB to -

20 dB transition from 

red to white 

 levels from -60 dB to -

40 dB transition from 

magenta to red 

 levels from -80 dB to -

60 dB transition from 

dark blue to magenta  

 levels from -100 dB to 

-80 dB transition from 

light blue to dark blue  

 anything below -100 

dB is gray. 

  

Hydro 45 

Event 1: 1/4/17 21:26 

 
Event 2: 1/4/17 23:27 

 

Pre-Event 3:

 
Event 3: 1/5/17 02:42 

 
Event 4: 1/5/17 05:12 

 
Event 5: 1/5/17 08:57 

 

file:///C:/Program%20Files%20(x86)/audacity/help/manual/man/spectrograms_preferences.html
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Event 6: 1/5/17 09:42 

 
Event 7: 1/5/17 11:41 

 

Event 8: 1/5/17 12:26 

 
Event 9: 1/5/17 14:12 

 

Event 10: 1/5/17 15:26 

 

Event 11: 1/5/17 17:12 

 
Event 12: 1/5/17 19:11 

 
Event 13: 1/5/17 22:42 

 
Event 14: 1/6/17 1:42 
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Event 15: 1/6/17 4:11 

 
Event 16: 1/6/17 6:57 

 
Event 17: 1/6/17 10:57 

 
Event 17: grating lobes? 

 
Event 18: 1/6/17  12:12 

 
Event 19: 1/6/17 13:27 

 
Event 20: 1/6/17 13:57 

 

Event 21: 1/6/17 14:27

 
Event 22: 1/6/17 15:42 

 
Event 23: 16:42 

 
Event 24: 1/6/17 19:56 
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Event 25: 1/6/17 20:57 

 
Event 26: 1/6/17 23:57 

 
Event 27: 1/7/17 03:12 

 

Event 28: 1/7/17 03:57 

 
Event 29: 1/7/17 05:38 

 
 

Hydro 14 

Event 1: 1/4/17 21:30 

 

Event 2: 1/4/17 23:30

 
Event 3: 1/5/17 3:45 

 
Event 4: 1/5/17 5:30 

 
Event 12: 1/6/17 23:45 
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Hydro 16 

Event 7: 1/5/17 15:45  

1/5/17 17:15 

 
Event 11: 1/6/17 17:00 

 
Event 12: 1/6/17 20:45 

 
Event 13: 1/7/17 1:00 

 
Event 14: 1/7/17 4:00 

 

Event 15: 1/7/17 4:27

 
 

Hydro 19 

Event 8: 1/6/17 20:57 

 
Event 9: 1/6/17 23:57

 
 

Hydro 22 

Event 1: 1/5/17 3:57 
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Event 2: 1/5/17 6:00 

 
Event 3: 1/5/17 9:00 

 
Event 7: 1/6/17 4:00 

 

Event 8: 1/6/17 6:00 

 
Event 10: 1/6/17 23:30 

 
Event 11: 1/7/17 5:40 

 
 

Hydro 57 

 

Event 1: 1/4/17 21:00 

 
Event 9: 1/5/17 19:45 

 
Event 10: 1/5/17 21:50 

 
Event 11: 1/6/17 19:40 
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Event 12: 1/6/17 21:15 

 
Event 13: 1/7/17 2:45 

 
Event 14: 1/7/17 5:15 

 
 

Hydro 63 

 

Event 1: 1/5/17 5:15

 
Event 2: 1/5/17 7:30 

 

Event 12: 1/6/17 12:15 

 
Event 13: 1/6/17 14:31 

 
Event 14: 1/6/17 19:00 

 

Event 16: 1/7/17 2:16
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Event 17: 1/7/17 06:15 

 
 

Hydro 70 

Event 1: 1/4/17 22:12 

 
Event 2: 1/5/17 3:42 

 
Event 3: 1/5/17 6:15 

 
Event 4: 1/5/17 8:30 

 
Event 5: 1/5/17 17:30

 
Event 6: 1/5/17 22:55 

 
Event 10: 1/6/17 14:00 

 
Event 11: 1/6/17 18:15 

 
Event 12: 17/17 00:30 
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Event 13: 1/7/17 6:30 

 
 

Hydro 85 

Event 1: 1/4/17 22:44 

 
Event 8: 1/5/17 18:50 

 

Event 9: 1/6/17 00:15

 
Event 12: 1/6/17 19:00 

 
Event 13: 1/7/17 1:00 

 
Event 14: 1/7/17 2:00 
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Appendix 5.2. Period-specific weighted and unweighted sound level 

metric percentiles array-wide and by hydrophone for the total study 

period, and each of the four distinct analysis periods: No Activity, 

Vessel Only, Vessel and MBES, and Mixed Acoustics. 
 

Metrics included: SPLpk, wSPLpk, SEL, wSEL, 12.5 kHz BL, 50 Hz BL, and 40 kHz BL 

Percentiles included: 1, 5, 10, 25, 50, 75, 90, 95, 99th. 

Hydrophones included: 14, 16, 19, 22, 45, 57, 63, 70, 85, and array-averaged. 

 

Peak sound pressure level (SPLpk) 

Total Study Period 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 92.9 95.1 92.4 94.4 94.2 93.4 94.7 94.6 98.0 93.9 

5 95.1 97.7 93.8 96.3 96.0 95.2 96.7 96.2 99.3 95.9 

10 96.5 99.2 94.7 97.3 97.1 96.3 97.8 97.3 100.3 97.1 

25 99.1 101.3 96.7 99.5 99.0 98.5 100.2 99.7 102.3 100.1 

50 102.5 104.3 99.6 103.0 101.8 102.3 103.5 103.5 104.9 103.5 

75 106.1 106.9 102.9 105.9 105.7 105.4 106.5 107.4 108.9 107.1 

90 110.3 110.3 107.0 109.7 110.4 109.3 110.8 112.1 113.9 111.6 

95 113.2 112.7 109.9 112.0 113.4 112.7 113.8 114.6 116.3 114.1 

99 119.6 119.3 118.0 118.2 119.7 120.8 120.4 119.1 120.0 120.4 

No Activity (NA) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 93.1 98.0 92.2 97.2 97.1 93.4 94.7 95.4 97.1 97.6 

5 95.3 99.4 93.1 98.3 98.3 94.4 95.8 96.1 97.9 99.1 

10 96.7 100.2 93.9 99.6 99.1 95.5 96.9 96.6 98.6 100.0 

25 99.3 101.6 95.6 102.4 100.5 98.3 99.6 98.3 100.4 102.0 

50 102.8 106.2 98.3 105.4 103.1 101.0 103.2 102.2 103.6 104.7 

75 106.9 110.0 106.0 109.5 108.6 106.9 106.3 105.5 107.0 107.9 

90 110.3 114.2 108.5 114.0 111.5 109.7 108.8 109.1 109.6 110.2 

95 112.2 115.4 109.5 117.8 112.9 110.9 110.3 110.9 110.6 111.3 

99 116.3 117.0 111.1 121.7 114.6 112.9 116.7 113.1 112.0 113.7 

Vessel Only (VO) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 92.9 95.7 92.0 95.4 95.0 93.7 96.1 95.4 99.1 93.5 

5 95.2 96.8 92.8 96.7 96.0 94.8 97.0 96.8 100.2 95.4 

10 96.4 97.6 93.4 97.5 97.0 95.4 97.8 98.1 101.1 97.1 

25 99.1 99.8 94.7 99.7 99.1 96.6 99.7 100.8 104.1 99.2 

50 103.1 103.5 98.3 104.8 101.7 99.2 103.4 106.3 108.1 101.7 
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75 108.1 108.7 106.0 109.7 106.9 104.6 107.0 110.8 112.9 106.4 

90 112.2 112.6 109.7 112.6 110.7 110.5 109.9 114.5 116.0 112.0 

95 114.7 119.3 113.7 114.9 113.3 112.7 111.8 116.3 117.3 114.2 

99 119.8 124.9 117.3 120.4 121.7 118.5 115.8 118.9 119.4 118.1 

Vessel and MBES (VM) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 93.5 99.1 93.2 95.8 97.1 94.2 94.9 94.8 98.1 94.7 

5 95.7 100.0 94.5 97.0 98.1 96.0 96.8 96.4 99.3 95.9 

10 97.1 100.6 95.3 97.9 98.9 97.0 97.9 97.4 100.2 96.7 

25 99.6 102.1 97.0 99.8 100.4 98.9 100.4 99.5 102.0 99.3 

50 102.8 104.5 99.7 103.6 103.9 103.0 104.0 103.7 104.1 103.6 

75 105.7 106.1 102.1 105.4 106.7 105.2 106.2 106.3 106.6 106.0 

90 109.2 107.6 104.3 107.5 111.6 108.0 110.6 110.4 111.8 109.6 

95 112.4 109.2 107.1 109.8 114.2 111.5 113.7 113.4 114.9 112.9 

99 120.1 114.8 116.8 116.7 119.8 120.8 120.3 119.4 121.7 120.1 

Mixed Acoustics (MA) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 91.9 93.5 91.9 92.8 92.8 92.0 93.9 93.9 97.8 92.8 

5 94.3 95.7 93.7 96.4 94.6 94.7 95.8 95.6 99.2 94.9 

10 95.7 97.2 94.8 97.9 95.6 96.1 97.3 97.1 100.2 96.8 

25 98.4 99.5 97.1 99.9 97.5 98.6 100.0 99.7 102.3 100.9 

50 101.7 102.5 100.0 102.5 100.3 101.7 102.6 102.9 105.7 104.5 

75 105.7 106.4 104.7 106.3 102.9 105.6 106.1 108.0 110.1 110.1 

90 110.4 110.8 109.1 110.0 105.7 111.8 111.8 112.9 115.4 113.5 

95 113.5 113.0 113.9 111.6 108.3 116.6 115.6 115.3 117.4 115.3 

99 120.0 116.3 121.2 114.8 117.3 123.0 121.8 121.4 120.2 123.5 

 

Weighted peak sound pressure level (wSPLpk) 

Total Study Period 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 73.4 74.9 73.2 74.4 75.0 74.8 74.9 73.6 80.6 74.3 

5 77.7 79.2 75.8 77.9 79.0 77.1 78.4 77.4 84.5 79.1 

10 80.5 82.4 77.6 80.8 82.1 78.8 81.2 80.4 86.8 81.3 

25 85.5 87.2 82.5 84.8 86.2 83.4 86.6 85.7 91.2 86.4 

50 91.9 93.2 88.7 91.3 89.7 90.0 93.9 92.5 98.2 92.1 

75 101.0 102.7 97.8 97.3 97.3 96.6 103.3 103.3 107.2 100.5 

90 108.7 108.8 104.3 105.7 108.0 105.5 110.3 111.5 113.7 109.0 

95 112.3 111.5 106.9 109.4 113.0 109.5 114.2 114.5 116.3 112.2 

99 118.8 115.4 114.1 114.7 118.4 117.7 120.8 118.8 119.6 118.2 

No Activity (NA) 
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Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 71.9 80.6 73.2 74.2 81.6 74.8 73.7 73.7 78.1 72.8 

5 74.0 81.3 74.0 75.2 82.0 75.5 74.6 74.6 79.3 73.7 

10 75.4 81.6 74.6 76.1 82.3 75.8 75.5 75.3 80.0 74.7 

25 78.5 82.2 75.5 77.7 83.1 76.6 78.0 77.3 82.2 78.6 

50 82.5 83.1 76.9 80.6 85.9 78.7 82.8 81.7 84.6 89.6 

75 88.6 86.4 79.2 91.5 89.1 83.5 90.9 86.0 87.9 97.3 

90 96.2 97.7 82.6 103.9 95.1 89.7 98.1 90.9 93.4 102.3 

95 101.5 100.3 85.3 108.0 99.8 93.1 103.7 93.9 97.6 106.4 

99 112.7 104.5 92.4 112.7 105.8 96.7 117.5 101.1 104.3 113.7 

Vessel Only (VO) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 74.6 77.3 75.0 75.1 78.1 73.1 79.1 77.8 87.2 77.1 

5 78.4 78.4 76.1 77.9 80.0 76.2 80.9 83.3 92.0 79.1 

10 80.9 79.4 77.1 82.8 83.0 77.8 82.7 85.8 94.1 80.8 

25 86.4 83.9 80.2 88.2 86.7 80.0 88.4 92.4 98.3 84.1 

50 94.9 96.1 89.0 96.2 89.4 84.8 95.1 102.9 107.0 90.1 

75 104.2 103.2 100.1 105.7 96.7 93.0 101.8 110.7 113.3 102.0 

90 110.9 109.1 105.1 110.1 102.6 99.6 106.5 114.9 116.5 111.0 

95 114.1 112.3 106.9 112.4 108.3 103.9 109.0 116.6 118.0 114.3 

99 118.7 115.9 109.5 119.5 116.9 111.6 114.9 118.8 119.7 118.6 

Vessel and MBES (VM) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 77.2 83.5 77.2 77.3 84.2 77.5 76.4 77.7 82.3 78.8 

5 80.7 85.1 79.2 81.0 85.5 79.3 80.7 80.0 84.8 80.6 

10 82.9 86.4 81.2 82.0 86.1 82.6 83.4 81.9 86.7 82.2 

25 86.6 88.2 83.4 84.8 87.2 85.2 88.3 86.4 89.9 86.9 

50 91.7 92.3 87.5 90.9 92.0 90.6 93.7 91.6 95.0 91.6 

75 98.8 96.7 92.7 92.8 101.3 94.6 102.6 99.1 103.2 97.8 

90 107.3 103.5 100.3 97.7 111.0 104.7 110.0 108.9 110.6 105.3 

95 111.5 106.7 104.9 102.5 114.2 109.7 114.0 112.6 114.2 109.1 

99 119.1 112.2 115.4 112.4 119.0 118.8 120.5 118.2 119.5 117.3 

Mixed Acoustics (MA) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 71.7 72.9 71.8 72.8 73.9 73.9 74.1 72.3 84.1 73.0 

5 74.9 75.5 73.7 75.6 75.3 76.3 76.6 74.1 86.6 76.7 

10 77.7 77.4 75.4 80.3 76.8 78.3 78.7 76.3 89.2 79.7 

25 83.0 83.3 80.6 85.8 80.2 82.1 84.0 83.0 93.0 85.1 

50 89.9 92.9 89.8 92.3 87.8 87.5 90.0 90.4 98.2 91.4 

75 99.9 103.7 101.9 101.7 94.0 95.7 103.3 101.3 108.3 105.6 

90 108.7 110.5 106.5 108.4 101.2 105.9 112.2 111.8 115.1 111.8 
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95 112.4 113.1 108.7 110.7 107.4 111.9 116.1 115.0 117.4 113.9 

99 118.9 116.4 117.0 113.4 118.1 119.8 122.4 120.7 120.0 121.6 

 

 

Sound exposure level (SEL) 

Total Study Period 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 71.0 73.0 71.8 72.9 71.1 71.6 72.9 72.9 74.9 71.5 

5 72.5 74.5 72.3 73.8 72.3 72.6 74.0 73.7 75.8 72.8 

10 73.4 75.4 72.7 74.3 73.3 73.3 74.7 74.3 76.5 73.6 

25 75.2 77.0 73.5 75.6 74.9 74.8 76.0 76.0 77.8 76.0 

50 77.5 78.8 75.1 78.1 77.4 77.2 78.3 78.2 79.8 78.9 

75 80.5 81.6 77.6 81.0 81.0 80.4 80.6 81.3 81.5 81.5 

90 82.9 83.6 80.4 83.4 83.2 82.8 82.6 82.9 83.6 84.8 

95 85.1 86.2 83.4 86.2 85.7 85.6 84.8 84.7 85.5 88.1 

99 90.4 94.0 89.5 91.3 91.9 91.0 88.6 90.2 90.6 92.9 

No Activity (NA) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 71.3 75.0 71.8 74.8 73.6 71.4 72.9 73.1 74.6 72.6 

5 72.9 76.2 72.2 75.7 74.5 72.2 73.5 73.6 75.1 73.2 

10 73.9 76.8 72.6 76.8 75.3 72.9 74.2 74.0 75.6 73.6 

25 76.0 78.5 73.6 78.9 76.8 75.5 76.6 75.3 77.2 76.8 

50 79.6 82.5 75.8 82.2 79.6 78.5 80.3 79.4 80.8 81.3 

75 83.9 87.5 83.6 86.0 86.3 84.7 83.7 83.4 84.6 84.8 

90 87.7 92.2 86.7 89.3 89.6 87.9 86.4 87.3 87.5 87.7 

95 89.6 93.7 88.0 91.5 91.1 89.4 87.7 89.0 88.8 89.0 

99 92.6 96.0 90.1 93.3 93.4 91.8 89.8 91.8 90.7 91.0 

Vessel Only (VO) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 71.1 73.3 71.8 73.6 71.8 71.7 73.6 72.8 75.9 71.1 

5 72.5 74.0 72.0 74.1 72.6 72.4 74.0 73.8 76.4 72.5 

10 73.4 74.4 72.3 74.5 73.2 72.7 74.4 74.9 77.0 73.8 

25 75.1 75.9 72.9 75.7 75.1 73.6 76.0 76.8 78.5 75.6 

50 77.6 78.6 75.5 78.8 77.4 75.4 78.4 78.5 80.2 77.7 

75 81.3 84.4 81.3 83.3 82.5 81.0 81.9 81.5 82.1 81.0 

90 85.2 88.3 85.4 87.1 87.1 86.6 85.4 84.5 84.2 84.0 

95 87.5 94.1 88.7 88.7 90.6 89.2 87.0 86.9 85.4 85.9 

99 92.5 98.4 92.9 91.8 96.4 94.1 89.4 90.7 87.7 89.8 

Vessel and MBES (VM) 
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Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 71.5 75.7 72.2 73.9 73.6 72.0 73.1 73.0 74.9 72.0 

5 72.9 76.5 72.8 74.6 74.5 73.2 74.2 73.8 75.7 72.8 

10 73.9 76.9 73.2 75.1 75.1 73.9 74.9 74.4 76.3 73.4 

25 75.8 77.9 74.0 76.3 76.4 75.2 76.2 76.2 77.6 75.4 

50 78.1 80.2 76.0 79.8 79.5 79.0 79.1 79.5 79.8 79.3 

75 80.9 82.0 77.9 81.3 81.5 80.7 80.9 81.7 81.1 81.5 

90 82.5 82.8 79.2 82.5 82.9 82.1 82.1 82.7 82.3 83.3 

95 83.5 83.8 80.5 83.8 84.3 83.3 83.0 83.5 83.6 85.7 

99 88.6 87.4 85.3 89.2 90.0 88.7 87.8 88.5 89.7 92.1 

Mixed Acoustics (MA) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 70.4 72.2 71.6 72.1 70.3 71.0 72.5 72.5 74.5 70.8 

5 72.0 73.2 72.2 73.2 71.3 72.3 73.5 73.6 75.8 72.3 

10 73.0 74.2 72.6 74.3 72.0 73.0 74.5 74.5 76.6 73.8 

25 74.7 75.7 73.7 75.7 73.5 74.8 76.2 76.2 78.1 77.1 

50 77.0 77.6 75.1 77.4 75.5 76.9 77.7 78.2 80.0 79.2 

75 79.6 79.5 76.7 79.2 78.4 79.9 79.7 80.5 82.1 82.0 

90 82.3 81.5 79.4 81.8 80.5 82.9 82.1 82.6 84.6 88.0 

95 84.6 83.5 82.0 84.4 82.1 84.7 83.9 84.5 86.8 90.3 

99 89.9 88.6 88.7 90.7 85.7 88.8 87.9 91.5 93.0 95.8 

 

Weighted sound exposure level (wSEL) 

Total Study Period 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 48.7 49.6 48.9 49.1 50.6 50.0 49.6 49.1 56.9 49.0 

5 51.3 53.3 51.0 51.1 54.0 52.3 50.8 50.6 59.7 50.3 

10 53.7 56.6 52.4 54.1 55.5 53.6 52.7 52.8 61.3 53.5 

25 58.3 61.6 56.0 58.6 59.6 56.6 58.0 58.5 64.7 58.7 

50 63.3 66.0 60.2 62.2 63.3 61.2 62.8 64.7 68.1 64.2 

75 68.0 69.5 64.6 67.9 68.1 67.2 68.2 69.6 71.8 68.7 

90 71.0 71.0 66.7 69.5 71.8 69.3 70.4 73.4 76.1 72.3 

95 73.7 73.2 68.5 70.3 74.5 71.0 72.8 75.8 78.1 74.7 

99 79.6 77.9 73.8 74.3 81.5 78.2 78.7 81.2 82.0 82.1 

No Activity (NA) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 48.4 58.0 50.1 51.4 59.0 51.5 50.1 50.6 54.8 49.4 

5 49.8 58.4 50.3 52.1 59.2 51.8 50.4 51.0 55.6 49.9 

10 50.9 58.7 50.4 52.7 59.4 52.1 50.6 51.3 56.4 50.1 

25 52.8 59.1 51.3 54.5 59.8 52.6 51.6 52.1 57.6 51.0 
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50 56.1 59.8 52.8 56.8 60.5 53.6 52.9 53.2 59.4 55.1 

75 59.7 61.5 55.3 59.9 61.7 54.7 54.2 54.9 60.9 62.3 

90 63.1 64.4 55.9 67.5 63.5 55.8 55.1 56.3 62.4 64.6 

95 66.9 66.3 56.1 70.1 64.4 56.6 56.3 57.2 63.7 65.5 

99 75.0 67.0 57.6 73.2 66.2 58.9 62.0 60.4 66.3 67.8 

Vessel Only (VO) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 49.2 54.4 50.6 50.9 54.8 49.1 52.1 50.9 59.9 50.7 

5 52.0 54.9 51.0 52.1 55.6 51.0 53.7 51.9 62.6 51.9 

10 53.8 55.9 51.8 54.7 56.4 53.0 55.0 53.3 63.5 53.4 

25 57.5 58.6 53.2 58.6 59.5 54.1 56.1 61.0 65.7 56.3 

50 62.1 64.9 57.5 61.6 63.4 56.6 60.1 66.7 70.5 60.4 

75 67.0 67.3 63.9 67.5 64.9 60.2 63.8 71.6 74.7 66.5 

90 71.7 70.4 67.0 70.1 67.7 66.3 67.4 75.3 77.3 73.9 

95 74.5 74.5 68.4 71.5 70.3 68.6 69.9 77.4 78.8 76.9 

99 79.0 77.9 72.0 74.0 83.8 79.1 73.0 82.3 81.1 81.0 

Vessel and MBES (VM) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 52.7 60.6 54.0 54.1 59.9 54.3 51.6 53.2 59.1 53.4 

5 56.0 62.0 54.8 57.8 61.7 55.5 56.2 54.8 61.2 55.4 

10 57.9 63.1 56.0 58.7 62.2 56.9 58.0 56.3 62.3 56.3 

25 61.7 64.1 58.3 60.4 63.5 60.3 61.5 61.8 65.5 60.3 

50 65.2 67.2 61.6 66.5 66.5 65.8 67.3 65.7 67.9 66.7 

75 69.0 69.7 64.9 68.8 70.5 68.4 69.5 70.1 70.1 69.2 

90 71.0 70.3 66.3 69.7 73.6 70.2 71.3 73.1 73.3 70.9 

95 73.2 70.8 68.0 70.1 75.8 72.6 73.5 75.5 76.2 72.6 

99 79.8 75.5 76.0 74.1 82.8 79.1 79.5 81.8 83.8 81.2 

Mixed Acoustics (MA) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 47.7 49.3 47.6 48.8 50.4 49.2 49.3 48.7 57.4 48.6 

5 49.2 49.7 49.1 49.2 50.7 50.8 49.7 49.2 59.9 49.1 

10 50.4 51.0 50.5 49.7 51.0 51.9 50.1 49.8 61.1 49.5 

25 54.3 55.2 53.0 55.8 54.7 55.0 52.5 52.8 64.0 56.2 

50 60.3 60.6 60.2 61.8 57.9 59.6 61.2 62.8 68.1 64.4 

75 65.8 67.9 65.1 66.1 61.8 63.6 65.7 67.8 73.7 69.9 

90 70.6 72.3 68.1 69.6 66.5 66.4 69.1 73.5 77.3 74.8 

95 73.9 75.6 69.5 71.8 68.0 68.9 73.5 75.9 79.0 77.5 

99 80.0 80.4 75.1 75.0 73.6 78.5 81.3 81.0 82.1 88.3 

 

12.5 kHz band level (12.5 kHz BL) 

Total Study Period 
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Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 10.6 10.6 12.5 10.4 11.6 11.8 10.8 10.6 22.5 10.9 

5 14.4 18.0 15.5 14.3 15.5 15.0 13.2 13.0 25.6 13.1 

10 17.3 21.9 17.2 18.1 18.9 16.8 15.7 16.0 27.2 16.6 

25 22.6 27.1 21.3 23.2 24.0 21.3 21.1 22.8 29.9 23.8 

50 28.2 30.8 24.8 27.3 29.4 26.5 26.4 29.3 33.2 28.7 

75 32.9 34.5 29.6 33.5 34.2 33.2 32.8 34.3 35.8 33.9 

90 36.2 36.7 32.4 35.6 36.8 35.7 35.4 37.0 40.8 36.6 

95 38.0 38.1 36.0 36.4 38.6 38.5 36.4 38.8 44.6 38.3 

99 48.9 48.4 45.8 42.0 51.5 48.6 45.4 49.7 53.4 54.5 

No Activity (NA) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 10.7 24.2 14.3 15.7 24.9 12.8 11.9 12.8 19.7 11.5 

5 12.8 24.6 14.7 16.8 25.2 14.6 12.6 13.7 21.0 12.6 

10 14.3 24.9 14.9 17.7 25.5 15.7 13.1 14.5 22.2 13.0 

25 17.1 25.5 15.6 19.8 25.9 17.1 14.3 15.5 23.7 14.4 

50 21.4 26.3 18.4 22.6 26.6 19.0 15.9 16.9 25.4 18.8 

75 25.6 27.7 21.2 25.0 27.7 20.1 17.8 18.6 27.9 26.1 

90 29.0 30.8 22.0 33.6 30.9 21.4 20.1 20.2 30.7 28.4 

95 33.6 33.0 22.3 36.2 32.5 22.1 20.7 21.6 32.5 29.5 

99 44.7 33.9 23.3 39.4 35.7 24.5 23.2 25.5 36.4 31.8 

Vessel Only (VO) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 10.8 19.9 15.0 14.2 18.7 9.8 12.5 11.3 24.2 12.1 

5 14.1 20.7 15.6 16.1 19.3 11.2 14.2 13.2 27.1 13.7 

10 16.4 21.8 16.2 18.1 20.5 13.7 16.1 15.8 28.0 15.2 

25 21.0 24.7 17.7 21.8 24.9 15.9 18.3 23.5 29.5 18.8 

50 25.5 29.3 22.4 25.4 28.9 20.9 23.2 27.3 31.9 24.2 

75 29.7 32.2 25.5 29.4 30.3 25.0 26.4 30.2 33.6 29.7 

90 32.4 33.7 30.8 32.0 32.4 30.6 29.3 33.2 36.3 33.0 

95 34.6 38.7 32.5 33.6 37.0 34.2 32.7 35.3 38.8 34.5 

99 41.5 44.0 35.7 36.2 50.4 45.8 38.2 40.6 43.6 40.2 

Vessel and MBES (VM) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 17.4 27.0 19.6 19.5 25.5 19.2 15.6 15.8 25.2 18.1 

5 21.5 28.4 20.6 23.4 27.8 21.2 22.0 19.8 27.1 21.0 

10 24.0 29.5 21.1 24.6 28.4 22.9 24.1 21.4 28.0 22.2 

25 27.9 30.7 24.3 26.7 30.1 26.9 27.2 28.7 31.1 27.0 

50 31.4 33.4 28.1 33.5 33.8 31.3 32.8 32.6 33.8 33.4 

75 35.3 36.2 31.1 35.4 36.3 34.8 35.1 36.2 35.4 35.6 

90 37.0 37.0 32.9 36.4 37.8 36.9 36.4 37.5 38.6 37.4 
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95 39.2 38.5 36.8 37.0 41.8 40.5 38.1 41.1 44.0 40.4 

99 51.8 48.8 50.1 47.8 57.0 52.5 52.8 53.4 58.1 55.0 

Mixed Acoustics (MA) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 9.4 9.9 9.8 9.6 11.2 11.9 10.2 9.9 22.3 10.1 

5 11.3 11.0 12.9 10.7 11.7 14.4 11.0 10.8 25.6 11.2 

10 13.0 13.9 14.8 11.8 12.5 15.6 11.9 11.8 27.1 12.0 

25 17.9 20.1 18.0 18.8 17.5 18.8 16.9 16.8 30.0 19.8 

50 24.3 25.8 23.6 26.4 21.9 23.5 22.6 27.2 33.2 27.9 

75 30.0 31.5 28.4 29.5 27.1 30.6 28.0 32.6 37.6 32.2 

90 34.1 34.7 35.3 32.6 32.7 33.7 32.2 34.9 43.3 34.0 

95 38.0 39.1 38.5 33.4 34.4 39.4 33.2 39.8 46.3 39.9 

99 49.4 54.4 46.9 36.4 41.9 49.9 34.0 51.3 52.1 61.9 

 

50 Hz band level (50 Hz BL) 

Total Study Period 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 36.3 39.3 32.6 36.8 38.0 36.3 38.4 37.1 39.0 38.9 

5 43.5 46.5 39.7 43.9 45.2 43.4 45.6 44.2 46.1 46.1 

10 46.8 49.8 42.9 47.1 48.4 46.6 48.8 47.4 49.3 49.3 

25 51.7 54.5 47.6 51.8 53.1 51.3 53.6 52.1 53.9 54.1 

50 56.7 59.1 52.4 56.6 57.7 56.0 58.3 56.6 58.5 59.0 

75 61.8 63.7 57.7 61.5 62.6 61.1 63.2 61.3 63.3 64.0 

90 67.4 68.7 64.0 67.2 68.2 66.8 68.4 66.7 68.8 69.8 

95 71.7 73.2 69.3 72.2 72.8 71.3 72.2 71.3 72.6 73.9 

99 80.7 84.2 80.3 81.7 82.4 82.1 80.3 80.9 80.1 81.1 

No Activity (NA) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 43.9 48.1 40.7 44.9 48.2 44.9 44.6 45.1 46.3 43.8 

5 51.3 55.3 47.9 52.3 55.5 52.0 52.1 52.2 53.6 51.3 

10 54.8 58.6 51.5 55.6 58.8 55.5 55.7 55.7 56.9 55.0 

25 60.7 63.5 57.1 60.7 63.8 60.9 61.8 61.1 62.2 61.9 

50 67.4 69.2 64.2 66.8 69.7 67.5 68.9 67.8 68.5 70.1 

75 74.2 77.8 73.6 73.6 77.1 75.3 74.6 74.8 74.9 75.4 

90 79.8 84.1 79.8 79.5 82.1 81.1 78.9 80.0 79.8 79.7 

95 82.5 86.8 82.3 82.5 84.5 83.6 81.3 82.7 82.2 82.2 

99 86.9 90.5 85.8 86.4 87.9 87.6 85.1 86.9 85.7 86.1 

Vessel Only (VO) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 38.5 40.9 33.8 39.6 40.4 38.0 40.9 39.7 42.5 40.3 
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5 45.8 48.1 41.3 46.8 47.6 45.2 48.0 46.9 49.6 47.4 

10 49.3 51.5 44.7 50.2 51.0 48.5 51.3 50.1 52.9 50.7 

25 54.7 56.7 50.4 55.4 56.2 53.8 56.7 55.3 57.9 55.6 

50 60.9 63.4 58.0 62.1 62.5 60.1 62.8 61.5 63.2 60.8 

75 68.2 71.4 67.1 70.7 70.6 68.2 69.3 68.6 69.1 67.1 

90 75.5 78.5 75.2 77.8 77.6 76.7 76.0 75.5 75.3 75.4 

95 79.6 82.6 79.1 81.7 81.3 81.3 80.0 79.7 78.6 79.9 

99 85.9 88.3 85.0 87.8 86.8 86.9 85.1 85.1 83.0 85.8 

Vessel and MBES (VM) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 35.5 38.5 31.9 36.4 37.4 35.5 37.5 36.2 37.7 37.8 

5 42.7 45.7 39.0 43.5 44.5 42.7 44.6 43.3 44.8 44.9 

10 45.9 48.8 42.2 46.8 47.6 45.9 47.9 46.5 47.9 48.2 

25 50.6 53.4 46.8 51.4 52.1 50.4 52.5 51.0 52.5 52.8 

50 55.2 57.7 51.1 55.8 56.3 54.7 56.8 55.2 56.6 57.3 

75 59.3 61.6 55.1 59.8 60.1 58.5 60.7 58.8 60.3 61.4 

90 63.0 64.9 58.6 63.1 63.5 61.8 64.2 62.0 63.6 64.9 

95 65.2 66.9 60.8 65.1 65.6 63.8 66.2 64.0 65.7 67.0 

99 69.6 70.6 65.0 68.9 69.8 67.8 70.2 68.1 70.3 71.1 

Mixed Acoustics (MA) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 36.4 39.4 32.9 36.1 38.1 36.2 38.5 37.3 39.1 39.2 

5 43.6 46.7 40.0 43.3 45.3 43.4 45.6 44.3 46.1 46.4 

10 46.9 50.0 43.2 46.5 48.5 46.5 48.9 47.5 49.4 49.7 

25 51.9 54.8 48.1 51.3 53.2 51.3 53.8 52.2 54.1 54.5 

50 56.9 59.5 53.1 56.1 57.8 56.3 58.6 56.7 58.7 59.5 

75 61.8 63.8 58.4 60.9 62.1 61.3 63.2 61.1 63.2 64.5 

90 66.2 67.3 63.2 65.6 65.9 65.6 67.0 65.1 67.6 69.6 

95 68.8 69.4 65.8 68.7 68.1 67.9 69.2 67.6 70.3 73.0 

99 73.7 73.2 70.8 74.3 72.1 71.8 73.0 73.8 75.7 78.2 

 

40 kHz band level (40 kHz BL) 

Total Study Period 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 11.9 14.3 12.1 12.9 13.0 13.7 12.7 12.5 13.2 13.0 

5 12.5 14.6 12.2 13.1 13.2 13.9 12.9 12.7 13.6 13.2 

10 13.0 14.7 12.3 13.2 13.4 14.0 13.1 12.8 14.1 13.3 

25 13.8 15.4 12.6 13.6 14.1 14.2 13.6 13.2 16.2 13.8 

50 15.5 17.2 13.4 14.9 15.3 14.9 15.8 15.6 19.3 15.7 

75 20.2 22.2 16.3 16.9 18.6 16.5 20.7 22.7 28.5 19.9 

90 29.7 30.9 25.3 24.2 28.4 22.1 29.1 33.7 37.3 31.4 
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95 34.4 34.3 28.9 30.4 34.4 27.4 33.4 37.5 40.9 36.2 

99 41.2 39.6 33.7 37.0 41.4 34.8 40.1 43.7 45.4 42.4 

No Activity (NA) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 11.7 14.5 12.0 12.9 13.6 13.6 12.7 12.4 13.0 12.9 

5 12.1 14.7 12.1 13.1 13.8 13.8 12.8 12.5 13.1 13.1 

10 12.4 14.8 12.2 13.2 13.9 13.9 12.9 12.6 13.2 13.2 

25 13.2 15.0 12.3 13.3 14.1 14.0 13.1 12.7 13.4 13.5 

50 13.8 15.2 12.5 13.6 14.3 14.2 13.3 13.0 13.6 14.6 

75 14.6 16.0 12.8 14.3 15.0 14.6 13.9 13.6 14.0 18.0 

90 16.4 17.3 13.8 16.0 16.8 15.8 15.3 15.0 15.1 21.7 

95 18.9 18.7 14.8 17.5 18.6 16.9 17.0 16.4 16.3 24.0 

99 30.2 21.9 17.0 20.7 24.3 19.2 26.2 20.1 19.8 30.3 

Vessel Only (VO) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 11.9 14.4 12.0 12.9 13.1 13.7 12.8 12.5 13.3 12.9 

5 12.5 14.6 12.2 13.1 13.3 13.8 12.9 12.7 14.9 13.1 

10 13.0 14.7 12.3 13.2 13.4 13.9 13.0 12.9 16.1 13.2 

25 13.7 14.9 12.5 13.7 13.9 14.0 13.3 13.9 19.8 13.4 

50 16.0 17.9 13.0 16.8 15.4 14.3 14.7 25.2 29.9 14.2 

75 24.8 23.9 18.3 25.8 18.2 14.9 18.7 33.5 37.5 23.7 

90 33.2 29.1 27.2 31.8 23.1 17.5 24.4 38.5 41.2 35.8 

95 37.0 32.5 30.2 34.2 28.3 19.7 28.3 41.4 43.1 40.0 

99 42.7 38.2 34.8 37.8 33.9 24.8 33.9 47.0 45.9 44.9 

Vessel and MBES (VM) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 12.1 15.0 12.2 13.1 14.0 13.9 12.9 12.6 13.8 13.1 

5 12.9 15.3 12.4 13.3 14.4 14.1 13.1 12.8 14.3 13.3 

10 13.4 15.5 12.5 13.4 14.6 14.2 13.3 12.9 14.7 13.5 

25 14.3 15.9 12.8 13.7 15.1 14.5 13.9 13.9 16.5 13.9 

50 16.0 17.3 13.5 15.2 16.7 15.7 16.7 15.6 18.1 15.7 

75 19.0 18.4 14.4 16.5 21.3 16.5 20.6 19.3 23.7 17.8 

90 26.1 22.0 17.2 17.2 32.3 20.2 29.3 28.6 30.5 22.7 

95 31.3 25.8 20.8 18.4 36.5 25.7 33.4 34.4 35.6 27.9 

99 38.9 31.9 28.4 24.8 41.9 36.5 39.0 41.4 41.9 34.5 

Mixed Acoustics (MA) 

Percentiles 

Array-

wide 14 16 19 22 45 57 63 70 85 

1 11.8 14.2 12.0 12.8 12.9 13.7 12.7 12.4 13.2 12.9 

5 12.3 14.4 12.1 13.0 13.0 13.8 12.8 12.6 13.6 13.1 

10 12.7 14.5 12.2 13.1 13.1 13.9 12.9 12.7 13.9 13.2 

25 13.4 14.7 12.4 13.5 13.3 14.1 13.2 12.9 14.9 13.6 
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50 14.3 15.3 12.7 14.7 13.8 14.4 14.4 14.0 18.1 15.6 

75 17.9 23.1 20.9 19.7 15.4 15.3 19.5 17.5 30.2 27.4 

90 30.3 33.1 28.9 31.4 19.2 16.8 30.1 34.2 40.0 37.0 

95 35.4 37.3 31.5 35.0 25.9 19.4 35.6 37.9 43.0 39.7 

99 42.2 42.0 35.0 39.6 35.9 25.0 45.0 43.7 46.9 44.8 
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Appendix 5.3. Focused time series annotation.  

In the hydrophone 45 annotation, the 12.5 kHz BLs were reliably indicative of the survey 

activity. Thus distinct peaks in the 12.5 kHz BLs were used to guide a more directed annotation 

of the other eight hydrophones with respect to the mapping activity.  In addition, peaks in the 

other sound level metrics that were indicative of anthropogenic activity were also annotated, i.e., 

asterisked events of the hydrophone 45 time series annotation. For example, simultaneously 

elevated levels in all BLs were considered to be indicative of a vessel passing nearby and were 

therefore examined further. In a few instances other acoustic events (i.e., high amplitude or 

extensively elevated sound levels in other metrics than the 12.5 kHz band) were identified on 

each hydrophone, which served as a check that the survey activity was not missed with this 

focused approach. The annotations for a given hydrophone are relative to the figure contained 

within each of the following specific hydrophone sections. Thus, the associated figure number is 

only referred to in the first mention of the annotation events for a specific hydrophone, but 

pertains to all subsequent events discussed in a specific hydrophone section.  Sound level 

percentiles were calculated for each of the remaining eight hydrophones for SPLpk, 50 Hz, 12.5 

kHz and 40 kHz BLs. These values were used as a reference to discuss the change in sound 

levels during each analysis period (i.e., NA, VO, VM, and MA).  As with hydrophone 45, 

baseline was defined as the 50th percentile value for a specific metric, for a specific analysis 

period, on a given hydrophone.  The sound level percentile values are contained in Appendix 5.2. 
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Hydro 14 

 

Figure 5.3.1. Sound level time series for hydrophone 14. First plot- Broadband sound level time 

series: SEL (blue), SPLpk (orange), wSEL (yellow), and wSPLpk (purple). Numbers indicate 

acoustic events identified in annotation. Asterisks indicate that the acoustic event was most likely 

attributed to the survey activity. Perpendicular lines on all graphs delineate the four analysis 

periods, NA, VO, VM, and MA, shown at the bottom of the figure, respectively. Second plot-

Select unweighted BL time series: 50 Hz (blue), 500 Hz (orange), 3.2 kHz (yellow), 12.5 kHz 

(purple), and 40 kHz (green). Third plot- Weighted decidecade BL time series. Line colors and 

frequencies are the same as in the second plot. Fourth plot-Time series of modelled frequency-

specific transmission loss (left axis) and range from hydrophone in kilometers (black line, right 

axis). Color of frequency-specific transmission loss corresponds to colors of frequencies 

described for the second plot. 

 

Similar to hydrophone 45, there was an extended time of elevated SPLpk during the NA 

period on hydrophone 14 (event 1, Figure 5.3.1), largely driven by very low frequency sound as 

indicated by the elevated 50 Hz BL. At the end of the NA period (event 2), there was a 

broadband sound source that elevated sound levels on this hydrophone, likely another passing 

vessel on the northern edge of the array (the Sally Ride was >40 km away). Inspection of this 

event in the spatiotemporal sound level animation revealed a spatial pattern of elevated sound 

levels moving from east to west with increasing time. 
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During the VO period sound levels were generally stable (except again in the 50 Hz 

band) until the vessel was ~15 km away from the hydrophone about halfway through the period 

(event 3). At this time there was another loud, very low frequency and continuous sound (10’s of 

Hz), as well as marine mammal clicks around 40 kHz (Appendix 5.1, hydro 14, event 3). The 

presence of this very low frequency source on this and hydrophone 45 corroborates the 

hypothesis that this event was not isolated to a single hydrophone. Also in this period, there was 

another broadband sound source, visible as simultaneous peaks in the time series across all of the 

select BLs (event 4), indicative of a close pass of a vessel near the hydrophone. This does not 

appear to be the Sally Ride, as at this time it was stationary in the middle of the array (19 km 

from hydro 14) for an hour and a half.  Review of the spatiotemporal sound level animation 

suggests this was another vessel which made its way from east to west across the northern part of 

the array. The Sally Ride made its closest point of approach at ~10 km just before this event, 

which was not clearly distinguishable as this other, likely closer vessel pass-by (i.e., event 4).  

During the VM period, the Sally Ride remained greater than 16 km away for the first 

third of the period and there was no clear detection of the survey vessel on this hydrophone 

during this time. The next time the vessel was within 17 km of the hydrophone was the first time 

(event 5) the EM 122 signal was briefly (~30 minutes) detectable above baseline (i.e., baseline 

was 33 dB re 1 μPa2/Hz in 12.5 kHz band, Appendix 5.2) on this hydrophone. Peaks in the sound 

level time series also occurred at RCPAs of 6 (event 6) and 2.5 km (event 7). SPLpk increased by 

more than 30 dB at these RCPAs (note both times it clipped at the closest point of approach so 

absolute sound levels were not obtained) and did not return to baseline levels (i.e., baseline in 

SPLpk was 104 dB re 1 μPa) until the Sally Ride was about 13 km away. The 12.5 kHz and 40 

kHz BL’s also increased by 25 or more dB when the vessel was closest to the hydrophone. The 
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survey vessel made another RCPA (2 km) to the hydrophone (event 8), which manifested as a 

similar signature in the sound levels as event 6 and 7. At each of these three closest approaches 

(events 6, 7, 8) the 12.5 kHz band increased by as much as 35 dB over baseline (i.e., 33 dB re 1 

μPa2/Hz baseline, peaks in the band of 63, 66, 68 dB re 1 μPa2/Hz, respectively) and the 40 kHz 

band increased similarly.  The maximum increase in the 50 Hz band was between 7-11 dB (65, 

66, 69 dB re 1 μPa2/Hz, respectively) over baseline (i.e., 58 dB re 1 μPa2/Hz), corresponding 

with the closest point of approach. The last three RCPA for this period (events 9, 10, 11) were to 

6.4, 10.7 and 8.2 km of hydrophone 14, with maximum peak values in the 12.5 kHz band of 48, 

47, and 48 dB re 1 μPa2/Hz, respectively (about 10 dB over baseline, Appendix 5.2). The peaks 

in SPLpk at these times were 122, 119, and 120 dB re 1 μPa, about 15 dB over baseline (i.e., 105 

dB re 1 μPa, Appendix 5.2) for this metric.  These RCPAs were not distinguishable as clear 

peaks on the other select frequency bands.  Overall the survey activity during the VM period was 

distinguishable in the time series for 7 hours (i.e., about one quarter of the period). 

The Sally Ride was more than 20 km away from hydrophone 14 during the first 8 hours 

of the MA period. During the middle of this period, there were two RCPAs under 5 km (3.5 and 

1.8 km-- events 12, 13, respectively).  At the earlier approach (event 12) the EM 122 and the EK-

80 were on, while only the EM 122 was on for the later and closer approach (event 13). 

Interestingly, during the first RCPA (event 12) the signal from the EM 122 was not as 

pronounced as it had been during similarly close approaches (i.e., event 7) during the VM period, 

although the second RCPA did have a similar signature to the close passes of the Sally Ride 

during the VM period. Instead the sound level signature of event 12 looked more like the vessel-

only RCPAs, where the BL peaks scaled similarly with one another. Upon inspecting a 

spectrogram of this event (Appendix 5.1, hydro 14, event 12), clipped signals were not observed, 
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which may partly account for the difference in the sound level signature of this event compared 

to others when the EM 122 was active. Finally, when the vessel came within 8 km of the 

hydrophone and all the active acoustic sources were on, there were small peaks visible in the 

select BL time series (3-9 dB over the local baseline) and SPLpk (10 dB over local baseline) 

corresponding with this activity (event 14). The survey activity during the MA period was 

distinguishable intermittently for approximately 4.5 hours (i.e., one quarter of the period).  

From the weighted analysis, the entire broadband wSPLpk time series on this hydrophone 

were quite variable, even during the NA period. During the NA period, the peak in wSPLpk 

related to event 2 was presumably associated with ship radiated noise of another passing vessel 

(Figure 5.3.1, first plot). wSEL increased most during event 2 in the NA period (associated with 

another passing vessel), event 3 and 4 in the VO period (associated with the Sally Ride and 

another passing vessel, respectively), events 6, 7, 8 (associated with the Sally Ride passing under 

5 km of the hydrophone), and event 13 of the MA period (when the Sally Ride was under 2 km 

of the hydrophone).  In both the NA and VO periods there were small peaks in the select wBLs 

associated with ship-radiated sound, though in neither case were these related to the Sally Ride. 

The most distinguishable BLs were the 12.5 kHz band, but only associated with events identified 

and tied to the vessel and EM 122 activity. From the weighted perspective, the 50 Hz band was 

the least distinguishable, though there was much more variability in this band than any of the 

other select BLs (Figure 5.3.1, third plot). 
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Hydro 16 

 

Figure 5.3.2. Sound level time series for hydrophone 16. First plot- Broadband sound level time 

series: SEL (blue), SPLpk (orange), wSEL (yellow), and wSPLpk (purple). Numbers indicate 

acoustic events identified in annotation. Asterisks indicate that the acoustic event was most likely 

attributed to the survey activity. Perpendicular lines on all graphs delineate the four analysis 

periods, NA, VO, VM, and MA, shown at the bottom of the figure, respectively. Second plot-

Select unweighted BL time series: 50 Hz (blue), 500 Hz (orange), 3.2 kHz (yellow), 12.5 kHz 

(purple), and 40 kHz (green). Third plot- Weighted decidecade BL time series. Line colors and 

frequencies are the same as in the second plot. Fourth plot-Time series of modelled frequency-

specific transmission loss (left axis) and range from hydrophone in kilometers (black line, right 

axis). Color of frequency-specific transmission loss corresponds to colors of frequencies 

described for the second plot. 

 

 The high-amplitude, low-frequency phenomenon detected on hydrophones 45 and 14 

during the NA period was also visible on hydrophone 16 (event 1, Figure 5.3.2), as well as the 

extended time of elevated very low frequency in the VO period.  As these events have 

consistently been visible on all of the hydrophones they will not be specifically identified and 

discussed further. There were three events (2, 3, and 4) in the VO period that appeared related to 

a close approach from a vessel, due to the simultaneous BL peaks at each of these times. Event 2 

was very likely related to the Sally Ride which passed within 2 km of the hydrophone at this 
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time. At the CPA, SPLpk was 121 dB re 1 μPa (23 dB over baseline) and returned to baseline 

(Appendix 5.2) when the survey vessel was around 13 km away. Event 3 had a similar sound 

level signature to event 2. However, the Sally Ride was stationary at this time, ~17 km away. It is 

unlikely that the same sound level signature could be produced from a stationary vessel, thus 

event 3 was likely another vessel passing by the northern edge of the array at this time. This 

event also occurred only a few minutes after a similar event on hydrophone 14, which further 

indicates that another vessel was moving by the northern edge of the array from east to west 

around this time. Similarly, event 4-- which also appeared to be a close pass of a vessel--was 

unlikely to be the Sally Ride which was moving away from hydrophone 16 at this time. Overall 

the specific activity of the Sally Ride in this period was distinguishable for about an hour and 

fifteen minutes, while vessel activity in general was distinguishable for 3.5 hours. 

 During the VM period, the Sally Ride made a RCPA to hydrophone 16 at ~6 km (event 5) 

and 11 km (event 6) that were visible in the time series.  The sound in the 12.5 kHz band 

increased starting when the survey vessel was ~16 km away and did not flatten out again until 

the survey vessel was 13 km from the hydrophone. For the next ~14 hours (event 7) the Sally 

Ride remained 12 km or more from hydrophone 16.  During this time, the survey vessel made 

several RCPAs (i.e., 12- 18 km), some of which the EM 122 signals were faintly visible in a 

spectrogram. But the small peaks in the 12.5 kHz band (about 3-6 dB) during this time appeared 

related to some other more continuous energy in this frequency range (Appendix 5.1, hydro 16, 

event 7). Otherwise, there was no obvious signature of the EM 122 in the sound level time series 

until the Sally Ride was within 15 km of the hydrophone again. At this point the 12.5 kHz BL 

increased as the survey vessel made its next RCPA to 4.5 km (event 8).  Once the Sally Ride was 

beyond 11 km, the EM 122 signal was no longer distinguishable in the time series until the 
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survey vessel was within 16 km of the hydrophone. After the last two RCPAs (events 9 and 10) 

of the period that were both around 2 km, the signal from the EM 122 was still detectable out to 

about 12 km from the hydrophone. In total, the survey activity was distinguishable in the sound 

level time series for approximately 7 hours and 45 minutes during the VM period. 

 The MA period sound levels were dynamic on hydrophone 16. There was no obvious 

change in the sound levels with respect to the first calibration event, which occurred about 20 km 

from the hydrophone. About the time of the second calibration event, the SPLpk, 12.5 kHz, and 

3.2 kHz BLs fluctuated rapidly (event 11). A closer inspection of a spectrogram of the event 

(Appendix 5.1, hydro 16, event 11) revealed pulses spaced ~300 ms apart extending from 2 to 10 

kHz; the source of the pulses is unknown. However, this did not seem related to the calibration 

event as the Sally Ride was more than 25 km away and signals were detected in the acoustic data 

outside of the time when calibration signals were transmitted. After the calibration testing, the 

vessel made the next RCPA to within 5.5 km, though it was an hour before this when the vessel 

was around 9.5 km from the hydrophone that the EM 122 signal was most prominent (event 12). 

After this, the vessel transited to more than 40 km away from hydrophone 16 during which time 

the 12.5 kHz BLs steadily increased (event 13). A closer inspection of this event on a 

spectrogram revealed what was clearly biological activity, consisting of frequency upsweeps 

from 4-14 kHz (Appendix 5.1, hydro 16 event 13).  

 The two closest points of approach (2.7 km and 2 km, respectively) during this period 

occurred at the end of the period. The first was when only the SBP was on (event 14), and the 

second was when all of the active acoustic sources were on (event 15).  Event 14 corresponded to 

an increase over the local baseline of approximately 10 dB in the 500 Hz band, 14 dB in the 3.2 

kHz band, and 10 dB in the 12.5 kHz band. Event 15 corresponded with the time when all active 
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acoustic sources were on, manifesting as an increase over the local baseline of 15 dB in the 500 

Hz band, 13 dB in the 3.2 kHz band, and 49 dB in the 12.5 kHz band. The EK-80, EM 122, SBP 

signals were all visible in the spectrogram for event 15. Although EM 712 was on at this time, it 

was not visible in the 40 kHz band levels or in the spectrogram (Appendix 5.1, hydro 16, event 

15).  Even at 2 km the transmission loss for the EM 712 signal is about 87 dB, which likely 

accounts for why the signal was not readily visible. The elevated 3.2 kHz BL corresponding to 

these events began when the Sally Ride was 12 km away and flattened again when the vessel was 

beyond 7 km away, roughly 1 hour and 45 minutes of the MA period (~ 1/3 the MA period). 

From a weighted perspective, the wSEL in the NA period was largely stable, while the 

wSPLpk in the same period was highly variable, suggesting the energy in the period was the 

same throughout but the source mechanism varied.  During the VO period, peaks in both 

broadband metrics correlated with the three vessel approaches identified in the annotation 

(events 2, 3, and 4). During the VM period, the largest peaks in the wSEL and wSPLpk correlated 

with the peaks associated with survey activity, though smaller peaks of undetermined origin were 

also present. In the MA period, the weighted broadband levels fluctuated rapidly, with the 

highest and most numerous peaks corresponding to what appeared to be biological activity. 

Although the final closest approach of the Sally Ride when all active acoustic sources were on 

was equally prominent (Figure 5.3.2, first plot). The weighted 12.5 kHz and 3.2 kHz BLs were 

equally dominant throughout the study, except mainly at times when the survey activities were 

within 18 km of the hydrophone (i.e, events 5, 6, 8, 9, 10, 12, 14), as well as when there was 

significant biological activity near the hydrophone (event 13).  At these times the 12.5 kHz BLs 

were most dominant. Similarly, there were a few instances where the weighted 40 kHz band was 

slightly higher (i.e., in the VO and MA periods), which coincided with times when there were 40 
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kHz clicks present in the acoustic data, presumably from marine mammals, such as foraging 

beaked whales. (Figure 5.3.2, third plot) 

Hydro 19 

 

Figure 5.3.3. Sound level time series for hydrophone 19. First plot- Broadband sound level time 

series: SEL (blue), SPLpk (orange), wSEL (yellow), and wSPLpk (purple). Numbers indicate 

acoustic events identified in annotation. Asterisks indicate that the acoustic event was most likely 

attributed to the survey activity. Perpendicular lines on all graphs delineate the four analysis 

periods, NA, VO, VM, and MA, shown at the bottom of the figure, respectively. Second plot-

Select unweighted BL time series: 50 Hz (blue), 500 Hz (orange), 3.2 kHz (yellow), 12.5 kHz 

(purple), and 40 kHz (green). Third plot- Weighted decidecade BL time series. Line colors and 

frequencies are the same as in the second plot. Fourth plot-Time series of modelled frequency-

specific transmission loss (left axis) and range from hydrophone in kilometers (black line, right 

axis). Color of frequency-specific transmission loss corresponds to colors of frequencies 

described for the second plot. 

The sound level time series on this hydrophone suggested there was a close approach by 

a vessel (event 1, Figure 5.3.3) during the NA period. This was not the Sally Ride which was 

beyond 40 km at the time. During the VO period the sound levels were dynamic, corresponding 

to multiple instances of what appeared to be biological activity and/or vessels passing nearby. 

The Sally Ride closely approached this hydrophone to within ~3.1 km, at which time there was 
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also biological activity in the 40 kHz band (event 2). This corresponded with local increases in 

the 500 Hz band of 13 dB, 5 dB in the 3.2 kHz band, and 10 dB in the 12.5 kHz band. The close 

pass of the Sally Ride was distinguishable for about an hour and a half during this period. During 

the VM period the vessel passed to within 10 km (event 3), 5.3 km (event 4), 2.2 km (event 5), 

and 2.9 km (event 6) of hydrophone 19, corresponding to peaks in the 12.5 kHz band of 10, 26, 

40, and 31 dB over the local baseline. The vessel then transited away from hydrophone 19, at 

which time there was another event (event 7) characterized by a similar magnitude increase in 

the 50 Hz-12.5 kHz BLs, indicative of a vessel passing nearby. At the peak levels of this event, 

the Sally Ride was over 35 km away, thus related to a different vessel passing near the 

hydrophone. For the remainder of the period the survey vessel was more than 15 km away from 

this hydrophone and there was no obvious change in the sound level time series related to its 

activity. In total, the survey activity was distinguishable in the sound level time series for 

approximately 5 hours of the VM period. Similarly during the MA period, the Sally Ride was 

almost always beyond 14 km from hydrophone 19 with no obvious contributions of its acoustic 

sources to the sound levels on this hydrophone during the MA period. Similar sound level 

fluctuations detected on hydrophone 16 (events 11 and 12) were visible in the hydrophone 19 

time series (events 8 and 9).  Event 8 was characterized by broadband clicks, whereas event 9 

had broadband clicks and significant biological activity (Appendix 5.1, hydro 19, event 8 and 9).   

The weighted broadband sound level metrics (wSEL, wSPLpk) in all four periods were 

noticeably variable.  However, the second half of the VM period and first third of the MA period 

were fairly stable in terms of wSEL. The peaks in wSPLpk of the NA and VO periods seemed to 

be driven by a few close passes of vessels, as indicated by peaks in all BLs 12.5 kHz or less. 

Only one of these instances (event 2) in the VO period appeared related to the Sally Ride.  In the 
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weighted frequency BL time series, the 12.5 kHz, 40 kHz, and 3.2 kHz bands fluctuated 

similarly, alternating as the most dominant of the BLs examined. In each case the dominant band 

was generally <5 dB more than the other BLs.  During the VM period, there was consistently 

separation between the select BLs, with the 50 Hz band being significantly quieter than the other 

BLs (i.e., 50 Hz time series did not intersect the other time series). The 3.2 kHz and 12.5 kHz 

were generally most dominant, while the 40 kHz and 500 Hz were intermediate out of the five 

select BLs. During events 3, 4, 5, and 6 –all linked to the close approach of the Sally Ride when 

the EM 122 was active—the 12.5 kHz band was the most dominant, i.e., large peaks 

distinguishable over the other BL time series.  During the MA period, the levels were generally 

stable until the two annotated events which appeared to be related to biological activity and a 

broadband and pulsed signal from an undetermined source. At these times the BL time series 

were much more unstable--more like the VO period—with the 12.5 kHz and 40 kHz bands 

alternating as the most dominant but only by a few decibels (i.e., <5 dB). 
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Hydro 22 

 

Figure 5.3.4. Sound level time series for hydrophone 22. First plot- Broadband sound level time 

series: SEL (blue), SPLpk (orange), wSEL (yellow), and wSPLpk (purple). Numbers indicate 

acoustic events identified in annotation. Asterisks indicate that the acoustic event was most likely 

attributed to the survey activity. Perpendicular lines on all graphs delineate the four analysis 

periods, NA, VO, VM, and MA, shown at the bottom of the figure, respectively. Second plot-

Select unweighted BL time series: 50 Hz (blue), 500 Hz (orange), 3.2 kHz (yellow), 12.5 kHz 

(purple), and 40 kHz (green). Third plot- Weighted decidecade BL time series. Line colors and 

frequencies are the same as in the second plot. Fourth plot-Time series of modelled frequency-

specific transmission loss (left axis) and range from hydrophone in kilometers (black line, right 

axis). Color of frequency-specific transmission loss corresponds to colors of frequencies 

described for the second plot. 

 

Aside from the elevated very low frequency array-wide phenomenon, the NA period 

sound levels were fairly stable, suggesting there was little activity recorded on this hydrophone. 

In the VO period, the close pass of the Sally Ride (event 1, Figure 5.3.4) manifested as a subtle 

increase in the sound levels, likely because the survey vessel remained about 14 km away from 

the hydrophone for about two hours before transiting away (this was noticeable as a small 

decrease in the BLs). This event also occurred at a time of significant biological activity 
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(Appendix 5.1, hydro 22, event 1). During this period, there was a clear signature in the sound 

levels of a vessel passing nearby (event 2), which was unlikely the Sally Ride which was 

stationary at this time. The presence of the survey vessel in the sound level time series of the VO 

period was distinguishable, but hardly, for approximately 2 hours. It was overshadowed by the 

louder activity of event 2 which was not attributed to the Sally Ride. 

During the VM period the Sally Ride was over 18 km away from hydrophone 22 for the 

first 10 hours of the survey and there was no obvious change in the sound levels on this 

hydrophone due to its activity.  However there was a very loud pulse at frequencies of 1 kHz and 

lower, as well as some short clicks between 10-40 kHz, that correlated with the peak in the 

SPLpk of event 3 (Appendix 5.1, hydro 22, event 3). Once the Sally Ride came within 14 km of 

the hydrophone the 12.5 kHz band levels increased again, during which time the survey vessel 

made three RCPAs (events 4, 5, and 6) in 7 hours to within 3.5, 2, and 4.3 km, respectively, of 

the hydrophone. Between each RCPA the vessel moved far enough away again that the signal of 

the EM 122 was no longer distinguishable in the sound level time series, which was at about 13.5 

km from the hydrophone. During each of these events, the signal from the EM 122 was visible 

for about an hour.  Because of the very close approaches to the hydrophone the signal clipped 

and the maximum SPLpk value was not recovered. The maximum sound level recorded for the 

12.5 kHz band were 34, 41, and 32 dB, respectively, over baseline (Appendix 5.2). But again, 

due to the clipped signal the actual levels may have been higher. After these very close 

approaches, the Sally Ride continued to run lines further and further away from hydrophone 22. 

The next RCPA (event 7) was to 9 km from the hydrophone. This corresponded with an increase 

of 6 dB in the 12.5 kHz band, and 15 dB in SPLpk over the respective baseline (Appendix 5.2) 

for the analysis period, as well as an elevated 40 kHz band (Figure 5.3.4, second plot, event 7). 
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Upon inspection of the spectrogram related to this event, the mechanism driving the elevated 

SPLpk was likely the prominent biological clicks in the 40 kHz band, rather than the EM 122 

signal which was faintly visible at this time (Appendix 5.1, hydro 22, event 7). Marine mammal 

clicks appeared to be the same mechanism driving the peak in SPLpk at event 8, and in this case 

the EM 122 signals were not distinguishable (Appendix 5.1, hydro 22, event 8). The signal of the 

EM 122 at the next RCPA of 13.4 km was not visible in the time series. The last RCPA (event 9) 

for the period was within 7.5 km of the hydrophone with a peak in the 12.5 kHz band and SPLpk 

that at its maximum was 15 and 10 dB, respectively, over the respective baselines (Appendix 

5.2). Overall the survey activity was distinguishable in the sound level time series for 6 hours 

during the VM period. 

 The Sally Ride was over 15 km away during the calibration tests of the MA period and 

there was no obvious impact on the sound levels on hydrophone 22 related to the distant activity 

of the survey vessel.  The Sally Ride made its first RCPA during this period at 8.5 km when the 

EM 122 was actively transmitting (event 10). The 12.5 kHz band was not as peaked as in the 

close passes during the VM period, likely because the EM 122 signal was not close for clipping 

to occur (Appendix 5.1, hydro 22, event 10). Elevated levels in the other lower frequency BLs 

were also visible during this event, likely because the ambient conditions were low prior to and 

after this event such that the signature of the closely passing vessel was not masked. At 

maximum, there was a 7 dB increase in SPLpk, 22 dB increase in the 12.5 kHz band over 

baseline and local increase of 5-10 dB in the 500 Hz and the 3.2 kHz BLs related to this event.  

The Sally Ride made another RCPA to within 18 km of the hydrophone that was not 

distinguishable in the time series. The final RCPA was to within 7.3 km of hydrophone 22 (event 

11) when all of the acoustic sources were transmitting. During event 11, there was a maximum 
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increase over baseline in SPLpk of 16 dB and of 25 dB in the 12.5 kHz band, and a local increase 

of 6 dB in the 3.2 kHz band. The peaks in the 3.2 kHz band related to events 10 and 11 were of 

similar magnitude (~41 dB re 1µPa2/Hz), despite the SBP active only during event 11. This 

suggested that the signal of the SBP did not make a significant contribution to the changing 

sound levels in this band beyond that of the vessel radiated sound associated with the close 

passage of the Sally Ride near the hydrophone. The EM 712 was the only signal not visible in a 

spectrogram of event 11 (Appendix 5.1, hydro 22, event 11). The activities related to the 

mapping activity were distinguishable in the sound level time series for approximately 4 hours.  

 The wSPLpk fluctuated throughout the entire study with similar variability across 

periods—i.e., at most, changes of about 25 dB. There were exceptions however, which were 

related to the close pass of another vessel during the VO period, the three close passes of the 

Sally Ride during the VM period, and some biological activity during the VM and MA periods. 

wSEL fluctuated less, but the most obvious fluctuations were also generally associated with the 

survey activity. Of the weighted BLs examined, the 12.5 kHz and 3.2 kHz BLs were consistently 

most dominant, while the 12.5 kHz band dominated during times linked to the survey activities. 

There were a few times when the 40 kHz band was higher than the 12.5 kHz band levels, but 

generally by less than 10 dB. These events included times when clicks were detected in the 

acoustic data, presumably from marine mammals.  
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Hydro 57 

 

Figure 5.3.5. Sound level time series from hydrophone 57. First plot- Broadband sound level 

time series: SEL (blue), SPLpk (orange), wSEL (yellow), and wSPLpk (purple). Numbers indicate 

acoustic events identified in annotation. Asterisks indicate that the acoustic event was most likely 

attributed to the survey activity. Perpendicular lines on all graphs delineate the four analysis 

periods, NA, VO, VM, and MA, shown at the bottom of the figure, respectively. Second plot-

Select unweighted BL time series: 50 Hz (blue), 500 Hz (orange), 3.2 kHz (yellow), 12.5 kHz 

(purple), and 40 kHz (green). Third plot- Weighted decidecade BL time series. Line colors and 

frequencies are the same as in the second plot. Fourth plot-Time series of modelled frequency-

specific transmission loss (left axis) and range from hydrophone in kilometers (black line, right 

axis). Color of frequency-specific transmission loss corresponds to colors of frequencies 

described for the second plot. 

Aside from the array-wide elevated levels in the 50 Hz band during the NA period, there 

was a peak in the 500 Hz band on hydrophone 57 (event 1, Figure 5.3.5). Upon inspection of the 

spectrogram of the event it appeared to be related to ship radiated sound from some vessel other 

than the Sally Ride which was over 40 km away at the time (Appendix 5.1, hydro 57, event 1).  

During the VO period there were three events that appeared to be related to a close pass of a 

vessel (event 2, 3, and 4). Only one of these corresponded to the Sally Ride (event 2), as the 

increase in BLs corresponded with the RCPA of the survey vessel to 2.5 kilometers of 
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hydrophone 57 during this period. This event was distinguishable for approximately 1 hour and 

45 minutes in the time series, while the vessel was within about 15 km of the hydrophone. The 

other two events occurred when the Sally Ride was transiting further away from hydrophone 57 

(event 3) and when the survey vessel was approaching but remained at a stable distance of 13 km 

from the hydrophone (event 4). Neither of the survey activities at these times intuitively match 

the peaks in the sound level time series, suggesting these events (3 and 4) were likely linked to 

some other vessel transiting near hydrophone 57 along the western edge of the array.  

Hydrophone 57 is located on the western edge and deeper side of the array, where many vessels 

may pass, thereby avoiding the navy range. 

 During the VM period the Sally Ride made several RCPAs by hydrophone 57 within the 

first half of the period (events 5, 6, 7, and 8).  These were at 9, 4.6, 1.5, and 2 km, respectively. 

At maximum, the sound levels associated with these events were 23, 23, 41, and 38 dB, 

respectively, over baseline in the 12.5 kHz band, and 23, 26, 34, and 32 dB, respectively, over 

baseline for SPLpk (Appendix 5.2). During each of these events, the EM 122 signal was visible 

in the 12.5 kHz band time series as elevated sound levels for about 1-1.5 hours including 

approach and departure from the RCPA. After event 8, the vessel transited to more than 30 km 

away from hydrophone 57 during which there was another signature in the time series indicating 

the close approach and departure of another vessel (Figure 5.3.5, event 9). The Sally Ride 

remained more than 13.5 km away from the hydrophone for the remainder of the VM period and 

was not discernible in the sound level time series of hydrophone 57 during this time.  There was 

one other peak in the 12.5 kHz band while the Sally Ride was 30 km away, and this appeared to 

be a continuous sound of undetermined origin (Appendix 5.1, hydro 57, event 10). Overall, the 
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activity of the survey vessel was distinguishable for about 6 hours and 15 minutes in the time 

series of hydrophone 57. 

 During the calibration testing at the beginning of the MA period, the distance of the Sally 

Ride to the hydrophone ranged from 12 to 18 km. There was no obvious change in the sound 

levels with respect to this activity. During this period, the survey vessel made a close approach to 

within 12 km of the hydrophone when the EM 122 and the EK-80 were on. Though the ship-

radiated sound was visible in the time series (SPLpk, 50 Hz, and 500 Hz BLs) and a spectrogram, 

neither echosounder signal was visible at this distance. There was also a repetitive pulse present 

in the spectrogram, which was likely responsible for the peaks present in the time series, which 

had a center frequency of 400 Hz but bandwidth up to 10 kHz (Appendix 5.1, hydro 57, event 

11).  It is unclear what the source of this repetitive pulse was. Just after this RCPA, there was a 

clear signature in the BLs indicating a nearby passing vessel (Figure 5.3.5, event 12; Appendix 

5.1, hydro 57, event 12). This occurred when the Sally Ride was holding steady 12 km from 

hydrophone 57, which suggests the event was most likely attributed to another passing vessel.  

The CPA of the survey vessel to hydrophone 57 during this period was 8 km and was hardly 

distinguishable in the sound level time series (event 13). The 3.2 kHz and 500 Hz bands had very 

small increases at this time. It is worth noting that the SBP was also on during this CPA, and the 

pulses were visible in the spectrogram of this event (Appendix 5.1, hydro 57, event 13). The 

peak in SPLpk seemed to correlate with the peak in the 40 kHz band just prior to event 13. The 

40 kHz peak appeared to correspond with marine mammal clicks at this frequency. The acoustic 

sources of the survey during the final RCPA of the period to within 18 km were not 

distinguishable in the spectrogram of this event (14). The peak in SPLpk was again likely related 

to marine mammal clicks as the EM 712 signal at the distance the ship was to the hydrophone, 
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i.e., 19 km, was much more than 140 dB (Figure 5.3.5, fourth plot, event 14). During this event 

there also appeared to be another vessel passing nearby at the same time (Appendix 5.1, hydro 

57, event 14). Examining the spatiotemporal animation verified this was not associated with the 

Sally Ride (only the sound levels on hydrophones directly surrounding the vessel appeared 

correlated with its presence at this instance). Overall, the survey activity during the MA period 

was distinguishable for approximately 1.5 hours. 

 From a weighted perspective the broadband levels appeared equally variable with both 

moderate fluctuations throughout all four periods (Figure 5.3.5, first plot). The 3.2, 12.5, and 40 

kHz weighted BLs (Figure 5.3.5, third plot) were similarly distinguishable in the NA period, 

though there was one particular time when the 40 kHz band was clearly more dominant (i.e., up 

to 8 dB over the other BLs). All but the 50 Hz bands were similarly distinguishable during the 

VO period. The overlap of these bands was likely attributed to the numerous close approaches of 

ship-radiated sound during this period, which really elevated the lower frequency bands. During 

the VM period the pattern was consistent with other hydrophones: the 3.2 kHz and 12.5 kHz 

bands were consistently the most dominant, but the 12.5 kHz dominated when the Sally Ride was 

close to the hydrophone during events 5, 6, 7, and 8. This was similar in the first half of the MA 

period, whereas during the later half of the MA period the 40 kHz band was at times more 

dominant than the other BLs. In some cases, this was attributable to marine mammal clicks, 

while in other cases the signals were more pulse-like and the source was unclear.  



336 

 

Hydro 63 

 

Figure 5.3.6. Sound level time series for hydrophone 63. First plot- Broadband sound level time 

series: SEL (blue), SPLpk (orange), wSEL (yellow), and wSPLpk (purple). Numbers indicate 

acoustic events identified in annotation. Asterisks indicate that the acoustic event was most likely 

attributed to the survey activity. Perpendicular lines on all graphs delineate the four analysis 

periods, NA, VO, VM, and MA, shown at the bottom of the figure, respectively. Second plot-

Select unweighted BL time series: 50 Hz (blue), 500 Hz (orange), 3.2 kHz (yellow), 12.5 kHz 

(purple), and 40 kHz (green). Third plot- Weighted decidecade BL time series. Line colors and 

frequencies are the same as in the second plot. Fourth plot-Time series of modelled frequency-

specific transmission loss (left axis) and range from hydrophone in kilometers (black line, right 

axis). Color of frequency-specific transmission loss corresponds to colors of frequencies 

described for the second plot. 

 

The sound levels of the NA period of hydrophone 63 were relatively stable in comparison 

to some of the other hydrophones (i.e., western edge hydrophones). There was a lot of biological 

activity in the 7-15 kHz, and 20-40 kHz ranges during the VO period (event 1, Figure 5.3.6). The 

Sally Ride was 13 km away at this time and may have contributed to some of the low frequency 

background noise, though the elevated 50 Hz band was largely related to the array-wide 

phenomenon identified on other hydrophones. The activity of the Sally Ride was distinguishable 



337 

 

in the sound level time series during event 2 when it made its closest approach to 2 km away, 

distinguishable in the time series for roughly an hour (Appendix 5.1, hydro 63, event 2).  

 During the VM period the Sally Ride made its first RCPA at 3.5 kilometers which was 

most visible in the 12.5 kHz band and SPLpk while the survey vessel was within 15.5 km of the 

hydrophone (event 3). At its maximum, the sound levels were 27 dB (12.5 kHz band) and 30 dB 

(SPLpk) over baseline (Appendix 5.2). Over the next 20 hours the vessel made five RCPAs 

between 8-12 km from hydrophone 63, which were visible as small peaks in the 12.5 kHz band 

time series (events 4, 5, 6, 7, and 8) at their maximum, approximately 2-11 dB over baseline 

(Appendix 5.2). SPLpk, at corresponding times, was between 3-16 dB over baseline, with the 

greatest change occurring when the vessel was 8 km away, although the increase in SPLpk was 

not necessarily solely attributed to the survey activity proximity. For each of these events the 

12.5 kHz band began to steadily increase when the vessel was within 14-19 km of the 

hydrophone. Later, the Sally Ride came within 5.6 km (event 10) and 1.8 km (event 11) of the 

hydrophone within the same hour, after which the vessel ran another line across to the other end 

of the range and back before the final RCPA at 10.4 km at the end of the VM period (event 12). 

These events (10, 11, and 12) corresponded to increases in the 12.5 kHz band over baseline 

(Appendix 5.2) of 19, 42, and 12 dB with increases in SPLpk of 24, and more than 34 dB as the 

hydrophone clipped (events 11 and 12). There was also other acoustic activity present (i.e., clicks 

between 3-20 kHz) that seemed to account for the clipping during event 12 (Appendix 5.1, hydro 

63, event 12). There was one particularly loud period in the 40 kHz band, which can be attributed 

to marine mammal clicks (Appendix 5.1, hydro 63, event 9). At maximum the levels were 28 dB 

over the local baseline which was associated with a maximum SPLpk of 122 dB re 1 µPa. 
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Overall the survey activity was distinguishable in the time series for 9 hours and 30 minutes of 

the VM period. 

During the MA period the vessel made its first RCPA to within 5 km (event 13). At this 

time the EM 712 (40 kHz) was on although it was not visible in the time series or spectrogram of 

this event, as the transmission of this MBES is both directional and would incur a transmission 

loss of about 130 dB at this distance. There was also no obvious change in sound levels at this 

time related to the proximity of the survey vessel to the hydrophone. During the calibration 

testing over hydrophone 65, the Sally Ride was within 4 km of hydrophone 63. The sound level 

signature related to the ship-radiated sound from the close proximity of the vessel to hydrophone 

63 was visible in event 14 (Appendix 5.1, hydro 63, event 14). Although a few signals that may 

have been the test signals of the calibration test were visible in spectrograms around the time of 

testing, they unlikely impacted the sound level time series as there were very few (<20) signals 

transmitted. After this RCPA, the Sally Ride transited to nearly 40 km away from hydrophone 63 

before coming back again. The survey vessel then made three RCPAs to 4.4, 8.3, and 10.4 km of 

hydrophone 63 (events 15, 16, and 17). During the closest pass (event 15) only the EM 122 was 

on, visible as peaks in the 12.5 kHz band and SPLpk that were 39 dB and 25 dB over baseline 

(Appendix 5.2), respectively. During event 16 1.5 hours later, only the SBP was on (Appendix 

5.1, hydro 63, event 16).  At this time the 3.2 kHz band peak was 3 dB higher than during event 

15 when the SBP was off, although the vessel was twice as far away. During the final pass near 

the hydrophone all acoustic systems were on (event 17), and the contribution of the EM 122 

manifested in the time series as a peak in the 12.5 kHz band 13 dB over baseline (Appendix 5.2). 

However, there was no visible peak present in the 3.2 kHz band associated with the SBP 

(although the signal was visible in the spectrogram of the event—Appendix 5.1, hydro 63, event 
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17). The activity of the survey vessel during the MA period was distinguishable on hydrophone 

63 for roughly 5 hours and 45 minutes. 

 The weighted broadband levels on hydrophone 63 had some moderate fluctuations 

throughout the entire time series, with several larger fluctuations, in most cases, associated with 

the survey activity. In some cases, larger fluctuations were related to marine mammal clicks. The 

weighted BLs in the NA period were fairly stable in comparison to the other periods. During the 

VO period the weighted 3.2, 12.5, and 40 kHz bands were similarly distinguishable, with a few 

instances when the 40 kHz BLs were most dominant by no more than 10 dB over other BLs. In 

the VM period, the 3.2 and 12.5 kHz bands were generally most dominant, except during the 

events closely associated with the vessel and EM 122 activity (i.e., events 3, 4, 10, 11, and 12) 

when the 12.5 kHz BLs dominated. During the MA period, event 15 was particularly 

distinguishable, likely because it followed a sub-period on the hydrophone that was extremely 

quiet.  Here the 12.5 kHz band increased by as much as 45 dB at its maximum over the local 

baseline. This event, which was distinguishable for 2 hours, was associated with the survey 

activity. Otherwise the weighted 3.2, 12.5, and 40 kHz bands were roughly similarly 

distinguishable during the MA period (Figure 5.3.6, third plot). 
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Hydro 70 

 

Figure 5.3.7. Sound level time series for hydrophone 70. First plot- Broadband sound level time 

series: SEL (blue), SPLpk (orange), wSEL (yellow), and wSPLpk (purple). Numbers indicate 

acoustic events identified in annotation. Asterisks indicate that the acoustic event was most likely 

attributed to the survey activity. Perpendicular lines on all graphs delineate the four analysis 

periods, NA, VO, VM, and MA, shown at the bottom of the figure, respectively. Second plot-

Select unweighted BL time series: 50 Hz (blue), 500 Hz (orange), 3.2 kHz (yellow), 12.5 kHz 

(purple), and 40 kHz (green). Third plot- Weighted decidecade BL time series. Line colors and 

frequencies are the same as in the second plot. Fourth plot-Time series of modelled frequency-

specific transmission loss (left axis) and range from hydrophone in kilometers (black line, right 

axis). Color of frequency-specific transmission loss corresponds to colors of frequencies 

described for the second plot. 

It is worth noting that hydrophone 70 is on the eastern, and also shallower, side of the 

array close to San Clemente Island, a U.S. Navy base. During the NA period, there was a one 

hour-long epoch with elevated levels (9 dB above baseline) in the 12.5 kHz band (event 1, Figure 

5.3.7). A close inspection of this revealed lots of whistles and signals from vocalizing marine 

mammals in the 10-15 kHz range (Appendix 5.1, hydro 70, event 1). Aside from the elevated 50 

Hz band, the select BLs were relatively stable during this period. The VO period had fluctuating 

sound levels, except the 3.2, and 12.5 kHz band which were rather stable in comparison to the 



341 

 

other bands. A closer inspection of one point (event 2) that had elevated levels in both low 

frequency (50 and 500 Hz) and high frequency (40 kHz) BLs revealed a substantial amount of 

biological activity and a nearby vessel (Appendix 5.1, hydro 70, event 2). The Sally Ride was 

more than 40 km away at this time, so was unlikely to be the source. Near the end of this period, 

the Sally Ride came within 10.6 km from the hydrophone. However this was not obvious in the 

sound level time series or the spectrogram of the event (marine mammal clicks in the 40 kHz 

band were prominent) (Figure 5.3.7, event 3; Appendix 5.1, hydro 70, event 3). 

 The Sally Ride was within 12 km of hydrophone 70 when the EM 122 mapping survey 

began (event 4). There was a small peak (2 dB more than baseline) in the 12.5 kHz band related 

to the survey vessel’s proximity to the hydrophone while the EM 122 was on and a large peak in 

SPLpk (29 dB more than baseline) at the same time. However, the peak in SPLpk was related to a 

loud signal present at the same time (i.e., broadband pulses 0.5s with energy mostly below 2 

kHz—Appendix 5.1, hydro 70, event 4). The Sally Ride then remained more than 15 km away 

for the next 13.5 hours.  During this time there were a few RCPAs to 16, 20, and 17 km of the 

hydrophone, none of which were readily distinguishable in the 12.5 kHz BL time series (Figure 

5.3.7, second plot). The signals that caused the peaks in the 12.5 kHz band of event 5 (i.e., the 

pulse consisted of two 10 ms pulses, 200 ms apart, repeated every 0.5 s between 9-15 kHz; 

Appendix 5.1, hydro 70, event 5) and event 6 (i.e., continuous energy between 10-20 kHz; 

Appendix 5.1, hydro 70, event 6) were not the related to the survey vessel and EM 122, which 

was over 25 km away during both events. At this range, transmission loss in the 12.5 kHz band is 

greater than 140 dB (Figure 5.3.7, fourth plot). The peaks associated with these events were 19, 

14, and 10 dB over baseline, respectively, in the 12.5 kHz band and were all 10 dB over baseline 

(Appendix 5.2) with respect to SPLpk. The signal from the Sally Ride and EM 122 became 
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discernible again in the sound level time series when the survey vessel was within 15.5 km. At 

this time, the Sally Ride made two RCPAs to 4.9 and 2 km within an hour of one another (event 

7). The maximum level in the 12.5 kHz band at these RCPAs were 33 and 39 dB more than 

baseline (Appendix 5.2), respectively, while the SPLpk levels clipped. The Sally Ride transited 

across the array and back again before making two more RCPAs to 3.5 and 7.5 km of the 

hydrophone, again within an hour of one another (event 8). Preceding these events, the EM 122 

signal was not visible in the time series until the vessel was within 15 km and was not visible 

again after the vessel was beyond 11 km from the hydrophone. A final RCPA was made to 

hydrophone 70 in the VM period to 3.5 km (event 9). At its maximum, the SPLpk clipped and 

the 12.5 kHz band was 35 dB over baseline (Appendix 5.2). Overall the activity of the survey 

vessel was distinguishable in the time series for 6.5 hours. 

 The EM 712 was first turned on in the MA period when the Sally Ride was less than 1.5 

km away from hydrophone 70 (event 10). This manifested as a 50 dB re 1 µPa2/Hz peak in the 

40 kHz band, SPLpk of 131 dB re 1 µPa (at its maximum more than 29 dB over baseline), as well 

as smaller peaks in every other frequency band (Figure 5.3.7, event 10). The EM 712 was only 

visible (Appendix 5.1, hydro 70, event 10) in the time series for half an hour while the vessel 

was within 5 km of the hydrophone, beyond which transmission loss of the signal was more than 

80 dB. After this, the calibration tests occurred while the vessel was 18 km and then 12 km away 

from hydrophone 70. Although the test signals were not readily distinguishable in the sound 

level time series or the spectrograms at either time, the presence of the Sally Ride stationary at 12 

km during the second calibration test seemed correlated with slightly elevated levels in the 50 

Hz, 500 Hz, and 3.2 kHz bands at the same time (Figure 5.3.7, event 11; Appendix 5.1, hydro 70, 

event 11). At one point during the MA period there was a slow but noticeable increase of up to 
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15 dB in the 12.5 kHz BL (event 12). This approximately 5-hour period appeared correlated with 

biological activity (Appendix 5.1, hydro 70, event 13). The Sally Ride made a final RCPA to 4 

km at the end of the period when all of the acoustic sources were active (event 12). This 

manifested as peaks in the 500 Hz (56 dB re 1 µPa2/Hz), 12.5 kHz (69 dB re 1 µPa2/Hz, 35 dB 

over baseline), 40 kHz (46 dB re 1 µPa2/Hz) bands, and SPLpk, which clipped (>138 dB re 1 

µPa). All but the EM 712 signal were easily distinguishable in the spectrogram of the event 

(Appendix 5.1, hydro 70, event 12). The survey activity was distinguishable for approximately 3 

hours and 45 minutes during the MA period. 

 From a weighted perspective, all periods had similar magnitude fluctuations in the 

broadband and BL metrics, except during the RCPA events under 5 km in the VM and MA 

period, which were much more dynamic (i.e., peaks up to 138 dB re 1 µPa versus around 120 dB 

re 1 µPa). The 12.5 kHz band was generally most dominant across the study period (Figure 5.3.7, 

third plot). However, during the VO period, the 40 kHz band alternated in dominance with the 

12.5 kHz band, but generally they were within 5 dB of each other. This was also the case during 

the first half of the VM period and the last quarter of the MA period, when the survey vessel was 

not near the hydrophone and not likely contributing to this pattern. The 12.5 kHz band was 

particularly dominant during the closest passes of the survey vessel to the hydrophone (i.e., 

events 7, 8, 9, 10, and 13), but also with respect to some other signals—often biological-- that 

were not the EM 122 (i.e., events 5, 6, and 12).  The acoustic events in the 40 kHz band were 

also most often attributed to biological activity.  
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Hydro 85 

 

Figure 5.3.8. Sound level time series for hydrophone 85. First plot- Broadband sound level time 

series: SEL (blue), SPLpk (orange), wSEL (yellow), and wSPLpk (purple). Numbers indicate 

acoustic events identified in annotation. Asterisks indicate that the acoustic event was most likely 

attributed to the survey activity. Perpendicular lines on all graphs delineate the four analysis 

periods, NA, VO, VM, and MA, shown at the bottom of the figure, respectively. Second plot-

Select unweighted BL time series: 50 Hz (blue), 500 Hz (orange), 3.2 kHz (yellow), 12.5 kHz 

(purple), and 40 kHz (green). Third plot- Weighted decidecade BL time series. Line colors and 

frequencies are the same as in the second plot. Fourth plot-Time series of modelled frequency-

specific transmission loss (left axis) and range from hydrophone in kilometers (black line, right 

axis). Color of frequency-specific transmission loss corresponds to colors of frequencies 

described for the second plot. 

During the second half of the NA period, all of the BLs increased (event 1, Figure 5.3.8). 

Although this seemed to correlate with the Sally Ride’s approach to hydrophone 85, the BLs 

began to increase while the vessel was more than 40 km away and decreased again when the 

vessel was actual at its closest point, suggesting there was another vessel that passed near 

hydrophone 85 associated with this event (Appendix 5.1, hydro 85, event 1).  The first RCPA of 

the Sally Ride (4.2 km) was not distinguishable in the sound level time series. At the end of the 

VO period the Sally Ride was within 4.8 km of hydrophone 85, which was distinguishable in the 
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time series as elevated levels in the 500 Hz, 3.2 kHz, and 12.5 kHz bands between 5-10 dB 

above local baseline levels and about 13 dB above baseline (Appendix 5.2) for SPLpk (event 2). 

Prior to this RCPA, the sound levels began to increase when the vessel was about 12.5 km away.   

 Immediately following event 2, the EM 122 was turned on when the vessel was within   

10 kilometers of hydrophone 85 as it made its next RCPA to 3.7 km (event 3). At maximum, the 

levels of this event were 32 dB and 30 dB over baseline in the 12.5 kHz bands and SPLpk, 

respectively (Appendix 5.2). The next two RCPAs were about an hour apart to 2.3 (event 4) and 

5.3 km (event 5) away from the hydrophone. Prior to this event, the 12.5 kHz BL began to 

increase when the Sally Ride was 15 km from the hydrophone and flattened out again when the 

survey vessel was beyond 10 km.  At maximum levels during both events, the SPLpk clipped at 

34 dB over baseline, and the 12.5 kHz band peaked at 40 and 32 dB, respectively, over baseline 

(Appendix 5.2). There were several events (6, 7, and 10) during the VM period that appeared to 

be close approaches from a vessel, but since these events occurred when the Sally Ride was more 

than 30 km away they were unlikely related to the survey vessel. The presence of other vessel 

sound in the time series was not surprising since hydrophone 85 is on the western edge of the 

array. Amidst these close approaches of other vessels to the hydrophone, the Sally Ride did make 

two RCPAs to 15.7 and 20 km. While there were instances when the 12.5 kHz band level was 

elevated, they do not align with the RCPAs of the survey vessel (event 8). Closer inspection of 

these peaks in the 12.5 kHz band revealed high amplitude continuous energy between 10-20 kHz 

(Appendix 5.1, hydro 85, event 8). Given the more broadband nature of this continuous energy, 

and that transmission loss at these ranges was over 100 dB for the EM 122 signal, it seems 

unlikely that the survey activity was responsible for the small peaks in the 12.5 kHz BLs. 

However, the next RCPA of the Sally Ride to 16.4 km of the hydrophone correlated with the next 
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peak in the 12.5 kHz band (event 9; Appendix 5.1, hydro 85, event 9), which was 2 dB over 

baseline. Therefore, it seems likely that at ranges of 15-20 km the EM 122 signal contributes 

somewhat (i.e., only a few dB) to the elevated levels in the 12.5 kHz band. Two final RCPAs 

occurred in the VM period, one to 12.3 km and the other to 8 km within an hour of one another 

(event 11). These were visible as peaks in the 12.5 kHz band that were over baseline by 11 and 

15 dB at their maximum, respectively. These events were visible in the time series when the 

vessel was within 13 km until it was again beyond 11 km away. The final RCPA in this period 

was not visible in the time series when the vessel was 17.4 km away. Overall the survey activity 

during the VM period was distinguishable for 5 hours and 45 minutes. 

 During the MA period there was no clear sign of the survey activities until the vessel was 

within 8 km of the hydrophone around the time of the second calibration event (event 12). Upon 

closer inspection of this event (Appendix 5.1, hydro 85, event 12), an undetermined pulsed signal 

in the same frequency band as the EM 122 was identified, although with a different temporal 

structure. According to the survey log, the EM 122 was not on at this time. In addition, the low 

frequency levels indicative of ship-radiated sound were louder than in instances when the vessel 

was much closer to the hydrophone (e.g., event 2), so it remains unclear whether this response in 

the sound levels was attributed to the survey activity or some other source. One explanation for 

the louder low frequency levels could be that the Sally Ride was trying to hold position, requiring 

dynamic positioning, which can be quite loud. The survey vessel made its closest RCPAs at 1.5 

(event 13) and 3.3 km (event 14) within an hour of one another. During event 13, only the EM 

122 was on, while during event 14, only the SBP was on. These two events had very different 

sound level signatures. During event 13, the peak in the 12.5 kHz band was 81 dB re 1 µPa2/Hz 

(48 dB over baseline) and there were increases of 20 or more dB in the other BLs, while SPLpk 
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clipped. During event 14, the 3.2 kHz band was at most 55 dB re 1 µPa2/Hz, with a similar 

magnitude peak in the 500 Hz band, and SPLpk at its maximum was 133 dB re 1 µPa. The final 

RCPA of the period at 17 km was not distinguishable in the time series. Overall the survey 

activity was clearly discernible for about 3 hours and 15 minutes in the MA period. 

 From a weighted perspective, the wSPLpk fluctuated randomly during the NA period, 

whereas the wSEL appeared correlated with the loud array-wide phenomenon during the period. 

During the VO period, wSPLpk fluctuated with the largest peaks correlated with the 40 kHz 

band, whereas the wSEL seemed to correlate with the loud array-wide low frequency 

phenomenon. As such, the 40 kHz band was the most dominant BL during the VO period, though 

only by a few dB with respect to the 12.5 and 3.2 kHz bands (Figure 5.3.8, fourth plot). During 

the VM period the fluctuations in wSPLpk that were beyond the variability seen in the NA and 

VO periods, all corresponded to the vessel and EM 122, except for the final peak in the period 

that corresponded to the 40 kHz band. Throughout the VM period the 12.5 kHz and 3.2 kHz 

band levels were most distinguishable, with the 40 kHz band intermittently more dominant. 

During the MA period, the wSPLpk fluctuated similarly to the VM period, with the largest 

fluctuations in the sound levels, attributed to the survey activity. The wSEL was most variable 

during the MA period, decreasing to NA period levels (i.e., quiet) before immediately increasing 

to its maximum during event 13 (i.e., the closest pass of the Sally Ride during this period).  

During the MA period the 3.2 kHz band was most dominant during event 12, the 12.5 kHz band 

during event 13, and the 40 kHz band for a period after event 13. These acoustic events seemed 

to be attributed to ship-radiated sound, the EM 122 and acoustically active marine mammals, 

respectively. 
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Appendix 5.4. Heat map tables of sound level metric percentile 

differences. 
 Each cell represents the specific percentile (grey row headings) difference by hydrophone (grey 

columns headings) between two analysis periods (white column headings): VO (Vessel Only), 

NA (No Activity), VM (Vessel and MBES), MA (Mixed Acoustics).  Differences were identified 

in four classes: 1) < 3dB (white), 2) 3-10 dB (yellow), 3) 10-20 dB (orange), 4) >20 dB (red). 

Where differences were identified, the color (green/purple) of the value represents which 

analysis period was louder, corresponding with the color of the two specific analysis periods 

being compared. 

By Hydrophone 

 

Figure 5.4.1. Sound level percentile differences (dB) for the 50 Hz BL across analysis periods. 



349 

 

 

Figure 5.4.2. Sound level percentile differences (dB) for the 40 kHz BL across analysis periods.  
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Figure 5.4.3. Sound level percentile differences (dB) for SEL (left) and wSEL (right) across 

analysis periods.  
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Array-wide 

 

Figure 5.4.5. Array-wide sound level percentile comparison for the 50 Hz BL. 

 

Figure 5.4.6. Array-wide sound level percentile comparison for the 40 kHz BL. 

 

Figure 5.4.7. Array-wide sound level percentile comparison for SEL (left) and wSEL (right). 
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Appendix 5.5. Results of the probability distribution comparisons 

between each pair of analysis periods, presented by hydrophone.   
Columns of table from left to right are: hydrophone number, analysis periods compared, p-value 

of the statistical comparison test, 2-Wasserstein Distance, location term, size term, and shape 

term as a percentage. 

Hydro Comparison P-value W2 Location 

(%) 

Size 

(%) 

Shape 

(%) 

14 NA vs. VO 0.6569 0.0069 4.26 1.66 94.08 

 NA vs. VM 0.3067 0.03458 12.13 1.15 86.72 

 NA vs. MA 0.4551 0.01107 1.78 26.72 71.51 

 VO vs. VM 0.4552 0.01488 15.19 6.33 78.48 

 VO vs. MA 0.5586 0.00654 14.93 29.21 55.86 

 VM vs. MA 0.1592 0.03172 19.58 17.45 62.97 

       

16 NA vs. VO 0.4538 0.01142 15.12 2.01 82.88 

 NA vs. VM 0.0842 0.0524 17.79 4.73 77.48 

 NA vs. MA 0.2762 0.01785 17.45 0.25 82.3 

 VO vs. VM 0.3529 0.016 18.91 7.51 73.58 

 VO vs. MA 0.8803 0.0018 11.26 3.93 84.81 

 VM vs. MA 0.4424 0.0102 16.24 18.16 65.59 

       

19 NA vs. VO 0.6761 0.00469 7.06 2.78 90.16 

 NA vs. VM 0.1519 0.0359 17.68 5.4 76.92 

 NA vs. MA 0.5473 0.00675 0.44 2.2 97.36 

 VO vs. VM 0.311 0.01987 19.06 5.36 75.58 

 VO vs. MA 0.862 0.00206 7.88 27.03 65.09 

 VM vs. MA 0.2513 0.02236 24.7 14.17 61.12 

       

22 NA vs. VO 0.7471 0.00491 1.19 5.97 92.84 

 NA vs. VM 0.3316 0.03093 13.6 0.45 85.95 

 NA vs. MA 0.2909 0.02308 10.34 20.18 69.58 

 VO vs. VM 0.3082 0.0168 19.01 15.55 65.44 

 VO vs. MA 0.3082 0.0168 19.01 15.55 65.44 

 VM vs. MA 0.0512 0.05549 23.33 11.58 65.09 

       

45 NA vs. VO 0.53 0.00835 8.79 2.04 89.16 

 NA vs. VM 0.0328 0.07727 19.77 3.63 76.6 

 NA vs. MA 0.254 0.02112 17.82 0.14 82.03 

 VO vs. VM 0.0803 0.04077 22.84 10.69 66.47 

 VO vs. MA 0.618 0.00459 25.55 7.54 66.91 

 VM vs. MA 0.2541 0.01893 20.45 11.87 67.68 

       

57 NA vs. VO 0.209 0.02724 15.83 4.01 80.17 
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 NA vs. VM 0.0063 0.10444 21.82 6.36 71.82 

 NA vs. MA 0.172 0.02484 14.49 1.19 84.32 

 VO vs. VM 0.1447 0.03453 21.06 6.8 72.14 

 VO vs. MA 0.9165 0.00143 2.22 17.42 80.36 

 VM vs. MA 0.1185 0.03298 25.08 12.54 62.38 

       

63 NA vs. VO 0.0711 0.0529 15.62 3.32 81.06 

 NA vs. VM 0.0079 0.0974 22.04 4.58 73.37 

 NA vs. MA 0.0613 0.04046 16.77 0.25 82.98 

 VO vs. VM 0.3863 0.01492 20.72 4.16 75.13 

 VO vs. MA 0.6764 0.00379 1.92 26.92 71.16 

 VM vs. MA 0.2838 0.01591 25.87 20.33 53.8 

       

70 NA vs. VO 0.3288 0.02775 12.87 3.19 83.94 

 NA vs. VM 0.2233 0.0385 16.58 2.16 81.26 

 NA vs. MA 0.1961 0.03502 19.11 1.21 79.68 

 VO vs. VM 0.8565 0.00264 15.26 0.04 84.7 

 VO vs. MA 0.7783 0.00356 13.61 2.37 84.02 

 VM vs. MA 0.9502 0.00119 0.31 5.64 94.05 

       

85 NA vs. VO 0.4567 0.00852 21.66 8.94 69.4 

 NA vs. VM 0.0373 0.0552 24.93 9.56 65.52 

 NA vs. MA 0.2108 0.01737 23.41 2.77 73.82 

 VO vs. VM 0.2141 0.02279 24.23 8.89 66.88 

 VO vs. MA 0.7156 0.00356 12.15 0.9 86.95 

 VM vs. MA 0.3882 0.01276 22.44 20.12 57.44 
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Appendix 5.6. 24-h cumulative sound exposure levels (dB re 1 µPa2s) by 

hydrophone and analysis period.   
NA=No Activity, VO=Vessel Only, VM=Vessel and MBES, MA=Mixed Acoustics.  Also 

included are the average, minimum and maximum per period.  Weighted levels imply the mid-

frequency cetacean weighting function (NMFS 2018) was applied in the calculation. 

Unweighted   

 

Weighted 

hydro 

ID NA VO VM MA   NA VO VM MA 

1 145.4 144.0 141.6 136.6   120.1 127.3 136.2 121.0 

2 141.5 143.7 138.2 134.3   116.9 123.6 132.8 125.5 

3 146.1 146.9 142.6 146.7   120.5 126.5 134.8 144.2 

4 146.4 147.9 143.3 139.7   118.6 126.7 139.2 133.5 

5 146.5 147.3 143.2 141.1   118.7 125.8 138.6 130.5 

6 145.8 150.5 143.1 146.5   118.9 129.0 138.6 143.3 

7 141.6 142.6 138.6 138.3   115.1 122.3 133.7 124.7 

8 146.4 145.9 141.4 141.2   122.5 127.7 134.6 128.2 

9 143.5 142.1 142.2 140.3   122.1 126.7 136.8 126.2 

10 143.5 141.9 141.3 139.3   121.7 124.7 131.7 126.7 

11 144.3 141.5 143.1 136.1   119.9 128.7 139.6 119.6 

12 145.2 142.2 143.9 137.3   119.5 129.3 139.9 124.3 

13 140.9 139.5 139.7 137.2   115.3 121.9 135.5 132.3 

14 146.8 145.9 142.0 145.6   120.7 127.0 135.9 143.0 

15 146.3 146.9 143.4 140.2   119.1 124.9 138.9 131.9 

16 141.5 141.3 140.1 139.5   112.7 122.0 135.8 132.3 

17 145.5 144.0 141.7 143.0   115.9 123.3 135.1 128.2 

18 140.2 139.6 138.4 139.3   113.7 121.1 132.8 122.0 

19 144.8 142.3 142.9 139.9   122.0 125.5 137.9 124.9 

20 143.7 141.1 141.4 138.5   122.9 126.2 132.0 124.7 

21 144.0 141.4 143.1 136.8   122.0 127.1 139.5 119.4 

22 144.6 143.7 144.6 137.0   120.7 128.8 141.3 122.9 

23 141.9 138.3 142.3 135.0   114.6 120.4 139.3 124.5 

24 144.4 141.8 143.6 146.5   117.6 124.0 139.4 144.1 

25 145.0 142.8 142.6 147.5   119.0 122.3 138.0 145.1 

26 141.0 139.3 142.1 141.8   114.4 117.0 139.2 138.8 

27 144.4 143.7 143.2 141.2   114.5 122.6 138.3 129.9 

28 143.3 142.5 140.8 141.8   115.8 123.5 133.3 123.9 

29 139.1 138.1 139.5 137.9   113.3 118.6 134.7 117.9 

30 144.7 141.9 144.4 139.5   122.3 126.3 140.8 123.8 
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31 144.3 140.9 141.6 136.6   130.2 123.5 136.2 119.7 

32 144.9 141.4 145.5 138.5   124.3 127.9 142.7 128.0 

33 144.6 141.5 146.4 145.8   117.4 127.5 143.8 143.2 

34 143.8 143.6 145.2 148.9   115.0 127.7 142.0 146.9 

35 144.1 142.3 143.7 145.2   114.8 120.6 139.9 142.2 

36 138.9 137.7 137.7 140.4   110.0 121.5 132.4 136.9 

37 142.1 142.1 141.3 139.5   113.0 127.2 135.7 123.0 

38 143.1 142.5 142.3 142.3   116.4 125.5 137.1 120.5 

39 143.2 142.6 142.9 141.3   119.0 126.8 137.9 126.7 

40 144.8 142.2 140.6 139.9   124.6 127.0 132.4 122.4 

41 139.8 136.3 137.6 135.6   125.5 123.1 131.9 128.2 

42 143.7 141.0 145.0 146.7   125.0 129.7 141.9 144.2 

43 142.3 139.6 142.8 140.9   115.5 126.1 138.0 131.4 

44 142.9 140.1 142.1 140.2   113.0 121.2 137.5 131.3 

45 142.9 142.0 143.8 140.5   113.0 124.3 140.6 133.4 

46 139.1 138.4 140.7 137.3   110.1 124.3 137.2 122.0 

47 142.7 142.8 142.2 140.5   113.2 130.6 137.0 125.5 

48 142.7 142.5 142.6 140.1   116.9 128.7 138.0 125.8 

49 143.1 142.9 140.8 138.8   122.0 125.7 133.3 125.9 

50 146.5 141.0 143.8 138.2   141.3 127.5 140.2 126.0 

51 140.4 137.3 142.9 143.9   124.0 124.8 140.0 141.2 

52 142.0 139.6 141.3 140.3   117.5 129.4 134.9 129.8 

53 142.2 140.9 141.1 141.4   114.1 128.5 134.0 130.1 

54 142.5 140.8 143.5 149.5   113.7 120.5 139.9 147.2 

55 138.3 136.9 139.6 138.7   110.4 118.4 135.5 127.6 

56 141.9 142.6 143.0 140.1   112.4 129.1 139.1 125.6 

57 142.1 141.2 143.7 139.0   116.1 123.7 140.5 127.6 

58 136.3 137.0 138.0 134.6   111.5 118.1 132.9 123.7 

59 142.7 139.3 142.2 141.8   134.1 131.0 138.2 138.3 

60 142.3 139.0 145.3 147.8   116.5 129.7 142.6 145.5 

61 138.2 135.7 136.8 137.8   114.2 127.7 130.7 128.2 

62 142.6 140.3 141.1 141.3   113.7 131.8 134.7 130.5 

63 142.6 140.8 143.4 141.0   113.3 130.9 139.7 131.3 

64 138.1 136.4 136.7 145.8   110.8 121.4 128.7 143.2 

65 142.0 140.1 141.6 144.3   113.0 124.2 136.4 139.4 

66 142.0 140.1 140.7 140.2   116.9 124.3 134.6 127.7 

67 141.4 140.7 142.3 138.6   118.2 126.5 138.5 121.8 

68 141.5 143.1 139.7 138.0   114.3 128.8 130.3 125.2 

69 142.9 140.2 145.0 150.2   126.7 129.6 142.0 148.0 
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70 143.0 140.9 144.1 143.3   119.6 132.7 140.6 136.3 

71 143.5 141.2 144.3 141.7   115.3 133.1 140.6 130.1 

72 142.5 140.6 143.3 141.2   115.1 131.8 139.2 129.9 

73 140.6 140.6 143.8 140.8   116.9 129.6 138.9 132.5 

74 138.9 136.4 139.6 146.0   117.6 122.9 134.7 143.3 

75 142.5 140.0 141.0 141.6   118.7 125.0 134.0 133.7 

76 141.5 139.7 140.9 139.5   124.8 128.0 134.7 127.2 

77 137.0 136.2 135.9 134.8   117.5 126.7 126.2 119.7 

78 141.4 139.9 141.0 139.1   123.2 130.4 130.7 124.8 

79 140.3 139.5 145.4 142.5   125.4 131.1 142.8 137.9 

80 138.6 136.3 153.3 136.9   119.8 128.3 151.5 128.3 

81 142.2 140.0 143.1 140.1   119.4 132.0 139.2 131.0 

82 138.3 136.8 139.1 136.5   118.1 129.4 134.8 124.2 

83 142.0 142.0 141.2 142.0   119.3 136.4 133.2 129.5 

84 143.2 141.9 142.0 143.7   113.2 137.0 136.5 135.0 

85 143.2 140.2 144.0 150.4   119.7 129.1 139.4 148.0 

86 142.7 139.7 142.4 141.6   125.3 127.0 136.0 132.6 

87 141.2 139.0 139.7 139.1   127.3 127.8 131.9 128.3 

88 143.5 139.8 143.7 142.4   125.2 128.2 139.5 133.9 

89 139.0 135.8 140.8 147.3   112.2 125.1 137.6 145.1 

avg 142.5 141.0 142.1 141.0   118.4 126.4 137.0 131.1 

min 136.3 135.7 135.9 134.3   110.0 117.0 126.2 117.9 

max 146.8 150.5 153.3 150.4   141.3 137.0 151.5 148.0 
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Appendix 5.7. Frequency correlation analysis spectrograms and spectral 

probability density plots. 
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Spectral probability density plots associated with the frequency correlation analysis. 
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