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ABSTRACT 

MODELING AND ASSESSING THE SUSTAINABILITY OF DISTRIBUTED SOLAR 

PHOTOVOLTAICS ADOPTION 

By 

Mingcheng Ren 

University of New Hampshire 

Participation of distributed solar photovoltaic (PV) generation in the organized electricity 

wholesale market is expected to increase under the Federal Energy Regulatory Commission Order 

2222 announced in 2020. Our understanding about the technical, economic, and environmental 

tradeoffs and co-benefits of solar PV adoption on both building and regional scales remains limited, 

especially considering the complexity of varied distributed solar PV-battery system designs and 

operation strategies as well as the dynamic interactions of these distributed generations with the 

centralized grid. This dissertation therefore aims to investigate the grid load reduction, life cycle 

cost, and life cycle environmental (e.g., carbon, water, and energy footprints) performances of 

typical distributed PV systems considering their dynamic interactions with the centralized grid. 

This dissertation intends to examine the possible scenarios in which future adoption of PV systems 

can facilitate economic saving, reduce environmental footprints, relieve centralized grid stress, and 

supplement differential electricity demands of residential energy users on both building and city 

scales. To this end, a modeling framework was developed consisting of a stochastic residential 

electricity demand model, a system dynamics model of solar energy generation, energy balance, 

storage, and selling, and life cycle economic and environmental assessment model. The stochastic 

residential electricity demand simulation considered five typical types of household occupants and 

eight types of households. The generated solar energy, grid supply, and residential demand were 



xxi 
 

balanced for each residential building using energy balance model. This model was further scaled 

up to a city level using Boston, MA as a testbed. On the building level, we found a clear tradeoff 

between the life cycle cost and environmental savings when sizing the PV systems differently. 

Moreover, installing a solar PV-battery system but without an effective control strategy can result 

in sub-optimized peak-load reduction, economic, and environmental outcomes. Installing solar 

PV-battery systems with proper controls can achieve the highest on-peak load reductions and 

economic benefits under the time-of-use utility rate design. However, they do not necessarily 

provide the highest environmental benefits, indicating a potential technical, environmental, and 

economic tradeoff. Our regional analysis found a large penetration of solar PV systems may result 

in a steeper ramp-up of the grid load during winter days, but it may provide load-shedding benefits 

during summer days. Large buildings may perform the best technically and environmentally when 

adopting solar PV systems, but they may have higher life cycle costs. 
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1. CHAPTER 1: INTRODUCTION 

The US solar photovoltaic (PV) electricity generation has increased substantially in recent years. 

Up from less than 0.1% in 1990, around 2.3% of U.S. electricity generation was provided from 

solar energy in 2020, accounting for around 11.6% of the total renewable energy generation (EIA, 

2021b). By the end of 2020, around 41.7 billion kWh of electricity was generated through small-

scale solar PV systems with the estimated generating capacity of 27,724 MW (EIA, 2021b). 

Moreover, solar PV systems present benefits in terms of supplementing the increasing energy 

demands (Aghaei and Alizadeh, 2013; Strbac, 2008), providing affordable energy, alleviating the 

depletion of conventional energy sources (Bazmi and Zahedi, 2011; Klass, 1998), and fulfilling 

the goal for sustainable and resilient development (Dincer, 2000). There is also strong incentive 

from the federal and state governments to support the PV adoption (FERC, 2020; The White 

House, 2021). These benefits all call for understanding, developing, and implementing distributed 

renewable energy systems such as solar PV systems (Larsen and Drews, 2019; Lopes et al., 2007; 

Singh, 2013; Turconi et al., 2013). On the other hand, considering the increasing recognition of 

the centralized and decentralized energy systems’ interactions (Liu et al., 2019, 2017), the side-

effects induced by the increase of these new energy technologies like solar PV systems and their 

potential techno-economic and environmental impacts are increasingly being recognized and 

debated (Alam et al., 2013; Hosenuzzaman et al., 2015; Solangi et al., 2014; Tsoutsos et al., 2005). 

 

Specifically, although solar PV technologies are widely acknowledged as a renewable and 

environmentally friendly power source during their operations, increasing concerns have been 

raised to assess the whole life cycle economic and environmental costs behind these technologies, 

such as economic and environmental costs in the manufacture, transportation, and end-of-life life 
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stages (Alsema, 2012; Bilich et al., 2017; García-Valverde et al., 2009; Kannan et al., 2006; 

Sherwani et al., 2010a; Solangi et al., 2014; Wu et al., 2017a). Additionally, some studies indicate 

that the large penetration of residential solar PV systems might result in a steeper ramp-up after 

the sun begins to set and use rises (Alam et al., 2014; Sukumar et al., 2018), making it more 

difficult for the grid operators to accommodate (Eltawil and Zhao, 2010). Moreover, it is 

important to understand that different energy service suppliers and end-users have different 

preferences, concerns and motivations behind the fundamental social, technical, economic, and 

environmental outcomes of the distributed PV technology. Therefore, identifying and assessing 

the performances and trade-offs between the technical, economic, and environmental outcomes 

of these energy systems in the assessments show the importance to the guidance of planning, 

optimization, and implementation of the energy systems to achieve their overall sustainability. 

However, the complexity and difficulty of the assessments could be aggravated by the diverse 

energy stakeholders and end-users involved in the time- and demand-dependent decision-making 

of energy management (e.g., renewable energy subsidies, time-of-use utility rates, battery storage 

dispatch control). Lastly, the potential technical (e.g., grid load reduction and peak load 

reduction), economic (e.g., the decrease of utility bills of PV hosts and changes of the wholesale 

electricity prices), environmental (e.g., changes of energy and water footprints), and societal 

impacts (e.g., social energy injustice of electricity rate) due to the scheme shifts of centralized 

and decentralized energy supplies caused by the solar penetration into the regional energy 

infrastructure network is heated yet less comprehensively studied and/or assessed (Eftekharnejad 

et al., 2012; Quezada et al., 2006; Tonkoski et al., 2012). Moreover, the increase implementation 

of solar PV systems and concerns of the above impacts have led to a critical shift in energy 
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planning/management as well as urban energy service’s decision-making (Lopes et al., 2007; 

Zhang et al., 2013). 

 

Nonetheless, our understanding of comprehensive PV assessment remains limited mainly from 

the following four perspectives. First, many previous studies focused on a single type of 

performance, including either technical, economic, or environmental performance. The 

comprehension and tradeoffs of multiple indicators were not considered. Second, there is a lack 

of life cycle consideration in the studies investigating various technical, economic, and 

environmental outcomes of PV adoptions. Third, the dynamic characteristics of energy systems 

were usually not considered. Due to the dynamic characteristics of renewable energy sources 

(e.g., intermittent solar radiation) and energy consumptions as well as other real-time behaviors 

in the energy system (e.g., marginal energy management), it is important to apply “dynamics” in 

the relevant assessment. More importantly, research into the grid-PV interaction requires us to 

understand the dynamic complexity of centralized and distributed systems, which energy 

exchange may be constantly taking place, tightly coupled, nonlinear, artificially determined, and 

time-sensitive. These requires the application of an innovative, comprehensive, holistic, 

systematic, more importantly, dynamic methodology to overcome the static life cycle assessment. 

Fourth, the technical, economic, and environmental interrelations and feedbacks between 

distributed PVs and centralized grids (wholesale electricity markets) were often not considered. 

 

To fill the above knowledge gaps, this dissertation aims to answer the following major questions. 
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• How to comprehensively assess the technical, economic, and environmental performances of 

residential solar PV-battery systems (Chapter 2) and their regional adoptions (Chapter 4) 

while considering the dynamic and life-cycle characteristics?  

• Are there economically and environmentally co-optimized PV-battery system designs that 

benefit the balance of the economic and environmental tradeoffs? (Chapter 2) 

• How do external utility factors (e.g., utility time-varying pricing design and grid mix for 

power generation) affect the economic and environmental outcomes of PV-battery systems? 

(Chapter 3) 

• Can typical dynamic PV-battery system operational strategies further benefit the balance of 

tradeoffs between technical, economic, and environmental performances? (Chapter 3) 

• How will increasing PV adoption influence the grid performance, PV hosts’ energy reliance, 

life cycle cost, and life cycle environmental impacts of the PV systems? (Chapter 4) 

• What is the optimal PV adoption rate that maximizes regional load reduction, cost saving, 

and environmental benefits? (Chapter 4) 
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2. CHAPTER 2: DYNAMIC LIFE CYCLE ECONOMIC AND ENVIRONMENTAL 

ASSESSMENT OF RESIDENTIAL SOLAR PHOTOVOLTAIC SYSTEMS1 

2.1. Introduction 

Over the last decade, solar PV energy generation in the US has increased substantially, primarily 

driven by cost reduction (Verlinden et al., 2013) as well as concerns related to greenhouse gas and 

air pollutant emissions (Azzopardi and Mutale, 2010). Around 92.6 TWh of solar PV energy was 

generated across the US in 2018, representing 2.2% of the nation’s total electricity generation and 

12.5% of the total renewable energy generation (EIA, 2019a, 2019b). Specifically, around 32% of 

this energy was generated by small-scale distributed solar PV systems that are commonly found 

on residential and commercial rooftops (EIA, 2019b), while the remaining was generated at utility 

scale facilities. Cost reduction has been one of the major drivers for the increased adoption of 

distributed solar PV systems. It has been estimated that a 63% drop in the residential PV 

manufacturing and installation cost has taken place since 2010, with an average cost of $2.70 per 

Watt DC in 2018 (Fu et al., 2018). The cost of solar PV systems is often positively related to the 

system capacity or size (Fu et al., 2018). Larger systems are likely to have higher upfront costs, 

and hence impose a greater financial burden on individual households (Nelson et al., 2006). Yet 

such systems may create a higher environmental benefit when the generated solar energy can be 

fully utilized by the household or sold to the grid (Kaundinya et al., 2009). Therefore, it is 

imperative to understand the economic and environmental tradeoffs of the distributed solar PV 

systems to inform their co-optimization. 

 

                                                           

1
 This chapter has been published as a journal article in Science of the Total Environment. Please use the 

following citation for work related to this chapter: Ren M, Mitchell C R, Mo W. Dynamic life cycle 
economic and environmental assessment of residential solar photovoltaic systems[J]. Science of the Total 
Environment, 2020, 722: 137932. 
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The economic performance of solar PV systems is often assessed through life cycle cost 

assessment (LCCA), which accounts for all costs and savings that incur during the life span of the 

PV systems (Rebitzer et al., 2004), utilizing indicators such as levelized cost of electricity (LCOE) 

(e.g., Allouhi et al., 2019, 2016; Burns and Kang, 2012; Jones et al., 2018; Kazem et al., 2017; Lai 

and McCulloch, 2017; Zhang et al., 2016), investment payback time (IPBT) (e.g., Berwal et al., 

2017; Chandel et al., 2014; Lee et al., 2018; Poullikkas, 2013), and life cycle cost (e.g., Adriana et 

al., 2012; Akinyele and Rayudu, 2016a, 2016b; Bortolini et al., 2014; De Souza et al., 2017; 

Gürtürk, 2019; Uddin et al., 2017). Meanwhile, their environmental performances are often 

examined through life cycle assessment (LCA), which is a methodological framework that assesses 

environmental impacts attributable to the entire life cycle of a product (Rebitzer et al., 2004). The 

common types of environmental impacts that have been studied via previous solar PV LCAs 

include carbon footprint (e.g., Akinyele et al., 2017; Akinyele and Rayudu, 2016a, 2016b, Allouhi 

et al., 2019, 2016; Jones et al., 2018; Rawat et al., 2018; Xu et al., 2018) and cumulative energy 

demand (CED) (e.g., Gerbinet et al., 2014; M. Raugei, 2015; Peng et al., 2013; Rawat et al., 2018; 

Tsang et al., 2016; Wu et al., 2017). Not many studies have evaluated solar PV systems from both 

economic and environmental perspectives to allow understandings of their tradeoffs. Indeed, 

tradeoffs in solar PV systems’ economic and environmental performances exist when comparing 

different types of PV system designs for a particular application (Allouhi et al., 2019, 2016; Jones 

et al., 2018) and integrating solar PVs into grids with different energy mixes (Bernal-Agustín and 

Dufo-López, 2006). However, such tradeoffs have not been fully investigated for different solar 

PV and battery sizing scenarios under both the grid-connected (GC) and standalone (SA) contexts.  
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Furthermore, many of the previous solar PV LCCAs and LCAs have limited consideration of the 

dynamic diurnal or seasonal patterns of solar power generation and demand (Adriana et al., 2012; 

Chandel et al., 2014; De Souza et al., 2017; Rawat et al., 2018). Such dynamic patterns, however, 

are important in informing management actions as well as regulatory incentives, including battery 

dispatch strategies, time-of-use rates, net metering, and energy and water conservation practices. 

Studies utilizing static or averaged solar energy generation or demand data were limited in their 

transferability to different spatial and temporal conditions. Of the studies that did include dynamic 

solar power generation and/or demand patterns, Kazem et al. (2017) estimated the generation 

potential of a grid-connected 1-MW power plant in Adam, Oman in offsetting peak load using 

local hourly solar radiation, humidity, temperature, and wind speed data (Kazem et al., 2017). Lee 

et al. (2018) used hourly solar radiation and building energy consumption data to estimate the 

economic potential of grid-connected rooftop PV systems for each building in Seoul, South Korea 

(Lee et al., 2018a). Uddin et al. (2017) examined the influence of battery degradation on the 

technical and economic performances of solar PV systems, using a residential mid-sized family 

house in the UK as a case study. While these studies provided important insights into the influence 

of dynamic solar generation and demand patterns on the PV systems’ economic performances, the 

environmental performances of solar PV systems were excluded. Very few studies have included 

the dynamic solar energy generation and consumption patterns in assessing the life cycle 

environmental outcomes of the solar PVs. Akinyele et al. (2016a, 2016b) combined a process-

based load demand model with LCCA and LCA to evaluate the technical, economic, and 

environmental (i.e., carbon emissions) performances of SA PV systems in off-grid communities 

in Nigeria. They found the proposed PV systems could meet as much as 99.56% of the demand, 

while performing better both economically and environmentally than conventional diesel power 
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plants. Jones et al. (2018) developed a spreadsheet model to simulate hourly electricity flows into 

and from a non-domestic building in UK under three system configurations: no solar PV installed, 

solar PV alone, and solar PV combined with battery storage. The model was then combined with 

LCA and discounted cash-flow analysis to assess the carbon emissions and the net present values 

associated the three system configurations. Neither of these studies, however, investigated the 

influence of panel and battery sizing on PV systems’ performances. Additionally, HOMER 

(Hybrid Optimization of Multiple Energy Resources) is a popular tool that can be used to assess 

both the technical-economic and environmental performances of solar PV systems. However, the 

environmental impacts assessed through HOMER are limited to the use phase of the solar PV 

systems. 

 

Building upon these previous modeling efforts, this study seeks to develop a comprehensive and 

generalizable modeling framework to capture the dynamic life cycle economic and environmental 

performances of solar PV systems. A system dynamics model (SDM) of distributed residential 

solar PV systems was developed and combined with LCA and LCCA to evaluate the 

environmental and economic tradeoffs of GC and SA solar PV systems under different panel and 

battery sizing scenarios. The SDM framework was selected based upon its capability to be adapted 

to various spatial and temporal conditions as well as to visualize the detailed system processes. 

The modeling framework was demonstrated using a prototype house in Boston, MA of the United 

States. This study aims to test the following two hypotheses: 1) environmental and economic 

tradeoffs exist when optimizing the panel and battery sizes for the SA solar PV system, but not for 

the GC system; and 2) there are optimal panel and battery sizes that can simultaneously optimize 

the percent demand met and the life cycle cost of SA solar PV systems. 
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2.4.Methodology 

The modeling framework developed in this study combines LCA and LCCA with SDM. SDM is 

a computational approach applying linked differential equations to simulate the behavior of 

complex systems over a certain time period. It has been recognized as a cogent tool to study 

interactions among system components by capturing system feedback loops and delays (Forrester, 

1997; Sterman, 2000). Life cycle phases considered in this study include manufacturing, 

transportation, and use phases. The end-of-life phase was neglected because of the low total 

amount, concentration and value of reclaimable material in collecting and recycling solar cells 

(Spanos et al., 2015). The manufacturing and transportation phases of the solar PV systems were 

assessed based upon unit costs and emission rates associated with individual solar PV components 

through conventional LCCA and LCA. The use phase was modelled through SDM. Particularly, 

SDM was used to dynamically simulate the solar energy generation, demand, and storage 

processes during the use phase of solar PV systems. The modeling framework enables assessment 

of the net present value (NPV), CED, carbon footprint, and water footprint of solar PV systems 

over their life span. Figure 2-1 illustrates the modeling framework developed in this study. 
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Figure 2-1. Modeling framework of dynamic life cycle assessment of solar PV systems 

 

2.4.4. System Description 

This study focuses on polycrystalline silicon (poly-Si) solar PV systems based upon their 

popularity and economic competitiveness (Fthenakis and Kim, 2011; Sharma et al., 2015). The 

system investigated in this study consists of solar panels (composing PV array) (poly-Si), balance 

of system (BOS), and energy storage (if any) (Parida et al., 2011). BOS includes inverters, 

electrical wiring, mountings, and meters. We assumed that the size of the solar panels was not 

constrained by the roof size. Two system settings were examined: GC and SA systems (Figure 2-

2). GC system uses the grid as a supplement to the solar energy generated onsite and allows users 

to sell surplus solar energy to the grid (Elhodeiby et al., 2011). SA system refers to an off-grid 

solar PV system that does not allow selling of surplus energy (Abu-jasser, 2010). 
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Figure 2-2. Sketch of the designs of the grid-connected (GC; left) and standalone (SA; right) solar PV 
systems that were investigated in this study 

 

Boston, MA was selected as a testbed in our study because of its high electricity price (EIA, 2017), 

strong in-place solar incentive programs (Eid et al., 2014; Heeter et al., 2014), and its active pursue 

of renewable energy (Burns and Kang, 2012). Currently, around 10.7% of the state’s electricity 

comes from solar energy (EIA, 2019c). The solar energy capacity for power generation is projected 

to grow to 1,603 MW over the next 5 years (SEIA, 2019a). Boston has an average solar energy 

potential of around 4.48 kWh/m2/day (DOE, 2021), with July being the highest (5.86 kWh/m2/day) 

and December being the lowest (1.60 kWh/m2/day) (NREL, 2015). Boston has a continental 

climate with warm summers and cold and snowy winters (Kottek et al., 2006). The annual average 

ambient temperature of Boston is around 10.5 °C, with the lowest temperature of -21.14 °C in 

January and the highest of 36.02 °C in July (NREL, 2015). The annual average wind speed in 

Boston is around 0.89 m/s, with the lowest wind speed of 0.01 m/s in July and the highest of 2.45 

m/s in February (NREL, 2015). 

 

A prototype low-rise multifamily house with five housing units based upon the US Department of 

Energy’s House Simulation Protocol was used for model application (Wilson et al., 2014). An 

hourly energy demand profile specific to the multifamily house in Boston, MA was obtained from 

Solar panels

BOS Meter

Energy storage Utility

User
Solar panels

BOS

Energy storage

User



12 
 

the Open Energy Information database (NREL, 2014) and each data point was then divided into 

equal halves to achieve 30-minute simulation. Typical baseline SA and GC PV systems with 40 

panels (1.63 m2/panel) and 40 batteries (1.02 kWhc/battery) in each system was simulated on a 65 

m2 rooftop in the model. The 40-panel PV system’s capacity was assumed to be sufficient enough 

to cover the peak load of demand in the selected house with the consideration of future 

electrification applications like electric vehicles. The 40-battery storage was calculated to cover 

the average daily demand of the house based on the energy demand profile.  

 

2.2.2. System dynamics modeling of the solar PV system 

The system dynamics model was developed using the Vensim DSS® software. Vensim DSS® is a 

powerful simulation tool for developing, analyzing, and visualizing dynamic feedback models 

(Ventana Systems, 2015). It has wide applications in management (Sterman, 2000) and 

environmental studies (Ford and Ford, 1999) to support decision-making. This model includes 

three main components: solar energy generation, storage, and balance simulations (Figure 2-3). 

Details of each component are provided in the following sub-sections. The simulation ran over one 

year with a thirty-minute time step, which is typical among previously renewable energy system 

simulation efforts (Connolly et al., 2010). 
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Figure 2-3. A simplified structure of the system dynamics model of the solar PV systems 

 

2.2.2.1. Solar energy generation simulation 

The output of PV array (���, kW) was simulated based upon Equation 2-1. Specifically, the 30-

minute solar radiation profile for the City of Boston was obtained from the National Solar 

Radiation Database (NREL, 2015) and used to calculate the incident solar radiation (D, kW/m2) at 

each time step. The average residential panel size (S) and the PV module efficiency (�) indicate 

the rated capacity of a PV panel, which were assumed to be 1.63 m2 and 15% (NREL, 2017). The 

number of PV panels installed (n) was simulated. A PV derating factor (���) of 95% was used 

(HOMER, 2017). An hourly degradation rate (��) of the PV system was calculated based upon the 

annual degradation rate of 0.5% obtained from Köntges et al. (2016). The temperature coefficient 
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of power (�) indicates the influence of the PV cell temperature on the system efficiency, which 

was assumed to be -0.48 %/°C (HOMER, 2018). The incident radiation at standard test conditions 

(�	
�) and the PV cell temperature under standard test conditions (�	
�) were assumed to be 1 

kW/m2 and 25 °C respectively (HOMER, 2017). 

 

���,� = ������ � ������� [1 + ���� − �	
��] �1 − ����      Equation 2-1 

Where ���,� represents the actual output of the PV array in the current time step, kW; ! is a time 

step index, which goes from 0, 0.5, up to 8759.5; � is the average residential panel size, 1.63 m2 

(length: 65 inches, width: 39 inches); � is the PV module efficiency, 15%; n is the number of PV 

panels installed; ��� is the PV derating factor, 95%; �� is the incident solar radiation on the PV 

array in the current time step, kW/m2 (NREL, 2015); �	
� is the incident radiation at standard test 

conditions, 1 kW/m2; � is the temperature coefficient of power, -0.48 %/°C; �� stands for the PV 

cell temperature in the current time step, °C; �	
� is the PV cell temperature under standard test 

conditions, 25 °C; �� is the hourly degradation rate of the PV system, 0.000057%. 

 

The PV cell temperature (�, °C) was further calculated using Equation 2-2 (Duffie and Beckman, 

1991; HOMER, 2018). Ambient temperatures in Boston at 30-min intervals (�", °C) were obtained 

from the National Solar Radiation Database (NREL, 2015). In addition, the Sandia Module 

Temperature Model (SNL, 2018) (Section A3 of APPENDIX A) and Faiman Module Temperature 

Model (Faiman, 2008) (Section A3 of APPENDIX A) were used to validate results obtained from 

Equation 2-2. 
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� =
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- .1 − /0�,	
��1 − ��	
��1�2 3

1 + '���,()�
 − �",()�
* + �,
,()�
- ��/0�,	
�1�2 � , � > 0
�", � = 0

 

Equation 2-2 

Where �  represents the PV cell temperature in the current time step, °C; �"  is the ambient 

temperature in the current time step, °C; ���,()�
  is the nominal operating cell temperature, 

46.5 °C (HOMER, 2017); �",()�
 is the ambient temperature at which the NOCT is defined, 20 °C 

(García and Balenzategui, 2004; Koehl et al., 2011); � is the solar radiation striking the PV array 

in the current time step, kW/m2 (NREL, 2015); ,
,()�
 is the solar radiation at which the NOCT 

is defined, 0.8 kW/m2 (García and Balenzategui, 2004; Koehl et al., 2011); /0�,	
�  is the 

maximum power point efficiency under standard test conditions, 13% (HOMER, 2017); � is the 

temperature coefficient of power, -0.48 %/°C (NREL, 2017); �	
� is the cell temperature under 

standard test conditions, 25 °C (Devices—Part, 1AD; Muñoz-García et al., 2012); 1 is the solar 

transmittance of any cover over the PV array, 90% (Duffie and Beckman, 1991); �2 is the solar 

absorptance of the PV array, 90% (Duffie and Beckman, 1991). 

 

2.2.2.2. Energy storage simulation 

Battery energy storage system was simulated based upon Equation 2-3. Generic Li-Ion battery was 

modelled with information obtained from (HOMER, 2017). The amount of energy available in the 

battery system (67,�, kWh) was modeled as a stock, which is a time integral of differences between 

the rate of solar power charged to the battery (62, kW), the rate of battery discharges for end uses 

(6�87, kW), and the rate of battery loss during charging and discharging (69:77, kW). The initial 

battery storage (67, �;) was assumed to be zero. The rate of charging (62) is determined by the PV 
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array output (���), the user’s energy demand, as well as the vacant capacity of the battery system 

at a given time step. The rate of discharging (6�87) is determined by the battery storage and the 

user demand. The rate of battery loss (69:77) is determined by the battery charge and discharge 

efficiency. Furthermore, both 62  and 6�87  are constrained by the maximum rates which were 

calculated using the Kinetic Battery Model (HOMER, 2017; Manwell and McGowan, 1993) with 

consideration of the battery storage and charge current limitations. Details about the calculation of 

the maximum charging and discharging rates are provided in the Section A3 of APPENDIX A. 

 

67,� = < �62 − 6�87 − 69:77� =! + 67, �;� �;       Equation 2-3 

Where 62 is the charge to the battery, kW; 6�87 is the discharge of electricity energy from the 

battery, kW; 69:77 is the battery loss during charging and discharging, kW; 67,� and 67, �;  are the 

energy storage in battery at time t and  !>, kWh. 

 

The useful battery lifespan (�2, year) was calculated based on the total lifetime throughput of the 

battery system and the annual actual charge-discharge throughput (Equation 2-4). The lifetime 

throughput of one battery was assumed to be 2,430 kWh (HOMER, 2018), and total throughput 

was assumed to be linearly related to the number of batteries in the system. The actual annual 

charge-discharge throughput of the battery storage (?") was calculated as a time integral of the 

charging rate (Spanos et al., 2015). 

 

�2 = �@0�A       Equation 2-4 
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Where �2 represents the actual useful lifespan of the battery storage, year; ?9  is the lifetime 

throughput of one battery, 2,430 kWh; m is the number of batteries installed in the battery system; 

?" is the actual annual charge-discharge throughput of the battery storage, kWh/year. 

 

2.2.2.3. Solar energy balance simulation 

The dynamic energy balance between solar energy generation, battery storage, consumption, and 

selling to the grid was simulated based upon Equation 2-5. A fictitious high turnover stock was 

simulated to allocate the generated solar energy (6B ) to the three outflows, 6C , 62 , and 67 

(Equation 2-6).  

 

6� = < '6B − 6C − 62 − 67* =!��; + 6�;       Equation 2-5 

6B �inflow� = 6C + 62 + 67 �outflow�        Equation 2-6 

Where 6�  and 6�;  are the solar energy storage at time t and !> , kWh; 6B  is the solar energy 

generation by the PV system, kW; 6C is the solar energy consumption to meet the demand, kW; 

62 is the solar energy for charging the battery storage, kW; 67 is the solar energy that feeds into 

the grid, kW. 

 

The decision-making process for the solar energy generated to be allocated to the three outflows 

is illustrated in Figure 2-4. Whenever solar energy is available, it is first used to meet the household 

energy demand. The surplus solar energy is used to charge the battery if it is present and has not 

reached the maximum capacity. After the battery is fully charged, the excess solar energy is sold 

to the grid through net metering.  



18 
 

 

Figure 2-4. Solar energy balance simulation decision flow (Eg is the solar energy generation by the PV 
system, kW; Ec is the solar energy consumption to meet the demand, kW; Eb is the solar energy for 

charging the battery storage, kW; and, Ed is the electricity demand in current time step, kW.) 

 

2.2.3. Life cycle cost assessment 

The life cycle cost of installing solar PV systems was determined by the capital cost of the PV 

systems, savings from solar energy generation, tax credit and rebate, cost of labor and the annual 

operation and maintenance (O&M) cost (Equation 2-7). A 20-year life cycle cost was calculated 
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based upon the initial net cost and annual net cost (i.e., annual O&M cost subtracts annual savings 

from solar energy generation) accumulated to 20 years. All future costs were discounted to the 

year of 2018 applying a typical discount rate of 5% (Jeong et al., 2019; Leckner and Zmeureanu, 

2011; Shea et al., 2020). The capital cost of the PV system includes costs related to battery, panels 

and racking, inverters, permission, and installation. The cost of battery storage was assumed to be 

$209 per kWh of storage capacity (kWhc) (Curry, 2017). Panels and racking were assumed to cost 

$1 per Watt of generation capacity (McFarland, 2014; Reichelstein and Yorston, 2013). Inverters 

were assumed to be $300 per piece (HOMER, 2018). Permission and installation cost including 

meters were assumed to be $450 (NREL, 2017). Savings from solar energy generation were 

calculated as a product of the cumulative amount of solar energy that is consumed and/or sold to 

the grid and the electricity retail price. The electricity rate was assumed to be $0.16/kWh, which 

is the average flat rate in New England area from 2016 to 2017 (NREL, 2017). A tax credit of 30% 

(Burns and Kang, 2012; IRS, 2019) of the capital cost was applied. In addition, a rebate of $0.25 

per Watt of installed capacity was applied to all solar systems (NHMA, 2015). The cost of labor 

is a tiered function of the system capacity, which was obtained from (HomeAdvisor, 2019) (Figure 

A-1 in the Section A3 of APPENDIX A). The cost of O&M includes the annual replacement cost 

of battery storage during the system life cycle. The interconnection costs (e.g. application fees) of 

GC system were neglected (Eversource, 2018). Investment Payback Time (IPBT) of the PV 

systems was calculated using a cash flow method using Equation 2-8.  

 

LM�N OPOQN ORS! = ?C − T + ∑ �V,W�XY8�W(Z[X − ∑ 	W�XY8�W(Z[X       Equation 2-7 

IPBT = �̀ + a��       Equation 2-8 
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Where ?C is the capital cost of the PV systems, $; T is the tax credit and rebate, $; b is the life 

span of the solar PV systems, 20 years; ?:,Z is the O&M cost in the year �, $; M is the discount rate, 

5%; �Z is the saving from solar energy generation in the year �, $; �̀  is the number of years after 

the initial investment at which the last negative value of cumulative cash flow occurs, year; c is 

the net cash flow within the year when the first positive value of cumulative cash flow occurs, 

$/year; d is the cumulative cash flow up to the year at which the last negative value of cumulative 

cash flow occurs, $. 

 

2.2.4. Life cycle environmental assessment 

Three types of environmental impacts were simulated: CED, carbon footprint, and water footprint. 

The system boundary includes manufacturing, transportation, installation, and use phases. The 

environmental costs related to labor and administration during the use phase were neglected. 

However, the replacement of batteries was included. Due to various disposal behavior of the PV 

users as well as no regulation on the residential level for separating batteries from PV systems and 

disposing the systems, the battery disposal is not included (Grinenko, 2018). SimaPro 8.3 was used 

for characterization of the environmental impacts. Particularly, the cumulative energy demand 

V1.09 method was used for estimating CED. The IPCC 2013 GWP 20a was used for estimating 

carbon footprint. No significant difference was found in model output applying the IPCC 2013 

GWP 20a or 100a. The Berger et al 2014 (Water Scarcity) method was used for estimating water 

footprint (Boulay et al., 2018). Environmental savings from solar energy generation during the use 

phase were calculated as a product of the cumulative amount of solar energy that is consumed 

and/or sold to the grid and the environmental impacts units. Equation 2-9 is the governing equation 

of the solar PV systems’ life cycle environmental performance. Energy, carbon, and water payback 
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time were calculated using Equation 2-10. Table 2-1 presents the unit costs and environmental 

impacts obtained from SimaPro 8.3. 

 

e = e�; + e7 − < ���� �fZ8�� =!��;       Equation 2-9 

Where e and e�;  are the cumulative environmental costs at time ! and !>; e7 is the environmental 

costs of the PV system (from cradle to gate without the solar generation savings); ���  is the actual 

output of the PV array in the current time step, kW; �fZ8�  is the environmental impacts unit, 

environmental impacts/kWh, Table 2-1. 

 

PBT = ghYg�giagj      Equation 2-10 

Where PBT represents the environmental payback time, which can be either energy, carbon, or 

water payback time, year; 6� is the environmental cost to produce and manufacture the solar PV 

system; 6� is the environmental cost to transport materials used during the life cycle; 6B is the 

average annual environmental savings from electricity generation by the installed solar PV system; 

60 is the average annual environmental cost of O&M including the battery replacement. 

Table 2-1. CED, carbon footprint, water footprint and cost unit of solar PV systems 

Solar PV 
systems 

SimaPro entry CED unit 
Carbon 

footprint 
unit 

Water 
footprint 

unit 
Cost unit 

PV panel 
Photovoltaic panel, multi-Si 
wafer {GLO}| market for | 

Alloc Def, S 

3480 
MJ/m2 

202 kg CO2 
eq/m2 

4360 L/m2 $1/W 

Battery 
Battery, Li-ion, rechargeable, 
prismatic {GLO}| market for | 

Alloc Def, S 

96.5 
MJ/kg 

7.52 kg CO2 
eq/kg 

101 L/kg $209/kWhc 

Inverter 
Inverter, 2.5kW {GLO}| market 

for | Alloc Def, S 
2400 

MJ/piece 
243 kg CO2 

eq/ piece 
1910 

L/piece 
$300/piece 

Meter and 
wiring 

Not considered $450 

Replaced grid 
electricity 

Electricity, at grid, US/US, 
kWh 

10.9 
MJ/kWh 

0.878 kg 
CO2 eq/kWh 

44.1 L/kWh $0.16/kWh 
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2.2.5. Sensitivity analysis 

A sensitivity analysis was conducted to analyze the influence of discount rate and the local 

electricity grid mix on the environmental and economic outcomes of the typical GC and SA PV 

systems with 40 panels and 40-batteries. Each of these factors were varied by ± 10, 30, 50, 70, 90, 

and 100% to assess its influence on the NPV, CED, carbon footprint, and water footprint. A 

sensitivity index (�) was calculated for each input change using Equation 2-11 (Song et al., 2019a). 

 

� = klmknknolmonon
      Equation 2-11 

Where p8 is the output value after the input was changed; p2 is the base output value; e8 is the 

altered input value; and e2 is the original input value. Inputs were considered “highly sensitive” if 

|�| >1.00. 

 

2.3. Results and Discussion 

2.3.1. Solar energy utilization and demand met by SA and GC PV systems 

For the prototype house with 40 PV panels and 40 batteries, 42.6% of the solar energy generation 

is directly consumed and 44.4% is stored for later consumption. Around 13.0% of the solar energy 

will either be wasted in a SA system or sold to the grid in a GC system. Solar energy generated, 

stored, and sold/wasted all present strong seasonal trends (Figure 2-5). Solar energy generation 

peaks between May and July, when the monthly average energy demand of the prototype house is 

the lowest. Hence, a larger amount of solar energy can be sold or stored during these months. 

Furthermore, grid demand is the highest during summer months nationally (EIA, 2011). Utilities 

often use natural gas (71.5% in the New England region), hydro and nuclear generation to meet 
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the additional demand (ISO-NE, 2018a). Installation of a GC PV system can hence alleviate local 

energy stress and replace fuels that have higher carbon emission factors. Nevertheless, the opposite 

seasonal patterns of solar energy demand and generation will not be ideal for households looking 

to install SA PV systems. More solar energy is likely to be wasted and a larger battery capacity 

might be required to reduce waste. However, this will come with a higher initial investment and 

replacement cost. 

 

Figure 2-6 presents the percent demand met through solar energy for the prototype house when 

the panel and battery numbers changed. Either the number of panels or the number of batteries 

could be a limiting factor for further increase in percent demand met. The shaded numbers present 

where the PV array size serves as a primary limiting factor, while the rest presents where the 

battery size serves as a primary limiting factor. The borderline between the two sections represents 

the approximate optimized battery size to achieve the highest possible percentage of demand met 

with a given array size. Achieving 100% demand met requires large numbers of both panels (>200 

units) and batteries (>160 units), which often accompanies a high cost. However, the size of 40 

panels (1.63 m2/panel, 65.2 m2 in total) already occupies the entire available roof size of the 

prototype house (65 m2). Urban PV hosts are likely be more restricted by the land or space 

available for further increasing demand met compared to rural or suburban PV hosts. An 

integration of multiple decentralized energy supplies, such as PV and diesel generator, or PV and 

geothermal energy might be desirable to improve demand met. 



 

Figure 2-5. (a) Annual electricity demand load profile of the selected house; (b) Dynamic generated solar energy allocation of typical PV system 
from the model simulation 
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Figure 2-6. Percentage of demand met via solar PV systems 

 

2.3.2. Life cycle cost assessment 

The life cycle cost of the baseline SA system is -$754.9 in 2018 value with 18.5 years of IPBT, 

while the baseline GC system presents a lower life cycle cost of -$1,739.4 with 16.8 years of IPBT. 

Our IPBTs found in this study are within the IPBT range of 2.8-40.8 years reported by previous 

residential solar PV studies (Muhammad-Sukki et al., 2014; Yang et al., 2015). Allowing selling 

of the surplus energy created about $984.5 of additional savings over 20 years of life span. In our 
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300 43.2% 45.1% 52.0% 60.5% 69.1% 76.5% 92.5% 98.7% 99.9% 99.9%
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simulation, to further increase 1% of the percent demand met from baseline system would result 

in an additional $409.0 through the increase of array size or $626.5 through the increase of battery 

size. Both are higher than the amount of economic savings that can be achieved through the 1% 

demand met increase ($31.3). 

 

Figure 2-7 presents the cost breakdowns of the baseline SA and GC PV systems. Primary costs for 

solar PV systems come from panels and racking (31% of total cost), battery storage (27% of total 

cost), replacement of battery (23% of total cost), and labor for installation (16% of total cost). 

Without system rebate and tax credit, both systems are not able to be paid back within its life time. 

 

Figure 2-7. Cost breakdown of baseline 40-panel 40-battery SA and GC PV systems 

 

Figure 2-8 presents the life cycle cost under different array sizes for the prototype house. Results 

show that when demand met is not a concern, life cycle economic savings are achievable under a 

range of panel and battery sizes for both GC and SA systems. No battery installation is preferred 

for SA systems with relatively small panel sizes (<25 panels). This indicates the saving from power 

generation cannot offset the battery cost within this range of panel sizes. With further increase in 

array size, the optimum battery size increases. The maximum life cycle economic saving can be 
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achieved with 20 panels with no battery in this prototype house. This optimum configuration could 

meet ~25% of total demand with NPV of -$4,616.7. Compared with the baseline SA system, this 

optimized SA system increases the life cycle economic savings by 511.6%, yet decreases the 

demand met by 55.7%. Additional analyses were conducted to investigate the tradeoffs between 

percent demand met and life cycle cost. The Pareto-optimal frontier between percent demand met 

and life cycle cost was provided in Figure 2-9 (additional analyses related to tradeoffs between 

cost and demand met were provided in the Section A4 of the APPENDIX A). We found the optimal 

panel size ranges from 60 to 80 with 20~40 batteries, which can meet 66.6~68.4% of the demand 

with life cycle costs of -$887.5~ -$3011.7. 

 

Figure 2-8. Life cycle cost (2018$) of SA and GC PV systems under different array sizes 
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Figure 2-9. The Pareto-optimal front of demand met percent and life cycle cost of SA PV systems (dots 
with red circles represent the preferred solutions for both objectives.) 
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selling it directly back to the grid. Hence, having certain battery storage capacities might become 

appealing even for GC PV system owners. Different policies could alter the economic cost and 

benefit of GC systems through the change of economic gain from selling to the grid variously. 

Therefore, the optimal array size for maximum economic saving is determined by specific policy. 

For example, the cap of grid sell restricts the optimum array size. 

 

2.3.3. Life cycle environmental assessment 

Both baseline GC and SA PV systems can result in reduced CED, carbon footprint, and water 

footprint compared to the grid when installed in the prototype house. The GC system has higher 

life cycle environmental benefits in terms of all three measures than the SA system (-2.1 TJ, -177.0 

Mg CO2 eq, and -9.4 ML of water for the SA system and -2.3 TJ, -187.0 Mg CO2 eq, and -9.9 ML 

of water for the GC system). This shows that allowing selling of the excess energy rather than 

wasting it can slightly increase the environmental benefits by 5.3~9.5% over 20 years of life span. 

The energy, carbon, and water payback times are 2.15, 1.62, and 0.65 years for the baseline SA 

system, and 2.05, 1.54, and 0.62 years for the baseline GC system. Previously reported energy, 

carbon, and water payback times are 0.8-4.7 years (Gerbinet et al., 2014; Grant and Hicks, 2020; 

Perez et al., 2012), 0.4-7.8 years (Grant and Hicks, 2020), and 0.06-1.08 years (Fthenakis and Kim, 

2010a; Meldrum et al., 2013) respectively for the solar PV systems. Our results are within the 

ranges of these previously reported environmental payback times. Figure 2-10 presents the life 

cycle environmental performances of SA and GC systems under different array sizes. Compared 

with life cycle enconomic savings, life cycle environmental savings are achievable under a wider 

range of panel and battery sizes for both types of systems.  
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For SA systems, the optimized CED and carbon footprint outcomes was achieved when the panel 

size is in the range of 150-200 and the battery size is in the range of 80-320, while the optimized 

water footprint outcome was achieved when the panel size is in the range of 150-300 and the 

battery size is in the range of 80-320 when installed in the prototype house (-3.02~ -2.85 TJ, -

262.2~ -254.0 Mg CO2 eq, and -15.4~ 14.7 ML of water). These optimized configurations increase 

the life cycle environmental savings of the baseline SA system up to 64.6%, but decreases the life 

cycle economic saving largely up to 6,868.4%. The environmentally optimal SA system array size 

can be up to 14 times larger than the economically optimal array size. This large preferred size is 

potentially a result of the relatively low environmental emissions/impacts during the panel and 

battery manufacturing phase compared with the potential environmental benefits resulted from 

preventing the use of the grid during the use phase, although a large amount of solar energy will 

be wasted under the optimized size (up to 69.3% of total solar energy generation wasted). This 

shows that an environmental and economic tradeoff exists for SA systems. However, with further 

reductions in the capital costs of the PV and battery systems, such tradeoffs may be minimized, 

especially for regions with relatively high retail electricity price. Potential future policies such as 

carbon pricing (Tierney, 2019) and increased water pricing of the thermal power supply (EPA, 

2019; USC, 1986) may also help promoting adoption of larger sized solar PV and battery systems 

as well as minimizing the environmental and economic tradeoffs. 

 

For GC systems, environmental benefits are the highest when no battery is installed, and the 

benefits increase with the increase of panel size. However, the increase of array size is restricted 

by the amount of rooftop area or land availablibility. When the panel size is restricted to the rooftop 

area, the lowest life cycle environmental costs in CED, carbon footprint, and water footprint are -
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2.5 TJ, -209.2 Mg CO2 eq, and -10.9 ML respectively. This optimized configuration increases the 

environmental and economic savings by 8.7~11.9% and 843.7% respectively compared with the 

baseline GC system over 20 years. No outstanding economic and environmental tradeoffs were 

found for the GC system under the modelled conditions. 

 

Figure 2-10. Life cycle environmental costs of SA and GC PV systems under different array sizes 
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Figure 2-11 shows the changes of the life cycle cost in response to decreases or increases of the 

discount rate as well as the changes of the life cycle environmental outcomes in response to the 

changes in the grid energy, carbon, and water intensities. Life cycle cost of the baseline PV system 

is highly sensitive to the changes of the discount rate under the investigated range. Increasing 

discount rate is associated with lower life cycle economic savings from installing solar panels. The 

discount rate of 5.6% (12% increase from the default value) and 6.3% (26% increase from the 

default value) are the tipping points where a SA and GC baseline system starts to lose money, 

respectively. Life cycle environmental outcomes of the solar PV system change linearly with the 

change of the grid energy, carbon, and water intensities. Carbon footprint has the highest 

sensitivity to the changes in the grid, followed by water footprint, and the CED is the least sensitive 

to the grid changes. Additionally, the GC system is slightly more sensitive to changes in the grid 

than the SA system from an environmental perspective.  

 

Figure 2-11. Life cycle costs and environmental impacts of the baseline SA (dashed lines) and GC (solid 
lines) PV system under changes in discount rate (left figure) and the unit environmental impact of the grid 

(right figure) 
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2.4. Conclusion 

A dynamic life cycle economic and environmental assessment that combines system dynamics 

modeling with the conventional LCA and LCCA was conducted for residential solar PV systems. 

Two PV system designs were investigated: the GC and the SA systems. A prototype house located 

in Boston, MA was used as a testbed for the modeling framework developed in this study. When 

installed with 40 PV panels (roughly the size of the entire roof) and 40 batteries, the prototype 

house will directly use 42.6% of the solar energy generated, store 44.4% of the energy for later 

consumption, and sell or waste round 13.0% of the solar energy depending on whether it is a GC 

or a SA system. Solar energy generated, stored, and sold/wasted all present strong seasonal trends. 

The prototype house has the lowest monthly demand during summer, while the solar energy 

generation is the highest during the period. Hence, a larger amount of solar energy can be sold or 

stored during these months. Hence, a larger amount of solar energy can be sold or stored during 

these months. Achieving 100% demand met requires large numbers of both panels (>200 units) 

and batteries (>160 units) for the prototype house, which can be unrealistic for households with 

land or roof area availabilities. The 40-panel 40-battery SA system has a life cycle cost saving of 

$754.9 in 2018 value with 18.5 years of IPBT and a life cycle reduction of 2.1 TJ of CED, 177.0 

Mg CO2 eq, and 9.4 ML of water. The corresponding GC system presents a slightly higher life 

cycle cost saving of $1,739.4 with 16.8 years of IPBT and a slightly higher life cycle environmental 

benefit (reduction of 2.3 TJ CED, 187.0 Mg CO2 eq, and 9.9 ML of water). This study also found 

the tradeoffs between demand met and life cycle cost in the SA systems can be best balanced when 

the panel size is between 60 and 80 units and the battery size is between 20 and 40 units, which 

can meet 66.6–68.4% of the demand with a life cycle cost between -$3011.7 and -$887.5. 
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When examining the influence of panel and battery sizes on the outcome, we found life cycle 

economic savings are achievable under a range of panel and battery sizes for both GC and SA 

systems when demand met is not a concern. For the SA systems, the maximum life cycle economic 

saving can be achieved with 20 panels with no battery in the prototype house, which increases the 

life cycle economic savings of the baseline system by 511.6%, yet decreases the demand met by 

55.7%. However, the optimized environmental performance is achieved with significantly larger 

panel (up to 300 units) and battery (up to 320 units) sizes. These optimized configurations increase 

the life cycle environmental savings of the baseline SA system up to 64.6%, but decreases the life 

cycle economic saving largely up to 6,868.4%. There is a clear environmental and economic 

tradeoff when selecting the size of the SA systems. For GC systems, when there is no limit on 

when and how much excess solar energy can be sold to the grid, batteries do not provide extra 

benefit to the GC system owners. Hence, both the economic and environmental benefits are the 

highest when no battery is installed, and the benefits increase with the increase of panel size. 

However, when policy constraints such as limitations/caps of grid sell are in place, tradeoffs would 

present as whether or not to install batteries for excess energy storage. The modeling framework 

that is developed in this study can be further generalized for future investigations in varied PV 

system designs under different policy scenarios in different spatial and temporal contexts. 
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3. CHAPTER 3: MANAGING RESIDENTIAL SOLAR PHOTOVOLTAIC-BATTERY 

SYSTEMS FOR GRID AND LIFE CYCLE ECONOMIC AND ENVIRONMENTAL 

CO-BENEFITS UNDER TIME-OF-USE RATE DESIGN2 

3.1. Introduction 

Managing the daily and hourly fluctuations in electricity demand has been a long-standing problem 

within the power utility sector (Gelazanskas and Gamage, 2014; Oconnell et al., 2014; Uddin et 

al., 2018). To meet the peak demand, excess generation with fast response capabilities have to be 

installed, and more expensive fuels, such as natural gas, are normally used (ISO-NE, 2018b). These 

peaking resources require substantial capital and operational investment (Uddin et al., 2018), yet 

they are only used during the limited on-peak windows (IRENA, 2019). Residential solar 

photovoltaic (PV) systems have traditionally been viewed as a potential means to reduce peak load 

(H. Huang et al., 2017). Over the last decade, installations of residential PV systems have boomed, 

and these systems currently contribute to around 0.77% of the total generation in the US (EIA, 

2019d, 2020a). However, recent studies indicate that the large penetration of residential solar PV 

systems might result in a steeper ramp-up after the sun begins to set and use rises (Alam et al., 

2014; Sukumar et al., 2018), making it more difficult for the grid operators to accommodate 

(Eltawil and Zhao, 2010). One potential solution to this steep ramp could be expanding storage at 

the residential scale (Sukumar et al., 2018). Less than 5% of the residential and commercial PV 

systems in the US have energy storage capacities currently (SEIA, 2020a, 2020b). Even among 

this small number of storage installations, only about 15% are managed for load control (Nottrott 

et al., 2012; O’Shaughnessy et al., 2018). 

                                                           

2
 This chapter has been published as a journal article in Resources, Conservation and Recycling. Please use 

the following citation for work related to this chapter: Ren M, Mitchell C R, Mo W. Managing residential 
solar photovoltaic-battery systems for grid and life cycle economic and environmental co-benefits under 
time-of-use rate design[J]. Resources, Conservation and Recycling, 2021, 169: 105527. 
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To help alleviate peak load pressure, utilities in the US have started to explore or implement 

residential time-of-use (TOU) pricing rates (Newsham and Bowker, 2010). TOU pricing refers to 

a rate structure that establishes a higher electricity use/sell price during the on-peak and/or mid-

peak hours, and a lower price during off-peak hours (Dufo-López and Bernal-Agustín, 2015; 

Haider et al., 2016). Implementation of TOU rates can promote residential battery installations by 

encouraging increased selling/utilization of solar energy during the on-peak hours (Zhang and 

Tang, 2019). The design and operation strategy for these systems can influence the economic, 

environmental, as well as the peak load reduction benefits. For instance, management strategies 

that target peak load reduction might also speed up battery degradation and hence increase 

replacement or maintenance costs (Martins et al., 2018). Our understanding regarding how to 

design and manage solar PV-battery systems for economic, environmental, and grid co-benefits 

remains limited. Such an understanding is especially important given the Federal Energy 

Regulatory Commission’s recent Order 2222, which will result in promoting the participation of 

aggregated distributed energy resources in the organized electricity wholesale markets (FERC, 

2020).  

 

Many previous studies only focused on the technical performances of the solar PV-battery systems 

under TOU rate designs, which were often measured in terms of the ramp rate of the PV output 

(Sukumar et al., 2018), solar energy consumption (Alramlawi et al., 2018; Khoury et al., 2016), 

grid use and sell (Alramlawi et al., 2018; Khoury et al., 2016), and peak load reduction (H. Huang 

et al., 2017; Schibuola et al., 2017; Uddin et al., 2018). Particularly, peak load reduction was found 

to be up to 50% at a household scale when the PV-battery systems were managed according to the 
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TOU rate designs (H. Huang et al., 2017; Schibuola et al., 2017; Uddin et al., 2018). Additional 

studies have investigated both the peak load reduction and economic performances of solar PV-

battery systems under TOU rate, comparing different battery control strategies (Khalilpour and 

Vassallo, 2016; Martins et al., 2018; Zhang and Tang, 2019), demand load profiles (Linssen et al., 

2017), battery types (Parra and Patel, 2016), and battery storage capacities (van der Stelt et al., 

2018; Zhang et al., 2017). Some of these studies found the installation of solar PV-battery systems 

can provide synergistic benefits of both peak load reductions and economic benefits for users 

(Khalilpour and Vassallo, 2016; Linssen et al., 2017; van der Stelt et al., 2018; Zhang et al., 2017; 

Zhang and Tang, 2019), while others highlighted tradeoffs between peak load reductions and 

economic savings, especially when the batteries’ initial and replacement costs were considered 

(Martins et al., 2018; Parra and Patel, 2016). Not many studies have investigated the environmental 

performances of solar PV-battery systems under the TOU rate design. Hiremath et al. (2015) and 

Sun et al. (2019) investigated the cumulative energy demand or carbon footprint of various solar 

PV-battery system designs (e.g., different battery types and storage capacities) considering grid 

mix changes during on- and off-peak hours. None of these studies, however, considered the 

influence of battery management strategies on the environmental outcomes. Fares and Webber 

(2017) and Litjens et al. (2018) further investigated tradeoffs between the peak load reduction and 

the life cycle environmental impacts of residential solar PV-battery systems. While both studies 

consistently reported reduced peak load when battery is added to a solar PV system, no consensus 

was found on whether or not the battery additions can reduce carbon emissions. Only three studies 

further considered solar PV-battery systems’ economic performance in addition to their peak load 

reduction and environmental performances under the TOU rate design (Mariaud et al., 2017; 

Nojavan et al., 2017; Yang and Xia, 2017). Nojavan et al. (2017) and Yang and Xia (2017) found 
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peak load reduction, economic, and carbon benefits can be achieved simultaneously through 

optimized battery control strategies. However, Mariaud et al. (2017) found installation of a PV-

battery system can provide peak load reduction and carbon benefits, but it might increase the 

overall cost. This discrepancy is potentially a result of the different incentive designs and PV-

battery technology costs considered. None of these studies, however, took account of the carbon 

emissions associated with battery manufacturing and replacement. 

 

To address this knowledge gap, this study integrated system dynamics modeling (SDM) with life 

cycle cost and environmental assessment to investigate the preferred design and operation 

strategies of PV-battery systems under TOU rate design. The modeling framework was applied to 

a 5-unit prototype house in the Boston-Logan area, Massachusetts of the United States as a testbed. 

The Boston area was selected because of its strong in-place solar incentive programs (MassCEC, 

2020), and its active pursue of renewable energy and storage (Mass.gov, 2020a). Five performance 

measures were used to evaluate different PV-battery system design and management scenarios: 

peak load reduction, life cycle cost (LCC), fossil fuel depletion, carbon footprint, and water 

footprint. This study aims to evaluate and understand the tradeoffs among the peak load reduction, 

economic, and environmental performances of different solar PV-battery system design and 

management scenarios under TOU rates in support of future pertinent policy and incentive designs. 

 

3.2. Methodology 

3.2.1. System and scenario descriptions 

The grid-connected polycrystalline silicon (poly-Si) PV panel and Li-Ion battery system was 

selected in this study given their popularity and cost competitiveness (Sharma et al., 2015). Figure 
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3-1 presents a schematic of the setup of the studied system. The PV-battery system was applied to 

a prototype low-rise multifamily house based on the US Department of Energy’s House Simulation 

Protocol (Wilson et al., 2014). The hourly load profiles of this prototype house was collected from 

the Open Energy Information database for the Boston Logan area, MA for our simulation (NREL, 

2014). The grid fuel mix was collected from ISO New England Inc. (ISO-NE), an independent and 

non-profit Regional Transmission Organization (RTO) serving the New England area (ISO-NE, 

2018b). 

 

Figure 3-1. Schematic of the GC solar PV-battery system 
 

The TOU rate structure adopted in this study came from a pilot study conducted by the Liberty 

Utilities in 2018 (Tebbetts, 2018), which includes an off-peak, mid-peak, and on-peak rate (Figure 

3-2). For comparison purpose, a flat rate structure was also investigated, which utilizes a constant 

GridBattery bank
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Energy user
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Energy flow under battery control



40 
 

rate of 16 cents/kWh calculated as the average electricity rate in New England area from 2016 to 

2017 (NREL, 2017). For simplicity, solar feed-in-tariffs were assumed to be the same as electricity 

retail prices under both TOU and flat rate structures. 

 
Figure 3-2. The TOU rate design that is utilized in this study 

 

Five solar PV-battery design and management scenarios were investigated (Figure 3-1). Scenario 

1 (S1) describes a baseline condition where no PV or battery was installed. The household relies 

entirely on the grid. Scenario 2 (S2) represents a condition where only PV panels were installed. 

The panel size was assumed to be 12.2 kW, which was designed to meet the peak load of the 

prototype house. The same panel size was also utilized in the following scenarios. Scenario 3 (S3) 

is when both PV and batteries were installed but the battery system was not managed according to 

the TOU rate structure. Only solar energy can charge the battery. Scenario 4A (S4A) is when both 

PV and batteries were installed and managed according to the TOU rate structure. Only solar 

energy can charge the battery. Scenario 4B (S4B) is similar to S4A except that both solar energy 

and the grid were allowed to charge the batteries. These scenarios are reflective of the typical 
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residential PV system designs and/or operation strategies with consideration of potential user 

benefits and the developing policy initiatives in the energy industry. The rules of system control 

under each scenario were further discussed in Section 3.2.2.1. 

 

3.2.2. Description of the modeling framework 

Load reduction, economic, and environmental performances were assessed in this study by 

integrating SDM, life cycle cost assessment (LCCA), and life cycle assessment (LCA). SDM is a 

computational method applying a set of linked differential equations to simulate the behavior of 

complex systems over a certain time period and studying the interactions among system 

components through capturing system feedback loops and delays (Forrester, 1997; Sterman, 2000). 

LCCA adopts a net present value (NPV) method to account for all economic costs and savings that 

incur during the life span of a PV-battery system (Durairaj et al., 2002). LCA assesses the supply 

chain environmental impacts attributable to the entire life cycle of a PV-battery system (Rebitzer 

et al., 2004). In this study, the SDM was used to simulate the dynamic behavior of energy 

generation, storage, and grid sell on a thirty-minute step over a typical year (Peng et al., 2017; 

Reddi et al., 2013; Ren et al., 2020). Outcomes from the SDM were used to inform the off-, mid-, 

and on-peak load reductions, costs/savings, fossil fuel depletion, carbon footprint, and water 

footprint calculations over the 20-year use life of the solar PV-battery systems. The conventional 

LCCA and LCA methods were applied to the manufacturing, transportation, maintenance (i.e., 

battery replacement) phases of the solar PV-battery systems. 

 



42 
 

3.2.2.1. System dynamics modeling of the solar PV-battery system 

The SDM was developed in Vensim DSS® software given its wide application (Ford and Ford, 

1999). This section was intended to provide a brief overview of the SDM, while a more detailed 

model description can be found in Ren et al. (2020). 

 

Solar energy generation was calculated following a method that was used in the HOMER software, 

adjusted to consider the cooling effect provided by wind (Section A3 in APPENDIX A) (Ren et 

al., 2020). The amount of generation depends on three key time-varying input variables: incident 

solar radiation, ambient temperature, and wind speed. All three variables were obtained from the 

National Solar Radiation Database (NREL, 2015). Battery storage was simulated based upon 

battery charge, discharge, and energy loss at each time step. The initial battery storage was 

assumed to be zero. The charging and discharging rates depend on the total charging/discharging 

need and the existing battery storage at each time step, as well as the total battery storage capacity. 

These rates were constrained by the maximum charging and discharging rates calculated based 

upon the percent vacancy of the battery capacity at each time step (Equation. A4-8 in Section A3 

of APPENDIX A) (Energy, 2017). Energy loss during charging and discharging was calculated 

based upon the system round-trip efficiency, which was assumed to be 80% (around 10.6% of the 

charging and discharging rates was lost) (Dufo-López and Bernal-Agustín, 2015). In addition, 

battery replacement over the system lifespan was estimated through the ratio of the actual battery 

system throughput to the rated battery system throughput (HOMER, 2017). 

 

The SDM contains an energy balance sub-model which controls the allocation of the generated 

solar energy to house consumption, battery charge, and grid sell as well as the timing and amount 
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of battery charge and discharge. Grid sell was assumed to be unconstrainted considering the current 

Massachusetts Net Metering policy (Mass.gov, 2020b). Table 3-1 presents the rules of system 

control under the five scenarios. 

Table 3-1. Prioritization of generated solar energy distribution 

Peak 
time 

S1 S2 S3 S4A S4B 

off-peak 

No solar 
energy is 

generated.  

Solar 
energy 

generated 
is 

prioritized 
for 

meeting 
household 
demand 
before 

grid sell. 

Solar energy 
prioritization goes 

from meeting 
household demand, 
battery charging to 
grid sell. Battery 

storage is 
discharged 
whenever 

household demand 
cannot be met by 
the solar energy 
before the grid 

kicks in. 

Solar energy 
prioritization 

goes from 
battery 

charging, 
meeting 

household 
demand to grid 
sell. Battery is 
not discharged 

during this 
period. 

Solar energy prioritization goes 
from battery charging, meeting 
household demand to grid sell. 
Grid charge only kicks in if the 

battery is not fully charged by the 
solar energy 30 mins before the 

off-peak period ends. Thirty 
minutes were assumed to be 

sufficient to fully charge the battery 
system. Battery is not discharged 

during this period. 

mid-peak 

Solar energy generated during this 
period is prioritized for meeting 
household demand and then grid 
sell. The battery system remains 

fully charged and inactive. 

on-peak 

Battery is fully discharged for grid sell and then 
remains inactive. Solar energy generated is 

prioritized for meeting household demand before grid 
sell. 

 

Load reductions (kWh) during different time periods were calculated using Equation 3-1.  

 

T9:"� = < '67:9"q + 67r99,st + 6�87Cu"qBr,B* =!� �;       Equation 1 

Where, T9:"� represents the load reduction of the grid, kWh; 67:9"q is the household demand met 

by solar energy, kW; 67r99,st is the direct grid sell from the PV system, kW; 6�87Cu"qBr,B is the 

grid sell from the battery storage, kW. 
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3.2.3. Life cycle cost assessment 

The LCC of installing a solar PV-battery system was calculated as the NPV of the capital cost, 

operation and maintenance (O&M) cost, tax credit and rebate using Equation 3-2. The capital cost 

of the system includes the costs of panels and racking ($1/Watt of generation capacity) (McFarland, 

2014), batteries ($209/kWh of storage capacity) (Curry, 2017), inverters ($300/inverter unit) 

(HOMER, 2018), permission ($450/system) (NREL, 2017), and labor (calculated based upon a 

tiered pricing; Figure A-1 in Section A3) (HomeAdvisor, 2019). All future costs were discounted 

to the year of 2020 applying a discount rate of 5% (Ren et al., 2020). 

 

?
= ?C − ?q + v w?:,Z + x :yy < '6f,� − 67,� − 6�,�* =! �Vzz + x08� < '6f,� − 67,� − 6�,�* =! �jl{ + x:Z < '6f,� − 67,� − 6�,�* =! �VW�1 + =�Z |Z[}

Z[>  

Equation 3-2 

Where, ? represents the LCC of a PV-battery system, $; ?C is the capital cost of the system, $; ?q 

is the tax credit (30% of the capital cost) (IRS, 2019), and rebate ($0.25/Watt of installed PV 

capacity) (NHMA, 2015); L is the life span of the solar PV system, 20 years; ?:,Z is the battery 

replacement cost in one year, $; x :yy, x08�, and x:Z are the off-peak, mid-peak, and on-peak rates 

respectively, $/kWh;  !:yy,  !08� , and  !:Z are the duration of off-peak, mid-peak, and on-peak 

time in a year respectively, hours; 6f,� is the actual grid use, kW; 67,� is the direct grid sell from 

the PV system, kW; 6�,� is the grid sell from the battery storage, kW; = is the discount rate, 5%; n 

is the year index; 6f,�, 67,�, and 6�,� were obtained from the SDM model. 
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3.2.4. Life cycle assessment 

Environmental impacts considering life cycle stages of manufacturing, transportation, and 

operation were assessed using Equation 3-3. The global average manufacturing impacts of the 

solar PV-battery system components obtained from the EcoInvent 3.0 were utilized in this study. 

The operation phase considers the environmental impacts related to the grid use and the 

replacement of batteries over the life cycle. The savings from solar energy consumption and grid 

sell were also considered in the operation phase. The disposal phase of the PV-battery system is 

not considered following (Bernardes et al., 2004; Grinenko, 2018). SimaPro 8.3 was used for 

charactering the environmental impacts. Specifically, the ReCiPe Midpoint (H) 1.12, Europe 

Recipe H was used for estimating the climate change, fossil fuel depletion, and water depletion 

impacts associated with each PV-battery system components. The SimaPro entries, unit costs, and 

environmental impacts of the PV-battery system components are provided in Table B-1 of the 

APPENDIX B. 

 

e = e0 + e� + ~eq + � :yy < '6f,� − 67,� − 6�,�* =! �Vzz + �08� < '6f,� − 67,� − 6�,�* =! �jl{ +
�:Z < '6f,� − 67,� − 6�,�* =! �VW � L                                                                                Equation 3-3 

Where, e represents the life cycle environmental impacts of a PV-battery system, kg CO2 eq., kg 

oil eq., or L; e0 is the environmental impacts associated with system manufacturing, kg CO2 eq., 

kg oil eq., or L; e� is the environmental impacts associated with system transportation, kg CO2 eq., 

kg oil eq., or L; eq is the annual environmental impacts of the replacement of batteries, kg CO2 eq., 

kg oil eq., or L; � :yy, �08�, and �:Z are the unit environmental impacts during off-, mid-, and on-

peak periods respectively, kg CO2 eq./kWh, kg oil eq./kWh, or L/kWh; !:yy,  !08�, and  !:Z are 

the duration of off-peak, mid-peak, and on-peak time in a year respectively, hours; 6f,� is the actual 
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grid use, kW; 67,� is the direct grid sell from the PV system, kW; 6�,� is the grid sell from the 

battery storage, kW; L is the life span of the PV system, 20 years. 

 

� :yy , �08� , and �:Z  were calculated based upon the 2017 New England grid fuel mix profile 

(Figure 3-3a) obtained from the Independent System Operator-New England (ISO-NE) database 

(ISO-NE, 2018b). Particularly, � :yy was calculated based on the utility fuel mix profile of the off-

peak period during 2017. �08� was calculated based on the additional load in GW provided by 

different fuel types during the mid-peak period as compared to the off-peak period (Figure 3-3b). 

�:Z was calculated based on the additional load in GW provided by different fuel types during the 

on-peak period as compared to the mid-peak period. As such, our calculations reflect the “actual” 

fuel mix that is replaced as a result of the installation of solar PV-battery systems. Figure 3-3c 

presents the unit environmental impacts associated with carbon emissions, water consumption, and 

fossil fuel depletion during the off-, mid-, and on-peak periods. Unit environmental impacts 

associated with each fuel type are provided in Table B-2 of the APPENDIX B. 
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Figure 3-3. (a) Average annual grid load during the off-, mid-, and on-peak periods obtained from the 
Independent System Operator-New England (ISO-NE); (b) percentages of grid fuel mix that were used 

for calculating carbon emission, water consumption, and fossil fuel depletion factors during the mid- and 
on-peak periods; and, (c) estimated unit carbon emission, water consumption, and fossil fuel depletion per 

kWh of electricity consumption during the off-, mid-, and on-peak periods 
 

3.2.5. Sensitivity analysis 

A sensitivity analysis was performed to investigate the influence of TOU rate structure, discount 

rate, on-peak grid fuel mix, and duration of on-peak period on the economic and environmental 

performances of a typical PV-battery system with 50 panels and 50 batteries installed on the 

prototype house. Particularly, the model’s sensitivity to changes in the on-peak grid fuel mix was 
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investigated by changing the hydropower and natural gas contributions in the grid during the on-

peak hours, given their significance. We investigated scenarios where the increase in the 

percentage of on-peak hydropower grid contribution was associated with a corresponding decrease 

in the natural gas contribution, and vice versa. Hence, the total on-peak grid demand remained the 

same under these scenarios. We also assumed the change of on-peak period duration is associated 

with equal changes in both off- and mid-peak durations (Table B-3 of APPENDIX B). For instance, 

a 2.5-hour increase in the on-peak period is associated with a 1.25-hour decrease in the mid-peak 

period immediately preceding the on-peak period, plus a 1.25-hour decrease in the off-peak period 

that immediately follows. Each of the selected input variables were varied by ± 50%. A sensitivity 

index (�) was calculated for each input change using Equation 3-4 (Ren et al., 2020; Song et al., 

2019b). 

 

� = {lm{n{nolmonon
      Equation 3-4 

Where =8 is the output value after the input was changed; =2 is the base output value; e8 is the 

altered input value; and e2 is the original input value. Inputs were considered “highly sensitive” if 

|�| >1.00. 

 

3.3. Results and Discussion 

3.3.1. Solar and grid energy utilization and peak load reduction 

Figure 3-4 presents the daily solar energy generation and utilization, battery charge, and grid 

sell/use patterns of the prototype building with 50 panels and 50 batteries during a typical winter 

(left) and a typical summer (right) day. The building’s peak electricity usage periods (6-8 AM and 
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PM) only slightly overlaps with the on-peak period (2-7 PM) designated by the TOU rate structure, 

indicating a potential need of energy storage systems. Overall, the studied building uses 1.75 times 

more energy on the winter day as compared to the summer day, which can be attributed to the 

higher heating demand in winter. 

 

Installing a 50-panel PV system in the prototype building (Scenario S2) can provide load 

reductions both during mid-peak and on-peak hours (Figures 3-4a and 3-4b). The on-peak load 

reduction is much higher on a typical summer day mainly due to the seasonal changes in solar 

energy generation. Adding an “uncontrolled” 51-kW battery system (Scenario S3), however, may 

decrease the peak load reduction benefits (Figures 3-4c and 3-4d). The total load reductions during 

the mid- and on-peak periods are around 91.8% and 49.9% of those associated with Scenario S2 

in winter and summer, respectively. This is because the large amount of solar energy generated 

during the mid- or on-peak hours, especially in summer, may be stored and used during the off-

peak hours as compared to Scenario S2. While Scenario S3 has limited peak load reduction benefits 

in a grid-connected setting, it might appeal in a standalone system that is not grid-connected. When 

the on-peak load reduction is considered alone, Scenario S3 can potentially provide increased load 

reduction during winter but decreased load reduction during summer, indicating the importance of 

seasonal variations of solar energy generation patterns. When the battery system is controlled for 

peak load reduction (Scenario S4A), the total mid- and on-peak load reductions are 87.9% and 

94.4% of those associated with Scenario S2 in winter and summer, respectively; and the on-peak 

load reductions are 2.7 and 1.6 times of those associated with Scenario S2 in winter and summer, 

respectively (Figures 3-4e and 3-4f). This shows battery control can effectively increase on-peak 

load reduction, but its charging and discharging losses might slightly reduce the total mid-and on-



50 
 

peak load reduction benefit. When the grid is allowed to charge batteries (Scenario S4B), peak 

load reduction benefit is the highest (Figures 3-4g and 3-4h). The total mid- and on-peak load 

reductions are 2.6 and 2.0 times of those associated with Scenario S2 in winter and summer 

respectively, while the on-peak load reductions are 10.0 and 3.0 times of those associated with 

Scenario S2 in winter and summer respectively.  

 

Figure 3-5 further presents annual load reductions under the simulated scenarios. Scenario S4B 

provides the highest peak load reduction benefit considering either on-peak hours alone or on-peak 

and mid-peak hours combined, 5.2 and 3.3 times of the lowest counterparts. However, around 80.7% 

of the on-peak load reduction is provided by the grid energy from off-peak hours rather than solar 

energy generated. Scenario S2 has the lowest on-peak load reduction, while Scenario S3 has the 

lowest load reduction when mid- and on-peak hours are combined. 

 



51 
 

 

Figure 3-4. Solar energy and grid electricity utilization of the typical solar PV-battery system in Scenarios 
S2 (a and b), S3 (c and d), S4A (e and f), and S4B (g and h) on a typical winter day and a typical summer 
day. Figures on the left-hand side (a, c, e, g) correspond to a typical winter day and figures on the right-

hand side (b, d, f, h) correspond to a typical summer day. 
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Figure 3-5. Annual total load reductions in the simulated scenarios (the green line plot shows the sum of 
load reductions from mid- and on-peak hours.) 

 

3.3.2. Life cycle cost assessment 

Figure 3-6 presents the LCCs of the simulated scenarios considering different battery sizes. Under 
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scenario that is able to achieve net cost saving when the battery size is sufficiently large. However, 

this might be subject to policies including caps on residential charge from and resell to the grid. 

The ranking of the other scenarios change based on battery size. When the battery size is relatively 

small (5-20 batteries), Scenarios S2 and S4A present similarly low LCC, followed by Scenario S3, 

while Scenario S1 presents significantly higher LCC compared with the remaining scenarios. 
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followed by Scenarios S4A and S1, while Scenario S3 has the highest LCC. This indicates the 

importance of matching battery sizing and control strategies to achieve the lowest LCC. Compared 

with the current flat rate structure, the TOU rate design results in an economic benefit for the 

prototype house. Under the flat rate design, Scenario S2 always presents the lowest LCC regardless 

of battery size, indicating a potential lack of economic incentive to install battery storage systems. 

 
Figure 3-6. LCCs (discount rate: 5%) of the solar PV-battery systems under TOU and flat rate designs 

considering different management (Scenarios S1-S4B) and battery sizing scenarios 
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the previously reported range of 50-800 g CO2 eq./kWh, 0.73-7.2 L/kWh, 0.22-1.04 MJ/kWh for 

roof-mounted solar PV electricity generation, respectively (Fthenakis and Kim, 2010b; Kim et al., 

2014; Stamford and Azapagic, 2018; Stolz, 2017; Stoppato, 2008). Scenario S4B generally 

performs the best environmentally regardless of battery sizes, while Scenario S1 performs the 

worst. Scenario S4A presents the second highest life cycle climate change and fossil fuel depletion 

effects following Scenario S1, although it provides a relatively large on-peak load reduction. This 

is because Scenario S4A shifted load reductions from mid-peak to on-peak period, while the on-

peak period has lower carbon and fossil fuel intensities compared to mid-peak hours, due to a 

higher contribution from hydropower. This indicates the importance of the daily grid mix patterns 

in determining the environmental performance of battery control strategies that maximize on-peak 

load reductions. Scenario S4A also presents an optimal battery sizing at 50, which aligns with the 

default battery size calculated based on maximum daily electricity use. This indicates the 

engineering rule-of-thumb used in this study is effective in achieving the minimized household 

climate change, water depletion, and fossil fuel depletion effects. On the other hand, the 

installation of solar PV-battery systems (Scenarios 3 and S4A) does not present a significant 

benefit in terms of water depletion as compared to the climate change and fossil fuel depletion 

impacts, expect for Scenario S4B at relatively larger battery sizes. This is because of the high 

initial water demand associated with PV and battery productions.  

 

Overall, our results show that while installing a solar PV system clearly provides environmental 

benefits, adding a battery storage does not necessary provide additional carbon, water, or energy 

benefits. The solar PV-battery system also does not provide essential water benefits except when 

a large battery capacity is installed and the battery system is allowed to charge from and resell to 
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the grid in Scenario S4B. When peak load reduction, economic, and environmental impacts are 

considered together, Scenario S2 presents relatively good economic and environmental 

performances, although its on-peak load reduction is limited. Scenario S4B presents excellent peak 

load reduction, economic, and water benefits, but its carbon and energy benefits are relatively 

limited as compared to Scenario S2. However, this result may differ for regions with a more fossil 

fuel dependent grid. Scenario S4A has relatively good on-peak load reduction and economic 

performances, but it does not provide effective carbon emission and fossil fuel use reductions as 

compared to Scenario S2. Installing a solar PV system without an effective control strategy, such 

as in Scenario S3 might lead to sub-optimized peak load reduction, economic, and environmental 

outcomes. 

 

3.3.4. Sensitivity analysis 

Figure 3-8 presents the percent changes of LCC of a typical 50-panel 50-battery solar PV-battery 

system in response to changes of the discount rate, TOU rates during off, mid, and on-peak periods, 

and the duration of the on-peak period. The LCC outcomes of Scenario S4B are highly sensitive 

to changes in on- and off-peak electricity rates as well as the discount rate. This can be explained 

by the scenario’s high dependence on the difference between the electricity rates between on- and 

off-peak hours. Scenario S4B is also highly sensitive to changes in the discount rate. In contrast, 

Scenario S4A is only sensitive to the on-peak rate. This is because the economic saving in this 

scenario largely relies on the on-peak grid sell. All the remaining scenarios are not sensitive to 

±50% change of the five input variables. Particularly, Scenario S3 presents the lowest sensitivity. 

This is because of the limited solar energy use during the mid- and on-peak hours under this 

scenario. 
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Figure 3-7. Life cycle (a) climate change, (b) water depletion, (c) fossil fuel depletion of the solar PV-
battery systems under different management (Scenarios S1-S4B) and battery sizing scenarios 
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Figure 3-8. The percent change of LCC of the 50-panel 50-battery solar PV-battery system in response to 
decrease or increase of the selected variables by 50%. Shaded numbers indicate where the absolute values 

of the sensitivity index � are equal to or larger than 1. One asterisk and two asterisks represent the 
sensitivity index values that are associated with 50% decrease and increase of the tested variables, 

respectively. 
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sensitive to either tested variables, mainly due to a combined effect of its high baseline 

environmental impacts as well as the limited solar energy use or sale during the on-peak hours.  

 

Figure 3-9. Life cycle (a) climate change, (b) water depletion, and (c) fossil fuel depletion of the PV-
battery systems in response to decrease or increase of the selected variables by 50%. Shaded numbers 

indicate where the absolute values of the sensitivity index � are equal to or larger than 1. One asterisk and 
two asterisks represent the sensitivity index values that are associated with 50% decrease and increase of 

the tested variables, respectively. 
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3.4. Conclusion 

SDM, LCCA, and LCA were integrated to investigate the design and operation of solar PV-battery 

systems that can achieve grid, environmental, and economic co-benefits under TOU rate design, 

using a 5-unit prototype house in the Boston-Logan, MA area as a case study. Five scenarios (S1-

S4B) were investigated, each with different solar PV-battery system design and/or management 

strategy. We found scenarios that maximize the selling/use of solar energy during the on-peak 

hours through battery installation and control (Scenarios S4A and S4B) can achieve the highest 

on-peak load reductions and economic benefits under the TOU rate design. However, they do not 

necessary provide the highest environmental benefits, as on-peak hours in the New England grid 

have lower carbon emission and fossil fuel depletion factors as compared with the mid-peak hours. 

This indicates a potential tradeoff between the need of on-peak load reduction, economic saving, 

and environmental protection. From an environmental perspective, our finding demonstrates the 

necessity of better battery control or TOU designs that can effectively incentivize solar energy 

uses when the grid carbon intensity is the highest. While S4A is shown to be effective in reducing 

on-peak load in the grid, its overall load reduction from both mid- and on-peak hours is slightly 

less than Scenario S2 where PV panels are installed without battery. This is partly due to the energy 

loss resulted from battery charging and discharging. Overall, Scenario S4B presents relatively 

good performances from peak load reduction, economic, and environmental perspectives. 

However, its benefits might be limited by policies that cap grid charge and discharge from the 

battery systems. Out of the remaining scenarios, installing a PV system alone (Scenario S2) 

presents relatively strong economic and environmental performances, but its on-peak load 

reduction is limited. Installing a battery system without an effective control strategy (Scenario S3) 

results in relatively weak peak-load reduction, economic, and environmental outcomes. This 
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highlights the importance of effective battery control in the implementation of solar PV-battery 

systems. Future studies may further include emerging technologies such as the vehicle-to-home 

systems as well as the interactions between distributed solar PV-battery systems and the 

centralized grid to allow for a more holistic and dynamic optimization of the solar PV-battery 

system design and operation. 
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4. CHAPTER 4: DYNAMIC SIMULATION OF REGIONAL RESIDENTIAL 

PHOTOVOLTAICS ADOPTION AND ASSESSMENT OF ITS TECHNICAL, 

ECONOMIC, AND ENVIRONMENTAL IMPACTS3 

4.1. Introduction 

The residential solar photovoltaic (PV) system adoption has increased significantly in the US (EIA, 

2021a), primarily due to reduced cost (K. Branker et al., 2011), environmental benefits (Sherwani 

et al., 2010b), and strong policy incentives (e.g., Federal Energy Regulatory Commission Order 

2222) (FERC, 2020; Li and Yi, 2014). The benefit of solar PV systems was further manifested 

during recent extreme climate events (e.g., 2021 U.S. Northwest heatwave and 2021 Texas winter 

storm), which resulted in high local/regional electricity prices (EIA, 2021b; Zamuda et al., 2019). 

In both events, solar PVs have been recognized as an effective energy supply for increased 

resiliency and for offsetting the potential effects of excessive high prices for energy users (Brown 

et al., 2016; Chesser et al., 2018). On the other hand, increased PV penetration could also 

significantly alter the peak demand pattern of the electric grid, causing a steeper ramp-up which 

may be more difficult to management (Cheng et al., 2015). Furthermore, the regional cost saving 

of PV adoption may dissipate due to the increasing PV penetration and decreasing grid sell prices, 

which could reduce individual PV hosts’ cost benefit (SEIA, 2012). Therefore, it is significant to 

investigate the technical, economic, and environmental tradeoffs to inform PV planning and 

management decisions. 

 

                                                           

3 This chapter is a journal article under preparation. Please use the following citation for work related to 
this chapter: Ren M, Ghasemi R, Khalkhali M, Mo W. Dynamic simulation of regional residential 
photovoltaics adoption and assessment of its technical, economic, and environmental impacts[J]. 2021, in 
prep. 
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Previous technical assessments of residential PV systems have focused on assessing PV generation 

potential (Gagnon et al., 2016; Hofierka and Kaňuk, 2009; Lazzeroni et al., 2015; Robinson et al., 

2013; Villavicencio Gastelu et al., 2018), investigating grid load fluctuations under PV adoptions 

(Cheng et al., 2015; Eftekharnejad et al., 2013; Thomson and Infield, 2007; Watson et al., 2016; 

Westacott and Candelise, 2016), optimizing individual systems for grid load peak reduction (Alam 

et al., 2016; Wang et al., 2020), and comparing varied system operational strategies to mitigate PV 

adoption’s load effect on grid (Aleem et al., 2020; Mukwekwe et al., 2017; Systems, 2019). These 

studies highlighted that increasing PV implementation would lead to load fluctuations of the 

electric grid. The economic impact of increasing PV adoption has also been investigated in terms 

of estimating the economic potential of PV adoption (Agnew et al., 2019; Lee et al., 2018b), 

comparing utility revenue loss and cost reduction under varied PV adoptions (Brown and 

O’Sullivan, 2019; Satchwell et al., 2015), estimating additional costs to improve distribution 

power quality due to load ramp-up caused by increasing PV adoption (McHenry et al., 2016), and 

quantifying electricity rate change under increasing PV adoption (Brown and O’Sullivan, 2019; 

Satchwell et al., 2015). However, these studies often utilize annual and monthly average price data 

(Agnew et al., 2019; Cai et al., 2013; Satchwell et al., 2015), and did not consider the feedback 

loop between the distributed PV adoption and wholesale electricity price. Only Cai et al., (2013) 

considered the feedback between PV adoption and electricity rates and investigated the retail 

electricity rate change under varied residential PV adoption scenarios. The environmental impact 

of increasing PV adoption has also been assessed for the purposes of estimating and comparing 

the environmental impact (e.g., carbon emission) of PV adoptions in different historic and future 

years (Antonanzas and Quinn, 2021), investigating the sensitive variables that influence the 

environmental impact of PV adoptions (Blanc et al., 2008), and examining the environmental 
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impact of PV implementations using different system configurations or at varied locations 

(Lamnatou et al., 2016; Nikolakakis and Fthenakis, 2013; Tsoutsos et al., 2005). Life cycle 

analysis (LCA) is a popular method which considers the environmental impact of PV adoption in 

all life cycle stages (e.g., manufacturing, transportation, operation, and disposal) in previous 

studies (Rebitzer et al., 2004). However, these previous LCA studies remain static. Average annual 

data (e.g., solar radiation) was used and dynamic interactions between PV generation, grid, and 

demand were not considered to facilitate individual PVs and grid performance assessments. 

Moreover, all studies above solely considered a single aspect to investigate the impact of PV 

adoption. 

 

Some studies investigated the technical, economic, and environmental performances and their 

tradeoffs of different PV adoptions (Bellocchi et al., 2019; Deltenre et al., 2020; Imam et al., 2020; 

Jenniches and Worrell, 2019; Thoy and Go, 2021). These studies either assessed the technical and 

economic feasibility with environmental savings (e.g., avoided carbon emission) of varied types 

of PV system adoptions (Deltenre et al., 2020; Edalati et al., 2016; Imam et al., 2020; Jenniches 

and Worrell, 2019; Korsavi et al., 2018; Li et al., 2018; Thoy and Go, 2021), compared the 

technical, economic, and environmental performances of PV adoption with other types of power 

generation (e.g., diesel generation) (Jurasz et al., 2020) or in different locations (Arcos-Vargas et 

al., 2018; Edalati et al., 2016; Li et al., 2018), or reviewed major factors (e.g., PV efficiency and 

energy policies) that influence PVs’ technical, economic, and environmental performances 

(Hosenuzzaman et al., 2015). Korsavi et al. (2018) and Edalati et al. (2016) found the PV adoption 

in Iran was not economically beneficial even the PV adoption could achieve ideal carbon reduction. 

Li et al. (2018) also implied a potential economic and environmental tradeoff that the net present 
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value of PV adoption and cost of electricity increased with the PV adoption increased, whereas the 

carbon emission decreased due to the increasing PV generation. Yet Arcos-Vargas et al. (2018) 

identified co-benefited economic and environmental outcomes of residential PV adoption. 

However, the environmental assessments in these studies usually focus on the operational phase 

(e.g., avoided operational carbon emission) instead of the life cycle perspective. Moreover, 

previous studies ignored the demand side simulation (only generation simulation) or only utilized 

reported demand data. 

 

The dynamic simulation of residential demand is imperative due to its capability and flexibility to 

capture the time-varying interactions between the demand, power grid, renewable energy 

generation, and storage (McAvoy et al., 2021; Muratori et al., 2013; Shimoda et al., 2020). There 

are two ways to simulate the temporal changes of energy demand, one is top-down models and the 

other is bottom-up models (Swan and Ugursal, 2009). The top-down method refers to the models 

that apply historic regional demand data and scale down the energy consumption to a housing unit 

based upon macroeconomic or climate indicators (e.g., family gross income, unemployment 

conditions, energy price, and ambient temperature) (Dergiades and Tsoulfidis, 2008; Swan and 

Ugursal, 2009). The bottom-up methods utilize physical engineering models or statistical models 

to simulate the energy consumption of individual households and then scale up to regional or 

national levels (Arghira et al., 2012; Muratori et al., 2013; Swan and Ugursal, 2009). The top-

down models usually require high quality and sufficient quantity of observed data input, while the 

bottom-up models present relatively high computational cost. Thomson and Infield (2007) applied 

measured load data coupled with stochastic simulation using house information (e.g., perimeter 

footprint, house type) to simulate regional demand profile to investigate the technical impact of 
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PV adoption on electric networks. However, their approach still relies on a large amount of 

historical reported data and lacks transferability and applicability to other study areas to better 

inform future PV planning. The literature review of these two popular approaches for dynamic 

residential demand modeling was further provided in the Section C1 of the Supporting Information 

(SI). 

 

In order to address the knowledge gaps, this study developed an integrative modeling framework 

to investigate the dynamic life cycle technical, economic, and environmental outcomes of PV 

adoptions, considering the influence of PV adoptions on electricity price. This modeling 

framework was later applied to residential buildings in the metro area of Boston, Massachusetts of 

the United States as a case study. Specifically, PV generation, residential demand, energy 

balancing, and regional adoption models were developed. Performance measures in terms of load 

reduction, off-, mid-, on-peak load reductions, life cycle cost (LCC), life cycle CED, carbon 

emission, and water consumption were used to evaluate different levels of PV adoptions. This 

study intends to answer the following research questions: 1. How will increasing PV adoption 

influence the grid performance, PV hosts’ energy reliance, life cycle cost, and life cycle 

environmental impacts of the PV systems? 2. What is the optimal PV adoption rate that maximizes 

regional load reduction, cost saving, and environmental benefits? 

 

4.2. Methodology 

Figure 4-1 illustrates the schematic of the modeling framework developed in this study. An 

integrated system dynamics modeling (SDM), life cycle assessment (LCA), and life cycle cost 

assessment (LCCA)  framework was developed to investigate the technical, economic, and 
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environmental outcomes and tradeoffs of PV adoptions. Indicators including load reduction, life 

cycle cost (LCC), carbon footprint, CED, and water footprint were assessed under varied PV 

adoption rates. SDM is a computational modeling approach capturing system feedback loops and 

delays. In this study, we first applied Vensim DSS software to simulate the dynamic interactions 

of solar energy generation, residential demand, and the grid using thirty-minute time step over a 

typical year on a building level. This building-level model was then converted into a Python model 

for regional PV adoption simulation. LCA and LCCA assess the environmental and economic 

impacts of PV adoption in all life cycle stages including manufacturing, transportation, operation, 

maintenance stages. The twenty-year assessment was extrapolated from the one-year model in 

alignment with typical residential PV systems’ lifespan. LCCA utilizes a net present value (NPV) 

method to discount the 20-year future costs to 2021. 
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Figure 4-1. The modeling framework of this study 

 

4.2.1. Household solar energy generation simulation 

Given the market popularity and cost competitiveness, grid-connected polycrystalline silicon 

(poly-Si) PV system was selected in this study (Sharma et al., 2015). The optimized PV system 

configuration (i.e. panel size) was determined for a residential building using a simplified rule-of-

thumb engineering optimization based upon the available rooftop size following (Ren et al., 2020). 

 

The solar energy generation model was developed by referring to the method that was applied in 

the HOMER software (HOMER, 2018). However, we have modified our model to incorporate the 

cooling influence by wind. Three time-varying input variables including solar radiation, ambient 
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temperature, and wind speed were utilized (NREL, 2015). The PV system degradation effect was 

also considered in the model by using annual degradation rate. The energy loss of the PV system 

during the operation was also estimated based upon the module and inverter efficiencies. This 

section aims to provide a brief overview of the PV generation model. The detailed modeling 

description was provided in Ren et al. (2020). 

 

4.2.2. Household energy demand simulation 

In order to capture time-varying interactions between the residential demand and power supply 

(PV generation and grid supply), this study developed Python-based models to simulate major 

residential demand components using thirty-minute time step and one-year time horizon. The 

electricity demand of one household is estimated based upon five major components including: 

HVAC (maintain the desired thermal comfort in the house), cold appliances (e.g., refrigerators and 

freezers), activities of the household (e.g., cooking, dishwashing etc.), lighting, and fixed use 

following the suggestion from (Muratori, 2018; Muratori et al., 2013). The total electricity demand 

D of one household is calculated as Equation 4-2. 

 

� =  ��t�� + �C:9� + �"C� + �98Bu� + �y8�   Equation 4-2 

Where, 

� is the total electricity demand, kWh; 

��t��  represents the electricity demand of the HVAC system, kWh; 

�C:9� represents the electricity demand of cold appliances, kWh; 

�"C� represents the electricity use related to activities of the household occupants, kWh; 

�98Bu� is the electricity demand of lighting, kWh; 
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�y8� is the time-invariant power demand that represents ubiquitous electricity use (e.g., lighting 

during other activities and stand-by electricity consumption of appliances), kWh. 

 

Power losses as a result of system inefficiencies, thermal dissipation, and electrical losses were 

considered in the demand simulation categories as further described in the following subsections. 

The detailed modeling of each demand category is presented in the following sections. 

 

4.2.2.1. HVAC demand 

In this study, the energy demand of HVAC includes the heating, ventilation, and air conditioning 

of a household. This demand is estimated based upon the manufactural characteristics of the 

selected HVAC system, the thermal comfort required by the occupants, climate characteristics 

(e.g., weather conditions), and the physical properties of the house (e.g., wall and window areas). 

Specifically, a typical air-based HVAC system was selected for the simulation due to the 

popularity of the system (U.S. Census Bureau, 2005). An approach based upon overall thermal 

resistance theory was applied to simulate the behavior of this system following (American Society 

of Heating, 2009). Python models were used for our simulation using minutely time step. The 

output was later scaled up to thirty-minute time step to fit the overarching modeling framework.  

 

Equation 4-3 presents the equation of thermal model of a house unit. The room air temperature 

(�q::0) was determined based upon the heat input from the heater and HVAC air flow rate capacity 

(��t��). 

 

����� �ur"�rq = ��ur"�rq  −  �q::0� ∙  O� ∙ ��t��    Equation 4-3 
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Where, 

����� �ur"�rq represents the heat flow from the heater into the room, kJ/hour; 

�ur"�rq is the temperature of hot air from heater, 50 °C; 

�q::0 is the current room air temperature, °C; 

O� is the heat capacity of air at constant pressure, kJ/kg∙°C; 

��t��  represents the air mass flow rate through heater, kg/hour. 

 

The thermal loss of a building was also estimated in each time step using Equation 4-4. 

 

����� �9:77r7 = 
�VVj a 
V��� ∙ 3.6   Equation 4-4 

Where, 

����� �9:77r7 represents the heat loss flow from the room into the outside, kJ/hour (1W=3.6 kJ/hour); 

�q::0 is the current room air temperature, °C; 

�:f� represents the time varying outside environment temperature, °C; 

T represents the equivalent thermal resistance of the house, K/W. 

 

Equation 4-5 presents the overarching guiding equation for HVAC-heating simulation. This 

equation reflects the thermal dynamic interactions between inside room and HVAC heater 

considering the thermal loss to the environment. 

 

�
�VVj�� = X�Al�∙Ch ∙ ~����� �ur"�rq − ����� �9:77r7�   Equation 4-5 

Where, 
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�
�VVj��  represents the temperature change of the room, °C/hour; 

�"8q is the mass of air inside the house, kg; 

O� is the heat capacity of air at constant pressure, kJ/kg∙°C; 

����� �ur"�rq represents the heat flow from the heater into the room, kJ/hour; 

����� �9:77r7 represents the heat loss flow from the room into the outside, kJ/hour. 

 

The air flow rate through HVAC (��t��) is estimated using equation 4-6. 

 

��t�� = XCh∙�
���� a 
{��l��� ∙ 
{��l�� a 
V���    Equation 4-6 

Where, 

O� is the heat capacity of air at constant pressure, kJ/kg∙°C; 

��r78qr is the desire temperature inside the house, 21.1∙°C; 

�:f� represents the hottest or coldest outside environment temperature when sizing HVAC, °C; 

T represents the equivalent thermal resistance of the house, K/W. 

 

T is calculated using Equation 4-7. 

 

T = ��i�V�W{�z@VV� + � XuV��∙��A@@ + ��A@@��A@@ + XulW∙��A@@�aX + � XuV��∙��lW{V� + ��lW{V���lW{V� + XulW∙��lW{V��aX +
+ XuV��∙���l@lWi + ���l@���l@ + XulW∙���l@-aX�aX

    Equation 4-7 

Where, 
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ℎ:f� and ℎ8Z are the outside and inside convective coefficients respectively; 

��"99  and ��8Z�:�  are the surface of walls and windows of the house in contact with the 

environment respectively; 

T�"99 and T�8Z�:� are the thermal resistances of the windows and walls respectively. 

The values of the above parameters used in this study are provided in the Table C-4 of the SI. The 

surface of walls and windows is estimated using the building information (including building 

stories and living area) from the City of Boston’s open-sourced GIS portal (COB, 2019). The air 

mass of the HVAC control volume of each building was estimated based upon the household living 

area and height. 

 

The worst summer and winter conditions (described in Table C-4 of the SI) were considered for 

validating the air flow rate through HVAC ( ��t�� ) and determining the target resulting 

temperature of the air from the HVAC furnace (showed in Table C-5 of the SI). The temperature 

of the air from the HVAC system during the summer was assumed to be 13°C following the 

suggestions from (American Society of Heating, 2009; Muratori et al., 2013). The HVAC model 

determines that each day simulated is either a heating or cooling day. This study also assumed that 

a tolerance of ±1°C of the desired temperature (21.1 °C/70 °F) was applied for simulating the 

control strategy (Muratori et al., 2013). 

 

Energy consumption of fans (cooling mode) for ventilation was estimated. The power absorbed by 

the HVAC equipment was estimated using motor efficiency (/0:�:q). The energy consumed by 

the fans was estimated using Equation 4-8 and 4-9. 
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�y"Z = 0����∙���V��zAW∙�jV�V�    Equation 4-8 

 

Δc�:� = c7�"�8C + � ���    Equation 4-9 

Where, 

�y"Z is the power consumption of the fans, kWh; 

��t�� is the HVAC air flow rate, kg/s; 

Δc�:� represents the total pressure drop, Pa; 

/y"Z  and /0:�:q  are the efficiencies of the fan and motor respectively, and �/y"Z ∙ /0:�:q� is 

assumed to be 0.15 (Walker et al., 2003); 

c7�"�8C is the static pressure drop, 135 Pa (Muratori et al., 2013); 

� is the air density, 1.225 kg/m3; 

d is the air velocity, 4m/s (American Society of Heating, 2009). 

 

The operation of heating or cooling mode of the HVAC system presents different energy 

consumptions. In the heating mode, the power needed to generate the heat can be used from either 

traditional furnace heating using fuels (e.g., natural gas, fuel oil) or electricity. When the traditional 

furnace heating is selected, the electricity consumption of the HVAC system is assumed to be 0. 

 

When the electric HVAC heating system is applied, the energy/electricity needed for heating is 

calculated using Equation 4-10. 

 

6r9rC�q8C��ur"�8ZB� = 0����∙Ch∙�
����a
A�XY�)s    Equation 4-10 
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Where, 

6r9rC�q8C and �ur"�8ZB both represent the energy needed or electricity consumption of heating, kWh; 

��t�� is the HVAC air flow rate, kg/s; 

O� is the air specific heat, kJ/kg K; 

��t�� is the HVAC supply air temperature, °C; 

�" is the air temperature inside the house, °C; 

?p� is the coefficient of performance which represents the thermal energy added to the house per 

unit of electric energy absorbed by the HVAC system, 2.5 (Muratori et al., 2013). 

 

During the summer operation, the HVAC system provides the functions of cooling and air 

humidity reduction. The total energy needed for these two functions is determined by the sensible 

heat ratio (SHR). SHR is the ratio between the sensible heat load (e.g., energy used for cooling) 

and total heat load. SHR was assumed to be 0.7 in this study (Llc, 2003). The electricity 

consumption of cooling in the summer is calculated through Equation 4-11. 

 

�C::98ZB = 0����∙Ch∙�
Aa
�����	��∙ ¡¢    Equation 4-11 

Where, 

�C::98ZB is the electricity consumption of cooling, kWh; 

��t�� is the HVAC air flow rate, kg/s; 

O� is the air specific heat, kJ/kg K; 

�" is the air temperature inside the house, °C; 

��t�� is the HVAC supply air temperature, °C; 

SHR is the sensible heat ratio, 0.7; 
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?p� is the coefficient of performance, 2.5. 

 

The total HVAC electricity consumption during the cooling days is therefore the sum of �y"Z and 

�C::98ZB. The HVAC simulation results as well as validation have been provided in the Section 3.1 

Residential demand simulation of the SI. 

 

4.2.2.2. Cold appliances demand 

The demand modeling of household cold appliances utilizes a similar method referred to (Muratori 

et al., 2013). The size (average nominal power rating) and number of the refrigerators or freezers 

in the house were used to estimate the electricity consumption and demand patterns of cold 

appliances. The impacts of external temperature and occupants opening the doors of those cold 

appliances were neglected following (Muratori et al., 2013). 

 

The average nominal power rating of a refrigerator was assumed to be 725W based upon the 

published statistics from the U.S. Department of Energy (Muratori et al., 2013). The overall annual 

electricity consumed by refrigeration in U.S. homes was estimated to be 6% of total residential 

electricity consumption in 2019 (EIA, 2020b). Moreover, the average annual electricity 

consumption for a U.S. residential utility customer was 10649 kWh in 2019 (EIA, 2020c). This 

study therefore assumed 639 kWh (6% of 10649 kWh) of annual energy consumption of cold 

appliances for one household. This work also assumed that a refrigerator is an on/off device that 

operates at its nominal power when on. Hence, the average operating time was estimated by 

dividing annual energy consumption by nominal power, which implies the cold appliance operates 

881 hours every year. 
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To simulate the electricity consumption of cold appliance, a Bernoulli distribution approach was 

applied (Weisstein, 2002). Specifically, the operation of cold appliance was assumed to be evenly 

distributed over one year, which takes around 10% of a year (881 hours/8760 hours). Therefore, a 

cold appliance was assumed running for three random 10-min intervals every 5 hours. As a result, 

daily energy consumption of about 1.74 kWh was yielded. Figure C-13 of the SI presents a 

simulated 1-day energy consumption profile of cold appliances in a household. 

 

4.2.2.3. Behavior-related demand 

The electricity consumption of activities of building occupants was estimated based upon the 

occupant behaviors simulation using the Markov chain model and power conversion factors (i.e., 

the wattage of appliances used when energy-related activities are conducted) (Muratori et al., 

2013). The following behaviors are simulated: sleeping, no-power activity, cleaning, laundry, 

cooking, automatic dishwashing, leisure, away (working), and away (not working). This study 

assumed that each household occupant is in one of these nine activity in every discrete time step 

following (Muratori et al., 2013). The change of an activity is determined by the transition 

probabilities at a certain time step. At each time step, a pseudorandom number is generated to 

determine which activity takes place.  

 

The number of household members, the transition probabilities for each occupant, and power 

conversion factors were model inputs in our behavior-related energy consumption model. The 

transition probabilities are derived from the American Time Use Survey (ATUS) data. Five typical 
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occupant types (including working males, non-working males, working females, non-working 

females, and children) with different associated transition probabilities are modeled. 

 

Specifically, the ATUS is conducted annually from a subsample of participants in the Consumer 

Preferences Survey administrated by the U.S. Bureau of Labor Statistics. The detailed data 

regarding the time allocation of American adults is publicly available through this survey. Daily 

activities of ATUS respondents were recorded in a minute timestep starting at 4 a.m. and ending 

at midnight. The information in terms of sex, age, working condition, and the number of the ATUS 

respondents for this study were provided in the Table C-7 of the SI. The percentage distributions 

of nine activities of five types of occupants over a day were presented in the Figure C-2 of the SI 

cleaned from the raw ATUS dataset.  

 

The transition probability for weekdays and weekends and for each minute of a day of one 

occupant type was estimated using Equation 4-12. 

 

c8,£�,0 = �¤∙Zl,¥,¤{,j
∑ ∑ �¤∙Zl,¥,¤{,j¥¤    Equation 4-12 

Where, 

p represents the transition probability; 

d indicates either weekdays (d = 1) or weekends (d = 0); 

� represents minutes of a day (m = 1,2,…,1440); 

i and j are the states of the occupant (activity transition from i to j) and j = 1, 2, …, 9 (1. Sleep, 2. 

No-power activity, 3. Cleaning, 4. Laundry, 5. Cooking, 6. Automatic dishwashing, 7. Leisure, 8. 

Away, working, and 9. Away, not working); 
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¦ represents the identification of the respondent/occupant type; 

§¨  is the weight placed on the respondent/occupant type from the ATUS (the weight of data 

relative to the total population); 

�8,£,¨�,0  is the number of transitions that respondent k makes from state i to state j during minute m 

of day d. 

 

The number of transitions of each 1-min timestep is counted. Sixty 1-min observations were 

counted for each occupant type for each hour. The transition probability metrices were generated 

for each 1-min time step. Later, 30 one-minute transition probability metrices were multiplied 

together to generate a 30-minute transition probability metric. 

 

In order to estimate the power demands of nine activities, the power conversion factors were 

applied to translate activity behaviors into electricity demands as presented in Table C-6 of the SI. 

The results and validation of the behavior-related demand simulation were provided in the Section 

C3.1. Residential demand simulation, Behavior-related energy consumption simulation of the SI. 

The simulated annual and typical daily behavior-related demand patterns of the selected 

community were presented in the Figure C-14 of the SI. Our simulation results were also compared 

with the ATUS dataset using regression analysis (Figure C-15 of the SI). Ten simulated one-day 

activity profiles of five types of occupants in a weekday and a weekend day were also presented 

in the Figure C-14 of the SI. Overall, our model provides ideal simulation results using ATUS data 

input to reflect human activities over time. 
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4.2.2.4. Lighting and fixed demand 

The energy consumption of lighting was also modeled based upon the amount of available natural 

lighting and building occupancy for each building. Two levels of electricity consumption for 

lighting (i.e., lighting power conversion factors) were considered (varied from day to night). This 

study assumed that electricity for lighting was consumed when there was at least one occupant in 

the house and doing activities other than sleeping. When there was no occupant in the house, the 

lighting demand was assumed to be zero. Occupants in the house or not and doing which activity 

depended on the previous activity simulation. 

 

Daily sunrise and sunset time of the city of Boston was obtained from NOAA (NOAA, 2021). 

Daytime lighting power conversion factor was used between the sunrise and sunset time, while 

nighttime lighting power conversion factor was used for the rest of the day (Figure C-3 of the SI). 

Daytime and nighttime lighting power conversion factors were assumed to be 125W and 330W 

respectively. The power conversion factor of fixed demand (i.e. constant electric consumption) 

was assumed to be 230W. Simulated one-day lighting electricity consumption patterns of the 

selected community in both weekday and weekend days were presented in the Figure C-17 of the 

SI. 

 

4.2.3. Household energy balance simulation 

The household energy balance simulation intends to allocate the generated solar energy to meet 

residential demand and sell to the grid. The generated solar energy was prioritized to meet the 

residential local demand. When there is surplus energy after meeting the local demand, the excess 

energy will be sold to the grid. This study assumes that this priority does not change during on-, 
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mid-, and on-peak periods. Grid sell was assumed to be unconstrainted following the current 

Massachusetts Net Metering policy (Mass.gov, 2020b). A more detailed model description can be 

found in Ren et al. (2020, 2021).  

 

4.2.4. Approach for scaling up 

The city of Boston, Massachusetts (MA) was selected as our testbed due to its solar potential and 

strong policy incentives. Specifically, information for the residential buildings selected and 

analyzed were obtained from the City of Boston’s open-sourced GIS data portal (COB, 2019). Key 

attributes including street name and number, living area, number of floors, and number of 

household units were obtained from this GIS data portal (COB, 2019). Around 68,000 residential 

buildings were investigated after the removal of the buildings that has more than 60 floors or 

without floor information following (Wikipedia, 2021), as presented in Figure C-1 (a) in the SI. 

Due to the high computational cost for simulation, a community located in the city of Boston was 

further selected for modeling (Figure C-1 (b) and (c) of the SI). This community was selected due 

to its similar household type percentages compared with the average household type percentages 

of the city of Boston (Table C-2 of the SI). Table C-3 in the SI presents the relevant residential 

information of the simulated community. Later, this community was scaled up to the Boston city 

level based upon the population proportion. 

 

The total rooftop area of each building was calculated using the living area divided by the number 

of floors obtained from the GIS data portal (COB, 2019). Later, the available rooftop for PV 

adoption of each building was estimated. The percentage of the total rooftop area on residential 

buildings that is suitable for PV adoption was assumed to be 26% following the suggestions from 
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the National Renewable Energy Laboratory (NREL) reports (Gagnon et al., 2016; Melius et al., 

2013). 

 

In order to simulate the demand pattern of each residential building in the selected community, the 

type(s) of household (types of occupant) in each building unit was determined using the 2010 U.S. 

Census Survey data. The percentages of various household types of the selected community were 

obtained from the 2010 U.S. Census Survey data. Eight household types including single-male 

household, single-female household, husband-wife family with one child, husband-wife family 

without child, single-male family with one child, singe-female family with one child, two-male 

household, and two-female household were considered. We randomly assigned a household type 

to a household unit in a residential building following these household type percentages (this 

process is presented in the Figure C-4 of the SI). The numbers and percentages of eight household 

types of the simulated community are provided in the Table C-8 of the SI. A total number of 209 

households with 370 occupants in 145 buildings were simulated. The working and non-working 

conditions of each simulated occupant was randomly assigned based upon the labor force 

participation rate. In this study, the labor force participation rates for males and females were 

assumed to be 69.2% and 57.4% respectively reported from the 2019 U.S. Bureau of Labor 

Statistics (BLS, 2020). 

 

In terms of regional HVAC demand simulation, the selected residential buildings using electric 

heater was determined based upon the random assigned function following the percentage of 15.3% 

(percentage of households using electric heating in Massachusetts) (Mass.gov, 2018). The 

buildings using cooling HVAC were randomly assigned proportionally following the suggestion 
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that 79% of the residential buildings use cooling equipment in Massachusetts (EIA, 2009). The 

simulated annual regional HVAC electricity consumption result of the selected community was 

presented in the Figure C-10 and Figure C-11 of the SI. 

 

The simulated overall regional residential demand of the community was later scaled up to the 

Boston city scale based upon the population proportion (Table C-3 of the SI). The average monthly 

electricity consumption per simulated household was estimated to be 596.03 kWh in our 

simulation, which is within the range of 583.0-887.4 kWh per U.S. household reported from EIA 

(EIA, 2020c). Another study reported the average monthly residential electricity consumption per 

Massachusetts housing unit is 583 kWh (EIA, 2018; PP-MASS, 2021). Moreover, the percentages 

of simulated electricity consumption of five categories were later calculated to compare with the 

real reported electricity use percentages in U.S. homes (EIA, 2015a). As shown in Table 4-1, our 

simulation results ideally reflect the electricity consumption contributions of a residential 

household. 

Table 4-1. Residential site electricity consumption by end use in this study and EIA report 

Source Cold appliances Behavior-related demand Fixed use HVAC Lighting 
This study 7.6% 24.6% 24.3% 34.4% 9.1% 

EIA 7.0% 51.0% 31.7% 10.3% 
 

The simulated results of the overall residential demand were provided in the Section C3.1. Overall 

residential demand of the SI (Figure C-18 of the SI). Overall, by comparing our simulated demand 

results with ISO-NE residential demand dataset, we found our simulation could effectively capture 

the features of the real reported demand pattern in terms of monthly average household electricity 

consumption and pattern seasonality (Figure C-19 of the SI). 
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The energy balance analysis and impact assessments were conducted for each selected individual 

building. For the purpose of determining the priority of residential buildings to install PV systems, 

we sorted the buildings based upon their available rooftop area for PV installation. The buildings 

with a larger available rooftop area for PV installation were assumed to install the system earlier. 

A larger rooftop area for PV installation usually represents a higher technical potential for solar 

generation, therefore may lead to a higher economic and environmental benefits incentivizing the 

PV hosts (Gagnon et al., 2016; Ren et al., 2020). We then calculated the total impacts for the target 

community. Lastly, the result was extrapolated from the selected community level to the whole 

Boston city level based upon the building number ratio. In this study, incremental percentages of 

PV adoptions at a city level was simulated. 25%, 50%, 75%, and 100% PV adoption percentages 

were used for result discussion. 

 

In this study, electricity rate designs of net metering and wholesale pricing were considered. Net 

metering represents the rates of the electricity used from the grid and sold to the grid from the PV 

systems were the same using the retail rate. In this study, a flat rate structure which utilizes a 

constant rate of 14.9 cents/kWh was used in this study for Boston area based upon National 

Renewable Energy Laboratory (NREL) and U.S. Energy Information Administration (EIA) 

estimations (EL, 2021). The wholesale pricing design reflects the scenario when the distributed 

residential solar PV systems enter the wholesale electricity market. The price for the sell to the 

grid from the solar generation is determined by the time-varying wholesale electricity rate. In this 

study, the wholesale electricity rates were estimated under different levels of PV adoption. The 

simulated new electricity retail rate was assumed to be the sum of new estimated wholesale 



84 
 

electricity rate, constant distribution energy charge (7.04 cents/kWh), and constant transmission 

charge (3.52 cents/kWh) reported from Eversource in Boston service area (Eversource, 2021). 

 

The impact of PV adoption on the wholesale electricity prices was estimated using an empirical 

equation. The wholesale electricity prices were referred to wholesale load costs as mentioned in 

ISO-NE database, which represent the large portion of total costs related to the provision of 

wholesale electricity including energy, capacity, ancillary, administration and other charges (ISO-

NE, 2020a). Compared with other types of electricity costs, the wholesale load cost was also 

selected as a popular indicator for electricity cost estimation (ISO-NE, 2020b). In this study, an 

empirical equation of the wholesale load cost was obtained based upon the historical minutely grid 

mix, daily generation by fuel type, and hourly wholesale load costs from the ISO-NE database as 

well as the monthly prices and revenue of fuels (for electric power) in the grid mix (Equation 13). 

All data was modified to a monthly time step. The grid fuel mix, daily generation by fuel type, and 

wholesale load costs of New England from October 2015 to October 2020 were collected from the 

ISO-NE databases (ISO-NE, 2020c, 2020d, 2020e). The fuel prices including natural gas, coal, 

petroleum liquids, nuclear, hydro-electric, and centralized renewables for electric power sector 

were collected from EIA 2015-2019 database (EIA, 2020d) (as provided in Table S091009 of the 

SI). The fuel revenue is assumed to be the product of the fuel price and the amount of fuel 

consumption. Since natural gas is the dominant marginal fuel use for power generation at the 

wholesale market based upon the ISO-NE grid mix database observation, this study assumed that 

the increase of solar penetration from decentralized PVs into the grid would lead to a decrease of 

natural gas usage (ISO-NE, 2020d). 
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Specifically, the linear regression was conducted using JMP® Pro 15.0.0 software. The minimum 

Akaike Information Criterion (AIC) was selected as the stopping rule. Both forward and backward 

directions were tested for the regression model. The regression result was presented as Equation 

4-13. 

 

��© = −9.34 + 3.03ea­�®8Z�,�¯SN®8Z�,� + 1.30ea­�)89,�¯SN)89,� + 5.92ea²�(³,�¯SN(³,�   

Equation 4-13 

 

Summary of Regression Fit 
R Square 0.833 

Adjusted R Square 0.824 

P Value < .0001 

Where, 

�� is the wholesale load cost in the month t, $/kWh, 

t represents the month in a year, t=1, 2, 3, 4 …12, 

�®8Z�,�, �)89,�, and �(³,� represent the U.S. electric power generation unit costs from wind source, 

petroleum oil, and natural gas fuels respectively in the month t, $/MWh, 

¯SN®8Z�,�, ¯SN)89,�, and ¯SN(³,� are the total electricity consumed from wind, oil, and natural gas 

power generation respectively in the month t, MWh. 

 

4.2.5. Technical impact assessment 

In order to assess the PV generation penetration into the grid during different time windows, off-, 

mid-, and on-peak periods were utilized in this study following a pilot study conducted by the 

Liberty Utilities. Three time periods including off-peak (0:00–8:00 and 19:00–24:00), mid-peak 
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(8:00–14:00), and on-peak (14:00–19:00) were applied for results presentation. Load reductions 

(kWh) in these three peak time periods were calculated using Equation 4-1. 

 

T9:"� = < �67:9"q + 67r99�=!��;    Equation 4-1 

Where, 

T9:"� represents the load reduction of the grid, kWh; 

67:9"q is the direct solar energy consumption to meet building demand, kW; 

67r99 is the grid sell from the PV system, kW. 

 

The percentage of solar energy use onsite was also calculated to reflect the energy reliance to the 

centralized utilities for the PV adopters in this study. The solar energy use onsite percentage was 

estimated as a percentage of direct solar energy consumption from the PV systems over the overall 

residential demand of the PV installed buildings. 

 

4.2.6. Economic impact assessment 

The life cycle cost (LCC) of the PV system for each selected residential building was estimated. 

The LCC of a PV system was calculated using the NPV of the capital cost, operation and 

maintenance (O&M) cost, and federal and state tax credit using Equation 4-14. The capital cost 

consists of the costs of panels and racking, inverters, permission, and labor. These costs have been 

reported in the Section B2 of the SI. The O&M cost includes the cost for actual grid use and the 

saving from sell to the grid from the PV system. All future costs were discounted to the year 2021 

using a discount rate of 6% (Freyman, 2021). 
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L?? = ?C − ?� + ∑ ~q��� <�g������aq��@@ <�g��@@����XY8�W �Z[}Z[>    Equation 4-14 

Where, 

L?? represents the LCC of a PV system, $; 

?C is the capital cost of the PV system; $; 

?� includes the federal tax credit (26% of the capital cost) and Massachusetts state tax credit (15% 

of the capital cost, up to $1000) for the PV system, $; 

L is the life span of the PV system, 20 years; 

xf7r is the electricity rate for grid use, $/kWh; 

6f7r is the actual grid use, kW; 

x7r99 is the electricity rate for grid sell from the PV system, $/kWh; 

67r99 is the grid sell from the PV system, kW; 

M is the discount rate, 6%; 

� is the year index. 

 

4.2.7. Environmental impact assessment 

The environmental impacts of the PV system in terms of cumulative energy demand (CED), water 

and carbon footprints were simulated. Life cycle stages of manufacturing, transportation, and 

operation were assessed using Equation 4-15. The manufacturing impacts of the PV system 

components were estimated using the entries from the EcoInvent 3.0. The operation stage 

considers the savings from both direct solar energy consumption and grid sell. The end-of-life 

phase was neglected. SimaPro 8.3 was applied for the characterization of the environmental 

impacts. The cumulative energy demand V 1.09 method, the Berger et al., 2014 Water Scarcity 

method, and the IPCC 2013 GWP 20a method were used for estimating CED, water, and carbon 
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footprints respectively. The SimaPro entries, unit cost and environment impact of the PV system 

components are provided in the Section B2 of the SI. 

 

e = e0 + e� − [�f <�6f + 67�=!]L   Equation 4-15 

Where, 

e represents the life cycle environmental impacts of a PV system, MJ, L, or kg CO2 eq.; 

e0 represents the environmental impacts of the PV manufacturing, MJ, L, or kg CO2 eq.; 

e� is the environmental impacts of the PV transportation phase, MJ, L, or kg CO2 eq.; 

�f represents the unit environmental impacts of the replaced grid use by the PV system, MJ/kWh, 

L/kWh, or kg CO2 eq./kWh; 

6f is the direct solar energy consumption from the PV system, kW; 

67 is the grid sell the PV system, kW; 

L is the life span of the PV system, 20 years. 

 

The �f of the CED and water footprint were estimated using the U.S. electricity grid supply entry 

from SimaPro (provided in the section B2 of the SI). To better reflect the dynamics of the carbon 

intensity of the New England grid, time-varying carbon emission units (�f,C"q2:Z) of the regional 

grid supply were used (Figure C-5 of the SI). �f,C"q2:Z were calculated based upon the 2019 New 

England utility fuel mix profile obtained from the Independent System Operator-New England 

(ISO-NE) database (ISO-NE, 2020d). The unit environmental impacts of each fuel type are 

provided in the Section B2. Table B-2 of the SI. 
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4.3. Results and Discussion 

4.3.1. Technical results 

Figure 4-2 presents the load reductions of 25%, 50%, 75%, and 100% PV adoption percentages. 

Even under 100% PV adoption scenario, only 39% of residential demand can be met through 

distributed rooftop PV generation. This indicates that distributed PV generation cannot be self-

sufficient to meet city residential demand, and other types of power supplies are indispensable. 

This also indicates that even smaller contribution of distributed solar generation can be used to 

commercial or industrial sectors. Moreover, the increase of load reduction benefit has been much 

constrained especially in high PV adoption rates. For example, the load reduction increased by 

only 87.7% when the PV adoption rate increased from 25% to 50%. This is because late PV 

adopters usually have a smaller PV system capacity due to a smaller available rooftop area for PV 

installation compared with the early adopters. Figure 4-3 further presents the load reduction change 

rates under varied adoption percentages. We found that load reduction performance increases 

dramatically during the initial 5.5% of PV adoption. Then this increase rate drops stably between 

the adoption rate of 5.5% to around 90% and later drops dramatically. This indicates that although 

100% PV adoption provides the largest load reduction, the initial 5.5% PV adoption presents the 

most effective load reduction performance than later adoptions. 
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Figure 4-2. Load reductions of 25%, 50%, 75%, and 100% PV adoption percentages 

 

 

Figure 4-3. Load reduction change rates under different adoption percentages 
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Figure 4-4 presents the load reductions and percentages of solar energy use onsite during off-peak, 

mid-peak, and on-peak periods under four PV adoption rates. Mid-peak hours present the highest 

load reduction and solar energy use onsite percentage (63.5%-69.5%); however, on-peak load 

reduction and solar energy use onsite percent (19.8%-22.8%) are largely limited, and off-peak load 

reduction and solar energy use onsite percent (5.0%-5.5%) are the lowest. This is because mid-

peak period has the largest amount of solar generation that was used locally and sold to the grid. 

On-peak and off-peak hours are usually in the late afternoon and early morning/night respectively 

when the solar radiation is much limited. For the ISOs, this indicates the importance of 

implementing energy storage and time-varying energy system control to match the solar use and 

solar grid feed-in time with the on-peak window to achieve the optimal on-peak grid load reduction. 

Moreover, the percentage of solar energy use onsite is in the range of 24.4%-26.8% with an 

average percent of 25.8% and decreases with the increase of PV adoption rate. This implies only 

around 26% of the local demand of the PV-installed households can be met by their PV system. 

Increasing PV adoption rate may increase the energy reliance to the centralized grid for the PV-

aggregated community. However, this increase is not significant. This indicates implementing 

uncontrolled PVs without energy storage may not be the optimal solution for the energy users who 

intend to increase energy security through eliminating grid reliance by PV adoption. 
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Figure 4-4. Load reductions of four PV adoption percentages during off-, mid-, and on-peak periods 
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designs to match the local demand with PV generation (especially during the winter months) to 

achieve an optimal peak shave outcome for the utilities. 

 

 

Figure 4-5. Simulated residential grid use by months (a), in a typical winder day (b), and a typical 
summer day (c) under different PV adoption percentages 
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However, the differences of the LCCs under these two rate designs are not significant, especially 

at the early adoption rate. This implies a potential equivalent economic interest in both NM and 

WS markets to the individual PV adopters. Our study also found the time-varying WS rate 

decreases with the increase of PV adoption percentages (as shown in the Figure C-24 of the SI) 

due to the replacement of natural gas fuel generation by distributed solar generation. However, 

compared with the overall electricity rate including the transmission and distribution rates, this 

WS rate change present insignificant impact to the overall rate in WS scenarios. When the PV 

adoption percentage is relatively small (0-10%), the NM and WS designs present similarly higher 

LCC compared with larger adoption scenarios. This is because although early PV adopters have a 

larger available rooftop area for PV installation (i.e. larger system generation capacity), they also 

present a higher utility cost for meeting larger local demand, and therefore lead to limited surplus 

solar generation to feed into the grid. When the PV adoption percentage is relatively large (10-

100%), the lowest LCC is achieved at around 70% adoption rate. This is because the PV systems 

adopted from 10-70% present lower LCCs compared with other adoption percent. These buildings 

usually have relatively large rooftop area for PV installation and low demand. Single-family low-

rise buildings are typically observed in this category. When the PV adoption percentage is larger 

than 70%, the LCC slightly increases with the increase of adoption rate. These late adopters usually 

have a limited rooftop size with a large demand. Residential multi-family and high-rise complex 

buildings are typical examples from our observation. Such results indicate that future guidance for 

the aggregation of distributed PV systems to enter the wholesale market may differ the residential 

building types to be able to achieve an optimal life cycle cost for the aggregated PV hosts. This 

also indicates potential different preferences for different types of house owners to install and 

aggregate PVs to join the WS market in terms of different LCCs.  
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Figure 4-6. Life cycle cost per PV-adopted building under different adoption percentages (the value in 
parentheses represents the LCC; asterisk represents the value of wholesale scenario) 
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this performance may drop into a flatland quickly with the increase of adoption rate. However, 

overall, the highest environmental benefit is still achieved at 100% adoption rate. 

 

 

Figure 4-7. (a) Life cycle environmental costs per PV-adopted building under different adoption 
percentages; (b) life cycle environmental cost change per adoption percent change 
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benefited load reduction and environmental performances can be achieved at the early 5% PV 

adoption indicating the recognition of positive influence of pioneer PV adopters. When the 

technical, economic, and environmental impacts are considered together, although early PV 

adoption performs the best technically and environmentally compared with late adoption, early 

adopters present relatively higher life cycle costs. 

 

4.4. Conclusion 

An integrated SDM, LCA, and LCCA modeling framework was developed to investigate the 

technical, economic, and environmental outcomes of PV implementations on residential building 

level. This building-level model was then converted into a Python model for regional PV adoption 

simulation. The feedback loop between the PV adoption and wholesale load cost was considered. 

The tradeoffs in terms of load reduction, LCC, carbon footprint, CED, and water footprints were 

assessed under varied PV adoption rates. The city of Boston, MA was selected as our testbed. We 

found the regional load reduction and environmental savings increase with PV adoption rate 

increase, but the effectiveness of the technical and environmental performances decreases with the 

increase of PV adoption rate. Although early PV adoption performs the best technically and 

environmentally compared with late adoption, early adopters present relatively higher life cycle 

costs. Moreover, our time-varying observation found a steeper ramp-up curve of the grid load 

under large penetration of solar PV systems in winter days; however, it provides load-shedding 

benefits during summer days due to large mid-peak load reduction of the PV adoption. This 

indicates the significance of implementing energy storage and relevant time-varying energy 

control strategies. Future studies may further include energy storage installation and related energy 

system management strategies to allow for a more dynamic simulation of PV adoptions to identify 
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the potential technical, economic, and environmental tradeoffs and further inform PV planning 

and management. 
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5. CHAPTER 5: CONCLUSION 

This dissertation proposed and developed a comprehensive modeling framework to investigate the 

technical, economic, and environmental impacts and tradeoffs of residential PV adoption on both 

individual building and city scales. A prototype residential building and a residential community 

located in the metro Boston area, Massachusetts, the United States were selected as our testbeds. 

System dynamics modeling (SDM) was applied in this study to capture the interactions between 

PV generation, local demand, and the grid. 

 

In Chapter 2, a dynamic life cycle economic and environmental assessment framework was first 

developed using SDM with the conventional LCA and LCCA for residential solar PV systems. 

Two types of PV systems including the GC and the SA systems designs were investigated. This 

framework was then applied to a prototype residential building located in Boston, MA. Our model 

effectively captured the direct solar energy use, solar energy store for later consumption, and grid 

sell or energy waste for the prototype house under the GC or SA system adoption. Solar energy 

generated, stored, and sold/wasted all present strong seasonal trends. The prototype house has the 

lowest monthly demand during summer, while the solar energy generation is the highest during 

the period. Hence, a larger amount of solar energy can be sold or stored during these months. 

Moreover, the optimized PV-battery system designs for achieving the highest demand met, 

economic saving, and environmental saving were simulated and compared for this prototype house. 

For SA systems, we identified the tradeoffs between demand met and life cycle cost, however, 

these tradeoffs can be best balanced through adjusting the number of PV panels installed. We also 

found a clear environmental and economic tradeoff when selecting the size of the SA systems. For 

GC systems, when there is no limit on when and how much excess solar energy can be sold to the 
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grid, both the economic and environmental benefits are the highest when no battery is installed, 

and the benefits increase with the increase of panel size. However, when policy constraints such 

as limitations/caps of grid sell are in place, tradeoffs would present as whether or not to install 

batteries for excess energy storage. Our results overall indicate the importance of PV-battery 

system design optimization and tradeoffs assessment to co-optimize the technical, economic, and 

environmental outcomes of PV adoption. 

 

In Chapter 3, a time-of-use utility rate design and typical PV-battery system control strategies were 

further implemented into our previous modeling framework to investigate the design and operation 

of solar PV-battery systems that can achieve grid, environmental, and economic co-benefits under 

TOU rate design for the prototype residential building. We found scenarios that maximize the 

selling/use of solar energy during the on-peak hours through battery installation and control can 

achieve the highest on-peak load reductions and economic benefits under the TOU rate design. 

However, they do not necessarily provide the highest environmental benefits, as on-peak hours in 

the New England grid have lower carbon emission and fossil fuel depletion factors as compared 

with the mid-peak hours. This indicates a potential tradeoff between the need for on-peak load 

reduction, economic saving, and environmental protection. From an environmental perspective, 

our finding demonstrates the necessity of better battery control or TOU designs that can effectively 

incentivize solar energy uses when the grid carbon intensity is the highest. Overall, installing a PV 

system alone presents relatively strong economic and environmental performances, but its on-peak 

load reduction is limited. Installing a battery system without an effective control strategy results 

in relatively weak peak-load reduction, economic, and environmental outcomes. This highlights 

the importance of effective battery control in the implementation of solar PV-battery systems. 
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In Chapter 4, we converted our previous building-level modeling framework into a regional-level 

PV adoption simulation and assessment modeling framework using Python. A residential demand 

model and a regional scaling up model were incorporated into the modeling framework. The 

feedback loop between the PV adoption and wholesale load cost was considered. The tradeoffs in 

terms of load reduction, LCC, carbon footprint, CED, and water footprints were assessed under 

varied PV adoption rates. The city of Boston, MA was selected as our testbed. We found the 

regional load reduction and environmental savings increase with the PV adoption rate increase, 

but the effectiveness of the technical and environmental performances decreases with the increase 

of the PV adoption rate. Although early PV adoption performs the best technically and 

environmentally compared with late adoption, early adopters present relatively higher life cycle 

costs. Moreover, our time-varying observation found a steeper ramp-up curve of the grid load 

under large penetration of solar PV systems in winter days; however, it provides load-shedding 

benefits during summer days due to large mid-peak load reduction of the PV adoption. This 

indicates the significance of implementing energy storage and relevant time-varying energy 

control strategies. 

 

While the studies presented in this dissertation provide important insights regarding the technical, 

economic, and social tradeoffs pertain to solar PV adoption at different scales, this research field 

might benefit from future studies in the following perspectives: 

 

• The technical, economic, and environmental performances and tradeoffs of PV adoptions vary 

by different local grid mixes, demand patterns, ambient environments, PV installation building 
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constraints, energy management strategies, solar energy incentives, utility rate designs, federal 

and state renewable regulations, associated with complex interests of individual energy users, 

policy makers, electric utilities, and energy balancing authorities. Future studies may 

investigate the impacts of PV adoption across various municipalities and climate conditions. 

 

• The installation of energy storage systems such as battery systems can be effective to 

coordinate the PVs, grids, and demand interactions, mitigate the load fluctuation impact from 

the PV systems, reduce the use of fossil fuel-based supplies, promote cost savings, and increase 

the energy security. However, the battery sizing and battery control strategies need to be better 

optimized considering the time-varying feedbacks between the PVs and grids to enhance the 

battery life cycle performance. Moreover, the improvement of battery technology (e.g., 

increase of charging and discharging efficiencies, decrease of the battery degradation rate and 

system component costs) is significant to increase the cost effectiveness of battery systems and 

reduce the life cycle cost and environmental impacts of PV-battery adoptions. 

 

• The proper selections of the tilt and angle of the PV panel installation are needed to optimize 

the amount of PV generation for meeting local demand and/or selling to the grid. Future studies 

may consider these indicators to better optimize the PV-grid balance. 

 

• The increasing applications of new emerging technologies such as the electric vehicles (EVs), 

vehicle-to-home systems, and heat pump systems could alleviate the reliance on fossil fuel-

based energy. However, such implementations potentially increase the need for electricity. It 

is therefore imperative to examine the performances of distributed PV-battery systems to 

accommodate these changes in real time. 
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• The cost saving of individual PV adopters may dissipate due to the increasing PV penetration-

induced decreasing grid solar sell prices when the feedback loop between the PV generation 

and the wholesale electricity cost is considered. It is therefore critical to reflect this changing 

cost saving in future economic assessment of PV adoptions and inform PV planning and 

management. 

 

• The impact from the end-of-life phase of the PV adoptions such as toxicity concerns from the 

disposal material should be considered in the life cycle assessment on a regional level. 

 

• The ongoing COVID epidemic has been affecting the residential demand pattern due to the 

change of human behaviors (e.g., work from home). It is essential to investigate how the 

rooftop PV adoptions affect the new demand pattern (e.g., peak time windows and load 

changes). It is also imperative to optimize the operational strategies of PV-battery systems to 

achieve the new balance of energy demand and supply (e.g., distributed PV generation and 

grid supplies) as well as the technical, economic, and environmental co-benefits. 
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A. APPENDIX A: SUPPORTING INFORMATION FOR CHAPTER 2 

Section A1. Literature review of life cycle studies of PV systems 

 
Life cycle cost assessments (LCCA) is a popular approach to assess the economic feasibility of 
solar PV systems (Adriana et al., 2012; Burns and Kang, 2012; Chandel et al., 2014; De Souza et 
al., 2017; Gürtürk, 2019; Lai and McCulloch, 2017; Rehman et al., 2007). The common objectives 
of these studies are assessing the financial viability of the PV systems (Chandel et al., 2014; De 
Souza et al., 2017; Gürtürk, 2019); informing energy policy and decision making (e.g., feed-in 
tariffs, net metering) (Burns and Kang, 2012; Carter, 2014; Hsu, 2012; Poullikkas, 2013); 
comparing PV systems’ economic performances at different locations (Rehman et al., 2007); and 
optimizing the solar PVs’ sizes (Adriana et al., 2012; Chel et al., 2009). These studies solely focus 
on the life cycle economic performance of the solar PV, while the environmental impacts/benefits 
of the PV systems have been neglected. Economic indicators such as levelized cost of electricity 
(LCOE) and investment payback time (IPBT) were usually selected for comparison in these studies. 
The previous reported LCOE ranges from 0.12-0.86 $/kWh, while the IPBT ranges from 7.5-34.2 
(Bhandari et al., 2015; K Branker et al., 2011; Price et al., 2010). Energy savings from solar power 
generation are commonly calculated on an annual or system lifespan basis using averaged data 
estimated based upon real-time solar radiation data. The dynamic demand and supply relationships 
were not considered. Due to the ample uncertainty of assessment assumptions in different studies 
(Darling et al., 2011), it is difficult to compare and evaluate the economic cost and benefit of 
optimal PV systems from different references (Adriana et al., 2012; Burns and Kang, 2012; 
Chandel et al., 2014; De Souza et al., 2017; Gürtürk, 2019; Hegedus and Luque, 2010; Lai and 
McCulloch, 2017; Price et al., 2010; SolarBuzz, 2011; Sutula, 2006). The choices of discount rate 
in the solar industry, system lifetime, system degradation, capital cost, grid parity, demand profile 
and financing and incentives including tax credit, tariff and rebate in these studies are constrained 
in selected geographical and temporal boundaries. This strong spatial and temporal boundedness 
could lead to a weak extensibility of previous LCCA studies to the future optimization assessment 
of the PV systems.  
 
Life cycle assessment (LCA) has been widely adopted to assess the environmental performance of 
solar PV systems (Akinyele et al., 2017; Alsema, 2012; Battisti and Corrado, 2005; Bergerson and 
Lave, 2002; Bernal-Agustín and Dufo-López, 2006; Beylot et al., 2014; Espinosa et al., 2011; 
Evans et al., 2009; García-Valverde et al., 2009; Gerbinet et al., 2014; B. Huang et al., 2017; Ito 
et al., 2008; Jungbluth et al., 2008, 2005; Kannan et al., 2006; Kreith et al., 1990; Kumar and 
Tiwari, 2009; M. Raugei, 2015; Mason et al., 2006; Meier, 2002; Nawaz and Tiwari, 2006; 
Nieuwlaar et al., 1996; Pacca et al., 2007; Peng et al., 2013; Raugei et al., 2007; Rawat et al., 2018; 
Schaefer and Hagedorn, 1992; Sherwani et al., 2010a; Tripanagnostopoulos et al., 2005; Tsang et 
al., 2016; Wu et al., 2017a; Xu et al., 2018). Carbon emission and cumulative energy demand are 
most chosen indicators to evaluate the environmental performance of solar PV systems with 
storage in these studies. Carbon emissions of various solar PV systems range from 9.4-280.0 g-
CO2-eq/kWhe, while cumulative energy demand payback time ranges from 0.8-15.5 years. The 
purposes of these studies are usually assessing the PVs’ environmental impacts at different sites 
with different environmental conditions (Akinyele et al., 2017; Nawaz and Tiwari, 2006; Rawat et 
al., 2018); comparing different types of PV modules and system components (Alsema, 2012; 
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Beylot et al., 2014; Espinosa et al., 2011; Gerbinet et al., 2014; Jungbluth et al., 2008, 2005; M. 
Raugei, 2015; Mason et al., 2006; Peng et al., 2013; Raugei et al., 2007); comparing the 
environmental impacts of solar PVs with other types of power supplies (García-Valverde et al., 
2009; Kannan et al., 2006; Kreith et al., 1990; Meier, 2002; Nieuwlaar et al., 1996; Schaefer and 
Hagedorn, 1992; Tsang et al., 2016; Wu et al., 2017a); assessing and comparing environmental 
impacts of PV lifecycle stages and processes (B. Huang et al., 2017; Xu et al., 2018); and 
comparing various PV systems’ configurations and designs (Battisti and Corrado, 2005; Evans et 
al., 2009; Gerbinet et al., 2014; Ito et al., 2011, 2008; Laleman et al., 2011; Pacca et al., 2007).  
 
Out of these LCAs, some have assessed the economic and environmental tradeoffs of various PV 
systems (Bernal-Agustín and Dufo-López, 2006; Ito et al., 2008; Kumar and Tiwari, 2009; 
Tripanagnostopoulos et al., 2005). The objectives of these studies are comparing different types of 
PV modules (Ito et al., 2008); testing different values of interest rate and energy tariffs (Bernal-
Agustín and Dufo-López, 2006); comparing different PV system configurations (Kumar and 
Tiwari, 2009); and assessing the PV system performances under the different weather conditions 
(Tripanagnostopoulos et al., 2005). Most of these studies applied annual and/or monthly average 
solar radiation and electricity demand data, or experimental observation data to estimate the life 
cycle economic and environmental impacts of the selected systems, which neglects the diurnal and 
seasonal patterns of electricity supply and demand (Bernal-Agustín and Dufo-López, 2006; Ito et 
al., 2008; Kumar and Tiwari, 2009; Tripanagnostopoulos et al., 2005). 
 

Table A-1. Cumulative energy demand (CED) and greenhouse gases (GHG) emissions of photovoltaics 
(PV) systems in previous studies 

Type of PV Energy factor GHG factor Note 

2.7 kW grid-connected 
(GC) mono-crystalline 

solar PV system 
EPBT: 6.74 years - System lifetime (years): 25  

mono-crystalline solar 
PV modules 

11 - 17.5 MWh/kW - 
Exploitation and preparation of raw materials, 

process energy, hidden energy of input materials 
and production equipment 

PV module 16 MWh/kW - 
From growth of the silicon crystalline ingot to 

module fabrication 
PV inverters 0.17 MWh/kW - - 

3 kW mono-crystalline 
residential rooftop solar 

PV modules, Japan 

17.70 MWh/kW 

91 g-CO2 eq./kWh 

From quartz (production of MG silicon) to 
module fabrication 

EPBT: 15.5 years for 1427 kWh/m2/year solar radiation 

12.4 MWh/kW 
Off-grade silicon (from semiconductor industry) 

to module fabrication 

35 W mono-crystalline 
solar PV modules 

40.55 MWh/kW, the 
energy yield ratio 
(EYR): 1.65-2.6 

64.8 g-CO2/kWhe 
India, manufacturing of silicon wafers to modules 

fabrication, peak output of 35 W and having 
efficiency of 13%; 20 years 

mono-crystalline solar 
PV modules 

13.78 MWh/kW - From mineral sand to module fabrication 

solar PV system - 217 g-CO2/kW he 
The GHG emission from electricity generation 

from the solar PV system 

oil-fired steam turbine - 937 g-CO2/kW he 

Life cycle cost of electricity generation from the 
oil-fired steam turbine plant is about 7.03 

cents/kWhe based on current market price of fuel-
oil price of 200 US$ per tonne 

natural gas-fired 
combined cycle 

- 493 g-CO2/kW he 
net efficiency of 50%, including the transmission 
and distribution loss; a gas price of US$ 5.34 per 

MMBTU 
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amorphous PV systems 
13,000 to 21,000 

kWh/kW 
3.360 kg-CO2/kWp 

The accumulated primary energy consumption 
for the construction of the photovoltaic power 

plants; CO2 for amorphous technology 
mono-crystalline solar 

PV system 
3.2 years 60.0 g-CO2/kWhe 

Efficiency (%): 14; lifetime: 30 years, 
Netherlands 

GC PV systems, rooftop 
installation 

2.5–3 years 

50–60 g/kWhe 
now and probably 
20–30 g/kWhe in 

the future 
production of PV modules and balance of system 

(BOS) components 
multi-megawatt ground 

mounted system 
3–4 years - 

PVL62 (photovoltaic 
laminates) and PVL136 
thin film (amorphous) 

modules 

371 MJ (primary 
energy) in materials; 
1490 MJ as process 

energy 

34.3 g-CO2 
eq./kWhe 

including BOS, inverter installations and 
transportation 

100 MW very large-scale 
PV (VLS-PV) systems 
(amorphous silicon (a-
Si) solar cell modules) 

- 
15.6-16.5 g-CO2 

eq./kWhe 
Gobi Desert; considering temperature of the 

desert 5.8 and 30.2 °C 

30 m2 amorphous solar 
PV system 

- 47 g-CO2/kWhe 
lifetime (years) and efficiency (%): 20, 10; 

Netherlands 
amorphous solar PV 

system 
2.7 years 50 g-CO2/kWhe 

lifetime (years) and efficiency (%): 30, 7; 
Netherlands 

8 kW amorphous solar 
PV system 

- 39 g-CO2/kWhe lifetime (years) and efficiency (%): 30, 5.7; US 

33 kW amorphous solar 
PV system 

3.2 years 34.3 g-CO2/kWhe lifetime (years) and efficiency (%): 20, 6.3; US 

100 MW amorphous 
solar PV system 

2.5 years 15.6 g-CO2/kWhe 
lifetime (years) and efficiency (%): 30, 6.9; 

China 
100 MW poly-crystalline 

solar PV system 
1.9 years 12.1 g-CO2/kWhe lifetime (years) and efficiency (%): 30, 12.8 

100 MW poly-crystalline 
solar PV system 

1.5 years 9.4 g-CO2/kWhe lifetime (years) and efficiency (%): 30, 15.8 

mono-crystalline silicon 
technology 

- 
5.020 kg-CO2 

/kWp 
- 

Mono-crystalline wafers 
of p-type silicon PVS 

4 years - India 

distributed 2.7 kWp solar 
PV system 

2.2 MJ/kWhe, EPBT 
4.47 years 

165 g-CO2 /kWhe 

Singapore; 36 mono-crystalline silicon modules 
(12 V, 75 Wp) mounted on a building rooftop 

with aluminium supporting structures and 
concrete blocks for the base; lifetime (years) and 

efficiency (%): 25,10.6 
2.7 kW mono-crystalline 

solar PV system  
5.87 years 217 g-CO2/kWhe 

lifetime (years) and efficiency (%): 25, 7.3-8.9; 
Singapore 

300 kW PV plant 
total embodied energy: 

16.5 GWh 

4205 metric tons 
of CO2; 280 g-CO2 

eq./kWhe 

Austin US, 3.5-acre field of 2620 m2 and having 
single crystal (mc) silicon cell; lifetime (years) 

and efficiency (%): 30, 8.5 

14.4 kWp (kW peak) PV 
system 

8 years 44 g-CO2 eq./kWhe 
UK; nominal area of 160 m2, less than 11,000 
kWhe AC output would be generated annually; 

lifetime (years) and efficiency (%): 30, 11.5 

1 kW grid-connected 
multi-crystalline silicon 

PV system 
3.3 years 

Carbon payback 
time (CPBT, 

years): 4.1; 26.4 g-
CO2/kWhe 

lifetime (years) and efficiency (%): 20, 10.7; 
Rome, Italy 

3 kWp PV and PV/T 
system 

2.9 years 104 g-CO2/kWhe 
Greece, 30 m2 with multi-crystalline (pc) silicon 

PV modules; lifetime (years): 20 

3.5 MWp multi-
crystalline PV 

total primary energy 
526–542 MJ/m2; 
EPBT: 0.21 year 

29–31 kg CO2 
eq./m2 

support structures are assumed to be 60 years, 
inverters and transformers are considered to have 

life of 30 years 
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33 kW KC120 multi-
crystalline modules (with 

BOS, inverter) 

1000 MJ primary 
energy in materials 

and 3020 MJ process 
energy; EPBT 5.7 

years 

72.4 g-CO2 
eq./kWhe (US 

conditions); 54.6 
g-CO2 eq/kWhe 

(European 
conditions) 

lifetime (years) and efficiency (%): 20, 12.92 

100 MW large-scale 
multi-crystalline PV 

system 
1.7 years 

12 g-CO2 
eq./kWhe 

Gobi Desert, tilt angle 20°; lifetime (years) and 
efficiency (%): 30, 12.8 

multi-crystalline silicon - CBPT: 3.37-8.04 - 
3 kW rooftop PV 

systems (solar-grade 
poly-crystalline silicon)  

- 
GHG emission 

53.4, 43.9 and 26 
g-CO2 eq./kWhe 

efficiency (%): 17; Japan 

12 different 3 kWp GC 
PV systems 

3–6 years 

39-110 g-CO2 
eq./kWhe (Swiss 
mix of 79 g-CO2 

eq./kWhe) 

- 

Nano-crystalline dye 
sensitized (NCDSC) 

system 
- 

19–47 g-CO2 
eq./kWhe (20 

years);78–188 g-
CO2 eq/kWhe (5 

years) 

lifetime (years): 5-30 

Amorphous PV system 2.5–3.2 years 15.6–50 g-CO2 eq./kWhe 
mono-crystalline type 3.2–15.5 years 44–280 g-CO2 eq./kWhe 

poly-crystalline solar PV 
systems 

1.5–5.7 years 9.4–104 g-CO2 eq./kWhe 

thin film PV systems 0.75–3.5 years 10.5–50 g-CO2 eq./kWh 
mono-Si PV systems 1.7 - 2.7 years 29 - 45 g-CO2 eq./kWh 

high-concentration PV 
system 

0.7-2.0 years - - 

manufacturing silicon 
solar cells (terrestrial 
cells and space cells) 

12-24 years - - 

PV modules in 
commercial production 

lines 

1.2 (amorphous silicon 
modules) and 2.1 years 

(crystalline silicon 
modules) 

- France 

producing PV modules 
in manufacturing 

4 years - India 

multi-Si PV module 1145 kW ht/m2 - 
cell accounts for 970 kWht/m2, frame accounts 

for 175 kWht/m2 
crystalline silicon PV 
modules (mono-Si PV 

module) 
4160 to 15520 MJ/m2;  - total energy requirement: 11670 MJ/m2 

open field and roof-top 
PV systems 

1710 and 1380 
kWhe/m2 (7-26 years) 

- - 

 
Some studies incorporated dynamic process modeling using dynamic supply and demand 
data/pattern to assess the technical, economic, and/or environmental performances of solar PV 
systems (Akinyele and Rayudu, 2016a, 2016b; Allouhi et al., 2019, 2016; Berwal et al., 2017; 
Bilich et al., 2017; Bortolini et al., 2014; Diaf et al., 2008; Hondo, 2005; Jones et al., 2018; Kazem 
et al., 2017; Lee et al., 2018a; Poullikkas, 2013; Uddin et al., 2017; Zhang et al., 2016). Table 2-1 
presents literature review summary of these dynamic life cycle studies. 
 
Several LCCA studies considered the diurnal and seasonal dynamics in their analyses. Kazem 
(Kazem et al., 2017) used hourly weather data including solar irradiation, temperature, relative 
humidity and wind speed to estimate the potential energy generation from a 1 MW grid-connected 
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(GC) power generation plant in Adam, Oman. MATLAB was used to optimize the PV size for the 
highest economic benefit. This study solely modelled the PV system from power generation side 
without considering the demand-side dynamics. 
 
Lee et al., (2018) used hourly solar radiation data, building and price information databases, and 
ArcMap 10.1 to estimate the economic potential of rooftop grid-connected solar PV systems for 
each building in the urban area of Seoul in South Korea. They found the annual economic potential 
of the rooftop solar PV system could supply up to 4.48% of the annual electricity consumption in 
the Gangnam district as of 2016, South Korea (Hong et al., 2017; Lee et al., 2018a). 
 
Uddin et al., (2017) examined the influence of battery degradation on the technical and economic 
performances of solar PV system with battery storage of a residential mid-size family house in the 
UK. This study found integrating electric energy storage with solar PV showed no economic 
benefits due to the degradation caused by high frequency cycling of small 2-kWh battery during 
operations (Uddin et al., 2017). However, this study did not consider possible control strategies of 
the solar battery and only one panel size has been tested. 
 
A few LCAs have considered the dynamics involved in the solar PVs’ environmental performances. 
Bilich (2017) applied hourly solar insolation, the average daily electricity demand, and the peak 
electricity demand to test three smart grids designs for a model village in Kenya. PV-battery, PV-
diesel, and PV-hybrid smart-grid designs were tested on the environmental indicators of climate 
change, particulate matter, photochemical oxidants, and terrestrial acidification for this village. 
Excel and Gabi were applied to determine the system sizes and further verified using HOMER 
software. In addition, this study also compared the environmental impacts of Cadmium telluride 
(CdTe) and Monocrystalline silicon (Mono-Si) PV modules as well as lithium-ion (Li-Ion) and 
Lead acid (PbA) batteries (Bilich et al., 2017). The system sizing methodology in this study 
including HOMER is based upon the technical and economic performances of the selected 
distributed systems, and the environmental concern is not addressed in their sizing simulations. 
 
Akinyele et al. (2016 a&b) applied dynamic life cycle economic and environmental assessments 
to evaluate the technical, economic, and environmental performances of standalone (SA) solar PV 
systems in off-grid communities under demand load growth scenarios. Different from other studies, 
battery storage was modelled. Detailed battery state of charge (SoC) and reliability analysis (using 
loss of energy probability and the availability as two indicators) were selected as important 
technical storage indicators. In addition, this study specifically considered temperature losses, 
losses due to the incomplete utilization of solar irradiation, and balance of system (BOS) losses in 
the load assessment (Akinyele and Rayudu, 2016a, 2016b). These two studies tested the 
performance of solar PV considering system losses under demand growths, but the array and 
battery sizing only considered the loss of energy probability and the availability. 
 
Jones et al. (2018) combined LCIA with discounted cash-flow analysis to assess the carbon 
footprint and financial impact of battery storage in grid-connected PV systems in a non-domestic 
building in UK. This study specifically assessed the impact of battery storage within a grid-
connected PV system. To reflect the financial attraction to non-domestic building owners, this 
study tested various cost reduction and rate scenarios. In addition, life cycle emissions of the PV 
system with and without battery were calculated and compared to better understand the role of 
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solar battery on environmental benefits. This study found that battery storage does not necessarily 
increase CO2 savings and costs of battery need to be reduced rapidly to make solar battery more 
financially attractive in the UK (Jones et al., 2018). However, only one panel size is modelled and 
tested. The CO2 emissions intensity of the electricity grid was based on the yearly average of the 
UK national grid. 
 

Table A-2. Literature review summary of dynamic life cycle assessment studies 

Ref. 

(Akinyele 
and Rayudu, 

2016a) 

(Akinyele 
and Rayudu, 

2016b) 

(Bilich et al., 
2017) 

(Jones et 
al., 2018) 

(Kazem et 
al., 2017) 

(Lee et 
al., 

2018a) 

(Uddin et 
al., 2017) 

Year 2016 2016 2016 2018 2017 2018 2017 

Location 
Bauchi State, 

Nigeria 
Gusau, Zamfara 

State, Nigeria 
Kenya UK 

Adam city, 
Oman 

Seoul, 
South Korea 

UK 

Model objective 
24-household 

community 
Small 

community 
Off-grid 

communities 

Non-
domestic 
building 

Power 
generation 

plant 

All building 
in urban 
district 

3-bedroom 
house 

PV type SA SA SA GC GC GC GC 

PV capacity 40 kW 40.4 kW 
6.42 and 1.22 

kW 
20 kW 1 MW 

Solar 
potential 

4kW 

Capacity 
source 

IEEE and IEC 
guidelines 

IEEE guideline 
and Homer 

Estimation 
through Excel, 

verified by 
Homer 

Given Given  ArcGIS Give  

Module type N/A crystalline CdTe Mono-Si N/A N/A Mono-Si 
Battery type N/A N/A Li-Ion Li-Ion N/A N/A Li-Ion 

Battery size N/A N/A 
Homer 

determined 
20 kWh N/A N/A 2 kWh 

System lifespan 25 years 25 years 25 years 30 years 25 years 25 years 1 year 

Battery 
indicator 

Detailed battery 
state of charge 

Detailed battery 
state of charge 

N/A 

Battery 
efficiency, 

battery 
energy loss  

N/A N/A 

Calendar 
ageing, capacity 

throughput, 
ambient 

temperature, 
state of charge, 

depth of 
discharge and 

current rate 

Technical 
indicator 

System output, 
energy 

production, yield 
and losses, and 

efficiency, 
Reliability 

analysis: unmet 
energy demand, 
loss of energy 
probability and 
the availability; 

temperature 
losses; losses 

due to the 
incomplete 
utilization of 

solar irradiation; 
balance of 

System (BOS) 
losses 

Load demand,  
system 

reliability: the 
unmet demand, 
loss of energy 
probability and 
the availability 

(similar indexes 
as previous) 

Unmet demand N/A 

Capacity 
factor, yield 

factor 
(consider wire 

and 
temperature 

inverter 
losses), 
optimum 

system factors 
including 
capacity 

factor, yield 
factor, PV 

energy 
production, 
optimum 

inverter were 
obtained from 

MATLAB 
code. 

Technical 
potential 

assessment 
through 
ArcGIS-

considering 
geographic 
constraints 
(available 

rooftop 
area) 

N/A 

Economic 
indicator 

Annual life cycle 
cost including 

diesel fuel cost; 
the unit cost of 

energy  

Life cycle cost 
similar as last 

Ref. 
N/A 

Net present 
value 

Life cycle cost, 
cost of energy 

Life cycle 
cost-

profitability 
and 

economic 
potential: 
return on 

investment 
and payback 

period 

annual revenue 
from installing 
a PV-battery 

Environmental 
indicator 

Life cycle 
amount of fuel 

saved, the 
emissions 

minimized, the 

Life cycle 
impact: 

emission rate, 
GWP, CED, 

energy payback 

Climate 
change, 

particulate 
matter, 

photochemical 

Life cycle 
carbon 

emission 
N/A N/A N/A 
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global warming 
potential 

time, energy 
return on 

investment 

oxidants, and 
terrestrial 

acidification 
Other power 

source 
Diesel power 

plant/generator 
Diesel power 

plant/generator 
diesel UK grid  N/A N/A UK grid 

Grid mix Info. N/A N/A N/A 
UK national 

grid 
N/A N/A N/A 

Geospatial Info. N/A N/A N/A N/A N/A 
Spatial 

diversity 
N/A 

Scenario setup 
Load demand 

growth 
Load demand 

growth 

PV-Battery, PV-
Diesel; PV-

Hybrid 

Cost 
reduction 
scenario, 
electricity; 
retail price 
scenario 

N/A 

Subsidy 
scenario; 

self-
consumption 

and 
business 
scenarios 

N/A 

Dynamic 
process 

modeling 

Battery and 
system losses 

modeling 

Battery and 
system losses 

modeling 

Scenario-based 
simulation 

cost 
reduction and 

rate 
scenarios 

System 
optimization 

algorithm  

GIS 
combined 

with 
scenario 

simulation 

Battery 
degradation 

model 



Section A2. Comparison of typical modeling tools for accessing PV systems 
 

Table A-3. Comparison of SD-based modeling framework (this dissertation), Hybrid Optimization of Multiple Energy Resources (HOMER), and 
System Advisor Model (SAM) 

Method 
Dynamic life cycle economic and 

environmental assessment modeling 
framework (this study) 

HOMER 
SAM 

HOMER Pro HOMER Grid 

Main objective 

Comprehensive and integrative technical, 
economic and environmental decision 

informing on distributed and grid-
connected solar power supply systems 

Technical-
economic 

optimization of 
microgrids, remote 

utilities, and 
distributed 

generation systems 

Technical-
economic 

optimization of 
grid-connected 

solar plus storage 
or other hybrid 
grid-connected 

distributed 
generation systems 

Techno-economic model that facilitates 
decision-making for people in the 

renewable energy industry 

Developer  
HOMER Energy LLC., U.S. National 

Renewable Energy Laboratory (NREL) 

U.S. Department of Energy and NREL, 
Sandia National Laboratories; The 

University of Wisconsin 
Year firstly developed This study 1993 August 2007 

Target user 
PV hosts, utility operators, energy-related 

decision makers, system engineers 
PV hosts, micro-grid engineers and 

operators, energy-related decision makers 

Project managers and engineers, policy 
analysts, technology developers, 

researchers 

software Vensim HOMER 
The SAM Simulation Core (SSC) 
software development kit (SDK) 

Adaptable software  N/A 
C/C++, C#, Java, Python, MATLAB, 

Excel, TRNSYS  

Modeled system 
Residential standalone and grid-

connected solar PV systems with or 
without battery storage 

Solar photovoltaic (PV), wind turbine, 
generator: diesel, electric utility grid, 
traditional hydro, run-of-river hydro 
power, biomass power, generator: 

gasoline, biogas, alternative and custom 
fuels, cofired, microturbine, fuel cell; 

energy storage: flywheels, customizable 
batteries, flow batteries, hydrogen 

Photovoltaic, concentrating solar power, 
solar water heating, wind, geothermal, 

biomass, and conventional power 
systems 

Financial model indicator 
Life cycle cost (net present value), 

investment payback period (costs of 
initial construction, component 

replacements, maintenance); revenues 
include income from selling power to the 

grid 

Levelized cost of electricity Levelized cost of energy 

Economic Metrics 

life-cycle cost (net present value), 
levelized cost of energy (costs of initial 
construction, component replacements, 

maintenance, fuel, plus the cost of buying 
power from the grid and miscellaneous 
costs such as penalties resulting from 
pollutant emissions; Revenues include 

Residential and commercial projects: 
levelized cost of energy, electricity cost 

with and without renewable energy 
system, electricity savings, after-tax net 
present value, payback period; power 
purchase agreement (PPA) projects: 

levelized cost of energy, electricity sales 

11
1 
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income from selling power to the grid, 
plus any salvage value that occurs at the 

end of the project lifetime.) 

price, internal rate of return, net present 
value, debt fraction or debt service 

coverage ratio; project annual cash flows: 
revenues from electricity sales and 

incentive payments, installation costs, 
operating, maintenance, and replacement 

costs other payments 

Environmental indicators 
LCA: life cycle CED, carbon, and water 

footprints 

Carbon dioxide (CO2), carbon monoxide 
(CO), unburned hydrocarbons (UHC), 
particulate matter (PM), sulfur dioxide 

(SO2), and nitrogen oxides (NOX) 

N/A 

Environmental impacts result from 
Life cycle stages (from manufacturing to 

operational stages, end-of-life not 
considered) 

Annual production of electricity/thermal 
energy by generators/boiler; consumption 

of grid electricity (if connected) during 
the system operational stage 

N/A 

Environmental impacts factor 
Environmental impacts factor (CED, 

water, carbon footprints per unit of grid 
supply, kWh) 

Emissions factor (kg of pollutant emitted 
per unit of fuel consumed) 

N/A 

Simplified equation for calculating 
environmental impacts 

life cycle environmental 
impacts=environmental impacts of 

systems manufacturing and O&M + grid-
related environmental impacts (if 

connected) 

Annual emissions of certain pollutant 
(kg/yr)=emissions factor * total annual 

fuel consumption 
N/A 

Grid-related environmental impacts 
calculation 

Life cycle net grid usage * environmental 
impacts factors (calculated from Simapro 

based on chosen grid mix) 

Annual net grid purchases (kWh, total 
annual grid purchases minus the total grid 
sales) * emission factor (g/kWh) of each 

pollutant 

N/A 

Model structure 
Solar generation, energy balance and 

energy storage simulation incorporated 
with LCCA and LCA 

System output, battery performance, and 
related loads calculations 

User interface, calculation engine, 
programming interface 

Examples of input variables 

Solar radiation profiles, Energy 
consomption profiles, environmental 
profile (ambient temperature, wind 

speed), utility rate profile 

Type of energy source, initial investment, 
choice of various system components 

Weather data, costs data, PV system data, 
utility data, tax and other incentive 

variables 

Source code availability   
Not available. The general description 

available in online manual 

Not available, reference manuals 
describing the algorithms in each of the 

performance model modules are available 

Time step and horizon 
30-minute time step over one year for 

simulation and 25-year system lifespan 
for LCCA and LCA 

Hourly to minutely time step over one 
year 

Hourly step over one year 

Other function  
The environmental impacts of chosen 
systems can be provided (emissions) 

Sensitivity analysis 

limitation  
Technical and economic perspective 

sizing only 
Cannot model hybrid power systems; 

battery storage not included 

11
2 



113 
 

Section A3. Additional methodology description 

 
To validate the PV cell temperature (�, °C) calculated through Equation 2-2 in Chapter 2 with the 
consideration of the cooling effect of wind on PV panels, Sandia Module Temperature Model 
(Equation A1) and Faiman Module Temperature Model (FMT) (Equation A2) were also 
implemented in this modeling framework (Faiman, 2008) and wind speed (´, m/s) data of Boston 
from NSRDB was also applied in the model as the case study. 
 � = ��N"Y2®� + �"      Equation A1 
 � = �" + � �µ;Yµ¶®�        Equation A2 

 
Where, �  represents the PV cell temperature in the current time step, °C; �"  is the ambient 
temperature in the current time step, °C; � is the solar radiation striking the PV array in the current 
time step, kW/m2; ´ is the wind speed (m/s); ¯> is the constant heat transfer component, W/m2K; 

X̄ is the convective heat transfer component, W/m2K. · and ¸ are parameters that depend on the 
module construction and materials as well as on the mounting configuration of the module. In this 
study, a is -3.560 and b is -0.075 (Stein, 2012). Faiman (Faiman, 2008) measured solar irradiance, 
wind speed, and module temperatures on seven types of modules and found the values of ¯> and 

X̄. In this study, ¯> is 25 and X̄ is 6.84 W/m2K. 
 
In the battery storage model, this study also applied the Kinetic Battery Model (HOMER, 2017; 
Manwell and McGowan, 1993) to calculate the electricity energy charging and discharging 
capacities, which indicate the capacities of absorbing and withdrawing energy from the battery 
storage at each time step. In the kinetic battery model (Manwell and McGowan, 1993), the total 
amount of energy stored in the battery at any time (¹, kWh) is the sum of the available (¹X, kWh) 
and bound energy (¹�, kWh) as Equation A3. ¹, ¹X ·�= ¹�were assumed to be 0 kWh at the first 
timestep. The equations to calculate the ¹X and ¹� in each time step are provided, Equation A4 
and A5. The maximum battery charge capacity (�̈ , kW) and maximum battery discharge capacity 
(�′, kW) were calculated in each time step based upon Equation A4 and A5 respectively (Manwell 
and McGowan, 1993). ¹ and ¹X indicate the battery state of charge and reveal the most recent 
charge and discharge history of the battery. The storage capacity of one battery of 1.02 kWh (B) 
and the number of batteries installed in the BES (m) indicate the total capacity of the BES. The 
storage capacity ratio (C) and the storage rate constant (K) were assumed to be 1 (HOMER, 2018, 
2017). 
 ¹ = ¹X + ¹�      Equation A3 
 
Where, ¹ represents the total amount of energy stored in the battery, kWh; ¹X is the available 
energy, kWh; ¹� is the bound energy, kWh. 
 �̈ = ½�¶rm¾∆�Y�½��Xarm¾∆��Xa rm¾∆�Y��½∆�aXYrm¾∆��                Equation A4 

 �′ = a½�À0Y½�¶rm¾∆�Y�½��Xarm¾∆��Xa rm¾∆�Y��½∆�aXYrm¾∆��       Equation A5 
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Where, �̈  represents the maximum battery charge capacity through Kinetic Battery Model, kW; �′ represents the maximum battery discharge capacity, kW; ¹X  is the available energy in the 
storage at the beginning of the time step, kWh; B is the storage capacity of one battery, 1.02 kWh; 
m is the number of battery installed in the BES; ¹ is the total amount of energy in the storage at 
the beginning of the time step, kWh; C is the storage capacity ratio, 1; K is the storage rate constant, 
1; Δt is the length of the time step, thirty minutes. 
 
Except Kinetic Battery Model (Manwell and McGowan, 1993), this study also considered other 
two limitations to calculate the maximum capacity of charging into battery storage, which were 
battery storage limitation and charge current limitation (HOMER, 2017). Equation A6 presents the 
calculation of maximum battery charge capacity through battery storage limitation and equation 
A7 shows the calculation of this capacity with the limitation of charge current. The storage’s 
maximum charge rate of 0.98 A/Ah (�C), the storage’s maximum charge current of 270 A (e0"�) 
and the storage’s nominal voltage of 3.7 V (ÁZ) were used in the simulation (HOMER, 2018). 
  �7 = �À0a���XarmÂ�∆��∆�       Equation A6 

 �C = 0ÃjAÄtWX>>>                     Equation A7 

 
Where, �7  represents the maximum battery charge capacity with battery storage limitation, kW; �C  represents the maximum battery charge capacity with charge current limitation, kW; B is the 
storage capacity of one battery, 1.02 kWh; m is the number of battery installed in the BES; ¹ is 
the total amount of energy in the storage at the beginning of the time step, kWh; �C is the storage’s 
maximum charge rate, 0.98 A/Ah; Δt is the length of the time step, thirty minutes; e0"� is the 
storage’s maximum charge current, 270 A; ÁZ is the storage’s nominal voltage, 3.7 V. 
 
In our study, the least of three values: �̈ , �7, and �C, was assumed to be the maximum storage 
charge capacity after charging losses in the model (HOMER, 2017), as shown in Equation A8. The 
storage charge efficiency (/) of 89.4% was used (HOMER, 2017). 
 � = �Ã(�s¤,s�,s���        Equation A8 

 
Where, � represents the maximum battery charge capacity in the model, kW; / is the storage 
charge efficiency, 89.4%. 
 
Figure A-1 presents the tiered cost of labor for the installation of solar PV systems (HomeAdvisor, 2019). 
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Figure A-1. The tiered cost of labor for solar PV system installation (HomeAdvisor, 2019) 

 
Section A4. Additional results 
 

 

Figure A-2. Percentage of demand met through solar energy in PV systems
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Figure A-3. Environmental and economic payback time of grid-connected (GC) PV systems 
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Figure A-4. Environmental and economic payback time of standalone (SA) PV systems 
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Figure A-5. Investment payback time (IPBT) of SA and GC PV systems 
 

 

Figure A-6. EPBT, CPBT and WPBT of SA and GC PV systems
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Figure A-7. Environmental impact intensity of SA (upper row) and GC (under row) PV systems (Orange color represents life cycle CED, MJ; 
green color represents life cycle carbon footprint, kg CO2 eq; blue color represents life cycle water footprint, L. Lighter color represents larger life 

cycle environmental impacts. Grey cells represent positive life cycle environmental impacts.)
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Figure A-8. Effects of increasing and decreasing the discount rate and the environmental impact units by 50% on life cycle costs, IPBT, life cycle 
environmental costs and environmental payback time
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Table A-4. Effects of increasing and decreasing the discount rate (5%) by 50% on IPBT and life cycle 
cost of SA and GC PV systems 

IPBT (years) SA GC 

NPV 2.5% 14.3 13.3 

NPV 5% 18.5 16.8 

NPV 7.5% 30.6 25.2 

 
 Type of PV system SA GC 

IPBT (years)_2.5% -22.7% -20.9% 

IBPT (years)_7.5% 65.4% 50.2% 

Life cycle cost ($)_2.5% -529.0% -243.8% 

Life cycle cost ($)_7.5% 383.6% 176.8% 

 
Table A-5. Effects of increasing and decreasing the environmental impact units by 50% on life cycle 

environmental savings of GC PV systems 

Value change CED (MJ) Carbon footprint (kg CO2 eq) Water footprint (L) 

50% 1.0E+06 8.6E+04 4.8E+06 

100% 2.3E+06 1.9E+05 9.9E+06 

150% 3.5E+06 2.9E+05 1.5E+07 

 
PBT change EPBT CPBT WPBT 

50% 4.10 3.08 1.24 

100% 2.05 1.54 0.62 

150% 1.37 1.03 0.41 

 
Table A-6. Effects of increasing and decreasing the environmental impact units by 50% on life cycle 

environmental savings of SA PV systems 
 Energy Savings Life Cycle (MJ) CO2 saving life cycle (kg CO2 eq) water saving life cycle (L) 

50% 9.4E+05 8.1E+04 4.5E+06 

100% 2.1E+06 1.8E+05 9.4E+06 

150% 3.3E+06 2.7E+05 1.4E+07 

 
 Energy payback time (yr) Carbon payback time (yr) Water payback time (yr) 

50% 4.31 3.23 1.31 

100% 2.15 1.62 0.65 

150% 1.44 1.08 0.44 

  

Life cycle cost ($) SA GC 

NPV 2.5% -4748.1 -5979.7 

NPV 5% -754.9 -1739.4 

NPV 7.5% 2141.1 1335.8 
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B. APPENDIX B: SUPPORTING INFORMATION FOR CHAPTER 3 
 

Section B1. Solar PV’s relevant energy management strategies 
 

Net metering and time-of-use utility rates have been implemented and adjusted to meet the 
increasing needs of renewable and distributed energy technologies such as solar PV systems in the 
overall power supply system (Bazmi and Zahedi, 2011; Eid et al., 2014; SEIA, 2019b). Net 
metering policy is one of the most important incentives that supports residential energy users to 
implement solar PV systems in their energy systems (Poullikkas, 2013). Massachusetts, as well as 
most other states in the U.S. which have issued net metering policy, allow property owners to send 
electricity generated via solar PV system to the grid, and as a return, energy credit will be refunded 
on future electric bills for the surplus energy produced by the PV (Heeter et al., 2014). Besides, 
there is also a growing interest in policies and management strategies to reduce peak demand by 
managing electricity use or shifting the demand to non-peak times (Albadi and El-Saadany, 2008). 
One of the most effective and popular strategies is the time-of-use (TOU) program. A few states 
in the U.S. like California have been implementing this policy (Herter et al., 2007; Herter and 
Wayland, 2010). Because of the differential fluctuate prices during a day, TOU program brings 
opportunities and incentive to energy users to install solar PV systems and battery storage systems 
to maximize their economic benefits as well as potential environmental benefits. 
 
Besides the policy-level effort, increasing attention has been paid to the alternative demand 
response (DR) strategies (Hopper et al., 2006; Karami et al., 2014; Prüggler, 2013; Zheng et al., 
2015). DR is a term defined as “changes in electric usage by end-use customers from their normal 

consumption patterns in response to changes in the price of electricity over time, or to incentive 

payments designed to induce lower electricity use at times of high wholesale market prices or when 

system reliability is jeopardized” (Erdinc, 2014; Venkatesan et al., 2012; Zhao et al., 2013). These 
strategies including battery storage dispatch strategies show potential on the alleviation of grid 
stress from the demand side. Renewable and distributed energy supply systems (e.g., solar PV 
systems) coupled with battery storage are usually popular choices in current energy markets 
(Agnew and Dargusch, 2015). Compared with the large-scale, utility-based practice, customized 
distributed energy systems with storage in residential, commercial, or industrial settings are 
usually small-scale and more flexible (e.g., flexible customized battery dispatch strategies). 
 
Section B2. Additional methodology description 

 
Figure B-1 presents the revised schematic of the system dynamics model (SDM) developed for 
Chapter. 3 This SDM consists of three main components: solar energy generation, battery storage, 
and energy balance simulations. 
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Figure B-1. The system dynamics model structure of the solar PV-battery system 

 

Figure B-2 presents the hourly operation of two typical battery control strategies (scenarios S4A 
and S4B) simulated in this chapter. 

 
Figure B-2. Two types of battery charge control strategies investigated in Chapter 3 
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SimaPro 8.3 was used for characterization of the environmental impacts. Table B-1 presents the 
unit costs and environmental impacts obtained from SimaPro. Carbon footprint, water footprint, 
and life cycle fossil fuel depletion factors were calculated using ReCiPe Midpoint (H) 1.12 Europe 
Recipe H method. The references of cost units of PV systems were provided in the main 
manuscript. 
 

Table B-1. Carbon footprint, water footprint, life cycle fossil fuel depletion, and cost units of selected 
solar PV systems 

Solar PV 
systems 

SimaPro entry Cost unit 
Carbon 

footprint 
unit 

Water 
footprint 

unit 

Fossil fuel 
depletion 

unit 

PV panel 
Photovoltaic panel, multi-Si 
wafer {GLO}| market for | Alloc 
Def, S 

$1/W 
202 kg CO2 

eq/m2 
9860 L/m2 

54.9 kg oil 
eq/m2 

Battery 
Battery, Li-ion, rechargeable, 
prismatic {GLO}| market for | 
Alloc Def, S 

$209/kWhc 
6.13 kg CO2 

eq/kg 
205 L/kg 

1.71 kg oil 
eq/kg 

Inverter 
Inverter, 2.5 kW {GLO}| market 
for | Alloc Def, S 

$300/piece 
203.0 kg 

CO2 
eq/piece 

3840 
L/piece 

53.6 kg oil 
eq/piece 

Mounting 
and wiring 

Photovoltaic mounting system, 
for flat-roof installation {GLO}| 
market for | Alloc Def, S 

$450 
35.4 kg CO2 

eq/m2 
275 L/m2 

8.67 kg oil 
eq/m2 

 
Table B-2 presents the carbon footprint, water footprint, and life cycle fossil fuel depletion factors 
(per kWh of electricity generated) of different types of fuel use for power generation. Carbon 
footprint, water footprint, and life cycle fossil fuel depletion factors were calculated using ReCiPe 
Midpoint (H) 1.12 Europe Recipe H method. No significant difference was found in model output 
applying the ReCiPe Midpoint (H) 1.12 Europe or IPCC 2013 GWP 100a. Water footprint factors 
(water depletion) were also compared with the water consumption factors obtained from 
(Macknick et al., 2011). 
 

Table B-2. The carbon footprint, water footprint, and life cycle fossil fuel depletion factors of different 
types of fuel for power generation 

Typea 
Carbon footprint 

factor, 
kg CO2 eq./kWh 

Life cycle fossil 
fuel depletion 

factor, 
kg oil eq./kWh 

Water footprint 
factor, 
L/kWh 

SimaPro entry 

Method 

IPCC 
2013 
GWP 
100a 

ReCiPe Midpoint (H) 1.12 Europe 
Macknick et 

al., 2011 

Natural gas 

0.63 0.62 0.24 3.50 

1.78 

Electricity, high voltage {NPCC, US only}| 
electricity production, natural gas, 

conventional power plant | Alloc Def, S 

0.42 0.41 0.15 0.88 
Electricity, high voltage {NPCC, US only}| 

electricity production, natural gas, 
combined cycle power plant | Alloc Def, S 

Hydropower 0.0045 0.0044 0.0009 0.078 17.0 
Electricity, high voltage {NPCC, US only}| 
electricity production, hydro, run-of-river | 

Alloc Def, S 
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0.44 0.44 0.15 8.80 
Electricity, high voltage {NPCC, US only}| 

electricity production, hydro, pumped 
storage | Alloc Def, S 

0.0068 0.0067 0.0012 29.3 
Electricity, high voltage {NPCC, US only}| 

electricity production, hydro, reservoir, 
alpine region | Alloc Def, S 

Nuclear 

0.013 0.013 0.0032 3.10 

2.54 

Electricity, high voltage {NPCC, US only}| 
electricity production, nuclear, boiling 

water reactor | Alloc Def, S 

0.012 0.012 0.003 3.0 
Electricity, high voltage {NPCC, US only}| 

electricity production, nuclear, pressure 
water reactor | Alloc Def, S 

Coal 
1.16 1.16 0.25 1.30 

2.35 

Electricity, high voltage {NPCC, US only}| 
electricity production, hard coal | Alloc 

Def, S 

1.24 1.24 0.28 2.50 
Electricity, high voltage {NPCC, US only}| 
electricity production, lignite | Alloc Def, S 

Oil 1.22 1.22 0.41 3.60 N/A 
Electricity, high voltage {NPCC, US only}| 

electricity production, oil | Alloc Def, S 

Landfill gas 0.25 0.25 0.05 19.0 0.89 
Electricity, high voltage {NPCC, US only}| 
heat and power co-generation, biogas, gas 

engine | Alloc Def, S 

Wind 

0.02 0.02 0.005 0.39 

0 

Electricity, high voltage {NPCC, US only}| 
electricity production, wind, >3MW 

turbine, onshore | Alloc Def, S 

0.012 0.012 0.003 0.24 
Electricity, high voltage {NPCC, US only}| 

electricity production, wind, <1MW 
turbine, onshore | Alloc Def, S 

0.012 0.012 0.0035 0.22 
Electricity, high voltage {NPCC, US only}| 

electricity production, wind, 1-3MW 
turbine, onshore | Alloc Def, S 

Wood 0.053 0.054 0.014 0.26 N/A 

Electricity, high voltage {NPCC, US only}| 
heat and power co-generation, wood chips, 
6667 kW, state-of-the-art 2014 | Alloc Def, 

S 

Refuse 

0.46 0.46 0.12 11.0 

N/A 

Electricity, for reuse in municipal waste 
incineration only {RoW}| treatment of 

waste wood, untreated, municipal 
incineration | Alloc Def, S 

0.18 0.18 0.038 18.0 

Electricity, for reuse in municipal waste 
incineration only {GLO}| treatment of 

biowaste, municipal incineration | Alloc 
Def, S 

Solar 0.067 0.066 0.017 2.53 0.098 

Electricity, low voltage {NPCC, US only}| 
electricity production, photovoltaic, 

570kWp open ground installation, multi-Si | 
Alloc Def, S 

a. The average value was used when there were more than one SimaPro entries investigated. 
 

Table B-3 presents the time of the off-, mid-, and on-peak periods in a day in response to the 
changes of the on-peak duration in the sensitivity analysis. 24-hour format was used for time 
display. 
 
Table B-3. The time of the off-, mid-, and on-peak periods in a day in response to decrease and increase 

of the on-peak duration by 50% 

 On-peak duration Off-peak time Mid-peak time 
On-peak  

time 
Off-peak time 

Initial setting 5 hours 0:00 - 8:00 8:00 - 14:00 14:00 - 19:00 19:00 - 24:00 
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Decrease by 50% 2.5 hours 0:00 - 8:00 8:00 - 15:15 15:15 - 17:45 17:45 - 24:00 
Increase by 50% 7.5 hours 0:00 - 8:00 8:00 - 12:45 12:45 - 20:15 20:15 - 24:00 

 
Section B3. Additional results 

 

Sensitivity analysis 

Table B-4 presents the percent change and sensitivity index of life cycle cost, carbon footprint, 
water footprint, and life cycle fossil fuel depletion of PV-battery systems in response to decrease 
or increase of the sensitive variables by 50%. 
 
Table B-4. Life cycle cost, carbon and water footprints, and life cycle fossil fuel depletion of PV-battery 

systems in response to decrease or increase of the sensitive variables by 50% 

Indicator Scenario Variable 
decrease by 50% increase by 50% 

percent change sensitivity index percent change sensitivity index 

LCC 

S1 

discount rate 25.1% -0.50 -18.2% -0.36 

on-peak duration -17.9% 0.36 21.6% 0.43 

off-peak rate -13.5% 0.27 13.5% 0.27 

mid-peak rate -9.6% 0.19 9.6% 0.19 

on-peak rate -26.9% 0.54 26.9% 0.54 

S2 

discount rate 2.9% -0.06 -2.1% -0.04 

on-peak duration -6.4% 0.13 15.8% 0.32 

off-peak rate -28.6% 0.57 28.6% 0.57 

mid-peak rate 34.3% -0.69 -34.3% -0.69 

on-peak rate -11.5% 0.23 11.5% 0.23 

S3 

discount rate 4.0% -0.08 -2.9% -0.06 

on-peak duration -0.7% 0.01 5.6% 0.11 

off-peak rate -8.6% 0.17 8.6% 0.17 

mid-peak rate 1.6% -0.03 -1.6% -0.03 

on-peak rate -0.9% 0.02 0.9% 0.02 

S4A 

discount rate -13.5% 0.27 9.8% 0.20 

on-peak duration -11.5% 0.23 25.2% 0.50 

off-peak rate -22.7% 0.45 22.7% 0.45 

mid-peak rate -3.2% 0.06 3.2% 0.06 

on-peak rate 52.7% -1.05 -52.7% -1.05 

S4B 

discount rate -104.8% 2.10 76.0% 1.52 

on-peak duration -10.5% 0.21 23.8% 0.48 

off-peak rate -127.5% 2.55 127.5% 2.55 

mid-peak rate 47.4% -0.95 -47.4% -0.95 

on-peak rate 288.9% -5.78 -288.9% -5.78 

Carbon 
footprint 

S1 
on-peak duration -0.5% 0.01 2.0% 0.04 

on-peak Hydro% 5.5% 0.25 -5.5% 0.28 

S2 
on-peak duration -18.9% 0.38 26.7% 0.53 

on-peak Hydro% 6.6% 0.29 -6.6% 0.33 
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S3 
on-peak duration -3.3% 0.07 4.4% 0.09 

on-peak Hydro% 0.4% 0.02 -0.4% 0.02 

S4A 
on-peak duration 1.6% -0.03 3.4% 0.07 

on-peak Hydro% -18.3% -0.81 18.3% -0.91 

S4B 
on-peak duration -18.3% 0.37 26.0% 0.52 

on-peak Hydro% -119.0% -5.29 119.1% -5.95 

Water 
footprint 

S1 
on-peak duration -9.8% 0.20 11.0% 0.22 

on-peak Hydro% -14.0% 0.40 14.0% 0.40 

S2 
on-peak duration 0.9% -0.02 3.4% 0.07 

on-peak Hydro% -3.4% 0.10 3.4% 0.10 

S3 
on-peak duration 0.6% -0.01 2.0% 0.04 

on-peak Hydro% -0.5% 0.01 0.5% 0.01 

S4A 
on-peak duration -3.4% 0.07 10.0% 0.20 

on-peak Hydro% 26.3% -0.75 -26.3% -0.75 

S4B 
on-peak duration 1.0% -0.02 4.3% 0.09 

on-peak Hydro% 109.4% -3.11 -109.4% -3.12 

Life 
cycle 
fossil 
fuel 

S1 
on-peak duration -0.5% 0.01 2.1% 0.04 

on-peak Hydro% 6.1% 0.30 -6.1% 0.23 

S2 
on-peak duration -35.1% 0.70 49.3% 0.99 

on-peak Hydro% 11.8% 0.59 -11.8% 0.44 

S3 
on-peak duration -4.3% 0.09 5.7% 0.11 

on-peak Hydro% 0.5% 0.03 -0.5% 0.02 

S4A 
on-peak duration 1.4% -0.03 5.1% 0.10 

on-peak Hydro% -23.7% -1.19 23.7% -0.89 

S4B 
on-peak duration -63.1% 1.26 87.7% 1.75 

on-peak Hydro% -393.2% -19.66 393.5% -14.76 
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C. APPENDIX C: SUPPORTING INFORMATION FOR CHAPTER 4 
 

Section C1. Literature review of the top-down and bottom-up residential demand simulation 
approaches 

 
Table C-1. summarizes the top-down and bottom-up simulation approaches for modeling/ 
forecasting the residential demand at either household unit or regional grid levels. 
 

Table C-1. Top-down and bottom-up simulation approaches for residential demand simulation 

Reference Method Metrics Input Output Resolution 
Calibration 

or 
validation 

Applicable 
to single 
and/or 
group 

Top-
down 

or 
bottom-
down 

(Arghira et 
al., 2012) 

Predictors and 
Auto 

Regressive 
Moving 
Average 
method 

performances 
of predictors: 

the time 
when 

appliances 
use energy 

and 
probability 

of the service 
to consume 

energy 

appliances 
energy 

consumption 
and weather 
conditions 

(temperature, 
wind strength, 

wind 
direction, 

humidity) of 
100 

households in 
France1 

energy 
consumption 

of each 
electrical 
appliance 

10 min 

demand 
pattern of 
recurrence 
to improve 

the 
prediction 
precision 

both 
bottom-

up 

(Muratori et 
al., 2013) 

Markov 
process 

power 
conversion 

factors: 
appliances, 

HVAC, 
lighting etc. 

weather, 
temperature, 

dwelling 
characteristics, 
and behavior 

electricity 
demand 
profile 

10 min 

time-of-
use data 
from the 

2003–2009 
American 
Time Use 

Survey 

both 
bottom-

up 

(Muratori, 
2018) 

Markov chain 
behavioral 

model 

power 
conversion 

factors: 
appliances, 

HVAC, 
lighting etc. 

household 
occupants’ 

behavior: e.g. 
hours of 
working 

residential 
electric 
power 

profiles 

10 min 

time-of-
use data 
from the 

2003–2009 
American 
Time Use 

Survey 

both 
bottom-

up 

(Dergiades 
and 

Tsoulfidis, 
2008) 

Autoregressive 
Distributed 

Lag (ARDL) 

cointegrating 
relation 

among the 
variables 

Per capital 
income, price 
of electricity, 
price of oil for 

heating, 
weather 

conditions, 
stock of 
housing2 

per capita 
consumption 
of electricity 

annual 
literature 
review 

group 
top-

down 

(Hirst, 
1978; 

O’Neal and 
Hirst, 1980) 

Quantitative 
model 

Residential 
use of a type 
of fuel for an 

end use in 
certain 

housing type 
for one year 

heat retention 
of housing 
units, the 
average 

annual energy 
use for the 

type of 
equipment, 

Annual 
national 

energy use 
by fuel, end 
use, type of 
housing, and 
age groups 

annual 
historical 

data 
both 

top-
down 
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intensity of 
the equipment 

is used 

(Saha and 
Stephenson, 

1980) 

An 
engineering-

economic 
model 

Energy uses 
for space 
heating, 
water 

heating, 
cooking 

household 
appliance 

ownership and 
variations 

(ownership 
fraction) 

fuel use annual 
historical 

data 
group 

top-
down 

(Jonas 
Tornberg, 

2012) 

GIS 
implemented 

energy 
model 

Energy use 
of building 

types: single 
family house, 

blocks of 
flats, shops 
and offices, 

hospitals and 
education 

etc. 

real estate and 
building data, 
energy data 
(heating and 

hot-water and 
type of 

energy/energy 
carrier) 

Energy 
(natural gas 

and 
electricity) 

use 

annual N/A both both 

1. From Residential Monitoring to Decrease Energy Use and Carbon Emissions in Europe 
(REMODECE) 

2. From World Development Indicators (WDI) database, the Energy Information Administration (EIA) 
database, and the US census bureau. 

 

Section C2. Additional methodology description 

 
Case study description 

Figure C-1. presents the map of our case study using ArcMap 10.4.1. The selected study area, 
community, and residential buildings for simulation were presented in Figure C-1. (a), (b), and (c) 
respectively. ArcMap 10.4.1 was also used to facilitate the spatial distribution of the solar PV 
generation capacity in the city of Boston. 
 

 
Figure C-1. The map of the (a) selected study area and (b), (c) selected community 
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In Figure C-1., the black dots represent the residential buildings obtained from the GIS data portal 
of the City of Boston; the red lines represent the border of the city of Boston; the black lines 
represent the border of community block groups obtained from the U.S. Census; the blue line 
represents the border of the simulated community for this study. 
 
Table C-2. presents the average percentages of household types of the simulated community, city 
of Boston, and state of Massachusetts calculated based upon the U.S. Census data. 

 
Table C-2. Average household type percentages of the selected community, city of Boston, and state of 

Massachusetts obtained from the U.S. Census 

 
Household type 

one-
male 

one-
female 

one male one 
female one child 

one male one 
female no child 

one male 
one child 

One female 
one child 

two- 
male 

two- 
female 

the selected 
community 

15.6
% 

18.9% 10.5% 17.1% 0.4% 8.2% 
15.4
% 

13.8% 

Boston 
15.3
% 

18.6% 11.4% 16.3% 1.5% 9.7% 
11.0
% 

14.8% 

Massachusett
s 

12.0
% 

16.2% 19.6% 26.3% 1.8% 7.2% 7.1% 9.8% 

 
Table C-3. presents the residential information of our simulated community provided by the U.S. 
Census. 
 

Table C-3. The U.S. Census information of the selected community 
U.S. Census GEOID Number of residential buildings selected Simulated population over city total population 

250250907003 145 0.2120% 

 
Section C2.1. Residential demand simulation 
 

HVAC demand simulation 

In the work of (Muratori et al., 2013, 2012), the air mass of the control volume is estimated for a 
residential building with an area of 223 m2 and a height of 2.44 m. The air flow rate capacity of 
HVAC is 0.46 kg/s and the nominal power of the coupled furnace is 13.2 kW selected from Table 
C-4. based upon the optimization of the HVAC system considering the weather conditions. A 
return air temperature is therefore 50 °C. 
 

Table C-4. Parameter values of the simulated HVAC model (Muratori et al., 2013) 
Parameter Value Unit 

Rwall 2.64 m2 K/W 
Rwindow 0.183 m2 K/W 

hin 5 W/m2 K 
hout 30 W/m2 K 

Windows-to-wall ratio 17% N/A 
Desired temperature 21.1 °C 

HVAC summer air temperature 13 °C 
HVAC winter air temperature 50 °C 

Hottest environment temperature 38 °C 
Coldest environment temperature -30 °C 

 
Table C-5. Air flow rates and furnace sizes of commercially available residential HVAC systems and 

their resulting temperatures of the air (°C) from the furnace (EIA, 2010) 
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Air flow, cfm 
Input capacity, kBTU/h 

45 50 60 70 75 80 90 100 115 120 125 140 
800 50 53 59 66         
1200 40 42 47 51 53 55 59 64     
1600    43 45 47 50 53 58 59 61  
2000       44 47 50 52 53 57 

 
 
Behavior-related demand 

Table C-6. presents the power conversion factors collected from the American appliance stock by 
the U.S. Department of Energy in February 2012. The laundry activity includes washing machine 
use (425 W, 39 minutes) and drying use (3400W, 90 minutes). The dishwashing activity is 
assumed to be one hour. The power consumption of other activities is assumed to be counted only 
when the occupant is engaged in the activity. 
 

Table C-6. Power conversion factors in the behavioral simulation 
Activity Power consumption (W) 
Sleeping 0 

No-power activity 0 
Cleaning 1250 
Laundry 3825 
Cooking 1225 

Automatic dishwashing 1800 
Leisure 300 

Away, working 0 
Away, not working 0 

Day-time lighting power 125 
Night-time lighting power 330 

Constant electric consumption 230 

 
Table C-7. presents the information of the ATUS respondents selected for this study. 
 

Table C-7. The age, sex, working condition, and number of ATUS respondents selected in this study 
 Mean age Age range Number of respondents 

Male 48.78 18-85 8436 
Female 49.93 18-85 9327 
Child 8.88 0-17 6561 
Overall 38.46 0-85 24324 
Working - - 5723 
Non-working - - 3712 

 
Figure C-2. presents the percentage distributions of nine activities of five types of occupants over 
a day cleaned from the raw ATUS dataset. 
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Figure C-2. The percentage distributions of nine activities of five types of occupants over a day 

 
Lighting demand 

Figure C-3. presents the sunrise and sunset time of the city of Boston over one year (NOAA, 2021). 
These two timelines were used to determine the daytime and nighttime for our lighting simulation. 

 
Figure C-3. Sunrise and sunset time of the city of Boston 

 
Regional residential demand simulation 

Figure C-4. shows the schematic of the random assigning process to determine the household type 
of a residential building unit in this study. 
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Figure C-4. A schematic of the random assigning process for determining the household type in this study 
 
Table C-8. presents the types, numbers, and percentages of the simulated households in this study. 
 

Table C-8. The types, numbers, and percentages of the simulated households in this study 
Household type Number of the simulated households Percentage of the simulated households 

One-male 30 14.4% 
One-female 40 19.1% 

One male one female one child 22 10.5% 
One male one female no child 35 16.7% 

One male one child 2 1.0% 
One female one child 13 6.2% 

Two-male 36 17.2% 
Two-female 31 14.8% 

Total 209 100% 

 
Section C2.2. Economic impacts 
 

Wholesale electricity cost simulation 

Table C-9. presents the average power plant operating expenses of nuclear, hydro-electric, and 
other types of power generation.  
 

Table C-9. Average Power Plant Operating Expenses for Major U.S. Investor-Owned Electric Utilities, 
2015 through 2019 (Mills per Kilowatt-hour) (EIA, 2020e) 

Year Nuclear Hydro-electric1 Other2 
2015 25.71 13.42 33.24 
2016 25.36 10.98 30.19 
2017 24.38 10.29 31.76 
2018 23.86 10.65 32.43 
2019 23.73 10.80 28.33 

1. Hydroelectric category consists of both conventional hydroelectric and pumped storage. 
2. Other category consists of photovoltaic, wind, gas turbine, and internal combustion plants. 
A mill equals to 1/1000 of the U.S. dollar (equivalent to 1/10 of one cent). 
Due to the data availability, the prices of 2020 were assumed to be the same as the prices in 2019. 
 
Section C2.3. Environmental impacts 
 
Figure C-5. presents the carbon emission unit of ISO-NE grid supply over a year. ISO-NE energy 
system capacities, utility fuel mix, and marginal fuel use 
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Figure C-5. Carbon emission unit of ISO-NE grid supply over a year 

 

Section C3. Additional results 

 
Solar energy generation 

The Massachusetts Commonwealth Solar Program set a statewide target of installing 1600 MW of 
solar PV by 2020 (Mass.gov, 2021), which 160 MW (approximately 10%) would be the city of 
Boston’s contribution to the state target based upon the proportional estimation of the city 
population over the state’s population. However, our study found the total potential rated capacity 
of all residential buildings was estimated to be 254.7 MW in the city of Boston. The average 
potential rated capacity for each building was estimated to be 3.7 kW (Figure C-6.), which is 0.74 
times as large as the average size of a residential PV system in the U.S. of 5 kW (EIA, 2015b; 
SEIA, 2021). In Boston, we found 99.8% of the potential PV systems were smaller than 10 kW. 
And only less than 0.2% of these buildings may not be available to unlimited Net Metering due to 
the current utility policy (EnergySage, 2021; Eversource, 2020). More than 85.3% of the buildings 
present the potential to install a PV system smaller than 5 kW. 
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Figure C-6. Distribution of the rated capacities of PV systems of all residential buildings 

 
Figure C-7. (a). presents the annul solar energy generation potential of all residential buildings in 
the city of Boston. Figure C-7. (b) shows the spatial distribution of the solar energy generation 
potential by block groups in the city of Boston. 
 

    

Figure C-7. (a) Annual solar energy generation of all residential buildings; (b) solar potential density map 
(potential rated capacity of PV systems) of the block groups in the city of Boston 
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Section C3.1. Residential demand simulation  
 
HVAC simulation 

In order to present and validate the output of HVAC simulation, a typical residential building in 
the city of Boston was selected. Figure C-8. illustrates the geographical location of this selected 
typical residential building (Maps, 2020). The building information as well as the estimated PV and 
HVAC systems’ parameters were presented in Table C-10. 
 

 
Figure C-8. (a) and (b) Geographical location of the selected typical residential building in the city of 

Boston; (c) street photo of the selected residential building 
 

Table C-10. Building information of the selected typical residential building 
U.S. 

Census 
ID 

address 
Cumulative solar 

energy generation 
Number 
of floors 

Living 
area 

Number of 
family units 

Building thermal 
resistance, K/W 

Optimal HVAC air 
flow rate, kg/hour 

Air Mass Inside 
Building, kg 

250250
201014 

17 
PINCK
NEY 

5060.96 3 3428 1 0.00445 4878.2 956.8 

 
Figure C-9. presents the outside, inside room temperatures, and HVAC consumption in a typical 
winter day and a typical summer day through the HVAC simulation. We found our simulated 
optimized HVAC system provides ideal thermal performance in terms of maintaining the inside 
building temperature in a comfort range. 
 

 
Figure C-9. Outside, inside room temperatures, and HVAC consumption in (a) a typical winter day and 

(b) a typical summer day 
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Figure C-10. presents the HVAC electricity consumption simulation results of the selected 
community over a year. Three types of HVAC systems were investigated under 100% HVAC 
adoption scenarios including air-conditioner coupled with electric resister heater system (AC-ER), 
heat pump (AC-HP), and fossil fuel-based heater system (AC-FF). 
 

 
Figure C-10. Simulated annual HVAC electricity consumption of air-conditioner coupled with electric 

resister heater (AC-ER), heat pump (AC-HP), or fossil fuel-based heater (AC-FF) of the selected 
community using 30-minute time steps 

 
Figure C-11. presents the HVAC electricity consumption of the simulated community over one 
year. 
 

 
Figure C-11. Simulated HVAC electricity consumption pattern of the selected community using 30-

minute time steps 
 
Figure C-12. presents the simulated HVAC electricity consumption pattern of the selected 
community using daily time steps. 
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Figure C-12. Simulated HVAC electricity consumption pattern of the selected community using 30-

minute time steps 
 
Cold appliances simulation 

Figure C-13. presents an example of a 1-day simulated profile of cold appliance energy 
consumption of one household in this study. 
 

 
Figure C-13. A one-day energy consumption pattern of the simulated cold appliance 

 
Behavior-related energy consumption simulation 

Figure C-14. presents the simulated annual and typical daily behavior-related demand patterns of 
the selected community using thirty-minute time steps. 
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Figure C-14. Simulated behavior-related demand patterns of a year (a), a weekday (b), and a weekend (c) 

of the selected community using 30-minutes time steps 
 
Figure C-15. presents the regression analysis results comparing the simulated results with the 
ATUS data. 

 
Figure C-15. Linear regression analysis results comparing the simulated activity results with the ATUS 

activity dataset 
 
Figure C-16. presents simulated one-day activity profiles of five types of occupants in a weekday 
and a weekend day. 
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Figure C-16. Simulated one-day activity profiles of five types of occupants in a weekday and a weekend 

day 
 
Lighting demand 

Figure C-17. presents simulated one-day lighting electricity consumption patterns of the selected 
community in a typical weekday and a weekend day in January. 
 

 
Figure C-17. Simulated daily lighting electricity consumption of a typical weekday (WD) and a weekend 

day (WE) in January of the selected community 
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Overall residential demand 

Figure C-18. presents the simulated overall electricity demand of the selected community in a year 
(a), a typical weekday (b), and a weekend day (c) in January using thirty-minute time step. 
 

 
Figure C-18. Simulated overall electricity consumption of the selected community in a year (a), a January 

weekend day (b), and a January weekday (c) 
(“C”-cold appliance; “A”-power-related activity; “F”-constant use; “H”-HVAC; “L”-lighting; “Sum”-

overall demand) 
 

Figure C-19. presents the simulated overall electricity demand of the selected community in a year 
using daily time steps. We compared the simulated overall demand pattern with the ISO-NE 
reported residential demand patterns (Figure C-19. (b)). We found our simulation results could 
effectively represent the real reported data in terms of monthly average household electricity 
consumption and demand seasonality. 
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Figure C-19. Simulated overall electricity demand of the selected community in a year (a), a typical 

winter day (b), and a typical summer day (c) 
 
Section C3.2. Additional technical, economic, and environmental results 
 
Technical results 

Additional technical results are presented in this section. Figure C-20. presents the load reductions 
and load reduction change rates of off-, mid-, and on-peak periods under different PV adoption 
percentages. 
 

 
Figure C-20. Load reductions and load reduction change rates of off-, mid-, and on-peak periods under 

different PV adoption percentages 
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Figure C-21. presents the number of simulated residential buildings that installed PV systems and their grid 
use under different PV adoption percentages. 
 

 
Figure C-21. Number of simulated residential buildings installed PV systems and their grid use under 

different PV adoption percentages 
 
Figure C-22. presents the energy independence (reliance) indexes of off-, mid-, and on-peak periods under 
different PV adoption percentages. 
 

 
Figure C-22. Energy independence (reliance) indexes of off-, mid-, and on-peak periods under different 

PV adoption percentages 
 
Economic results 

Figure C-23. Operational cost savings and cost saving change rates of the net metering (NM) and 
wholesale (WS) price designs under different PV adoption percentages 
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Figure C-23. Operational cost savings and cost saving change rates of the net metering (NM) and 

wholesale (WS) price designs under different PV adoption percentages 
 
Figure C-24. presents the operational cost savings and wholesale load costs under different PV 
adoption percentages. 
 

 
Figure C-24. Operational cost savings and wholesale load costs under different PV adoption percentages 

 
Figure C-25. (a) presents the annual electricity costs and (b) presents the electricity costs per kWh of grid 
use for both PV-adopted and no-PV buildings under different PV adoption percentages. Annual electricity 
cost represents the electric bill of residential energy users in a year. 
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Figure C-25. (a) Annual electricity costs and (b) electricity costs per kWh of grid use for PV adopted and 
no-PV buildings under different PV adoption percentages 

 
Figure C-26. presents the wholesale load costs in different months under 100% PV adoption simulation. 
 

 
Figure C-26. Wholesale load costs in different months under 100% PV adoption 

 
Table C-11. presents the annual electricity costs (electric utility bill) for both PV and No-PV 
energy users. 
 

Table C-11. Annual electricity costs for PV and No-PV energy users, $100M 
   PV installed No-PV installed Total 

Total cost 

NM - 1.4300 1.4300 

NM* - 1.4300 1.4300 

WS - 1.4300 1.4300 

WS* - 1.4300 1.4300 

25% 

NM 0.2100 1.0454 1.2554 

NM* 0.2100 1.0452 1.2552 

WS 0.2644 1.0454 1.3098 

WS* 0.2644 1.0452 1.3096 

50% 

NM 0.3755 0.7260 1.1015 

NM* 0.3753 0.7256 1.1009 

WS 0.4745 0.7260 1.2005 

WS* 0.4743 0.7256 1.1999 

75% 

NM 0.5753 0.3977 0.9730 

NM* 0.5748 0.3973 0.9721 

WS 0.7057 0.3977 1.1033 

WS* 0.7052 0.3973 1.1025 

100% 

NM 0.8717 - 0.8717 

NM* 0.8707 - 0.8707 

WS 1.0201 - 1.0201 

WS* 1.0191 - 1.0191 

 
Table C-12. presents the annual electricity costs per kWh of grid use for both PV-installed and 
no-PV installed residential buildings. 
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Table C-12. Annual electricity cost per kWh of grid use, $/kWh 
  PV installed No-PV installed 

Cost per kWh 

NM - 0.1491 

NM* - 0.1491 

WS - 0.1491 

WS* - 0.1491 

25% 

NM 0.1092 0.1491 

NM* 0.1092 0.1491 

WS 0.1375 0.1491 

WS* 0.1374 0.1491 

50% 

NM 0.1087 0.1491 

NM* 0.1086 0.1490 

WS 0.1373 0.1491 

WS* 0.1372 0.1490 

75% 

NM 0.1130 0.1491 

NM* 0.1129 0.1490 

WS 0.1386 0.1491 

WS* 0.1385 0.1489 

100% 

NM 0.1202 - 

NM* 0.1201 - 

WS 0.1407 - 

WS* 0.1405 - 

 
Environmental results 

Figure C-27. presents the operational carbon savings and carbon benefit unit costs under different 
PV adoption percentages. The operational carbon saving was estimated using load reduction of 
PV adoption and the carbon emission impact unit of the ISO-NE grid mix (kg CO2 eq./kWh). The 
carbon benefit unit cost was estimated using the annual saving of no-PV installed buildings (a 
decreasing electricity retail rate for the overall grid users due to the increasing PV adoption which 
lowers the wholesale electricity rate) divided by the total operational carbon saving by PV adopters 
(cent/kg CO2 eq.). The annual saving of no-PV installed buildings under certain PV adoption 
percentage was estimated using the different of residential electricity costs under no PV adoption 
and that PV adoption percentage. 
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Figure C-27. Operational carbon savings and carbon benefit unit costs under different PV adoption 

percentages 
 
Figure C-28. present (a) the daily carbon emission and (b) the monthly carbon emission of residential grid 
use over a year under different PV adoption percentages. Figure C-28. further shows the carbon emission 
of residential grid use (c) in a typical winter day and (d) a typical summer day under different PV adoptions 
percentages. 
 

 
Figure C-28. (a) Daily carbon emission and (b) monthly carbon emission of residential grid use over a 

year under different PV adoption percentages; carbon emission of grid use (c) in a typical winter day and 
(d) a typical summer day under different PV adoptions 
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