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1.  Introduction
Volume-dependent magnetic susceptibility (κ), the magnetic response of bulk sediment to an applied mag-
netic field, is indicative of relative abundances of paramagnetic, diamagnetic, and ferrimagnetic minerals, 
and thus is used extensively to reconstruct paleoenvironments, decipher depositional processes, examine 
changes in sediment provenance, and understand diagenetic processes in terrestrial and marine settings 

Abstract  Volume-dependent magnetic susceptibility (κ) is commonly used for paleoenvironmental 
reconstructions in both terrestrial and marine sedimentary environments where it reflects a mixed 
signal between primary deposition and secondary diagenesis. In the marine environment, κ is strongly 
influenced by the abundance of ferrimagnetic minerals regulated by sediment transport processes. 
Post-depositional alteration by H2S, however, can dissolve titanomagnetite, releasing reactive Fe that 
promotes pyritization and subsequently decreases κ. Here, we provide a new approach for isolating the 
detrital signal in κ and identifying intervals of diagenetic alteration of κ driven by organoclastic sulfate 
reduction (OSR) and the anaerobic oxidation of methane (AOM) in methane-bearing marine sediments 
offshore India. Using the correlation of a heavy mineral proxy from X-ray fluorescence data (Zr/Rb) and 
κ in unaltered sediments, we predict the primary detrital κ signal and identify intervals of decreased κ, 
which correspond to increased total sulfur content. Our approach is a rapid, high-resolution method that 
can identify overprinted κ resulting from pyritization of titanomagnetite due to H2S production in marine 
sediments. In addition, total organic carbon, total sulfur, and authigenic carbonate δ13C measurements 
indicate that both OSR and AOM can drive the observed κ loss, but AOM drives the greatest decreases in 
κ. Overall, our approach can enhance paleoenvironmental reconstructions and provide insight into paleo-
positions of the sulfate-methane transition zone, past enhancements of OSR or paleo-methane seepage, 
and the role of detrital iron oxide minerals on the marine sediment sulfur sink, with consequences 
influencing the development of chemosynthetic biological communities at methane seeps.

Plain Language Summary  In continental margin environments, variation in the magnetic 
susceptibility (κ) of marine sediments is influenced primarily by the delivery of detrital magnetic minerals 
from continental erosion and secondarily by diagenetically driven dissolution and/or growth of new 
magnetic minerals within the sediments. Bulk sediment measurements of κ often record a mixed signal 
from these processes, making it difficult to distinguish the original depositional detrital signal from in situ 
diagenetic effects. Here, we provide a new approach for isolating the detrital signal in κ and identifying 
intervals of diagenetic alteration in methane-bearing marine sediments in the offshore Krishna-Godavari 
basin, eastern peninsular India. We utilize measurements of κ, magnetic properties, a heavy mineral 
proxy (Zr/Rb from X-ray fluorescence), total organic carbon (TOC) and total sulfur (TS), and authigenic 
carbonate carbon isotopes to determine which portions of the records reflect primary deposition and 
which reflect diagenesis associated with abundant TOC or abundant methane. Overall, by decoupling 
the mixed signal of κ, our approach can allow for improved interpretation of marine sediment sequences 
globally and has implications for reconstructing the role of detrital magnetic minerals on the marine 
sediment sulfur cycle and the development of chemosynthetic biological communities at methane seeps.
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(Liu et al., 2012; Maxbauer et al., 2016; Roberts, 2015; Verosub & Roberts, 1995). Non-destructive bulk κ 
measurements are obtained rapidly and routinely by scanning sediment cores collected by ocean (e.g., Inter-
national Ocean Discovery Program, IODP) and continental (e.g., International Continental Scientific Drill-
ing Program, ICDP) scientific drilling programs, where it is used as a major tool for stratigraphic correlation 
and paleoenvironmental interpretation. Variation in κ in marine stratigraphic sequences is influenced by 
the detrital input and reworking of magnetic minerals, in situ biogenic mineral production, and diagenetic 
alteration of existing iron oxides and/or precipitation of magnetic iron sulfides (Canfield & Berner, 1987; 
Housen & Musgrave, 1996; Karlin & Levi, 1983; Larrasoaña et al., 2007; Liu et al., 2012; Novosel et al., 2005; 
Riedinger et al., 2005; Roberts, 2015). Bulk measurements of κ often record a mixed signal from these sourc-
es and processes (Larrasoaña et al., 2007; Musgrave & Kars, 2016), making it difficult to separate original 
depositional patterns from secondary effects.

In continental margin sediments the main detrital minerals that drive high κ are titanomagnetite (Fe3O4-Fe2 
TiO4 solid solution series from magnetite to ülvospinel), maghemite (γFe2O3), hematite (αFe2O3), and 
goethite (αFeOOH), with their relative contributions being a function of their geologic provenance and 
paleoenvironmental conditions (Liu et al., 2012). Shallow sediment diagenesis can affect κ via Fe reduc-
tion and oxidation (Hepp et al., 2009; Kasten et al., 1998; Rowan & Roberts, 2006). In addition, ferrimag-
netic minerals are subject to reaction with hydrogen sulfide produced during organoclastic sulfate reduc-
tion (OSR) (SO4 + 2CH2O → H2S + 2HCO3

−), and anaerobic oxidation of methane (AOM) (SO4 + CH4 → 
HS− + HCO3

− + H2O). AOM occurs at the sulfate-methane transition zone (SMTZ) and is mediated by a 
bacterial-archeal consortium (Barnes & Goldberg, 1976; Boetius et al., 2000; Hinrichs et al., 1999). Both 
OSR and AOM produce HS− and HCO3

−, which can contribute to the precipitation of authigenic carbonate 
and sulfide minerals in the sediments (e.g. Berner, 1970, 1984; Lin et al., 2016; Passier et al., 1996; Riedinger 
et al., 2005; Ritger et al., 1987). These secondary authigenic precipitates may remain in the sediments as a 
wake of mineralization long after the migration of the diagenetic fronts that produced them.

Reduction of existing primary magnetic mineral phases and/or the precipitation of secondary magnetic 
minerals during diagenesis can alter the primary κ signal. The common magnetic detrital iron oxides (mag-
netite and hematite) react with H2S on the order of days to hundreds of years (Poulton et al., 2004) and 
reaction of sufficient H2S with iron oxides can result in the formation of pyrite (FeS2) (Berner, 1970, 1984), 
which is paramagnetic. In addition to full pyritization, greigite (Fe3S4) and pyrrhotite (Fe7S8) can precipitate 
as intermediate, magnetic mineral phases and have been documented in methane-bearing marine sedi-
ments (Housen & Musgrave, 1996; Kars & Kodama, 2015; Larrasoaña et al., 2007).

A close association between zones of reduced κ and the modern SMTZ has been widely documented in marine 
sediments (e.g., Dewangan et al., 2013; März et al., 2008; Novosel et al., 2005; Riedinger et al., 2005, 2019). 
Intervals of reduced κ in sediment records have also been attributed to increases in sulfide mineral content 
or total organic carbon (TOC), suggesting a link between non-steady state diagenesis and sedimentation 
rate, fluid flow, or primary productivity (Badesab et al., 2017; Chang et al., 2016; Hepp et al., 2009; Kars 
et al., 2017). Zones of reduced κ in marine sequences can indicate the evolution of a variable SMTZ driven 
by changes in the flux of methane from depth, changes in sedimentation rate, or both. A robust assessment 
of κ drawdowns as indicators of paleo-environmental conditions remains difficult, however, due to the 
mixed nature of the κ signal. The first step needed to improve the applicability of κ is the development of a 
method that clearly separates detrital and diagenetic signals in κ records; such an approach will be of value 
for reconstructing paleoenvironmental change and diagenetic processes.

In this paper, we present an approach to isolate the detrital and diagenetic signals in κ records at two drill 
sites drilled in the Krishna-Godavari basin, on the eastern continental margin of India: NGHP-01-10 (Site 
10) and NGHP-01-16 (Site 16) (Figure 1; Collett et al., 2015). In addition to measurement of κ, methane-bear-
ing sediments at these sites were also characterized by measurements of magnetic properties (magnetic 
susceptibility, isothermal remanent magnetism, thermal demagnetization), X-ray fluorescence (XRF) bulk 
elemental composition, total organic carbon (TOC), total sulfur (TS), authigenic carbonate δ13C, and with 
estimates for titanomagnetite and pyrite iron. Collectively, these data are used to model the original detrital 
κ record and isolate the diagenetic effects on κ that are driven by OSR and AOM. Continental margins typ-
ically have high sedimentation rates that allow for high-resolution stratigraphic records. These regions are 
also characterized by widespread distribution of magnetic iron oxides and enough organic matter to sustain 
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Figure 1.
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OSR, methane generation, AOM, and gas hydrate accumulations. Therefore, the approach described here is 
broadly applicable in many continental margin settings. By isolating the detrital and diagenetic components 
in κ, we can now reconstruct primary mineral fluxes as well as track the effects of OSR, AOM, and the de-
gree of pyritization on magnetic susceptibility. At locations where the SMTZ is sufficiently shallow, the re-
constructed diagenetic κ records provide useful information on SMTZ fluctuations that can be used to infer 
paleo-methane seepage and the near seafloor H2S availability for chemosynthetic biological communities.

2.  Geologic Setting
The Krishna-Godavari Basin is one of five pericratonic basins along the eastern Indian margin that formed 
during the Late Jurassic rifting of the Indian and Australia-Antarctic plates (Powell et al., 1988). The sedi-
ments deposited in the offshore Krishna-Godavari Basin are sourced from the Krishna and Godavari Rivers, 
which drain the Deccan Traps, Dharwar and Bastar cratons, and rocks of the Godavari graben and Eastern 
Ghats belt, all of which contain possible source rocks for detrital, magnetic iron oxides (e.g. in mafic vol-
canics, Fe-rich schists, iron formations) (Biksham & Subramanian, 1988; Mazumdar et al., 2015; Mazumder 
& Eriksson, 2015). The Krishna and Godavari Rivers discharge a combined 174 × 106 tons of sediment per 
year, primarily during the summer monsoon season (Biksham & Subramanian, 1988; Ramesh & Subrama-
nian, 1988; Subramanain, 1979) and the Godavari River is among the top 15 largest river sediment discharg-
es in the world (Milliman & Meade, 1983). This sediment discharge is dominated by smectite group clays 
with minor quartz, feldspar, and kaolinite (Subramanian, 1980). Weathering and sediment transport within 
the Krishna-Godavari Basin is strongly influenced by monsoon rainfall (Giosan et al., 2017; Kale, 2007; 
Peketi et al., 2020). The South Asian monsoon has a fundamental impact on continental margin sediment 
accumulation in Bay of Bengal (e.g., Clemens et al., 2021; Colin et al., 1998; Weber et al., 2018). Thus, the 
eastern Indian continental margin acts as a supply dominated margin that is most active during interglacial 
periods of intense monsoon-driven weathering, rather than being sea level controlled (Phillips, Johnson, 
Giosan, & Rose, 2014). Differential accumulation of sediments through time in the offshore Krishna-Go-
davari Basin has resulted in shale diapirism (Anitha et al., 2014; Choudhuri et al., 2010), which can change 
the petroleum system, fluid flow, and gas hydrate system within the basin (Badesab et al., 2017; Dewangan 
et al., 2010; Joshi et al., 2014; Mandal et al., 2014; Rao, 2001).

Slumping, debris flows, and turbidites are common within the offshore Krishna-Godavari Basin (Collett 
et al., 2015; Ramprasad et al., 2011) resulting in non-steady state sedimentation (Hong et al., 2014). The 
Krishna-Godavari Basin contains sufficient TOC for OSR and methanogenesis (Johnson et al., 2014; Peketi 
et al., 2015) that, coupled with AOM and silicate weathering (Solomon et al., 2014), provides excess alka-
linity for authigenic carbonate (Teichert et al., 2014) and Fe-sulfide (Peketi et al., 2015) precipitation. There 
is widespread evidence for gas hydrate from seismic profiles within the Krishna-Godavari Basin (Jaiswal 
et al., 2012; Ramana et al., 2009; Shukla, Collett, et al., 2019; Shukla, Kumar, et al., 2019), and fracture-fill-
ing gas hydrate was recovered and/or inferred in multiple holes in this basin during NGHP-01 coring and 
logging on the D/V JOIDES Resolution (Collett et al., 2015; Cook et al., 2014; Holland & Schultheiss, 2014; 
Jaiswal et al., 2014; Rees et al., 2011; Shankar & Riedel, 2014; Stern & Lorenson, 2014). The second NGHP 
Expedition (NGHP-02), which occurred in 2015, also discovered, characterized, and sampled high-satu-
ration, coarse-grained gas hydrate reservoirs in the Krishna-Godavari Basin (Boswell et al., 2019; Collett 
et al., 2019; Pandey et al., 2019). Methane within the hydrate stability zone of the Krishna-Godavari Basin is 
dominantly microbial in origin (Dixit et al., 2019; Lorenson & Collett, 2018; Mazumdar et al., 2012).

Titanomagnetite is the dominant detrital magnetic mineral observed in offshore Krishna-Godavari Basin 
sedimentary records along with minor titanohematite and goethite (Badesab et al., 2017, 2019, 2020; De-
wangan et al., 2013; João et al., 2021; Usapkar et al., 2014). This titanomagnetite is likely sourced from the 

Figure 1.  (a) NGHP-01 Core Sites (purple) on the Indian continental margins. Sites 16 and 10 are located in the Krishna-Godavari Basin. Yellow circles are 
existing Deep Sea Drilling Project (DSDP), Ocean Drilling Program (ODP) and International Ocean Discovery Program (IODP) sites. Major rivers labeled in 
black. Inset (b) shows all sites in the offshore Krishna-Godavari Basin with published rock magnetic analyses that document titanomagnetite as the dominant 
detrital magnetic mineral throughout basin with variable alteration to iron sulfides. Other NGHP drill sites (Sites 03, 05, 10, and 14) have been measured for 
various rock magnetic properties (Badesab et al., 2017, 2019), as well as piston cores (Badesab et al., 2017; Dewangan et al., 2013; João et al., 2021; Usapkar 
et al., 2016) and gravity/box cores (Badesab et al., 2021; Usapkar et al., 2014).
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Deccan basalts (Banerjee & Mondal, 2021; Bose, 1972; Schöbel & de Wall, 2014), and transported to the Bay 
of Bengal via the Krishna and Godavari Rivers (Kulkarni et al., 2014, 2015; Sangode et al., 2007). Titanomag-
netite content is substantially higher offshore the Krishna and Godavari Rivers compared to the Mahanadi 
River, which has a catchment less influenced by Deccan basalts (Badesab et al., 2021). The offshore Kr-
ishna-Godavari sedimentary records (Figure 1) typically include intervals with evidence of titanomagnetite 
dissolution and precipitation of pyrite and/or magnetic iron sulfides (Badesab et al., 2017, 2019, 2020; De-
wangan et al., 2013; João et al., 2021; Usapkar et al., 2014) suggesting that diagenetic alteration of the prima-
ry magnetic mineral assemblage is common. Intervals of low κ are common in NGHP-01 sites throughout 
the Krishna-Godavari Basin and they often correspond with the modern SMTZ (Collett et al., 2015).

NGHP-01 Site 16 (16° 35.5986’ N, 082°41.0070’ E) is located on the continental slope in 1,253 m of water 
depth within the Krishna-Godavari Basin (Figure 1). One lithostratigraphic unit was recovered and defined 
at this site and includes clay, silty clay, and nannofossil-bearing-to-rich clay, and foraminifer-bearing clay 
(Collett et al., 2015, Figure 2). Numerous thin silt beds and laminations were observed at this site. Limit-
ed calcareous nannofossil and foraminifera biostratigraphic datums suggests the recovered sediments at 
Site 16 within the Krishna-Godavari Basin are most likely Quaternary (∼1.5 Ma) to recent in age (Flores 
et al., 2014). Methane hydrate at Site 16 was present only in low saturations as disseminated hydrate inferred 
from pressure cores, well logs, and rare instances of infrared and chloride anomalies (Collett et al., 2015). 
The clay mineralogy at Site 16 is primarily smectite group minerals (34%–72%) with substantial illite (14%–
30%) and kaolinite (10%–33%) content (Phillips, Johnson, Underwood, et al., 2014). Total organic carbon 
(TOC) ranges from 0.41 to 2.53 wt.% and CaCO3 ranges from 0 to 23 wt%, with the highest values of TOC 
and CaCO3 occurring within the upper 35 m below seafloor (mbsf) (Johnson et al., 2014).

At Site 16 whole-round measured shipboard κ (Collett et al., 2015) varies between 16 and 179 SI x 10−6 
(mean 83 SI x 10−6) in the upper 29.3 mbsf (Figure 2). Between 29.3 and 35.5 mbsf, κ is consistently very 
low, between 16 and 21 SI x 10−6 (mean: 18.3 SI x 10−6). Below 35.5 mbsf, κ shifts abruptly to dramatically 
higher values in the underlying remainder of the hole to 218 mbsf, ranging from 20 to 576 SI x 10−6 (mean: 
224 SI x 10−6).

NGHP-01 Site 10 (15° 51.8609’ N, 81° 50.0749’ E) is located on the continental slope in 1,038 m of water 
depth in the Krishna-Godavari Basin (Figure 1) and consists of one lithostratigraphic unit of nannofossil- 
and foraminifer-bearing to rich clay and silty clay (Collett et al., 2015) (Figure 2). The clay is primarily smec-
tite group (42%–84%) with notable illite (0%–26%) and kaolinite (6%–29%) clay minerals (Phillips, Johnson, 
Underwood, et al., 2014). Median grain size (d0.5) measured by laser diffraction ranges from 4 to 8 μm (over 
the upper 27 mbsf; discussed in this paper). TOC ranges from 0.6 and 2.4 wt% and CaCO3 varies from 0 to 
14 wt% (Johnson et al., 2014). Limited calcareous nannofossil and foraminifera datums suggests the recov-
ered sediments at Site 10 are younger than Late Pliocene (Flores et al., 2014). Methane hydrate was observed 
at this site in high saturations as veins within fractures, sampled by pressure cores or inferred from well 
logs, mousse-like textures, or chloride anomalies (Collett et al., 2015; Cook et al., 2014; Holland & Schulthe-
iss, 2014; Rees et al., 2011). Bivalve, worm tube, and barnacle fossils, as well as authigenic carbonate nod-
ules between 16 and 20 mbsf are vestiges of a Pleistocene paleo-seep community that existed from ∼42 to 
53 ka (Collett et al., 2015; Gale et al., 2020; Mazumdar et al., 2009). In addition, a Mo and δ34S anomaly 
from this interval provide additional evidence for paleo-methane and H2S venting (Peketi et al., 2012). The 
first modern seafloor chemosynthetic community in the Krishna-Godavari Basin was recently identified at 
an active methane seep in ∼1,750 m water depth (Mazumdar et al., 2019), down slope from our study sites.

At Site 10 whole-round measured shipboard κ (Collett et al., 2015) throughout the upper 27 mbsf ranges 
from 15 to 176 SI x 10−6 (Figure 2). κ is relatively high over the upper 8.5 mbsf ranging between 116 and 
160 SI x 10−6. κ is very low and consistently ranges between 21 and 41 SI x 10−6 in the intervals 8.5 and 
17 mbsf and 23 and 27 mbsf. Between 17 and 23 mbsf, κ increases to 37 to 176 SI x 10−6. In a companion 
piston core (MD-161) near Site 10, the primary magnetic mineral was identified as titanomagnetite by rock 
magnetic, electron microscopy, and X-ray diffraction measurements, with an interval containing greigite 
between 17 and 23 msbf (Dewangan et al., 2013). The low κ and greigite-bearing intervals correspond to 
high chromium reducible sulfur (CRS) (0.5–3.7 wt%) (Dewangan et al., 2013). Overall, at Site 10 there is a 
negative correlation between magnetite concentration and CRS suggesting that H2S related diagenesis driv-
en by changes in methane flux has altered the κ signal (Badesab et al., 2017).
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3.  Materials and Methods
3.1.  Overall Approach

Identification of the detrital and diagenetic minerals responsible for the κ signal in a sedimentary record can 
be achieved through rock magnetic, mineralogical, or geochemical approaches; however, in long sedimen-
tary records obtained through ocean and continental drilling these approaches can be very labor-intensive, 
resulting in a limitation in down core resolution. Here we describe a new approach that takes advantage of 
routine high-resolution magnetic and sediment geochemical data to deconvolve the detrital and diagenetic 
signals in κ records collected in methane-bearing sediments along continental margins.

Figure 2.  Stratigraphic context of NGHP-01 Site 16 Hole A and Site 10 Hole D. (a and e) κ and κ corrected for the 
carbonate-free fraction. (b and f) CaCO3 measured by CHNS and Ca measured by XRF. (c and g) Median grain size 
(d(0.5)) from laser diffraction particle size analysis and Zr/Rb from XRF. (d and h) Major lithology from visual and 
smear slide description (Collett et al., 2015).
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We utilize Zr/Rb elemental ratios from XRF core scanning as a proxy for the detrital heavy mineral content 
of the sediments, which is highly correlated with κ along the eastern margin of peninsular India (Phillips, 
Johnson, Giosan, & Rose, 2014). Zr/Rb has been used as a grain size proxy (e.g., Chen et al., 2006; Dypvik 
& Harris, 2001; Gebregiorgis et al., 2020; Toyos et al., 2020) due to the enrichment of Zr in sediment coarse 
fractions. However, the relationships between Zr/Rb and grain size is not always consistent in marine sedi-
ments, especially in fine-grained sediments with limited coarse, detrital fraction (Phillips, Johnson, Giosan, 
& Rose, 2014; Wu et al., 2020). For example, in the sites studied here, we observe good agreement between 
Zr/Rb and measured grain size at Site 16, a relatively coarser record, but less so at Site 10, which a finer 
grained record (Figure 2). Fundamentally, Zr/Rb is a heavy mineral proxy corresponding to the ratio of Zr 
present in resistant, detrital zircon grains and Rb that is dispersed in the clay minerals. Magnetic suscepti-
bility is dependent on particle size (Hatfield et al., 2017, 2019; Razik et al., 2014), and the general depend-
ence on grain size for κ and Zr/Rb may explain their correlation.

Due to similar high grain densities of zircon (4.669  g  cm−3) and titanomagnetite (4.776–5.200  g  cm−3) 
(Johnson & Olhoeft, 1984) relative to the grain density of the background sediments (2.72 g cm−3) (Collett 
et al., 2015), we suspect these minerals experienced similar sediment transport and depositional histories 
in the cores examined for this study. Thus, in the absence of diagenesis and assuming no major shifts in 
provenance, the Zr/Rb ratio (zircon) and κ (titanomagnetite) should have similar downcore patterns, as 
observed by Phillips, Johnson, Giosan, and Rose (2014). The downcore detrital pattern inferred from Zr/
Rb is compared to the κ pattern to identify intervals of altered κ, which we interpret to be indicative of a 
diagenetic overprint.

We constrain this interpretation by tracking diagenetic mineral reactions, as preserved in the solid phase 
products, through measurements of magnetic mineral assemblages, TS and TOC, and δ13C of authigenic 
carbonates. Our results show multiple diagenetic drawdowns in κ preserved in these records, and we attrib-
ute these signals to diagenetic alteration of titanomagnetite by H2S produced from OSR and AOM. Portions 
of our κ records that are not depleted relative to Zr/Rb, can be attributed to a primary κ driven by detrital 
mineral fluxes.

3.2.  Magnetic Susceptibility and Isothermal Remanent Magnetism

Volume-normalized magnetic susceptibility (κ, SI x 10−6) was measured on whole-round sections using a 
Geotek multi-sensor core logger (MSCL) on board the D/V JOIDES Resolution (Collett et al., 2015). Discrete 
samples (n = 37) were collected in 8 cm3 cubes and stored at ∼4 C. 1 cm3 subsamples were measured for 
mass-dependent magnetic susceptibility (χ, m3 kg−1) and compare well to the shipboard volume normal-
ized κ measurements (Figure S1), suggesting minimal alteration post-sampling. We also calculated a car-
bonate-free κ by adjusting the measured κ based on CaCO3 wt% and XRF Ca counts (Figures 2 and S2). Iso-
thermal remanent magnetization (IRM) with 3-axis thermal demagnetization was performed on 22, 1 cm3 
samples (Site 10) and 15, 1 cm3 samples (Site 16) at the University of New Hampshire Paleomagnetism 
Laboratory. χ was measured using a Bartington MS2 magnetic susceptibility meter. IRM was measured 
using an HSM2 SQUID spinner magnetometer. IRM was applied in 16 steps between 0 to 1,100 mT using 
an ASC IM-10 impulse magnetizer. After imparting the 1,100 mT field along the primary axis, fields of 400 
and 120 mT were imparted at right angles to the primary axis (Lowrie, 1990). We refer to the 1,100, 400, and 
120 mT as the hard, medium and soft axis, respectively. Samples were thermally demagnetized from room 
temperature to 680°C over 21 steps using an ASC TD48-SC magnetically shielded oven, measuring the mag-
netization along each axis after each step (Lowrie, 1990). We characterized magnetic mineral assemblages 
from the combination of IRM acquisition and thermal demagnetization curves. From the IRM acquisition 
curves we calculated the saturation IRM (SIRM) and the field at which half of SIRM is reached (B1/2) using 
the approach of Kruiver et al. (2001).

3.3.  X-Ray Fluorescence

XRF core scanning was performed using a Cox Analytical XRF core scanner at Woods Hole Oceanographic 
Institution (WHOI) on split core surfaces. Zr, Rb, Fe, Ti, and K in these cores were measured every 4 mm 
down core for 20 s at each step with a 30 mA/60 kV energy level.
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3.4.  CHNS Elemental Analysis

Samples were dried in an oven at 40°C and powdered, and then measured on a Perkin Elmer CHNS/O 2400 
Series II elemental analyzer. Bulk, untreated samples were run for total carbon (TC), total nitrogen (TN), 
and total sulfur (TS). Total organic carbon (TOC) was measured on samples treated with 6% sulfurous acid 
using the method described in Phillips et al. (2011). Replicates were run approximately every 10 samples 
with a precision of 0.08, 0.01, and 0.03 wt% for TC, TN, and TS respectively. Soil standards from Elemental 
Microanalysis were also run approximately every 10 samples with an accuracy of 0.03, 0.02, and 0.03 wt% 
for TC, TN, and TS respectively.

3.5.  Age Model

Age models at Site 10 and Site 16 were derived from published radiocarbon-based ages (Mazumdar 
et al., 2009; Ponton et al., 2012). We expanded age assignments at Site 16 with additional radiocarbon and 
benthic δ18O data. For our radiocarbon ages, we picked mixed plankic foraminifers (primarily Globigeri-
noides ruber and Globigerinoides sacculifer) for three samples at 10.05, 11.05, and 12.55 mbsf. These sam-
ples were measured at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility at 
Woods Hole Oceanographic Institution (WHOI), using the H3PO4 hydrolysis method. Radiocarbon ages 
were calibrated to calendar ages with CALIB 8.2 software (Stuiver et al., 2021) and the Marine20 calibration 
curve (Heaton et al., 2020). The standard marine reservoir correction of 400 years was used for calibration, 
and this value is bracketed by the two nearest reservoir corrections in the Bay of Bengal (Dutta et al., 2001; 
Southon et al., 2002).

The age model was expanded by oxygen isotope measurements of benthic foraminifers Uvigerina peregrina 
and Hoeglundina elegans. From these two δ18O series, multiple oxygen isotope events were identifiable 
based on the chronology of Imbrie et al. (1984) and Lisiecki and Raymo (2005) (see Figure S3). δ13C and δ18O 
data are expressed relative to the Vienna Pee Dee Belemnite (VPDB) standard as ‰. Foraminfer abundance 
was too low below 40 mbsf to be able to measure stable isotopes and the δ18O was uninterpretable below 
25 mbsf, possibly due to diagenetic overprint as suggested by light δ13C isotopes (Figure S3).

3.6.  Authigenic Carbonate Isotopes and Mineralogy

Authigenic nodules from NGHP-01 sites were previously analyzed by Teichert et al. (2014), however, the 
upper 110 mbsf from Site 16 were not sampled at sea and thus not included in their study. We analyzed 
nodules sampled from the upper 73 mbsf from Site 16 for δ13C and δ18O analysis and X-ray diffraction (XRD) 
to supplement the authigenic carbonate analyses on deeper samples at this site by Teichert et al. (2014). 
Authigenic carbonate δ13C and δ18O from Site 10 was measured to supplement the analyses from Mazumdar 
et al. (2009) and Teichert et al. (2014). Carbonate nodules were dried, crushed, and stored in glass vials prior 
to analysis. Carbonates from Site 10 were measured at the Oregon State University Stable Isotope Laboratory 
with a Finnigan MAT 252 mass spectrometer with a Kiel III carbonate preparation device (phosphoric acid 
at 70°C). Carbonates from Site 16 were measured at the University of Michigan Stable Isotope Laboratory 
with a Finnigan MAT 253 mass spectrometer with a Kiel IV carbonate preparation device (phosphoric acid 
at 77 °C). δ13C and δ18O data are expressed relative to the VPDB as ‰. Both mass spectrometers were cali-
brated by NBS 19 standards: University of Michigan average and standard deviation was δ13C = 1.94 ± 0.07 
and δ18O = −2.25 ± 0.07, and Oregon State University was δ13C = 1.89 ± 0.1 and δ18O = −2.16 ± 0.08.

Powdered samples from Site 16 were analyzed using a Siemens D5000 X-ray Diffractometer and Kristallo-
flex 710 X-ray generator at the University of New Hampshire. The XRD was operated with source energy 
of 40 kV and 30 mA, a divergence slit of 2 mm, and receiving/scatter slits of 2, 0.05, and 0.5 mm. Samples 
were measured over a 2Θ range from 10° to 40° at a step of 0.04° 2Θ, with 20 s measurements at each step. 
Diffractograms were analyzed using Bruker-AXS EVA and International Centre for Diffraction Data (ICDD) 
database to calculate peaks and identify minerals.
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3.7.  Prediction of Primary Detrital Titanomagnetite

Intervals in which κ and XRF Zr/Rb are well correlated are inferred to reflect a primary detrital κ signal 
associated with depositional processes, as has been observed elsewhere on the eastern Indian margin (Phil-
lips, Johnson, Giosan, & Rose, 2014). Good correlation (R2 = 0.60 at Site 16 and 0.51 at Site 10) between κ 
and Zr/Rb was observed between 35 and 73 mbsf at Site 16 and between 0 and 9 mbsf at Site 10 (Figure 3). 
Predictions of primary detrital κ were made by linear regression of κ and Zr/Rb in these intervals and this 
best-fit relationship was extrapolated over the entire record of available XRF data (0–73 mbsf at Site 16 and 
0–28 mbsf at Site 10). The 95% prediction limits, used to assign upper and lower bounds to the predicted 
detrital signal, were derived using SigmaPlot 11.0 software.

3.8.  Calculation of Predicted Titanomagnetite Loss and Pyrite Gain

The loss of κ was calculated by subtraction of measured κ values from predicted κ based on Zr/Rb data. This 
difference was then converted into an estimate of titanomagnetite loss based on a titanomagnetite-domi-
nated assemblage, as indicated by the IRM and 3-axis thermal demagnetization data (see Section 4). As-
suming the loss of κ is driven by complete dissolution of titanomagnetite and precipitation of pyrite (all 
titanomagnetite Fe released by reaction with H2S is ultimately bound as FeS2), 1.15 wt% of pyrite sulfur 
will be precipitated for every 1  wt% of titanomagnetite Fe reduced. Because we do not know the exact 
titanomagnetite composition, we considered a range in κ values along the titanomagnetite series for this 
estimation. Along the titanomagnetite series, variation in Ti compositions can result in ranges in κ from 
4,800 (ülvospinel) to 5,700,000 (magnetite) (Hunt et al., 1995) resulting in drastically different predictions 
of titanomagnetite loss and pyrite precipitation (Figure S4). In Figure 6 we show predicted pyrite S based 
on titanomagnetite κ of 130,000 SI x 10−6 SI, which corresponds to an intermediate titanomagnetite compo-
sition of Fe2.4Ti0.6O4 (TM60) (Hunt et al., 1995 and Figure S2). TM60 is consistent with the composition of 
Deccan basalt (Radhakrishnamurty & Subbrao, 1990), the dominant source terrane for titanomagnetite in 
the Krishna-Godavari Basin.

Figure 3.  Comparison of κ and the XRF-derived Zr/Rb heavy mineral proxy at Site 16 and 10 (a and b). κ and Zr/Rb 
correlation with 95% confidence (gray dashed lines) and prediction intervals (red dashed lines) for Site 16 (35–73 mbsf) 
and Site 10 (0–9 msbf) (c and d). Blue shading in A and B show the coupled intervals of Zr/Rb and κ used for the 
regression in (c and d). Gray shading highlights intervals in which Zr/Rb and κ are decoupled.
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4.  Results
4.1.  Reconstructing Detrital Magnetic Susceptibility

To decipher the detrital κ mineral carrier, we measured IRM acquisition and thermal demagnetization 
curves of sediments from Sites 10 and 16. Overall, our IRM results show a low coercivity assemblage with 
a loss of nearly all magnetization by 575°C, indicating that titanomagnetite is the dominant primary detri-
tal magnetic mineral at both sites (Figures 4 and 5). Samples between 0 and 8.5 mbsf at Site 10 and 36 to 
73 mbsf at Site 16 (intervals of high κ) show a dominant low-coercivity ferrimagnetic component with very 
little contribution from high coercivity magnetic minerals (Figure 4). Within these intervals of high κ, IRM 
reaches >90% of the IRM at 1.1T by 0.11T; B1/2 is consistently <40 mT (Figures 4a and 4b). During thermal 
demagnetization, the magnetization is dominantly along the soft axis and decreases to 575°C with a change 
in slope at ∼325–350°C (Figures 4a and 4b). In intervals of low κ (e.g., 29–35 mbsf at Site 16 and 11–16 mbsf 
at Site 10), SIRM is lower and B1/2 increases, indicating a higher concentration of high-coercivity compo-
nents. Within these intervals of low κ, IRM only reaches 46%–66% of the IRM at 1.1T by 0.11T; B1/2 is higher 
at 56–126 mT (Figures 4c and 4d). During thermal demagnetization, the magnetization along the medium 
and hard axis typically exceeds or is approximately equal to the soft axis, retaining some magnetization to 
675°C. This suggests that the primary low-coercivity titanomagnetite has been subject to major dissolution, 
leaving more resistant, higher coercivity magnetic minerals (Garming et al., 2005; Poulton et al., 2004). At 
Site 10, we observe properties consistent with the presence of greigite between 17 and 23 mbsf, consistent 
with previously measured properties by Dewangan et al. (2013). IRM acquisition curves in this interval are 
similar to other high κ intervals but with demagnetization curves where IRM along the soft axis is lost by 
∼350°C consistent with the unblocking temperature of greigite.

Our IRM and thermal demagnetization results are consistent with the extensive work of Badesab 
et al.  (2017, 2019, 2020), Dewangan et al.  (2013), Gaikwad et al.  (2021), João et al.  (2021), and Usapkar 
et al. (2014) who used IRM and additional rock magnetic parameters (e.g., anhysteric remanent magnetiza-
tion (ARM), and S-ratio) coupled with XRD and SEM EDS to document a dominant presence of titanomag-
netite and minor amounts of hematite and goethite in the magnetic assemblages of the Krishna-Godavari 
Basin, with distinct intervals bearing magnetic iron sulfides and pyrite as diagenetic overprints. These com-
prehensive rock magnetic studies include Site MD-161 (Dewangan et al., 2013) which is about 100 m from 
NGHP-01 Site 10, and NGHP-01 Site 07 (Badesab et al., 2019), which is 8 km to the south of NGHP-01 Site 
16. The consistency of the primary magnetic mineral assemblage dominated by titanomagnetite across the 
Krishna-Godavari Basin as determined from five NGHP-01 sites, including the same sites as or nearby sites 
to those in this study, give confidence in our interpretation of the magnetic mineral assemblage from IRM 
and thermal demagnetization. These studies document losses in fine-grained titanomagnetite, precipitation 
of pyrite and greigite/pyrrhotite, and relative increases in high-coercivity minerals in zones affected by 
H2S-related diagenesis. In addition, numerous gravity cores collected throughout the KG-Basin show ti-
tanomagnetite with reduced magnetic susceptibility or greigite presence at seep sites (Gaikwad et al., 2021; 
Usapkar et al., 2014).

Based on room temperature property measurements (Peters & Dekkers, 2003) all of our samples except 
one plot as titanomagnetite-dominant (Figure 5). Samples with lower total S tend to plot toward the higher 
SIRM/χ range (closer to magnetic iron sulfides) and samples with higher total S tend to plot toward the 
lower SIRM/χ and higher B1/2 range (closer to hematite and goethite).

Due to gravity sorting during deposition, titanomagnetite series minerals in marine sediments are com-
monly deposited with other heavy minerals, which we track using XRF Zr/Rb measurements on split core 
surfaces. Comparing the Zr/Rb and κ records at Site 16, we see a good correlation between 36 and 73 mbsf 
whereas sediment between 0 to 36 mbsf is not well correlated (Figure 3). At Site 10, a good correlation is 
observed between 0 and 8 mbsf, but no correlation is apparent from 8 to 27 mbsf. We argue that portions of 
the records where κ tracks the Zr/Rb heavy mineral proxy, reflect the magnetic signal from a detrital titano-
magnetite flux. In contrast, relative variations in κ that are decoupled from the Zr/Rb heavy mineral proxy 
likely represent zones where either titanomagnetite deposition decreases relative to zircon or the original 
detrital κ has been altered by diagenesis. We estimate an equivalent titanomagnetite loss by subtracting the 
measured κ signal from a Zr/Rb-derived detrital κ profile. If we assume complete pyritization, our estimated 
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Figure 4.  IRM acquisition and three-axis thermal demangnetization curves for Sites 10 (a, c, e) and Site 16 (b and 
d). We show example curves for unaltered κ intervals (a and b), altered κ-pyritization (c and d), and altered κ-gregite-
bearing (e) intervals. Vertical dashed lines represent the Curie temperatures for magnetite (MG), TM60 titanomagnetite, 
and hematite (HM) and the unblocking temperature for the magnetic iron sulfides (MIS) greigite and pyrrhotite.
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titanomagnetite loss (wt%) can be used to calculate a predicted pyrite 
sulfur profile, which we then compare with TS measurements. This ap-
proach allows us to correlate intervals of decreased κ (i.e., those decou-
pled from Zr/Rb) with an additional indicator of sulfide mineralization.

4.2.  Titanomagnetite Loss and Pyrite Gain

In the presence of reactive Fe and H2S, pyrite formation occurs in the an-
oxic zone in marine sediments. After the most reactive Fe (oxyhydr)oxide 
phases (hydrous ferric-oxides, lepidocrocite) are consumed, magnetite 
and then hematite become primary sources of reactive Fe for pyrite for-
mation (Poulton et al., 2004). Applying the approach described above to 
the records from Sites 16 and 10, we show that the predicted pyrite S and 
measured bulk TS profiles, both distinctly increase in the zones of deplet-
ed κ (Figure 6). While the observed TS is an order of magnitude higher 
than predicted pyrite S based on a TM60 composition, they show rela-
tive increases in S in the same intervals. Our predicted pyrite S content 
matches closest when based on the κ of ülvospinel, which is not likely the 
dominant titanomagnetite composition based on a Deccan source more 
similar to TM60 (Radhakrishnamurty & Subbrao, 1990). Uncertainty in 
the titanomagnetite composition, reaction of H2S with dissolved Fe and 
other Fe-(oxhydr)oxides, and formation of iron monosulfides, elemental 
sulfur and organic sulfur compounds may contribute to the discrepancy 
in absolute wt% estimates between predicted and observed S. The most 
depleted zones of κ (30–35 mbsf at Site 16 and 10–27 mbsf at Site 10) have 

TS > 1 wt%. A pyrite nodule was also observed at 35 mbsf at Site 16 (see Figure S5). The Fe/κ profile reveals 
the zones of maximum κ loss (increased paramagnetic rather than ferrimagnetic Fe), which are coincident 
with the TS gains and predicted pyrite S increases throughout both records (Figure 6). The increases in 
Fe/κ are consistent with higher pyrite and lower titanomagnetite content. Intervals with no depleted κ (e.g., 
Site 16, 36–56 mbsf) show systematically less TS (0.15 wt% mean) than in the zones of reduced κ (0.59 wt% 
mean) (Figure 6). Collectively, these relationships indicate that the intervals of correlated maximum κ loss 
and TS gain are diagenetically altered, where reaction of H2S with titanomagnetite produced reactive Fe that 
contributed to increased TS (pyrite formation), reducing κ.

5.  Discussion
5.1.  Tracking Paleo-SMTZ Positions

Based on the results presented above, we attribute the depleted κ in the Site 16 and 10 records to pyritization 
fronts preserved in the sediments. The data suggest a scenario where the SMTZ remained fixed at a given 
paleo-depth for some period of time, followed by an upward migration of this horizon.

5.1.1.  Site 16

At Site 16, the modern SMTZ depth (23 mbsf) is 6–12 m shallower than the most pronounced decrease in 
κ (29–35 mbsf) (Figure 6a). This depth difference corresponds to eight meters of sediment that accumulat-
ed during the Holocene (Figure 6a) (Ponton et al., 2012). A rapid increase in monsoonal weathering and 
sediment accumulation following the slowdown in sedimentation on this margin during glacial periods, 
described by (Phillips, Johnson, Giosan, & Rose, 2014), would rapidly drive a stalled SMTZ to shallower 
depths (e.g., Riedinger et al., 2005). The slowdown in sedimentation rate during glacial periods would allow 
sufficient time for pyritization to draw down the κ signal, whereas the increase in post-glacial sedimentation 
rate that drives a continuously upward migration of the SMTZ, allows less time for pyritization and conse-
quently a smaller loss of κ farther up the record.

The presence of methane-derived authigenic carbonates (MDAC) (e.g., Ritger et al., 1987) can also indi-
cate paleo-positions of the SMTZ. At Site 16, the only MDAC (low-Mg) calcite at 31.4 mbsf (Figure S5) is 

Figure 5.  Cross plot of SIRM/χ and B1/2 for Site 10 (circles) and Site 
16 (triangles). Larger symbol sizes indicate higher total sulfur content. 
Magnetic mineral ranges are from Peters and Dekkers (2003).
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Figure 6.  Summary plots for Site 16 (a) and Site 10 (b) showing the diagenetically altered zones of κ correspond to increased TS, consistent with 
titanomagnetite dissolution by H2S and precipitation of pyrite in H2S bearing sediments. Altered κ is also demonstrated as positive excursions in the Fe/κ. δ13C-
depleted authigenic carbonates (Mg-calcite) in the altered κ zones suggests a significant role of AOM at these positions, while δ13C-enriched siderites below 
these intervals are indicative of methanogenesis coupled with silicate weathering (Solomon et al., 2014; Teichert et al., 2014; Torres et al., 2020). Porewater 
sulfate and headspace methane profiles define the modern SMTZ (horizontal black lines) at both sites. For reference seawater sulfate is ∼28 mM. Age model 
from Site 10 from the companion MD-161 site (Mazumdar et al., 2009). Age model from Site 16 is a compilation of Ponton et al. (2012) and this study.
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located within the most pronounced κ drawdown and is the most depleted δ13C (−30 ‰ VPDB) carbonate 
in the examined core interval (Figure 6a), consistent with our reconstructions. Below this depth, and within 
predominantly unaltered κ, authigenic carbonates transition to more enriched δ13C (−11 to +11 ‰ VPDB) 
values (Figure 6a) and Fe-rich carbonates (e.g., siderite between 52 and 66 mbsf; see Figure S3), which rep-
resent a separate pathway for carbonate formation not related to AOM. Rather, these enriched carbonates 
are associated with silicate weathering reactions coupled to microbial methanogenesis described by Solo-
mon et al. (2014) and Torres et al. (2020), which do not affect κ.

Less clear are inferences based on the absence of authigenic carbonates above the largest drawdown in κ at 
Site 16, in sediments with an observed κ loss above the modern SMTZ. There is an approximate doubling 
of TOC in the upper 35 mbsf (1.87 wt% from 0.96 wt% below 35 mbsf) at Site 16. OSR rates often exceed 
the rates of AOM at non-seep sites (Hinrichs & Boetius, 2002), thus, the dramatic change in organic matter 
availability at Site 16 may have driven OSR to produce enough H2S to reduce κ. The lack of authigenic car-
bonates in the upper 35 mbsf may be explained by insufficient time to precipitate them from bicarbonate 
produced solely from OSR and/or authigenic carbonates are sufficiently small, present as micro-crystals 
(e.g., Rose et al., 2014), thus not observed during split core description or in smear slides from this stratig-
raphy (Collett et al., 2015). Nevertheless, the κ record at Site 16, appears to have been altered by both AOM 
and OSR, perhaps independently (see additional discussion in Section 5.2).

In contrast, in the deeper sediments below 35 mbsf, the unaltered κ retains its signal from primary de-
trital mineral inputs. Within this interval, nannofossil and foraminifera abundance remains low (Collett 
et al., 2015) and CaCO3 is less than 12 wt% (Johnson et al., 2014). The lower TOC content below 35 mbsf has 
remarkably higher δ13C-TOC (−18 to −13 ‰VPDB) (Johnson et al., 2014), consistent with higher fraction of 
vegetation from terrestrial sources that are extensive on the Indian subcontinent during the Plio-Pleistocene 
(Dunlea et al., 2020; Galy et al., 2008).The lack of diagenetic loss of κ in the lower part of the record could 
be explained by low OSR rates that correspond to the observed lower TOC abundance and/or a quickly mi-
grating SMTZ driven by possible higher sedimentation rates.

5.1.2.  Site 10

At Site 10, the diagenetic drawdown in κ (9–27 mbsf) corresponds to intervals with abundant MDAC (Fig-
ure 6b) (Mazumdar et al., 2009; Teichert et al., 2014) and 34S-enriched chromium reducible sulfur (CRS) 
(Peketi et al., 2012) that suggest AOM at the modern and deeper paleo-SMTZs. The presence of paleo-seep 
fauna (Collett et al., 2015; Gale et al., 2020; Mazumdar et al., 2009) and Mo anomalies (Peketi et al., 2012) 
further indicate that paleo-methane seepage may have breached the seafloor at this site. AOM rates at meth-
ane seeps are 1–2 orders of magnitude higher than buried SMTZs where methane supply is dominated by 
diffusion (Knittel & Boetius, 2009). The paleo-seep conditions at Site 10 and associated high H2S production 
rates likely contributed to the very high TS content (as high as 2.2 wt%) measured in this interval. The ap-
parent diagenetic decrease in κ at Site 10 is limited however, between 17 and 23 mbsf, due to the presence 
of greigite or sufficient ferrimagnetic iron oxides that maintain moderate values of κ that are not much less 
than the detrital background.

5.2.  TS Versus TOC

To investigate whether pyritization is linked to the supply of organic matter, we compare the measured TS 
to TOC, and deviations from expected trends, to the κ record. The records from Site 10 and Site 16 (between 
29 and 35 mbsf) have intervals of reduced κ that correspond to higher TS than expected if pyritization was 
driven only by OSR (Figure 7; Berner & Raiswell, 1983). These high TS intervals may be a first order indica-
tor of AOM-driven pyritization (e.g., Kaneko et al., 2010) and prolonged paleo-positions of the SMTZ. In the 
reduced κ sediments above 29 mbsf at Site, the TS to TOC ratio is consistent with that predicted from OSR, 
rather than AOM (Figure 7a). In general, the lowest values of κ (<50 SI x 10−6) correspond to high TS/TOC 
associated with AOM while reduced κ values (50–200 SI x 10−6) correspond to TOC values >1.5 wt% asso-
ciated with enhanced OSR (Figure 7b). Our data show paleo-preservation of the diagenetic κ loss, which 
at Site 10 are similar to values observed at modern seeps with sustained high methane fluxes (Novosel 
et al., 2005), and at Site 16 match those reported at modern stalled SMTZs (Riedinger et al., 2005). It is 
notable that the mobility of methane, which can be generated in situ or supplied from deeper sediments, 
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relative to TOC, may help enhance AOM-driven pyritization. OSR-driven pyritization and dissimilatory 
iron reduction (Hepp et al., 2009; Passier et al., 2001) on the other hand, which can impact κ, may be limited 
by the in situ type and fixed amount of TOC in the sediments. Together, both Sites 10 and 16 demonstrate the 
potential of our approach to identify intervals of past pyritization of titanomagnetite, which may be driven 
by changes in sedimentation rate, TOC availability, and/or episodic methane fluxes.

5.3.  Fe-Oxides, Pyritization, and Chemosynthetic Biological Communities

The role of Fe-oxide minerals as a source of iron for pyritization is important in this and in many continen-
tal margin environments, where high rates of sedimentation efficiently bury labile organic carbon below 
the oxic zone to fuel sulfate reduction (Berner, 1978). Full pyritization occurs when the rate of sulfide pro-
duction exceeds that of reactive iron burial (Roberts, 2015). AOM generates sulfide in excess of that gener-
ated by OSR, which, in addition to iron burial, regulates the sulfide availability. Chemosynthetic biological 
communities (CBCs) at methane seeps rely on H2S to sustain their symbionts (Dale et al., 2010). In marine 
sediments with high Fe-oxide content, consumption of H2S during pyritization can result in the absence 
of dissolved H2S even during ongoing sulfate reduction (Canfield, 1989). When iron oxides are depleted 
through organic metabolic pathways in the Fe reduction zone and/or reaction with H2S (as indicated here 
by decreased κ) and subsequent pyritization (as mapped here by TS), excess H2S will become available for 
utilization by CBCs. Since the presence of iron oxides in the sediments efficiently controls the amount of 
sulfide sequestration as pyrite (Canfield, 1989), seafloor chemosynthetic activity is viable when the supply 
and reactivity of the iron oxides is low enough for the rate of sulfide production to exceed the rate of iron 
sulfide formation.

At Site 10, a full κ drawdown at 16 mbsf is preserved in concert with a fossilized paleo-seep community. 
Here, reactive iron was exhausted, allowing bioavailable H2S to reach the seafloor at a high enough rate to 
initiate and sustain CBC development. Gravity cores from the Krishna-Godavari basin show decreased κ in 
cores with SMTZs at 4–5 msbf (Usapkar et al., 2014), indicating that in systems where the SMTZ is shallow, 
H2S produced via AOM at the SMTZ results in the dissolution of Fe-oxides in close proximity to the seafloor. 
At Site 10 and other methane seep environments, variable fluxes of H2S produced by AOM can effectively 
mine the Fe released from Fe-oxides out of the sediments to precipitate Fe-sulfides. The detrital Fe-oxide 
distribution in marine sediments can therefore play a major role in regulating maximum pyritization at 

Figure 7.  TS versus TOC cross plot to document excess sulfur (above normal marine sediment line) present in the diagenetically altered zones at Sites 16 and 
10, which is consistent with AOM (Kaneko et al., 2010). Normal marine sediment line of 3:1 TOC:TS due to OSR from Berner and Raiswell (1983). Marine 
organic matter line 50:1 TOC:TS from Suits and Arthur (2000). (a) Red triangles represent the interval of altered κ between 9 and 27 mbsf at Site 10. Red circles 
represent the interval of altered κ between 29 and 35 mbsf at Site 16. Orange circles represent the interval of altered κ between 0 and 29 mbsf at Site 16. Brown 
triangles and circles represent intervals of unaltered κ from Site 10 (0–8 mbsf) and Site 16 (36–73 mbsf). (b) The size of the circles (Site 16) or triangles (Site 10) 
increase with higher values of κ.
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methane seeps, as shown here for Site 10 and in agreement with observations elsewhere. The global sulfur 
sink in marine sediments has been attributed to pyrite sulfur sequestration (Berner & Raiswell, 1983). Here 
we argue that at methane seeps the H2S generated by AOM can fully deplete available detrital sources of 
Fe needed to precipitate Fe sulfide minerals, limiting the capacity of marine sediments to sequester sulfur 
globally, yet potentially sustaining seafloor CBC’s. In contrast, methane seeps on continental margins with 
abundant detrital magnetic minerals, may help sustain marine sediment pyritization, enhancing the ma-
rine sediment sulfur sink, yet potentially limiting the development of CBC’s.

5.4.  Applicability of This Approach

Our approach for isolating detrital and diagenetic signals in magnetic susceptibility records of meth-
ane-bearing marine sediments requires the following conditions: (a) the presence and persistence of detri-
tal Fe-oxides (magnetite or hematite), zircon, and other Ti-bearing heavy minerals (e.g., titanomagnetite, 
ilmenite, or rutile) that can be detected using XRF core scanning technology; (b) no significant presence of 
diagenetic magnetic Fe-sulfides (greigite or pyrrhotite) that can locally increase κ; (c) reference sections or 
sites where κ is not diagenetically altered; and (d) sufficient sub-seafloor TOC preservation to drive OSR and 
methanogenesis. In general, this approach is suitable for continental margins with a substantial lithogenic 
input and a terrigenous and/or marine organic carbon flux that is high enough to drive OSR and methano-
genesis. Magnetite-dominant lithogenic sources provide an ideal setting because the κ of magnetite is >25 
times higher than hematite or goethite (Hunt et al., 1995). Mixed assemblages of magnetite with higher 
abundance of other iron oxide phases may introduce additional errors since the reaction of these iron oxides 
with H2S generates a larger sulfur sink than that predicted by κ loss. In addition to Zr/Rb, Ti associated with 
titanomagnetite, ilmenite, and rutile can provide an alternative means of tracking heavy minerals using the 
Ti/Rb or Ti/K ratio (Figure S6).

6.  Conclusions
Integration of κ with Zr/Rb (from XRF) records in titanomagnetite-bearing marine sediments can be used 
to identify intervals of diagenetic loss of κ. Using data from the Krishna-Godavari Basin (NGHP-01 Sites 10 
and 16) we demonstrate that predicted pyrite sulfur, based on the assumption of full pyritization of titano-
magnetite, correlates to the pattern of measured total sulfur, except where greigite is present. By integrating 
this analysis with additional sedimentological and diagenetic proxies, we can associate observed diagenetic 
drawdowns in κ with paleo-SMTZ positions, intervals of increased TOC deposition, and methane venting. 
Additionally, plots of TOC versus TS can help distinguish alteration of κ and pyrite precipitation driven by 
OSR or AOM. This approach is applicable on continental margins with a consistent input of detrital Fe-ox-
ides and zircon, and sufficient TOC to drive OSR and methanogenesis. Sediments in titanomagnetite-dom-
inated margins are efficient sediment sinks for global sulfur as sedimentary pyrite, produced from H2S 
generated via OSR and AOM. This pyritization process may limit the H2S available to chemosynthetic seep 
fauna until in situ detrital sources of Fe are fully depleted. Under conditions of reactive iron depletion, such 
as those in methane cold seeps, the pyrite-sulfur sink ceases to operate, and sulfide escapes the sediment to 
be consumed by chemosynthesis or abiotic oxidation reactions.

Data Availability Statement
The data presented in this paper are accessible through the PANGEA database (https://doi.pangaea.de/ 
10.1594/PANGAEA.933230).
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