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SUMMARY

Concepts conceming kinematics are prcsented that are fundamental for the description of

motion of rigid bodies. Thèse concepts are formulated using the mathematical setting provided

by rotation matrices, Euler's vectors, Euler's angles and unitary quatemions. Basic algebraic and

differential properties of thèse éléments are reviewed with emphasis on their physical

interprétation and on application examples relevant to problems encountered in the navigation

and robotics fields.
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l. MEASURE 0F A VECTOR RELATIVE TO A REFERENCE FRAME

A vector, y, is a mathematical object characterized by a direction and an amplitude. In the 3-

dimensional Euclidean space, y can represent a variety of physical éléments: a force, a velocity

(angular or linear velocity), the position of a point, a direction etc.. Independently from its

physical interprétation, the measure of y relative to a référence frame A, denoted with the symbol

EYJA 'ls rcprcsented by a triplet of scalars

[ïL= (l)

where Vx, Vy, Vz are such that

y=[i j k] =Vxi+VyJ+v,k, (2)

l, J, k being the directional vectors of A.

A

z = [i J ^] [d/

Figure l: The notion of measure ofa vector relative to aframe
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Example l: The velocity of a mobile A with respect to a mobile B is a vector that we denote

with the symbol YA • To mathematically reprcsent this vector we can give its measure relative to

a frame attached to A, or a frame attached to B, or any other arbitrarily chosen frame C. Thèse

measures denoted with the symbols [BV:A]^ ' [B-VA]g ' [BVA]^ ' are usually différent one from the

other. However, each one of them, together with the triad of directional vectors associated with

the référence frame, represents in a bi-uni vocal fashion the vector y^ •

Example 2: The position of a point P relative to a frame, A, is defined by the measure relative

to A, IO^P] , of the vector O^P obtained by joining the origin of A with P. The position of P
lA

with respect to any other frame, B, represents the measure of vector OgP, relative to B.

p
••-

Figure 2: Measure of the position of a point with respect to aframe

2. PHYSICAL ELEMENTS INTERVENING IN THE DESCRIPTION 0F THE

MOTION 0F A RIGID BODY

Given two frames, A and B, the position of A with respect to B is defined by the measure

relative to B, |0^0/i | , of the vector joining the origin of B with the origin of A, 0^0^ . The
IB

orientation of A with respect to B is defined by the orientation of the dircctional vectors of A
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with respect to the directional vectors of B. This orientation is often représentée! by the Euler

vector -ôy (or equivalently Cv, û)), a vector defined by the property that by imposing a rotation of

an angle û about the unitary vector y to a frame C, initially coincident with B, C assumes the

same orientation as A.

The linear velocity of A with respect to B is defined by the équation

N. -^ M. (1)

whereOgOA is the vector describing the position of A with respect to B. The angular velocity of

A with respect to B is defined by the équation

f°©A(Ât)1
[•°.],=.Iim

At ^0 At
(2)

B

where BQ^(At) is the Euler vector representing the change of orientation of A with respect to B

that has occurred in the time interval (t, t + At).

Linear and angular accélérations of A with respect to B are defined by the following

équations

[^L^M, P)

[•aJ,^[BQ.L <4)

3. ROTATION MATRICES

A rotation matrix is a 3 x 3 dimensional ortho-normal matrix describing the orientation of a

frame B with respect to a référence frame A. More in particular,

Rot(A,B):=[[n],,[o],,[a]j (l)
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where [n]^ ,[0]^ ,[a]^ represent the measures relative to A of the directional vectors of B. Matrix

Rot(A,B) is often called the cosinus matrix because its entnes represent the cosinuses of the

angles that the directional vectors of A form with the directional vectors of B.

Remark l: In some scientific applications (as for example in computer graphics or in some

aeronautical applications), the rotation matrix is rather defined as given by

Rot(A,B):=[[n],,[o],,[a]j- (2)

where [[îl^'^L'EâL] rePresent once again the measure relative to A of the directional vectors

of B. This alternative définition reflects a préférence to work with row vectors rather than with

column vectors.

Remark 2: With [y]^ and [y]g denoting the measures relative to frames A and B of a given

vector y, one has [y] = Rot (B,A) [v] .

Proof: Let l, jand k the directional vectors ofB; n, o and a the directional vectors of A.

Figure l: Relation between the measures [y] , [y] ofa given vector.

From the définition of [y]^ and [y]g one has
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v=[i J k][ïL (3)

Y = [n o a] [y], (4)

Since

with

it follows

From (3) and (4) one has

hence

Rot(B,A)=[[n]Jo]Ja]j

"4 j k] Ma

o-[i j kNs

â=[i J k][aL

[n o a]=[i j k]Rot(B,A)

[i J k]MB-[n o a] [y],

=[i j k]Rot(B,A)[y],,

[y]^Rot(B,A)[Y],.

Remark 3: With \OA~P\ , | Og P | the position relative to A and B of a point P, one has
IA L - JB

[OBPL1-TfB,Al[M
l l

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

where T[B,A] is the 4x4 homogeneous transformation matrix defined by the position/orientation

of A with respect to B (Craig, chapter 2),
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T[B,A]:=
Rot(B,A)
000

OBÛA
(13)

3.1 Product and inversion of rotation matrices

With the orientations of B with respect to A, of C with respect to B, and of A with respect to

C, represented by the matrices Rot(A,B), Rot(B,C) et Rot(C,A), the following relations hold

Rot(B,A) = Rot(B,C) Rot(C,A)

Rot(A,B) = Rot(B,A)-1 = Rot(B,A)

Proof: With [y] ,[y] ,[y] denoting the measures of a vector y relative to A, B, C, one has

[^B = R°t(B,A) [y], ; [y], = Rot(B,C) [y], ; [v], = Rot(C,A) [y],.

(l)

(2)

It follows

Rot(B, A) [v]^ = Rot(B, C) Rot(C, A) [y]^ for each [y],

which implies

Rot(B,A) = Rot(B,C) Rot(C,A),

Rot(B,A) Rot(A,B) = Is.

(3)

(4)

Remark l: It is often useful to represent the relation of orientation among différent frames with

a directed graph as indicated in Figure 2.
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D

Rot(D,C)

I- u

\̂ Rot(B,C:
^̂

Rot(C,D)

?

\
A B D

Figure l: Directed graph représentation of the orientations

of an ensemble of référence frames.

3.2 Examples

When the orientation of a frame A relative to a frame B corresponds to that obtained by

rotating a frame originally coincident with B of an angle y about the x_ axis, one has

Rot(B,A)=Rot(x,Y):=
10 0
0 COSY -siny

0 siny cosy
(l)

Similarly, if one considers a rotation of an angle R about the y_axis, or a rotation of an a about

the z_ axis, then
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Rot(y,|3):=
cos(3 0 sin(3
0 l 0

-sinp 0 cosp
(2)

Rot(z,a):=

cosa -sina 0

sina cosa 0

0 0 1
(3)

Thèse matrices describe a rotation about one of the principal axes and are called matrices of

simple rotation. Their importance stems from the fact that any arbitrary rotation matrix can be

decomposed into the product of matrices of simple rotation, as for example:

Rot(B,A) = Rot(z,a)Rot(y,|3)Rot(x,Y). (4)

3.3 Rotation matrices and rotational displacements

When a frame A is submitted to a rotational displacement such that starting from an initial

orientation Ao it ends up into a final orientation Afm, this displacement can be represented by the

matrix Rot(Ao, Afm). If A is submitted to a séquence of rotational displacements represented by

the matrices Ri, R2, ... Rn, the final orientation ofA (Afin) with respect to its original orientation

(Ao) is représentée! by the matrix

Rot(Ao,Afin)=RiR2...Rn (l)

if the séquence of rotations under considération is described in a relative fashion; the final

orientation of A is described by the matrix

Rot (Ao, Afin) = Rn Rn-i ...RI (2)

if the séquence of rotations is rather described in an absolute fashion.

A séquence of rotations Ri, Rz, ... Rn is described in a relative fashion if for each i = l, .., n,

the i-th rotation matrix R; describes an orientation relative to a frame obtained by imposing to A

the first i-1 rotations. More explicitly, in a relative description one has
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Ri = Rot(Ao, Ai) , R2 = Rot(Ai, A^, ... (3)

where A; denotes a frame having the orientation that A has after having been submitted to the

rotations Ri, R2, ... Ri.

To détermine the matrix resulting from a séquence of rotations described in this way, let

l OP() | represent the co-ordinates of a point Po relative to Ao, a frame having the original
JA

orientation of A. After having been submitted to rotation Ri, Ao will be displaced into Ai, Po

into Pi with

|OP^ =R,|OP^ =R,|OPo| (4)
JAo L JAi L JAo

(|0 Pi l =|OPQJ since Pi has, relative to Ai, the same position as Po relative to Ao). After
lAi L JAo

having been submitted to R2, Ai will be displaced into Â2, Pi into Pz, with

|OP^ =R,\OP,\^ =R,R,\OP,\^ -R^|OPo|. . (5)
lAo 'L ~JA| ' ~L "JA; ' "L "JAo

Reiterating the argument, it follows that 10 PJ = RiR; • • • RJ 0 Pg | . Hence,
JAo L jAo

Rot(Ao,Aj=R,R2...R^ (6)

A séquence of rotations Ri, ... Rn is described in absolute terms if each matrix R; represents

the change in orientation relative to a fixed frame that a frame A is submitted to, after having

been submitted to Ri, ... Rj-i. To détermine the rotation matrix resulting from the

implementation of this séquence of rotations, let |0 Pg | represent the co-ordinates of a point Po
JA<)

relatives à Ao, a frame with the original orientation of A. After having been submitted to Ri, Po

will be displaced into Pi with
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[QPiL=Ri[oPoL. (7)

After having been submitted to Rz, Pi will be displaced into P2 with

[OP^=R,[OPj^RA[OPoL.

After having been submitted to Rn, Pn-i will be displaced into Pn with

(8)

[OPnL=Rn-RA[OPo]^. (9)

It follows that the rotation resulting from the application of the séquence Ri, ... Rn is described

by the matrix

Rot(Ao,An)=Rn...Ri.

Example: Let Ri and R2 represent two rotations described by the matrices

R,=Rot(x,90°)=|

(10)

Ri=Rot(z,90°)=

l
0
0

0
l
0

0
0
l

-l

0
0

0
-l

0

0
0
l

(11)

(12)

If thèse two rotations are applied by viewing the séquence {Ri, Rz} as described in a relative

fashion, the résultant rotation matrix is

Rrés = R1R2 =

l
0
0

0
0
l

0
-l

0

0
l
0

-l

0
0

0"

0
l

0-10

00-1

l 0 0
(13)

If thèse two rotations are applied by viewing the séquence {Ri, R2} as described in an absolute

fashion, then

Rrés = R2R1 =

0
l
0

-l

0
0

0
0
l

l
0
0

0
0
l

0
-l

0

0
l
0

0
0
l

l
0
0

^R,R, (14)
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3.4 Euler vector and rotation matrix

The orientation of a frame B relative to a frame A is described by the Euler vector

w : = -& k, with -Q a scalar and k a unitary vector, if the orientation of B can be thought as

obtained by imposing to a frame initially coïncident with A a rotation of an angle ô about k.

B

w:=ôk

Figure l: Euler's vector: the orientation of B is obtained by rotating A

of an angle û (counter clockwise) about k

Let the orientation of a frame B relative to a frame A be représentée! by the Euler's vector

Ok ' [kL=| (l)

and by the rotation matrix

Rot(A,B):-[ry]=
Lll X12 X13

L21 r22 r23

.r31 r32 L33.

(2)

Thèse two représentations are related via the following équations:
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where

N=
k,k,vû+cû

k,k vû+k,sû

k,k,vû-k,,sû

k,kyVÔ-k,s-&

kykyVÔ+CÔ
k^k,vô+k,sû

k,k,vô+k su

k,,k,vô-k,s^y-~z ' ~ ~~x

k,k,vû+cû

vu := 1-cô

eu := cosû

su : = sin û •

Inversely, we have

(3)

(4)

rll +r22 +r33 - 10=Arccos<! ^u ' ^22 ' ^33 0<ô<180 (5)

&L=
V(l-32 - r23 )2 + (l-13 - 1-31 )2 + (1-21 - 1-12 )2

r32 -

ri3 -

.r21 -

-23

131

L12.

(6)

Proof: i) From Euler vector to rotation matrix.

Let rotation matrix Rot(A,B) = Rot([k] ,'0') represent an orientation obtained by applying

to a frame B initially coincident with frame A a rotation of an angle •ô about unitary vector k. By

applying to a frame initially coincident with an arbitrarily chosen frame RA, a rotation of 'ô about

k, we have a frame RB such that

Rot(R^RB) = Rot(A,B) = Rot([k]^ ,o). (7)

RB and B having been obtained by imposing the same rotation to two frames initially coïncident

respectively with RA and A, the orientation of RB relative to B is identical to the orientation of

RA relative to A. It follows,

Rot(A,R/J=Rot(B,RB). (8)
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RotK.ft)

Rot (A,RA)

7L

M
RA RB

Rot([k],,ô) Rot (B,RB)

Figure 2 : Rotation matrix and Euler vector

With the help of figure l, we can then write

Rot(A,B) = Rot([k]^,û) = Rot(A,R^)Rot([k]^ ,'&)Rot(Rg,B)

=Rot(A,RjRot([k]^ ,-&)Rot(RA,A)

= Rot(A,RjRot([k]^ ,û)Rot'(A,Rj.

By now choosing RA so that the x_axis ofRA coincides with k, that is so that |k|^ =
•A

we have

Rot(A,Rj = Rot(z,a)Rot(y,(3)

where a and (3 represent the yaw and pitch angles of k relative to A:

a : = angle between the z x plane of A and the plane z k

(3 : = angle between the x y plane of A and vector k .

Using the notation [k] = k^,k ,k^ ', we have

(9)

(10)
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cos (3 = ^kf+k^ , sin p = k,

cosa = k,/^+k;

sina=ky/^+k^,

> y

pitch,
inclination

yaw,

declination

Figure 3 : Pitch andyaw angles ofa vector relative to aframe.

Equation (9) becomes

Rot([k]^,-&) = Rot(z,a)Rot(y,P)Rot(x,û)Rot(y,P)'Rot(z,a)'. (11)

Considering that

Rot(x,ô)-
100
0 eu -su

0 su c-&
(12)

Rot(y,p)=
cp 0 s?
0 l 0

-sp 0 c(3
(13)

Rot(x,a)=

ça -sa 0

sa ça 0

0 0 1

and implementing the products specified by équations (9,10,11), it follows

M=
k.k^vô+cû k,kyVÔ-k,sô k,k,vô+ks^

k,k,,vô+k,sû kXvû+a& kj^v-&-k,sû

k,k,vû-k,sô k,,k,vû+k,sô k,k,vû+cô

ii) From rotation matrix to Euler vector.

Letting

-15-
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ru

^
^l

ri2

1-22

^

ri3

r23

r33_

k^vû+c^ kyk,v-&-k,s^ k,k,vû+kySÔ

k,k,,vû+k,sû k,,k,,vû+c-& k,k vô-k,sû

k,k,vû-k,sû k,k,v&+k,s-û k,k,v-&+cô

(16)

observing that

rU+r22+r33=k^+ki+k^-cô+3c1&=l+2cÛ, (17)

we deduce

= arc cos
-l J rll +r22+r33~l

ûe[0,7i], (18)

In a similar fashion, from

r32 - r23 = -kzkyVÔ + k,sû + k k,vû + k,s^ = 2k,sô (19)

it follows

k^^-^;
2sû '

(20)

from

rl3 - r31 == kzkxV'& + kys>& - kxkzvô + kycû = 2k SU (21)

it follows

^rl3-r31 .
s=-2s0~' (22)

from

r21 - rl2 = kxkyv1& + kzsû - kxkyvô + kzSÔ = 2k,SÔ (23)

it follows

r21 — rl2

2sû
(24)

we can then conclude

fcL=
2sô

r32-1-23

1-13-1-31

.r21 — rl2

(25)

or, equivalently,
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V(r32 - ^23 )2 + (rl3 - r31 )2 + (r21 - 1"12 )2

r32

rl3

-r21

-r23

-1-31

-rl2.

(26)

3.5 Angular velocity matrix

Given Euler vector ûy with us Au « l, one can use the approximation

rot([y],,ô)-

l

Aô,

-Au.

-Au,

l

Au..

^
-Àô

l

where

Introducing the matrix S

Au,

Au,

Aô,

Aux : = Au Vx

AÛy : = AU Vy

Aôz : = Aô v. .

[> defined by the équation

Au.

Au,

Au.

0

Àô,

-Au..

-Aô,

0
Au..

Aô^

-Àô

0

we have

Rot([k]^,Àû)-l3+S

Aô,

AÔy

Au.

Remark l: The matrix, S(a), associated to a triplet of scalars a = by the relation

S(a):=

0 -a, a

^
-a,

•z "y

0 -a,

a. 0

(l)

(2)

(3)

(4)

(5)

-17-



is called the angular velocity matrix. It is a skew symmetric matrix (S + S' = 0) enjoying the

property that for any other triplet of scalars b : = , one has

S(a)b == âz

-ay

-a^

0
^x

ay

-^x

0

bx

by

b._

-a^by

âzbx

-aA

+

+

a

a

a

A
A
A

=aAb (6)

Remark 2: For any pair of frames A and B and for any vector y one has

s NBÎ - Rot(B,A) S {[y],} Rot(A,B). (7)

Proof: Given a pair of vectors y and w we have

[vAw],=S{[Y]j[w],=Rot(B,A)[YAw],

=Rot(B,A)s{[yU[w], (8)

-Rot(B,A)S{[y],}Rot(A,B)[w],

Equation (7) follows from the fact that this equality has to be satisfied for any [wje.

3.6 Propagation of rotation matrices

Let the orientation of B relative to A be described by the matrix Rot(A,B)(t); let Q.s denote

the angular velocity of B with respect to A, and let ^3 L ' ^B L be the measures relative to

•

A and B of Q.B- The relation among Rot(A,B)(t), Q.Q and Rot(A,B)(t) is described by the

following law of propagation

-18-



Rot(A,B) (t) = S {[A^L} Rot(A,B) (t)

=Rot(A,B)(t)s{[A^]j.

(l)

This équation allows one to use measurements of Q.Q to compute the orientation of B with

respect to A. Inversely, from

S {[A^U = Rot(A,B) Rot'(A,B) (t)

S {[A^B]J = Rot(B,A)R'ot(A,B)

it also allows one to compute "Q.Q from Rot(A,B) (t) and its derivative.

(2)

Proof: Law of propagation of rotation matrices.

Denoting with |A^^AûyA-&J the measure relative to A of the Euler vector representing the

rotation rcquired for frame B to pass from the orientation described by Rot (A,B) (t) : = R(t) to

that described by Rot (A,B) (t + At) : = R (t + At), we have

R(t + At) = R(At)R(t) = Rot(Aû,, A^y, Au, )R(t).

By now applying the relation between a rotation matrix and an Euler vector, it follows

R(t+At)=[l3+s([Aû, Au, AÔ,])]R(t),

hence

R(t+At)-Rft)
lim "v- • "/ "v^ ^ 1^ g

At ^0 At At-^0

Aô, Aô, Au,

At At At
R(t)

=s([A^]jRot(A,B),

(3)

(4)

(5)

(6)
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and therefore

Rot(A,B)(t)=s{[A^L}Rot(A'B)- (7)

On the other hand, from

Rot(A,B)=s{[A^yRot(A,B) (8)

one can wnte

Rot'(A,B) Rot(A,B) = Rot'(A,B)S ^£2^]^} Rot(A,B)

=Rot(B,A)s{[A^]^Rot(A,B) (9)

- s {[*".],}

hence

S {[A^B]g} = Rot(B,A) Rot(A,B) . (10)

Remark l: When matrix R(At) is described in terms of îîg ^ , then

R(t+At)=R(Àt)R(t); (11)

when described in terms of [A0'y] then R(t + At) = R(t) R(At).

Remark 2: If frame C has angular velocity BÎ2c with respect to B,then

A^C=B^C+A^B- (12)

Proof: From Rot(A,C) = Rot(A,B) Rot(B,C), the law of propagation of rotation matrices gives

Rot(A,C)=s{[AQcyRot(A'c) • (13)

We also have
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Rot(A,C)=Rot(A,B)Rot(B,C)+Rot(A,B)Rot(B,C) ,

hence, using once again the law of propagation of rotation matrices,

Rot(A,C)=s{[A^^}Rot(A,B)Rot(B,C)+Rot(A,B)s{[B^c]jRot(B,C)

=s{[A^}Rot(A,C)+s{[B^yRot(A,C) (14)

=s{[A^+[B^}Rot(A,C).

A comparison of (13) with (14) gives

A^c=A^+B^c- (15)

With A = C, this équation implies

[Aa'L=[AQ.L+[BQ.L. (16)

and, since Aî^ =0,

[AQ.L=-[BQ*L- <">

3.7 Best ortho-normal approximant of a non ortho-normal matrix

When matnx Rot (A,B) is obtained as a result of numerical computations, it may happen

that it does not enjoy the ortho-normality property rcquired for it to be a rotation matrix. A

matrix X : = [Xy] is referred to as the best ortho-normal approximant of a given not necessarily

ortho-normal matrix R : = [ ry ] , if X is ortho-normal and if it minimizes the function

S (xy-i^Trace(X-R)'(X-R). (l)

X can be computed from R using the formula X = ( R R')l/2 R'-l.

Proof: One first observes the équivalence ofthe following conditions:
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i Trace (X - R)' (X - R) minimal with X X' = Is

ii Trace (R X') maximal with X X' = Is

iii R X' symmetric with X X' = la.

By imposing R X' = X R', it follows

RX'XR'=XRtXR1 (2)

RR'=(XR')2

XR'=(RR')1/2 ^X=(RR')1/2R'-1. (3)

3.8 Relation between vector measures relative to distinct frames

Let [y]A , MB be the measures relative to A and B of a vector v ;^-|v|,,r-|v|^ the
- ' ^ L-JA ' ^ L-JB

derivatives of thèse measures.

From

[v],=Rot(A,B)[Y], (l)

it follows

^[ïL=Rot(A,B)[vL+Rot(A,B)^[ï],

=s([A^]jRot(A,B)[Y],+Rot(A,B)^ (2)
dt'

:s[A^]jv],+Rot(A,B)^[Y],

and therefore

d

dt

d^[ïL-Rot(A,B)|[AQ^-<[v],^[ï]
dt

(3)
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4. EULER ANGLES (RPY)

The Euler angles are a triplet of angles (roll, pitch and yaw) describing the orientation of a

frame B relative to a frame A. They are defined as follows.

Pitoh (p): angle that the x_axis of B forms with the xy plane of A;

Roll (y): angle of the clockwise rotation about its x_axis that B must undergo for its y_axis to

become parallel to the xy plane of A;

Yaw (a): angle of the counter clockwise rotation about its z_axis that A must be submitted to

for its x_axis to become parallel to the plane defined by the z_axis of A and the x_axis of B.

4.1 Relation between Euler angles and rotation matrix

With the orientation of B relative to A described by the Euler angles y, (3, a, the matrix

Rot(A,B) can be determined by considering the rotation necessary for a frame initially coincident

with A to assume the orientation of B defined by y, ? and a.

This rotation can be déterminée! by considering the following steps:

i) Let the orientation of a frame R coincide with that of A. By submitting R to a rotation

Rot(z,a), (i.e.: a rotation about the z_axis of angle a), the z_axis of R will coïncide with

the z_axis of A; its x_axis will be parallel to the plane defined by the z_axis of A and the

x_axis of B;

ii) Let R2 be a frame with initial orientation coïncident with Rl. By submitting R2 to a rotation

Rot (y, (3), the x_axis of R will be parallel to the x_axis of B, the y_axis of R parallel to the

y_axis ofRI;

iii) Let R3 be a frame with initial orientation coïncident with R . Let us submit R3 to a rotation

Rot(x, y). The x_axis of R will then be parallel to the x_axis of B, and the y_axis of R3

parallel to the y_axis of B.
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In short, RJ has the same orientation as B.

The displacement characterizing the orientation of B relative to A can therefore be viewed as

the result of the implementation of the séquence of three rotations Rot(z, a), Rot(y, |3), Rot(x, y).

Each of thèse rotations being described in a relative fashion, it follows

Rot(A,B) = Rot(z, a) Rot(y, P) Rot(x, y).

By implementing the computation one obtains

Rot(z,a) Rot(y,p) Rot(x,y) =

cacp caspsy - sacy cas(3cY + sasy

sac(3 saspsy + cacy saspcy - casy

-s(3 cpsy cpcy

(l)

(2)

Rot(z,a) Rot(y,t

R' R"

Rot(x,y)

R'" B

Inversely, by setting

one has

Figure l : RPY rotations

Rot(A,B)=[^]

P = A tan 2 (-r,, , ^+^) : e (-90° ,+90° )

a=Atan2(r2i/cp,rn/cP)

Y=Atan2(r32/c|3,r33/c(3).

(3)

(4)

Remark l: The function (j) = A tan2(y,x) coïncides with tan (y/x) except that the value of (j) is

determined by using the quadrant to which a point with co-ordinates (x,y) belongs

(-180°<4><180°).
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Remark 2: If a, (3, y « l, then

Rot(A,B) = Rot(z,a) Rot(y,|3) Rot(x,Y) s

hence, using the notation ['^ûgj ' = ^Î^Q.yQ,^,

l
a
-p

-a

l

Y

p'

-Y

l
L3 +s\

Y
p
a

a=î2,

(5)

P-^v (6)

Y=^x.

4.2 Euler angles propagation law

The relation between angular velocity and the derivative of the Euler's angles is obtained by

computing the derivative of Rot(A,B) = Rot(z,a) Rot(y,(3) Rot(x,Y) (a matrix function of

a,P,Y,ot,P,ety ), and by imposing that this derivative be equal to S
^
^
^

Rot(A,B) or,

equivalently, equal to Rot(A,B) S<

measure relative to A orto B.

^
^
Q.

, according to whether (Î2x ^îy O-z) represents a

When (Î2x 0-y Î2z) represents a measure relative to B, one can write

-L[Rot(z,a)Rot(y,P)Rot(x,Y)] = Rot(z,a)Rot(y,P)Rot(x,Y) S
^x

^
^

(l)

that is,
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-asac(3-(3casp -asaspsy+pcacpsY+YcaspcY -asaspcY+PcacpcY
• • •

-acacy +ysasY +acacY
•• •••• ••

acacp-pspsa +acas|3sY+PcacpsY+Yscxs(3cY acaspcY+PsacpcY-YsaspsY
• • • •

-asasy-Ysyca +asasY -ycac
• • • • •

-PC? -Ps(3sY+YCYCP -Pspcy -ycpsY

cacp caspsy - sacy caspcY + sasy

sacp saspsy + cacy saspcy - casy

-s? cpsy c|3cy

0

^z

-^

-^z

0

^

^
-Q,

0
(2)

By comparing the 3-1 entry of the left matrix with the correspondent entry of that on the right,

one has

c(3sY^-^c(3cY=-(3cp

hence,

(3=î\cY-û,sY.

By now considering entry 3-2, one has

whence

Y cycp - (3 spsy = îî^sp + ^cpcy

Y = Î2, tan Rcy + Î2^ + ^ tan Rsy.

From entry 1-1 one has

• •

- a soccp - pcasp == Î2^ (caspsy - sasy) - S2y (caspcy + sasy)

whence

-asacp = (SÎ/CY -^sY)casp+^(co^sy -sasy)

-^(co^pcY+sasy)

and thereforc,

(3)

(4)

(5)

(6)

(7)
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a=
Î^CY , î2ySY

+-

cp c(3
(8)

By rcwriting équations (4,5,8) under a matrix form, we obtain

•

a
•

(3
•

Y

0
l

SY

cp
CY

tan psy

cy

cp
-SY

tan (3cY

Q.

£î

Î2
(9)

. • .

Note that, in général, j a, (3, y | ^ (î2^/2j.

5. EULER PARAMETERS (UNITARY QUATERNIONS)

With the orientation of frame B relative to frame A représentée! by the Euler vector (j) i^ the

représentation of this same orientation in terms of Euler parameters is given by the pair (scalar,

vector) p : = (r|,fl) where

r| = cos ())/2 3 : = sin (|)/2 r. (l)

In an équivalent fashion, this pair may be viewed as a 4 dimensional vector (unitary quatemion)

a : = (r|, qi, q2, qs)

r| : = cos (|)/2

qi : = sin (|)/2 rx qz : = sin (|)/2 ry

wherc [rx ryrj'denotes the measure ofr relative to B.

q3 : = sin (|)/2 rz . (2)

A necessary and sufficient condition for a unitary quatemion to represent an ensemble of

Euler paramaters is

p|['=r|2+qq=î12+q^+q^+q^=l. (3)



5.1 Relation with a rotation matrix

Denoting with Rot(A,B) the orientation of frame B relative to frame A, one has

Rot(A,B)==

Inversely, using the notation

l-2q^-2q^ 2{q,q,-^}q,) 2{q,q,+r\q,)
2(qiq2+îiq3) l-2q?-2qj 2(q^-r\q,)
2(qiq3-îiq2) 2(qA + TiqQ l-2q?-2q^

(l)

Rot(A,B):=[ry] (2)

one has

qi=

q2

qs=

_ 1-32-1-23

4îi

rl3 —r31

4î]

r21 ~~ rl2

4r|

(3)

l
^=^1+1-11+1-22+1-33 •

Remark l: Thèse formulas are obtained by considering the relation between the rotation matrix

and the Euler vector, by expressing sin(p, cos(p in terms of sincp/2, cos(p/2, and by identifying the

quatemion components.

5.2 AIgebraic properties

The Euler parameters enjoy the following properties:

i) Rot(A,B)=Ï3 (îi,a)=(i,03)

ii) If (r\,Q) is the quatemion associated with Rot(B,A) then (r|, - q) is the quatemion associated

withRot(A,B)'.

-28-



iii) By associating to a quatemion the complex notation:

(î1,q):=T1+qii+qJ+q3k (l)

and by defining the products of imaginary numbers i, j, k with the relations :

i*i=k*k=j*j=-l

i*j=k;k*i=j;j*k=i (2)

one can define the product of two quatemions

(ÎM3)=(ÎMi)(1Mj> (3)

as given by

T1a + q3ii + q32J + q33^ = (îli + qui + qnî + qisk) (^2 + q2ii + q22J + ^) • (4)

or equivalently

(^'^3) = (T1iîl2 -q'i q2'î1iÎ2 +T12Î, +s(qi)qj • (5)

If Oli> fli) ,i= 1,2, 3 are quatemions associated with Roti, and if Rot3 = Roti Rotz, then,

(^=(^)(^z)- <6)

5.3 Euler parameters propagation law

With Rot(A,B) a function of time, i.e. Rot(A,B) = Rot(t), let (r|,fl) (t) denote the quatemion

associated with Rot(t). The law of propagation establishes the relation between (rj,^) (t), its

. .

derivative r|,q (t) and the angular velocity SÎQ. This relation is described by
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T1
•

q

l
2

0
^1

^
n.

-QI -^ -^3

(l)

where £1 A ûg represents the angular velocity of B with respect to A, measured with respect
IB

to B. From équation (l) we obtain

^1

^
^3

^2

-qi

-qz

-qs

Î1
-q3

q2

qs
T1

-qi

-q2

qi
T1

Î1
•

qi
•

qz
•

.<Î3.

(2)

To verify the validity of équation (l), observe that

^•\
T1
e

^}
lim

At ^0

r^

^}
(t + At) -

r^
(0: (3)

w
where

f \
n

lîj

/ ^

(t + At)-
TI

/ \

(t)
^2.y

T1
(At). (4)

v-iy

Note that
w
{^}

(At) represents the change in orientation of B with respect to A, measured relative

to B, that has occurred in the interval (t, t + At). For a sufficiently small At, this change in

orientation can be described in lerms of the Euier vector (À û r) with

kL- l

4Î^+^+S^

A
^2

û.

;Aû=^+^+^ At (5)
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where [^âi^^] represents the measure relative to B of the angular velocity of B with respect

to A. It follows

whence

M
lîj

(At) =
Aô . Au

cos——,sm^—

i , 4"
A
a,

^

r^
(t + At) =

r^

VI/

(t)
r^

(At)-
\.*iy w

11 -^ ^^3] q

At
T'1

^1

^2

^
At

+q-yS(n)q

(6)

r ^
T1

^
(t + At) -

^^\

T1

^
(t)=

-^["
2

At
T'I

A'

^
.^3_

At (7)
^S(û)q

By dividing the last expression by At and considering the limit for At -^ 0, one obtains

l

2

0
Î2i

^
A

-Q, !2

-S(î2)

-^3
T|

q

(8)

Remark l: Equadon(l) allows one to détermine the orientation of a vehicle starting from

measurements of its angular velocity and its initial orientation.

Remark 2: Equation (2) allows one to détermine the measurement provided by a strap down

gyroscope when the vehicle follows a given trajectory.
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5.4 Vector measure and Euler parameters

With [VJA , MB representing the measure of a vector y relative to frames A and B, and with

0 . û
the orientation of B with respect to A described by the quatemion p = cos — + sin—q, one has

Q([v]j=^os^+sm^qjQ([v]j^os^-sin^-qj . (9)

where Q([v]^), Q([v]g), quatemions associated with [v]A and [vje are defined as follows

Q([v]J-(o,[vL)

Q([vL):=(o,[vL).

5.5 Advantages offered by the Euler parameters

The Euler parameters offer the following points of interest :

i. They arc routinely used in the treatment of guidance problems in aeronautics and aerospace;

ii. Fundamental problems related to the control of robotic Systems (in particular, automatic

guidance of vehicles) are often solved using quatemion algebraic and differential properties;

iii. The use of a rotation matrix to compute the change in orientation of a frame submitted to a

rotation rcquires a number of opérations (27 multiplications, 18 additions) that is considerably

greater than the number of opérations required by the use of quatemions (16 multiplications,

12 additions);

iv. The use of a rotation matrix to simulate the dynamics of a rigid body described by the Euler

équation N =c îÙ+S(£ï) ÏQ. also requires a number of opérations that is considerably

greater than the number of opérations required by the use of quatemions.
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5.6 Rodriguez-Hamilton parameters

The Rodriguez-Hamilton parameters offer a représentation of orientation similar to that

offered by the Euler parameters. In particular the Rodriguez-Hamilton parameters associated to

an orientation described by the Euler vector Or is given by

Pl

P2

P3

=tan(0/2)[r] (l)

The relation between Rodriguez-Hamilton parameters, rotation matrix and Euler parameters is

the following

Rot=(l+p?+p^+p^
Ï+Pl-P2-P3 2(pip2-p3) 2(pip3+p2)

2(PlP2+P3) 1-P?+P^-P^ 2(pip3-p2)

2(plP3-P2) 2(p2p3+pi) l-Pi-pl+pl

(2)

,-1/2

T1=(l+p;+p^+p;) qi=:î1Pi q2=T1P2 q3=np3 (3)

The propagation law for the Rodriquez-Hamilton parameters is described by the équation

Pl
•

P2
•

P3

1+P? PlP2-P3 PlP3+P2

PlP2+P3 1+P^ P2P3-Pl

PlP3-P2 Pl+P2P3 1+P3

^x

^
û.

(4)
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6. APPLICATION EXAMPLES

The présentation of the following examples pursues a triple objective:

i) A familiarization with the physical implications of the mathematical éléments introduced

in the previous sections;

ii) A familiarization with the algebraic manipulations that are routinely carried in the course

of the study of navigation and robotics problems;

iii) The establishment of formai relationships that play a fundamental rôle in the treatment of

thèse problems.

6.1 Référence frames of interest in navigation

When dealing with navigation Systems, the following frames are of interest:

eci: earth-centered inertial frame;

ecef : earth-centercd earth fixed;

ned: north, east and down local frame;

vehi: a frame attached to the vehicle.

The définition of thèse frames is illustrated in figures 1-4.
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Origin at earth center ;

z axis := earth axis of rotation ;

x axis: =on the plane containing

the Grenwich meridian

ecef

y

-^

Figure l: Earth-centered earth fixed Référence frame

Origin at center ofthe earth ;

Z axis : = earth axis of rotation ;

x axis :=from origin to vemal point

(springtime equinox ; intersection of

equatorial plane with the apparent

trajectory ofthe sun around earth,
directedfrom south to north).

eci

Figure 2: eci: Earth-centered inertial frame Référence frame
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Same origin as vehicle origin;
z axis:=directed toward (down)

the center ofthe earth;
x axis:=on the Greenwich meridian,

directed îoward the north;

y axis:= directed toward east

ecef

ned

Figure 3: North, east and down local référence frame

Origin:= center ofmass ofthe vehicle ;
x axis:= vehicle 's longitudinal axis <

directedfrom the back to îhe front ;

Z axis:= on the plane of vertical symmetry

ofthe vehicle, directedfrom the ceiling to thefloor.
vehi

Figure 4: Référence frame attached to the vehicle

6.2 Angular velocity and orientation of earth relative to an inertial frame

Earth tums about its rotation axis with a speed Slj = 271/jour = 20/24x60x60 = 7.27.10

rad/sec. This implies

ec'o l =
^ef J,,;- |

0
0

0.^

(l)
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Because of this angular velocity, the earth's orientation relative to the inertial frame, Rot

(ecef, eci), varies with time (ecef := the conventional earth-centered-earth-fixed frame; eci : =

earth centered-inertial frame). Taking t = 0, the time when the ecef x_axis coincides with the eci

x_axis, it follows that, at t ^ 0, the earth orientation relative to the inertial frame corresponds to a

rotation about the z_axis of an angle û = Q.rt. One can then write,

Rot{eci,ecef) (t) == Rot(z,Q,Tt) =

cos^t -smQ.j.t 0

smQ.^.t cosSî^t 0

0 0 1
(2)

It is a useful exercise to see how this formula relates to the law of propagation

Rot(A,B) =S{[AÛB^} Rot(A,B). (3)

Using the notation Roî(eci,ecef)=^r^, ij = l, 2, 3, consider the System of differential

équations

•

ru
•

Î21
•

r31

•

1-12

•

^22
•

1-32

•

rl3
•

1-23
•

r33

0

0̂

-^T
0
0

0
0
0

4l X12 113

L21 122 123

L31 '•32 133.

(4)

with initial conditions

It follows

r;,(0)=l si i= j, =0 si i ^ j. (5)

t-il

121

I"31

-^

= ^
Ï21

ru

1-12

r22

r32

= ^
0

r^

1-12

1-13=

^23=

r33=

i^

^
e

L23

43 (6)

whence
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ri2=

r,, =

-^
)2
'T

-^

TU

rl2

rl3

r21=

r22 =

T32=

-rn/^T

-Fn/^T
•

-r^/^T

By integrating one obtains (2).

eci

> y

ecef

(7)

Figure l : Rotation o f cee f relative to eci

6.3 Latitude, longitude and orientation of the ned frame relative to ecef

Let us détermine the rotation matrix describing the orientation of ned relative to ecef when in

correspondence with an assignée latitude and longitude La and Lo.
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L

Figure l : Orientation ofned relative to ecef

Solving this problem is équivalent to determining the rotation that a frame initially coincident

with ecef must be submitted to so as to attain the same orientation as ned.

To this end, note that:

i) If we submit ecef to a rotation about its z_axis of an angle Lo , then

ecef -> ecef y_axis of ecef // y_axis of ned.

ii) If we submit ecef to a clockwise rotation of an angle La + 90° about its own y_axis, then

ecef -> ecef" y_axis de ecef" // y_axis of ned

x_axis of ecef" // x_axis of ned

iii) The rotation necessary for ecef to attain the orientation of ned is then described by the

composition of a first rotation of an angle Lo about the z_axis, followed by a second rotation

of an angle - (La + 90°) about the y_axis.
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^

'/.

Rot(ecef, ecef) \
/
j!

Rot(ecef, ecef") \
/
/
e

Ï3
•^

7^

ŷ
^

ecef ecef ecef ned

Figure 2 : Rotations requiredfor ecefto be oriented as ned

Rot(ecef, ecef) = Rot (z, Lo)

Rot (ecef, ecef") = Rot (y, -(La + 90°))

Rot (ecef", ned) = 13

Rot (ecef, ned) = Rot (ecef, ecef) Rot (ecef, ecef")

(l)

(2)

(3)

(4)

From

Rot(z,Lj=
cosL

sinL.,

0

-sin4

cosL,

0

0
0
l

(5)

it follows

Rot(y,-(L,+90°))=
cos(-4-90°) 0 sin(-L,-90°)

0 l 0
-sin(-4-90°) 0 cos(-L,-90°)

-sinL 0 -cosL

0 l 0
cosL, 0 -sinL,

(6)

Rot(ecef,ned)=

- cas L, sin L,, - sin L,, - cos L,, cos !-„-o "" ~a

- sin L sin L

cosL^

cosL^ -sinL.cosL,

0 - sin L^

(7)
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6.4 Linear velocity of a vehicle and angular velocity of ned

Let the measurement relative to ned of the linear velocity of a vehicle with respect to earth be

représentée! by

ecefv....\ =
'vehi\ned ~

V.

VE

Vn

(l)

Clearly, the vehicle's latitude is not influenced by VE and Vp and L^ = ^/(R+h) , where R is

the earth's radius, h the vehicle's altitude. In a similar spirit, the longitude is not influenced by

VN and VE and

Lo=VH/((R+h)cosLj. (2)

From knowledge of L^, Lg we can compute [''cc/^n<,rf] using the relation

5{[ ecef aned \^ } = Rot[ecef , ned)Rot'(ecef, ned).

Since

Rot(ecef ,ned) =

-cosL.sinL, -sinL^ -cosL.cosL,•o •"" ~a '0 ~ ~ ~ —a

- sin L,, sin L^ cos L^ - sin Z^ cos L.'o ""• ~a •o - ~ ~ ~a

cosL,, 0 - sin L^

and therefore

Rot(Ter,nev)=

sinL^, sinL^Lg - cas L^ cosL^Lg cas L^L,

(3)

(4)

sin Lg cos L^L^ + cos L sin L L

-cosLgSinL^L^-sinL^cosL^L -sinLL -cas L cosLL +sinL sinL,,L.,

-sinL.L., -COSL..L-

.(5)

By implementing the product required by équation (3) one obtains
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Rot{Ter,nev)Rot'(ecef,ned} = s{[ecef ^] } =

^

0

A,

cas L 4

-A,

0
sin k

-^

-4

cosL^

smL,

0
(6)

whence

€cef 0 l =
'nedlecef ~

L.sinL^

-L.. cosL^'a ~" " —o

L^

(7)

An alternative and perhaps more direct way to compute ec'!J Q.^ is to observe that this velocity is

given by the sum of angular velocity Lg about the z_axis of ecef, plus angular velocity -Lg

about the y_axis of ned.

L

It follows

Figure l : Linear and angular velocity ofned

ecef o l =
ined\ecef ~

0

0
L

+ Roî{ecef ,ned)

0
-L

0

(8)
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0
0

LO.

+

-cosL sinL

-sinLgSinI^

cosL

-sinL,,

cas Lg

0

-cosL(,cosL,

-sinL cosL

-sinL,

0
-4

0

La

-L.

sinL^

> cos4

LO

(9)

Let now

then

Md o | ^
'vehiLd =

^
1^
L^.

(10)

[•"'Qv.>,L=[°'Q..,L+[-dQv..L

L.

-L

,sinL^

acosL<,

LO

+ Rot(ecef, ned)

Â~

^
A-

(11)

(12)

In général [Ded^vehi] ls measured relative to body frame vehi, and the orientation of vehi is

described in terms of its Euler angles relative to ned.

In this case, one can use the relation

[ned^L=Rot(ned,Vehi)[»ed^]^

= Rot(z,a) Rot(y,P) Rot(x,Y) [ned^vei,i]

(13)

with a, P and y angles of yaw, pitch and roll of the véhicule relative to ned.

6.5 Absolute, relative and transport velocity

Let P be a point représentative of the position occupied by a vehicle.

The position of the vehicle relative to earth is described by the co-ordinates | OP | , wherc 0
lecef

denotes the origin of ecef; its velocity relative to earth is given by
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rï-L=îHOPL

The vehicle's position relative to eci is given by

(l)

OP| =Rot(l^,ecef)|OP| .
leci ' ' L Jecef

(2)

its velocity relative to cci (absolute velocity of the vehicle ) is given by

[ecivve4c, =±\OPL. =A{Rot(eci,ecef)[op1
Jecl dt l- -leci dt 1- v 'l. -lecef.

= Rot(eci, ecef) | OP | + Rot(eci, ecef) -^ | OP |
lecef fit L Jecef

(3)

(4)

S{[eci £î^ ]^} Rot(eci, ecef) - [op]^ + Rot(eci, ecef) ^ [op]^. (5)

It follows

["Ï..*,L=["'M.^[<'PL+['""».].„ (6)

that is

cci., _ cci
Vve.-ecI^ecefAOP+ecetV^, (7)

(absolute velocity = transport velocity + relative velocity).

Remark l: Consider a point P on the surface of the earth, and — | OP | == 0
dt l- -lecef

Since ^ecef = 15 degrees/hour, it follows that at the equator,

1^-fûpl MlpXcefLAfopl|dtL^Jeci|| l L ""ecefJeci'T'Jeci

271
=15x^^x6400 s 1600 km/h

360

(the earth radius has been taken equal to 6400 Km).
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6.6 Measure of the accélération and derivative of the measure of velocity

Let

CCI _ l l CCI _. l l eci

lVehiJvehi L VVehiJvehi l ^^Vehijy.y

represent the measurcs relative to the vehicle's frame of the linear accélération and of linear and

angular velocities.

By virtue of définition,

[ecia-L^{[ecivVe.U ^

and therefore,

[~a-L4{RO'(eci-vehi)[°ï-U
dt

(2)

= Rot(eci, Vehi) [eci v^ ]^ + Rot(eci, Vehi) ^ [eci v,^ ]
Vehi

By applying the propagation law for rotation matrices, one has

Rot(eci,Vehi) = s{[eci^vehiL} Rot(eci,Vehi) (3)

whence

[eciave.L =[eci^Ve.L A[ecivVe.L + Rot(eci'veh0 ^ [eci VVe.L • (4)

By pre-multiplying by Rot(vehi, eci), it follows

avehi Jvehi = l Q'vetu Jvehi A L VV°tu JVehi + ^- L VVehi Jyehi • (-5/)

The importance of this équation is that it allows one to compute [eci Vygy ] from the measure of

eclavehi L,.;' ^Is computation can be implemented by integrating the differential équation

-45-



cci.. l __ l eci „ l | eci r\ l . l cci
^F^VehiL,, =raVehiLu -Lcl;lûVehiJ^ A LCCI VVeluJv^ • <6)

6.7 Absolute, relative, centripetal and Coriolis accélérations

ecef .. ecef
Let e°î2ecef rcpresent the angular velocity of earth relative to eci; OP , vvehi' avehi the

lecef

position, velocity and accélération of the vehicle relative to ecef; ecta^ the vehicle's

accélération relative to eci.

From the relations

[•°fv-L=M, w

rav..L=^["'v..-L <2)

["'a».»L=^{["v.."L} (3)

["vv4.,=[mM,A[op]^[~'^L

one obtains

["a-L ^{["iQ-L A[?L +['°"V^U (4)

It follows,
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[eciave.L=^{[eci^LA(Rot(eci,ecef)[op]^)+Rot(eci,ecef)[ecefv^^

d
=[eciU,ef],,, A<[Rot(eci,ecef)[OP]^ +Rot(eci,ecef)^-|OP|

4- Rot(eci, ecef) [ecef v^ ]^ + Rot(ci, ecef) ^ [ecef v^, ]
dt lecef

(5)

=[ecioecefL A^eciM,, ARot(eci,ecef)[op]_ +Rot(eci,ecef)-^[op]^
lecl lL '""" -Iecl ' 'L Jecef ' ' dt l- Jecef

+[ecXcefL ARot(eci,ecef)[ecefv^,]^ +Rot(eci,ecef)^-[ecefv^]^ .
dt

By pre-multiplying left and right members of this équation by Rot(ecef, eci), it follows

Finally,

A[OP1
dt L -lecef

=['°'Q-L, A{[~Q~'L, A[OPL,}+["Q"'].. A^[oii]

+['°Q«-LA["'''.."L+^['I"vv..L,

[ecia^]=eci S2ecef A| eci^ecef A|OP[J+2 eciQ
lecef

ecef „ _l_ecef
ecef " "Vehi ' "Vehi

absolute centripetal

accélération

Coriolis Relative

(6)

(7)

Remark l: To get a feeling about the order of magnitude of the Coriolis and centripetal

accélérations, consider a vehicle at the equator, with a linear velocity of 1000 Km/h in the East

direction. We have
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Coriolis

accélération
leci.o J.lleœf''

-ecefll'll VVehi .2fl^^.(.4,0-'g)
\ 360 J(3.600)2

centnpetal „_ 1,2
|eci,

'ecef OP 15x27^ 6.4106 _i ,^_^
^J^r(~2-l(rig)

(g: gravitational accélération).

6.8 Position and orientation of a stationary vehicle relative to ned from inertial data

Let

[~Q4,.,and[°ia.4.,

be the measures of angular velocity and of apparent accélération provided by the gyros and the

accelerometers of the platform. Assuming the platform stationary relative to earth, we have

cci r^ l _ l eci

'PlatJplat-L ""efjp^

aaplatjpiat =L-êJplat'

(l)

(2)

where g denotes the vector vulgar weight (accélération due to gravity + centripetal accélération).
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n 4 a
Plat-fomi

0

ned
• n, o, a : accelerometers and gyros' axes.

Figure l : Ned, and platform frames

Denoting with n e and d ned's directional vectors, one has

[g]JPlatform _ _ | cci „ | / |H cci,
L^Jplatform - Ul-^-lU - [ uaPl-"Jplat / || L "aP'atJpIat

IIPlatform

(3)

FeL. - =-
L^JPlatform

[""»']«., A[ï]plat ' ' l—l plat

l|[eci^4,,A[y],,
(4)

It follows

En]platform = [elPlatform A L^Jplatform •

Rot(Plat,ned)=[[n],Je],jy^]

(5)

(6)

whence

Rot(ned,plat) = Rot' (plat, ned). (7)

To détermine latitude, La, from
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[eciQ-L=Rot(ned,plat)[eci^]^ (8)

one can use the équation

^
0

Î2,,

eci.o. -1 =
'^Jned ~

^

-Q.

cosL

0

T sin L^

(9)

where La = - atan 2(S2y, Î2x).

6.9 Orientation and angular velocity from astral measurements

Let A and B be frames attached to two space vehicles; let OA and OB be their origins; P and

Q two stars. Denote with VA(P), VB(P), VA(Q), VB(Q) the measurcs relative to A and B of the

directional vectors associated to OAP,OBP,OAQ,OBQ ; ^^(p), VB(P), VA(q),Ve(q) the time

derivative of thèse measures. Consider the problem of obtaining from thèse measures: i) the

orientation and ii) the angular velocity of B with respect to A.

i) Given the great distances separating vehicles and stars, the vectors \Q^P\and \0g P} can

be considered to be parallel. From the relation [v]^ = Rot(A,B) [v]g, one then has

v^(P)=Rot(A,B)vB(P)

Similariy, from

v,(Q)=Rot(A,B)v,(Q).

v^(P)Av^Q)=Rot(A,B)(vB(P)AVB(Q))

(l)

(2)

(3)

it follows

[VA (P)|VA (Q)|VA (P) A v/, (Q)] = Rot(A, B) [v^ (P)|v, (Q)|v, (P) A v, (Q)] (4)
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whence

Rot(A, B) = [v^ (P)|v^ (Q)|v, (P) A v^ (Q)] [v^ (P)|v, (Q)|v, (P) A v^ (Q)]-l . (5)

ii) From the formula

['L=[ïL+[Nû*]^[x] (6)

with eci the usual Newtonian frame and y an arbitrary vector, we have (by taking yi = vect_dir

O^P) and y = :vect_dir (o^Q) )

V,(P)=-[N^LAVJP)

V,(Q)=-[N^],AV,(Q).

(7)

(8)

It follows

V,(P)AV,(Q)=([N^AV,(P))A([N^AV,(Q)), (9)

By now invoking the easily verifiable relation

aA(bAç)==(a-c)b-(a-b)c (10)

we infer

V,(P)AV,(Q)=(([N^AV,(P)).V,(Q))[N^

-(([NQ,LAv,(P)).["a.]Jv.(Q)

(11)

and therefore (the second term of the right hand side being nul)

rN^i=^
JA ,,

V,(P)AV^(Q)
A v,(P).v^(Q)

(12)

By proceeding in an identical fashion,
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Finally, from

it follows

[NQ.L-VB(P)AVB(Q)
VB(P)-VB(Q)

A0_ =N 0_ +A 0 =N 0 -N
'B — ^UB ' UUN — "'-'B "A'

[A^=Rot(A,B)[N^-[N^L

(13)

(14)

(15)

Q

OB

A B

Figure l: From the position offrames A and B relative to the stars to the orientation

and angular velocity ofB relative to A.

6.10 Position/orientation and linear/angular velocity of a f rame B relative to a f rame A

from point co-ordinates measurements
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Pl

Figure l : Point coordinates relative to A and B

With référence with figure l, consider

and therefore

[0^ pour i€ {1,2,3}, a€{A,B}

ML-ML-pPiP.L ' ie{U,3},aG{A,B} (l)

Note that

[[P.P2L|[PlP3L|[PlP2LA[P.P3]j=Rot(A,B)[[PA],|[P,P3L|[P,P,LA[P,P3]j (2)

hence

Rot(A,B)-[[P,P,]j[P,P3]j[P,Pj,A[P.PJJ[[P,P,],|[P,P3]j[PA],A[P,P3]j-l. (3)

Furthermore from the relation

[OP,],=Rot(A,B)[OP,],+|OA (4)

one also obtains
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[oA]^:=[OPiL-Rot(A,B)[OP,],. (5)

Remark l: In regard to the détermination of velocities, by introducing the notations

|A-[[PAL [Plp3L [PlP2LA[P,P3]j

one has

.-[[PAL [P^L [PALA^L],

=s{[A^}Rot(A,B)

+Rot(A,B) B •

It follows

s{[A^u={r—L-Rot(A,B)r -l

whence one gets | Qg |, . Furthermore, from
A

one obtains

[AvaL =[OA°BL =[OPiL-s{[A^BL}MA,B)[OPj,

+Rot(A,B)[OPj^.

(6)

(7)

Rot(B,A) (8)

[OP,],=s{[A^}Rot(A,B)[OPj,+Rot(A,B)[OPj,+[OAL (9)

(10)

Remark 2: A DGPS receiver gives the position of a frame A (ROVER) relative to a frame B

(BASE) having z_axis parallel to the axis of rotation of earth, x_axis parallel to the Meridian

plane passing by Greenwich (frame B has the same orientation as ecef). l n applications, it may
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be important to have the position of the RO VER in terms of coordinates relative to an auxiliary

local frame C. Denoting with T [C.B] the homogeneous transformation matrix , we have

[CPOs,],=T[C,B][Bpos^ (11)

where pos denote the co-ordinates relative to y of the position of a with respect to P. To

détermine T [C, B] we place A into a certain number of positions A;,i= l ... i and we measure

cpOSA, L >1 BPOSA, !„• Subsequently, we compute T [C,B] using the équation X = T [C,B] Y'1
IC L ' JB

where

X:=[[CPOSA,L [CPOSJc - [CPOSAJc] (12)

Y:=[['POS.,L [BPOS*JB - [°POS..]J. <13)

(the various column vectors are expressed in homogeneous co-ordinates).

6.11 Détermination of a satellite orientation offset from gyros data

Consider a satellite in a circular orbit around earth; let 0)o be the frequency of révolutions.

Let us détermine the relation between the orientation of the satellite with respect to the orbit and

the measures provided by the gyros installed on the satellite.

Let Sat be a frame attached to the satellite; Loc an auxiliary frame with origin coincident with Sat

and axes XQ, yo, ZQ defined as follows:

xo: tangent to the orbit and directed along the orbit's path;

ZQ: normal to the orbit, directed toward the center of the orbit;

yo: bi-normal to the orbit: yo = zo A XQ.
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yo
Satellite

Loc

Orbit's path

Figure l: A satellite on a circular earth orbit.

Describe the orientation of the satellite relative to Loc in terms of yaw, pitch and roll angles

a= yaw

(3 = piteh

Y = roll.

Assuming thèse angles sufficiently small, one can write

Rot(L^,Sat)=Ï3+S^ (l)

Rot(Sat,Lj=l3-S^ (2)
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[L"Q...L=
Y
(3
a

Denoting with eci the usual inertial frame,

where

It follows

[eci^L=[eci^L+[Lœ^L
•oc l- ~°c

leci^.L =
-°°JL^

0

-"o

0

[eci^]^=Rot(Sat,Loc)[eci^

/

Ï,-S\

.

Y
p
a

0

-"0

0

+

Y
p
a

0

-»c

0

0

a

-(3

-a

0

Y

(3
-Y

0

0

-»0

0

+

Y
p
a

(3)

(4)

(5)

(6)

Introducing the notation [""^saJs^ [P ^ r], (angular velocity measures provided by the gyros),

it follows that the orientation and the angular velocity of Sai relative to Loc satisfy the differential

équation

(7)
Y
(3
a

aœ.,

0

--Yo)o_

+

p
q+tûo

r
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6.12 Application of the Kalman filtering to the détermination of the orientation of a

satellite frame gyro's and horizon détecter data

With référence to the satellite of example 11, let us consider the problem of computing the

best estimate of its orientation, à, (3, y, from the measurements provided by the gyros, modelled

by the stochastic processes

p
^

q
r

p
q
r

+

"l

"2

.œ3-

with eu;, i = 1,2, 2, zéro mean white noises, (l)

and from the measurement, y = y + v, v zéro mean white noise, of the roll angle y provided by

a horizon detector.

This problem can be solved by applying the Kalman estimator

0
0

"0

0
0
0

"0

0
0

Y
p̂
a

+

-^

p
q+»o

r

X"

K,

K3_

(Y-Yj (2)

The dynamics of the error estimate produced by this estimator is obtained by subtracting (11.7)

of (2), which gives

AY
^

AP
Acc

0 0 (û,

000
-œ^ 0 0

Ay
AP
Aa

K,

K,

K3.

[100]
Ay+v

AP
Ad

+

œ,

œ2

œ3j

The Ki, Kz and Ks minimizing the variance of this error arc computed by solving the Riccati

differential équation proposed by the Kalman filter theory.
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