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SUMMARY

Concepts concerning kinematics are presented that are fundamental for the description of
motion of rigid bodies. These concepts are formulated using the mathematical setting provided
by rotation matrices, Euler’s vectors, Euler’s angles and unitary quaternions. Basic algebraic and
differential properties of these elements are reviewed with emphasis on their physical
interpretation and on application examples relevant to problems encountered in the navigation

and robotics fields.



1. MEASURE OF A VECTOR RELATIVE TO A REFERENCE FRAME

A vector, v, 1s a mathematical object characterized by a direction and an amplitude. In the 3-

dimensional Euclidean space, v can represent a variety of physical elements: a force, a velocity

(angular or linear velocity), the position of a point, a direction etc.. Independently from its

physical interpretation, the measure of v relative to a reference frame A, denoted with the symbol

[y] , » 18 represented by a triplet of scalars

where vy, vy, v, are such that

v=li § K|y, [=vi+v,jtv.k

VZ
1, ], k being the directional vectors of A.
A v=]
A
A

=

Pt o

Figure 1: The notion of measure of a vector relative to a frame
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Example 1: The velocity of a mobile A with respect to a mobile B is a vector that we denote
with the symbol v, . To mathematically represent this vector we can give its measure relative to

a frame attached to A, or a frame attached to B, or any other arbitrarily chosen frame C. These
measures denoted with the symbols [B Vi ]A , [By A]B , [B v A]c , are usually different one from the

other. However, each one of them, together with the triad of directional vectors associated with

the reference frame, represents in a bi-univocal fashion the vector B V.

Example 2: The position of a point P relative to a frame, A, is defined by the measure relative

— —_—
to A, [0 A P] , of the vector 0, P obtained by joining the origin of A with P. The position of P
A

e
with respect to any other frame, B, represents the measure of vector 0, P, relative to B.

Figure 2: Measure of the position of a point with respect to a frame

2. PHYSICAL ELEMENTS INTERVENING IN THE DESCRIPTION OF THE
MOTION OF A RIGID BODY

Given two frames, A and B, the position of A with respect to B is defined by the measure

relative to B, [O 50 A] , of the vector joining the origin of B with the origin of A, 0,0, . The
B

orientation of A with respect to B is defined by the orientation of the directional vectors of A
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with respect to the directional vectors of B. This orientation is often represented by the Euler
vector Oy (or equivalently (v, 9)), a vector defined by the property that by imposing a rotation of
an angle ¥ about the unitary vector v to a frame C, initially coincident with B, C assumes the

same orientation as A.

The linear velocity of A with respect to B is defined by the equation

-4 o)

where 0,0, is the vector describing the position of A with respect to B. The angular velocity of

A with respect to B is defined by the equation

[BQA }B = lim |:-B_®i\_(é_tl:| , 2)
At— 0 At B

where "©, (At) is the Euler vector representing the change of orientation of A with respect to B

that has occurred in the time interval (t, t + At).

Linear and angular accelerations of A with respect to B are defined by the following

equations
B d B
[ aA]B:E[ VA]B 3)
d
[BaQA]BZ_&_E[BQA]B' @)

3. ROTATION MATRICES

A rotation matrix is a 3 x 3 dimensional ortho-normal matrix describing the orientation of a

frame B with respect to a reference frame A. More in particular,

Rot(A, B):=[[n],.[o],[a],] M)



where [n], ,[0],.[a], represent the measures relative to A of the directional vectors of B. Matrix

Rot(A,B) is often called the cosinus matrix because its entries represent the cosinuses of the

angles that the directional vectors of A form with the directional vectors of B.

Remark 1: In some scientific applications (as for example in computer graphics or in some

aeronautical applications), the rotation matrix is rather defined as given by
Rot(A,B):=[[n], [o], [a], ] @
where [[g] R A] represent once again the measure relative to A of the directional vectors

of B. This alternative definition reflects a preference to work with row vectors rather than with

column vectors.

Remark 2: With [v], and[v], denoting the measures relative to frames A and B of a given

vector v, one has [v], =Rot (B,A)[v], .

Proof: Let i, jand k the directional vectors of B; n, o and a the directional vectors of A.

A

Figure 1: Relation between the measures [v], ,[v], of a given vector.

From the definition of [v], and[v], one has



v=[i j K|, ®)

v=[n o a][v],- “)
Since
Rot(B,A) =[[n], [o], [a],] | 5)
with
n=[i j Kk][n], ©6)
9=[1 i K], )
a=[i j k|[a], ®)
it follows
[0 o a]=[i j K]Rot(B.A) ©)
From (3) and (4) one has
N T
i i K[ul,=[n o a][s], o
=[i j k|Rot(B,A)[Y],.
hence
[v], =Rot(B,A)[v],. (1n

—_ " fe—
Remark 3: With [O A P] ,[OB P] the position relative to A and B of a point P, one has
A B
0,P 0,P
[[ : L}T[B,A][[A L}. w2
1 1

where T[B,A] is the 4x4 homogeneous transformation matrix defined by the position/orientation

of A with respect to B (Craig, chapter 2),



(13)

3.1 Product and inversion of rotation matrices
With the orientations of B with respect to A, of C with respect to B, and of A with respect to

C, represented by the matrices Rot(A,B), Rot(B,C) et Rot(C,A), the following relations hold

Rot(B,A) = Rot(B,C) Rot(C,A)

(1)
Rot(A,B) = Rot(B,A)" = Rot(B,A) '
Proof: With [v], ,[v],.[v]. denoting the measures of a vector v relative to A, B, C, one has
[v], =Rot(B,A)[v], ;[v], =Rot(B,C)[v]. ; [v]. = Rot(C,A)[v],. ©)
It follows
Rot(B,A)[v], =Rot(B,C) Rot(C,A)[v], for each [v],. 3)
which implies
Rot(B,A) = Rot(B,C) Rot(C,A),
“4)

Rot(B,A) Rot(A,B) = L.

Remark 1: It is often useful to represent the relation of orientation among different frames with

a directed graph as indicated in Figure 2.



A
G

Rot(D,C)

E Rot(A,B) ’E l—:g E '
Rot(B,C) Rot(C,D)
B C D

A

Figure 1: Directed graph representation of the orientations

of an ensemble of reference frames.

3.2 Examples
When the orientation of a frame A relative to a frame B corresponds to that obtained by

rotating a frame originally coincident with B of an angle y about the x_ axis, one has

1 0 0
Rot(B,A)=Rot(x,y):=|0 cosy -—siny |. (1)
0 siny cosy

Similarly, if one considers a rotation of an angle [ about the y_axis, or a rotation of an o about

the z_ axis, then



cosp O sinf
Rot(y,B)=| 0 1 0 (2)
—sinff 0 cosf

cosa —sino. O
Rot(z,0):=|sinoc  cosa 0 3)
0 0 1

These matrices describe a rotation about one of the principal axes and are called matrices of
simple rotation. Their importance stems from the fact that any arbitrary rotation matrix can be

decomposed into the product of matrices of simple rotation, as for example:

Rot(B,A) = Rot(z,a)Rot(y, B)Rot(x,y). “4)

3.3 Rotation matrices and rotational displacements

When a frame A is submitted to a rotational displacement such that starting from an initial
orientation Ay it ends up into a final orientation Agy, this displacement can be represented by the
matrix Rot(Ao, Afin). If A is submitted to a sequence of rotational displacements represented by
the matrices Ry, Ry, ... Ry, the final orientation of A (Agy,) with respect to its original orientation

(Ap) is represented by the matrix

Rot (Ao, Asn) =R1 Rz ... R, (1)
if the sequence of rotations under consideration is described in a relative fashion; the final
orientation of A is described by the matrix

Rot (Ao, Afn) =Ry Rpp ... Ry 2)

if the sequence of rotations is rather described in an absolute fashion.

A sequence of rotations Ry, Ry, ... Ry, is described in a relative fashion if for eachi =1, .., n,
the i-th rotation matrix R; describes an orientation relative to a frame obtained by imposing to A

the first i-1 rotations. More explicitly, in a relative description one has

-9.



R; =Rot(Ao, A1) , Rz=Rot(A}, Ay), ... (3)

where A; denotes a frame having the orientation that A has after having been submitted to the

rotations Ry, Ry, ... R;.
To determine the matrix resulting from a sequence of rotations described in this way, let

—_—
[OPO} represent the co-ordinates of a point Py relative to Ao, a frame having the original
A

orientation of A. After having been submitted to rotation R;, Ao will be displaced into A, Py

into P; with
f— ——y —
[O Pl] = RI[O Pl] = RI[O Po] 4)
AO A[ AO

([o%]

having been submitted to Ry, A; will be displaced into A,, P; into P;, with

)
=[O PO] since Py has, relative to A, the same position as Py relative to Ag). After

A Ao

%] -n[57], - 7], < [oE]

——>
=R,R2~-~RH[OPO] . Hence,

—
Reiterating the argument, it follows that [O Pu]
AO

Ag
Rot(A,, Ay, )=RR,R,. (6)

A sequence of rotations Ry, ... R, is described in absolute terms if each matrix R; represents
the change in orientation relative to a fixed frame that a frame A is submitted to, after having

been submitted to R;, ... Ri;. To determine the rotation matrix resulting from the

ey
implementation of this sequence of rotations, let [O PO] represent the co-ordinates of a point Py

Ag
relatives a Ay, a frame with the original orientation of A. After having been submitted to Ry, Py

will be displaced into P; with

-10 -



[0R], =R,[0R], . )
After having been submitted to R,, P; will be displaced into P, with
[0B,], =R,[0P, l., =R:R,[0F], . 8)
After having been submitted to Ry, Py.; will be displaced into P, with
[0P,], =R, R,R,[0F], . 9)

It follows that the rotation resulting from the application of the sequence Ry, ... Ry is described

by the matrix

Rot(Ag, Ay) =R, ... Ry. (10)

Example: Let R; and R; represent two rotations described by the matrices

10 0
R, =Rot(x,90°)=0 0 -1 (11)
01 0
0 -1 0
R, =Rot(z,90°)=/1 0 0} (12)
0 0 1

If these two rotations are applied by viewing the sequence {R;, Ry} as described in a relative

fashion, the resultant rotation matrix is

10 0o -1 0] [o -1 0
R.=RR,=[0 0 -1|{1 0 o|=|0 0 -1]. (13)
01 0//0 0 1 10 0]

If these two rotations are applied by viewing the sequence {Ri, Ry} as described in an absolute

fashion, then

0 -10]f1 0 0] [oo071
R, =R,R, =1 0 0[|[0 0 -1|=|1 0 0|#RR,. (14)
00 1//o1 0] |010



3.4 Euler vector and rotation matrix
The orientation of a frame B relative to a frame A is described by the Euler vector

w: =10k, with O a scalar and k a unitary vector, if the orientation of B can be thought as

obtained by imposing to a frame initially coincident with A a rotation of an angle ¥ about k.

B

Figure 1: Euler’s vector: the orientation of B is obtained by rotating A

of an angle O (counter clockwise) about k

Let the orientation of a frame B relative to a frame A be represented by the Euler’s vector

k
ok . [, =|k, 0
k

and by the rotation matrix

i Ty Ty
Rot(A,B):z[rﬁ]: Ty T, Tyl )

L) Iy Iy

These two representations are related via the following equations:

-12 -



kk,vo+cd | kk vO-k,sO | kk,vO+ksd
[r]=| Kk, vO +k,s0 | Kk vo+cd | kk,vo—k,sd 3)
kk,v0—k s0 |k k,vo+k,s0 | kkvO+cd

where
v = 1-c¢O
cd := cosO @)
s = sind-
Inversely, we have
ﬁ:Arocos{r“””;r33"l} 0<9 <180 (5)
I, — Iy
(6)

1
L3 — Iy |.

[k]A = 2 2 2
\/(rn“rza) + (13 = 13)” + (12 = 112) Ly = I

Proof: i) From Euler vector to rotation matrix.
Let rotation matrix Rot(A,B) = Rot([k]RA,ﬂ) represent an orientation obtained by applying

to a frame B initially coincident with frame A a rotation of an angle & about unitary vector k. By

applying to a frame initially coincident with an arbitrarily chosen frame R, a rotation of 0 about

k, we have a frame Rp such that

' Rot(R,,R;) = Rot(A, B) = Rot{[k], ,9). )

Rp and B having been obtained by imposing the same rotation to two frames initially coincident

respectively with Ra and A, the orientation of Rpg relative to B is identical to the orientation of

R relative to A. It follows,

Rot(A,R,)=Rot(B,Ry). ®)

-13-



Rot (A,R4) Ra Rp

A Rot([k], , ) B Rot (B,Rp)
Figure 2 : Rotation matrix and Euler vector

With the help of figure 1, we can then write

Rot(A,B) = Rot([k],,®) = Rot(A,R,, JRot([K], ,®)Rot(R,,B)

Ra

=Rot(A,R, JRot([K], ,8)Rot(R,,A) ©)

Ry’

= Rot(A,R, )Rot([k], ,0|Rot'(A,R,).

Ry’

1
By now choosing R so that the x_axis of Ra coincides with k, that is so that [g]R = EO} ,
0

we have
Rot(A,R, ) = Rot(z,0)Rot(y,p) (10)

where o and f3 represent the yaw and pitch angles of k relative to A:
o : = angle between the z x plane of A and the plane z k

B : = angle between the x y plane of A and vectork .

Using the notation [k], = [kx,ky,kz] ', we have

-14 -



cosp=,ki+k} , sinf=k,
cosOL = kx/,/ki +k}

zZ
k
> Y
p
sino=k, /\IC+K2, o | pli_tcht,_
mclimation
) |

yaw,
declination

Figure 3 : Pitch and yaw angles of a vector relative to a frame.

Equation (9) becomes
Rot([k], ,®) = Rot(z,c)Rot(y, B)Rot(x, 8)Rot(y, ) Rot(z,cx)".

Considering that

1 0 0
Rot(x,8)=[0 c® -s®
0 s0 cO

[cB 0 sp

Rot(y,B)=| 0 1 0
-sB 0 cB
co. —so O
Rot(x,a)=|so. co. 0
0 0 1

and implementing the products specified by equations (9,10,11), it follows

kk vo+cd  kkvO-kso kk,vo+ksd
[]=|kk,vo+ksd kkvo+cd  kkvo-ksd
kk,vo-kso kk,vo+ksd kk,vo+cd

i1) From rotation matrix to Euler vector.

Letting
-15 -
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observing that

we deduce

Iis k .k, vO+cd
n, [=|kk vO+ks® kk vo+cd

Kk, vB-k,s8 kkvO+ksd

Ik, vO—k,s8 |,

| |kkVvO-ksd kkvotksd kkvo+cd

Ty +Iy + 1 = K; + K +k; —c8 +3c0 =1+2¢0,

0 —awcor {2, gefon,

2

In a similar fashion, from

it follows

from

it follows

from

it follows

we can then conclude

or, equivalently,

Iy — L = -k k vB+k,s0+k k vl +k 0 =2k sb

Kk =TT,

* 250

1, — 1y =k kv +k s¥-kk vd+kcd=2k;sd

TR T

B~ T, = kK VO + k59— k k vO +k, 50 = 2k 50

_LiTTp
‘ 25
k, 1 Ty =Ty
[—]A— k, |= 31y
K 259
v Ly — 1

-16 -
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3.5 Angular velocity matrix

Given Euler vector Ov with 0 = A0 << 1, one can use the approximation

z y
rot([v],.,®)=| A8, 1  -A®,
-A%, AD, 1
where
AY, = AD vy
ABy 1= ADB vy
A, 1= ADv, .
A9,
Introducing the matrix Sq| A9, |- defined by the equation
AS,
AG, 0 -A0, AU,
Sq|AB, =] A, 0 -AY,
AU, -A%, A9, 0
we have
A,
Rot([k],,A8)=1,+S 1| AD,
AS,
aX
Remark 1: The matrix, S(a), associated to a triplet of scalars a=|a | by the relation
a

(26)

¢y

2

3)

“4)

S



is called the angular velocity matrix. It is a skew symmetric matrix (S + S' = 0) enjoying the

b,
property that for any other triplet of scalars b:=|b, | , one has
bZ

0 -a, a, |[|b, -a,b, + ab,
S(ajb=|a, O =-a |lb, |=|ab, - ab,|=anb. (6)
-a, a, 0 ||b, -ab, + ab,

Remark 2: For any pair of frames A and B and for any vector v one has
S {[v],}=Rot(B.A)S {[v], } Rot(A,B)- ™
Proof: Given a pair of vectors v and w we have
[vaw], =S {[v],}[w], =Rot(B,A) [y Aw],
=Rot(B,A) S {[v], }[w], ®)
- Rot(B,A)S{[1], } Rot(A. B) ],

Equation (7) follows from the fact that this equality has to be satisfied for any [w]p.
3.6 Propagation of rotation matrices

Let the orientation of B relative to A be described by the matrix Rot(A,B)(t); let Qg denote

the angular velocity of B with respect to A, and let [AQB]A ,[A QB]B be the measures relative to

A and B of “Qp. The relation among Rot(A,B)(t), AQp and R.ot(A,B) (t) is described by the

following law of propagation

- 18-



Rot(A,B) (1) =S {[*2,], } Rot(A,B) (1
(1
=Rot(A,B) (1) s{[*2s],}.

This equation allows one to use measurements of “Qp to compute the orientation of B with

respect to A. Inversely, from

s{[*2,], } =Rot(A,B) Rot'(A,B) (1)

s{[*Q,],} =Rot(B.A)Rot(A,B) @

it also allows one to compute AQp from Rot(A,B) (t) and its derivative.

Proof: Law of propagation of rotation matrices.

Denoting with [AﬁxAﬂyAﬁz] the measure relative to A of the Euler vector representing the

rotation required for frame B to pass from the orientation described by Rot (A,B) (t) : = R(t) to

that described by Rot (A,B) (t + At) : =R (t + At), we have
R(t+At) = R(AR(t) = Rot(AD,, AD, , AD, JR(1). 3)

By now applying the relation between a rotation matrix and an Euler vector, it follows

R(t+40) =1, +5 (a9, 40, 49,])|R(1), @)
hence
im  ROHAO-RE g [Aﬁ* A% 8% | r
At — 0 At At — 0 At At At (5)

=5([*Q,], ) Rot(A,B), (6)

-19 -



and therefore
Rot(A,B)(1)=S {[*Q,] }Rot(,B).
On the other hand, from
Rot(A,B)=5{[*Q,] } Rot(A.B)
one can write

Rot'(A,B)Rot(A,B) = Rot'(A,B) S {{*Q,] } Rot(a,B)
=Rot(B,A) S {[*Q,], } Rot(A,B)

-s{*au,}

hence
s{[*Qs],}=Rot(B,A) Rot(4,B).
Remark 1: When matrix R(At) is described in terms of [AQB]A , then
R(t+At) = R(At) R(t);
when described in terms of [AQB]B then R(t+ At) =R(t) R(At) .

Remark 2: If frame C has angular velocity ®Qc with respect to B, then

AQ. =" Q.+ Q.

(M

®)

9

(10)

(1D

12)

Proof: From Rot(A,C) = Rot(A,B) Rot(B,C), the law of propagation of rotation matrices gives

Rot(A,C)=5{[*Q.] JRot(a.C) .

We also have

-20 -
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Rot(A,C)=Rot(A,B) Rot(B,C)+Rot(A,B) Rot(B,C) ,
hence, using once again the law of propagation of rotation matrices,
Rot(A,C)=S{[*Q,], } Rot(A,B) Rot(B,C) + Rot(A,B) S {{*c],} Rot(B,C)
=s{[*Q;], } Rot(a,C)+s{[*c] } Rot(a,C) (14)

=s{[*Q], +[*Qc] } Rot(A.C).

A comparison of (13) with (14) gives

Q=0+ (15)
With A = C, this equation implies
("], =["ea] +[2u], - (16)
and, since [*Q,] =0,
[* @], =", a7

3.7 Best ortho-normal approximant of a non ortho-normal matrix

When matrix Rot (A,B) is obtained as a result of numerical computations, it may happen
that it does not enjoy the ortho-normality property required for it to be a rotation matrix. A
matrix X : = [X;] is referred to as the best ortho-normal approximant of a given not necessarily
ortho-normal matrix R : =[r; ], if Xis ortho-normal and if it minimizes the function
Y (x;-1;) = Trace(X~R) (X -R)- (1)
jj
X can be computed from R using the formula X = (R R)?R"",

Proof: One first observes the equivalence of the following conditions:
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1 Trace (X -R)' (X -R) minimal with X X'=15
ii  Trace (R X') maximal with X X' =1
i1 R X'symmetric with X X' =1;.
By imposing R X'= X R/, it follows
RX'XR'=XR'XR'
RR'=(XRY)’

XR'=(RR)"” —X=(RR)"”R".

3.8 Relation between vector measures relative to distinct frames

Let [v]a , [vls be the measures relative to A and B of a vector

derivatives of these measures.

From

[v], = Rot(A,B)[v]

it follows

<[4], = Rot(A.B)[v], +Rot(A,B) <[]

dt B

=5 ([*2,], )Rot(A, B[], + Rot(A,B)%[y]

B

d
=S[*Q;] [v], +Rot(A, B)E [v],
and therefore
d

S0, = Rot(a,B) [0 ], [+ 4, ]

dt dt
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4. EULER ANGLES (RPY)

The Euler angles are a triplet of angles (roll, pitch and yaw) describing the orientation of a

frame B relative to a frame A. They are defined as follows.
Pitch (B): angle that the x_axis of B forms with the xy plane of A;

Roll (y): angle of the clockwise rotation about its x_axis that B must undergo for its y_axis to

become parallel to the xy plane of A;

Yaw (a): angle of the counter clockwise rotation about its z_axis that A must be submitted to

for its x_axis to become parallel to the plane defined by the z_axis of A and the x_axis of B.
4.1 Relation between Euler angles and rotation matrix

With the orientation of B relative to A described by the Euler angles v, B, ¢, the matrix
Rot(A,B) can be determined by considering the rotation necessary for a frame initially coincident

with A to assume the orientation of B defined by v, B and a.
This rotation can be determined by considering the following steps:

i) Let the orientation of a frame R’ coincide with that of A. By submitting R’ to a rotation
Rot(z,0t), (i.e.: a rotation about the z_axis of angle o), the z_axis of R! will coincide with
the z_axis of A; its x_axis will be parallel to the plane defined by the z_axis of A and the

x_axis of B;

ii) Let R® be a frame with initial orientation coincident with R'. By submitting R? to a rotation
Rot (y, B), the x_axis of R? will be parallel to the x_axis of B, the y_axis of R parallel to the

y_axis of R';

1ii) Let R’ be a frame with initial orientation coincident with R% Let us submit R? to a rotation
Rot(x, ¥). The x_axis of R> will then be parallel to the x_axis of B, and the y_axis of R

parallel to the y_axis of B.
-23.



In short, R? has the same orientation as B.

The displacement characterizing the orientation of B relative to A can therefore be viewed as
the result of the implementation of the sequence of three rotations Rot(z, o), Rot(y, B), Rot(x, v).

Each of these rotations being described in a relative fashion, it follows
Rot(A,B) = Rot(z, o) Rot(y, B) Rot(x, y) . €))
By implementing the computation one obtains

cocP casPsy —socy coasPey +sasy

Rot(z, o) Rot(y,B) Rot(x,y) =| socP sasPsy +cocy sasPey —cosy )
-sp cPsy cBey
Rot(z,0) ., Rot(y,B) % Rot(x,y) % L %
A R’ R" R™ B

Figure 1 : RPY rotations

Inversely, by setting
Rot(A,B) =[x 3)

one has
B=Atan2 (—r31,1/r121 +12 ) 1€ (-90°,+90°)
o =Atan2(r, /cB,1, / cf) “)
Y =Atan2(r;, /cf, 15,/ cP).

Remark 1: The function ¢ = A tan2(y,x) coincides with tan™ (y/x) except that the value of ¢ is
determined by using the quadrant to which a point with co-ordinates (x,y) belongs
(-180° < ¢ < 180Y).
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Remark 2: If o, B,y << 1, then

Rot(A,B) = Rot(z,a) Rot(y,B) Rot(x,y) = gc _106 —By =1,+S [Yi (5)
B v 1 o
hence, using the notation [*Q,], ' =[2,2,2,].
a=Q,
p=, ©)
Y=Q,.

4.2 Euler angles propagation law
The relation between angular velocity and the derivative of the Euler’s angles is obtained by

computing the derivative of Rot(A,B) = Rot(z,a) Rot(y,B) Rot(x,y) (a matrix function of

Q

® * ® X

o.B,v,a,B,ety), and by imposing that this derivative be equal to S1/Q, | rRot(A,B) or,
Q

Z A
, according to whether (2, Q, Q,) represents a

Q
equivalently, equal to Rot(A,B) S| Q
Q

measure relative to A or to B.

When (€2« 2y €2,) represents a measure relative to B, one can write

y (D

000

%[Rot(z,OL)Rot(y,B)Rot(x,y)] = Rot(z,a)Rot(y,B)Rot(x,Y)S

that is,
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- (;csoacB - B cosp

+o cosPsy + B cocPsy + y sasPey
——&socsy ——{( sycao.

+ 0L SOLSY
| —BcB —PsPsy +vcycP —PsPey
cocP cosPsy —socy casPey +sasy 0
=|socf sosPsy+cocy sasPey —cosy Q, 0
-sf cPsy cPey -Q, Q,

— sasPey + [écocchy

- &socsBsy + Bcocchy + y cosPey
—&coccy -H.(sasy +o.ccoccy
&coccB —PBsPsoa

&cocsﬁcy +BsacPey — y sosPsy
' —ycac

~YcBsy |

Q, Q

2)

By comparing the 3-1 entry of the left matrix with the correspondent entry of that on the right,

one has
cfsyQ, —Q cBecy = ~BCB
hence,

B=Qcy-Q,sy.

By now considering entry 3-2, one has

Y cyeB - BsPsy = QB+, cBey

whence

\‘( =Q, tanfecy +Q, +Q, tanPsy .

From entry 1-1 one has

—a socP — éco&sB = Q, (casPsy —saisy) — Q, (casPey +sasy)

whence

—(;csoccB = (Q/cy —E%/sy)cocsﬁ +Q, (cofBsy —sasy)

-Q, (copBey +sosy)
and therefore,
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. Q

8
B B 3
By rewriting equations (4,5,8) under a matrix form, we obtain
o ]
¢ B B ||
Bi=l0 cy sy ||Q,]. 9
Y 1 tanfsy tanfey||Q, '

L i
Note that, in general, (oc By) # (QXQyQZ).

5. EULER PARAMETERS (UNITARY QUATERNIONS)

With the orientation of frame B relative to frame A represented by the Euler vector ¢ r, the
representation of this same orientation in terms of Euler parameters is given by the pair (scalar,

vector) p : = (1, q) where
1 =cos ¢/2 g:=sin¢/2 r. (1
In an equivalent fashion, this pair may be viewed as a 4 dimensional vector (unitary quaternion)

q: =M, 1 92, q3)
1 =cos ¢/2

qi:=sin¢/2ry Q:=sin¢/2ry Q3 :=sin¢/2r, . )]
where [ry 1y1,]’denotes the measure of r relative to B.

A necessary and sufficient condition for a unitary quaternion to represent an ensemble of

Euler paramaters is

HBHZ=ﬂ2+q'q=n2+qf+q§+q§=1- 3)
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5.1 Relation with a rotation matrix

Denoting with Rot(A,B) the orientation of frame B relative to frame A, one has

1_2q§'2q§ Z(qlqz_n%) 2(q1q3+nQ2)
Rot(A,B)=|2(q,q, +Nnq;) 1-2q97-2q5 2(q,q,-7Mq,)|- (1)
2(q,9,-M4,) 2(q,95+mq,) 1-2q;-2q;

Inversely, using the notation

Rot(A,B):= [rij] (2
one has
_ LTIy
q, 4n
_ Gy I
4, 4
(3)
_Dhy I
qs 4n

1
n=5J1+rll+r22+r33 )

Remark 1: These formulas are obtained by considering the relation between the rotation matrix
and the Euler vector, by expressing sin@, cos@ in terms of sing/2, cos@/2, and by identifying the

quaternion components.

5.2 Algebraic properties

The Euler parameters enjoy the following properties:
i) Rot(AB)=1; <—> (m,9) = (1, 03)
ii) I (n,q) is the quaternion associated with Rot(B,A) then (1, — q) is the quaternion associated

with Rot(A,B)’.
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iii) By associating to a quaternion the complex notation:
(n.q)=n+ai+q,j+q:k (1)
and by defining the products of imaginary numbers i, j, k with the relations :
i*i=k*k=j*j=-1
i*j=k ; k*i=j ; j*¥k=i (2)

one can define the product of two quaternions

(713,_‘13) B (711,&) (nZ’gz)’ 3)
as given by
My +Qaii + G+ Ak = (M) + 0y, + G+ q1sk) (M, + Gl + 4 j +a5K). “
or equivalently
(meg,)=(nin. - ', Mg, +1a, +5(a Ja, ). )

If (i, gi) ,i=1, 2, 3 are quaternions associated with Rot;, and if Rots = Rot; Rot,, then,

(ﬂ3,33)=(ﬂ1,gl)(ﬂz,g2)- (6)

5.3 Euler parameters propagation law

With Rot(A,B) a function of time, i.e. Rot(A,B) = Rot(t), let (n,g) (t) denote the quaternion

associated with Rot(t). The law of propagation establishes the relation between (1,g) (1), its

derivative (n,gj (t) and the angular velocity *Qp. This relation is described by
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o e

119
5 'Q'z _S(‘Q) @)
Q

w
[

where Q A [AQB]B represents the angular velocity of B with respect to A, measured with respect

to B. From equation (1) we obtain

|
L
=
o
w
|
N
~
.

Q
Q,|=2|-q, —¢, n q ||[V]. )
2, -q; 9, —q; 1M ||4q

q; |

n n n
= lim t+At) - t 3
NN I (CYSE N0 ®
q q q
where
n l n
(t+A)=| (1) ]| |(at) 4)
1 1 4
N
Note that (At) represents the change in orientation of B with respect to A, measured relative
1

to B, that has occurred in the interval (t, t + At). For a sufficiently small At, this change in

orientation can be described in terms of the Euler vector (A O r) with

I 1 Q
[t]y =%, = | L AD =[O + Q2+ Q2 At (5)
n| VQI+QI+QI o
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where [919293]. represents the measure relative to B of the angular velocity of B with respect

to A. It follows

-
1 AY  AB [T
(At)=| cos—,sin—|,
2 2
q LT
o . (6)
1
=1 , A Q,
2
QS
whence
At ]
-—1Q,Q,Q
N m (m -5 (@]
(trag)=| () |(A)=] 5 [ ‘
q a) \q — ML | +a-—S(Q)q
Q
L 3 -
At ]
" n S e
(t+ra)=| (=] o @] A : @)
q q - N "75(9)3
By dividing the last expression by At and considering the limit for At = 0, one obtains
. 0 -Q -Q, -Q, n
ni 1 Q g
T2le -s(@ | ®
d o q

Remark 1: Equation(l) allows one to determine the orientation of a vehicle starting from

measurements of its angular velocity and its initial orientation.

Remark 2: Equation (2) allows one to determine the measurement provided by a strap down

gyroscope when the vehicle follows a given trajectory.
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5.4 Vector measure and Euler parameters
With [v]a, [v]p representing the measure of a vector v relative to frames A and B, and with

the orientation of B with respect to A described by the quaternion p = cos§+ sing q, one has

Q[v],)= (COS% sin-ggj Q([v],) [cosg— sin%g) : ©)

where Q([v] N ), Q([V]B) , quaternions associated with [v]a and [v]g are defined as follows

(10)

5.5 Advantages offered by the Euler parameters

The Euler parameters offer the following points of interest :

i. They are routinely used in the treatment of guidance problems in aeronautics and aerospace;

ii. Fundamental problems related to the control of robotic systems (in particular, automatic

guidance of vehicles) are often solved using quaternion algebraic and differential properties;

iii. The use of a rotation matrix to compute the change in orientation of a frame submitted to a
rotation requires a number of operations (27 multiplications, 18 additions) that is considerably
greater than the number of operations required by the use of quaternions (16 multiplications,
12 additions);

iv. The use of a rotation matrix to simulate the dynamics of a rigid body described by the Euler
equation N=°1Q +S(Q)CIS2 also requires a number of operations that is considerably

greater than the number of operations required by the use of quaternions.
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5.6 Rodriguez-Hamilton parameters

The Rodriguez-Hamilton parameters offer a representation of orientation similar to that

offered by the Euler parameters. In particular the Rodriguez-Hamilton parameters associated to

an orientation described by the Euler vector Or is given by

P
b | = tan(8/2)[x]. 1)
Ps

The relation between Rodriguez-Hamilton parameters, rotation matrix and Euler parameters is

the following

1+p; —ps—p;  2(pp.-ps)  2(pps+Dp.)
Rot=(1+pl +p3+p3)| 2(pp,+ps) 1-pi+pi-p2 2(pps—p,) )
2(pps—p2)  2(p,ps+P;)  1-p;-ps+ps

-2
n=(l+p12+p§+p§) 4, =MpP; 9,=MP, q3=Mp; (3)

The propagation law for the Rodriquez-Hamilton parameters is described by the equation

p.l 1 1+ p12 PP, —2p3 pPiPs+D, || L2,
P2 |= | PiP2 +ps  1+p;  p.ps —2p1 Q| )
P, PiPs=P: PitP.p;  l+ps ||
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6. APPLICATION EXAMPLES

The presentation of the following examples pursues a triple objective:

i) A familiarization with the physical implications of the mathematical elements introduced

in the previous sections;

11) A familiarization with the algebraic manipulations that are routinely carried in the course

of the study of navigation and robotics problems;

ii1))  The establishment of formal relationships that play a fundamental role in the treatment of

these problems.

6.1 Reference frames of interest in navigation

When dealing with navigation systems, the following frames are of interest:
eci: earth-centered inertial frame;
ecef : earth-centered earth fixed;
ned: north, east and down local frame;
vehi: a frame attached to the vehicle.

The definition of these frames is illustrated in figures 1-4.
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Origin at earth center ;
z axis := earth axis of rotation ;
X axis: =on the plane containing
the Grenwich meridian

ecef

«

Figure 1: Earth-centered earth fixed Reference frame

Origin at center of the earth ;
z axis : = earth axis of rotation ;

X axis := from origin to vernal point
(springtime equinox ; intersection of
equatorial plane with the apparent
trajectory of the sun around earth,

directed from south to north).

A

eci

Figure 2: eci: Earth-centered inertial frame Reference frame

_35.-



Same origin as vehicle origin;
z axis:=directed toward (down)
the center of the earth;

ned

x axis:=on the Greenwich meridian, ecef
directed toward the north;
y axis:= directed toward east >
y
L,

Figure 3: North, east and down local reference frame

Origin:= center of mass of the vehicle ;

x axis:= vehicle’s longitudinal axis < o )
directed from the back to the front ; y
z axis:= on the plane of vertical symmetry

of the vehicle, directed from the ceiling to the floor. vehi

Figure 4: Reference frame attached to the vehicle
6.2 Angular velocity and orientation of earth relative to an inertial frame

Earth turns about its rotation axis with a speed Qr = 2m/jour = 20/24x60x60 = 7.27.107

rad/sec. This implies

0
ecef ]eci =/ 0

[ (1)

QT
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Because of this angular velocity, the earth’s orientation relative to the inertial frame, Rot
(ecef, eci), varies with time (ecef := the conventional earth-centered-earth-fixed frame; eci : =
earth centered-inertial frame). Taking t = 0, the time when the ecef x_axis coincides with the eci

X_axis, it follows that, at t # 0, the earth orientation relative to the inertial frame corresponds to a

rotation about the z_axis of an angle O = Qrt. One can then write,
cos€;t -sinQ,t 0

Rot(eci,ecef ) (1) = Rot(z,Q,1)=| sinQ;t  cosQ,t 0 ()
0 0 1

It is a useful exercise to see how this formula relates to the law of propagation

Rot(A,B)=5{[*2,], } Rot(A,B). 3)

Using the notation Rot(eci,ecef )=[rij], ij = 1, 2, 3, consider the system of differential

equations

T, T, T,
n L I3 -
. e 0 Qr O0j|r, 1, 14

Iy Tp Ty |=|8; 0 Oflr 1, 1, “)
ot 0 0 0|l 1, 1,

with initial conditions

(0)=1 sii=j =0 si i#] (5)
It follows
I, ==Q 5 1, =-8; Iy Iy =—8; I
I, = Qp 1, I,= L 1, Iy= Qp 1, (6)
Iy, = 0 Iy, = 0 I; = 0
whence
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L =—1,/Q;

2

= —QT I

(1) _ 2 _ .

n,=-Qr 1, Ly = =1,/ Qp (7
s _ 2 .

;== 1 T =~ 13/ Qp

By integrating one obtains (2).

zZ A
z' y'
a k[
o}
> >y
i 1
b n
xl
eci
f
§=0nt ece

Figure 1 : Rotation of ecef relative to eci

6.3 Latitude, longitude and orientation of the ned frame relative to ecef

Let us determine the rotation matrix describing the orientation of ned relative to ecef when in

correspondence with an assigned latitude and longitude L, and L.,

-38-



1=

Lo
Figure 1 : Orientation of ned relative to ecef

Solving this problem is equivalent to determining the rotation that a frame initially coincident

with ecef must be submitted to so as to attain the same orientation as ned.
To this end, note that:

i) If we submit ecef to a rotation about its z_axis of an angle L, , then

ecef = ecef' | y_axis of ecef' // y_axis of ned.

ii) If we submit ecef" to a clockwise rotation of an angle L, + 90° about its own y_axis, then

ecef' > ecef"” y_axis de ecef" // y_axis of ned

x_axis of ecef" // x_axis of ned

iii) The rotation necessary for ecef to attain the orientation of ned is then described by the
composition of a first rotation of an angle L, about the z_axis, followed by a second rotation

of an angle — (L, + 90°) about the y_axis.
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Rot(ecef, ecef”) Rot(ecef’, ecef") Iz

ecef ecef’ ecef” ned

Figure 2 : Rotations required for ecef to be oriented as ned

Rot(ecef, ecef’) = Rot (z, L) (1)
Rot (ecef', ecef") = Rot (y, -(L, + 90%)) )
Rot (ecef", ned) =15 3)
Rot (ecef, ned) = Rot (ecef, ecef’) Rot (ecef’, ecef") “4)
From
cosL, -sinL, O
Rot(z,L,)=|sinL, cosL, 0 (5)
0 0 1
[ cos(~L,~90°) 0 sin(-L, —90°)
Rot(y,~(L, +90°)) = 0 1 0
- sin(»-La - 90") 0 cos(—La - 90°)
(6)
[-sinL, 0 -cosL,
= 0 1 0 ,
| cosL, 0 -sinL,
it follows
—cosi,sinl, -sinL, —cosi, cosL,
Rot(ecef ,ned)=| —sinL,sinL, cosL, ~-sinL cosL, |. (7)

cosL, 0 —sinL,

- 40 -



6.4 Linear velocity of a vehicle and angular velocity of ned

Let the measurement relative to ned of the linear velocity of a vehicle with respect to earth be

represented by

(D

ecef _
[ VVehi ] ned

D< R‘J< 2<

Clearly, the vehicle’s latitude is not influenced by Vg and Vp and L, = Vi /(R+h), where R is

the earth’s radius, h the vehicle’s altitude. In a similar spirit, the longitude is not influenced by

Vn and Vg and

L, =V:/((R+h)cosL,) . 2)

From knowledge of L,, L., we can compute [e“f Qned] ; using the relation
€ce,

S {[ “LQ ]mf } = R'ot(ecef ,ned)Rot'(ecef ,ned). (3)

Since

—cosL,sinl, -sinl, -cosL, cosL,

Rot(ecef ,ned)=| —sinL sinL, cosL, —sinL, cosL, 4)
cosL, 0 —sinL,
and therefore
sinL sinL L —cosL cosL L, —cosL L, sinL_cosL L +cos L, sinL L
Rot(Ter,nev)=|—cosL, sinL,[, —=sinL cosL, L, -sinL L _ ~-cos L, cosL,L +sinL,sinL,L, |.(5)
—sinL,L, 0 —cosL,L,

By implementing the product required by equation (3) one obtains
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0 -L —La cosL,

[

R.ot(Ter,nev)Rot'(ecef ,ned) =S {[ “IQ ]mf} =| I 0 —L,sinL, | (6)
L,cosL, L sinL, 0
whence
LsinL,
[“Ef o ]mf =|-L_cosL, | . (7)
L

An alternative and perhaps more direct way to compute “? Q_, is to observe that this velocity is
given by the sum of angular velocity Lo about the z_axis of ecef, plus angular velocity L,

about the y_axis of ned.

A
e
n
L,
L,
A
y
> b y
L,
X Lo
Figure 1 : Linear and angular velocity of ned
It follows
0 0
["“f ned]mf =| 0 |+ Rot(ecef ,ned)| - L, (8)
L 0 |

¢}
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0] [—cosL,sinL, -sinL, —cosL cosL,|[ O L,sinL,
=| 0 |+|-sinL,sinL, cosL, -sinL,cosL, | |-L, |=|-L,cosL, |. ©)
L, cosL, 0 —sinL, 0 L,
QX
Let now ["“’ Q.. ]ned = Q, (10
QZ
then
[ecefgvehj ]ecef = {ecef Qned ]ecef + [md'gz\’ﬁhi ]ecef (1 1)
L,sinL, Q,
=|-L, cosL, |+ Rot(ecef, ned) Q, (12)
LO QZ

In general [“edQVehi] is measured relative to body frame vehi, and the orientation of vehi is

described in terms of its Euler angles relative to ned.

In this case, one can use the relation

700, =Roied V) [ 2.

Vehi

(13)
= Rot(z,a) Rot(y, ) Rot(x, ) ["edQvChi]

Vehi

with o, B and y angles of yaw, pitch and roll of the vehicule relative to ned.

6.5 Absolute, relative and transport velocity

Let P be a point representative of the position occupied by a vehicle.

The position of the vehicle relative to earth is described by the co-ordinates [0_)] , where 0
ecef

denotes the origin of ecef; its velocity relative to earth is given by
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ece d
[ f VVehi ]ecef - _(R [—T))]ecef '

The vehicle’s position relative to eci is given by

—

.
[O ] '=Rot(In,ecef)[O ] -

its velocity relative to eci (absolute velocity of the vehicle ) is given by

[eci Vo ]eci = Edf [6—1@ = _c% {Rot(eci, ecef) [(—)T’)]mf}

= R.ot(eci, ecef) [f)—lg] + Rot(eci, ecef) % [6-)]
ecef

ecef

= S{[CCI QECEf ]ecef} ROt(eCi’ eCCf) i [F]ecef + ROt(eCi, ecef) -((li_t [O—)]ecef '

dt

It follows

eci _Jec ecef
[ V' veni ]eci _[ Qecef ]eci A[O ]eci +[ Vveni ]eci

that is

; : —_—
eci _eci ecef
Vyeni = S2ecer AOP+77 vy,

(absolute velocity = transport velocity + relative velocity).

Remark 1: Consider a point P on the surface of the earth, and —S—t-[()_)] =0
ecef

Since |*'Q,.¢| = 15 degrees/hour, it follows that at the equator,

ecef

[l

“Q A oP
[ ecef ]CCI [ ]Cci

eci

—15% 2" %6400 = 1600 km / h
360

(the earth radius has been taken equal to 6400 Km).
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6.6 Measure of the acceleration and derivative of the measure of velocity

Let

eci eci eci
[ avem]Vehi [ VVehi]Vehi [ 'Q'Vehi]whi

represent the measures relative to the vehicle’s frame of the linear acceleration and of linear and

angular velocities.

By virtue of definition,

[ﬁci veni ]eci = % {[ = Vven ]eci }

and therefore,

[ed aVehi ]eci = éi-t— {ROt(CCi, Vehl) [eCi Vvehi ]Vehi }

N . o\ [eci . . d eci
= Rot(eci, Vehi) VVehi]vCh; +Rot(ec1,Vehl)a[ v\,ehi]

By applying the propagation law for rotation matrices, one has

R.ot(eci,Vehi) = S{[ “iQVehi] } Rot(eci, Vehi)

eci

whence

[“i Ay ]eci = [CCi Qe :Lci A [“i Vyen ]eci + Rot(eci, Vehi) % [eCi Vyen ]Vehi .

By pre-multiplying by Rot(vehi, eci), it follows

. . . dr..
ect — | €Ct ec1 . €ecl .
[ Bveni ]Vehi _[ Qvem]Vehi A[ Vveni ]Vehi t dt [ Y veni ]Vehi )

Vehi

(1)

)

3)

“4)

o)

The importance of this equation is that it allows one to compute ['“’i Vyeni ]Vehj from the measure of

[ecj aVehi]Vem' This computation can be implemented by integrating the differential equation
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d

.CE [eCivVehi]Vehj - [eCiaVehi]Vehi —[ed‘QVehi ]Vehi A[CCiVVem]Vem ) ©)

6.7 Absolute, relative, centripetal and Coriolis accelerations

1 . . . —_)
Let *“Q. . represent the angular velocity of earth relative to eci; [OPLcef,"CEf Vi aygy; the

e

position, velocity and acceleration of the vehicle relative to ecef, “a,, the vehicle’s

acceleration relative to eci.

From the relations

[ Vvl = 5[] &
[*aven] e =gdt-[““vvm L @
[eCI Ay/eni ]eci = :(11? {[ e Veni ]eci } 3)

eci _Jec ecef
[ Vveni ]eci - [ Qecef ]eci A [O ]eci +[ V Vehi ]eci

one obtains

.aVehi LT ! ecef | .. N eci+ e Vveni | . (-
[“ava], =S Q] AOPL +[* ]} @

It follows,

- 46 -



—

[eCi Ayeni ]eci - _C% {[ * Qecef ]eci A (ROt(eCi, CCCf) [O }ecef ) " ROt(CCi’ ecef) [ecef Vv ]ecef}

— I:eci Qecef] A {R.Ot(eCI, Ccef) [OP]ecef + ROt(eCi’ ecef)—s—t [0_)] }
eci !

ecef

° . ecef : d
+Rot(eci, ecef) [ vy, | +Rot(ci, ecef) T [V v ]ecef )

= I:eCi Qecef ]eci A {[ °°i Q‘mf ]eci A ROt(CCi, ecef) [61_))] * ROt(CCi, ecef)gt— [6—)]““}

ecef

eci ecef
+ [ Qecef Vehi ]ecef )

]ed A Rot(eci, ecef) [ecef Ve ]ecef + Rot(eci, ecef)% [

By pre-multiplying left and right members of this equation by Rot(ecef, eci), it follows

= [eCi et ]ecef A {[ ! Q ces ]ecef A [O.—_)]ecef} + [ * e ]CCEf 4 % I:ai))]

ecef
(6)
+ [ed Qecef ]ecef A [ecef Vveni ]ecef + —C—l— [ecef Vehi ]ecef )
dt
Finally,
eci eci eci B eci ecef ecef
[ aVehi] = S21:(:&:’ A { Qecef A [OP] f} +2 Qecef A Vveni + Ayeni (7)
absolute  centripetal Coriolis Relative

acceleration

Remark 1: To get a feeling about the order of magnitude of the Coriolis and centripetal
accelerations, consider a vehicle at the equator, with a linear velocity of 1000 Km/h in the East

direction. We have
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Coriolis

- 15x2nY 10°
=2« |l ecef 1= —( 4.10‘3
acceleration et Vet ( 360 ) (3.600) ( 8)
centripetal . 6
p A lea 2 b—};u___(leZn) 6.410 - (~ 2.10‘3g)
acceleration 360 J (3.600)

(g: gravitational acceleration).

6.8 Position and orientation of a stationary vehicle relative to ned from inertial data

Let

eci eci
[ Qp]at ]plat and [ aapla[ ]plat

be the measures of angular velocity and of apparent acceleration provided by the gyros and the

accelerometers of the platform. Assuming the platform stationary relative to earth, we have

[ - 'Q'Plat ]Plat = [ - 'Qecef ]Plat @)

[ i aaPlal]Plat = [_g]Plat ’ (2)

where g denotes the vector vulgar weight (acceleration due to gravity + centripetal acceleration).
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=

1

Plat-form

10

® 1,0, a: accelerometers and gyros’ axes.
ned

Figure 1 : Ned, and platform frames .

Denoting with n ¢ and d ned's directional vectors, one has

_ [g]Pla form __ eci eci
[X]Platform - ”[_g]_—[__ - _[ aﬁplal]p)a‘ [ aa})lilt]plal (3)
Platform
[CCi Qecef a A [X] a
[Q]Platform == eci ]pl - - (4)
[ Qecef ]plat A [-Y]plat
[Q]P]atform = [E]Platform A [-Y]Platform ) (5)
It follows
P\Ot(Plat’ ned) = [[D—]p]at {:c—]plat [—Y]plat] (6)
whence
Rot(ned, plat) = Rot' (plat, ned). (7)

To determine latitude, L,, from

- 49 .



[eci Qecef]ned = Rot(ned, plat) {‘“‘“i Qecef]

plat

one can use the equation

Q. Q. cosL,
0 |= [edg‘ecef ]ned = 0 ’
Q, —Q. sinL,

where L, = - atan 2(Q,, Q).

6.9 Orientation and angular velocity from astral measurements

®)

®

Let A and B be frames attached to two space vehicles; let 04 and Og be their origins; P and

Q two stars. Denote with vA(P), vp(P), va(Q), vg(Q) the measures relative to A and B of the

directional vectors associated to OAI;,OBP,OAQ,OBQ;VA(p), Ve(P), VA (q), v5(q) the time

derivative of these measures. Consider the problem of obtaining from these measures: i) the

orientation and 1ii) the angular velocity of B with respect to A.

. . . . . —) _———)
1) Given the great distances separating vehicles and stars, the vectors {O A P} and {O B P} can

be considered to be parallel. From the relation [v], = Rot(A,B)[v];, one then has
v, (P) =Rot(A,B) v4(P)

v, (Q) =Rot(A,B) v;(Q).

Similarly, from

Va(P)Av,(Q)= ROt(A’B) (VB P)a VB(Q))
it follows

[VAP)v,A(Q)V4 (P) AV, (Q)]=Rot(A,B) [vy (P)|vy (Q)vy (P) A vy (Q)]
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whence

-1

Rot(A,B) =[v, (P)v, Qs P) AV, (Q][V5(P)Va(Q)vs(P) A V5(Q)] 5)

ii) From the formula
(5], =[]+ [ 2], ALY, ©

with eci the usual Newtonian frame and v an arbitrary vector, we have (by taking v: = vect_dir

(6;_13)) and v = :vect_dir (6:(3))

7, (P)=-[Q,] Av,A(P) %)
LW(Q="2,], AvaQ. ®)

It follows
LA Q=[N Ava®)A([Y QW] Ava(Q). )

By now invoking the easily verifiable relation
an(bac)=(a-c)b—(a-bje (10)

we infer

U PAY, Q= ("], Ava®) V@) ],

(11)
Al @) ] )@
and therefore (the second term of the right hand side being nul)
vy(P)Av
[NQA]A — A( ) A(Q) (12)

VA (P) *Va (Q) .

By proceeding in an identical fashion,
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[NQB]Bz-VV—Z(—(%%Z%. (13)
Finally, from
AQL=N0+AQ =N Q- Q,, (14)
it follows
[*Qs], =Rot(A,B)Q, ] -[".], - (15)

Figure 1: From the position of frames A and B relative to the stars to the orientation

and angular velocity of B relative to A.

6.10 Position/orientation and linear/angular velocity of a frame B relative to a frame A

from point co-ordinates measurements
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P3

P] / B

Op

P,

Figure 1 : Point coordinates relative to A and B

With reference with figure 1, consider

[0,P], pour ie{123}, ae{A,B}
and therefore

0,21, ~[0.2], =[PR], . ic{123} ac{AB} .
Note that
[[P1P2]A “:PIP3]A ‘[PIPZ]A A [P1P3]A] =Rot(A,B) [[P1P2]31[P!P3]BI[P1P2]B A[PP 3]3]

hence

Rot(A,B) =[P, [PR.], [PR.], A[PR.], |[PP.], [P L [PR.], A[BE L]

Furthermore from the relation
[0B.], = Rot(a,B) [0R.], +[0,0, ]A

one also obtains
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[0,0,] =[on], ~Rot(4,B)[oR],

A

Remark 1: In regard to the determination of velocities, by introducing the notations

A:z[[PlPZ]A {P1P3]A [PIPZ]AA[P1P3]A]

B::[[PIPZ]B [PP], [Plpz]a’\[Pxpa]B]’

one has

[ ] a=S{*e] JRot(a.B) 1,
+Rot(A B[],

It follows

s{{*2],}= {1 - Rota B} 8 Rl

whence one gets [AQB]A . Furthermore, from

[0R], =S {[*,], } Rot(A,B)[0P], +Rot(A,B) [0P,], +[0,05],

one obtains
[*vs], = [0,0,], =[0R], -S {[*@s], } Rot(a,B)[0P ],

+Rot(A,B) [()i)l]B :

o)

(6)

(7

(8)

9

(10)

Remark 2: A DGPS receiver gives the position of a frame A (ROVER) relative to a frame B

(BASE) having z_axis parallel to the axis of rotation of earth, x_axis parallel to the Meridian

plane passing by Greenwich (frame B has the same orientation as ecef). I n applications, it may
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be important to have the position of the ROVER in terms of coordinates relative to an auxiliary

local frame C. Denoting with T [C,B] the homogeneous transformation matrix , we have
[CposA]C =T[C,B] [BposA]B (11)
where [ﬁposOc ]Y denote the co-ordinates relative to y of the position of o with respect to . To

determine T [C, B] we place A into a certain number of positions A;,i =1 ... i and we measure
[Cpos Ai]c ,[Bpos Ai]B‘ Subsequently, we compute T [C,B] using the equation X = T [C,B] Y

where

X::[[CposAl]C [CPOSAZ]C [CPOSA"]C] (12)

Yi=[[BPOSA1]B [BpOSAz]B [BPOSAH]B]’ (13)

(the various column vectors are expressed in homogeneous co-ordinates).
6.11 Determination of a satellite orientation offset from gyros data

Consider a satellite in a circular orbit around earth; let g be the frequency of revolutions.
Let us determine the relation between the orientation of the satellite with respect to the orbit and

the measures provided by the gyros installed on the satellite.

Let Sat be a frame attached to the satellite; L. an auxiliary frame with origin coincident with Sat

and axes Xy, Yo, Zo defined as follows:
Xo: tangent to the orbit and directed along the orbit’s path;
zo: normal to the orbit, directed toward the center of the orbit;

yo: bi-normal to the orbit: yg = zp A Xo.
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Satellite

Loc

X

1L

Zp Orbit’s path

Figure 1: A satellite on a circular earth orbit.

Describe the orientation of the satellite relative to L in terms of yaw, pitch and roll angles

o = yaw
B = pitch
y =roll.

Assuming these angles sufficiently small, one can write

Y
Rot(L,,,Sat) =1, +S4| B

Y
Rot(Sat, L, )=1,-S4| B
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it

[~ =|B). G)
e
Denoting with eci the usual inertial frame,
eci | eci Lo
(o] =["e. ] +["eu]_ @
where
0
[eciQLoc]L - _0)0 (5)
0
It follows
[eciQSm]Sm = Rot(Sat, Loc) [eCi QSM]Loc
Y 0 Y
=L, =S¢ B ]| o, [+ B (6)
o 0 o
"0 0 -a B[O Y
=|l-0, -l 0 -y —w0+B
| 0 B v 0 0 o4

Introducing the notation [“iQSat] = [p q r] (angular velocity measures provided by the gyros),

Sat”

it follows that the orientation and the angular velocity of S, relative to L, satisfy the differential

equation

V| | o, | [P
Bl=| 0 |+|q+o,|.
o] |=yo,| |r
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6.12 Application of the Kalman filtering to the determination of the orientation of a

satellite frame gyro's and horizon detector data

With reference to the satellite of example 11, let us consider the problem of computing the

best estimate of its orientation, &, f3, ¥, from the measurements provided by the gyros, modelled

by the stochastic processes

p p ,
ql|=lq|+ ®, with @;, 1 =1, 2, 2, zero mean white noises, (D)
T r| |o,

and from the measurement, Y, =Y + Vv, v zero mean white noise, of the roll angle vy provided by

a horizon detector.

This problem can be solved by applying the Kalman estimator

? 0 O 0‘)0 /? f) KI
Bl=| 0 0 0 [|B+|d+o, |~K, [(¥-Vn) )
ol |-o, 0 O {lal |t K,

The dynamics of the error estimate produced by this estimator is obtained by subtracting (11.7)

of (2), which gives

A

Ay 0 0 o/]/a7] [K AY+v| o,
ABl=| 0 0 0| AB|-|K,|[100]] AB |+|o,
AG| |-o, 0 0 ||AG]| |K, AG o,

The Kj, K; and K3 minimizing the variance of this error are computed by solving the Riccati

differential equation proposed by the Kalman filter theory.
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