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vibration characteristics of an open, anisotropic cylindrical shell. The case of an open
shell partially or completely filled with liquid is also investigated. The structure may be
uniform or non uniform in the circumferential direction. The formulation used is a
combination of finite element method and classical shell theory. The displacement

functions are derived from exact solutions of the Sanders' shell equations.

The velocity potential and Bernoulli's equation for a liquid finite element yield an

£

expression for fluid pressure as a function of the nodal displacements o

-ty

three forces (inertial, centrifugal and Coriolis) of the moving fluid. An analytical
integration of the fluid pressure over the liquid element leads to three components: mass,

stiffness and damping matrices.

Calculations are given to illustrate the dynamic behaviour of open and closed
cylindrical shells subjected to a flowing fluid and shells partially or completely filled with

liquid. Reasonable agreément is found with others theories and experiments.



1. INTRODUCTION

Knowledge of the vibration characteristics of fluid-filled cylindrical shells and
panels is of considerable practical imterest, since cylindrical shells and panels are
commonly used to contain or convey fluids. There are many ways in which the presence
of the fluid may influence the dynamics of the structure. If the structure contains a
stationary gas at low pressure, then the vibration of the shell differs only slightly from that
of the same shell in vacuo. If the fluid is compressible, the compressibility of the fluid
alters the effective stiffness of the system. Also, if the density of the fluid is relatively
high, as in the case of a liquid, then the fluid exerts considerable inertial loading on the
shell, and this results in a significant lowering of the resonant frequencies. Other effects
of coupied fluid-shell motions occur when the fiuid is fiowing. Depending upon the
boundary conditions, if the flow velocities are large, buckling or oscillatory flexural

instabilities are possible.

The dynamics of coupled fluid-shells were reviewed extensively by Brown [1] and

Yang [2] and others [3] to [10]. There have been few analysis of closed cylindrical shells

having axially varying thickness. Again, While there is extensive literature relevant to the
vibration of empty open cylindrical shells (cylindrical panels), no analyses have been found
of open cylindrical shells, non-uniform in the circumferential direction and containihg a

flowing fluid.
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The purpose of this study is to present a method for the dynamic and static analysis
of open, thin, anisotropic cylindrical shells containing flowing fluid.
non-uniform in the circumferential direction and
we consider the problem of open cylindrical shells which are freely simply-supported along

their curved edges and to have arbitrary straight edge boundary conditions.

The method is a hybrid of finite element method, classical shell theories and fluid
theories. The structure is subdivided into a cylindrical panel segment finite elements. The
displacement functions are derived from Sanders' equation of thin cylindrical shells [11].
In this approach, it is possible to determine the mass and stiffness matrices of the
individual finite elements by exact analytical integration. Accordingly, this method is
more accurate than the more usual finite element methods based on polynomial

displacement functions.

To account for the fluid effect on the structure, a panel finite fluid element bounded
by two nodal lines was considered. By solving the equations of motion for the fluid
element, an expression for fluid pressure as a function of the displacements of the element
was obtained. Analytical integration for the pressure distribution along the element yielded

three components: the mass, stiffness and damping matrices for a fluid element.
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Global matrices are, then, obtained by superimposing the individual matrices. The

eigenvalue and eigenvector problem is solved by means of the equation reduction

technique.

The hybrid approach (Finite element - Shell theory - Fluid theory) has been applied
with satisfactory results to the dynamic linear and non-linear analysis of cylindrical [12-
19], conical [20], spherical [21], isotropic and anisotropic, uniform and axially non-
uniform shells both empty and liquid filled. This method has been applied also to the
dynamic analysis of circular and annular plates [22], [23] and to an open anisotropic and
circumferentially non-uniform cylindrical shell [24]. This study is an attempt to determine
the vibration of a circumferentially non-uniform open cylindrical shell, containing flowing
fluid. The case of an open cylindrical shell partiaily or completely fiiled with liquid is aiso

studied.



2. DETERMINATION OF THE DISPLACEMENT FUNCTIONS:

Sanders' equations [11] for thin, cylindrical shells, in terms of axial, tangential and
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element P; of the anisotropic matrix of elasticity [P] are:

L, (U,V,W,P) = 0

I
<

Lz (UaV)W3Pij) - (1)

L, (U,V,W,P) = 0

where L, (k = 1, 2, 3) are three linear differential operators, the form of which is fully
explained in [24].
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Figure 1: Open Cylindrical Shell Geometry
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The finite element used is shown in Figure 2. It is a cylindrical panel segment
defined by two line nodes i and j. Each node has four degrees of freedom: three
displacements (axial, circumferential and radial) and one rotation. The panels are assumed
io be ireely simply-supported along their curved edges and to have arbiirary straight edge

boundary conditions.

For motions associated with the m th axial wave number, we may write:

U(x,9) cos m tx/L 0 0 Un(® Ua(®
W(x,0) { = 0 sinm x/L 0 W0 = [T 1 W0 ()
V (x,0) 0 0 sinm tx/L V_(8) V_(8)

By substituting equation (3) into equation (1) and letting

U_(6) = A e
V_(8) = Be" @)
W_(8) =Ce"
we obtain
Ux,90)
W(x0) (= I[T,][R]{C} )]

V(x,0)



Figure 2: (a) Finite element idealization
(b)  Nodal displacements at node i for the finite element m

N : number of finite elements
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where [R] is a (3 X 8) matrix given by:

R(L) = o, e j=1,.,8
R(2,j) = i=1,.,8 (6)
R = be™  j =18

n; G = 1,..., 8) are the roots of the characteristic equation of the empty panel. As A, B
and C are not independent, we may write A = «C and B = pC, which determine «; and
B;. {C} is a vector of eight constants which are linear combinations of the C;. The eight
C, are the only free constants, which must be determined from eight boundary conditions,

four at each straight edge of the finite element.

We now express the nodai displacement vectors as follows ;

aw _ '
o fone (2] ]

do

Each {5,} may be determined from equation (5), where 6 in [R] now has a definite

value, 8 =0 or 6 = ¢, as the case may be; hence we obtain

J

{2?}=[A1<C} (®)

where the elements of matrix [A] are determined from those of matrix [R].
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Finally, combining equation (5) and (8), we obtain:

U (x,0)
5. 8.
W(x,0) [ = [T,] [R][AT] {{ }= [N] {a} )

i j
XY 7.

{V({x,0) j
which defines the displacements functions.

3. MASS AND STIFFNESS MATRICES FOR EMPTY FINITE ELEMENTS

The strains are related to the displacements through equations (2); accordingly, we

may now express {e} in terms of 8, and &, and after lengthy manipulations we obtain:

Hel 0 A%t (B 6‘7 10
o |1 s [ BT s (10)

where [Q] is a (6 X 8) matrix given in Ref. [24].

{e} =

The corresponding stresses may be related to the strains by the elasticity matrix [P].

6' .
{o} = [P] {e} = [P] [B]{af} (11)

J

The general term Py of anisotropic matrix [P] is found from [25].
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The mass and stiffness matrices, [m,] and [k,] respectively, for one finite element

may be written as follows:

L ¢ L ¢
[m, ]J=pt f f[N]T [N] dA and [ks]'=f f[B]T [P][B] dA, (12)

where p, is the density of the shell, t its thickness, dA a surface element, [P] the elasticity

matrix and the matrices [N] and [B] are derived from equations (9) and (10), respectively.

The matrices [m ] and [k ] were obtained analytically by carrying out the necessary
matrix operations and integration over x and 6 in equation (12). The global matrices [M;]
and [K.J may be obtained, respectively, by superimposing the mass {m,j and stiffness k]

matrices for each individual panel finite element. See reference [24] for more details.
4. BEHAVIOUR OF THE FLUID-SHELL INTERACTION
4.1 Equations of motion

The dynamic behaviour of an open shell subjected to a pressure field can be

represented by the following system:

[IM,] - [M]] (8} - [C{8} +[IK,] - [K]] {8} = (F} (13)
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where {8} is the displacement vector, [M,] and [K,] are, respectively, the mass and

stiffness matrices of the system in vacuo; [M,] and [C,] and [K{] represent the inertial,

Coriolis and centrifugal forces of the liquid flow and {F} represents the external forces.

4.2  Assumptions

We assume here that the structure is subjected only to potential flow which induces

inertial, Coriolis and centrifugal forces to participate in the vibration pattern: These forces

are coupled with the elastic deformation of the shell.

The mathematical model which is developed is based on the following hypothesis:

0
(i)
(i)
(iv)

and (V)

~mM oy

the fluid flow is potential ;

vibration is linear (small deformation) ;

pressure on the wall is purely lateral ;

the fluid mean velocity distribution is assumed to be constant across a shell
section ;

the fluid is incompressible.
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4.3  Mass, stiffness and damping matrices of the moving fluid

The potential flow may be governed by the equation:

2 2 2
vo =182,y 22 2ol (14)
¢? (at? oxot ax’

where c is the speed of sound in the fluid; U, is the velocity of the liquid through

the shell section and @ is the potential function that represents the velocity potential.

Therefore:

a0 1 8% o®
V=U +2= ;. v, =—22. Vv =22 5
x * ox ® R 40 T ar s

where V,, V, and V, are respectively the axial, tangential and radial components of the

fluid velocity.

The Bernouilli equation is given by:

od 1 P

— 4+ = V2?4

=0
at 2 P, oo (16)

Introducing equation (15) into equation (16) and taking into account only the linear

terms, we find the dynamic pressure P:
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GL o
P, = pm{ -+ U ———} et (17)
X

1 1 fndt vanvracoinic Minaidal e Mo a 3 1 L1221 Lo 4 Lo
WIEre u Ssubdscript represents insiac OI OutsiGe  Iiuid as Ui C4sc illdy Ue.

if n= 1 then £ = R, = R -
(18)
if u=o0 then £ = R =R -

For steady flow, the velocity potential must satisfy the Laplace equation. This

relation is expressed in the cylindrical coordinate system by:

r? 98’ ax?

o (e@) 10 &0
— =+ + (19)

A full definition of the flow requires that a condition be applied to the structure-

fluid interface. The impermeability condition ensures contact between the shell and the
fluid. This should be:

o U; aw
0 _a_“i-q-Ué‘l.f x 0 (20)

V _ = v ]r- = %
« leen ® ot ox 2 ox?
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From the theory of shells (equation 5), we have:

minx e it

8
W(x0,t) =Y C " sin (21)

j=1

Assuming then,

8
®(x0,r,t) =¥ R S(x6,0) (22)
j=1

and applying the impermeability condition (equation 20) with the radial displacement given
by relation (21), we determine the function S; (x, 6, t). Introducing this explicit
term S; (x, 6, t) into equation (22) and then in equation (17), we find a relation for the
dynamic pressure as a function of the displacement W, and the function R(r): )

2 v 3

! R.(m |. - U, . s M @ M
: W, + 2U W, + - W, + U W, + - W, (23)

Pu = —Pf Z /
=t R/(R)

where (' ),(-) and (')represent-qé—), —a—é—tl and _6_5(_2 respectively., By using the relation
r X

(14) and (19), we obtain the following differential Bessel equation:

dR. dR .
, @ Y s {® . RO
dr 2 dr !

r

( m}i“) r? - (inj)2 } =0 (24)
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where i is the complex number, i = -1 and n; is the complex solution of the characteristic

equation.

R() = AT, ( r) (25)

where J; ; and Y, ; are, respectively, the Bessel functions of the first and second kind of

inj

order "in;".

For inside flow, the solution (25) must be finite on the axis of the shell (r = 0);

this means we have to set the constant 'B' equal to zero. For outside flow (r - «); this

LI P . S P

is equal o zero. When the shell is simultaneously subjecied

means that the constant 'A

to internal and external flow, we have to take the complete solution (25).

Finally, we obtain the equation for the pressure on the wall as follows:

2
"

8 imnR . o Uy o 2 M Ux3u
- n = W o+ =W 26) -
P=-p, EH zuj( - ) Wi+ 20, W+ —2 W+ ULW, + NENCY)

2

where (+) and (') represent%—)- and %(—2 respectively, and
X
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imnR Ru )
Z, 2 = ‘ ifu-=i
imrnR Jm.”(lmﬂ:Ru/L) (27)
u j

L J, (im7R/L)

inj -

imnR R,
Zuj = - if u =o0
imnR Yinj,,l(lmﬂRu/L) (28)

L Y, (immR/L)
J

inj -

By introducing the displacement function (9), into the dynamic pressure expression
(26) and performing the matrix operation required by the finite element method, the mass,

damping and stiffness matrices for fluid are obtained by evaluating the following integral:

[INT" (P} dA | 29)
A
we obtain
[m] = [A7]"[8] [A7] (30)
[ed = [A7T" [D] [A7] (31)
[k = [A7']T [Gy] [A] (32)
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The matrix [A] is given by equation (8) and the elements of [S], [D] and [G] are given,

as follows.
RL
Sf(r,s) = —T Ixs (p‘le - pozos) (33)
D _ Rm?*x? 2 2
f(r,s) - 4L Irs (piUxi sz - pono Zos> (34)
G(rs)=Rm2“21(pU22 - P,V Z,) (35)
£y 2L 5 i x “is o x0 “os
wherer, s = i, ..... , 8
and
I = 1 e (et _ 1] for n_+ 1 #0
(n,+ny) (36)
I.=¢ for n_+1n, =0

Finally, the global matrices [M,], [C,] and [K;] may be obtained, respectively, by

superimposing the mass [m], damping [c,] and stiffness [k¢] matrices for each individual

fluid finite element.
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S. EIGENVALUE AND EIGENVECTOR PROBLEM

The eigenvalue and eigenvector problem is solved by means of the equation

+ @, = {0} (37)

where

[M] = [M] - [M;], [K]=I[K]-I[K], [C]=[C] (38)

[M,] and {K] are the global mass and stiffness mairices for the empty shell, (M, [Cq and

[K,] are the global mass, damping and stiffness for the fluid. .

w, = P;; : the first element of elasticity matrix.

The problem for eigenvalues is given by:

| [DD] - A[1]] =0 (39)
where
[0] (1]
PD1=| - L k) (M] - = (K] £C] 40)

w

2
° o
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o is the natural frequency of the system, and w, = P,, : the first element of the elasticity

matrix.

Particular case: If the velocity of the fluid (U, = 0), the eigenvalue problem may

be reduced to:

| L KT [MI- A1 ] =0 1)

Matrices [K], [M] and [C] are square matrices of order NDF (N+1)-J, where NDF
is the number of degrees of freedom at each node, N is the number of finite elements in

the structure and J is the number of constraints applied.
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6. CALCULATIONS AND DISCUSSION

Calculations have already been conducted to test the theory in the case of EMPTY
f uniform and circumferentially non-uniform
open and closed shells were obtained for a variety of boundary conditions [24]. The
computed natural frequencies were compared with those obtained by other theories and
from experiments; agreement was found to be good. Here we present some calculations
to test the theory in the case of liquid-filled open and closed cylindrical shells. In the case

when the shell is subjected to flowing fluid, the dynamic stability of this type of problem

is analysed.

6.1  Free vibration of ciosed cylindricai sheiis partiaily or compietely filied with
liquid
a) For the first set of calculations, we determine the frequency parameters (Q) for

different values of R/t and L/R for shells completely filled with liquid (inside).
The results obtained (10 elements) for n = 1 are given in Table 1 in the case of
free simply-supported shells. We concluded that, as a result of the lateral pressure
exerted by the liquid on the structure, the frequency parameters (Q) depended both
on L/R and R/t, in contrast to the case of the empty shell, where R/t ratio had only

a slight effect upon the results.
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TABLE 1:  Vibration parameter () of cylindrical shells simply-supported at both

Q = wR {yp(1-v)/E).

R/t Baron and
20 50 100 200 Bleich [26] all
values of R/t
L/r
Empty 0.5775 0.5900 0.6067 0.5711 0.5728
2.0
Full 0.4196 0.3288 0.2629 0.1810 ——
Empty 0.2572 0.2581 0.259%4 0.2603 0.2569
4.0
Full 0.1809 0.1372 0.1065 0.07998 | ----
Empty 0.08744 0.08747 0.08752 0.08756 | 0.0874
8.0
Full 0.06020 0.04489 0.03424 0.02269 | ----
Empty 0.05911 0.05911 0.05913 0.05914 | 0.0592
10.0
Full 0.04044 0.03005 0.02283 0.01684 | -—-




b)

24
Next calculations were made for a cylindrical shell simply supported at both ends
in which the liquid level was varied from zero to full in the circumferential
direction. The pertinent data are as follows: R = 37.7mm, t = 0.229 mm,
L =234 mm, v = 0.25, p, /p, = 0.128.

calculated by this theory assuming U, = 0 in equations (33) to (35).

Table 2 shows some frequencies computed by the present method and compared

with experimental results [27] in the case of closed cylindrical shell both empty and

completely filled with liquid.

As may be seen the results obtained by the present method are in good agreement

with experimentai resuits.

Figures 3 and 4 show some frequencies computed by the present method in which

the liquid level was varied from zero to full in the circumferential direction.

We see for some modes that the frequency decreases rapidly with increasing d,/d

in the range 0 < d,/d < 1/4 approximately and then decreases only slighly for higher

fractional fillings. For other modes, however, the frequencies decrease appreciably with

increasing d,/d over the whole range of d,/d, as might be expected.



TABLE 2:  Natural Frequencies (Hz) of a simply-supported closed cylindrical
shell, both when empty and when completely filled with liquid.

Empty Full (inside fluid)
(m, n) Present | Experimental | Present | Experimental
Method [27] Method [27]
e ———————

376 375

234 250
270 300

422 430
651 680
1,7 1853 1938 940 970
(2,3) 2067 2070 784 813
(2,4) 1368 1430 568 600
2,5) 1248 1313 561 625
(2,6) 1489 1570 714 755
2.7 1927 2050 978 1000
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Figure 3 : Natural frequencies of a partially
filled closed cylindrical shell supported at

both ends as a function of liquid level, m=1.
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Figure 4 : Natural frequencies of a partially
filled closed cylindrical shell supported at

both ends as a function of liquid level, m=2.
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c) The third calculation is to analyse the transverse vibration of isotropic and
orthotropic cylindrical shells embedded in an incompressible fluid, simply-
supported at both ends. This case was analysed by Ramachandran [28] who use the

Deoslatol TDite oo P T,
N lUlgll-l\lLL pl UCCUuuicC.,

In Table 3, the values of the material properties used in the calculations are shown.

TABLE 3:Material and physical properties of the shell

E, E, G v Vg
(x 10"N/m? | (x 10" N/m% | (x 10"N/m?

Isotropy 21.981 21.981 0.8454 0.3 0.3
Orthotropy 1.0 0.5 0.1 0.05 0.025

R =0.235m, t = 0.00235 m. p, = 7850 N/m®>, p, = 1000 N/m’

The natural frequencies of this shell-liquid system for n = 4 ,8; m=1;
L/R = 2, 4 and different material properties of the shell are given in Table 4. Four
cases were studied, when the shell is empty; when the fluid is inside or outside of the

shell; and when the shell is embedded in a fluid.
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TABLE 4:  Frequency values (Hz) for simply-supported cylindrical shells, empty
and filled with liquid.
Mat. L/R (n, Theories Empty Inside Inside | Outside
m) and fluid fluid
outside
fluid
(full)
e e e R
Present Method 659 251.4 333.2 331.4
(4,1) | Ramachandran [28] 700 294.2 - -
Lakis [12]* 659 251.7 333.8 331.7
e e e
Isotropy 4 Present Method 2187 1064 1361 1361
8,1) | [28] 2200 944.1 - -
[12]* 2177 1073 1362 1360
Present Method 240.1 92.2 121.9 121.6
4,1) | [28] 183.1
[12}* 238.8 92.4 121.7 121.9- |-
e ———
Orthotropy | 2 Present Method 327.3 158.5 203.3 200.2
8,1) | [28] e 248.5 e e
[12]* 324.1 160.7 203.2 203.9

These results are computed from a computer program developed by A.A.

Lakis & his co-workers and based on the theory presented in [12].
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6.2  Dynamic stability of closed cylindrical shell containing flowing fluid
When the fluid is flowing, the shell will be subjected to centrifugal, Coriolis and

intertia forces. A simply-supported shell with the following characteristics:

>
2

LR = 2,t/R=0.0 28, n

— £ hac hean analuce
, =03

1 L - =N1 ag tr~ ann tha TIanAn A
i, Pj Vg — V.1 11ad UCULL alidalydlld, LU DL WL 1iLIUuCIive U

the speed of the flow U, on the frequencies (internal flow).

The dimensionless parameters of frequency and velocity are @ = o/w_ and

U = U/U, where:

2 3
o, = = K/ipp” , K= D
L 12 (1-v?)
2
TT LS PN )
o = — (Kipt)
L

» and U are respectively the natural frequency and the velocity of the flowing fluid.

The results appear in Figure 5. In a previous analysis of this case by Weaver and
Unny [29], we observe that the natural frequencies decrease with flow velocity. At zero
flow velocity, the two methods give the same results but, as the flow velocity increases the
two term Galerkin method used in reference [29] generates significantly different results

from those of the present hybrid finite element method.  Our results predict that the first

mode frequency becomes negative imaginary at U = 3.1, indicating static divergence

instability in this mode. If the velocity is increased further, the first mode reappears and

coalesces at U = 3.95 with that of the second mode to produce coupled mode flutter.



Dimensionless frequency, w
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Dimensionless velocity, U

Figure 5 : Stability of a simply—supported closed
cylindrical shell as a function of flow velecity.
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6.3  Free vibration of an open cylindrical shell partially or completely filled with

liquid

The articles in literature which deal with open shells interacting with a fluid are not
Here, we present some results for an
completely filled with liquid. The open cylindrical shell is constructed of steel, is filled
with water and is simply-supported at its four edges.

The pertinent data are as follows (see Figure 1):
¢ =180°, R =37.7mm, t =0.229mm , L =234 mm, v = 0.29, p;/ p, = 0.128
a) In Figure 6, we see the behaviour of an open cylindrical shell empty and filled with

liquid as a function of the number of circumferential modes. For a given m, the

frequencies -decrease to a minimum before they increase as the number of

circumferential waves (n) is increased. This behaviour was first observed for a
shell in vacuo by Arnold and Warburton [30] , who were able to explain it by a
consideration of the strain energy associated with bending and stretching of the
reference surface. It may be concluded from their work, that at low n the bending
strain energy is low and the stretching strain energy is high; while at the higher n,
the relative contributions from the two types of strain energy are reversed. The
interchange in the relative contributions of the bending and stretching strain energy
as the circumferencial wave number n is increased explains the decrease and
subsequent increase in the natural frequencies indicated in Figure 6. This

behaviour is also true for an open cylindrical shell partially or completely filled

with liquid.
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Figure 6 : Natural frequency of an empty and
liquid—filled open cylindrical shell with W=V=0
at the four edges.

20

33



b)

c)

34
Figure 7 shows that when an open cylindrical shell is partially filled with liquid,
the curves show a rapid decrease of the natural frequencies as a, / a, increases from

0 to 3/4 approximately, and then decreases only slightly for higher fractional

To see the influence of the orientation of the shell, we present in Figure 8, the
natural frequency as a function of the orientation of the shell and the free surface
of the liquid, the liquid level a, / a, = 0.46 (see Figure 7). We observe that the
natural frequencies of the system decrease between the two extreme positions. The
reduction is about 11 % for the two modes (m = 1, n = 7)and (m =2, n = 7).

We can use this type of analysis io study the dynamic response of a case such as

a tanker on an inclined road when the free surface of the liquid oscillates.
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Figure 7 : Natural frequencies of an open
cylindrical shell with W=V=0 at the four
edges as a function of liquid level, m=1.
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Figure 8 : Natural frequencies of an open
cylindrical shell with W=V=0 at the four

edges as a function of the orientation of
the liquid level and the shell.
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6.4  Dynamic stability of an open cylindrical shell containing flowing fluid

An open cylindrical shell containing flowing fluid has been analysed. The data for

th , pe/ ps = 0.128, v = (.29,

P
i=x
>

and the dimensionless parameters of frequency and velocity are ® = w/w_ and

U = U/U_ where

2 3
o = 0 (K/pt)®> , K = __EBt”
LZ

2

_ T /
U, = ? (K/pst)12

w and U are respectively the natural frequency and the velocity of the flowing fluid.
We present here an examination of the natural frequencies of the system as
functions of the flow velocity, and thereby a determination of the effect of flow on the

dynamic behaviour of the system.

Different sets of results are presented to illustrate the method as well as the effect
of various parameters, in particular the effect of internal or internal and external flow and

the effect of boundary conditions.
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a) Simply-supported - simply-supported shell

A simply-supported open cylindrical shell containing flowing fluid (internal and
external) has been analysed. Figure 9 show
of the flow velocity. As the velocity increases from zero, the frequencies associated with
all modes decrease, they remain real (the system being conservative) , until at sufficiently

high velocities, they vanish, indicating the existence of buckling-type (divergence)

instability. At higher flow velocity the frequencies become purely imaginary.

We predict the first loss of stability at a flow velocity equal to U = 7.75 for the

mode (m = 1, n = 4).

b) Free-Free Shell

The case of an open cylindrical shell having its straight edges free and the curved
edges freely simply-supported has been studied by the present theory. Figure 10 shows

that natural frequencies associated with all modes decrease with increasing flow velocity

until at a value of U = 8.5 (m = 1, n = 6) the system buckles.
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Figure 9 : Stability of a simply supported open
cylindrical shell as a function of flow velocity.
(inside and outside flow)
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Figure 10 : Stability of a free—free open
cylindrical shell as a function of flow velocity.
(inside and outside flow)
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c) Clamped-Clamped Shell:

The calculations were performed for one open cylindrical shell having its straight
edge clamped and the curved edges freely simply-supported. Two sets of calculations were

made:

i) In the first set of calculations, we study the influence of the flow velocity on the
dynamic stability of the open shell containing internal and external flow. We
observe in Figure 11 that the frequencies associated with all modes decrease with
increasing flow velocity, and similarly to the case of simply supported-simply
supported and free-free open shells, the frequencies. remain real until at a
sufficiently high velocities, they vanish, indicating the instability. For the

stipulated boundary conditions, we predict the first loss of instability at*

U = 8.25 for the mode (m=1,n=4).
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Figure 11 : Stability of a clamped—clamped open
cylindrical shell as a function of flow velocity.
(inside and outside flow)
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In order to assess the effect of the external flow on the dynamic behaviour of the

'. P PERPNY PR A [N PR
stem, a set of calculations
,

rmed in which the dynaimic forces arising
from the external fluid were neglected. As may be seen from Figure 12, the role
of the external flow is to reduce the natural frequencies of the system and the

critical velocities at which the system becomes unstable. We observe that the
critical velocities are reduced from U =23 (m=1, n = 6) and U = 17.75
m = 2, n = 7) for the system with internal flowto U = 16.5 (m = 1, n = 6)
and U = 12.5 (m = 2, n = 7) for the system with internal and external flow

respectively. The discrepancy is about 40%. We conclude that the role of
external flow is not negligible and tends to reduce the natural frequencies and the

critical velocities of the system.
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Figure 12 : Effect of inside and outside flow on the
stability of a clamped—clamped cylindrical shell.
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d) Comparaison between the boundary conditions:

In order to establish the effects of boundary conditions on the critical flow
velocities which render the system dynamically unstable, we turn to Figure 13. We
observe for the same mode and the same open shell with different boundary conditions,
that the shell with free-free boundary conditions in its straight edges is the one which loses

dynamic stability first.

For the mode (m = 1, n = 7) we have critical velocities as follows: Free-Free

shell (U = 15.5), simply supported - simply supported shell (U = 24.4) and clamped-

clamped shell (U = 29). For the mode (m = 2, n = 7), we have respectively U =85;

11,5 and 12.5.
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Figure 13 : Effect of boundary conditions on the
stability of an open cylindrical shell.
(inside and outside flow)
F:Free, S:Simply—-supported, C:Clamped
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e) Clamped-Free Shell:

For this set of boundary conditions, the fluid flow renders the system non-
conservative. The shell frequency becomes complex in contrast that of a system which is
supported, free or clamped at both straight edges, when real frequencies are generated

until the system buckles.

The evolution of the eigenfrequencies with the increasing dimensionless flow

velocity is shows in the Argand diagram (Figure 14) [Note that Re (w) is the oscillations
frequency, while Im (w) is related to the damping], the dimensionless flow velocity U
being the parameter. For U » 0 the frequencies are complex. It is noted that the effect

of flow is to damp the system in all modes, the frequencies having positive imaginary

parts.
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80

Figure 14 : Argand diagram of the dimensionless
frequency, w, as function of the dimensionless

flow velocity, U, for a clamped—free open cylindrical
shell. (inside flow)
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7. CONCLUSIONS

The theory developed in this paper is used to obtain the effects of inertia, Coriolis
and centrifugal forces of a moving fluid on the vibration characteristics of anisotropic open

and closed cylindrical shells.

A cylindrical panel finite element was developed, making possible the derivation
of the displacement functions from the equations of motion of the shell. Mass and stiffness

of each element were obtained by exact analytical integration.

The fluid pressure was derived from the velocity potential and from the linear
impermeability and dynamic conditions applied to the shell-fluid interface. The finite
element method was used to obtain the mass, stiffness and damping of fluid element. The
results obtained by this method were compared with other investigations and satisfactory
agreement was obtained. This method combines the advantages of finite element analysis
which deals with complex shells, and the precision of formulation which the use of

displacement functions derived from shell and fluid theories contributes.

The method enables us to predict the vibrationary characteristics of open cylindrical
shells partially or completely filled with liquid and the dynamic stability of open shells

subjected to flowing fluid.



50

The next step in this line of work should be the study of the non-linear dynamic

analysis of open cylindrical shells containing a flowing fluid.



[1]

[2]

[31]

[4]

[5]

51

REFERENCES

BROWN, S.J., "A Survey of Studies into the Hydrodynamic Response of
Fluid-Coupled Circular Cylinders," J. of Pressure Vessel Technology,

ASME, Vol. 104, pp. 2-19, 1982.

AU-YANG, M.K., "Dynamic of Coupled Fluid-Shells," J. of Vibration,
Acoustics, Stress and Reliability Design, ASME, Vol. 108, pp. 339-347,

1986.

MISTRY, J. and MENENZES, J.C., "Vibration of Cylinders Partially-
Filled with Liquid," J. of Vibration and Acoustics, Vol. 117, pp- 87-93,

1995.

HARARI, A., SANDMAN, B.E. and ZALDONIS, J.A., "Analytical and
Experimental Determination of the Vibration and Pressure Radiation from
a Submerged, Stiffness Cylindrical Shell with Two End Plates,” J. Accoust.

Soc. Am., Vol. 95(6), pp. 3360-3368, 1994.

CHENG, L., "Fluid-Structural Coupling of a Plate-Ended Cylindrical
Shell: Vibration and Internal Sound Field," J. of Sound and Vibration,

Vol. 174(5), pp. 641-654, 1994.



[6]

[7]

[8]

[9]

[10]

[11]

S2

HAN, R.P.S. and LIU, J.D., "Free Vibration Analysis of a Fluid-Loaded
Variable Thickness Cylindrical Tank," J. of Sound and Vibration, Vol.

176(2), pp. 235-253, 1994.

TERHUNE, J.H. and KARIM-PANAHI, K., "Wave Motion of a
Compressible Viscous Fluid Contained in a Cylindrical Shell," J. of

Pressure Vessel Technology, ASME, Vol. 115, pp. 302-312, 1993.

BRENNEMAN, B. and AU-YANG, M.K., "Fluid-Structure Dynamics
with a Modal Hybrid Method," J. of Pressure Vessel Technology, Vol.

114, pp. 133-138, 1992.

ENDO, R. and TOSAKA, N., "Free Vibration Analysis of Coupled
External Fluid-Elastic Cylindrical Shell-Internal Fluid System," JSME Int.

J., Serie I, Vol. 32(2), pp. 217-221, 1989.

GONCALVES, P.B. and BATISTA, R.C., "Frequency Response of
Cylindrical Shells Partially Submerged or Filled with liquid," J. of Sound

and Vib., Vol. 113(1), pp. 59-70, 1987.

SANDERS, J.L., "An Improved First Approximation Theory for Thin

Shells," NASA, TR-R24, 1959.



[12]

[13]

[14]

[15]

[16]

53

LAKIS, A.A. and PAIDOUSSIS, M.P., "Free Vibration of Cylindrical
Shells Partially Filled with Liquid," J. of Sound and Vibration, Vol. 19,

pp. 1-15, 1971.

LAKIS, A.A. and PAIDOUSSIS, M.P., "Prediction of the Response of a
Cylindrical Shell to Arbitrary of Boundary-Layer-Induced Random Pressure

Field," J. of Sound and Vibration, Vol. 25, pp. 1-27, 1972.

LAKIS, A.A. and PAIDOUSSIS, M.P., "Shell Natural Frequencies of the
Pickering Steam Generator," Atomic Energy of Canada Ltd., AECL

Report No. 4362, 1973.

LAKIS, A.A., "Theoretical Model of Cylindrical Structures Containing
Turbulent Flowing Fluids,” 2nd Int. Symposium of Finite Element

Methods in Flow Problems, Santa Margherita Ligure (Italy), 1976.

LAKIS, A.A., SAMI, S.M., and ROUSSELET, J., "Turbulent Two Phase
Flow Loop Facility for Predicting Wall-Pressure Fluctuations and Shell
Response," 24th Int. Intrusmentation Symposium Albuquerque (New

Mexico), 1978.



[17]

(18]

[19]

[20]

[21]

— 54
LAKIS, A.A. and SINNO, M., "Free Vibration of Axisymmetric and
Beam-Like Cylindrical Shells Partially Filled with Liquid," Int. J. for

Numerical Methods in Eng., Vol. 33, pp. 235-268, 1992.

LAKIS, A.A. and LAVEAU, A., "Non-Linear Dynamic Analysis of

Anisotropic Cylindrical Shells Containing a Flowing Fluid," Int. J. Solids

and Struc., Vol. 28(9), pp. 1079-1094, 1991.

LAKIS, A.A., "Effects of Fluid Pressures on the Vibration Characteristics

~ of Cylindrical Vessels", Proc. of the Int. Conf. on Pressure Surges,

London, UK, pp. J1-1, 15, 1976.

LAKIS, A.A., VAN DYKE, P. and OURICHE, H., "Dynamic Analysis
of Anisotropic Fluid-Filled Conical Shells," J. of Fluids and Struc., Vol.

6, pp. 135-162, 1992.

LAKIS, A.A., TUY, N.Q. and SELMANE, A., "Analysis of Axially Non-
Uniform Thin Spherical Shells," Proc. of the Int. Symposium on Structural

Analysis and Optimization, Paris, France, pp. 80-85, 1939.



[22]

[23]

[24]

[25]

[26]

55

LAKIS, A.A. and SELMANE, A., "Analysis of Non-Uniform Circular and
Annular Plates," Proc. of the Third Int. Conf. on Numerical Methods in

Engineering, Swansea, U-K, pp. 239-248, 1990.

LAKIS, A.A. and SELMANE, A., "Hybrid Finite Element Analysis of
Non-Uniform Circular and Annular Plates," Proc. of the Int. Conf. on
Advances in Structural Testing, Analysis and Design, Bangalor, India, pp.

499-505, 1990.

SELMANE, A., and LAKIS, A., "Dynamic Analysis of Anisotropic Open
Cylindrical Shell, "Technical Report, No.EPM/RT-95/10, Ecole

Polytechnique de Montréal, Canada, 1995.

AMBARTSYMYAN, S.A., "Theory of Anisotropic Shells," NASA TT F-

118, 1961.

BARON, M.L. and BLEICH, H.H., "Tables of Frequencies and Modes of
Free Vibration of Infinitely Long Thin Cylindrical Shells," J. Appl. Mech.,

Vol. 21, pp. 178-1954.



[27]

[28]

[29]

[30]

56

LINDHOLM, U., KANA, D.D. and ABRAMSON, H.Y., "Breathing
Vibrations of a Circular Cylindrical Shell With an Internal Liquid," J. of

Aeronautical Science, Vol. 29, pp. 1052-1059, 1962.

RAMACHANDRAN, J., "Non-Linear Vibratins of Cylindrical Shells of
Varying Thickness in an Incompressible Fluid," J. of Sound and Vib.,

Vol. 64(1), pp. 97-106, 1979.

WEAVER, D.S. and UNNY, T.W., "On the Dynamic Stability of Fluid
Conveying Pipes," I. of Applied Mechanics, ASME, Vol. 40, pp. 48-52,

1973.

ARNOLD, R.N. and WARBURTON, G.B., "Flexural Vibration of the
Walls of Thin Cylindrical Shells Having Freely Supported Ends," Proc. of

the Royal Society of London, Vol. 197A, pp. 238-356, 1953.



A, B, C

a,/a,

d,/d
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Constants in equations defining U, V, W
respectively

Liquid level ratio for an open cylindrical shell
Velocity of sound in fluid

Liquid level ratio for closed cylindrical shell
Young's modulus

exponential

Bessel function of the first kind and of order inj
Bending stiffness, Et*/12(1 - v?)

Length of the shell

Axial mode number

Circumferential mode number

Lateral pressure exerted on the shell, u = i for
inside pressure and u = o for outside pressure
Terms of elasticity matrix (i= 1,...,6 ; j= 1, ..., 6)
Mean radius of the shell

Solution of Bessel equation (25)
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Defined by equation (22)
Thickness of the shell
Axial, tangential and radial displacements
Velocity of the liquid

Defined by (z%/L) (K/p t)">

Nondimensional velocity, U, /U,

Axial, tangential and radial fluid velocity (15)
Axial coordinate

Bessel function of the second kind and of order inj
Defined by equation (27) for u = i and equation (28)
foru=o

Complex roots of the characteristic equation

Deformation of reference surface
Changes in curvature and torsion of reference

surface

Circumferential coordinate
Poisson's ratio

Angle for one finite element
Angle for the whole open shell
Velocity potential

Density of the shell material
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Density of fluid, f = i for inside fluid and f = o for

Ps
outside fluid
w Natural frequency (rad/s)
w, Defined by (n*/L? (K/p )"
® Nondimensional frequency, o/w,
LIST OF MATRICES
[A] Defined by equation (8)
[B] Defined by equation (10)
[cd Damping matrix for a fluid finite element
[Cd Damping matrix for the whole fluid
{C} Vector of arbitrary constants
[D{] Defined by equation (34)
[G{] Defined by equation (35)
[k Stiffness matrix for a fluid finite lement
k] Stiffness matrix for a shell finite element
K] Stiffness matrix for the whole fluid
K] Stiffness matrix for the whole shell
[m] Mass matrix for a fluid finite element
[m,] Mass matrix for a shell finite element

[M]

Mass matrix for the whole fluid
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Mass matrix for the whole shell

Displacement function defined by equation (9)
Elasticity matrix

Defined by equation (10)

Defined by equation (6)

Defined by equation (33)

Defined by equation (3)

Degree of freedom at node i

Deformation vector

Stress vector
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