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ABSTRACT

A theory is presented for the détermination of the effects of a flowing fluid on the

vibration characteristics of an open, anisotropic cylindrical shell. The case of an open

shell partially or completely filled with liquid is also investigated. The structure may be

uniform or non uniform in the circumferential direction. The formulation used is a

combination of finite élément method and classical shell theory. The displacement

functions are derived from exact solutions of the Sanders' shell équations.

The velocity potential and Bernoulli's équation for a liquid finite élément yield an

expression for fiuiu pressure as a function of die nouai displacements of the élément and

three forces (inertial, centrifugal and Coriolis) of the moving fluid. An analytical

intégration of the fluid pressure over the liquid élément leads to three components: mass,

stiffness and damping matrices.

Calculations are given to illustrate the dynamic behaviour of open and closed

cylindrical shells subjected to a flowing fluid and shells partially or completely filled with

liquid. Reasonable agreement is found with others théories and experiments.



l. INTRODUCTION

Knowledge of the vibration characteristics of fluid-filled cylindrical shells and

panels is of considérable practical interest, since cyîindrical shells and panels are

commonly used to contain or convey fluids. There are many ways in which the présence

of the fluid may influence the dynamics of the structure. If the structure contains a

stationary gas at low pressure, then the vibration of the shell differs only slightly from that

of the same shell in vacuo. If the fluid is compressible, the compressibility of the fluid

alters the effective stiffness of the System. Also, if the density of the fluid is relatively

high, as in the case of a liquid, then the fluid exerts considérable inertial loading on the

shell, and this results in a significant lowering of the resonant frequencies. Other effects

of coupled nuid-sheli motions occur when the fluid is flowing. Depending upon the

boundary conditions, if the flow velocities are large, buckling or oscillatory flexural

instabilities are possible.

The dynamics ofcoupled fluid-shells werc reviewed extensively by Brown [l] and

Yang [2] and others [3] to [10]. There have been few analysis of closed cylindrical shells

having axially varying thickness. Again, While there is extensive literature relevant to the

vibration of empty open cylindrical shells (cylindrical panels), no analyses have been found

of open cylindrical shells, non-uniform in the circumferential direction and containing a

flowing fluid.
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The purpose of this study is to présent a method for the dynamic and static analysis

of open, thin, anisotropic cylindrical shells containing flowing fluid.

The structure may be uniform or non-uniform in the circumferential direction and

we consider the problem of open cylindrical shells which are freely simply-supported along

their curved edges and to have arbitrary straight edge boundary conditions.

The method is a hybrid of finite élément method, classical shell théories and fluid

théories. The structure is subdivided into a cylindrical panel segment finite éléments. The

displacement functions are derived from Sanders' équation of thin cylindrical shells [11].

In this approach, it is possible to détermine the mass and stiffness matrices of the

individual finite éléments by exact analyticai intégration. Accordingly, this method is

more accurate than the more usual finite élément methods based on polynomial

displacement functions.

To account for the fluid effect on the structure, a panel finite fluid élément bounded

by two nodal lines was considered. By solving the équations of motion for the fluid

élément, an expression for fluid pressure as a function of the displacements of the élément

was obtained. Analytical intégration for the pressure distribution along the élément yielded

three components: the mass, stiffness and damping matrices for a fluid élément.
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Global matrices are, then, obtained by superimposing the individual matrices. The

eigenvalue and eigenvector problem is solved by means of the équation réduction

technique.

The hybrid approach (Finite élément - Shell theory - Fluid theory) has been applied

with satisfactory results to the dynamic linear and non-linear analysis of cylindrical [12-

19], conical [20], spherical [2l], isotropic and anisotropic, uniform and axially non-

uniform shells both empty and liquid filled. This method has been applied also to the

dynamic analysis of circular and annular plates [22], [23] and to an open anisotropic and

circumferentially non-uniform cylindrical shell [24]. This study is an attempt to détermine

the vibration of a circumferentially non-uniform open cylindrical shell, containing flowing

fluid. The case of an open cylindricai shell partiaily or compietely filled with liquid is also

studied.



2. DETERMINATION 0F THE DISPLACEMENT FUNCTIONS:

Sanders' équations [11] for thin, cylindrical shells, in terms of axial, tangential and

radiai displacements (U, V, Vv) ofthe mean surface of the shell (figure l) and in terms of

élément Py of the anisotropic matrix of elasticity [P] are:

L, (U,V,W,P,R = 0

L, (U,V,W,P,) = 0

L, (U,V,W,P^) = 0

(l)

where L^ (k = l, 2, 3) are three linear differential operators, the form of which is fully

explained in [24].

The strain-displacement relation is given by:
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The finite élément used is shown in Figure 2. It is a cylindrical panel segment

defined by two line nodes i and j. Each node bas four degrees of freedom: three

displacements (axial, circumferential and radiai) and one rotation. The panels are assumed

to be freely simply-supported aloug their curveu edges aiiu to have arbilrary straighl edge

boundary conditions.

For motions associated with the m th axial wave number, we may write:

U(x,9)

W(x,6)

V(x,6)

cosmnx/L

0

0

0

sinmnx/L

0

0

0

sinmîix/L

u.
H

w.

V.

/e)

»(9)

.(9)

= [TJ

u

w

v

J8)

»(e)

.(6)

(3)

By substituting équation (3) into équation (l) and letting

UJ6) = A e"9

VJ6) = B e ie

WJ6) = C e'19

(4)

we obtain

U(x,6)

W(x,9)

V(x,6)

^ = ITJ [R] {C} (5)



(a)

N+1

w.

(b)

Figure 2: (a) Finite élément idealization

(b) Nodal displacements at node i for the fmite élément m

N : number of fiuite éléments
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where [R] is a (3 x 8) matrix given by:

R(lj) = a^e^ j = 1,...,8

R(2J)=e^9 j = 1,.,8 (6)

R (3 J) = Pje^e j = l,...,8

f] j (j = l,..., 8) are the roots of the characteristic équation of the empty panel. As A, B

and C are not independent, we may write A = ce C and B = PC, which détermine aj and

Pj. {C} is a vector of eight constants which are linear combinations of the Cj. The eight

C, are fhe only free constants, which must be determined from eight boundary conditions,

four at each straight edge of the finite élément.

We now express the nodal displacement vectors as follows

dW
{ô.} ='iU,,, W,;, | —^| , V^, ;• (7)î> l -mi' "mi' | jû | ' • mi

Each {ô,} may be determined from équation (5), where 6 in [R] now has a definite

value, 6 =0 or 6 = <)), asthe case may be; hence we obtain

^=tAKC> (8)

where the éléments of matrix [A] are determined from those of matrix [R].



11

Finally, combining équation (5) and (8), we obtain:

U(x,6)

W(x,6)

V(x,G)

^ = [T J [R] [A-l]^l^= [N] ^- (9)

which defines the displacements functions.

3. MASS AND STIFFNESS MATRICES FOR EMPTY NNITE ELEMENTS

The strains are related to Ae displacements through équations (2); accordingly, we

may now express {e} in terms of ô, and ôj, and after lengthy manipulations we obtain:

{€} =
[TJ 0

0 [TJ
[Q][A-1]^=[B]^ (10)

where [Q] is a (6 X 8) matrix given in Réf. [24].

The corresponding stresses may be related to the strains by the elasticity matrix [P].

{o} = [P] {e} = [P] [B] ^' (11)

The général term Pi, of anisotropic matrix [P] is found from [25].
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The mass and stiffness matrices, [m J and [kj respectively, for one finite élément

may be written as follows:

L <(> L <(>

[m, ]=p,t f [ [Nf [N] dA and [k, ]= [ f [B]T [P] [B] dA , (U)

where ps is the density ofthe shell, t its thickness, dA a surface élément, [P] the elasticity

matrk and the matrices [N] and [B] are derived from équations (9) and (10), respectively.

The matrices [mj and [kj were obtained analytically by carrying out the necessary

matrix opérations and intégration over x and 6 in équation (12). The global matrices [Mg]

and [Kj| may be obtained, respectiveiy, by superimposing me mass [mj and stiffness [kj

matrices for each individual panel finite élément. See référence [24] for more détails.

4. BEHAVIOUR 0F THE FLUID-SHELL INTERACTION

4. l Equations of motion

The dynamic behaviour of an open shell subjected to a pressure field can be

represented by the following System:

[[MJ - [M,]] {0} - [C,]{0} + [[KJ - [K,]] {0} = {F} (13)
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where {ô} is the displacement vector, [M J and [KJ are, respectively, the mass and

stiffness matrices of the System in vacuo; [Mf] and [Cç] and [K^] represent the inertial,

Coriolis and centrifugal forces of the liquid flow and {F} represents the external forces.

4.2 Assumptions

We assume herc that the structure is subjected only to potential flow which induces

inertial, Coriolis and œntrifugal forœs to participate in the vibration pattefn. Thèse forces

are coupled with the elastic déformation of the shell.

The mathematical model which is developed is based on the following hypothesis:

(i) the nuid flow is potential ;

(ii) vibration is linear (small déformation) ;

(iii) pressure on the wall is purely latéral ;

(iv) the fluid mean velocity distribution is assumed to be constant across a shell

section ;

and (v) the fluid is incompressible.



14

4.3 Mass, stiffness and damping matrices of the moving fluid

The potential flow may be governed by the équation:

l lô2$ ... Ô2$ ..2 Ô2$
v2 $ = J- {°^L + 2LL -°-v- +U,2

^ |ôt2 --x 9x8t 'x ôx2

wherc e is the speed of sound in the fluid; U,; is the velocity of the liquid through

the shell section and $ is the potential function that represents the velocity potential.

Therefore:

v = u . ^ : v„ = l ^ : v = ^'x= ux+ ~ôT ; ve = i 'ae' ' vr = 'ir' (15)

where V^, Ve and V, are respectively the axial, tangential and radiai components of the

fluid velocity.

The Bernouilli équation is given by:

9^ . l ,.2 . P
^yV'^|..,.o (!„)

Introducing équation (15) into équation (16) and taking into account only the linear

terms, we find the dynamic pressure P:
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lôî.. ô$.
f = p^ ÇI^ + u,, ^
Lu - Kfù l 9t ' "m ôx r=S

(17)

where u subscript represcûts "inside" or "outside" fluiu as the case may be:

if u = i then Ç = R, = R - t-
2

ifu=o thenÇ=R^=R--t-
2

(18)

For steady flow, the velocity potential must satisfy the Laplace équation. This

relation is expressed in the cylindrical coordinate System by:

v2 $ = -
l̂ 9 i 9^} l ô2$ ô2$
r 9r { Sr ) r2 ô62 ôx:

(19)

A full définition of the flow requires that a condition be applied to the structure-

fluid interface. The impermeability condition ensures contact between the shell and the

fluid. This should be:

v r lr=R

0$
Qr

r=R

ôW „ ôW . ux a2w
+ u^— +

9t ôx 2 ôx2
r=R

(20)
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From the theory of shells (équation 5), we have:

W(x '1J9 «n m7IX ^ '"t,e,t) = E cj e'lj"sm
J^i ' L

(21)

Assuming then,

<&(x,6,r,t) = ^ Rj(r) S^.(x,e,t)
J=l

(22)

and applying the impermeability condition (équation 20) with the radiai displacement given

by relation (21), we détermine the function Sj (x, 6, t). Introducing this explicit

term Sj (x, 6, t) into équation (22) and then in équation (17), we find a relation for the

dynamic pressure as a function of me displacement Wj and me function Rj(r):

pu= -PrE
Rj(r)

îri R/(R)

u
W, + 2U...W, + -^j --xu-'j ^

_._n _- î-_-" U^, __jiiw; + u>; + ^ w; (23)

where (' ),(•) and (l)represent-l^-/-, ^->- and -l-L-/ respectively., By using the relation
9r ôt ôx

(14) and (19), we obtain the following differential Bessel équation:

d2R,(r) dR,(r)
+ r

dr dr
+ Rj(r)

im TÎ | " _ 2
- (•l,)' = 0 (24)
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where i is the complex number, i = -l and ^ is the complex solution of the characteristic

équation.

The général solution of équation (24) is given by:

imir im7T
R/r)= AJi^^r)+ BYi^^r) (25)

where J; j and Y,^ are, respectively, the Bessel functions of the first and second kind of

order "iî^".

For inside flow, the solution (25) must be finite on the axis of the shell (r = 0);

this means we have to set the constant 'B' equal to zéro. For outside flow (r -» °°); this

means that the coustani 'A' is equaî to zéro. When the shelî is simultaneously subjected

to internai and external flow, we have to take the complète solution (25).

Finally, we obtain the équation for the pressure on the wall as follows:

imirR.
),,=-P,,'E zj ~""u
u ru ^ ~uj

J=l

...' u^, ,„« ,^,ji u^, _"
Wj ^ 2U,W; . -^ W; + V^W, -. ^ W'; (26)

where (•) and (') represent-l^-/- and ^-/- respectively, and
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im n R.. | R.

zj n_r" | = —r"— if u = i
UJl L ; imîiR^ J^,i(imnR,/L) (27)

"1, - —i —•J
L J;JimnR,,/L)

imiîR., | R,

zj :^-^" l = —^"— if u = o
ul\ L ; imîiR^ Y^(im7iR/L) (28)

j ~ ~i~ Y^(imnR,/L)

By introducing the displacement function (9), into the dynamic pressure expression

(26) and performing the matrk opération requu-ed by the finite élément method, the mass,

damping and stiffness matrices for fluid are obtained by evaluating the following intégral:

j[Nf{P,}dA (29)

we obtain

[m,] = [A-lf[S,] [A-'] (30)

[e,] = [A-'f [D,] [A-1] (31)

[k,] = [A-1]T [G,] [A-1] (32)
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The matrix [A] is given by équation (8) and the éléments of [Sj, [D j and [G[] are given,

as follows,

S,(r,s)= -^-Î^^Z,- p,Z,) (33)

Rm2 n2
D/r,s) = Km; ÎI' 1^ (p,U^ Z, - p^ Z^

fv-*'~-' ,-r *rs \ri''xi ~is ''o~xo ~o

4L
(34)

Rm2 îi2
G,(,,s) . K^l I. (p,U; Z. - p.U; Z.)

2L
(35)

where r, s = l, ...... 8

and

I.=—[e(<1r+^-1] f-n.+T^0
(Ur+t1s)

!„=<(> for n^ + î^ = 0

(36)

Finally, the global matriœs [Mj, [Cj and [Kj may be obtained, respectively, by

superimposing the mass [mj, damping [cj and stiffness [kj matrices for each individual

fluid finite élément.
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5. EIGENVALUE AND EIGENVECTOR PROBLEM

The eigenvalue and eigenvector problem is solved by means of the équation

réduction technique. Equation (13) may be rewritten as folîows:

[0]

-L [M]
Cù

-L [M]
œo

^[C]
"

— [M] [0]
u

[0] [K]

= {0} (37)

where

[M] = [MJ - [M,] , [K] = [KJ - [K,] , [C] = [C,] (38)

[M J aud PC j are uie global mass and sdffness matrices for uie emply shell, [M j, [Cj and

[Kf] are the global mass, damping and stiffness for the fluid.

(rio = Pu : the first élément of elasticity matrix.

The problem for eigenvalues is given by:

[DD] - A [I] | = 0 (39)

where

[DD] =

[0]
l

- — [K]-1 [M]

û>

[I]

l
- — [K]-1 [-C]

u
(40)



and A =

21

l

(Ù.tl)

u is the natural frequency of the System, and co,, = Pu : the first élément of the elasticity

matnx.

Particular case: If the velocity of the fluid (U,; = 0), the eigenvalue problem may

be reduced to:

-^ [K]-1 [M] - A [I] | = 0 ^
(t)

and ou (rad/s) =
"OA

Matrices [K], [M] and [C] are square matrices oforder NDF (N+1)-J, where NDF

is the number of degrees of freedom at each node, N is the number of finite éléments in

the structure and J is the number of constraints applied.
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6. CALCULATIONS AND DISCUSSION

Calculations have already been conducted to test the theory in the case of EMPTY

open and closed shells. The free vibratioris of uniform and circumferentially non-uniform

open and closed shells were obtained for a variety of boundary conditions [24]. The

computed natural frequencies were compared with those obtained by other théories and

from experiments; agreement was found to be good. Here we présent some calculations

to test the theory in the case of liquid-filled open and closed cylindrical shells. In the case

when the shell is subjected to flowing fluid, the dynamic stability of this type of problem

is analysed.

6.1 Free vibration of closed cyimdricai shells partially or completely fîlled with

liquid

a) For the first set of calculations, we détermine the frequency parameters (Q) for

différent values of R/t and L/R for shells completely filled with liquid (inside).

The results obtained (10 éléments) for n = l are given in Table l in the case of

free simply-supported shells. We œncluded that, as a result of the latéral pressure

exerted by the liquid on the structure, the frequency parameters (iï) depended both

on L/R and R/t, in contrast to the case of the empty shell, where R/t ratio had only

a slight effect upon the results.
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TABLE l; Vibration parameter (Q) of cylindrical shells simply-supported at both

ends aiid fiîled with liq'uid

(n = l, m= l, v = 0.3, pi = 1000 kg/m3 and

Q = O)R ^/p(l-v2)/E ).

R/t

L/r

Empty
2.0

Full

Empty
4.0

Full

Empty
8.0

Full

Empty
10.0

Full

20

0.5775

0.4196

0.2572

0.1809

0.08744

0.06020

0.05911

0.04044

50

0.5900

0.3288

0.2581

0.1372

0.08747

0.04489

0.05911

0.03005

100

0.6067

0.2629

0.2594

0.1065

0.08752

0.03424

0.05913

0.02283

200

0.5711

0.1810

0.2603

0.07998

0.08756

0.02269

0.05914

0.01684

Baron and

Bleich [26] all
values of R/t

0.5728

0.2569

0.0874

0.0592
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b) Next calculations were made for a cylindrical shell simply supportée! at both ends

in which the liquid level was varied from zéro to full in the circumferential

direction. The pertinent data are as follows: R = 37.7 mm, t = 0.229 mm,

L - 234 mm, v -- 0.29, p;/p, = 0.128. Tue effects of tue inertial force were

calculated by this theory assuming U^ == 0 in équations (33) to (35).

Table 2 shows some frequencies computed by the présent method and compared

with expérimental results [27] in the case of closed cylindrical shell both empty and

completely filled with liquid.

As may be seen the results obtained by the présent method are in good agreement

with expérimentai results.

Figures 3 and 4 show some frequencies computed by the présent method in which

the liquid level was varied from zéro to full in the circumferential direction.

We see for some modes that the frequency decreases rapidly with increasing di/d

inthe range 0 < di/d < 1/4 approximately and thendecreases only slighly for higher

fractional fillings. For other modes, however, the frequencies decrease appreciably with

increasing d/d over the whole range of di/d, as might be expected.
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TABLE 2; Natural Frequencies (Hz) of a simply-supported closed cylindrical
shell, both when empty and when completely fîlled with liquid.

(m, n)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(2,3)

(2,4)

(2,5)

(2,6)

(2.7)

Empty

Présent

Method

1133

629

655

942

1353

1853

2067

1368

1248

1489

1927

Expérimental
[27]

1150

640

688

995

1430

1938

2070

1430

1313

1570

2050

Full

Présent

Method

376

234

270

422

651

940

784

568

561

714

978

inside fluid)

Expérimental
[27]

375

250

300

430

680

970

813

600

625

755

1000
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e) The third calculation is to analyse the transverse vibration of isotropic and

orthotropic cylindrical shells embedded in an incompressible fluid, simply-

supportée at both ends. This case was analysed by Ramachandran [28] who use the

Rayleigh-Ritz procédure.

In Table 3, the values of the material properties used in the calculations are shown.

TABLE 3:Material and physical properties ofthe shell

Isotropy

Orthotropy

EX
(x 10nN/m2)

21.981

1.0

Ee
(xl011N/m2)

21.981

0.5

G
(x 10UN/m2)

0.8454

n 1
u. l

vx

0.3

0.05

ve

0.3

n m<\J»\JI^^

R = 0.235 m, t = 0.00235 m. p, = 7850 N/m3, p^ = 1000 N/m3

The natural frequencies of this shell-liquid System for n == 4 , 8 ; m = l ;

L/R = 2, 4 and différent material properties of the shell are given in Table 4. Four

cases were studied, when the shell is empty; when the fluid is inside or outside of the

shell; and when the shell is embedded in a fluid.
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TABLE 4: Frequency values (Hz) for simply-supported cylindrical sheiïs, empty

and filled with liquid.

Mat.

Isotropy

Orthotropy

L/R

4

2

(n,

m)

(4,1)

(8,1)

(4,1)

(8,1)

Théories

Présent Method

Ramachandran [28]

Lakis [12]*

Présent Method

[28]

[12]*

Présent Method

[28]

[12]*

Présent Method

[28]

[12]*

Empty

659

700

659

2187

2200

2177

240.1

238.8

327.3

324.1

Inside
and

outside
fluid
(full)

251.4

294.2

251.7

1064

944.1

1073

92.2

183.1

92.4

158.5

248.5

160.7

Inside
fluid

333.2

333.8

1361

1362

121.9

121.7

203.3

203.2

Outside
fluid

331.4

331.7

1361

1360

121.6

121.9-

200.2

203.9

* Thèse results are computed from a computer program developed by A. A.

Lakis & his co-workers and based on the theory presented in [12].
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6.2 Dynamic stability of closed cylmdrical shell contaimng flowing fluid

When the fluid is flowing, the shell will be subjected to centrifugal, Coriolis and

intertia forces. A simply-supported shell with the following characteristics:

L/R = 2, t/R = 0.01, F; ps = 0.128, n = 5 has been analysed, to see the influence of

the speed of the flow U^ on the frequencies (internai flow).

The dimensionless parameters of frequency and velocity are û = u>/iù and

U = U/U, where:

o>, = ^- (K/p,t)l/z , K = ^Et-
L2 ~ -s' ' 12(l-v2)

2
TT ^ /T/-;-i\l/2u\ - — (K/'p^y

CD and U are respectively the natural frequency and the velocity of the flowing fluid.

The results appear in Figure 5. In a previous analysis of this case by Weaver and

Unny [29], we observe that ttie natural frequencies decrease with flow velocity. At zéro

flow velocity, the two methods give the same results but, as the flow velocity increases the

two term Galerkin method used in référence [29] générâtes significantly différent results

from those of the présent hybrid finite élément method. Our results predict that the fu-st

mode frequency becomes négative imaginary at U = 3.1, indicating static divergence

instability in this mode. If the velocity is increased further, the first mode reappears and

coalesces at U = 3.95 with that of the second mode to produce coupled mode flutter.
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6.3 Free vibration of an open cylindrical shell partially or completely filled with

liquid

The articles in literature which deal with open shells interacting with a fluid are not

avaiîabîe. Here, we présent some results for an open cylindricaî shell partiaîly or

completely filled with liquid. The open cylindrical shell is constructed of steel, is filled

with water and is simply-supported at its four edges.

The pertinent data are as follows (see Figure l):

<{)T = 180°, R = 37.7 mm, t = 0.229 mm , L = 234 mm , v = 0.29, p, / p, = 0.128

a) In Figure 6, we see the behaviour of an open cylindrical shell empty and filled with

liquid as a function of the number of circumferential modes. For a given m, the

frequencies decrease to a minimum before they increase as the number of

circumferential waves (n) is increased. This behaviour was first observed for a

shell in vacuo by Arnold and Warburton [30] , who were able to explain it by a

considération of the strain energy associated with bending and stretching of the

référence surface. It may be concluded from theu- work, that at low n the bending

strain energy is low and the stretohing strain energy is high; while at the higher n,

the relative contributions from the two types of strain energy are reversée. The

interchange in the relative contributions of the bending and stretching strain energy

as the circumferencial wave number n is increased explains the decrease and

subsequent increase in the natural frequencies indicated in Figure 6. This

behaviour is also true for an open cylindrical shell partially or completely filled

with liquid.
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b) Figure 7 shows that when an open cylindrical shell is partially filled with liquid,

the curves show a rapid decrease of the natural frequencies as ai / a^ increases from

0 to 3/4 approximately, and then decreases only slightly for higher fractional

fillings.

e) To see the influence of the orientation of the shell, we présent in Figure 8, the

natural frequency as a function of the orientation of the shell and the free surface

of the liquid, the liquid level ai / a; = 0.46 (see Figure 7). Wè observe that the

natural frequencies ofthe System decrease between the two extrême positions. The

réduction is about 11 % for the two modes (m = l, n = 7) and (m = 2, n = 7).

We can use tliis type of analysis to stuuy tlie uynamic response of a case such as

a tanker on an inclined road when the free surface of the liquid oscillates.
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6.4 Dynamic stability of an open cylindrical shell containing flowing fluid

An open cylindrical shell containing flowing fluid has been analysed. The data for

die sheîl aie as follows: R/t = 165, L/R ^ 6.2, (RT - 180°, p^ / p, - 0.128, v = 0.29,

and the dimensionless parameters of frequency and velocity are û = o/u^ and

U = U/U^where

o, = ^- (K/p,t)l/2 , K =11 fv l - .L \ 1/2 T/- Et

12 (l-v2)

2
,1/2U» = — (K/p,t)1

u and U are respectively the natural frequency and the velocity of the flowing fluid.

We présent here an examination of the natural frequencies of the System as

functions of the flow veiocity, and thereby a détermination of the effect of flow on the

dynamic behaviour of the System.

Différent sets of results are présentée! to illustrate the method as well as the effect

ofvarious parameters, in particular the effect of internai or internai and external flow and

the effect of boundary conditions.
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a) Simply-supported - simply-supported shell

A s imply-supportée! open cylindrical shell containing flowing fluid (internai and

external) bas been analysed. Figure 9 shows the frequencies of the System as a function

of the flow velocity. As the velocity increases from zéro, the frequencies associated with

all modes decrease, they remain real (the System being conservative) , until at sufficiently

high velocities, they vanish, indicating the existence of buckling-type (divergence)

instability. At higher flow velocity the frequencies become purely imaginary.

We predict the first loss of stability at a flow velocity equal to U = 7.75 for the

mode (m = l, n = 4).

b) Free-Free Shell

The case of an open cylindrical shell having its straight edges free and the curved

edges freely simply-supported has been studied by the présent theory. Figure 10 shows

that natural frequencies associated with all modes decrease with increasing flow velocity

until at a value of U = 8.5 (m = l, n = 6) the System buckles.
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e) Clamped-Clamped Shell:

The calculations were performed for one open cylindrical shell having its straight

edge clamped and fhe curved edges freely simply-supported. Two sets of calculations were

made:

(i) In the first set of calculations, we study the influence of the flow velocity on the

dynamic stability of the open shell containing internai and external flow. We

observe in Figure 11 that the frequencies associated with all modes decrease with

increasing flow velocity, and similariy to the case of simply supported-simply

supportée! and free-free open shells, the frequencies - remain real until at a

sufficiently high velocities, they vanish, indicating the instability. For the

stipulated boundary conditions, we predict the first loss of instability at *

U = 8.25 for the mode (m = l, n = 4).
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(ii) In order to assess the effect of the external flow on the dynamic behaviour of the

System, a set of calculations was performed in which tue dynamic forces arisiug

from the external fluid were neglected. As may be seen from Figure 12, the rôle

of the external flow is to reduce the natural frequencies of the System and the

critical velocities at which the System becomes unstable. We observe that the

critical velocities are reduced from U = 23 (m = l, n = 6) and U = 17.75

m = 2, n = 7) for the System with internai flow to U = 16.5 (m = l, n = 6)

and U = 12.5 (m = 2, n = 7) forthe System with internai and external flow

respectively. The discrepancy is about 40%. We conclude that the rôle of

extemal flow is not negligible and tends to reduce the natural frequencies and the

critical velocities of the System.
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d) Comparaison between the boundary conditions:

In order to establish the effects of boundary conditions on the critical flow

velocities which render the System dynamically unstable, we turn to Figure 13. We

observe for the same mode and the same open shell with différent boundary conditions,

that the shell with free-fïee boundary conditions in its straight edges is the one which loses

dynamic stability first.

For the mode (m = l, n = 7) we have critical velocities as follows: Free-Free

shell (U = 15.5), simply supportée - simply supportée shell (U = 24.4) and clamped-

clamped shell (U = 29). For the mode (m = 2, n = 7), we have respectively U = 8.5 ;

11,5 and 12.5.
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e) Clamped-Free Shell:

For this set of boundary conditions, the fluid flow renders the System non-

conservative. The shell frequency becomes complex in contrast that of a System which is

supported, free or clamped at both straight edges, when real frequencies are generated

until the System buckles.

The évolution of the eigenfrequencies with the increasing dimensionless flow

velocity is shows in the Argand diagram (Figure 14) [Note that Re (u) is the oscillations

frequency, while Im (u) is related to the damping], the dimensionless flow velocity U

being the parameter. For U ^ 0 the frequencies are complex. It is noted that the effect

of flow is to damp the System in all modes, the frequencies having positive imaginary

parts.
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7. CONCLUSIONS

The theory developed in this paper is used to obtain the effects of inertia, Coriolis

and centrifugal forces of a moving fluid on the vibration characteristics of anisotropic open

and closed cylindrical shells.

A cylindrical panel finite élément was developed, making possible the derivation

of the displacement functions from the équations of motion of the shell. Mass and stiffness

of each élément were obtained by exact analytical intégration.

The fluid pressure was derived from the velocity potential and from the linear

impermeability and dynamic conditions applied to the shell-fluid interface. The finite

élément method was used to obtain the mass, stiffness and damping of fluid élément. The

results obtained by this method were compared with other investigations and satisfactory

agreement was obtaiaed. This method combines the advantages of finite élément analysis

which deals with complex shells, and the précision of formulation which the use of

displacement functions derived from shell and fluid théories contributes.

The method enables us to predict the vibrationary characteristics of open cylindrical

shells partially or completely filled with liquid and the dynamic stability of open shells

subjected to flowing fluid.
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The next step in this line of work should be the study of the non-linear dynamic

analysis of open cylindrical shells containing a flowing fluid.
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NOMTCNFTATTTRR

TJSTOFSYMRnT.S

A, B, C Constants in équations defining U, V, W

respectively

âi/âî Liquid level ratio for an open cylindrical shell

e Velocity of sound in fluid

di/d Liquid level ratio for closed cylindrical shell

E Young's modulus

e exponential

i i2 = -l

J^j Bessel function of the first kind and of order irjj

K Bending stiffness, Et3/12(l - v2)

L Length of the shell

m Axial mode number

n Circumferential mode number

P,, Latéral pressure exerted on the shell, u = i for

inside pressure and u = o for outside pressure

Py Terms of elasticity matrix (i= 1,...,6 ; j= l, ..., 6)

R Mean radius of the shell

Rj Solution of Bessel équation (25)
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Sj Defined by équation (22)

t Thickness of the shell

U, V, W Axial, tangential and radiai displacements

U^ Velocity of the liquid

U^ Defined by (n2/L) (K/p,t)l/2

U Nondimensional velocity, Uxu/Ug

V^, Vg, V, Axial, tangential and radiai fluid velocity (15)

x Axial coordinate

Y^j Bessel function of the second kind and of order iîij

Zyj Defined by équation (27) for u = i and équation (28)

for u = o

ri; Complex roots of the characteristic équation

ex> €6' exe Déformation of référence surface

Kx' Ks' Kxe Changes in curvature and torsion of référence

surface

6 Circumferential coordinate

v Poisson's ratio

(|> Angle for one finite élément

^ Angle for the whole open shell

$ Velocity potential

Ps Density of the shell material
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pf Density of fluid, f = i for inside fluid and f = o for

outside fluid

où Natural frequency (rad/s)

uo Defined by (îi'/L2) (K/p,t)l/2

û Nondimensional frequency, u/uo

TJST 0F MATRTFES

[A] Defined by équation (8)

[B] Defined by équation (10)

[Cf] Damping matrix for a fluid finite élément

[Cf] Damping matrix for the whole fluid

{C} Vector of arbitrary constants

[D j Defined by équation (34)

[Gj Defined by équation (35)

[kj Stiffness matrix for a fluid finite lement

[kj Stiffness matrix for a shell finite élément

[Kf] Stiffness matrix for the whole fluid

[KJ Stiffness matrix for the whole shell

[mj Mass matrix for a fluid finite élément

[mj Mass matrix for a shell finite élément

[Mf] Mass matrîx for the whole fluid
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[MJ

[N]

[p]

[Q]

[R]

[SJ

[TJ

{8J

{^}

{"}

Mass matrix for the whole shell

Displacement function defined by équation (9)

Elasticity matrix

Defined by équation (10)

Defined by équation (6)

Defined by équation (33)

Defined by équation (3)

Degree of freedom at node i

Déformation vector

Stress vector
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