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SURVEY OF CYLINDRICAL SHELL
RESPONSE AND WALL-PRESSURE
FLUCTUATIONS

by

Aouni A. Lakis and Samir S. Mohamed
Department of Mechanical Engineering
Ecole Polytechnique
Montreal, Que., Canada

SUMMARY

Thin-walled cylindrical shell response is reviewed in this report
for various input excitations, with a special consideration to the res-
ponse of cylindrical shells to subsonic turbulent boundary-tlayer fluc-

tuations.

An analysis for predicting the cylindrical shell response to an

arbitrary pressure field is derived.

In addition, the review of different investigations in determining

the statistical properties of the wall-pressure fluctuations is performed.

Finally, a discussion of the shell response and comparison between

various wall-pressure fluctuations investigations are also conducted.



1. INTRODUCTION

Most cylindrical shells are utilized in containing or cenveying
fluids, and this, to a certain extent, determines the classes of pro-
blems in which interest is focused. Thus, in addition to the deter-
mination of the vibration characteristics of the shells in vacuo, it
is also of considerable pratical interest to predict the dynamical
characteristics of shells containing either stationary or flowing

fluid.

There are many ways in which the presence of the fluid may
influence the dynamics of the shell. The free vibration charac-
teristics of shells containing stationary gases at low pressure
differ little from those in vacuo. In the case of a shell filled
with compressible fluid, the compressibility of the fluid affects
the effective stiffness of the system, in addition to the effects
of straining of the shell by pressurization. If the density of the
enclosed fluid is relatively high, as is the case with liquids,
then the fluid exerts considerable inertial loading on the shell

and results in diminishing the resonant frequencies significantly.

In the case of shells partially filled with liquid, on the other
hand, free surface motions may be coupled to shell motions. This is
of particular interest in liquid - propelled rockets where Large os-

cillations may develop - being usuallt referred to as "sloshing" -



in cases of proximity or coincidence of the natural frequencies of the
free~surface motion and that of the shell. Also, there is a possibility
of nonlinear coupling between the free-surface modes and the shell mo-
des, resulting in subharmonic excitation of the former while the shell
itself is oscillating at high frequencies. This phonemenon, however,

is incompletely understood !

When the fluid is flowing, the shell is subjected to centrifugal
forces and Coriolis - type forces. .The former have the effects of
diminishing the natural frequencies of the system, while the latter
have a damping effects on vibration in cases where one end of the shell
is free. The magnitude of these effects depends on the dimensionless
flow velocity U}. Unless we are dealing with rubber shells, very
heavy fluids or very high velocities, the values of U} will be small
and the effects of these forces will be correspondingly small {12561]w
Thus for a steel cylindrical shell with L/r = 26 and t/r = 0.023
conveying air flow, U} = 0.20 corresponds to UX = 1000 m/s. For this
magnitude of flow velocity, the natural

found to diminish by only 3% as a result of the flow.

Similarly, in considering the response of cylindrical shells, con-
siderable interest exists in the case where the excitation is transmitted
through, or arises from, the contained fluid. This could take the form
of pressure waves transmitted through the fluid; or if the fluid is
flowing, the excitation could arise from gross pressure pertubations

due to disturbances in the flow, or from boundary-layer pertubations.



Vibration caused by these pressure fluctuations may, in certain cir-

cumstances, cause fatigue failures of the structures involved.

The response of thin-walled cylindrical shells subjected to
boundary-layer fluctuations is studied by several investigators
applying various techniques such as "Green Function" with Cottis[4}9
"Dira Delta Function" with Nasser [14] , "Joint-Acceptance Method"
with Clinch [6] » "Timoshenko Theory" with Magral []3 » Transfer
Function 22} , Beam theory [16] R Ray1eﬁgh method [15] s Energy
method [19 , Numerical Simulation and Fakker-Planch equations [é} R
Forcing Function [8]and finally a hybrid classical-finite element
method by Lakis and Paidoussis [12]which is proved, the authors

believe, to be the most versatile.

Lakis and Paidoussis method [12] will be used by the authors to
predict the response of thin circular cylindrical shells either uniform
or axially non-uniform and subjected to subsonic turbulent two-phase
flow. It is a finite element theory, using cylindrical finite elements,
but the displacement functions are determined by using classical shell
theory, [12,33] . The random-pressure forces are lumped at the nodes
of the finite elements. Finally the cross-correlation spectral density
and the mean square value of the displacements of the shells are obtained
for an arbitrary pressure field and for a boundary-layer pressure field
in terms of the circumferential and lateral correlation functions of
the wall-pressure fluctuations. These statistical properties are deter-
mined experimentally; therefore an experimental air-water loop facility

is designed to suit our program purpose and permitting us of measuring



the space-time cross correlation functions and the r.m.s. response of

the shell's wall.

The work presented in this report is an attempt to produce a review
of thin cylindrical shells' response to an internal pressure, acoustic
excitation, random pressure, internal and/or external flow. In addition
the review of the measurements of the statistical properties of the
wall-pressure fluctuations due to turbulent boundary-layer will be con-
sidered in details. Moreover, the role of surface wall-pressure fluc-
tuations evaluations on wind panels, bodies of revolution and cylindri-

cal shells with different mediums is alos discussed.

2. CYLINDRICAL SHELL RESPONSE

The response of shells to internal pressure, acoustic, random and
turbulen boundary-layer excitations is reviewed in sections 2.1 to 2.4,
followed by an outline, in section 2.5, of the hybrid classical finite
element theory used by the authors to predict the shell response to

turbulent two-phase flow excitation.

2.1 Shells response to internal pressure

The study of the dynamic response of a pressurized orthotropic
cylindrical membrane has been presented by Dym [15] in both free and
forced vibrations configurations. The effects of internal pressuri-

zation, inplane inertia and vibrations in the elastic constants are



also examined. Furthermore, Dym determined the effects of variations of
the elastic constants on the free and forced motions of cylindrical mem-
brane shells. His equations are based on the nonlinear shell theory,
modified to delete the bending terms and to include orthotropic elastic
constants. His solutions are in terms of the normal modes of free
vibrations which are taken to be the Rayleigh type. Dym showed that
the shell response is highly dependent on the internal pressure and

on the relative magnitude of the applied load with respect to the in-
ternal preSsure. In fact this work demonstrated clearly that the shell
behavior is very significantly affected by the values of the various
elastic constants and the ratio of the circumferential stiffness to

the axial stiffness was found to be a particularly important parameter.
Less importance has been attached to the relative magnitude of the in-
plane shear modulus. Finally he illustrated that the simplification

of the analysis by the deletion of the inplane inertia terms induces

little difference to the results of the forced vibration analysis.

&

various pressure vessels were conducted by Hamada [18}; the different
pressure vessels were changed according to the intensity of the inter-
nal pressure, and the fundemental equations were established for the

statistical bending and vibration problems of the general axisymmetric

loading and then subjected to some additional non-axisymmetric Toading.



Hamada compared his numerical results with other experimental data
and also compared the numerical results using Timoshenko's equations
with those of his theory. The former comparison gave good agreement
while the later showed slightly different results from Timoshenko's
equations. However Hamada proved that his numerical method may solve
comparatively easily the free vibration problems of the general axi-

symmetric shell subjected to pressure.

Concerning the principle of minimum total potential energy, applied
by Vafakos [19], to obtain stresses and displacements for clamped, short
oval cylindrical shells under hydrostatic pressure, the classical shell
theory was employed in which buckling effects are not considered. Va-
fakos assumed a Fourier series for the def1eétions in the closed civr-
cumferential direction so that the partial differential equations of

equilibrium are replaced by a set of ordinary differential equations.

Vafakos compared the energy solution with a simplified field appro-
ximation which can be considered an equivalent circular cylinder solu-
tion. Then he presented graphs of the significant stresses and displa-
cements for the oval cylinders having major to minor axis ratios of
1.10, 1.30 and 1.50. Vafakos concluded that the maximum stresses and
displacements increase significantly as the major to minor axis ratio

increased.

An early investigation by Fung [20] studying the frequency spectra

and vibration modes of thin-walled circular cylindrical shells subjected



to internal pressure remains one of the useful works in the field.
He showed that for very thin circular cylinders, the internal pres-
sure has a significant effect on the natural vibration characteris-
tics, particularly for cylinders having small length to diameter
ratio and the mode associated with the lowest frequency is in gene-
ral not the simplest mode. The exact number of circumferential mo-
des associatedwith the lowest frequency depends upon the internal
pressure and if this number is large, it decreases rapidly with

the increasing pressure. At low pressure the fundamental frequency
increases rapidly with increasing the internal pressure. Fung
found out that at higher values of internal pressure the frequency
increases with the increasing number of circumferential modes and

the lowest frequency rises slowly with the internal pressure.

Experimental results on the frequency spectra, vibration modes
and structural damping conducted by Fung for a series of thin
cylindrical shells, showed agreement with the features predicted by

Reissner's

2.2 Shells response to acoustic excitation

Recently, the response of cylindrical shells due to random acoustic
pressure input has been investigated by Hwang [17}. His analytical pro-
cedure was 1imited to a time-wise random pressure with defined spatial
distribution. 1In general formulation, the pressure input may be
both time-wise and space-wise random. Hwang's analysis applied the

modal approach to define the shell response and also he considered the



interaction between the shell, the atmosphere and the shell structural
damping as dispersion. He showed that in addition to the natural modes
obtained by assuming a frictionless shell operating in a vacum, the
impedance of the air column inside the cylindrical shell plays a
significant role in determining the random acoustic response of the
shell. He also described a formulation of the mean pressure spectrum
inside the shell enclosure due to reverberation. The spectral data
based on the presented analysis are generated for a typical cylindrical

shells under random acoustic excitation.

Another investigation has been conducted on the response and
equivalent force spectra by Kana [21] for random acoustic excitation
of a cylindrical shells within a narrow band frequency of relative
Tow-modal density. This approach involves the determination of theori-
tical structural admittances or transfer functions between response
at some appropriate points and harmonic excitation at a single point.
These functions can be expressed as series expansions of the normal

o~ P A " Ny
inoaes Or tne system.

by means of generalized harmonic analysi
obtained expressions relating the statistical properties of the res-
ponse to the transfer functions, and to statistical properties of the
excitations-ever the aggregate of the points in the area over which

a distributed Toad acts. In general Kana found that a purely theoritical
prediction of the response based on linear random process theory is
severely limited because of the inability of currently available ex-
pressions for the transfer functions to account for various deviations
which result principally from the imperfection and eccentricities in the

cylinder.



However, good agreement is achieved between his measured response
and that calculated with measured transfer functions. He further in-
dicated that a rather coarse discrete representation of a continuous

by distributed excitation is possible.

2.3 Shells response to random excitation

The response of cylindrical shells due to random pressure exci-
tation is derived theoritically by several investigators with dif-

ferent techniques.

Recently, Thompson [16] applied an exact analysis using three
dimentional linear elasticity theory. It is developed for linear
elastic analysis of the response of pin-ended rod and tubes in a
stationary fluid medium, to random.stationary homogeneous suvrface
pressure fluctuation. He presented a Timited number of numerical
results, comparing the results of simple beam theory with the full
elastic analysis with respect to the prediction of response spectra
and mean square valves of radial and tangential surface displacement

and differential axial surface strains applying the local spectral

density in either band-limited white noise or Gaussian.

Similarly Magrab []3} studied the response due to forced harmonic

and random excitation of an elastic cylindrical shell sourrounded by
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an inviscid fluid and concentrically contained by another thin elastic
shell immersed in another inviscid fluid of finite extent. Magrab
assumed that the shells motion can be described by the Timoshenko

type shell theory which includes the effects of bending, transverse
shear and rotatory inertia, the shell's motions are independent of

the axial coordinates and the fluids motions are described by the
classical curve equations. He considered two types of time varying
functions for the applied forces, harmonic and stationary random functions.

The field pressure is determined in the near and outer fluid.

On the other hand, Magrab derived expressions for the acoustic
pressure at the outer surface of the inner shell; and the inner and
outer surfaces of the outer shell along with the displacements at
these surfaces. He also presented numerical results for the near

and for field acoustic pressure.

A coupling between the Green function technique and Reissner
shallow shell equation were applied by Cottis and Jasonides 4]
to predict the response of a finite thin cylindrical shell to random
pressure field. They applied the Reissner shallow shell equations
of motions with the aid of the Green function solution assuming
an homogeneous, isotropic and uniform wali thickness with two
important approximations which are the independent displacement

of the radial coordinates and the neglected Tongitudinal inertia

terms.
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An important result of Cottis analysis is the reduction of
the response integral representation to a single integral over

the unit circle in the complex plane.

Using assumed correlation functions for the pressure field.,
Cottis and Jasonides derived a general expression for the space-
time correlation of the response; but they do not proceed to
evaluate the RMS and they do not undertake numerical solution

of the problem.

Similar application of the Green function has been conducted
by Cottis [22] for studying the general problem of the free and
forced vibrations of an orthotropic, finite shell within the 1imi-

tations of an approximate small deflection theory.

An application of the numerical simulation and Fokker-Planck
equations is presented by Nash [9] , a large amplitude lateral
vibrations of thin, elastic, shallow shells subjected to random
excitation applied normal to the curves surface are examined with
severa} approximate techniques. The excitation is assumed to be
stationary, ergodic and Gaussian white noise. Nash applied the
numerical simulation of Rung and Kutta method and also Fokker-Planck
equations to determine the solution for the equations of motions
of the shallow shells, with various boundary conditions such as
simply-supported at both ends and clamped-clamped. He could obtain
a response of those shells in both cases of shallow and spherical
shells. He proved that the applied techniques are capable of pre-

dicting comparable estimates of the response as represented by the

central deflection of the shell.
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A formal solution of the random responses of a thin-cylindrical
shell has been performed by Wang [?SJ for simply supported thin shell
subjected to non-axially symmetric concentrated stationary radial

loading.

On the other hand, the Dirac delta technique is examined by
Nasser [14] : a formulation of the second-order correlation func-
tion of the displacement field of a Tinearly elastic thin shell
subjected to a random lateral pressure field is performed by him
using a simply supported, shallow circular cylinder. Nasser
derived an expression for the shell response using the Dir@c delta
function and Fourier transform to obtain the auto-correlation
and the spectral density of the response and pressure field, res-
pectively. He concluded that when the length of the shell becomes
much larger than its radius, the length wise variation of the second
order correlation function of the displacement field approachs
a delta function while this field remains highly correlated in the

circumferential direction.

2.4  Shells response to turbulent boundary-layer excitation

Prediction of the thin-walled cylindrical shell response
to subsonic, turbulent boundary-layer, may be classified into

i) purely theoritical-numerical research work such as Lakis [12,24]



and Corcos [8} and 1i) mainly experimental one with some analytical
derivation ;s Clinch [6,7] , Weyers [?5} and Khosrovani {?6} . Each
of the mentioned investigators has different theoretical methods.
However, all the experimental techniques are based on the same ex-

perimental Toop facility.

2.4.1 Theoritical investigations

Corcos [8} studied a random noise generated on the fuselage skin
of aircrafts by a turbulent boundary-layer. He applied through his
analysis the forcing function technique of several variables to de-
termine the response of linear systems to the random excitation,
assuming that the boundary-layer is locally homogeneous, the fuselage
skin is flat unlined and free from axijal loads, and the cabin air
is bounded only by vibrating plates so that only the outgoing waves

are considered.

Corcos results showed that the sound pressure intensity is
proportional to the square of the free stream density, the square
of cabin air density and inversally propovtional to the first power
of the damping constant and to the second power of the plate density
(cf. {8] p. 24). Cne of the main features of his results was that
the relevant quantities such as noise intensity are dependently non
dimensicnal numbers through which the boundary-layer and plate

properties enter as ratios.

13
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Recently a general theory in the field of shells response has
been developed by Lakis and Paidoussis [1é}g to predict the r.m.s.
response of a non-uniform thin cylindrical shell subjected to an
arbitrary random pressure field. The theory is then specialized
to the case where the pressure field originates from the turbuient
boundary-layer of a subsonic internal flow. The basic formulation
is in terms of a finite-element theory but the displacement functions
are derived from Sanders'theory for cylindrical shells. The pressure
forces are lumped at the nodes of the finite elements. The cross-
correlation spectral density and the mean square value of the dis-
placements of the shell are obtained for an arbitrary pressure field

and for a boundary-layer pressure field.

More recently, this theory was extented 1) to cases where the
shells are anisotropic {%4} and especially for the case of shells
consisting of an arbitrary number of orthotropic layers; and 1)
to take into account the inertia, coriolis and centrifugal Torces

of the moving fluid 5613

2.4.2 Experimental and theoritical investigations

One of the earliest investigation concerning the noise produced
by turbulent air flow adjacent to a flexible wall has been conducted
by Weyers [?5]. He measured the spectrum and intensity of the
pressure field outside thin-walled cylinders containing fully deve-

loped turbulent pipe flow. In order to simplify the problem Weyers
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assumed in his analysis that the motion of the surface of the cylin-
drical shell is described by a Tinear motion and the generation of
random pressure field in the stationary medium is a Tinear radiation

problem.

Weyers interpreted the measured spectra in relation to the
elastic pfoperties of the cylinders and the character of the tur-
bulent fluctuations inside the flow. He found that the power spectrum
of the pressure fluctuations in the stationary medium outside the
vibrating cylinder is a function of the power spectrum of the wall
pressure and the impedance of the thin wall cylinder. Also the na-
tural frequencies of the cylinders could be identified and simila-
rity parameters for the spectra were established. He also investi-
gated the effect of cylindrical shell wall thickness on the spectrum

and intensity 6f the pressure fluctuations.

Weyers measurements, showed that the intensity of the external
sound pressure field are scaled with the fifth power of the velocity
at center of the pipe and also the intensity of the pressure fluc-
tuations at the wall may be scaled with the fourth power of the velocity
Hence, Weyers concluded that the ratio of the r.m.s. of wall pres-
sure to the dynamic pressure is to be independent of the mach

number and equal to a constant (0.0078).



A recent research work has been investigated by Khosrovani et
al. [26] . They studied, experimentally and theoretically, the vi-
bration of thin cylindrical duct due to internal random pressure
field. Experimentally, the internal pressure cross-covariance
coefficients were measured within a duct containing both a fully
developed turbulent air flow and a sound field caused by a remote
blower. Theoretically, Khosrovani assumed that turbulente con-
vection is neglected, as being too high a frequency to influence
the resulting significantly. Sound propagation is neglected and
the pressure spectral density is presumed to be white noise.
Applying these assumptions, the duct displacement response was
derived by integration of the forcing and Green functions. This

investigation is supported by a computer program.

In spite of his simplifications, Khosrovani measured displa-

cement covariances showed a good agreement with those calculated.

5

The predicted displacement spectral density is varying as w“"‘j with

Ao Ao <

white noise excitation. He also observed that the dependence 1§

\A_4'8 £

n' 1

<

v the no-white neise forcing function with a frequency
-2

dependence near w ~. However, he showed that the coefficients

for spatial decay used in the forcing function model did not

appear to depend on the flow speed.

Finally, Clinch { ] redicted experimentally and theoretically

oo

16

the vibration induced in thin-walied cylindrical pipes by the passage



of internal turbulent water flow. He derived a theoretical analysis

17

based on the application of random vibration theory. A simply suppor-

ted thin cylindrical shell was considered using Powells {é7} Joint-
acceptance method, essentially by passing the need to introduce spe-
cific equations of motion. In his analysis, he assumed that the
areas over which the wall pressure fluctuations correlated are
small compared with pipe dimensions and more importantly, he con-
sidered the response only in high modes of the shell (where reso-
nances are so close to one another that a continuous curve of
response v.s. frequency may be assumed). With these assumptions
and some others which are also made by Cottis (4] , Clinch derived
an expression for the root mean square of the ;a11 displacement
essentially as a function of frequency band width. Then he com-
lata which

15 own ex

perimental
were conducted up to Reynold's numbers of 2 X 1060 The average
r.m.s. wall displacement plotted against frequency displays remar-
kably good agreement between theory and experiments (in the range
of 100 - 1,000 Hz). It should be also pointed out that Clinch
obtained experimentally some very useful correlation functions

for the pressure field.

The most severe limitation of Clinch's theory is that is

applies only for high mode numbers and frequencies (100 - 1,000 Hz).



It has been shown in Ref. [12] that the response at the high fre-
quency range (100 - 1,000 Hz) is but a small part of the total.
Thus, at the flow velocity of 248 in/sec the total mean square

response is 3.2 X 1078 in 2

~11

whereas the high frequency response
is 8 X 10 inz, approximately, giving a ration of 20:1 for the
corresponding r.m.s. values. The difference at higher flow velo-

cities is even more pronounced. (Fig. 1).

2.5 Shells response to turbulent two-phase flow excitation

Lakis and Paidoussis theory {15} are éonsidered in this
development for the prediction._of the shell response to tur-
bulent two-phase flow. This theory predicts the shell's res-
ponse with a minimum of limitations and also capable of analy-
sing geometrically axially symmetric Tong or short, thin cylin-
drical shells which are not necessarily uniform and subject to
any set of kinematic boundary condition including supports
other than the two axial extremities of the shell. Only an
outline of the theory is given here; for a detailed account the

reader is referred to references [12,28933916} .

The equations of motion of the shell subjected to arbi-

trary load is given by
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- b6t J@ - Bl b o
where {y is a displacement vector, M] and K] are, respectively,
the mass and the stiffness matrices of the shell in vacuo, and {M%} s
[Cf] and [K%] , represent the inertia, coriolis and centrifugal forces

of the flowing fluid; \QJ is the damping matrix of the system and

the external forces {F} represent the intE{na1 random pressure field.

2.5.1 Determination of {M] and [K]

The theory used to determine [Mﬂ and [K] is a hybrid of the finite
element and classical shell theories. The finite element chosen is a
cylindrical frustum (Fig. 2}, and the displacement functions are deter-

mined by Sanders' theory for thin cylindrical shells {?, BQjﬁ

circumferential and radial

displacements of the middie surface of the shell by

U (x, ¢) w lcos ng 0 0 u (X)B (2)
¥ . ;o
W (x, ¢)§ =20 cos n¢ 0 é }Wn ()} >
Vi, 0) 700 0 Sinn ¢ vy (x)%
where Ups Wy and v, are the amplitudes of displacements associated with
the n Eh-circumferentia‘i wave number. Then for a specific n, the nodal

displacement at node "i" (Fig. 2) is defined by
3 T
8,

i

)

= ) fdxy. B 3
%umi’ i (dwn,dx)1% i (3)
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For a finite element with nodes i and j, the nodal displacement
T
vector is J&.. &, .
1 J
By substituting expressions (2) into Sanders' equations of motion

and assuming

u, (x) = Ae /T, v, (x) = Be X' and W (x) = Ce Ax/r (4)

and proceeding according to the finite element technique, the displa-
cement functions were determined velating the continuum displacement

to the nodal displacements.

Then the mass and stiffness matrices for one finite element [
and [k], respectively, were obtained analytically by carrying out the
necessary matrix operations and integrations. After Tengthy manipu-
Tations, expressions for the general terms of {kj and imj Were obe

tained.

: t r A
ces for the whole shell iMj and {KJ , respectively, may be constructed

With [m] and [ ] determined the global mass and stiffness matri-
shel
by superposition in the novmal manner. Each of these (square) matrices
is of order 4 (N + 1) where N is the total number of finite elements.
The interested reader is referred to Lakis and Paidoussis EZ8, 33} for

details.
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2.5.2 lnertia, [Mf} » Coriolis, [Cf-i and Centrifugal, {Kf:i » forces

of the ioving fluid

When the fluid is flowing, the shell is subjected to inertia for-
ces, centrifugal forces and cCoriolis=type forces coupled with the e-
lastic deformation of its walls. It is assumed that the flow is poten-
tial and the fluid compressible. The conditions of impermeability of
the surface of the shell and the dynamic condition of this surface which
is given by Bernouilli's equation for distrubed motion, permit us to
obtain the pressures of the fluid on the shell's walls. By carrying
out the necessary matrix operatﬁons of the finite element method and
integrating over x and ¢ we obtain the inertia, centrifugal and coriolis

forces of the moving fluid as listed in reference [ﬁij,

The inertial Toading exerted by the fluid on the shell results
in diminishing the resonant freguency significantly. The centrifugal
forces have also the effect of decreasing the natural frequencies of
the system, while the coriolis-type pressure forces have a damping
effect on vibrations 1in cases where one end of the shell is free.
Unless we are dealing with very flexible shells, very heavy fluids,
or very high velocities, the effects of the centrifugal and coriolis-

type forces are relatively smali [?1}.

2.5.3 Random pressure field induced by internal flow

{

In equation (1), the external forces %F} reprecent the turbulent



random pressure fluctuations at the shell's walls resulting from the
passage of fully-developed turbulent flow. The dispiacements are
assumed small enough for the resultant forces to be normal to the
shell's surface. It is also assumed that the pressure field is spa-
tially continuous and that it has the properties of a weakly sta-
tionary, ergodic process. We further assume that the pressure drop

in the length of the shell is sufficiently small for the mean pressure
to be considered constant over the Tength of the shell. Finally,

the continuous random preséuwe field of the deformable body is appro-

ximated by a finite set of discrete forces and moments acting at the

nodal points [Sé],

As previously mentioned, the shell is divided into N finite ele-
ments, each of which is a cylindrical frustum. The position of the
N + 1 nodal points may be chosen arbitrary (Fig. 2). Any pressure
field is considered to be acting on an area Se surrounding the node
e of coordinate Ze as shown in Figure 3 (a). We define the pressure
distribution acting over this area Se by two mutually perpendicular
forces per unit Tength. We mey write the actual resultant force per
unit Tength,

F(x, ¢, t) = jg;fRn (x, t). cos no %-jéZfC“ (x5 t). Sin no
where fR and fc are at a distance X, from the origin of the shell

n n
as shown in Figure 3 {(a).
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These two forces acting at point 'A' are transformed to two
forces and one moment, M , acting at the node, e, as shown in
Figure 3 (b). The external force vector associated with the n th
circumferential wave number at a typical node, e, can now by

written in the following form:
Z" Z,’!

F( ]{ f x , t) dx . x. -1, x , t) dx , (6)
Z" n

J
e
vjﬂf x , t) dx
N }

i
where fR and fC are expressed in terms of the instantaneous pres-

n n 5
sure on the surface, p (x. ¢, t),t]é]a

To obtain the mean square response, we proceed by first consi-
dering the free vibration of the conservative system and determining

the natural frequencies o and the eigenvectros [@1 s i =1, 2, ooy
- [

e

(N+ 1) - J, where J is the number of kinematic boundaries. We

next form the modal matrix

r1.r1r.. i
L@J = L@l, Ops woes O (1) - J} 9

—
~J
LN—

and define

i [ )

The equations of motion are decoupled by substituting equation
(8) into (2) and assuming the damping matrix as linearly related to
the mass and stiffness matrices. Finally, the cross-correlation

spectral density and the mean square values of the displacements of



the shell are expressed in terms of correlation functions of the

pressure field; see equaﬁons (13) to (19) of reference {12} :

4(N+1
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k

!

-+

|
o (9)

°Xv> dxjdxv +
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where wfr and wfc are the cross-correlation spectral densities of the

forces fr and fc’ respectively; qu

matrix [@] R M} is the element of the generalized mass matrix, Q. the

r th natural frequency and H, () is the magn1f1cat1on factor of the

is the (qr)th element of the modal

system defined by equation (16) of reference [jZJ

The displacement power spectral density is of course real quan-
tity. The pressure cross-correlation spectral density is a complex
quantity; however its imaginary part vanishes as a result of the dou-
ble area integration. Thus, the Re {ﬁ%]'s are given as follows (see
equations 20 to 25 of reference [}é}):

2wem

Re [wfr (€, ﬂ)] = rz[[WpQ (£,0,0) Yoo (0,n,0) p (). {10)

cos ¢ cos (¢ +n) do. d (¢ + n)s
2w

re [, (2. ]-rff g (6:0,0) ¥ o (0m.0) B3 (8). (11)

and

Py (xs05t) Py (x + £5 0+, 1) =¥ 0 (£,0,0) ¥ (0:n,0) pg (t),

where r is the radius of the shell; the quantities WPQ (¢£,0,0) and
(0,n.0) are

-3

pQ espectively, the axial and civcumferential correlation

functions of the pressure field; pé (t) is the mean square of the pressure




fluctuations; € = Ixi - X, l, n= r (q;j - ¢j) Q is the center fre-

quency and P (xs9,t) p. (X + &, ¢ + n, t) is the cross-correlation

q
function.

Equations (9), (10) and (11) together express the response of

the shell, ya (xq, ¢q’ t), in terms of the pertinent correlations -

¥ (£, 0, 0), ¥ (0, n,0) and pé (t)-of an arbitrary homogeneous ran-

dom pressure field. This r.m.s. response is calculated for each
circumferential wavenumber, n, and the total response may then be

found by summing over n.

Equation (9) gives the r.m.s. response in terms of quite gene-
ral correlation functions which are to be determined experimentally
for each particular case of flow. We are interested in a random
pressure field induced by a turbulent two-phase f1ow; SO an experi-
mental loop facility is designed to measure the correlation functions

of such flow.

.
In the case of subsonic boundar

U

M 3

y-layer pressur ua

the circumferential and lateral correlation functions have been
examined experimentally by Bakewell et al. 144] and Clinch [ ]
Bakewell measured and derived expressions for the axial and circum-
ferential correlation functions in experiments with air flowing

in cylindrical pipe. Clinch measurements in wéter proved that these
expressions are approximately the same for different fluids at the
same Strouhal number. Upon using the experimentally based relations

of Bakewell et al. the r.m.s. response is obtained at each node of



27

the shell [1%]. The aim of the next chapter is to review the diffe-
rent experimental investigations in the field of wall-pressure fluc-

tuations.

3.  THE FLUCTUATING WALL-PRESSURE FIELD OF A TURBULENT BOUNDARY-
LAYER

Wall-pressure fluctuations produced by a turbulent boundary-
layer have been the subject of many investigators. Early experimen-
tal work was, on the whole confined to measurements of the root mean
square and frequency spectra of the wall-pressure, and in many cases
the instrumentation available did not give an adequate coverage of
the band-width of the fluctuations. Moreover recently the development
of miniature, piezoelectric pressure transducers and the extensive
use of correlation techniques has led to a much more detailed exami-
nation of the wall-pressure field and its relation to turbulent ve-

locity fluctuations in the boundary-layer.

Our review will cover the experimental investigations of the
wall-pressure fluctuations of panels, body of revolution and cylin-
drical shells. The transducers size, shape and their orientation

are also investigated.

The statistical properties of wall-pressure fluctuations are

analyzed in references {12,34,39,54 and 60] . The instrumentations

used for recording and analysing the statistical properties
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of pressure fluctuations are basically the same for several investi-
gations (Fig. 4): Each pair of transducers is connected to pream-
plifier and to analog correlator through band pass filter, variable
gain amplifier, octave band analyzer, variable time delay, d.c.
millivoltmeter and finally to cross-correlation data output. In
addition, through the octave band analyzer, the signal is connected

to true r.m.s. voltmeter and to the power spectrum data output.

3.1 Wall-pressure fluctuations at panel

One of the earliest investigation has been done by Tack et al.
[3%] studying the correlation properties of turbulent wall-pressure
fluctuations. Experimentally, he used a test section of rectangu-
lar cross section with inside dimensions 8 by 2.9 cm and 76.2 cm
Tong. Its sides are constructed of 1/2 inch plexiglass, applying
flexible microphone porbe tube to permit two condenser microphones
to measure the instantaneous pressure fluctuations with the assump-
tion that the pressure field is adequately described by é random
process which is stationary and homogeneous and the correlation

decays in time as it is convected in the flow direction.

Tack found that both mean eddy size and mean eddy lifetime
determined by averaging over broad frequency bands do not contain
sufficient information to describe accurately the high frequency and the

turbulent power spectrum. However by measuring eddy sizes and lifetime
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over narrow bands frequencies, it appears possible to construct mathe-
matically models of the turbulent pressure correlation which are sucess-
ful in predicting the turbulent power spectrum over the frequency band
of interest. Tack et al. measured the longitudinal spatial pressure
correlations, Fig. 5a, where time delay is zero and the longitudinal
space-time pressure correlations, Fig. 5b, for critical time delay
between signals at flow speed of 40 m/sec and over a narrow band cen-
tered at a frequency of 450Hz. They further assumed suitable models

for the spatial pressure correlations:

p (x,t) p (x-£,t) = p* (x,t) [sin (Kia)/Klg] , (12)

and for the space-time correlation function:

p (x,t) p (x-E, t-) = p* (x,t) [%in Kl(E-UCc)/Kl(E—UCc)] e“1C1/@ia (13)

where £ = Ax, K1 is constant over a particular frequency band, Uc is
the convection velocity, ¢ is time delay and the quantity ei is the

time rate of decay of coherence.

The two parameters Kl and @i are functions of both velocity and
frequency; it is possible to predict their values from directly measu-
rable properties of the turbulent boundary-layer such as boundary-layer
thicknesses, free stream velocity, temperature, fluid density and tur-

bulent power spectrum. They also suggested a numerical value predicted

by Willmarth [é3] for the mean square pressure, pa (t).
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Bull [éé] studied the wall-pressure fluctuations produced by a
turbulent boundary-layer and determined its statistical properties
in conditions covering various values of boundary-layer thickness
and flow speeds. The measured quantities include r.m.s. pressures,
frequency spectra, longitudinal and lateral space-time correiations,

in both broad bands and narrow frequency bands.

The wind tunnel test section was of 9 X 6 inches and subsonic test
section of 10 ft long followed by a supersonic section of 6 ft long.
The measurements of the fluctuating pressure were made with piezo-
electric transducers, set flush in the wind tunnel wall. Some ex-
perimental values of the space-time correlation between wall-pressure
fluctuations and turbulent velocity fluctuations at various positions

of the boundary-layer are also determined.

The values of the longitudinal and lateral correlation functions,
Y, (£,0,0) and ¥ (0,n,0), are shown in Figures (6a) and (6b), respective-
ly. The longitudinal space-time correlation function, WQ (£,0,1) is
given by Figure (7) and the r.m.s. pressure is plotted versus the

Strouhal number, mcS/U0 in Figure (8).

Bull's results showed that the spectral density expressed in terms
of wall shear stress increases with Reynolds number although at a consi-
derably smaller rate than suggested by the r.m.s. pressure fluctuations
measurements. Also his measurements proved that the longitudinal velo-
city disturbance at a particular distance from the wall is convected at

the speed of the local mean flow.



On the other hand, more research work by Bull [éi] has been
carried out to predict the walli-pressure field, i.e. the statis-
tical quantities such as the r.m.s. pressure, frequency power
spectrum, space-time correlations and space-time correlation
measurements in both broad and narrow frequency bands. His ex-
periments were made at Mach Number of 0.3 and 0.5 with covered

Reynolds Numbers of 105,

The main conclusions of Bull measurements were that the
wall-pressure field structure is produced by contribution from
pressure sources in the boundary-layer with a wide range of
convection velocities and comprises two families of convected
wave number components. One family of high wave number compo-
nents is associated with turbulent motion in the constant stress
layer. The second family comprises components of wave length
greater than about twice the boundary-Tayer thickness, which
lose coherence as a group of wave length and are associated
with Targe scale eddy motion in the boundary-layer outside
the constant stress layer. Bull discussed the pressure field

in terms of these two-wave number families.

3i
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3.2 MWall-pressure fluctuations of body of revolution

The problem of predicting the wall-pressure fluctuations of a
body of revolution was studied recently by Lyamshev et al. [40},
The influence of fluid section from turbulent boundary-layer on the
spectral and correlative properties of the wall-pressure fluctuations
has been conducted experimentally using a model with a chord Tength

of 500 mm and span of 120 mm.

The model was set up in the rectangular working section of the
tunnel at zero angle of attack. "Identical pressure fluctuations sen-
sors whose sensitive surface has a diameter of 1.5 mm were mounted
flush with the lateral surface of the model at various distances from
the bow tip". The spectral and correlative properties were measured
in the frequency fange from 0.1 to 10 KHz and free stream velocity
varied from 3 to 18 m/sec, with Reynolds Number up to 10?0 The spec-
tral and correlation analysis data obtained by Iyamshev were carried

out in third octave frequency bands.

Lyamshev concluded that an increase in the relative rate of the
distributed fluid suction from a well developed turbulent boundary-
layer causes a decrease in the longitudinal spatial correlation and
a decrease in the spectral power density of the wali-pressure fluc-
tuations in the Tow frequency range. On the other hand these effects
are increased in the high frequency part of the spectrum due to the noise
emission and the amount of increase depends on the suction rate and

the relative intensities of the noise and pseudosonic components of
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the signals. Also he deduced that the boundary-layer suction does
not affect the correlation properties of the wall-pressure fluctua-

tions in the high frequency part of the spectrum.

Another interesting experimental investigation of the correlative
characteristics of turbulent wall-pressure fluctuations has been per-
formed by Kodykav [%1}. His measurements were conducted on the sur-
face of a model of half body of revolution of elementry configuration,
subjected to flow velocity ranging from 8 to 24 m/sec. The pressure
pickups with a sensing surface of 1.5 mm in diameter were mounted
flush with model surface. The spacings between pickups were fixed
at 4.2, 10, 29.2 mm. The correlation analysis was carried out in
1/3 octave bands over frequency range from 150 to 3,000 Hz. The
fluctuations noise spectrum was recorded concurrently over a wide ran-

ge of frequencies.

It was established throughout Kodykav experiments that the cor-
relation characteristics of large-scale turbulent wall-pressure fluctua-
tions for which the hydrodynamic wave length is greater than the boun-
dary-layer thickness are subjected to different Taws than those obeyed
by small-scale fluctuations. Kodykav concluded that the boundary-la-
yer thickness is a factor governing on the one hand, the maximum vor-
tex dimension in the turbulent boundary-layer and on the other hand,
the statistical properties (the correlation radius in particular) of
the large-scale inhomogenities formed by those vortices. Finally
he pointed ocut that his results were particularly important when it
comes to take into account the influence of the pressure pickup di-

mensions on the recording of turbulent wall fluctuations.



Moreover, a research work studying the statistical properties
of wall-pressure fluctuations on a body of revolution in water

/ to 1.18 X 108 was carried

medium with Reynolds Number of 3.94 X 10
out by Backewell [éZ] , using a flush-mounted hydrophones as pickup
transducers. His measurements were conducted not only feor stream-
wise and lateral hydrophone separations but also for hydrophone

separations oriented at angles of 26.5° and 45° to the flow axis.

Backewell, presented the nondimensionalized spectral and
correlation data which are in a good agreement with zero and
nearly zero pressure gradient obtained for a flat plates and in
fully developed pipe flow, respectively. One of the wain con-
clusions of Backewell data is that the magnitude of the general
cross spectral density is approximately equal to the product of
the magnitude of longitudinal and lateral cross-spectral densities.
Backewell's experimental results confirm Corco's assumption at

this fact.

3.3 Wall-pressure fluctuations of pipe flow

3.3.1 Air flow

Measurements of wall-pressure fluctuations were performed
by W.W. Willmarth [4%} , using test section of 4" brass pipe, with
barium titanate pressure transducers as pickups in air flow. The
spectrum of the wall-pressure is presented in nondimensional form.

Willmarth drew three important conclusions from his investigations:

34



a) the ratio of r.m.s. wall-pressure fluctuations to free stream

dynamic pressure, (p?) : / a,. is not dependent on Mach or Reynolds
Number and approaches the value 0.006 and d/8 approaches zero
(where q_ is the free-stream pressure, d is the diameter of the
pressure transducer, and & is the boundary-layer thickness);

b) the mean square pressure fluctuations, ;éukt), may be thrown
into a dimensionless form as shown in Fig. 9, and c) the random
pressure fluctuations are convected at speed of the order

UC =0.82 U (where UC is the convection velocity and U_ is the
centerline velocity).

Another investigation by Willmarth and Yang [5{1 predicts the
measurements of turbulent wall-pressure fluctuations on the outer
surface of a 3" diameter cylinder aligned with the flow. At a
point approximately 24 ft down-stream of the origin in an air stream
of 145 ft/sec. The boundary-layer thickness was 2.78" and the
Reynolds Number based on the momentum thickness was 2.62 X 1046 A
0.06" diameter Tead zirconate-titanate disk transducers were mounted

flush with the wall.

Willmarth and Yang found that the longitudinal and transverse
scales of the pressure correlations are approximately equal and in a
plane boundary-layer the transverse scale is larger than longitudinal
scale within one-half or less than the longitudinal scale in the pla-
ne boundary-layer. He alsc concluded that the effect of the trans-
verse curvature of the wall is an overall reduction in size of pres-
sure producing eddies, and the reduction in transverse scale of the larger

eddies is greater than that of the small eddies. Generally he concluded



that the smaller eddies decay more rapidly and produce greater spec-
tral densities at high frequencies due to the undamped convective

speed.

In 1962, Backewell et al. [44,4é}, investigated the statistical
properties of the wall-pressure field induced by turbulent air flow
at the wall of thin cylindrical shell over broad frequency bands and
in octave frequency bands for limited range of Reynolds Numbers
(105 to 3 X 105). They measured and derived expressions for the axial,

WQ (¢, 0, 0), and circumferential, ¥_ (0, n, 0), correlation func-

Q .
tions as shown in Figures 10 and 11,respectively. Bakewell {44} found
that his experimental points defined the following approximate expres-

sions for the spatial correlations:

v, (£,0.0) =e 'b|sg| cos a S (14)
1 __d52 =1
Y (0, n, 0) = (1 + CS%) 2 - e ; (15)
where S¢ = gQ/UC and Sn = nQ/U_ are the axial an circumferential
Strouhal numbers, and a,b,c,d are constants to be specified; UC and

U, are,respectively, the convection and centerline velocities.

As shown in reference [éé]g the effects of Reynold number on the
spatial correlations are small and may be neglected. The values of

a,b,c, and d to be used in equations (14) and (15) are as follows:

a = 8.7266, b = 1.0 for SE = EQ/U_,

il

c =20 , d =100 for Sn = nQ/Um”
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Bakewell also obtained measurements of the mean square pressure per

unit bandwith (i.e. the power spectral density), pé (t), which are
reproduced in Fig. 12 plotted against Strouhal number 2rQ/U_. For

the purpose of their analysis Lakis and Paidoussis {}é] derived an

expression for the curve of best fit of pa (t):

-ZkIPQ/Uoo

2 — 2 3
P (t) = Zké PE 1y, e
where k = 0.25, k =2 X 10°% and o is the density of the fluid.

The ratio of the broad band cohvection velocity to the center-
line velocity UC/Um has .been determined by Bakewell et al. and plotted
against the Reynold numbers. This ratio has the value of approxima-
tely 0.7 and appears to be independent of Reynolds number. It is
Tower than the 0.80 obtained by Wilimarth [éé] and other investiga-

tors. Finally the ratio of the r.m.s. pressure to the dynamic pres-

1
2

sure, p& (t) .% o U2 , is approximately 0.006 for different

Reynolds number. This value is within the range of values reported

by other investigators [43935953}.

3.3.2 MWater flow

It may be expected that the spatial correlation given by equations
(14), (16) and determined by Bakewell et al. of air flow in pipe would
be approximately the same for different fluids at the same Strouhal
number, at least for sufficiently high Reynolds number. This was sup-
ported by Clinch's measurements of the statistical properties of wall-

pressure field generated by the passage of fully developed turbulent
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water flow in smooth pipe [% ]. He applied test section of 6 in-
ches diameter connected to a water Toop facility capable of pro-
ducing Reynolds number of 2 X 106. The measurements of wall-pre-
sure fluctuations were recorded by flush mounted miniature pressure
transducers. The statistical properties of the wall-pressure field
determined by Clinch included the power spectral density, space-

time correlations, and convection velocities performed in both broad

and narrow frequency bands.

Rattayya and Junger [59] reviewed recent data on the correlation
function describing the random pressures in the turbulent boundary-
layer and they predicted the response of a pipe using Bakewell's

correlation functions [44,45],

Carey et al. [4%} designed and constructed at the U.S. Navy
Underwater Sound Laboratory an acoustic Turbulent Water-Flow Tunnel
using a clear-plastic-pipe test section of 3.5 in i.d. through which
water is pumped at centerline velocities ranging from 9 to 48 knots.
Their measurements of the ratio of convection velocity to centerline
velocity, Uc/Um, range from 0.86 to 0.61 using flush-mounted hydro-
phones at severai longitudinal spacings. They also found that the
maximum space-time is in good agreement whith other investigators
[46,53}. The corrected data for hydrophone size showed also that
the spectral curve is similar to those reported for turbulent air

flow and falling bodies in water [42},



3.4 Influence of pickups shape and orientation on wall-pressure

fluctuations measurements

A recent theory of transducers resolution of flow noise (wall-
pressure fluctuations under turbulent boundary-tayer) developed by
Kirby [5?] shows that the resolution depends only on the face area
and the maximum face widths of the transducer normal and parallel

to the flow direction. Al1 Kirby results are valid only for trans-

39

ducers with dimensions within the range of 3 to 100 of, QA%/UW, (where

Q@ is frequency, A is the transducer area and U, 1s the centeriine
velocity). The effect of transducer free width parallel to the flow

is small and negligible.

Kirby found also that "for transducers of given area the wall-
pressure fluctuations level resolved is nearly proportional to the
face width normal to the flow, so that slender transducers should
have their long axis parallel to the flow to increase the signal-
to-noise ratio". He also showed that his theory agrees with experi-
mental data on circular, square and fish shaped transducers

within experimental accuracy.

Meanwhile, the response of a flush-mounted transducers to the
pressure field in a turbulent boundary-layer is known to depend upon

the spatial and temporal characteristics of the transducers. An

experimental study of this dependence has been conducted by Geib {éé].
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The frequency spectral density of the pressure fluctuations on the
boundary beneath a turbulent boundary-layer was measured with va-
rious transducers radii. The wind tunnel employed in Geib experi-
ments is a closde circuit subsonic flow with 15 X 18 inches of

cross-section and using a % inch condenser microphone as pickup.

The results obtained by Geib present typical frequency spec-
tral density in nondimensional form; a market decrease in the spec-

tral density values are evident as the transducer radius increased.

In addition, Lyamshev [Sé} performed pressure fiuctuations mea-
surements by applying means of pressure pickups of the piston type
whose membrane is fixed flush with a surface of the body. The hy-
drodynamic pressure fluctuations spectrum were performed using va-

rious dimensions of pickups.

Lyamshes results showed that the geometric dimensions and sha-

.

pe of the pickups may exert a substantial intluen n the measure d

uence on the measured

results of the pressure fluctuation spectrum.

Finally, a detailed design of an assembly of a miniature trans-
ducers for wall-pressure fluctuation measurements in turbulent boun-
dary-layer flows was described by Clinch [%7]. His calibration of
this transducer indicated that its sensivity is near -130dB-re- lv/uBar

at sound pressure levels varying from 135 to 160dB.



3.5 MWall-pressure fluctuations structures

A discussion of the statistical properties of pressure field
at the wall of a turbulent attached shear flows has been performed
by Corcos fﬂ;] e
the imperfect space resolution of contemporary transducers. He
also showed that the measurements of the longitudinal cross corre-
lation densities lead to similarity variables for the space-time
covariance of the pressure and for the corresponding spectra. He
also explained the existance of those similarities, due to the
dispersion of the sources of pressure by the mean velocity gradient.
Corcos tried to interpret analytically some of these pressure mea-
surements by pointing out that the lateral cross-spectral densities

lead approximately to similarity variables.

However, Corcos carried out computations based divectly upon
the pressure-velocity correlation measurements by Wooldrige and
Willmarth for flat plate and Backewell f441 for pipe flow. The
interaction of the mean strain rate wit; ﬁgrma1 velocity fluctua-
tions being in effect limited to a region very near to the wall, sup-
plies a dominant contribution only at high frequencies. He illus-

trated also that the downstream convection speed and convective memory

41



are smaller than those of the observed wali-pressure.

Corcos emphasis also that "the inner part of the law of the

wall region seems to be substantially free of pressure sources and

within that region

o~

a

Ly

the pressure can be given in terms of its

boundary value and (b) the local velocity field is dependent upon

but unable to affect appreciably the turbulent pressure".

Moreover, it is well known, that the finite size of a trans=
ducer-sensing element limits its space resolution of a pressure
field associated with a local turbulent flow. Such pressure
fields are translated at a speed comparable to the characteris-
tic velocity of the flow. Consequently a Tack of space resolu-

tion of the face of the transducers used caused an apparent ina-

He applied numerical results which indicate that the atte-
nuation of frequency spectral density and of the cross-spectral
density caused by the finite size of the transducers is generally
more severe than previous computation had suggested. Mainly because
the lateral correlation of pressure is highly frequency dependent,
and a typical turbulent pressure wave component being inclined to
the stream direction at roughly 45 degrees. An asymptotic formulas
for the attenuation of large transducers were given by Corcos which

yield estimation of the degree to which a flush-mounted sensor
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reciever immersed in a boundary-layer is able to reject the background

noise provided by turbulent pressure fluctuations.

Recently, Mulhearn [54] calculated the pressure and pressure-
velocity space correlations using rapid distortion theory for tur-
bulence in a uniform shea} flow. He found that the pressure fluc-
tuations remain correlated over a significantly greater distances
than thevelocity fluctuations. Applying these predictions as a mo-
del for turbulence in free turbulent shear flows, he proved that
the predicted scale of the pressure fluctuations is larger than the
flow width. It is proposed that the wall-pressure fluctuations

remain correlated right across free shear flows.

Mulhearn compared the prediction from the rapid distortion
theory with various experimental measurements for pipe flow, flat
plate and panels with different situations in which reasonable qua-

litative agreement is achieved.

Finally one of the interested investigation in the wali-pressure
fluctuation field has been performed by Schloemer L 8- He studied
the normalized Tongitudinal and lateral cross spectral density

and the convection velocity ratio as a function of longitudinal

separation and frequency of wall-pressure fluctuations. Compariscon
with the work of other investigators as shown in Fig. 13, is excellent.
He measured those parameters with a small flush-mounted transducer

(lead zirconate titanate ceramic disk of 0.06 inch in diameter).
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The facility was simply flat aluminum plate instaled in 1 X 12
feet test section of a tunnel provided with areafoil section for
the sake of creating pressure gradients. These measurements are
accomplished in both mild adverse and mild favorable pressure

gradients in a law turbulence subsonic flow.

The effect of an adverse pressure gradient on the nondimen=-
sionalized spectral density was an increase fn the flow frequency
content without influencing the high-frequency portion. Schloemer
observed a sharp decrease in the high frequency portion for the
favorable pressure gradient. At similar nondimensional longitudinal
separations and frequencies, the convection velocity ratio was
higher in the favorable and Tower in the adverse pressure gradients.
He also noticed that the longitudinal decay of a particular eddy
is more rapid in the adverse and slower in the favorable pressure
gradients, and no differences were found in thé lateral cross spec-

tral density for the different pressure gradient.

4.  CONCLUSION

In this paper we have presented a review of the different inves-
tigations of cylindrical shells response and the statistical properties
of the wall-pressure fluctuations. To this end the techniques used to

obtain the response of cylindrical shells subjected to internal pres-

reviewed in details. Of these the most versatile have proved to be
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Rayleigh-Ritz methods [15] and the hybrid classical/finite-element
methods [12,33]. The later has added advantages in terms of ease
of formulation, and because numerical convergence is not as sensi-
tive to part1cu1ar set of boundary conditions as is the case w1th
the Rayleigh-Ritz method L15] In Lakis and Paidoussis method L3?J
the thin shell equations are used in full for the determination of
the displacement functions instead of the more usual polynomial
displacement functions. The random pressure forces are lumped at
the nodes of the finite elements and the mean square value of the

displacements of the shell are obtained for an arbitrary pressure

field and for a boundary-layer pressure fluctuations.

There are several reasons for undertaking the development of
this hybrid classical/finite-element theory [15}. First, existing
theories have been generally developed for special cases; the need
is evident for a theory which can be used for the dynamical analysis
of any kind of circular cylindrical éhe11 which is geometrically
axially symmetric. A practical case in point is concerned with the
prediction of the natural frequencies of the outer containment
shell and of the inner shroud of shell-and-tube heat exchangers,
where both ring stiffeners and several thickness and material dis-
continuities are present. A second reason is that ordinary finite-
element theories cannot easily be used to analyse liquid-filled

cylindrical shells. On the other hand, the theory of Lakis and



Paidoussis [1%], because of its usage of classical theory for the
disp]acément functions, can easily be adopted to take the hydro-
dynamic effects into account. Finally, again because of the use
of classical theory, we can obtain the high as well as the Tow
frequencies with high accuracy. This is normally of little in-
terest for free vibration analysis, but is of considerable im-
portance in the determination of the response of such shells to
random pressure fields, such as pressure fields generated hy
internal or external flow. Accord%ng]y, this theory {}2} is
much more precise thah the usual finite-element methods, but
suffers from lack of versatility; for instance, it cannot be
used to analyse anything other than circular cylindrical shells,

or right-circular conical shells.

Our review of the wall-pressure fluctuations covered expe-
rimental investigations on panel, body of revolution and cylin-
drical shell subjected to a fully developed boundary-layer ari-
sing from an internal fiow. The transducers size, shape and
orientation were also discussed. The following conclusions were

made in the special case of the boundary-layer excitations.

(1) The non-dimensional power spectral density of the wall-
pressure fluctuations may be expressed in terms of Strouhal
number.

(ii) For a given pipe diameter, the freguencies of the wall-

Ay

pressure fluctuations show scaling with flow speed.
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(iii) The averaging effects of a finite size hydrophone on the
wall spectra may be eliminated by the use of Corcos' hy-
drophone size corrections [5#} .

(iv) The overall intensity of the pressure fluctuations is es-
sentially constant and not dependent on Mach or Reynolds
numbers.

(v) The ratio of convection velocity, which represents the speed

at which a disturbance is transported downstream, to center-
line velocity (UC/Um) range from 0.81 to 0.6, Fig. 14

(vi) The validity of the separability of the spatial cross-corre-
Tation function, ¥, (£, s 0), into a product of circumferen-
tial correlation function, WQ (0, n, 0), and longitudinal

correlation function, Y (¢, 0, 0), as suggested by Corcos,

et

ppears to be verified well by Bakewell [4#} within the Ti-
mits of experimental accuracy.

(vii) The circumferential and longitudinal correlation functions

predicted for subsonic water pipe flow [45]5 show similaﬁ

|

characteristics to those predicted for air flow in pipe {461.
(viii) The statistical properties, ;ngég; %ﬂ (¢, 0, 0) and Y (0, n, 0),

of the wall-pressure fluctuations in a turbulent boundary-

layer on a body of revolution (near zero-pressure gradient)

show a good agreement with data obtained in flat plate boun-

dary-layer and in pipe flows, Figures(]S and 16)

An experimental investigation to predict the statistical proper-

ties in thin-walled cylindrical shell subjected to internal turbulent



two-phase flow is in progress. A continuously operating air=
water flow facility capable of producing Reynolds number of
1.5 X 106 is designed for this investigation. A comparison
will be made, by using the theory of [ﬁé], between the pre-
dicted response of the thin-walled shell with that measured
experimentally over a wide range of flow speeds, mixture ratio,
and exciting frequenciesT A more general study, however, would
be more detailed examination of the effect of fluid cavitation

on the response.
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NOTATIONS

Constants defined in equation (14, 15).
Constants defined in equation (4).

Instantaneous radial and circumferential
forces per unit length.

Mean of the force f per unit bond width.
number of constraints imposed.

Length of finite element.

Co-ordinate of node e in the x - direction.
Co-ordinates of the area Ses surrounding
the node e, with respect to the origin 1in
the x - direction.

Total Tength of shell.

Axial half wavenumber.

Moment acting at node as shown in (Fig. 3).

Circumferential wavenumber.

Number of finite elements.

Mean square of the pressure per unit band
width of a homogeneous pressure field.
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Free - stream pressure.

Mean radius of shell.

Real part of [ ],

e e

Axial and circumferential Strouhal number.
Area surrounding the node e (Fig. 3).
Wall-thickness of the shell.

Axial, circumferential and radial dis-
placement.

Centerline velocity.
Convective velocity.

Mean flow velocity.
Dimensioniess flow velocity.

Amplitudes of U, V, W associated with
nth circumferential wavenumber.

Cross-correlation spectral density func-
tion of the force field.

Axial coordinate.
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Mean square displacement of Un, Vn, Wn or

dwn at node for which x = x
dx g

Generalized damping factor.

i

Equal to ’r (¢1 - ¢

Poisson's ratio.

Equal to X5 = Xy

J

Density of material of shell.

Fluid density.

Time delay.

Circumferential coordinate.

Axial and circumferential correlation func-
tions of the fluctuating pressure per unit
band width with centre frequency Q.
Natural frequency Hz.

Excitation civcular frequency {rad./sec.).
Time delay.

Time rate of decay of coherence.

Boundary layer thickness

Vector of external forces.
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Stiffness matrix for one element.
Stiffness matrix for the whole structure.
Mass matrix for one finite element.

Mass matrix for theywho]e shell.

Generalized mass matrix (for the whole
shell).

Displacement vector.

Nodal displacements vectors, at nodes i and
J respectively.

Nodal matrix of the system.

3L
L

r~ eigen vector of the system.
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FIGURE 1

The mean square response of the radial displacement
of a shell first studied by Clinch, as a function of
the centerline velocity. =-0~-0- Clinch's experimental

results for high-frequency response; —— - —— theoret-
ical results obtained by lLakis ﬁZ] (with n = 2 to
n = 6) for high-frequency response (93 - 1,000 Hz):

'total' response obtained by Lakis [12]
2 ton = 6).

(with
n =
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FIGURE 3 (a) Transformation of the continuous pressure field to
a discrete force field
(b) The equivalent discrete force field acting at

the node, e, involving fR’ £ andﬂKr.

c
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FIGURE 4 Block diagram of instrumentation used for recording and analyzing

turbulent wali-pressure field.
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FIGURE 5 a) Longitudinal spatial pressure correlations at
U_= 40 m/sec and a frequency of 450 Hz.

b) Longitudinal space-time pressure correlations at
U= 40 m/sec and a frequency of 450 Hz.

(Reproduced of Tack et al. [3 ], Figures 1 and 2).
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FIGURE 6b Lateral space correlation of the wall-pressure field, WQ (0, n, 0);
§™is the boundary-layer thickness. o

{Reproduced of Bull 3615 Figure 10).
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FIGURE 8 Frequency spectrum of wall-pressure fluctuations; where q_
is the free-stream pressure, Q, the central freguency; &%,

boundary-layer thickness and U_ is the centerline velocity.

(Reproduced of Bull [Bé], Figure 7).
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