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NON-LINEAR ANALYSIS OF THIN CYLINDRICAL SHELLS

ABSTRACT

A theory to predict the influence of geometric non-linearities on the
natural frequencies of an empty anisotropic cylindrical shell was presented
in this report. It was a hybrid of finite element and classical thin shell
theories., Sanders-Koiter's non-linear and strain-displacement relations
were used. Displacement functions were evaluated using linearized equations
of motion. Modal coefficients were then obtained for these displacement
functions. Expressions for the mass, linear and non-linear stiffness
matrices were derived through the finite element method. The uncoupled
equations were solved with the help of elliptic functions. The period and
frequency variations were first determined as a function of shell amplitudes
and then compared with the results in the Titerature.
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CHAPTER 1

INTRODUCTION

1.1 General

Thin shells are structures that have been widely used in a variety of
fields. The diversity of their applications is extensive, from space
vehicles to home appliances. Consequently, the analysis of thin shells
under static or dynamic load has been the focus of many theories. Most of
the research in this field has involved analysis of linear thin shells. The
results have proven to be satisfactory in cases where deflections of the
shell were very small, especially Tow-level for bending, even when allowing
for the thickness of the shell itself. In several practical experiments,
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rance. In those cases, a non=linear analysis was required,

The first attempt to formulate a theory for thin shells was derived
from Aron's general equation of elasticity in 1874, It was followed, in
1888, by an approximation theory known as the "First Approximation" of LOVE
[1]. Since then, the linear theory of elastic shells has been re-examined
trhoughout the years in the titerature ([2] to [7]).

The non=linear theory of thin elastic shells has also been the focus of
many studies. Thus, beginning with the tridimensional elasticity equations,
there are now several articles avaiilable dealing with non-geometric linea-
rities in shells of arbitrary shapes ([8] to [12]).

More specifically, several methods were developed for the analysis of
dynamic non-linear thin cylindrical shells. Among these were Galerkin's
well-balanced method ([13] to [15]), the small perturbation method ([16] to



[18]), the modal expansion method [19] and most recently the finite element
method [20]. A1l of these methods have their advantages and disadvantages.
The best test of any method is probably its general content: i.e. the method
should quantify the component displacements and provide for precise charac-
terization of the high and low frequencies of the shell.

These criteria were not met in Galerkin's small perturbation method,
and studies [13] to [18] applied only to the particular case where the shell
was supported on both edges. The modal expansion and finite element
methods, however, were satisfactory on both counts.

In references [13] to [15], only lateral displacement was applied. In
[13], the restrictions of tangential displacement continuity were satisfied
although to the detriment of actual bending at the edges of the shell, In
order to meet the criteria of continuity by including bending at the edges
of the shell, Evensen [14] modified the lateral displacement expression by
using a symmetric mode to include the coupling. This modification, however,
led to actual moments at the edge of the shell such that the boundary
conditions lay somewhere between the simply supported and clamped cases,
Boundary-condition effects on the other components of displacement were
ignored, moreover, in [13] and [14].

Similarly, in [15] coupling with the symmetric mode led to the deriva-
tion of motion by assuming:

a) The condition of continuity for the tangential components of displa-
cement .,

b) A geometric boundary condition on the axial component.
¢) A natural boundary condition.

These three conditions, however, were only satisfied in a general sense.



Alturi [16] also used these three conditions and suggested that a
lateral displacement with three modes be indluded. The displacement and
axial bending moment were zero at the edges of the shell. Contrary to
Dowell and Ventres [15], Alturi [16] solved the problem by using the small
perturbation method. The unknowns appearing in the modal equations were
expressed by means of an asymptotic series and terms of small parameter.

The formulas in [13] to [16] have serious drawbacks:

a) Having only assumed the form of the lateral displacement, special
attention must be given to the conditions of continuity for the other
components. Should these not be satisfied automatically, it would be
necessary to include other modes and these modes are obtained intuiti-
vely. This procedure can hardly be generalized to include other shell

geometries.

b) It is extemely difficult to satisfy the geometric boundary conditions
on tangential displacement, especially for a circular shell.

¢) The analytical solution of the problem requires several manual calcula-
tions. These become increasingly difficult so that the inclusion of

other means becomes necessary.

d) The formulation is not applicable when the shape of the modes are not
simple analytic functions.

e) Generalizations from arbitrary shells are not valid.

Part of the disadvantages were eliminated in Chen and Babcock [17].
The small perturbation method was used to transform the non-linear equations
to a linear system, by expanding the unknown variables in a power series
with respect to a small parameter. Applying the boundary conditions of



circumferential continuity for a simply supported shell, Tlateral displa-
cement was then obtained. The major advantage of this technique, compared
to other methods requiring an initial hypothesis regarding the form of the
vibration mode, is that the results are not preconceived. '

Other refinements were raised in Ginsberg's article [18]. The equa-
tions for a simply supported circular shell were obtained using an energy
formulation. A1l three displacements, U, V and W, were considered and a
more exact theory was used. Due to algebraic difficulties encountered
during derivation of the general equations, the perturbation technique had
to be used. For this reason, therefore, limitations (d) and (e) still

apply.

The above mentioned shortcomings restrict use of the methods employed
in [13] to [18], (Donnell's simplified non-linear theory), because the
theory nealects the plane of inertia effect, By incorporating the nodal
expansion technique, Radium and Genin [19 ] improved upon the methods used in
[13] to [18] and eliminated the weaknesses therein by using Sanders-Koiter's

[10,11 ] general non-=Tinear theory.

The authors of the present paper derived and validated the general
nodal equation's for analysis of a static and dynamic arbitrary non-linear
geometric shell. The three displacement components were considered in these

cases.
There are two advantages to these formualtions:

a) Greater simplicity in problem formulation and solution, compared with

the other methods.

b) Whatever the shell structure might be, the formultion of the equations
retains the same format once the corresponding non-linear nodal

equations are derived.



However, this method has a serious disadvantages: the analytical forms
for the displacement components apply only to those cases where a cylinder
is supported at both ends.

References [13] to [19] adopted the analytical method as their nume-
rical approach to solving the problem. The finite element method likewise
suggests a numerical approach. This method offers many advantages, some of
which are:

a) Arbitrary shell geometry: the method applies equally well to the
cylinder, to the cone or to all other axisymmetric shells with positive
or negative shaped curvatures.

or
s

Simple inclusion of thickness discontinuities, material property
variations, differences in materials comprising the shell.

c) Arbitrary boundary conditions: the problem can be resolved for a
supported, clamped-free or clamped-clamped shell without changing the
displacement functions in each particular case.

d) High and low frequency characteristics are obtained immediately.

After adopting the finite element method, Raju and Rao [20] obtained,
for various boundary conditions, frequency variation in conjunction
with the maximum normal displacement of a point situated on the average

surface of the shell.

The Sanders-Koiter's relationship was derived from strain-displacement
non-linear theory. A curved element with two nodes having six degrees of
freedom each was used to restrain the shell. The displacement functions
were not derived from thin shell theory but were instead described as a
cubic polynomial in relation to the orthogonal coordinate. Their algorithm



was fiterative at each assumed normal displacement value, the approximate
vector and frequencies were calculated until the convergence criterion was
satisfied.

The research done in [14] to [20] was limited to studies of isotropic
shells. Only Nowinski [13] made a generalization concerning orthotropic
shells by incorporating Donnel's simplified theory.  Ambartsumyan [21 ]
produced an important work involving a number of cases anisotropic shells.

1.2 Research objectives

The present research project presents a general approach to analysis of
non=linear thin cylindrical anisotropic shells. The finite element method
was employed, but it a hybrid, a combination of the finite element method
and classical shell theory. The finite element chosen was a cylindrical
one. This choice a

determine the displacement functions and, further, the mass and stiffness

owed us to use the compiete equilibrium equations to
matrices.

This theory proved to be more accurate than the usual finite element
methods. In addition, if offers the advantages listed in the paragraph
betow, it can only be used to analyze a cylindrical shell or a straight
conical shell with a circular section.

In order to eliminate these weaknesses, Radwan and Genin [19] improved
the technique, using more general non-linear theory from Sanders-Koiter's
[10-11]. The authors derived a valid general modal equation for analysis of
a non-linear static or dynamic load on an arbitrary geometric shell. In
this particular case, all three displacement components were considered.
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1.3

will

This formulation has two advantages:

Definition and solution of the problem are greatly simplified, compared
to other methods.

Whatever the shape of the shell, the formulation of equations has the
same format, once the corresponding non-linear model equations have
been derived,

This method does nevertheless, have a serious flaw; it may be applied
in cases where the shell is simply supported at the edges.

The analytical solution involves two steps:

The displacement functions are determined by solving the linear system
equations. The linear mass and stiffness matrices are then obtained
together with the eigenvalues and eigenvectors [22,23].

Using strain-displacement relationships from Sanders-Koiter's non-
Tinear theory [10,11], the modal coefficients are obtained from the
displacement functions. The non-linear mass and stiffness matrices for
a finite element are then calculated with respect to modal coefficients
[19 ].

Contents of the report

The present study is divided into nine chapters, the contents of which
be described briefly.

Chapter 2 deals with a review of non-lTinear thin shell theory as well

as the basic methodologies employed.



Chapter 3 proposes three non-linear differential equations of motion as
a function of the displacement of the shell surface of reference and the
components of the elasticity matrix, beginning with the general equations
for arbitrary shells and their stress-strain relatiohnships.

The displacement functions are determined in Chapter 4, by solution of
the linear systems. With these functions the mass and linear stiffness
matrices for finite elements are constructed.

In Chapter 5, the displacement functions defined serve as a basis for
interpretation of the modal coefficients as well as the displacement
functions determined in chapter 4.

In Chapter 6, the methods for analytical solution of uncoupled non-
linear equations are described. The influence of geometric non-linearities

wii

(@]
e

the walls or the fre

Chapter 8 presents the algorithm for the mass and stiffness matrices.

The numerical results obtained are reported in Chapter 8 and compared
with other methods.

Finally, Chapter 9 contains the general conclusions.



CHAPTER I1

BASIC THEORY AND METHOD

2.1 Hypotheses under non-linear elastic thin shell theory

Non-linear elastic thin shell theory is derived by apprdximation from
the tridimensional elasticity equation. Like linear theory, it is also
based on LOVE's "first approximation" but the assumption concerning the
order of magnitude of the bending has been modifiede

The non=linear theory is based upon the following hypotheses:

\ .

a) Thickness (t) is infinitesimal in comparison with the minimal radius of
in -
\R ls

curvature (R .
b) The displacement gradients are small and the squares of the rotation do
not exceed reference surface deformation in order of magnitude;

c) The normal constraints, normal to the surface of reference are

negligible;

d) The normals to the surface of reference remain normal after deformation

and are not subject to any elongation.
Hypothesis (a) represents the definition of thin shells (R/t > 10).
Hypothesis (b) corroborates the non-linearities of the equations.

Explained by physical bending terminology, these elements have the same
thickness as the shell itself.
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Hypotheses (c) and (d) allow us to neglect the stresses normal to the
surface and the transversel shear deformation.

The theory based on these four hypotheses is known as "SANDERS-KOITER's
non linear theory [10,11]"; it has been adopted throughout this paper.

2.2 Method

As mentioned in paragraph 1.2, the analysis was divided into two parts:
the first deals with linear behaviour and the second with non-linearities
and strain-displacement relationships.

The main steps in the method we propose are as follows:

a) The shell is subdivided into several cylindrical elements (Figure 2).
nt

Each shell element is defined by two nodal circles and two nodal poin

[72]

i and j (Figure 4). The displacement functions are defined by:

U g 2
. 8
i i

é”i !
W (x,8) ~= [N]
)
§ vV (x,6) J
; .
A
where | 8;  represent nodal displacements, and the elements of matrix [N]

are in generé1 a function of position. These displacement functions must,
on the one hand, adequately express real displacements of the shell and, on
the other hand, satisfy at least the geometric boundary conditions.
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The linear component of the procedure is presented in reference [23],
where the displacement functions are determined by solving the three
differential equations of motion from SANDER's theory [5].

For the non-linear component, the modal coefficients [19] are derived
from the results obtained in the previous step.

The Tinear and non-linear natural vibration frequency ratio is then
obtained for the cases of uncoupled modal equations.



EQUATIONS OF MOTION FOR ANISOTROPIC CYLINDRICAL SHELLS

CHAPTER III

3.1 Strain-displacement and stress-strain relations

12

Non-=linear SANDERS-KOITER's theory for thin shells postulated
differences in the first and second fundamental forms between the reference
surfaces, deformed and non deformed, as deformation measures in elongation

and bending respectively.

Generally, the deformation vector {e} is written as:

{e} =

XX
00

X9
{EL} + {ENL} =

XX

660

X6

where subscripts "L" and "NL" mean “linear" and "non-linear", respectively.

For a cylindrical shell, the expressions for {qﬁ}and {sNL} are given

by:
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aU
ax
1, 93V
glggt¥)
3V ., 13U
....‘._..+m_.«_.
ax R a8
{e }= (3.2a)
- 2%
ax
-1 A vy
RZ 362 28
c2af 3 v 1
R 3xae = 2R ax ZRZ 26
and
Loawyz 1oV 1 auy2
2 ' ax 8 ' ax R a6
1 oW 2,1 .3V 13U .2
v SRS RS A A
Lol oy oy
2R Y ax 06 IX
- 3.2b
Loy } 0 (3.2b)
0
0

where U, V and W are, respectively, the axial, tangential and radial displa-
cements of the shell's surface of reference.

It is evident that in equations (3.2a, b) the expressions for compo-

nents « et 2k o are linear. This fits in with hypothesis (b) from

xx* “e0°
paragraph 2.1.
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This constituent relations between the stress and deformation vectors

of the surface of reference for anisotropic shells are given as follows:

{a}

where [P] is the matrix of elasticity.

NXX

NBG

NXG

MXX

MBO

MXB

H

[l

{e}

(3.3)

The elements p,, in [P] determine the anisotropy of the shell, which

depends upon the mechanical characteristics of the structure's material.

In general, this implies that:



3.2 Equations of equilibrium

15

By applying the virtual work principle to the infinitesimal element of

the deformed surface of reference, the five equations

of equilibrium,

describing the non-linear behaviour of an arbitrarily formed shell, are then

obtained (appendix A=1).

By eliminating shear forces QX and Qe by means of equations (A-1.5d,e),

when external loading is non-existent, we obtain:

oN

xx , 16 1 xe 1 9 ' .
5x "R 58 T 2 90 2R 55 ¢ ( Ny + Ngg ) 0
aN aN aM aM
1 o0 x8 , 1 0 , 3 " x6 1 T
R3e ‘tawx t g?'ae o 5% R ( ¢xNxe +’¢eNee ) +
To g (N EN )
*2“*5‘;(‘ XX
2 P YA
5MXX+_@;8MXG+.L%&MLN ,,_E);m ¢N +¢“NT°
2 R 3xne 2 2 R "'66 ax XXX 8 X8
3X R“ 36
13 N+ ¢ N _ = 0
R 2ae X X6 6 06
where
1,98V 13U W L)
b=5 (57 %30 ) % ="3x ¢ % ="r {3

: '(3:éa)

o

——~
[¥8)
(8]
o

S

(3.5¢)
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Substituting equations (3.2) to (3.4) for the equilibrium equations
(3.5), we obtain new equation (3.6) for functions of the elements Pi; in [P]
and and the axial, tangential and radial displacements U, V and W of the
shell surface of reference:

L] (Ussz,Pij) + N] (U,V,W,D,‘J) =0
Ly (UaV,Wopy5) + Ny (U,V, W,y 5)
L3 (Uav,w’pi\]‘) + N3 (U’Vawsp-lj) =

L]
[

(3.6)

f
o

Functions lﬁ and Ni (i = 1 to 3) represent, respectively, the linear
and non-linear equations of equilibrium., These equations are given in

Appendix A-2.

3.3 Matrix of elasticity

The matrix of elasticity [P] is generally given by equation (3.4); the
present theory can therefore be applied to:

(i) Shells composed of only one layer or of an arbitrary number of iso-
tropic or orthotropic layers;

(ii) Double-walled shells, with slabs or ribs;
(iii1) Ring=stiffered shells with grooves of known characteristics;

(iv)  Shells where [P] can be experimentally evaluated.
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Here we will confine ourselves to shells composed of only one layer or
an arbitrary number of symmetric disotropic or orthotropic layers arranged
relative to the surface coordinates.

For an arbitrary number of orthotropic layers [2], it is postulated
that there 1is no slippage between the layers and that the principal
directions of elasticity on every point of the shell coincide with the
directions of the coordinate lines.

(i) For an even number of layers, equal to 2v, the elements Pij of [P]
can be written as:

S . ‘ .
p13 2 B].j ( t, ts+] ) i= Tto 3 andj= 1 tob
(3.7)
S 3 3 . , X
Pij= 2/3 B3 _3,5-3 (t5 - toy ) 1= 4to b andj= 4tod
(i1) For an odd number 2v + 1, we obtain:
21 c . N . - - 13 = 71 —
Pig= 2 By bty Bij (tg - tgyy ) 1 =ltedandy =1tob
(3.8)
v+] 3 s 3 .3 - d
Pij= 2/3 Bilz g3 tyn t Biga (t5 -ty ) T-droben
j=08tob
where
S s S S S s S S
By = Ey /(1= vvp ) Byp = Ep / (1 - vz )
S S s .S _.5.S s _ S '
BS = elsewhere
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ts is the xth layer coordinate having the surfce of reference as shown in

Figure 5; (Efvi) and (Egvg) are, respectively, Young's modulus and Pois-

son's ratio in directions x and © and sz > which is the shear modulus of
elasticity.
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CHAPTER 1V

LINEAR MATRIX CONSTRUCTION

4.1 Choice and justification of the method used

In the preceding chapter, the general equations of motion for elements
p1.j of the elasticity matrix and axial, tangential and radial displacements,
U, V, W, respectively, of the shell's surface of reference were obtained.
The solution of these non-linear differential equations was highly compli-

cated.

To circumvent the difficulty, the problem was divided into two parts;
the first dealing with the linear system and the second, with the non-

linearities in the strain-displacement relations.

In order to obtain the stiffness and mass matrices, the displacement
functions were derived from the shell's equations of motion.

4,2 Displacement functions

Following the procedure described in paragraph 2.2, the shell was
subdivided into several finite elements defined by two nodes i and j and by
components U, V and W, representing axial, tangential and radial displace-
ments, respectively, from a point located on the shell's surface of referen-

ce.
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The linear equations of motion are given by:

| (Vv uWn. .Y =20
h‘] \V",",r]\]l
- (4.1)
Ly (UVH,p45) = 0
Lg (U,ng,p.ij) = O
The displacement functions are then . assumed to be:
U(x,6) u(x)
W(x,0) = [T1 w(x) (4.2)
V(x,8) v(x)
[T] s a (3 x 3) matrix in © given in Appendix A-3 and u(x), w(x) and v(x)
are functions of the x coordinate and the shells characteristics.
Assuming:
Ax/R (43)

Substituting (4.2) and (4.3) for the equations of motion (4.1), three
homogeneous Tlinear functions of constants A, B and C are obtained:

{0} (4.4)

oI
3

[H]
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For the solution to be non-trivial, the determinant of matrix [H] must
be equal to zero. This brings us to the following polynomial equation
[23]:

- 8 _, ,6 4 2
Det([H]) hsx hGA + h4A - h2A + h0 = 0 (4.5)

The values of coefficients hp in this eighth-degree polynomial are
given in Appendix A-3.

Each root of this equation yields a solution to the equations of motion
(4.1).  The complete solution is obtained by adding the eight solutions
independently with the constants Ap, Bp and Cp (pl,...,8), so that:

A x/R

u(x) = Ae P (4.6a)
A _x/R

v(x) = Be P (4.6b)
A x/R

w(x) = CeP (4.6c)

P

The constants Ap, B and Cp are not independent. We can therefore

p
express Ap and Bp as a function of Cp, for example:
A =aC and B_ = B C , p 1,...,8 (4.7)

P PP Y pp
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The values of « and Bp can be obtained from the following relations:

p
Hiv My % - M3

| - (4.8)
Hyy  Hpp By - Hy3

where coefficients [Hk} are as given in Appendix A-3.

Substituting expressions (4.6) and (4.7) into equations (4.2), the
displacements U(x,0), V(x,0) and W(x,0) can then be expressed in conjuction
with the eight Cp constants only. We then have:

.,.
-~

—~
b

")
@

~—

i

[T] [R] {C} (4.9)

where {R] is a (3 x 8) matrix given in Appendix A-3 and 6 is an 8th order
vector of the C constants:

{C} ={ C1 C2 e e C8 }

Setting [R]=[L] [X], equation (4.9) becomes:

W(x,8) = [THLI[XI{C} (4.10)

where matrixes [L] and [X] are given in Appendix A-3.
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To determine the eight Cp constants, it is necessary to formulate eight
boundary conditions for the finite elements. The axial, tangential and
radial displacements, as well as rotation, will be specified for each node.
The degres of freedom at node i can be defined by the vector:

(65 = Cuy wy () vy}

The elements which have two nodes and eight degrees of freedom will

have i (x = 0) and j (x = 1) as nodal displacements at the boundaries:
6.
i

8

= dw dw T_
= Cugwy (@ vi U5 Wy (g vy b TALEEY (401)

where the terms of matrix [A], given in appendix, are obtained from matrix

.................. = N

T e =
L“J by successively setting x = 0 and 1

AT te

Multiplying equation (4.11) by [A'l] we obtain:

§.
a7

85

Substituting for equations (4.10) we get:

U(x,e)
1, 8 %
W(x,8) = [THLI[XIA ] = [N] . (4.12)
6. .
V(x,6) J J

These equations determine the displacement functions.
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4.3 Linear mass and stiffness matrices for an element

The deformation vector can be obtained from equations (3.2a) and
(4.12), therefore:

(11 (0] 5.

le} = a7 (4.13)
tol (7] 83

Setting [Q] = [J] [X], equation (4.13) becomes:

[T1 [0] 8, 8

e} - rxa T ae (4.14)
(01 [Tl 8 8

Matrix [J] is given in Appendix A-3.

Combining equations (3.3) and (4.14), the stress-strain relations can
be written as:

{o} = [PI[B] (4.15)

The mass and stiffness matrices can then be expressed as:

[m = ot [NTIIN] dA

(4.16)
(k] - (87J(PI(B] dA

where dA = Rdxd6. A quick reminder to the reader: "L" means "linear".
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Using equations (4.12) and (4.14), equations (4.16), after integration
with respect to © over the interval, become

T

ml -t (AT R OXLTHLIOG dx (A7)
(4.17)
U = At oaTieertonexs dx (AT
After working out the integration as a function of x, we obtain:
[ml= aRot [A""1TIRI(A™T]
(4.18)
[k J= =R (A1 TrBB (A7)
where the (p,q) term from [R'] is: )
L'(p,q) Udp ¥ g MR - "
%+ % /R e 1 si xp + Aq 0
p q ,
R'(p,q) = (4.19)
L'(p,q) . £ Si ip-i-i\q:O
and where [BB'] is
A+ A 2/R
J'(p,9) e( p q) -1 sia_+ A F0
(Ap+x )/R P g
: 4.20)
BB'(p.q) = ( ’
J'(p,q) . ¢ si xp+xq=0

L'(p,q) and J'(p,q) are, respectively, the (p,q) terms of the products
of matrices [L'] [L] and [JT] (P] (9]
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CHAPTER V

NON=-LINEAR MATRIX CONSTRUCTION

5.1 Introduction

As mentioned in paragraph 4.1, the problem was solved in two parts.
The next chapter deals with the linear mass and stiffness matrices. The
objective of the present chapter is to determine the non-linear stiffness
matrix.

To that end, the following approach, developed in reference [19], was
used with particular attention to geometric non-linearities. The coeffi-
cients of the modal equations were obtained through the Lagrange method.
Thus, the non=linear stiffness matrix, once calculated, was overlaid onto

9
. . .
the linear system, Before we embark on matrix formulati

Vi [Resvy J Hig w I\"\

howavapr
N matrix rormuiaction, angweve

a hriaf
wever, a briel

summary of the method is in order.
5.2 Method

This section will be limited to the relevant details of the method used
to find the non-linear stiffness matrix. For further information, the
interested reader should consult reference article [19].

The main steps of this method are as follow:

a) Shell displacements are expressed as generalized product coordinate
sums and spatial functions;

b) The deformation vector is written as a function of the generalized
coordinates by separating the linear portion from the non-linear;
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c) These expressions are then introduced into the Lagrange equations up to
and including the degree corresponding to the deformation energy;

d) Substituting the expressions in a) into the strain-displacement rela-
tions in SANDERS-KOITER's [10,11] non-linear method, the generalized
coordinate coefficients appearing in the equations derived under c¢) are
determined in terms of spatial functions,

5.3 Coefficients of modal equations

IfFA ,B C A . B , C . D and E are designed as
- P9” Pq° Pq° prsq . prsq’ prsq- prsq prsq J )
coefficients of the modal equations mentioned in step d) above for a cylin-

drical shell, the following expressions [19] are thus obtained:

3 of 3g.  of 3h_ 3h
-] P__D 9 __a 1 p_ g
Anq or? (Ram-55 V(R - 55 ) Y255 36 (5.7a)

where f, g, h are spatial functions determined by matrix [N] in equation
(4.12) and:

3 3 of ah ah
=1(RagP-fP)(R_E‘EL___El)A'._L(_P”g)(__ﬂ_g)
Pa  gp? Ix 36 X 36 2RZ 30 p a0 q
ah_ 3h ah_ ah oh ah
o] p_9q qQ_py_ 1 _9 _P 5.1
Coq = w® st s tac s ) "% ax ¥ 9q 5% ) (5.1c)
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ApY‘SC] ZquArs

Borsq = 2BpgBrs
Corsq = LpaCrs (5.2)
Oprsq = Ppgltes

Eprsq = ZpgBrs

In equations (5.1) and (5.2), the subscripts p,q and p, q, r, s
represent the coupling between two modes. It is arranged in such a way that
equation (5.2) is written, r=p and s=q.

For consistency, equations (5.1) and (5.2) are written in matrix

format.

Hence, these different matrices can be expressed in conjunction with
matrices [T], [L], [X] and [A“l]a

The following notation is adopted: the matrices with the "+" super-
script represent equations in (5.1) and the ones with the "++" superscript

represent the equations in (5.2)

With the (5.1) equations, we obtain:

gt = T e (AT (5.3)
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where matrices [A'], [B'] and [C'] are a function of n, 6 and @ and By from
roots xp of the specific equatin in (4.5) and of constants defined in
equations (4.7).

Setting

(8" = x'1 81 (x (5.4)
(¢’ [c']

equations (5.3) become:
[at [A"]
(gf1 = (a7 8" (ah (5.5)
[ch (c’

Matrices [A"], [B"] and [c*] are square (8 x 8) matrices.

When r=p and s=q, the equations are written:

[ATH (At rah
st [8*118%)
(et = 2 et (5.6)
[0 Aty 18*]

(e (8T (At



[E].

Using equations (5.3) we then get:

] (81
et = 2 a T ot oaraThiaT
(ot [A']

] [B']

[A']

[B']

(c']

[B']

[A']

XA
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(5.7)

Using the symetrical properties of matrices [X], [A'], [B'] and [C'].

The product [A’l[[A'l]T represents a matrix of a constant, written as

Substituting equations (5.4) in equations (5.7), we obtain:
AT [A"]
*
5™ [87]

Setting

*
(¢’
("]

[A"]

(AN

(5.8)
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(A" [A"] [A"]
(8"] (8] (8]
1 = <1 o\ ch (5.9)
(0™ [A] (8]
(£ (8" [A"]

Equations (5.8) are then written:

(At .
(e 8™
(¢ =2t o™ ah (5.10)
(o] (™
i (E]

Let us now illustrate the development of the expressions for the (p,q)
ek

term of matrices [A*] and [A ]

%
For [A ] there is:

A R
A*(p,q) = Ay, © ( Yo T g )x/ (5.11)
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*k
and for [A ] there is:

(A 4+ x4+ 2, + Ay )x/R
e P Tk (5.12)

*
A *(p,q) = a,

the term (1,k) is from matrix [E], and

o 11 () 2 (2) 2
ars 5 T ars sin” ne + ars coS  nb
2R
- ) - ) (B + nag)
with dpg (Brlr + no, BS)\S no:
rs 1,...,8  (5.13)
o) -
rs

[B**1...[E" ] can be written as a function of «

Similarlv., matrice R
miiarly, matrice i S Tun %, B,

A, x and 6. The (p,q) terms of these matrices are described in Appendix
A-3.

5.4 Non-linear stiffness matrix for an element

The non=Tinear stiffness matrix for an orthotropic cylindrical shell is
written [19,21]:

[k 1 pr (AT 4 by l8Y oy, (0] 4 [E7]) + pyilct) an

(5.14)

where dA= Rdxd®6.
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Using equations (5.1), equation (5.14) is written:

Uk d = 28707 p IA™T + pypl BT+ py (10" 4 [E7]) +

LE

-1
p33[C 1 dA [A]

(5.15)
Integrating the expression in parentheses in equation (5.15) for
0 <x <tand 0 < ® <2x and grouping the terms, we find:
S AT A 5.16
. %k
The (p,q) term in matrix [kNL] is written
€1k o N A1)%
G(p,q) e P 1
(A, + Ag F At Ay)
. : =
S])\p+>\q+>\k+>\] 0
*
= 5.17
kL (P>4) (5.17)

€1k G(p,q) £/R si xp + xq X+ A =0
G(p,q) is a coefficient in conjunction with «, B, A and elements pij in
matrix [P]. The gneral expression of G(p,q) is:
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3 (1) (1)
G(p,q) = Té"( p’” + P22 + Zplz ) ap] akq + 3 ( p” ap] kq

. (@) (1), (D) L)
)+ P (37" Brg” *bpy” g

3
1?( Py + Py ) a[(),_]z) al(<24) + aé}) al(<§) )+ 7 (Pt Py )

1 1)
A aé}) b[(“:) +bé}) al((;) ) +%—p33 ( C;(ﬂ) c‘((q +

2 1 1) (2)
cé$) cég) + cé]) céq) + cé]) Crq ) (5.18)

where the terms a(l) and a(z) are given by equations (5.13). Terms b(l),

c(l) and c(z) are coefficients appearing in expressions for the elements of

@ e e

*
matrices [B ] and [C*] defined in equations (5.4). These coefficients are

given in Appendix A-3.
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CHAPTER VI

THE INFLUENCE OF GEOMETRIC NON-LINEARITIES OF THE
WALLS ON THE NATURAL FREQUENCIES OF A CYLINDRICAL SHELL

This chapter presents the solution to uncoupled equations of motion
after the mass and stiffness matrices for each element have been assembled.

6.1 Global mass and stiffness matrices for the shell

The mass and stiffness matrices obtained in Chapters IV and V apply to
only one element. After the shell 1is subdivided into several cylindrical
elements, the global mass and stiffness matrices are determined by assem-

bling the matrices for each element. Assembling is done such that all the

equations of motion and the continuity of displacements at each node are
satisfied.

Vectors {F.} and {F.} represent the internal forces at each i,j node
and {8, } and {éj} are the displacements associated with {F,} and {Fj}. The
sums of the forces and moments at each node must be equal to the sum of the
external forces and the moments applied to the node:

e

and §. = &
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Using these relations we casn overlay the mass and stiffness matrices
for the individual elements in order to obtsain the mass and stiffness
matrices for the whole shell. These matrices are designated as [M], [KL]
and [KNL], respectively. They are square matrices of order NDF* (N + L),
where N represents the number of finite elements and NDF represents the
number of degrees of freedom at each node. This is schematically represent-
ed in Figure 6.

6.2 Equations of motion

The dynamic behaviour of an empty cylindrical shell, in the absence of
external loads, can be represented by the following system:

[MICs} + (K TE6} + [Ky1{6%} = {0} (6.1)

where {8} is the displacement vector; [M], [k ] and [Ky, ] are, respective-
1y, the Tinear and non-linear mass stiffness matrices of the system,

In practice, very specific conditions are applied to the shell bounda-
ries. Thus, matrices [M], [KL] and [KNL] are reduced to square matrices of
order NRDUC NDF*[N + 1] = J, where J represents the number of essential
constraints. These reduced matrices are written as [M(r)], [Kér)]and
[K(r)]. As noted previously and to apply hereafter, the superscript "r"

NL
means "“reduced".
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The (6.1) system of equations then becomes:

)3
)1{ }+[K"’]{6 }+[K"’]{<S } ={0} (6.2)

Setting:

6" fel(q) (6.3)

Where [¢] represents the square matrix for the eigen vectors of the
Tinear system and {q} is a time-related vector.

Substituting equation (6.3) into system (6.2), it becomes:

m(r)

[ g l l'l/r)'qu; 1
ir i YyJ

IMN =21 r~1 (
jreriys v ll\L

—~
@)}
S

S

Multiplying equation (6.4) by [¢T], we obtain:

t T
N1t ter (@) + (1KMol @y + LeN1k{00% (0% = 1) (6.5)

T
The products of matrix [¢ ][ o] and [¢ ][KEF)][¢] represent diago-
)

], respectively.

"I
(D
L

nal matrices, written as [M(D)] and [K

Finally, the (6.1) system of equations is written:

Pty + kP gqy + eNk{P100%100% = (0 (6.6)

In this development the cancelled products are left out.
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6.3 Solution of uncoupled equations

We saw in the preceding paragraph how matrices contained in the linear
part of the system (6.1) could be reduced to diagonal matrices. On the
other hand, the matrix product [¢T][K§[)][¢3] is not generally described as
a diagonal matrix.

A typical equation of the (6.6) system would yield:

(L) (NL) 3
o Yot ipp Gt g ag =0 (6.7)

where coefficients mpp and kpéL), represent the pth diagonal terms of matri-
) NL)

ces [M(D)] and [KED ], respectively, and kés

product [&T][Kéi)][¢3].

is the (p,s) term of the

We have NREDUC simultaneous equations of the form of (6.7). Solution

of the equations was extremely difficult. At the first approximation, we
were limited to solving these equations by ignoring the coupling between

roduct [¢7 J[K{F) 1[4>] thereby becoming dis

Equation (6.7) would then be written.

d, + k(L) q. + k(NL) q3 = 0 (6.8)

Mop pp Ip T Fpp p

Setting
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which satisfies the conditions:
fp(0)=1 and fp(0)=0

Equation (6.8) becomes, after the A_ simplification:

p
(L) (NL) A2 =0 (6.11)
L 6p + kool g kpp 6
which is equivalent to:
(L) (NL) 2 2, 612
m b 6p + k 5 + kpp ( Ap/t ) 6p 0 (6.12)
where t represents shell thickness.
Dividing this last equation by mppa it becomes:
W (N0 ;
6+ 2 g +—EE—-t (At ) ¢ =0 (6.13)
“p mpp N pp 4 v

The coefficient két)/mpp represents the pth linear vibration frequency
of the shell. We then obtain:

2 = 6.14
5p+mp5p+Ap(Ap/t) 0 ( )



where k(L)
o o
pp
and k(NL)
hy = EEP—-—'tZ
pp
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(6.15)

(6.16)

The solution f (<) of this non-linear differential equation which
satisfies the conditions in (6.1) is the JACOBI elliptic function

* *
cn(w t,k ), given by:

cn(w; t, k;) =cos{am u) =cos(y)

where
. _do
B 4
/1o=rk 2 sin2 9
p.
(¢ am u is called the amplitude of u)
0 = am u:

In this case:

*2 2 2 ,1/2
= \ t
Wy [ wy + A, ( Ap/ )" 1
2
A/t
2. hy CAJE)
Y

2 2
2 [ wp + Ap ( Ap/t )7 ]

(6.17)

(6.18)

(6.19)

(6.20)
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The ratio of the non-linear to linear period is then determined by:

T /T o= 2K/ (nl 1+ (a/e2)A )2 1172 (6.21)
p

WL A PR A e

—
=
S

&
where K=K(kP) represents the complete integral elliptic of the first kind

given by the infinite sum:

o1 1,2 [ *2 1.3.2 , *4 (2n)! 2 ,%2n
K(kp) =zunl 1+ (é-) kp + (ﬁ) kp Foeunnn + (—-—-————-—-—-22n - )2) kp
E ] (6.22)

The equation in (6.21) represents the influence of the geometric non-
linearity of the walls on the natural frequencies of an empty shell when the
equations are uncoupled. The ratio TNL/TL is expressed in conjunction with

non-dimensional ratio (A /t) where A is the vibration amplitude.
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CHAPTER VII

THE ALGORITHM

The irregular cylindrical shell was subdivided into sufficient numbers
of finite elements. Calculations for each finite element were performed in
two steps: first, the linearity and second, the non-linearity of the
strain-displacement relationships.

The computer program is written in FORTRAN IV and performed on a CDC
(model CYBER 173). The calculation of algorithm is as follows:

a) The input consists of:

i} the number of finite elements

ii) the radius thickness and length of each element

iii) the mechanical properties of each distinct section of the shell

iv) the harmonic number n

b)  The program proceeds as follows for each finite element:
b=1) for the linear component

i)  the roots (p=1,..,8) of the characteristic equation (4.5) are
determined by the LAGUERRE method with the help of the ZPOLR sub-
routine from IMSL. The % and Bp terms are obtained from equa-
tions (4.8)



b=2

ii) calculate the intermediate matrices [A], [R'] and [BB'] given by
equation (4.18)

ii1) the mass [m] and Vinear stiffness [kl] matrices are then deter-

mined from equations (4.17)

for the non=linear component

(vy 2y (1) (1) . (2)
rs 7 awg ? bws s Crs and CPS
{r,s=1,..,8), given by equations (5.13)

i) calculate coefficients a

¥
ii) calculate the terms of the intermediate matrix [kNL] defined by

equation (5.17)

iii) the non-Tinear stiffness matrix [kNi] is then obtained with the
haln nf sanation (6 1TAY -
i 8 A k,;kil.&ut;!tlli LW B s g

Assemble the mass and stiffness matrices for the total shell following

the procedure described in paragraph 6.1,

Application of matrix conditions: [M], [K ] and [Ky, ] are now reduced
to square matrices of order NDF *(N + 1) - J, where J is the number of
applied constraint equations. Only the geometric boundary conditions
have been specified. Thus, for a shell with free ends, J=0; for a
simply supported shell (with V=W=0) J=4, and for a shell clamped at
both ends, J=8.

The natural linear frequencies w_and the corresponding modes (eigen

vectors) of the matrices [M(i)] i (g}j are obtained, where p=1, 11,

L
NREDUC. [M(t)] and [K r)] are real symmetric matrices. The calcula=~

L



44
tion is done with the help of IMSL's EIGZF subroutine. The correspond=

ing frequencies and modes are real.

Diagonalize the matrices [M'"/] and [Kl(r}] according to equation
(6.5)

Work out the product [@T} [KNf?)] [¢3] of system (6.6), then multiply

the result by tzﬁ where t is the shell thickness.



CHAPTER VIII

CALCULATIONS AND DISCUSSTON

This chapter presents the numerical results obtained with the method
used. The influence of the wall's geometric non-linearity on the cylindri-
cal shell's free vibrations is expressed by equations (6.19) and (6.21).
For a cylindrical shell having the particular physical characteristics
given, equations (6.19) and (6.21) have been graphically represented in
Figures 7 to 10 with respect to the non-dimensional ratio, Ap/t@ The
straight horizontal line separating the two types of curvature represents
the Tinear vibration cases, where the frequency 1s independent of the
motion’s amplitude. Two types of boundary conditions were studied. The

circumferential mode was kept constant, at n=4,

8.1 Non=linear free vibration of an empty cylindrical shell

The first example of calculations to determine the influence of non-
Tinearities in strain-disptacement relations on the free vibrations of a
cylindrical shell was the analyses in references [13] to [20]. The shell

had the following properties:

E=2.96 x 10/ 1b/in%, v=0.3, R=1 in, t=0.01 in, L=w/2 in et p=7.33 x 10”7
1b&sz/in4@

The boundary conditons were Tor a shell simply supported at both ends,
such that UsV=W=0.

The variation in natural frequencies of this shell was calcutated using
the method, we propose and compared to the results NOWINSKI [13] and RAJU
and RAO [20] obtained for the case of w=l (Flgure 7).
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NOWINSKI  [13] based his analytical development upon DONNELL's
simplified non=linear method. Only lateral displacement was considered,

For their part, RAJU and RAO [BD]ﬁ beginning with an energy formulation,
used the finite element method.

The shell was subdivided into four equal finite elements and our find=
ings matched results obtained by others, in particular RAJU and RAO [20].

In the case where n=4 and w=l (Figure 7), we observed that the varia-
tion ratio between the linear and non-linear periods decreased as ratio A/t
increased. The frequency ratios demonstrated inverse behaviour. A non-
linear trend of the strengthening type resulted from the A/w ratio being
positive. These variations are minimal for A/w ratio values A/t below 1.0.
For values above 1.0, the identified variation was more pronounced than what
NOWINSKI [13] and RAJU and RAO [20 ] obtained.

We are able to ascertain that these differences wight be due to
Nowinski's [13] neglecting plane inertia. Furthermore, the authors noted a
radial displacement that was not cancelled out at the ends of the shell. As
for RAJU and RAO |20 ], who used SANDERS=KOITER's [10,11 ] non-linear theory,
they expressed the displacements of components along the shell generator in

polynomial form.

The present method also accounts Tor the high frequency characteristics
found for a given value of circumferential mode n. Typical curvatures are
shown in Figures 8, 2 and 10. Here too, non-linearity had a strengthening

effect.

Figure 8 shows the variations in the period and frequency ratios as a
function of A/t for m=2 and 3 on the one hand, and for m=4 and 5 on the
other, with the wmore accurate form being closer to the second. The same
phenomena can be observed in Figure 9 for w=6 and 9, and for m=7/ and 8.

However in this Figure, the gaps between each pair of curves are approxima-
tely the same.



Finally, for high frequencies, the variation is small in the case of
m=11 i?d m=12 and more pronounced for m=10. The variations in ratios TNL/TL
and w /w corresponding to the last two modes, w=13 and m=14, are left out.
With reference to TNL/TL’ these variations are less than 1.5% and O~004% for
m=13 and m=14, respectively.

One of the great advantages of the finite element method is howm easily
it can be applied to whatever the boundary conditions are. Thus, the second
calculation example, the one in the RAJU and RAO [20] analysis dealt with a
cylindrical shell with circumferential constraints at both ends. We then
had V=0 as the boundary condition. The shell had the same physical proper-
ties as the preceding one e.g.:

F=2.96 x 10/ 1b/in%, v=0.3, R=1 in, t=0.01 in, L=w/2 in et p=7.33 x 10
1bgsz/in4

The shell was divided into four equal finite elements and the results
obtained by the present methods are the same as in reference [20] and are
shown in Figure 7. As in the first calculation example, the same diffe-
rences were observed between the two methods., Again, the trends in non-
Tinearities are of the strengthening type, the mw/uxratiﬂ increasing as A/t

increases.

More and more we are finding that ratio TNL/TL decreases more rapidly
when V=0 at both ends. So, for A/t=3.0, for example, the present method
showed that TNLiTL goes from 0.64 to 0.56, whereas with RAJU and RAOD's
method [20], the decrease was from 0.84 to 0.76.

This is probably due to the greater flexibility of the shell, there
being a constraint here, only upon circumferential displacement. On the
other hand, for both types of boundary conditions considered, the gap
between the af/U)vs A/t curves is greater than between TNL/TL vs A/T.
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As in the first example as well, the characteristics of high
frequencies were obtained. A few typical curves are shown in Figures 11, 12
and 13. The non=linearity trends are again of the strengthening type.

Thus, in Figure 11, the period and frequency variations in conjunction
with the ratio corresponding to modes m=2, 3 and 4 were plotted. The AN w
ratio for m=5 scarcely differs from ratio A/w for m=4 (less than 0.02%), and
is the reason why the curves for m=5 were not drawn. It should be noted
that gaps between the TNL/TL and w*/w ratios are almost identical when going
from m=2 to m=3, and from m=3 to m=4. This remark is equally valid for
Figures 12 and 13, which correspond to modes 6, 7, 8, 9 and 10, 11, 13, 15,
respectively. However, in these last two cases, the curves are
comparatively much closer to each other than in the preceding example,
except for m=15 (its behaviour is closer to the linear case).

The variations in modes m=12, 14, 16, 17 and 18 are negligible (<3%).
It was noted that mode m=18 is ;of the weatening type, ratio A/w being
negative. In this case the maximum deviation in the linear behaviour is in

the order of 0.005%.

On the whole, by comparing the high frequency curves for both types of
boundary condition studied, it can be concluded that these curves are closer
to each other where V=0 and more spread out where U=V=W=0.

Finally, two points that are common to the two cases of boundary
conditions should be emphasized:

a) For m=1 and for all other modes, the variation in the ratio of periods
TNL/TL seems to possess an asymptotic limit when ratio A/t rises above
2.0.

b)Y  The influence of the geometric non-linearity ;of the walls is left out
in the last frequencies (m>15 for V=0).
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8.2 Coupling of modes

Although we were Tlimited to solving the equation of wmotion in the
approximation cases, the coupling between different modes was ignored. The
fact nevertheless remains that the present theory constitutes a general

approach to the dynamic study of non-linear cylindrical shells.

The dynamic behaviour of the shell, however, 1is ;not adequately
described by equation (6.8). When we keep the non-linearities in minds,
therefore, the coupling between different modes can no longer be left out.
It then becomes necessary to develop a method for solving the system of
uncoupled equations (6.7).
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CHAPTER TX

The methods discussed in this paper demonstrated the influence of geo-
metric non=linearities of the walls on the free vibrations of empty cylin-
drical shells. 1t was a hybrid method, based on a combination of thin shell

theory and the finite element method.

A cyltindrical finite element was used, so that the displacement funce
tions could be derived directly trom classical thin shell theory.
Only cases with n » 2 were dealt with in this report. The solution was

divided into two parts. In part the displacement functions were

455 1 é:%vw yitag
element procedure. In part two, the

modal coefficients ing tu non-linearities in strain-displacement

relations were obtained for the displacement functions by the method
d@V@ﬁOp d in reference [19].  The non-linear stiffness matrix was then

alculated using the Tinite element method.

With the help of a computer program, variations in the free vibration
frequencies and periods were determined in conjunction with motion amplitude
for a cylindrical shell. Deviations in terms of linear vibrations were
observed. The results obtained with this numerical method for the two types
of boundary conditions were in agreement with other analytical and numerical

methods .

The methods developed in the present research may be applied to the
study of forced vibrations of a cylindrical shell under dynamic bads. This
theory may also be applicable to problems of normal cones with circular

sections.
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APPENDIX A-1

SANDERS-KOITER NON-LINEAR THIN SHELL THEORY

a) General Equations of Equilibrium

The fire differential equations of wmotion form Sanders-Koiter non-
Tinear theory [10,11] for thin shells are (¢f. Figure 1):
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b} Deformation vector

Side by side with the equilibrium equations, there is a second group of

he state of constraint in the shell, the Taw of ela

Sm
city. To that purpose, we shall be using the deformation vector {e},
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Boundary conditions

The boundary conditions are given by:
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=M

M 11

1 or ¢y = &y

for a boundary with constant &, , where the double-barred quantities corres-

pond to boundary values.

and 2

(A-1.

For boundary with constant Eys We only have to interchange subscripts 1
and change the sign of the term to ¢.

Terms ¢,, ¢, and ¢ are defined in the previous paragraph.
1 72

Parameter for a cylindrical shell of revolution (Figs. 2 and 3)

We have:
'C:] = AT v | af“qu = o Ui =

. — ; e { prownd A(“I eﬁ'
£y, =6 A, =R R, R u, = ¥ ( )

Substituting these parameters into the five equilibrium equations

1}, we obtain:
Ny 3@%6 1 E@ggamvlwwﬁ_ ;(N N ; +p. =0 (a)
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APPENDIX A=2

EQUATIONS OF MOTIGHN

This appendix contains the equations of motion for a thin cylindrical
anisotropic shell; which were referenced in the various chapters of this
report. The contents are divided into two parts: part one deals with the
Tinear system operators and part two, with the non=1inear.

a) Equations of motion for a cylindrical shell: linear system
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APPENDIX A=-3

The matrices referenced in the course of our analytical developments
are given in this appendix.

The matrices are classified as follows:

[H] (Table 1)
[A] (Table 2)
(11 [L), [x] (Table 3)
[J] (Table 4)
8, [¢"] (Table 5)
(B (¢ 7 [E (Table 6)

The eight roots of the characteristic equation (4.5) are represented by
A (p=1,...8). The values for @ and Bp are defined by ;equations (4.8).

Quantities & and R are the length and radius, respectively, of each
finite element.
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TABLE 1
MATRIX [H]
(3,3)
A Hip M By
([H]) B = {0} [H] = Hoy  Hop  Hyg
3,3 C
Hyp M3y Hgg

Here we shall only be presenting the coefficients appearing in equation

2 2
Hyp = iy = by
H.. = =nih.

12
Hoy = Hyp

2 2

H = =37\h(nzh + )+ 713 /R

13 5 © P12 Pia

2 3 2 2

H23 = mn(l +n ) p25/R - ﬁpzz = Qi p55/R + nia hl].

5 [ J 2
with hl = P33 = p36/m b p66f4R
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TABLE 2

8
§ (8.8) (8,1)

Al5,q) = A(1.q) aq

A(7,9) = A(3,9) o

Y
Al8,q) = A(4.,9) a
A A/R
a =ed and g=1, ..., 8

4

(A-3.1)
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TABLE 3

MATRICES ]

[T] and [R]
(8,8) (3,8)

with {C} = {C]9 CZ’ coos CB}

[RI = LI [XI
(3,8) (3.8) (8,8)

L{1,q) = aq

L(2.q) =1 g=T1, ..., 8

L{3.q) = gq

ij/R
X(p,q) =e " sip =g

psq =1, ...

X(p.q) =0 stp#4
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MATRICE [Q]
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TABLE 5

v

MATRICES [B" ] and [C"]
(8,8)  (8,8)

[o
=y
<

*
[B+] [B] ;
N L A BT
[ctl (8,8) [c 1} (8.8)
(8,8) (8,8)

p,g =1, ...

where b o= {% oty bﬁji] sin® ne

pq 2 R’:' | P4
= Cgl) + C ) sin no cos nb
Pq ag? | Pa

- wWith a(l) = (B A+ no J{B A + no)

‘ PY pp PTg Y q
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TABLE 6
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Divection of resuiftant constraints

Divection of resultant moments

FIGURE 1: Differential elements for thin shells
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(b) Resultant couples and external loads
FIGURE 3: Differential elements for cylindrical shells
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FIGURE 4: Nodal displacements at nodes i and j of a cylindrical element
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