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NON-LINEAR ANÂLYSIS 0F THIN CYLINDRICAL SHELLS

ABSTRACT

A theory to predict the influence of geometnc non-linearities on the

natural frequencies of an empty anisotroptc cy11ndnca1 she11 was presented

in this report. It was a hybrid of finite élément and classical thin shell

théories. Sanders-Koiter's non-linear and strain-displacement relations

were used. Dtsplacement functions were evaluated using linearized équations

of motion. Modal coefficients were then obtained for thèse displacement

functions. Expressions for the mass, linear and non-linear stiffness

matrices were den'ved through the finite élément methocL The uncoupled

équations were solved with the help of eHiptic functions. The period and

frequency variations were first determined as a function of shell amplitudes

and then comparée! with the results in the literature.
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CHAPTER l

INTRODUCTION

1.1 Général

Thin she11s are structures that have been widety used in a van'ety of

fields. The diversity of their applications is extensive, from space

vehides to home app1 lances. Consequently, the analysis of thin shells

under static or dynamic load has been the focus of many théories. Most of

the r'esearch in this fie1d has involved analysis of linear thin shetls. The

results have proven to be satisfactory in cases where deflections of the

she11 were very small, especiaHy 1ow-1eve1 for bending, even when aHowing

for the thickness of the she11 itself. In several practicat expenments,

however, the tinear ana1ys1s was not suf-fidently précise for design âssu-

rance. In those cases, a non-linear analysis was required.

The first attempt to formulate a theory for thm she11s was derived

from Aron's général équation of elasticity in 1874. It was foHowed, in

1888, by an approximation theory known as the "First Approximation" of LOVE

[l j. Since then, the linear theory of elastic shelts bas been re-examined

trhoughout the years in the Hterature ([2] to [7]).

The non-linear theory of thin elastic she11s has also been the focus of

many studies. Thus, beginning with the tndimensiona'i etasticity équations,

there ar-e now several ar-ttcles available deating with non-geometric linea-

rities in shells of arbitrary shapes ([8] to [12]).

More specifically, several methods were developed for the analysis of

dynamic non-linear thin cylindncal she11s. Among thèse were Galerkin's

well-balanced method ([13] to [15]), the sma11 perturbation method ([16] to



[18]), the modal expansion method [19 ] and most recently the fim'te élément

method [20]. AU of thèse methods have their advantages and disadvantages.

The best test of any method is probably its général content: i.e. the method

should quantify the component displacements and provide for précise charac-

terization of the high and low frequencies of the shell.

Thèse criteria were not met in Galerkin s sma11 perturbation method,

and studies [13] to [18] applied only to the particular case where the shell

was supportée! on both edges. The moda1 expansion and finite élément

methods, however, were satisfactory on both counts.

In références [13] to [15], only latéral displacement was applied. In

[13], the restrictions of tangentiat displacement continuity were satisfted

atthough to the détriment of actual bending at the edges of the she11. In

order to meet the criteria of continuity by including bending at the edges

of the she11, Evensen fl4l modified the latéral displacement expression bv

using a symmetn'c mode to include the coupling. This modification, however,

led to actual moments at the edge of the shell such that the boundary

conditions lay somewhere between the simply supported and clamped cases.

Boundary-condi'tion ef'fects on the other components of displacement were

ignorée), moreover, in [13] and [14].

Similarly, in [15] coupling with the symmetric mode led to the deriva-

tion of motion by assuming:

a) The condition of continuity for the tangentiat components of displa-

cernent.

b) A géométrie boundary condition on the axial component.

e) A natural boundary condition.

Thèse three conditions, however, were only satisfied in a général sense.



AHuri [16] also used thèse three conditions and suggested that a

latéral displacement with three modes be indluded. The displacement and

axial bending moment were zéro at the edges of the shetl. Contrary to

Dowelt and Ventres [l5], Alturi [16] solved the probtem by using the small

perturbation method. The unknowns appean'ng in the moda1 équations were

expressed by means of an asymptoti'c séries and terms of sma11 parameter.

The formulas in [13] to [16 ] have serious drawbacks:

a) Having only assumed the form of the latéral displacement, spécial

attention must be given to the conditions of continuity for the other

components. Should thèse not be satisfied automatically, it would be

necessary to indude other modes and thèse modes are obtained intuiti-

vely. This procédure can hardty be généralized to include other shelt

geometnes.

b) It is extemely difficult to satisfy the géométrie boundary conditions

on tangential displacement, especiaHy for a circular she11.

e) The analytical solution of the problem requires several manual calcula-

tions. Thèse become increasingly difficult so that the inclusi'on of

other means becomes necessary»

d) The formulation is not applicable when the shape of the modes are not

simple analytic functions.

e) Généralizations from arbitrary shells are not valid.

Part of the disadvantages were eliminated in Chen and Babcock [17].

The sma11 perturbation rnethod was used to transform the non-linear équations

to a tinear System, by expanding the unknown variables in a power séries

with respect to a small parameter. Applying the boundary conditions of



circumferential continuity for a simply supported she11, latéral di'spla-

cernent was then obtained. The major advantage of this technique, comparée!

to other methods requiring an initiât hypothesis regarding the form of the

vibration mode, 1s that the results are not preconceived.

Other refinements were raised in Ginsberg's article [18]. The equa-

tions for a simply supported circular shell were obtained using an energy

formulation. AU three displacements, U, V and M, were considered and a

more exact theory was used. Due to algebraic difficulties encountered

during derivation of the général équations, the perturbation technique had

to be used. For this reason, therefore, limitations (d) and (e) sti11

apply.

The above mentioned shortcomings œstrict use of the methods employed

in [13] to [18 ], (Donnell's simplified non-linear theory), because the

•t-hartrv "onlar+ç t'hp ni ano nf inar'+'ta affprf Rv "i nrr>rnnra+1 nn t'hp
tt^ l ï '^1*1 \J^ l tf ti ^uf ï^t Ï 1^i» ^^ \^ ll±^ Ïd? l t <»» tj * ^^ * • ^* ^^ * lia ^d» t ^f u ^A l^-n l t ^afl ^-l> ^ ^ tw^ y t < l ^.ifl \/ l t^ \E^ l ^aA <d? t N l **di ^* t » ^d • • v^

expansion technique, Radium and Genin [19] improved upon the methods used in

[13] to [18] and eliminated the weaknesses therein by ustng Sanders-Koiter's

[10,11] général non-linear theory.

The authors of the présent paper denved and validated the général

nodal équation's for- ana1ys1s of a static and dynamic arbitrary non-linear

géométrie she11. The three displacement components were considered in thèse

cases.

There are two advantages to thèse formuattions:

a) Greater simplicity in problem formulation and solution, comparée! with

the other methods.

b) Whatever the shetl structure might be, the formultion of the équations

retains the same format once the corresponding non-linear nodal

équations are derived.



However, this method has a sen'ous disadvantages: the analytical forms

for the disptacement components app1y onty to those cases where a cylinder

is supported at both ends.

Références [13] to [19] adopted the analytical method as their nume-

rical approach to solving the problem. The fimte élément method likewise

suggests a numerical approach. This method offers many advantages, some of

which are:

a) Arbitrary she11 geometry: the method appHes equally well to the

cylinder, to the cône or to a11 other axisymmetnc shelts with positive

or négative shaped curvatures.

b) Simple indusion of thickness discontinuities, matenal property

variations, différences in materiats compnsing the shell.

e) Arbitrary boundary conditions: the problem can be resolved for a

supported, damped-free or clamped-clamped shell without changing the

displacement functions in each parti'cular case.

d) High and 1ow frequency characteristics are obtained immediately.

After adopting the fimte élément method, Raju and Rao [20] obtained,

for* various boundary conditions, frequency variation in conjunction

with the maximum normal displacement of a point situated on the average

surface of the she11.

The Sanders-Koiter's relationship was den'ved from strain-displacement

non-linear theory. A curved élément with two nodes having six degrees of

freedom each was used to restrain the she11. The displacement functions

were not derived from thin she11 theory but were tnstead described as a

cubic polynomial in relation to the orthogonal coordinate. Their algonthm



was iterative at each assumed normal displacement value, the approximate

vector and frequencies were calculated until the convergence criterion was

satisfied.

The research done in [14] to [20] was limi'ted to studies of isotropic

shells. Only Nowinski [13] made a général izatton conceming orthotropic

shells by incorporating Donnel's s1mp11f1ed theory» Ambartsumyan [21]

produced an important work involving a number of cases anisotropic shells.

1.2 Research objectives

The présent research project présents a général approach to analysis of

non-linear thin cylindn'cal anisotropic shetls. The finite élément method

was employée!» but it a hybrid, a combination of the finite élément method

and dassical shett theory. The finite élément chosen was a cylindncal

one. This choice âllowed us to use the complète equilibr'iurn équations to

détermine the displacement functions and, furtheps the mass and stiffness

matrices.

This theory proved to be more accurate than the usual finite élément

methods. In addition, if offers the advantages listed in the paragraph

bei ow, it can only be used to analyze a cylindncal she11 or a straight

conical shell with a circular section.

In order to eltminate thèse weaknesses, Radwan and Genin [19] improved

the technique, using more général non-linear theory from Sanders-Koiter's

[10-11 ]. The authors derived a valid général modal équation for analysis of

a non-linear static or dynamtc load on an arbitrary géométrie shelt. In

this particutar case, a11 three displacement components were considered.



This formulation has two advantages:

a) Définition and solution of the problem are greatly simplified, compared

to other methods.

b) Whatever the shape of the shelt, the formulation of équations has the

same format, once the corresponding non-tinear model équations have

been den'ved.

This method does nevertheless, have a sen'ous flaw; it may be applied

on1y in cases where the she11 is simply supported at the edges.

The analytical solution involves two steps:

a) The displacement functtons are determined by solving the linear System

équations. The li'near mass and stiffness matrices are then obtained

together with the eigenvalues and eigenvectors [22,23].

b) Using strain-displacement relationships from Sanders-Koiter's non-

linear theory [10,1l], the modal coefficients are obtained from the

displacement functions. The non-tinear mass and stiffness matrices for

a finite élément are then catculated with respect to modal coefficients

[19].

l. 3 Çp nt e nt s qf th e regp rt

The présent study is divided into m ne chapters, the contents of which

wi11 be described briefly.

Chapter 2 deals with a review of non-linear thin shell theory as well

as the basic méthodologies employed.



Chapter 3 proposes three non-linear differential équations of motion as

a function of the displacement of the shell surface of référence and the

components of the elasticity matrix, beginning with the général équations

for arbitrary shells and their stress-strain relatiohnships.

The displacement functions are determined in Chapter 4, by solution of

the linear Systems. With thèse functions the mass and linear stiffness

matrices for fim'te éléments are constructecL

In Chapter 5, the displacement functions défined serve as a basis for

interprétation of the modal coefficients as well as the displacement

functions déterminée! in chapter 4.

In Chapter 6, the methods for analytical solution of uncoupled non-

linear équations are descn'bed. The influence of géométrie non-Hneanties

of the walts or the frsquencies of the shelt 1s recorded.

Chapter 8 présents the atgorithm for the mass and stiffness matrices.

The numerical results obtained are reported in Chapter 8 and compared

with other rnethods.

Finally, Chapter 9 contains the général conclusions.



CHAPTER II

BASIC THEORY AND METHOD

2.1 Hypothèses under non-Hnearelastlc thin shell theory

Non-linear elastic thin shetl theory is den'ved by approximation from

the tridimensional elasticity équation. Like linear theory, it is also

based on LOVE"s "ftrst approximation" but the assumption concerm'ng the

order of magnitude of the bending bas been modifiée!.

The non-tinear theory is based upon the following hypothèses:

a) Thickness (t) is infinitesimal in comparison with the minimal radius of

curvature (R^h

b) The displacement gradients are small and the squares of the rotation do

not exceed référence surface déformation in order of magnitude;

e) The normal constraints, normal to the surface of référence are

negt igible;

d) The normals to the surface of référence remain normal after déformation

and are not subject to any elongation.

Hypothesis (a) represents the définition of thin shells (R/t > 10).

Hypothesis (b) corroborates the non-lineanties of the équations.

Explained by physical bending terminology, thèse éléments have the same

thickness as the shell itself.



10

Hypothèses (e) and (d) allow us to neglect the stresses normal to the

surface and the transversel shear déformation.

The theory based on thèse four hypothèses is known as "SANDERS-KOITER's

non linear theory [10,11 ]"; it has been adopted throughout this paper.

2.2 Method

As mentioned in paragraph 1.2, the anatysis was divided into two parts:

the first deals with linear behaviour and the second with non-linean'ties

and strain-displacement relationships.

The main steps in the method we propose are as fotlows:

a) The she11 1s subdivided into several cyli'ndncal éléments (Figure 2).

Each shet1 eleffîent 1s définsd by two nodal drdfis snd two nodal Dotnts

i and j (Figure 4). The disp'lacement functions are défi ned by:

u

w

v

(x,

(x,

(x,

9)

e)

e)

,= [N]
ôi

'' ôj

t
l

-'Ô1 !

where ; ô, represent nodal displacements, and the éléments of matnx [N]

are in général a function of position. Thèse displacement functions must,

on the one hand, adequately express real displacements of the she11 and, on

the other hand, satisfy at least the géométrie boundary conditions.



11

b) The linear component of the procédure is présentée! in référence [23],

where the displacement functions are determined by solving the three

differential équations of motion from SANDER's theory [5].

e) For the non-linear component, the modat coefficients [19] are derived

from the results obtained in the previous step.

d) The tinear and non-linear natural vibration frequency ratio 1s then

obtained for the cases of uncoupled modal équations.
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CHAPTER III

EQUATIONS 0F MOTION FOR ANISOTROPIC CYLINDRICAL SHELLS

3.1 Strain-disglaœ^ stress-strain relations

Non-Hnear SANDERS-KOITER's theory for thtn shelts postulated

différences in the first and second fundamental forms between the référence

surfaces, deformed and non deformed, as déformation measures in elongation

and bending respectively.

Generally, the déformation vector {e} is written as:

t-xx

e99

2£X9

{E}= {EL}+(eNL}:s ^ [J°U

Kee

2KX9

where subscripts "L" and "NL" mean "linear" and "non-'linear", respectively.

For a cylindncal she11, the expressions for {e^} and {e^^} are given

by:
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3U
3X

1(3V+W
1Î l 96'

av , l au
9X ' R 36

{e,}- , " (3.2a)
- 3^W

17
- 1 / 92W 8V

i? 117 ~ w

- 2 92W , 3 9V 1 9U
^ ^^. -r ^. ^. - ^g. ^.

and

1 /3W,2 .1 /9V 1 9U ,2
2 ^ 8X / ' 8 ^ 9X R 36

±,fV-8wî2+if8v-13u.)2
-_J\ " --^Q f Tg^-^.-^.^-
2R"

1 / 3W 3W „ 3W
2R ^ 3X 89 " 9X

(ENL>- 0 (3-2b)

0

0

where U, V and M are, respectively, the axia1, tangential and radiai displa-

cements of the shell's surface of référence.

It is évident that in équations (3.2a, b) the expressions for compo-

nents K^, Kgg, et 2K are Hnear. This fits in with hypothesis (b) from

paragraph 2.1.
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This constituent relations between the stress and déformation vectors

of the surface of référence for anisotropic shelts are given as follows:

Nxx

Nee

NX9
{o} = = [P] {e} (3.3)

"XX

"90

%

where [P ] is the matrix of etastidty.

The éléments p,, in [P] détermine the anisotropy of the shetl, which

dépends upon the mechanical characteristics of the structure's material.

In général, this irnplies that:

PU

PEI

0

P41

P51

0

Pl2

P22

0

P42

P52

0

0

0

PSS

0

0

P63

PI 4

?24

0

P44

P54

0

PIS

P?5

0

P45

PBS

0

0

0

PSS

0

0

P66

P] = (3.4)
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3.2 Equations of equilibrium

By app1y1ng the virtual work pnnciple to the infimtesimal élément of

the deformed surface of référence, the five équations of equilibnum,

describing the non-tinear behaviour of an arbitranly forrned she11, are then

obtained (appendix A-l).

By eliminating shear forces Q,, and Q^ by means of équations (A"1.5d,e),

when extemal loading 1s non-existent, we obtain:

^^^-,7i?i-^li-t(Nxx+Nee' - ° <3-5a)

l!^+3"+', !Hee. ^ l, !Mxe . i-(,,,<..„+M.. )+
R" 30— T 9)T~ T ,j 99— T 2R 37~ ~ R v VXQ 'T- V9"96

1 A / M -l- N \ n f "î. Rh^
" „ V < "vv -r "an / . " v.^"/

2 3x

!2M-^32N^L,a2M!'i-^-i, +,.N,,^A,
J~"r ET 3xîi~ T rj ^2 R "ee sx Yx"xx • Ye"x9

1 3
^ *xNxe+Ve9- ° (3-5C>

where

^^(^-^).^a-j"et ^--^-v> <3-sd)
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Substituting équations (3.2) to (3,4) for the equilibn'um équations

(3.5), we obtain new équation (3.6) for functions of the éléments p., in [P]

and and the axial, tangential and radiai displacements U, V and W of the

shell surface of référence:

L^ (U,V,W,p^) + N^ (U,V,W,p^.) = 0

4 (U,V,W,p^.) + N^ (U,V,W,p^.) = 0 (3.6)

L3 (U,V,W,p^.) +N3 (U,V,W,p^.) = 0

Functions L^ and N. (1 = l to 3) represent, respectively, the Hnear

and non-linear équations of equilibriumo Thèse équations are given in

Annendix A-2-

3.3 Matrix of elasticity

The matrix of elasticity [P ] is generally given by équation (3.4); the

présent theory can therefore be applied to:

(i) Shelts composed of only one layer or of an arbitrary number of 1so-

tropic or orthotropic layers;

(ii) Double-walled shells, w1th slabs or nbs;

(iii) Ring-stiffered shells with grooves of known characteristics;

(iv) SheHs where [P] can be expenmentally evaluated.
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Here we wi11 confine ourselves to shells composée! of only one tayer or

an arbitrary number of symmetric tsotropic or orthotropic layers arranged

relative to the surface coordinates.

For an arbitrary number of orthotropic layers [2 ], it is postulated

that there is no slippage between the layers and that the principal

directions of elasticity on every point of the shell coïncide with the

directions of the coordinate Unes.

(i) For an even number of layers, equal to 2Vs the éléments p,, of [P]

can be written as:

"ij ° 2 BU ' S - ts+1 >

Pij- 2/3 Bî-3,j-3 ' ts3 - tL '

1 == 1 to 3 andj = 1 to 6

l = 4to 6 andj = 4 to6

(3.7)

(il) For an odd number 2v + l, we obtain:

v+1
f,r 2 Bu' t.+i +

,v+1

Bt.i ^ ts ~ ts+1 ) i = l to3anûJ = Ito6

(3.8)
J .3

"ij-2/3 Bnj-3t^ + Bî-3,j-3 l ^ - t^l > ' - 4to6an<i

J = 4 to 6

where

s..sS-l-j = E^ / (1 - v^v^ ) Bl2 = E| / ° - vîv)l )

B^ = B^ = v5 E; / (1 - ^ )<s - Rs =
^12 = B21 = V2 E1 /1V2

/1V2

BS33 = °-5 GÎ2 (3.9)

BJ.== 0 elsewhere
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t^ is the x"" layer coordinate having the surfce of référence as shown in

Figure 5; (E,v^) and (E^v^) are, respectively, Young's modulus and Poi's-

son's ratio in directions x and 9 and Gs., > which is the shear modulus of

elasticity.
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CHAPTER IV

LINEAR MATRIX CONSTRUCTION

4.1 Choice and justification of the method used

In the preceding chapter, the général équations of motion for éléments

p,, of the elasticity matn'x and axial, tangential and radiai displacements,

U, V, M, respectively» of the shell's surface of référence were obtained.

The solution of thèse non-linear differential équations was highly compli-

cated.

To circumvent the difficulty, the problem was divided into two parts;

the first dealing with the linear System and the second, with the non-

Itnearittes in the strain-dtsplacement relations.

In order to obtain the stiffness and mass matrices, the displacement

functions were den'ved from the shell's équations of motion.

4.2 Disptacement functions

FoHowing the procédure described in paragraph 2.2, the shell was

subdivided into several finite éléments defined by two nodes i and j and by

components U, V and W, r-epresenti'ng axial, tangential and radiai displace-

ments, respectivety, from a point located on the shell's surface of referen-

ce.
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The linear équations of motion are given by:

! _ f l! V_y_n. -\ s 0-1 Vu'ï'"'r1j/ ~ "

4 (u,v,w^.) = o (4J)

1.3 (U,V,W,p^) = 0

The displacement functions are then.assumed to be:

U(X,8) U(x)

W(x,6) = [T] w(x) (4-2)

V(x,e) v(x)

[T] is a (3 x 3) matrix in e given in Appendix A-3 and u(x), w(x) and v(x)
%t^m •<Fitm^-4>'B<"i>y»c* ^^•^- +'lK>n v/ ^/^ns°>/^'îr»-a4*/^ •a&ni^l •f"l^»»^ «B>1">/<»
UICÏ iUUV/lt)UI(13 U» Cll'C; /S. ^VO lUlltUCC UMU UIIC OftCIIO ^IIUtak-l,Ç:lt^>UI\/0®

Assuming:

u(x).Aekx/R. v(x). Bekx/R . w(K). CCAX/R (4.3)

Substituttng (4.2) and (4.3) for the équations of motion (4»1), three

homogeneous linear functions of constants A, B and C are obtained:

A

[H] B -- {0} - (4.4)

e
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For the solution to be non-tn'vial, the déterminant of matn'x [Hjmust

be equat to zéro. This brings us to the foHowing polynomial équation

[23]:

Det([Hi). hgx8 - hgA6+b,»4 - h,»2+ hg . 0 (4.5)

The values of coefficients h^ in this eighth-degree polynomial are

given in Appendix A"3.

Each root of this équation yields a solution to the équations of motion

(4.1). The complète solution 1s obtained by adding the eight solutions

independently with the constants A^, B^ and C^ (pl,...,8), so that:

^x/R
u(x) = A e p ' (4.6a)

^x/R
v(x) = Bpe p' (4-6b)

À^X/R
w(x) » C e P' (4.6c)

The constants A^, B^ and C^ are not independent. Me can therefore

express A^ and B^ as a function of C^, for example:

Ap .apCp and Bp = PpCp , p 1,...,8 (4.7)
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The values of a^ and p^ can be obtained from the following relations:

H,i H..», a_ - Hi^
il i<; ~p i ^

(4.8)
H21 H22 BP ~ 23

where coefficients [H,,] are as given in Appendix A-3.

Substituting expressions (4.6) and (4.7) into équations (4.2), the

displacements U(x,e), V(x,e) and W(x,e) can then be expressed in conjuction

with the eight C^ constants only. Me then have:

U(X,9)

W(x,9) = [T] [R] {C} (4.9)

V(X,9)

where [R]is a (3 x 8) matrix given in Appendix A-3 and 9 is an 8th order

vector of the C_ constants:

{C} ={C^C^ . . . Cg }T

Setting [R]=[L] [X], équation (4.9) becomes:

U(x,e)

W(x,e) = [T][L][X]{C} (4.10)

V(x,e)

where matnxes [L] and [X] are given in Appendix A-3.
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To détermine the eight C^ constants, it is necessary to formulate eight

boundary conditions for the finite éléments. The axial, tangential and

radiai displacements, as we11 as rotation, wi'H be specified for each node.

The degrés of freedom at node i can be défined by the vector:

",'-("iwi <^>iï1}T

The éléments which have two nodes and eight degrees of freedom will

have i (x = 0) and j (x = 1) as nodal displacements at the boundanes:

;' -<",",(^>1',":"j^'jïJ>T-(AI("(4-11)
sj

where the terms of matrix [A], given in appendix, are obtained from matrix
Fn 1 k.. «..«-.»•« 4 ..-l .. «^4-A.^--. .. _ r> -.».^1 .• -[K j oy successTvciy seiî.iny x = u ariQ x = i.

Nultiplying équation (4.11) by [A~ ] we obtain:

{C}s[A~1]

Substituting for équations

U(x,e)

W(x,e)

V(X,9)

Thèse équations détermine

6i

°j

(4.

the

,10) we get:

[THLHXHA

displacement

-1] "T , [N]

6_.'j

functions.

6i

5^J

(4.12)
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4o3 Linear mass and stiffness matnces for an élément

The déformation vector can be obtained from équations (3.2a) and

(4.12), therefore:

[T] [0] _, 6,
{e,} = ' ' ' ' [QHA"'] 1 (4.13)

[0] [T] 6,

Setting [Q] = [j ] [X], équation (4.13) becomes:

[T] [0] _, 6, 6,
{e,} = - - N][X](A~'] 1 = [B] '' (4.14)

[0] [T] 6, 6,

Matrix [J ] is given in Appendix A-3.

Combining équations (3.3) and (4.14), the stress-strain relations can

be written as:

<s,

{a,} = [PUB] 1 (4.15)
{j

The mass and stiffness matrices can then be expressed as:

[m] = pt [NT][N] dA

[k^] = [BT][P][B] dA

where dA = Rdxde. A quick reminder to the reader: "L" means "linear".

(4.16)
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Using équations (4.12) and (4.14), équations (4»16)9 after intégration

with respect to 9 over the interval, become

[m] = pt [A~1]T TTR [XT][LT][L][X] dx (A"1]

(4.17)

[k^] . [A~1]T TTR [XT][JT][P][J][X] dx [A~1]

After working out the intégration as a function of x, we obtain:

[m]= TrRpt [Â~1]T[R'][A"1]

[k,]. TTR [A-1]T[BB'][A-1]

(4.18)

where the (p,q) term from [Rl ] is:

nç^x eiW--, .^,.o

R'(p,q)= (4.19)

L'(p,q) . t si Ap + Aq = 0

and where [BB' ] 1s

^•(P.l)., e( *P + l" WR - 1 si »„ + .„ ^ 0
F^TÇTTR e • • - ' - np • nq

BB.(p.^ (4-20)

J'(p,q) . ^ si Àp+ Àq= °

L'(p,q) and >J'(p,q) are, respectively, the (p,q) terms of the products

of matrices [LT ] [L] and [JT] [P ] [j].
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CHAPTER V

NON-LINEAR MATRIX CONSTRUCTION

5.1 Introduction

As mentioned in paragraph 4.1, the problem was solved in two parts.

The next chapter deals with the linear mass and stiffness matrices. The

objective of the présent chapter is to détermine the non-linear stiffness

matnx.

To that end, the following approach, developed in référence [19 ], was

used with particular attention to géométrie non-linean'ties. The coeffi-

cients of the modal équations were obtained through the Lagrange method.

Thus, the non-linear stiffness matnx, once calculated, was overlaid onto

•hhg "l'jn^ar* cwc'frû|^ IRûfOpa WQ orpl^^ip^ np [TJQ •t-r* l v fQpjTjtjll g-f-1 nn hQWgwop A l^p'jû^

summary of the method 1s in order.

5.2 Method

This section will be limtted to the relevant détails of the method used

to find the non-linear stiffness matnx. For further information, the

interested reader should consult référence article [19].

The main steps of this method are as follow:

a) Shell displacements are expressed as généralized product coordinate

sums and spatial functions;

b) The déformation vector is written as a function of the generalized

coordinates by separating the linear portion from the non-linear;
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e) Thèse expressions are then introduced into the Lagrange équations up to

and including the degree corresponding to the déformation energy;

d) Substituting the expressions in a) into the strain-displacement rela-

tions in SANDERS-KOITER's [10,11] non-linear method, the generalized

coordinate coefficients appeanng in the équations derived under e) are

determined in terms of spatial functions.

5.3 C oef fi ci en t s o f mo d[a 1 e q^^^^^^

If Apq' Bpq» cpq» Aprsq' Bprsq' cprsq' Dprsq and Eprsq ar-e desi9ned as

coefficients of the modal équations mentioned in step d) above for a cy1in-

dricat shell, the following expressions [19] are thus obtained:

9g^ 8f^ 3g^ 9f^ i 3h^ 3h,

AP,-^(R^-Ï>.<R^-^'+?W <5-'a>

where f, g, h are spatial functions determined by matrix [N] in équation

(4.12) and:

e
1

<^-^>.<^-^>^<^p>.<^>
(5.1b)

8h^ 9h^ 8h, 3h^ i 3h^ 9h,
°"2.011aL+ ^I!°L^- ) - ^ ( g^ ^9.+ g, ^Ë- ) (5.1c)

pq ~ 4R v 8X~39- T W 89 / 4R ' 3P 3X • 3q 9X
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'prsq ~ '•"pqnrs

'prsq ""'pq^rs

cprsq - apqcn, (5-2)

"prsq "pq"rs

Eprsq = 2ApqBrs

In équations (5.1) and (5.2), the subscripts p,q and p, q, r, s

represent the coupting between two modes. It is arranged in such a way that

équation (5.2) is written, rssp and s=q.

For consistency, équations (5,1) and (5.2) are wnt.t-en 1n matrtx

format.

Hence, thèse différent matnces can be expressed in conjunction wi'th

matrices [T], [L], [X ] and [A~1].

The following notation 1s adopted: the matn'ces with the "+" super-

script represent équations in (5.1) and the ones with the "++" superscript

represent the équations in (5.2)

Wtth the (5.1) équations, we obtain:

[A+] [A-]

[B+] = [A-1]T[XT] [B-] [X1[A-1] (5.3)

[C+] [C-] _ _
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where matrices [A' ], [B' ] and [C' ] are a function of n, 9 and c^ and p^ from

roots X^ of the spécifie equatin in (4.5) and of constants defined in

équations (4»7).

Setting

[A"] [A']

(B*] = [XT] [B'1 [Xî (5.4)

[C"] [C']

équations (5.3) become:

[A+] [A"]

[B+] = [A-1]T [B*] [A-1] (5.5)

[C+] [C*]

Matrices [A ], [B ] and [C ] are square (8 x 8) matrices,

When r=p and s=q, the équations are written

[A++]

[B++]

[C44'] = 2 [C+][C+] (5.6)

[D4+]

[E44-]

[

[

2 [

[

[

A+][

B+][

c+][

A+][

B+][

A+]

B-l

c+l

B+l

A+]
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Using équations (5.3) we then get:

[A4"1'] [A-] [A-j

[B"H'] [B-] [B-]

[C++] = 2 [A~1]T[X] [C'] [X][A-1][A~1]T[Xj [C-] [X][A~1] (5.7)

[D++] [A-] [B-]

[E'H1 [B'] [A']

Using the symetn'cal properties of matrices [X], [A'], [Bl ] and [Cl ].

The product [A~ f[A~ ] represents a matrix of a constant, wntten as

[E]. Substituting équations (5.4) in équations (5.7), we obtain:

[A't+] [A*] [A*]

[B++] m [BX]

[C++] = 2 [A-1]T [C*] [E] [C*] [A~1] (5.8)

[D++] [A*] [B]

[E++] [B*] [A*]

Setting
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[A""] [A"] [A]

[B**] [B*] [B"l

[C**] = [C*l [El [C*] (5.9)

[D**| [A*l IB*]

[E**] [B] [A]

Equations (5.8) are then written:

[A++] [Awx]

[B++] [B**I

**.

[C++] = 2 [A-1]T [C**] [A-1] (5.10)

D++] [D""]

E++] [E"]

Let us now illustrate the development of the expressions for the (p,q)
* , ,- **

tenn of matrices l A l and

For [A ] there 1s

»*(?.<,) .a^(V^)x/R (S.'D
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**
and for [A ] there is:

** ( X^+À^ +Àt. + À, )x/R
A"(P,Q) = a^ a^.^e' P ^ K • " (5.12)

the term (1 ,k) is from matn'x [E], and

»rs-^> R)-2 "^s2)-2"»

with a^) = (erÀr+nar)(esÀs + nas)

,(2)
ars' - xr\

s

r,s l»...,8 (5.13)

S1mi1ar1y, matrices [B ]...[E ] ça" be written as a function of a, p,

\, x and 9. The (p,q) terms of thèse matrices are described in Appendix

A-3.

5.4 Non-linear stiffness matrix for an élément

The non-linear stiffness matnx for an orthotropic cylindrical shell is

written [19,21]:

[kNL]= Pn[A4-"] + P22[B++] + P12 ([D++] + [ E++] ) + P33[c+4'] dA

(5.14)

where dA= Rdxde.
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Using équations (Sol), équation (5.14) is written

[k ,J = 2[A-1]T p^[A**] + p^(B ] + p^([D ] + [E ]) +

p (C ] dA [A~1]

(5.15)

Integrating the expression in parenthèses in équation (5.15) for

0 < x < A and 0 <s 9 < 2-re, and grouping the terms, we find:

[kNL]=^2[A~1]T[W[A-1] (5-16)
RR'

is

The (p,q) term in matn'x [^ ] 1s written

! \ -l. ' -l. l 4- l ^
£1k ?/„ ^ ^ÀP +Âq + Àk + XVR

G(p,q) e
(Àp + Àq + À^ + À^

si Àp+ \ +Àk+ X1^°

Ç(P'q) = (5-17)

e^ G(p»q) ^/R si Àp + ^q +xj<+ ^-j = 0

G(p,q) is a coefficient in conjunction with a, p, \ and éléments p,, in

matrix [P]. The gneral expression of G(p,q) is:
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G(p,q)- ^ ( PU + P22 + 2P]2 ) a^) i4<° + 3 ( P11 a^) a^) +

n rn . . (2} .H) . .H
P22 b^ b^'''+h2 < apÏ'bk,''+ bp^'akq' ) +

i<Pn^z«M+M)^(P,2^'-

.(^M)^'^P33(^)c^

^'M'cM'c^') (-8)

where the terms av't/ and av<-/ are given by équations (5.13). Terms b^/,
l) , f 2) ^,.. . . . . . \ .. . °"

cv*/ and c-v<~/ are coefficients appeannq in expressions for the éléments of
à à ô @ A ®

matrices [B ] and [C ] defined in équations (5.4). Thèse coefficients are

given in Appendix A-3,
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CHAPTER VI

THE INFLUENCE 0F GEOMETRIC NON-LINEARITIES 0F THE

WALLS ON THE NATURAL FREQUENCIES 0F A CYLINDRICAL SHELL

This chapter présents the solution to uncoupled équations of motion

after the mass and stiffness matrices for each élément have been assemblée!.

6.1 Global mass and stiffness matrices for the shell

The mass and stiffness matrices obtained in Chapters IV and V apply to

only one élément. After the shelt is subdivided into several cylindrical

éléments, the global mass and stiffness matrices are determined by assem-

bit ng the matrices for each éléments Assembling is done such that a11 the

équations of motion and the continuity of displacements at each node are

satisfied.

Vector-s {F,} and {F,.} represent the internai forces at each ij node

and {ô^ } and (ô^} are the displacements associated with {F^ } and {F^}. The

sums of the forces and moments at each node must be equal to the sum of the

extemal forces and the moments applied to the node:

{F'e= Fj+ F,+1

and ^ . ^
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Using thèse relations we casn overlay the mass and stiffness matrices

for the indivtduat éléments in order to obtsain the mass and stiffness

matrices for the whole shel 1 . Thèse matrices are designated as [Mi; [K. 1

and [KM, ], respectivety. They are square matrices of order NDF* (N + L),

where N represents the number of finite éléments and NDF represents the

number of degrees of freedom at each node. This is schematically represent-

ed in Figure 6.

6.2 Equations of motion

The dynamic behavtour of an empty cytindncal shell, in the absence of

extemal loads, can be represented by the following System:

[M]{6} + [K^]{Ô} + [K^]{63}= {0} (6.1)

where {ô} 1s the displacement vector; [M], [K, ] and [Ky, ] are, respective-

1y, the linear and non-linear mass stiffness matrices of the System.

In practice, very spécifie conditions are applied to the shelt bounda-

ries. Thus, matrices [M], [K| ] and [K^| ] are reduced to square matrices of

order NRDUC NDF*[N + l] - J, where J represents the number of essential

constraints. Thèse reduced matrices are written as [M1 ; ], [K,^u ] and

[K^ ]. As noted previously and to apply hereafter, the superscript "r"

means "reduced".
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The (6.1) System of équations then becomes:

[M ] {6 } + [ Kj ] {Ô } + [KM, ] {6

Setting:

l-,\ /-\ /f\ /".\ /-\ /"\
[Mvr;]{<S^} + [Kju;]{ôv'7} +[K|!j[/]{6^r/ } "{0} (6.2)

(6(r)}= [î>]{q} (6.3)

Where [<i>] represents the square matn'x for the eigen vectors of the

linear System and {q} is a time-related vector.

Substituting équation (6.3) into System (6o2)g it becomes:

r M(r'h r-l r.-i • r iA^i r .1,1 fni j_ T y^r )l!/kdï fn's\ = fni f e A\
l i'i ' J l vJ tL|J T L ^i 'Jl ïj l'-jJ -r l ^M| Jl**' J l'-j s ~ i.u/ \u--+/

Multiplying équation (6.4) by [^ ], we obtain:

T ^ T
[$T][M(r)][$]{q} + [$T][K,(r)][$]{q} + [$T][K^)][03] {q3} = {0} (6.5)

The products of matrix [^ ][W[r) ][<{>] and [<i>][K,^r; ][<t>] represent diago-

nal matrices, wntten as [M^ ; ] and [K,k ; ], respectively.

Finally, the (6.1) System of équations is written:

[M(D)](q} + [K,(D)]{q} + [ <&T] [ K^[)][ î>3] {q3} ={0} (6.6)

In this development the cancelled products are left out.
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6.3 Soljjt 1 on of y ncou pled equat i ons

We saw in the preceding paragraph how matrices contained in the linear

part of the System (6.1) could be reduced to diagonal matrices. On the

other hand, the matrix product [(j» ][K^[; ][(j) ] is not général 1y descnbed as

a diagonal matrix.

A typical équation of the (6.6) System would yiel d:

m.. q^ + ka) q_ + k(NL) a3 ="pp Hp ^ "pp ^p T Kps 'qs = u (6"

where coefficients m^ and k^1"7, represent the p1'" diagonal terms of matri-

ces [M^ ] and [K,^D^ ], respectively, and kîNL^ is the (p,s) term of the

product [<tT][K^)][<i3].

Me have NREDUC simultaneous équations of the form of (6.7). Solution

of the équations was extremely difficutt. At the first appr-oximation, we

were limi'ted to solving thèse équations by ignon'ng the coupling between

différent modes, wiîh the producî [v ][K^ir>J ][v ] îher-eby becoming d-iagonal.

Equation (6.7) would then be written.

m__ q_ + ka) q, + k(NL) q3 - 0 (6.8)
"pp ^p T "pp ^p • "pp ^p

Setting

qp(ï) =Ap ^(x) (6.9)
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which satisftes the conditions:

f (OH and fp(0)=0

Equation (6.8) becomes, after the A^ simplification

m.. <- +ka) L+k(NL) A2 ^= 0 (6.11)
mpp 6P + Kpp' °p T "pp "p "p

which is équivalent to:

mpp <p+ k^) <p + k^L) tz ( Ap/t )2 <p - 0 (6-12>

where t œpresents shell thickness.

Dividing thts last équation by m^,^, it becomes:

k(L> kiNL>
^+^L ^+^JL-t2 ( AJt )2 ^ =0 (6.13)
up ' mpp • "p ' mpp - ' PI ' up

The coefficient k^//m^^ represents the p*"' linear vibration frequency

of the she11. Me then obtain:

<p+u^p+Ap(Ap/t)24 -° (6-'4>
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where ^ ^(L)

^ - ï- (6-'5)

and k(NL)
Ap-Ï-t2 (6.16)

The solution f^(ï) of this non-linear differential équation which

satisfies the conditions in (6.1) is the JACOBI elliptic function
* *

en (w t,k ), given by:

cn(u^ t, 0 =cos(am u) =cos(i{») (6.17)

where

u = —^9— (6.18)
/ ! -' k^ sinc e

(<|j am u is called the amplitude of u)

Q = am u:

In this case:

^s^+Ap<Vt>2I1/2 t6-19'

^. __AP( Ap/t )2. (6.20)

2 [ ^ 4- Ap ( Ap/t )2 ]
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The ratio of the non-linear to linear penod is then determined by:

T... / T. = 2 K / (•a î 1 4- f A /-,.2 HA /fc^ 1 ^ } (5.21' NL '' ! L - t~ !l* '' '''''' i '' ~r '^'"'D''U)D/ vnD'i'/ 5 ' '''"''

where K=K(kp) représenta the complète intégral elliptic of the first kind

given by the infim'te sum:

W;). ^ M .(^.(H)^ ...... (^)2^2n

+ ..... ] (6.22)

The équation in (6.21) represents the influence of the géométrie non-

tineanty of the walts on the natural frequencies of an empty shell when the

équations are uncoupled. The ratto TM|/T, is expressed in conjunction with

non-dimensional ratio (A^/t) where A^ 1s th.e vibration amplitude.
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CHAPTER VII

THE ALGORITHM

The irregular cylindrical she11 was subdivided into sufficient numbers

of finite éléments. Ca1cu1ations for each finite élément were performed in

two steps: first, the lineanty and second, the non-linearity of the

strain-displacement relationships.

The computer program is written in FORTRAN IV and performed on a CDC

(model CYBER 173). The calculation of algorithm is as follows:

a) The input consists of:

1) the number of finit.e éléments

ii) the radius thickness and length of each élément

iii) the mechanical properties of each distinct section of the she11

iv) the harmonie number n

b) The program proceeds as follows for each finite élément:

b-1) for the linear component

l) the roots (p=ls.»,8) of the characteristic équation (4.5) are

déterminée! by the LAGUERRE method with the help of the ZPOLR sub-

routine from IMSL. The a^ and p^ terms are obtained from equa-

tions (4.8)
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il) calculate the intermediate iïBtrices [A], [Rl ] and [BB* ] given by

équation (4.18)

iii) the mass [m] and linear stiff'ness [kj ] matrices are then deter-

rrnned from équations (4» 17)

b-2 for the non-'linear component

i) calculate coefficients ai^, ai2^ bi1^, ciP and ci?

(r»sal;,..,8), given by équations (5.13)

*
ii) calcu'late the terms of the intermediate matrix [k^, ] défined by

équation (5.17)

in) the non-'iinear stiffness matnx [kuj ] is then obtained with theN L
h £à 1 n ff^ -Q^ u ^ f i nn f ^ 1 ^ ^
l l <. l [^ u l ^.-JUU u t Ull ^ ^ • ^. u /

e) Assemble the mass and stiffness rnatrices for the total she11 following

the procédure described in paragr'aph 6.1.

d) Application of matr'ix conditions: [M], [Kg ] and [Kyi ] are now reduced

to square matrices of order NDF *(N + l) - J, where <J l" s the number- of

applied constraint équations. On'Iy the géométrie boundary conditions

have been specified. Thus, for a she11 with free ends, <J=0; for a

simply supported shell (with V=W=0) >J=4, and for a she11 damped at

both ends, >J=8.

e) The natura'l linear frequencies u, and the corresponding modes (eigen

vectors) of the matnces [M^ ^ ]'" [K, ^ ^] are obtained, where p=l, 11,

NREDUC. [H[ ) ] and [K, {rl] are rea1 syrnmetnc matrices. The calcula-
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tion is done with the he1p of IMSL's EI6ZF subroutine. The correspond-

1ng frequencies and modes are rea'i.

f) Diagonalize the matrices [M1 }] and [K., ^ } ] according to équation

(6.5)

g) Work out the product [<}) ] [V.^ ) ] [<^ ] of system (6.6), then multiply

the result by f", where t is the she11 thickness.
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CHAPTER VIîl

CALCULATIONS AND DISCUSSION

This chapter présents tS"ie nurnencal i-esu'lts oEitained with the method

used. The influence o'f the wat'l's géométrie, non-linearity on the cylindn-

ca1 she'l'l's free vibrations is e-îîpressed by équations (6.19) and (6.21).

For a cy'iindrical shel'l having the particn'i ar physical charactenstics

given, équations (6.19) and (6..,21) have graphicaHy représentée! in

Figures 7 to 10 with respect to the non-dimensional ratio, A^/t. The

straight horizontal 'Eine se|)at"'ating the two types of curvature represents

the tinear vibration cases, v.fhere the frequency is independent of the

motion's amplitude. Two types of boundary conditions were studied. The

circumferentia'l mode was kept constant, at n=4,

8 • l M!!rll!Ei!_l£êJL^JlJiCit,ion....of.-,.an.- emEtI. .c.ïJJllÉrical_l!lÊll

The first example of ca'lcu'lations to deterTm'ne the influence of non-

Hnearities -In strain-displacemerit r-e'iations on the free vibrations of a

cy'lindrical shetl was the analyses in références [13] to [20]. The she11

had the fol'lowing properties:

E=2.96 x 107 Ib/'in2, v--0.3, R=l in, t:=0.01 in, L=-n/2 in et p=7.33 x 10~4

1b.s2/in .

The boundar'.y cond'itons were ror a she'i'l simpl.y supported at both ends,

such that U=V=N=0.

The variation in natura'! fr-equencies of this shel'l was ca'lcu'iated using

the method, we propose and comparée! to the results NOWINSKI [13] and RAJU

and RAO [20] obtained for the case of tïi=l (Figure 7).
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NOWINSKI [13] his ana1.ytica1 opinent upon DONNELL's

simplifiée! non-linear method. On'ly latera'1 displacement was considered.

For thei r part, RAiJU and RAO [20 j, beginning with an energy formulation,

used the fi ni te élément niethod.

The shelt was subdivided into four eqnal fi ni te éléments anct our find-

tngs matched resu'Its obtained by others., in particular RAJU and RAO [20].

In the case where n=4 and nt-:l (Figure 7), we observed tiiat the varia-

t'i on ratio between the linear and non'-linear péri ods decreasecl as ratio A/t

increased. The frequency ratios demonstrated inverse behaviour. A non-

1'inear trend of the strengthening type i'esulted f'rom the A/a) ratio being

positive. Thèse variations are minimal for A/u ratio values A/t be1ow 1.0.

For values above 1.0, the identified variation was more pronounced than what

NOWINSKI [13] and RAJU anrl RAO [20] obtained.

Ne are ab1e to ascertain that thèse différences might be due to

Nowinski's [13] neglecting p'iane inert'ia. Furthermore, the authors noted a

radiai dis|3'laçement that was not cancet'led out at the ends of the shel'l. As

for RAJU and RAO [20 ], who used SANDERS"KOÏTER!s [10,11] non~1inear theory,

they expressed the displacements of components a1ong the shel'l generat.or in

polynomia'i forrn.

The présent rnethod a1so accounts for the high frequency characten'stics

found for- a given value of ci rcurnferential mode n. Typicat curvatures are

shown in Figures 8, 9 and 10. Here too, non-'linearity had a strerigthening

effect.

Figure 8 shows the variations in the period and frequency ratios as a

function of A/t for m=2 and 3 on the one hand, and for mï;4 and 5 on the

other, with the more accurate form Sjeing doser to the second. The same

phenomena can be observed in Figure 9 for m;=6 and 9, and for m=7 and 8.

However in this Figure, the gaps between each pair of curves are approxima-
tety the sarne.
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Finally, for high frequencies, the variation is sma11 in the case of

m=ll and m=12 and more pronounced for m=10. The variations in ratios T»,, /T,
•^

and (d /y corresponding to the last two modes, m=13 and m=14, are left out.

With référence to T^/Tp thèse variations are tess than 1.5% and 0.004% for

m=13 and m=:14, respectively.

One of the great advantages of the finite élément method is howm easity

it can be applied to whatever the boundary conditions are. Thus, the second

calcu'lation example, the one in the RAJU and RAO [20] analysis dealt with a

cylindncal shell with circumferential constraints at both ends. We then

had V=0 as the boundary condition. The she11 had the same physical proper-

ties as the preceding one e.g.:

E=2.96 x 107 1b/in2, v=0.3, R=l in, t=0.01 in, L=iï/2 in et p=7.33 x 10~4

1b.s2/in4

The shetl was divided into four" equa'l fim'te éléments and the results

obtained by the présent methods are the saine as in référence [20] and are

shown in Figure 7. As in the first calcul at ion example, the same diffe-

renées were observée! between the two methods. Again, the trends in non-
x

lineanties are of the strengthening type, the u/u ratio increasing as A/t

increases.

More and more we are finding that r'atio TM|/T, decreases more rapidly

when VSO at both ends. So, for A/t=3.0, for example, the présent method

showed that Tm,/T, goes frorn 0.64 to 0.56, wher-eas with F^AJU and RAO's

method [20]» the decrease was froiîi 0.84 to 0.76

This is probably due to the greater f"lexi'bi1it.y of the shet1, there

being a constraint here, on1y upon circumferential displacement. On the

other hand, for both types of boundary conditions considered, the gap

between the u/uvs A/t curves is greater than between TM|/T| vs A/t.
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As in the first example as we11, the characteristics of high

frequencies were obtainecL A few typical curves are shown 1n Figures 11, 12

and 13. The non-tineanty trends are again of the strengthemng type.

Thus, in Figure 11, the pen'od and frequency van'ations in conjunction

with the ratio corresponding to modes m=2, 3 and 4 were plotted. The A/u

ratio for m=5 scarcely differs from ratio A/a) for m=4 (less than 0.02%)s and

is the reason why the curves for m=5 were not drawn. It should be noted
*

that gaps between the Tu, /T, and u /u ratios are almost identical when going

from m=2 to m=3, and from m=3 to m=4. This remark is equally valid for

Figures 12 and 13, which correspond to modes 6, 7, 8, 9 and 10, 11, 13, ISg

respectively. However;, in thèse last two cases, the curves are

comparatively much doser to each other than 1n the preceding example,

except for m=15 (its behaviour 1s doser to the linear case).

The variations 1" modes m=12, 14, 16, 17 and 18 are neg1ig1b1e (<3%).

It was noted that mode m=18 is ;of the weatening type, ratio A/u being

négative. In this case the maximum deviation in the linear behaviour is in

the order of 0.005%.

On the whole, by companng the high frequency curves for both types of

boundary condition studied, 1t can be concluded that thèse curves are doser

to each other where V=0 and more spread out where U=V=W=0.

Finally, two points that are common to the two cases of boundary

conditions shoutd be emphasized:

a) For m=l and for ait other modes, the variation in the ratio of periods

TM| /T, seems to possess an asymptotic limit when ratio A/t n ses above

2.0.

b) The influence of the géométrie non-lineanty ;of the walls is left out

in the last frequencies (m>15 for V=0).
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8.2 Couj^lJn^ af jnod^s

A'Ithough we wer'e limited to so'iving the équation of motion in the

approximation cases, the coup'ling between différent modes was ignored. The

fact nevertheless remains that the i:-)r*esent theory constitutes a général

approach to the dynamic study of non-'linear- c.ylindrical shelts.

The dynamic behaviour of the shel'li, however, is ;not adequately

described by équation (6.8). When we keep t.he non-'lineanties in minds,

therefore, the coup'Iing between différent modes can no longer be left out.

ït then becomes necessary to develop a rnethod for solving the System of

uncoup'led équations (6.7).
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IX

CONCLUSION

The methods discussed in tins j3aper' demonstr-ated the influence of geo~

metric non-lmearities of the wal'ls on the free vibrations of empty cylin-

drical shel'ls. It was a h.ybrid rnethod, based on a combination of thin shell

theory ancl the fi ni te élément method.

A cylindrica'i fi ni te élément was used, so that the displacement func-

tions could be derivecl directl.y frorn c~Jâssica1 thin she11

On'Iy with n > 2 were dea'ii,: with in this report. The solution was

divided into two parts. In part one, the d'isplacement functions were

n. hf- ^ °i n p.rl lfrïnn'i 1rln^.^p lçh^1 1 •rhonB'1^-1' l "^'^i ^'^ i ^r~N"l i'hû m^cç ânr-1 1iniQ.ari ct"iffn£Sicc.
OM VU l U^»Ui i i tj'llï i i ei^u a .-J't t •^ E t ï..y ï^',.^ s j j ^-fc.. g. &-.. t^ J U ( E <i Uj)^ tUU^ ^ Us, i i <J> i i i«^:U i ^ i^ i i i i (^ ^ <„»

matrices w.re detemnned by the firnte élément procédure. In part two, the

rnodal coefficients corresponding' t;o rion-linearities in strain-disp'lacement

relations were obtained for the d'isplacement functions by the method

deve'loped •it"t référence [19]. 11-ie non-'linear stiffness matrix was then

calcutated using the fi ni te élément method.

Nith the he'lp of a computer prograrn, variations in the free vibration

f'requencies and penods were determined in conjunction with motion amplitude

for a cy'1 indrica'l she'l 1. Deviations "1?! terms of linear vibrations were

obser'ved. T'he results obtained with this numen'cal rnethod for the two types

of boundary conditions were in agreei'nent with other analyticat and nurnencal

methods.

The rnethods developed in the présent research may be appHed to the

study of forced vibrations of a cylindrica'i she11 under dynamic bads. This

theory may also be applicable to pr'ob'iems of" normal cônes with circular

sections.
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APPENDIX A-l

SANDERS-KOITER NON-LINEAR THIN SHELL THEORY

a) 6e!leriUSMatlonl^t_Êâ!£LlJ.âTi-JM

The fi re differential équations of iïiotion f'orm Sander's-Koiter non-

linear theor-y [10,11 for thin she'Hs are (cf. Figure l):

â(A^N^) 3(AiN^} „ 9A,,
_,. — ^ ,,^ ^

9A,, A, A,, A.,

8^~ 'T ~iÇ~ ^i "' -2 3^ ^ - iÇ> "12

A-|A,, . „ . A-, ^

-t'^iNn + ^12) "f-ai ^•1 + N22) + A-^Ag p^ == 0 (a)

1N22). _, _3(A2N1.2l
9Ço ° 9Çi

9A.,

^ -ï ^ ^

8A-, A, A/, A, „
l ,i. 1X1 n ,4. 11 _cL

n 1t< <s= (i n ^, ?-

-1 l t dty-i l t de,,;» KO C. t. de,.

1 1
(n1-- - ••„'-) M^,,
l\n 1\1 11-

A.>

r— (<h NI 9 + ^yN^p) + -^- -^
£, 2 3£.i cKN^+N,,} + ^ ^ 0

M. 1)

3(A Q-p 3(A^)
J.-at- + _l_^L. .. A ^ A. f-M- + -=-CL}

22, 8
3Ç, •l "2 VR^ " Ry ' ~ 9^ A2' l-n +W

9
9Ç, A1^1N12+(t)2N22^ + A1A2 Pn - ° (e)
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S'W , 8'Aliii12> . -.. 3A1 „ 8A2

8Çi 3Ç^ "ZZ 3Ç. SA2 Q1 = ° (d)

3(A,M,,) Hl\^,y) „ 3Ay ^ 3A,
^_[^_. j. M ..__fc. „ M_ -. .-—'^.^_- ^. ^^. ,,^ -^ - ,,^ ^

t̂>0
(e)

wi t h 12=2<N12+N221'

M124<H12+IW

b) Defon'nat'i on vector

Side by side wrth ttie equilibrium équations, there is a second group of

fâ^îi âif- -l nne8 i"latuâ^ïii°î ra'1 nn f-hû efâ+'â îîf r'Ar'ii fôt p^ 1 nt' in thtè <;h©1 1 t'h^ 1 ^w nf @>1^Q<^
^^UUI^IUHJ u^t,^.. ...l ,, , «y u,,... ^uuu^ u. ...u,,» u, u i ,,„ ii, u,,^ ^.i,..., -,,,.„ .Uîi -„-. .-.->;„

ticit.y. To that jiurposes we sha'i'l be using the déformation vector {e},

given b.y:

£..,

8U1 UV 8A1 . W .1 ,2.1 ,2
—J-.+ —.4-. —.'... .{- -]v- 4. 4- A':" 4- -L àt..^ ..f. ^.....^._. .^.....,. .^— -.1., -^ y.^ .T. .^-

fi ">?- ' D
l l n.j UL,.) n.i n/i uiyf, f

^.-.•-S2.<-.uï-^.+^ ..4^4.2£22 = A,; 9Ç^ nt" Â^A^ '!3iÇ' "+' (Ç + 2" <P2 "'" 2 (p
•9

'12 ~ 2

au/ 1 8u'l y1 ;jA1 1J2 aA2
A.J -3Ç7 nl" A^' 9^ '" Â^Ag '9Ç 1" A^Â^ ^ + ^1<i)2

2
-1

(A-1.2)
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Kn

K22

-A

A

1
1A2

1A2

A2

A1

H-^

8Ç1

8(^2

W2

+

+

h

(h

8A^-

^2

9A2

9Ç1

'12 ~ 2'

9<^ -l 9<h1 "^2 SA,. 9A

î l) + (.,1- - ^) ^
Â^ 8Ç^ --r Ag 9Çg ~ A^A^ ^2 ÏÇY 'r V1 9Çg/ ' ^R^ R^

wi t h ^ M-. 4. 21.
1 ~ A.j -^ ' ^

•l 8w . "2
V2 ~ " ^ 3Ç« " R.

e. "i e.

» -2A,fÇ
8(A^) 3(A..^

3Ç-i 9 '£....

c) Boun.laiï_.con.litjons

The boundary conditions are given by

or u, •= u..,

î124H'R'1)HI2''^N11+N2<>)'1""fl

1 9M12
"l+AI, 3^z - ^N11 yli2-vn

0 T 11 s.-i2 uf "2 =ï "2

or

(A-1.3)
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«n = Mn or (^ = ^)^

for a boundary with constant ^ , where the double-barrî

pond to boundary values.

ties carres-

For boundary with constant Ç<,s we on1y have to interchange subscn'pts l

and 2 and change the sign of the term to <|).

Terms 4>, , ^ and ^ are défined in the j3?'eyious paragraph.

d ) PArAmeter_-£o!lA..CZlJJidrllc.al.^^

Ne have:

ç-i =

£n =

A, = 1

1\ = R

R.

R,-R

s,i, = U

U2 = v

w =

(A-.1.4)

Substrtuting thèse par'ameters into the five equilibri'usn équations

(A-l.l), we obtain:

3Nxx , l 3_Nxe
8x ' R 36 2R

2 a e
X6 _. J_ .1..

2R 36 •HNxx + .J + P,- 0 (a]



59

1
R

3Q
3x

'-"es

30

p

X,

p

e

1
R

n

.!NM
~ix~

= 0

3Qe
89

= o

+

1
R

1
2R

Nee

aH^
~WL+

8
3x

î ('e -

V»

^

•l. ^

xNxe + ^

Nxe|
1
R

)N69

3
86

+

(j)J\
'X

1
2

'xe

9
8x d>(

+<j)gN

Nxx+

(A"

96 +

Nee>

(b)

•1.5)

(e)

+

8M.
XX

8N
xe

n *\r\
1\ OU

= -0 (d)

'X6

R 36 ' 8xR "86 ~r 8x - l"iQ (e)
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APPENDIX A-2

0F MOTION

This appendix contains the équations of 'motion for a tlnn cylindncal

anisotropic she11; whi'ch were referenced iri the various chapters of this

report. The contents are divided into two parts: part one deals with the

Itnear System operators and part two, with the non-'linear,

a) £3MâM5!ll-Mj!!!Êi£!l_J^AJ:ZllllÉ^l£il.,J.âÊ^^

A. ^ PJ2 ^V_ + 8W^ .. o.. 33W+P1^ („ â3w-^ + 82V,
L^(U,V,W,P^.) = p^ -^j + -^ (^Q + -^) -• P^ ^ + -^- t- ^2 + 9xte

/P33 ._ P63, ^2V__ ., l .92U^ ., ,P36. , P66., /, 2^^ ^ 3 82V_ _ J_ A^
(T - -^ ^ixie+ t -^) + (-7- " ^•) (- ^2 + 2 3X86 - 2R ^

-,(».^) - (pi1 !<- ^ à -4 '¥- ^> '$+1> •• 'pj4 +>

'83W ^ , 1 /P25 , P55, / 33W . 32V^ , /,, ., 3P63^ /32V ,, l A_
:À) + Ï !' r + 'Ï (' so3' + 3et) + "J33 + ~r) 'ï + R 3XM) +

1 /„ . 3P66^ , o 93W , 3 32V 1. 32U
Ï VP36 T '1-2R-7 v~c- ,.;2^ -TI 2 ,:J ~ 2R 3x39^

9X (iU 9)<
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4(U>V»W»Pij) = ?4i
ô"U , 1"42 cô"V . ô"~W

ôx" R ôxl-ô9 ôx'
t4" + RT

(-Ô4W, ,.ô°y__ , ,ZP63 ZP63_
-.

ôx'ôe" ôx'ôô R R

&3V , 1 ô3U , 2P66 / 2ô4W

ôx'-ôO R ôx&e" R" ôxl

3 ô3V 1 ô3

2 ôx'ôQ 2R ôxô9"
r) + -l

PSI ô3U , P52 /&3V 0'"

R£- ôxô9L R"' (W &9£- R

55 AL A
&94 ô03

p 54 ô4N

Rf- ôxfc ô9fc

b) ÏSWtlmlJïLjMÊl^l^â....S:ll.Î!lÊ£^^

3W A ^ .P11 ^9W 82M^ , y 32U_ iW .g ^ y 3_V) ^
^U,V,tAf,i^j = p^ -^- —^ •+• ^J- ^-^ -^-^ " V -^-^- " ^- •^ 1- v -^

3W 3(

3X'

l /P33 „ P63,
R ^ R ^ ,^2J

/.3W .^N

V8X 962
M i.^L ... v i^_ „ M iï^ 4..^. .^ ... v ^ - .^ -^ + ^p^ + v^)

1 3V 32V , 1 W 32U 1 8U
4 8x ' ,..2 ' ^2 96 ~ 9x86 4R 39

•y
v

,2.

3x

1 8V 3t-U
2 - 4R 8x 8x96

/P11_+,P2L 9V
9X

1 9U
R 89

32U , 9W . 92W
3x89 ' 3X 3x86

,r)12 + P22,

•i au !
|9x R 39 |

1 9"-V , 1 9W , 1 9U
R ^2 + R -3i + ^ 3i

8ZW V 92W

Rfc 89£

l 9W . 3V
,2 36 86
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V . 8V
R2'3e

+ (•
)1.4..+.P24^

-4R
3V
3X

1 SU
R 89 9x'-39

/P15+!325,
~4T

9V 1 SU
9x R 36

1 33W , 1 92V
R" 30" R1- 861-

, PU +P21 +P]2+Pï
4R

8V 1 3U
3X R 89

1 3V . 3fcV

4 3x
,1 au

8x36 ' ,.n2 30 s?
1 9U 3t-V

4R 86 9x39

1 9V 9^U
4R 8x ^2

)n + P2i
4R

A
9x99 38

3U . 1 /9W^2
9x ~'~ 2 '8xJ

,Pl^+,p22, i82V 1 82U
i3x36 R ..89'-

1 8V . W , 1 /8W^2 V 8W
R 36 ' R ' ^2 ^Qj " ^2 36

2R

.P-1A + P-.
^ + (n-4^-"24! 3'-V

•dX39

1 32U
R ^2 9XI

,P.15,tP25,

3ZV 82u| l 3"W , 1 .3V

3x89 R .^2
+

R2 362 R2 "

P21 +P'12+P22,
4R

~:

3LV 1 8t-U

8x36 R ^2
l f'^..\2 ..,.. -.L i^2
8 V3x/ -r gp2 V36/

8V 3U
9X 89
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- /P21 . P5i\ 8W l '
L,(U,V,W,P^) = (-^- + -^-) ^ J- /P22 ^ P52^ ^SU A

R£- n R^ do 86£ 99'

8W 8V . „ 9V, , 1 /P33 . 3P63^ / 8W là?-U , 3W 8ZU „ 82W 8W 9V^
36 89 T " 397 ^ R ^ ~r 2R / l9x 8x39 -'~ 36 ,,..,2 " " ,..2 ~ 8x 8xj

h

,P2L+_P22 , P51_+_P52, 1 8V „ 8
2. 3U

4 8x 3x99 ' ^2 36
92U 1 3U .32V 1 8V
gg2 4R 86 8x96 4R 8x

861
+ -

33 âl/J
3x

3V
9X

8U
R 99 R 8x ^ 89

v
R

8W
3x

'36

9U
8x

2 3'
+

3 3V 9U
R 8x36 ' 2R 8x «^2 39

+
pn + P2 4. (A 1 92U

8x
2 R 3x99

•)

p,21 l lw _._ v
R 39 Br R

w
9x w 4.. (1J ?.). (

82V 1 8^J

âX2 R 9x36
•)

P22
•-! r

1 3W . V,
R 36 'T R'

8V . W , l, /8W, v€
R "r ^2' V367 ° ,,?. 99 T ^2

2R R' zr

99 -r R
V, „ rpli_+LP24.

,P15 + p;
4

,8'-V 82U

8x
2 R 3x89,)

â2V 1 3 U , P25/ 1 9W . V<
R l R 59 'T' R;•,,,,2 R 9x39

'à'Â

A
9xl

3'

R" 36l

R

8V
2 89 +

PU +P21 +P-I2+P22, . /32V 1 82U , /PZI +P

8x
2 R 9x86

.) „ („
22,
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1 8U , V,
R 89 ~r R/

1 /8V^2 . 1 /8U,2
8 l3xr +^ [Be)-

l 8V . au
4R 8x 36

/PH^b+

3V
3x

1 9U
R 36

92U

i7
3W + (

PI 2 + P22, 3V
3x

l au
R 89

9V .2.1 9M . 1 9W
R 8x39 ' R 3x ' ^2 36 ' 8x96 ^

3'-U 1 9W 3V , V 8V
3x89 ^2 '99 8x ' p2 - 3x

.P 9/1 +
(- .l.pl4. . 9V

8x
•l au

R 96
8x'

.P IR + P9K..+ (r154-r25^ 9V 1 3U
8x R 30

83k 3'-V

,,2 ,,,^2 ' ,,2 9x391
K dXdfci K ^ ^ J

+ p^.l + p.^ + p 22, j 3V 1 3U|
|9X R 96
L. _J

2.. ., ^,, ^2.

l ,8.v... y'i. j... ...L.. l". .d"iL
u •-%fea ^ [i ^-1o~V i 3V

4 9x ' ,..2 ' ,,,2 99 ' 3x36
X -4S'

4R 99 ' ,,,.2 4R 3x 9x89
x

yu,v,N,p .p -= p -j
.32W,2 , 9U 33W

~21 ^ ïx" ~~3"
9x" OA 9x-

'42 ,2,, 23"W

•8x89J

3W 83W

w 8x239

3V 92W
8x 3x89

1^1
d' 9W

9x236 9x39 3x 99
s

"t .1. f8iv
^J ~!' w
3X'

+ v
^y

8xl

2p
+ 63

9x
2 ,,,2 ' 3x

y\i
8x86'

+ (i-sy•3x39J

2 3W 3'JW

8x 86

8V 8'-U

3x 3x36
9 "N

3x29e
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8LW 8V 8W 9fcV

3x
2 39 - 9x 8x39

+
'51 ,82U ^ . 9W 83W

V8X36/ T 8X3^ + (P^ + P42)

1 /82V,2 . 1 8V 93V . 1 /8 U z , 1 SU 93U 1 82U
4^ +4txu^+47l3xtej +^2tf^-2R3x96

92V

3X?
1

4R
9U
99

93V

3X3

1 8V
4R 9x

s"u

8x 80

P52
+~^t j.f^r+4

R£- 96e R^

9W
39

3W 1 8V . 32W V 33U 1 92W

893 R2 86 802 R2 893 R2 9Q'
3V . 1 8W . 32V . L /9..VA
39-^36-^2-r,2W

V 82V

R 362
+ (

P51 + Pb2 "l /92V ,2 . 1 9V
4 '8x89/ -r 4 8x

3"V , 1 /8<-Ui

8x89'" 4R" 96'

1

4R

9U
99

8'JU 1 S'-U . 3'-V 1 SU 93V
,3 2R ,,,,2 9x96 4R 96

1 3V _ 8'JU

3X362-4R3X 393
+

tT
3W
8X

.2. T
3^U , 3W . 9 "N

?+ 3Î ' ^ + p12 3X
1 32V , 1 3W
R 3x36 ' R 9x

R

1 8W . 3£-M

,2 86 8x36
32W
3x99 R

1 9W
,2 99

9V , V . 9V
8x ' n2 8x '14

3W
9x

l 33W |
Pl̂

s

+ p 15
3W
8x

1 33W , 1 32V

R" 3x36" R"
+ (p-j-i + p^)

3W
3x
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1 8V . 32V , 1 9U
4^'8X2+4R286

1 SU . 32V 1 3V . 3U82U
3x86 4R 36 ^2 4R 9x 8x89

au , 1 /9W,
3x " 2 V3x/

32M . P2T
J~r ~W

3x'

iA^isv
R ~^2 T R 86

1 8V
R 89

M , 1 /3W,2 V 8U , V2
L36/ ~ ^2 89 'r -^2R ^2

82W . P22 / 1 . 82W , 1 9V
"P123?+1rl- R 36

2 "R 86' +

1) i^V)2+J^(.9U):
8 V3X/ ~r g^2 V39/

1 3V . 9U
4R 8x 86 - (p^ + PI^)

,3 N^ , /P21 + P22^ . / 1 3 N , 1 8V
^ 4. (_^_^_^ . („ ^ -^ + ^ + 1j

82W

3x2
A

-P1437+

P24 / 1 3 M . 1 9V'
ir ^~ R ^2 T R W,

1 92W , 1 3V
R2^t+R?ae

92|
~P15 ~2.

9x£

P25 ,- 1 8ZW . 1 8V'
R '-R ..2 ' R 39, '33

1 3W , V
R 86 ' R

8^V , 1 ^U
^2+R3X^+

1 8U
R 8x

32W , 1 8W . 32W
3x36 ' R 36 g 2

v
R

S2W

3X2

1 3W
R 8x

3V
3X '36 R ae

2 8-

9X'-89
4.

3 32V
2-R ^ 2R

32U
2 3x89

2 82W ,1 9V
R 8x89 ' R 8x

,8V, 1 8U.1 9W. 9U V . 8W, , , ,2^,3 8V
P33 l8x R"39 + R" ix ' "89' ~ 'R ' 3x"J P36 l~ R' 8x36 2R 9x
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2R
L-9U\
,2 96/

'33 8W
8x

32V , 1 92U . 1 W
3x99 ' R,,2 ' R9x

92W , 1 9W
392 T R 96

32W
8x36

v
R

92W
3x96

1 9W
R 3x

3V
36 +

'36 3W
8x

l. 93W_ + A 82V _ _]_ A.

R 3x862 2R 9X" 2R2 882

J21 1 3W . V
R 39 " R

3t-U , 9W 8"W

8x99 ' 9x 9x96

'22 1 8W . V
R 36 ~r R

1 3£-V, 1 3W. 1 8W

R962+R99+R296
32W

862 86t R

1 8W
,2 36 '99" +

3V . V 3V

R2 36 +

'24

R F 1 9W , V|
R 89 ~T Rj

_j

83N

8x 36

'25 1 8W . VJ

R 89 ' R
1 33W

R" 99'
+

1 82V
~î ~^2
r se'

,P21 + P22,

T
1 9M . V
R 86 ~r R

1 9V
4 8x

82V
8x36

1 8U

4R2 36
82U

992

1 9U
4R 96

8V
8x86

1 8V 3"U
4R 3x ^2
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APPENDIX A-3

The matrices référencée! in the course of our analytical developments

are given in this appendix.

The matrices are classified as fotlows:

[H] (Table l)

[A] (Table 2)

[T], [L], [X] (Table 3)

[J] (Table 4)

[B"L [C"] (Table 5)

** -, ,. ** -, ,- ** , ,- **

[B""j, [C""], [D""], [E""] (Table 6)

The eight roots of the characteristic équation (4.5) are represented by

^ (p = l,...8). The values for a^ and p^ are defined by ;equations (4.8).

Quantities A and R are the length and radius, respectivety, of each

finite élément.
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TABLE l

MATRIX

[H]

[H]
(3,3)

H

H

H

11

21

31

H12

H22

H32

Hl3

H23

H33

[H] B - {0}
(3,3) C

Here we sha11 only be presenting the coefficients appearing in équation

(4,8).

Hll = n hl ~ x pll

H..-. = -nXh^"12 -':""3

H21 = H12

H?g = -n2hy + X2hg

H13 = -^n2h5 + Pl2) + x3Pl4/R

HOQ = -n(l + n ) p^c/R - "Poo - n Pcc/R2 + "^ h'23 - ~"v-1' ' " / P25/" ~ "h'22 ~ " H55/'^ ' ""' "11

with ^ = pg3 - pgg/R + pgg/4R2



h3=Pl2+P33+(Pl5+P36)/R- 3P66/4R

h5 = (P]5 + 2P36 - P55/R)/R

h7 = P22 + P55/R2 + 2P25/R

h9 = P33 -L 3P36/R + 9P66/4R

h11 = (2Ps6 + P24 + 3WR + P54/R)/R

70

2

Thl IIe charactenstic équation (4«5) is:

hgÀ8 - hgÀ6 + h^À4 - hgÀ2 + hp = 0

2
where hg = (hg/r^)(p^p^ - P^)

hg = (n2/r2) [hg(h^44 + Zp^p^g + 4p^ - Zh^rp^) +

h7^1tP44 - P2H) ~ r2hflPl1 - h3P44 + 2rh3h1lPl4] +

(2/r) hg(p^4 - P^P^)

h^ = (n4/r2) th^h^p^ + hgp^pgg + (2p^ + 4pgg)(h^hg 4-

h7?11 - hl) + (P25 + (1/r) P55) • (2h3h4 - 2hnPnr) +

hnr2 (2h3h5 ~ hihn) ~ rh5 (2h7p14 + rh5h9)l +
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(n2/r) • [2 (pgg + rpgg)((h3/r) p^ - h^p^) -

2P12 ^h5h9r + h7p14 ~ h3h11r^ ~ 2P24 ^13 ~ h'ih9 ~ h7p11^

2h9P-llP25]+h9 (Pl1p22- P?2)

h^ = (n6/r2) [h^hy (2p^g + 4pgg) + pçg (h^hg + hyp^ - hj)

r hUh7 4" (P25 + (vr) P55) ' (-2rh1hn + 2rh3h5 ~P11P25 '

0/r) P]]P5s)-1 + (" /r) t2h^h^p^ + 2pgç (h^hg + hyp^j -

hj) .- 2p,^ (rh h - hgp^ç - (hg/r) p g) - 2 (pgg + rpgg)

(h.,h.,., + (1/r) p -|P + (1/r2) p^pgg " hgh ) ] +

n2 [p^ (h.^hg + hy.p^, ... hj) - (l/rKpgg + rp^)((1/r)

PHP25 + Pl1p22 " 2h3p12} ~ h7PÏ2]

i-iQ - A.jhy [p^ 4. (2-/r) n2p^ + (n4/r2) pgg :i " n2h-,

[(n"/r)(P25 + (1/r) Pss)-1- ("/r)(P25 + rp22)]
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TABLE '2

MATRÎX

(8,8)

"il

5 J l (8,8) (8,

T
with {C} = -{C.p 'Cy ».», Cg}

6rl
CI.WA ..,, S; !„ i'dw^

sA = h wi (S-)i vi ujwj (t)j vj

A(1,ci) = a.

A(2»q) - 1

A(3,q) -"f-R

A(4,q) = e

A(5,q) = A(1,q) a

q (A-3.1)

'q

A(6,9) - a,,

A(7,9) =A(3,g,) àq

A(8,q) = A(4»4) a

X^/R
a,. = e q a'nd q = 1, ...» 8
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TABLE 3

•RICES [T] and [R]

(8,8) (3,8)

U(X,9)|

w(x,e)

V(x,9)

[T] [Rr.{C}.
(3,3)(3,8)(8,1)

with {C} = {Cp Cgs ...s C^

T]
cos n9 0 0

0 e os n 8

0 0 si n n9

[R] = [L] [X]^
(3,8) (3,8) (8,8)

L('hq) = a^

L(2,q) = 1

L(3,q) = g,

8

X(p,q) = e p

X(p,q) = 0

\...x/R

si p = q

Si p f q
p,q = 1, ...s 8



TABLE 4

74

EL}=
[T

[0

]

]
(6,(

[0]|

m|
)) J

j en
(6,8)

MATRIC

[A-1]
(8,8)

; [Q]
(6,8)

{r

6j
[s, n

with. .[Q]. =:.U]. .[X].
(6,8) (6,8) (8,8)

J(1,q)=^

J(2,q) = j| (ngq + 1)

.1(3,n) = |- (B^À., - n^)K "~q"q -'--q'

.xn.2

J(4,q) = -(--jf-)

q .= 1, ...

1 ,.,.2l(5,q) = -1, (n'- + 0

J(6,q)-^(2,^+|n^.4,,^)



TABLE ,,5

MATRICES [B'"J and [C"]

(8,8) (8,8)
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I[B+]I
'[c+]!
'(8,8)

[A"

(8,8)

1 , T

*
[B"]

*
[C"]

(8,8)

[A~ ' î

(8,8)

(̂P,q) = bpq e
(Xp + Àq) x/R

p,q = 1, ..., 8

C'(p,q) - Cp^ e
(Àp +. Àq) x/R

where b
pq 2RL

l j D ...J na,:
4 pq

b'
PM

2
s in" n6

r-

°Pq = ° 4?
ci ^ + c,( )1 s'in n9 cos n6
-pq • ~pq

wi t h ,(1) „apq^(epÀp+naP)(eqÀq+rtaq5y? - -p/-.Pq/''q • -q-

^)=(n+Pp)(n+eq;

(1) - " (-^n + \)

p,q = 1, ..., 8

-pq p • "qi

"3.2a)

(A~3.2b)

(2) = (BA, + Pn^n)
'pq 'p'lq • "qT

(A-3.2c)
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** -, ,. ** -, ^ **

MATRICES [B""], [(;""], [D""]

(8,8) (8,8) (8,8)

[E**]

(8,8)

[B++]

(C+t)

lD+t]

[E ".l
(8,8)

2 [A"']

(8,8)

** _ -^
[B-

**
[C""]

**
[D""]

**
[E""]

(8,8)

[ A"'J

(8,8)

(p,q) = E b
k==1

kq
l b ... e(WVX1) X/R
M &P1 £1k e

**

C (p,q) =-= £ e
k==l kq

8 •^W-W X/R
ï. e,, .j £.11, e

-i=-.1

**

D (p,( Z b
k=1 kq

8
£ a..

1:1 "F £1ke
(W-.V.^) x/R

**
E""(p,q5 = /, a

b=1 kq
? h ,-. ^"P'"q
i, U ^ -, fc-

(WÀk+À1) X/R
]'=] "p1 ^"1k

p,q == 1, ..



77

APPENDIX B



78

Direction of résultant constraints

^'^c"^^

M,IZ

<^.>-î;
^>-."<^jr'

"\,\'^_
""\. V

...'•^""

...-'
,,^""

..^:^M

^s^
M2'i

Direction of résultant moments

FIGURE 1: Differential éléments for thin shells
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+
\.

v
,,...4

W 'l J

"e

.y

(b) Résultant couples and externa'i loads

flGURE__2: Differ'ential éléments for cylindrica'l sheils
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(a) Résultant constraints and displacements

(b) Résultant couples and external loads

FIGURE 3: Differential éléments for cylindrica'l sheTls
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X---Xj=0

X=Xj=£

dX~li-+*>. ^ — Vj

.- w;

u

•w

FIGURE 4: Nodal displacements at nodes i and j of a cy1indr'ica1 élément
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FIGURE 5: Shell composed of an odd number of arnsotropic layers
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