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NOMENCLATURE

s(t) Magnitude of the vibration signal with zéro mean

S(û)) Spectrum ofthe signal s(t)

P(t, Cù) The joint distribution function of time and frequency

Cl(î) The first order moment ofthe P(t, û)) with respect to frequency

T(û)) The first order moment ofthe P(t, û)) with respect to time

v(ï) Amplitudeofthe signal s (t)

(p{t) Phase ofthe signal s{t)

A(û)) Spectral amplitudeofthe signal S(a>)

^(û?) Spectral phase ofthe signal SÇû))

Wigner distribution

R(t, r) Instantaneous auto corrélation function

S r (t) Tm aginary part of the signal

^(/) Real part ofthe signal

WVD (t,û)) Wigner-Ville distribution

PWD (î, 0)) pseudo-Wigner distribution

SWD (t, (D ) smoothed Wigner distribution

e(t, co) Energy density in time and frequency

(p(0, T ) Kemel function

CWD (?, à?) Choi-Williams distribution

RID {t, 69) reduced interference distribution

B JC ( t, (D ) B om-Jordan-C ohen distribution
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ABSTRACT

Time-frequency analysis is relatively new in the field ofmechanical signal processing and has yet

to be applied to its ûill potential. This method of analysis is effective in the détection of faults

in machinery and, in certain instances, is the most efficient method available. In this paper, some

of the methods of time-frequency analysis such as the Wigner DistributiorL the Choi-Williams

Distribution, and the RID Distribution, are briefly reviewed and the advantages and disadvantages

ofeach are considered. The efficacy ofeach method is tested by the practical application ofan in-

house software program developed for all time-frequency methods. Firstly. computer-generated

signais are used to détermine the effectiveness of a method. Secondly, the signal recorded from

an expérimental set-up is applied in order to verify performance. Finally, the various methods are

evaluated using real-life signais recorded firom a defective gearbox and a defective dryer machine.

This paper demonstrates the effectiveness of time-frequency analysis in presenting a clear and

exact représentation of a signal, and compares the results with those obtained using the Short-

Time Fourier Transform and traditional methods of analyzing signais measured on a rotating

machine.



l. INTRODUCTION

The primary objective of all research into signal processing has been to find an efficient method

which would generate results rapidly and clearly and in a manner which could be relatively easily

interprétée!.

The Short-Time Fourier Transform (STFT), used as a time-firequency représentation of the signal

energy, was one of the first attempts to see a signal in three dimensions and obtain rapid

calculation and clear interprétation. The STFT is obtained by applying a fixed-length moving

window to the non-stationary data séquence prior to computing the spectrum. The result is a time

average ofthe signal spectrum over the window width. However, although this method provides

a time-frequency représentation of the signal, both the time and the frequency résolution are

completely dépendent upon the choice of the window length and the method does not satisfy

certain prerequisites for a joint time-frequency distribution.

Use ofthe STFT in the solution ofproblems in signal processing was followed by the development

of time-frequency methods. Researchers tried to find a way to show the distribution of signal

energy as a joint fùnction of time and frequency which. on the one hand, satisfied certain

conditions and, on the other hand, reduced the time-frequency résolution dependence on the

window.

The Wigner Distribution (WD), first used in quantum mechanics [l], has been used to overcome

the problem ofthe STFT. It was employed in signal processing by Ville in 1948 [2]. The WD
r

has very desirable properties which have been extensively investigated by Classen and

Mecklenbrauker [3]. The major draw-back of the WD is the présence of cross tenns between

frequency components in the time-frequency plane. Cross terms and their properties have been
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studied by Hlawatsch and Flandrin [4-5].

Some smoothing of the Wigner Distribution is needed to suppress the cross terms. A windowed-

Wigner Distribution by a function that is peaked around T , /?(?-), will be called a pseudo-Wigner

Distribution (PWD) [3]. Ifthe smoothing is carried out in both the time and frequency domains,

the distribution will be called a smoothed Wigner Distribution (SWD) [6]. In addition to the

Wigner Distribution, several others have been developed but all had the problem of cross terms

[7-8]. In 1966, Cohen provided a général formula for generating différent distributions [9]. Other

distributions are obtained by changing an arbitrary function called the kemel. In his récent work,

he gave a complète review ofthe time-frequency distributions [10].

Instead of smoothing the Wigner Distribution to eliminate the cross terms, Choi-Williams

introduced a new kemel which can reduce the cross terms [11]. Unfortunately, the Choi-Williams

Distribution does not completely satisfy the support properties in time and frequency. Recently,

Jeong and Williams [12] defined the conditions which a kemel must satisfy to suppress the cross

terms. This class of distribution is called the Reduced Interference Distributions (RID), and is an

improved version ofthe exponential distribution.

It can be seen that each distribution has both advantages and disadvantages; the choice of

distribution for a given practical application dépends on the problem concemed. In Section 2, the

necessary properties of a time-frequency distribution are summarized, time-frequency

distributions are compared, and their advantages and disadvantages are given.

In Section 3, the history of time-frequency applications is presented; an in-house software

developed for time-frequency distribution is discussed; and the effectiveness of the time-



frequency distribution is shown by analyzing signais measured from expérimental and on-site

tests.

2. TIME-FREQUENCY DISTRIBUTIONS

2.1 Time-Frequency Distribution Property Requirements

An idéal joint time-frequency function of signal s(t) possesses a number of important properties,

which form the basis for interpreting the fùnction as a time-frequency distribution of the signal

energy.

Thèse properties discussed in [3] are summarized as follows:

a) the instantaneous signal power at a certain time is equal to the projection ofthe P(t, û)) on the

°°_

timeaxis: ^— \P{t,û))dû) =\s(
J ' ' !^^

b) the energy density spectrum of s{t) at a certain frequency is equal to the projection ofthe

P(/,û)) on the frequency axis: ^P(t,û))dt = |«S'(fy)|'

The a and b are called time and frequency marginal conditions.

e) the first-order moment ofthe P{t,û)~) with respect to frequency may be expressed as follows



00 00

ÇiÇt)=— ^0)P{t,(ù}dw where P(t) = ^P{t,û))da
-00 -00

TheQ(/) canbe interpretedastheaveragefrequencyofthe/5(/,û)) attime/.

For real signais the average frcquency provides no information. Let us therefore assume that s (f)

is complex-valued in the form s(t) = v{t)ej'p . Where v(/) and (p{t) are real functions, v(t)

is the envelope of s(t) , and (p(t) is the phase of s(t). Using this représentation of s(ï), we find

that 0(/) = (p\t} . Therefore it can be concluded that the instantaneous frequency is an average

frequency at a particular time.

d) the first moment ofthe P(t, û)) with respect to time at a particular frequency is

00 OC

T^)=— \tP(t,û))dt Where P(û))= \P(t,û))dt
\0)\
-00 —X

ifwe consider the complex spectrum FÇû)) = A(û))ejv/ where^(û)) is its amplitude and

^(û?) is its phase angle, we can prove that T(û)) = -y/ \û)).

Thus, the average time ofthe P(t,û)) at a particular frequency is equal to the négative of the

derivative ofthe spectral phase ofthe signal.

e) the time shift: If s{t)->s(t-T) then P(t,û))-> P(t - T,a>)



f) the frequency shift: If s(t) ->• s{t)ejçïl then P{t,û)) -> P(t,û) - 0)

g) the time limited signal property.

ïfs(t) is restricted to a finite time interval only and s(t) =0 for / -< t or / > t^

then the P(t, û)) is restricted to the same time interval P(t, û)) =0 fort ^ t ^ or t > t^

h) the frequency limited signal property.

If S(û)) = 0 for û) -<û) „ or û) > û),, then P(t,û)) =0 for <y -< û? or co > co^

From a mathematical point ofview, there is an infinite number of joint functions which satisfy

thèse conditions since the conditions do not define the problem uniquely. Several distributions

have been proposed over the last fifty years but in this section only certain distributions with

desirable properties will be studied.

2.2 Time-Frequency Methods

The Wigner Distribution (WD) is one of the joint time-frequency distributions that is

fundamentally différent from the STFT. The original formulation was proposed by Wigner in

1932 and used in quantum mechanics. The Wigner Distribution of signal s(ï) is defined as

WD,(t,û))= F s(t+T/2)s\t-r/2)e~jMTdT (l)
-00

where s(t) is a continuous complex signal and "*" denotes the complex conjugate (unless

otherwise indicated, the ranges of intégrais are from - oo to oo throughout this paper.)



This représentation may be interpreted as the Fourier Transform of

R,(t.T)=s(t+T/2)s'(t-T/2) (2)

with respect to the lag variable T where R (t, r) is defined as the instantaneous auto corrélation

ofa complex signal s(t), Therefore :

WD,(t,cû)=\R^,T)e-}mdT (3)

The Wigner Distribution possesses very high résolution in both time and frequency, and it has the

properties a to h. Despite the desirable properties of the Wigner Distribution, it has two major

draw-backs: it is not necessarily non-negative and it is a bilinear function producing interferences

or cross terms for multi-component signais. TheWigner Distribution ofthesumoftwo signais s^Çt)+ s ^ (t)

1S

WD^ (t,û)) = WD^ (t, CD) + 2Re[wD^ (t,û))}+ WD^ {t,œ) (4)

which has a cross term " ^Re\WD. (t.û)} l " ' m addition to the two auto terms. Cross
s\sî

terms lie between signal components in différent régions in the time-frequency plane and are

oscillatory. They can have a peak value as high as the auto terms and make the interprétation of

the time-frequency représentation of signais very difficult. Ville used the Wigner Distribution

in signal analysis in 1948 when he rcplaced the continuous complex signal with the analytical



This représentation may be interprétée! as the Fourier Transform of

R,{t,T)=s(t+Tll)s\t-Tll) (2)
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signal. s(t) is an analytical signal ifthe imaginary part of s(t) is equal to the Hilbert transform

ofthe real part of s(t) , so that

,,«). l f^O^ (5)
n •i t -T

In the case where s (t) is an analytical signal, the Wigner Distribution is termed the Wigner-Ville

Distribution (WVD). By using the analytical signal in the Wigner Distribution: firstly, the

négative frequencies which have no physical significance for a real signal are eliminated and,

consequently, the cross terms between the négative and positive parts of the spectrum are

eliminated; secondly, the Nyquist frequency can be applied to the sampling frequency of the

signal. However, although the analytical signal éliminâtes some cross terms, there are still cross

terms between multiple components which make interprétation difficult.

In practicai applications, the w'igner Distribution requires some smoothing in order to suppress

the cross terms. The pseudo-Wigner Distribution (PWD) is defined by:

PWD,{t,co)= \s{t+Tll)s\t-Tlï)h(T}e~jardT (6)

where /?(r) is a window function or a low pass filter in order to reduce cross terms which have

oscillations of rclatively high frequencies. The pseudo-Wigner Distribution can be considered as

a frequency-domain variation ofthe Wigner Distribution.

PWD,(t,û)) = WD, (t,a)*, H{œ) (7)



filter is <î)(t, Cû) = — WD^-t, û)).
7.7T

The spectrogram has the non-negativity property which facilitâtes the interprétation of the

spectrogram as the signal energy distribution, but does not préserve the time and frequency energy

marginals ofa signal. In général, the non-negativity property often conflicts with other desirable

properties. However, a major drawback of the STFT is that it requires a trade-off between the

time and frequency résolutions. Although, the Short-Time Fourier Transform with a window that

conforms to the signal components provides maximum résolution in the smoothed Wigner

Distribution, the STFT has less concentration than the Wigner Distribution. Moreover, for

unknown signais, how can appropriate Windows be found without a priori knowledge ofthe signal

components?

Apart from the Wigner Distribution, several other distributions have been proposed. Thèse are

similar to the Wigner Distribution in that they satisfy the marginal, the instantaneous frequency

condition, and various other properties. The Rihaczek [7] and the Page [8] Distributions are two

ofthoseproposed.

The Rihaczek distribution, which gives a complex energy spectmm, is defined as

e{t,co) = -L=sÇt)S\û))e~jat (12)
127T

The real part ofthe Rihaczek distribution, which is called Margenau-Hill distribution, lacks many

desirable properties such as instantaneous frequency, but does satisfy the marginal conditions.

Page considérée! only the signal up to the présent time t and abandoned the future because it is

10



unknown. A new signal is defined as follows :

^(/')=.(0 for t'<.t

[s,(tf)=0 for t'> t

The Page Distribution for the above signal définition may be written as follows :

P -Çt,w)=2Re-^ s*Çt) S;((ù) ej(ûl 03)
v/2n " '

^
where S,~Çû))=— \s{t')e~jcût ' dt'

ITT

The Page Distribution satisfies the marginal conditions but is unable to show correctly a multi-

components signal in the time-frequency plane. Figure l shows a représentation of a multi-

components signal by the Wigner, Rihaczek and Page distributions. The signal is a sine with

frequencyû), started at t = 0 and stopped aU=/,, restarted again at? = t^ with another

frequency co^ , and ended at t = ,3. Each ofthe three distributions displays energy density where

one does not expect to fmd it.

In 1966, a method was derived that could generate an infmite number of new distributions in a

very simple way. This général distribution formula is obtained by replacing^(6?,r) with

0(?, û)) in the formula (8):

11



WD,{t,co}= ^ej(~01~M+ou)(p(0,T)s(u+T/2)s\u-T/2)dudTd0 (14)

where (p(0,T) is the two dimensional inverse Fourier transform of (!>(/, û?) and 6 and T are

respectively the frequency lag and the time lag. Formula (14) is referred to as Cohen's class of

time-frequency distributions and characterizes time-frequency distributions by an auxiliary

function, called the kemel function <p(0,T) . The properties of a distribution are reflected by

simple constraints on the kernel, and by examining the kemel one can readily be assured of the

properties of the distribution. This allows one to pick and choose those kemels that produce

distributions with prescribed, desirable properties. By using this général formula we can find the

kemel function for each of the distributions which have been defined, such as the Wigner,

Rihacezk, Margenau-Hill and Page. The kemel function for the Wigner, Rihacezk, Margenau-Hill

and Page distributions are respectively l, ejuri2, cos—and e .
2

In 1980, Choi and Williams presented a new kernel for reducing cross terms in the Wigner

Distribution. Their kemel is defined as

(p(M=É>-92T2/o (15)

where a is a parameter which trades off auto-term résolution for cross term suppression or vice

C^(r,œ)=^JJ-^exp(--("^)-)^(u-T/2).(^T/2)e-yulT^A (i6)
"' ' 4îI3/2"^ " 4T2/CT-

12



versa. By increasing a, we achieve a distribution similar to the Wigner Distribution and by

decreasing a, we eliminate the cross terms but we lose résolution in the time and frequency

domains. The Choi-Williams distribution may be written as follows :

Figure 2 shows the Choi-Williams représentation with a différent value of a for a sinusoïdal

signai with two constant frequencies. Although, the Choi-Williams Distribution satisfies the

marginal conditions, it violâtes the support properties g and h. It atténuâtes the cross terms

equally in the time and the frequency domains and provides a higher résolution than the smoothed

Wigner Distribution. Although, the Choi-Williams Distribution is the best choice for analyzing

mutli-component signais in which the components have a constant frequency content, its

résolution for signal components with significant frequency modulation or time-varying signais

is very poor. However, the Choi-Williams Distribution is insensitive to the time-scale of the

components, due to the shape ofits kemel.

By generalizing from Choi-Williams' work, a broader class of exponential distribution (ED)

defined by Diethom [13] induces a kemel ofthe following form:

-ie]/'!Tiî

<p(e,^-^ (17)

By carefully selecting parameters p,q and a, we may obtain the desired properties.

To reduce the cross terms and préserve simultaneously the properties a to h, Jeang and ^'illiams

[12] introduced a new class of time-frequency distribution, called the Reduced Interference

Distributions (RID). The RID satisfies properties a to h, as does the WD. The RID kemel should

be not only a low-pass filter but also a function of 0T which satisfies

13



|^,r)|^l for \0r\»0

where 6 and r are respectively the frequency lag and the time lag.

The kemel ofthe RID is defined as follows :

(p^{e,T)=H{6T) (18)

where H is a two dimensional low-pass filter type. The WD is not a member ofthe RID because

its kemel does not have the reduced interference property. Although the RID satisfies many

properties, it has many disadvantages. First, the RID may or may not satisfy the regularity

property and it does not have the unitary property. Secondly, the RID only reduced the height of

the cross terms and spread them over a larger time-frequency area. In particular, the RID is not

able to suppress the cross term which is located on the 0 or the r axis.

In 1966, Bom and Jordan [14] used a sinc kemel which is defmed as

,(e,^sm^ d9)
aQi

with a = 1/2 . But its property ofreducing interference distributions \vas derived from the work

ofJeang and Williams in 1992.

In 1990, a new time-frequency distribution with very interesting features, called the cone-shaped

kemel, was developed by Zhoa, Atlas and Marks (ZAM) [15]. This distribution not only

suppresses the cross terms, but also produces good résolution in both time and frequency. Their

kernel is defined as

14



sin(a9t)
aOr

<^(e,,)^,) MS"^ (20)

where g(r)=l , a =1/2.

Figure 3 shows the comparison between the Spectrogram and the ZAM Distribution. This

distribution hides the cross terms by placing them under the auto tenns.

In 1993, Louglin et al. [16] studied a général method for placing cross terms under auto terms.

They used a kemel in the form of

(p(6,T)=/(9,T)sin(a9T) (21)

Depending on the choice of f[Q,t) thèse kemels may or may not satisfy other desirable properties.

In 1994, a new kemel function called the "compound kemel" was presented by Zhang and Sato

[17]. This kemel is the product ofthe Choi-WiIliams and Margenau-Hill kemels.

(p^=exp(-27i;W/(î2) cos(27ip9T) (22)

Whereo andp are two parameters which may be identified as follows:

When o-<°o , p^ 1/2 , we obtain the Margenau-Hill Distribution;

When P-0 , we have the Choi-Williams Distribution, and

When a-°° , P-0 we get the Wigner-Ville Distribution.

In this distribution, the cross terms are transposée! with the auto terms. Consequently. the correct

value of the auto terms is slightly modulated due to cross terms. Figure 4 illustrâtes the cross-

sectional features ofboth distributions for various values ofthe parameter CT.
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3. THE APPLICATION 0F TIME-FREQUENCY ANALYSIS TO

MACHINERY DIAGNOSTICS

3.1 Brief Historical Perspective

From an application point of view, Boashash [20] was the first to use the time-frequency

technique for real problems. He applied it to geophysical exploration. The Wigner Distribution

was used by Bazelaire and Viallix [21] to obtain data to measure the absoqition and dispersion

coefficients ofthe ground and to formulate a new understanding ofseismic noise. Forrester [22]

has made a great contribution to machinery diagnostics by using the WVD in the vibration

analysis ofdefective helicopter gearboxes. He showed that signal enhancement techniques are not

capable of distinguishing tooth cracking from spalling and can be misleading in their indications

ofthe extent of damage, but WVD can detect both the type and extent offaults. Meng and Qu [23]

presented the effectiveness ofusing WVD in rotating machinery fault diagnosis.

In a séries of reports, McFadden and Wang [24-27] reviewed several définitions ofthe continuous

and the discrète WVD, implemented WVD for the détection of gear damage, and compared the

results with those fi-om existing narrow band enhancement techniques. In another application of

time-frequency analysis, Rohrbaugh [28] used the time-frequency method to find defects in

différent éléments of several sets of marine machinery, such as fans and motor-generators. Rao,

Taylor and Harrison [29] used the Wigner Distribution in the diagnosis of faults in a high-power

gas turbine. They described the advantages ofWD in providing high-resolution estimâtes ofnon-

stationary, narrow-band signais in the time-frequency domain. Another application of time-

frequency analysis to the détection offaults in a gearbox is described by Oehlmann et al. [30].

17



Williams [31] used the Reduced Interference Distributions (RID) time-frequency technique in

the analysis of signais measured from bearings. He showed that the spectrogram and Waterfall

Plot do not adequately represent time-varying signais.

The détection of faults in reciprocating machines such as internai combustion engines and pumps

is particularly difïïcult. Rohrbaugh and Cohen [3 2 J applied time-frequency methods to the

analysis of a cam-operated pump. They showed that time-frequency methods can provide more

détail about the signal, thus facilitating the détection of faults. In comparing time-frequency

analysis with the STFT and traditional methods, they found time-frequency methods to be

superior. In another work, Samimy and Rizzoni [33] présentée! the application of time-frequency

analysis to the détection of internai combustion engine knock. The transient nature and time-

varying characteristics of the signal mean that only time-frequency methods will give a

satisfactory result.

Another application of time-frequency methods is in machine tool monitoring. Zheng and

Whitehouse [34] described the potential of the Wigner Distribution for the détection of incipient

chatter. Loughlin et al. [35] discussed the application of time-frequency analysis to drilling and

grinding opérations. They demonstrated how a new technique can reveal features that do not

appear in the Short-Time Fourier Transform.

The Wigner-Ville Distribution has been applied in various fields : as an indicator ofdrill attrition

in industry or surface-fault in a diesel engine. Changes in the dynamic characteristics of ground

using seismic analysis were presented by Bigret et al. [36]. Atlas, Bernard and Narayanan [37]

gave a review of the application of time-frequency analysis to différent éléments of rotating

machine monitoring and machine tool monitoring.
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In 1992, Boashash [38] published a book about time-frequency analysis and its application. In this

book, he reviewed several articles on différent methods of time-frequency analysis and

applications ofthe analysis in several différent domains.

AU of the above papers show the potential of time-frequency analysis in différent fields of

mechanical engineering. They demonstrate the applicability of time-frequency analysis to the

solution of problems in machine monitoring. In the next section we will compare some of the

time-frequency analyses by applying thèse methods in expérimental and real cases.

3.2 Softw are for Time-Frequency Analysis of Signais

An in-house user-friendly software program has been developed for time-frequency analysis. This

program is capable of calculating and demonstrating the différent time-frequency transforms in

two and three dimensions. The program includes the Fourier spectrum analysis, the Short-Time

Fourier Transform, the Wigner-Ville Distribution, the smoothed Wigner-Ville Distribution, the

Choi-Williams Distribution, the Rihaczek-Margenau Distribution, the Bom-Jordan-Cohen

Distribution, and many other time-frequency methods. In this section, the performance of each

method is illustrated by a test signal generated by computer. The test signais are similar to those

which are often observed in machine diagnosis.

The first example, which is called a sum of sines, is a multi-component signal with constant

frequencies. This kind of signal is generated by faults such as imbalance, misalignment, looseness,

and résonance which cause the constant frequencies at N x RPM . The signal consists of three

sines with frequencies 100 Hz, 300 Hz and 1000 Hz. In the time-frequency plane, one sees three

lines at 100 Hz, 300 Hz and 1000 Hz parallel with the axis oftime and, in time-frequency-energy,
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the three sines are shown in the form of three peaks constant in time. Figure 5 shows the signal

and its Fourier spectrum. As shown in Fig. 6, the STFT of the signal présents exactly what we

expected. Figure 7 shows the Wigner-Ville distribution of the signal, and we can see that the

autoterms are contaminated by the interference tenns. It is very difficult to identify the three

frequencies without advance knowiedge ofthe signai.

The SWV (smoothed Wigner-Ville) shows the three peaks clearly in Figure 8. In the Choi-

Williams Distribution of the signal, by changing the value of a , we can obtain a good

représentation of the three frequencies, as shown in Figure 9. In the Bom-Jordan-Cohen

Distribution of the signal, shown in Figure 10, résolution is lost due to the élimination of the

cross-terms.

The second example is an amplitude-modulated cosine at 1000 Hz with frequency modulation

equal to 15 Hz, as shown in Figure 11. Cases such as a damaged gearbox and a defective bearing

usuaîly générale ampiitude-moduiated signais. Whilst it is not always possible to identify thèse

by the Fourier spectrum or time wavefonn, with time-frequency analysis it is relatively simple.

Figures 12 to 17 show the différent time-frequency représentations ofthe signal, and all thèse

methods give a clear représentation ofthe signal with varying résolution. It must be noted that the

STFT requires an adjustment of the window and the Choi-Williams method requires an

appropriate value of a in order to provide satisfactory résolution. Among thèse représentations,

the Wigner-Ville Distribution provides the best result.

Certain types of gearbox problem may result in a frequency-modulated signal that is extremely

difficult to identify. Such a signal is représentée! by a frequency-modulated cosine at 1000 Hz

with frequency modulation equal to 20 Hz, as shown in Figure 18. As shown in Figure 18, it is not

20



possible to détermine the characteristics of the signal using its Fourier spectrum. On the other

hand, time-frequency methods clearly demonstrate the time-varying characteristic of the signal,

as shown in Figures 19 to 24 . The Wigner-Ville, the smoothed Wigner-Ville, and the Choi-

Williams Distributions give better représentations ofthe signal than the others.

The iast exampie is a frequency and amplitude modulated cosine at 1000 Hz, as shown in Figure

25. This case is more complicated than the others but time-frequency methods provide clear

représentations of the signal, as shown in Figures 26 to 31. In this case, the Wigner-Ville, the

smoothed Wigner-Ville, and the Choi-Williams Distributions again give better représentations

ofthe signal than do the others.

3.3 Expérimental Study ofTime-Frequency Methods

3.3.1 Expérimental Apparatus

In this section, an expérimental installation which enables us to simulate différent defect

configurations in rotating machinery is presented. The expérimental prototype (see Figure 32)

consists ofthree distinct parts: part I, motor; part II, journal, and part III, receptor.

Part l is a three-phase asynchronous motor (550-575 V, power 2 HP). The rotating speed can vary

from 0-1725 r.p.m. Part II consists ofan interchangeable rotating shaft which is supported by two

journal bearings (SKF 1210 EK.TN9 selfaligning double row) labeled A and B. There are three

shafts on which bearings with différent defects are mounted. And Part III consists of a reducing

gearbox with a ratio of 40:1 and a brake that can produce a variable résistance torque. Parts I, II,

and III are connectée! by two couplings. An accelerometer is mounted on the expérimental

installation and is connectée! to an analyser.
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3.3.2 Tests and Results

We examined the time-frequency methods to pin-point defects of known characteristics and

location on the rolling bearing. There was a small defect on the inner raceway ofthe bearing. The

defect was created by scratching the bearing raceway with an electric pen. Figures 32 to 39 show

the signal measured on bearing A, its spectrum and all other distributions. The results for the

defective bearing were also verified by calculating the fi-equency at which the rolling éléments

passed over the defects [39]. The géométrie characteristics ofthe bearing are as follows:

pitch diameter D==69 mm

Diameter ofthe rolling body d=l 0.32 mm

Contact angle a =7.87 deg

Number ofrolling éléments N =17 (per row)

Bearing frequency of rotation F = 12.2 Hz

On the inner raceway, the frequency ofrolling body defect impact is:

F.. =
F.Nr d

l+-^-cos(a) (24)

The pass frequency on a point ofthe inner raceway is calculated and is equal to 238 Hz. The

spectrum in Figure 32 shows the default frequency, along with other frequencies. However, the

spectrum can be misleading [23]: we cannot be certain which is the default frequency unless \ve

know its spécial characteristics. In this case, the default frequency should be an amplitude-

modulated wave at approximately 238 Hz with the frequency of modulation being equal to the

rotating frequency.
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The amplitude-modulated signal at the default frcquency and at 2 x default frequency in the STFT

is shown, and we calculate the frequency of modulation and verify that it is correct and equal to

the rotating frequency.

Among time-frequency methods, the Wigner-Ville cannot provide a good représentation of the

signal due to the cross terms which are generated between the signal components. The smoothed

Wigner-Ville shows the signal even better than the STFT and we can clearly see the amplitude

modulation and easily calculate the frequency of the modulation. The Choi-Williams gives a

représentation which is not as satisfactory as that produced by the smoothed Wigner-Ville as it

is necessary to choose an appropriate value of a . The Bom-Jordan-Cohen gives a good

appearance of the signal but, again, the résolution in time and frequency is not as satisfactory as

that produced by the smoothed Wigner-Ville or the Choi-Williams. The Rihaczek-Margenau

cannot even give a good appearance ofthe signal.

Therefore, after comparing the différent time-frequency transforms of this signal we conclude

that the SWV gives the best représentation ofthe signal in this case.

3.4 Application ofTime-Frequency Methods to Industrial Problems

3.4.1 Gearbox Test

The first set of data is obtained from a defective gear train of a hoist drum in a large shovel

operating at an open pit iron mine. The data are measured by International Measurement Solutions

company in order to find the problem in the machine.

Gears générale a mesh frequency equal to the number of teeth on the gear multiplied by the

rotational speed of the shaft driving it. A high vibration level at the mesh frequency is often

23



caused by tooth error, wear of the meshing surfaces, or any other problem that would cause the

profiles of meshing teeth to deviate from their idéal geometry. Sidebands at the mesh frequency,

on the other hand, are typically due to a failure of mating teeth. Imagine a cracked tooth which

is not yet broken, and will consequently not be noticed by the operating personnel. However, it

wili, due to its weakened mechanical condition, deflect more under load than the other (healthy)

teeth when it goes into mesh. This results in a signal with amplitude modulation. Thus, an

increasing level in the sidebands spaced with rotation speed in the frequency spectmm results from

the cracked tooth.

A minimum length oftime is required to perform an FFT analysis ofeach process. Here, the time

résolution required will dépend on the period ofeach tooth mesh and the desired level ofaccuracy.

Sometimes, it is not possible to measure the signal for long enough to provide the periodicity of

shock in FFT spectrum. In our case, the process does not even last one révolution of the driven

gear.

Figures 40 to 46 show respectively the spectrum, the STFT, the Wigner-Ville, the smoothed

Wigner-Ville, the Choi-Williams, the Bom-Jordan-Cohen and the Rihaczek-Margenau

représentation ofthe signal (SPEC1). The FFT spectrum ofthe signal shows some peaks around

200 Hz and other smaller peaks at 400 Hz, 800 Hz and 1200 Hz. However, it is very difficult to

find the problem without more information, and we are unable to visualise the pattem of the

signal in the time-frequency plane. It is possible to see the amplitude-modulated signal in the

STFT ofthe signal. The gear-meshing frequency is seen to be at approximately 200Hz and three

large impacts due to three partially broken teeth at approximately 400 Hz. It is possible to find

the frequency ofthe periodicity ofthe peaks on the STFT. However, the smoothed Wigner-Ville
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gives a better représentation than the STFT. The frequency of the periodicity is found with more

précision in the smoothed Wigner-Ville représentation than in the STFT représentation. The Choi-

Williams, with an appropriate value of o", gives a représentation ofthe signal in which a part of

the energy of the first peak is dispersed between the second peak and the third peak. In the Bom-

Jordan-Cohen, the second peak is almost invisible and it is difficuît to obtain satisfactory

information about the signal. The Rihaczek-Margenau does not give a clear représentation ofthe

signal and the second peak bas completely vanished. Here, again the SWV gives the best

représentation of the signal.

3.4.2. Bearing Test

The second test was carried out on the dryer of a paper machine at the Abitibi-Consolidated

Company in Québec. A typical dryer section consists of about 60 paper-drying cylinders which

are divided into fîve top and five bottom sections, as shown in Fig. 47. The standard paper dryer

is a four- or five-foot diameter hollow cylinder ofcast iron. The dryerjoumals must support the

dryer which is extremeiy heavy and mgged. The drive ofthedryer section has a critical function

and any undesirable vibration in one ofthe cylinders can affect the passage ofthe paper over this

section. Therefore, a précise and periodic diagnosis ofthe dryer bearing is essential. An efïïcient

diagnostic method can recognize the problem before damage has occurred. For this reason, time-

frequency methods are used in this particular case to show their capacity, potential and credibility.

Figure 48 shows the measured signal on dryer # 27 and its spectrum. From the individual impacts

which appear at regular intervals in the spectmm, one can conclude that there is a problem in the

dryer. The low-level intense noise in the spectrum makes it impossible to see the amplimde
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modulations associated with the impacts. Time-frequency analysis makes the détection of this

fault a straight-forward matter. Figures 49 to 52 show the différent time-frequency

représentations of the signal. The constant impacts in time lead us to the defects which cause

frequency constants components such as the defect on the outer race ofa bearing. In this machine,

bearings play an important rôle and il is to be expected that we nrst veriry the bearing defaults.

From the characteristics of the bearings, it is possible to calculate the différent frequency of the

bearing defaults. The frequency ofthe first impact corresponds to the BPFO (ball-pass frequency

on the outer race) of the bearing and the other impacts are 2 x BPFO, 3 x BPFO,.. .. After

replacing the bearing by a new one, this diagnosis is confirmed by an inspection ofthe old bearing.

In this case, there is not a great différence between the time-frequency distributions, and the STFT

with an appropriate window may provide a clear représentation. Thus, it is not possible, in this

instance, to choose one method as being superior to the others, because the choice of method

dépends on the signal and the résolution requirement in the analysis.

4. DISCUSSION AND CONCLUSION

By comparing the results obtained from time-frequency analysis of différent mechanical signais,

we can conclude that :

Time-frequency analysis bas definite advantages over time-based vibration analysis or frequency-

based vibration analysis and thèse advantages make it a powerful tool in machine monitoring.

The STFT can give a satisfactory représentation ofa signal in the time-frequency plane provided

that an appropriate length of window for cutting the signal is chosen. The résolution in time or
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frequency is always dépendent on the length ofwindow.

The Wigner-Ville is not able to produce a satisfactory représentation of multi-component signais

due to the présence of cross terms. It is valid only for mono-frequency signais.

The smoothed Wigner-Ville is the most appropriate among the transforms which we have studied

in this paper. It gives not onîy a clear représentation ofthe signal but aîso satisfactory résolution

in time and in frequency.

The Choi-Williams may give a représentation of the signal which is as satisfactory as that of the

SWV but it is necessary to find a suitable value of a . By the Bom-Jordan-Cohen, we can obtain

an image of the signal in the time-frequency plane; however, the résolution in time and in

frcquency are not always accurate and it is not possible to calculate exactly the frequency of

modulation or the frequency and the time ofa transient peak in a time-fi-equency plane.

The Rihaczek-Margenau may not provide a satisfactory représentation of the signal when the

signal comes from a real case, but for thcoreticai signais iî gives a good représentation.

In summary, the choice of a distribution in a practical application dépends on the problem

concemed, and none of thèse distributions provides us with complète and conclusive results, thus

we cannot rank one above the others. For this reason, we recommend that researchers consider

all distributions and compare the results in each case studied.
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(e)

Figure l : Représentation of a multi components signal by (a) Wigner, (b) Rihaczek and (e)
Page distribution [14].
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Figure 2: (a) Wigner and (b), (e) Choi-Williams distributions for the sum oftwo sine waves

with(b) o-=106 and(c) o-=105[15].
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Figure 15 : Choi-Williams représentation of an amplitude-modulated wave.
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Figure 16 : Bom-Jordan-Cohen représentation of an amplitude-modulated wave.
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Figure 17 : Rihacezk-Margenau représentation of an amplitude-modulated wave.
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Figure 18 : Time and spectmm représentation of a frequency-modulated wave.
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Figure 19 : Spectrogram représentation of a frequency-modulated wave.
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Figure 20 : Wigner-Ville représentation of a frequency-modulated wave.
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Figure 21 : Smoothed Wigner-Ville représentation of a frequency-modulated wave.
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Figure 22: Choi-Williams représentation of a frequency-modulated wave.
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Figure 23 : Bom-Jordan-Cohen représentation of a frequency-modulated wave.
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Figure 24: Rihacezk-Margenau représentation of a frequency-modulated wave.
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Figure 25 : Time and spectrum représentation of a frequency and amplitude modulated wave.
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Figure 26: Spectrogram représentation of a frequency and amplitude modulated wave.
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Figure 27 : Wigner-Ville représentation of a frequency and amplitude modulated wave.
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Figure 28 : Smoothed Wigner-Ville représentation of a frequency and amplitude modulated wave.
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Figure 29: Choi-Williams représentation of a frequency and amplitude modulated wave.
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Figure 3 0 : Bom-Jordan-Cohen représentation of a frequency and amplitude modulated wave.
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Figure 31 : Rihacezk-Margenau représentation of a frequency and amplitude modulated wave.
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Figure 33 : Time and spectrum représentation ofthe signal measured on a defective bearing.
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Figure 3 5 : Wigner-Ville représentation of the signal measured on a defective bearing.
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Figure 3 6 : Smoothed Wigner-Ville représentation of the signal measured on a defective bearing.
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Figure 37: Choi-Williams représentation ofthe signal measured on a defective bearing.
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Figure 3 8 : Bom-Jordan-Cohen représentation of the signal measured on a defective bearing.
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Figure 3 9 : Rihacezk-Margenau représentation of the signal measurcd on a defective bearing.
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Figure 40: Time and spectrum représentation of the signal measured on a defective gearbox.
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Figure 4l : Spectrogram représentation ofthe signal measured on a defective gearbox.
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Figure 42 : Wigner-Ville représentation of the signal measured on a defective gearbox.
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Figure 43 : Smoothed Wigner-Ville représentation of the signal measured on a defective gearbox,
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Figure 44: Choi-Williams représentation ofthe signal measured on a defective gearbox.
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Figure 45: Bom
-Jordan-Cohen représentation ofthe signal measured on a defective gearbox.
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Figure 46 : Rihacezk-Margenau représentation of the signal measured on a defective gearbox.
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Figure 47: Paper machine dryer part.
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Figure 48 : Time and spectrum représentation of the signal measured on a defective dryer machine.
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Figure 49 : Spectrogram représentation of the signal measured on a defective dryer machine.
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Figure 50: Wigner-Ville représentation ofthe signal measured on a defective dryer machine.
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Figure 51 : Smoothed Wigner-Vme représentation of&e signal measured on a defecdve àyer machine.



tr1259.asc
150

.§1001
-1—1

t
S 501

Time-Frequency Plane Projection

0

fllB lstt: 150}
N
ï^

S-100^
e
0)
0-

2 50 \
^<<*y***Y-%Y-<'YA<'v*<*<*'A'h*h'*'ty*"'Y7*^^^^^

Il

'0 0.5 1 1.5

Time (S)
0.5

Choi Williams Transform

1 1.5
Time (S)

x 10"

1.5 150

Time (S)

2 200

100

Frequency (Hz)

Figure 52: Choi-Williams représentation ofthe signal measured on a defective dryer machine.


