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Sunnnary

A theory is présentée! for the détermination of the free vibration

characteristics of uniform or axially non-uniform anisotropic thin cylindrical

shells and the response of such shells to boundary-layer pressure fields

caused by subsonic internai flow. It is a hybrid of finite-element and

classical shell théories. The fini te éléments are cylindrical frusta and

the displacement functions are detennined frpm anisotropic shell équations.

The random pressure forces are lumped at the nodes of the fini te éléments. The

mean square response of the displacements of the shell are obtained for a

boundary-layer pressure field and some calcid.ations are conducted to illustrate

the theory.



l. INTRODUCTION

A careful study of the shells used in practical applications leads

to the conclusion that they are most often anisotropic (naturally or struc-

turally) and in many cases are anisotropic and lamir^s.r. Although the problem

of detennining the natural frequencies of isotropic shells has produced many

papers, the littérature reveals a very limited number of methods which have

been generally developed for spécial cases of anisotropic cylindrical shells.

The need is évident for a theory which can be used for the dynamic analysis

of any Kind of anisotropic circular cylindrical shell subjected to various

boundary conditions. A practical case in point is concerned with the pre-

diction of the natural frequencies of a double-walled steam generator [1-2].

This work attempts to fill thèse voids by producing a général

theory with a minimum of limitations for the free vibration characteristics

and the response of anisotropic cylindrical shells subjected to random

près sure fields which originate from the turbulent boundary layer of an in-

ternal flow.

The analysis is based on a recently developed method for the case

of isotropic cylindrical shells [4]. It is a hybrid theory based on the finite

élément method, with the displacement functions detennined by exact solution

of the équations of equilibrium of a thin cylindrical shell. The fini te éléments

are cylindrical frusta; thus a given non-uniform shell is first subdivided

into its component unifonn cylindrical segments and then, generally, each

segment is similarly sùbdivided into a ninnber of cylindrical finite éléments.



The theory for predicting the response due to random pressure fields

is developed in référence [5]. The continuous pressure field is transformed

to a discrète set of forces; then, the cross-correlation spectral density

and the mean square values of the displacement of the shell are expressed

in terms of corrélation functions of the bonndary-la.yer pressure fields.

Here the dynamics of a cylindrical shell and its response will be

considered, with the following aims: (i) to extend the theory of [4] to cases

where the shells are anisotropic and especially for the case of shells con-

sisting of an arbitrary number of orthotropic layersj (ii) to use the theory

of [5] to predict the response of such shells to a pressure field arising

from the turbulent boundary-layer of internai flow. This generaUzed theory

will be more directly pertinent to engineering applications, since in nearly

all practical cases the shells are often anisotropic; e.g., heat exchangers

and liquid métal cooled channels used in the nuclear industry. A number of

assumptions are made during the course of the investigation; a compendium of

thèse assumptions and the limitations of the theory will be given in the text.



2. FREE VIBRATION

2.1 Général Theory

A given shell is subdivided into a number of finite éléments, each

being defined by the two nodes, i and J, and the corresponding nodal circle

boundaries (Fig. l). Then, the displacement functions may be defined by

[U(x,cp), W(x,cp), V(x,cp)]T - [N] [ôj, 6^]T (l)

where {ô.} and [ô^} represent the nodal displacements, and the éléments of

[N] are in général functions of position and the shell?s aiiisotropy.

It is noted that the finite-element method yields useful results

provided that the displacement functions chosen represent adequately tïie true

displacements ; accordingly, the displacement functions should satisfy the

convergence criterion of the finite-element method stating that strain.s

within the élément should be zéro when the nodal displacements are gencrated

by rigid-body motions. To this end, we shall employ the équations of thin

cylindrical shells to obtain the displacement functions, instead of using

the more connnon arbitrary polynomial forms.

SanderTs theory [7] for thin cylindrical shells is used for the

détermination of thèse displacement functions. This shell theory whicli is

based on Lovers first a.pproximation was preferred, for the following reason:

In Sander?s theory al] strains vanish •('or small rigid body motions, wh:i ch

is not true for LoveTs or TijnoshenKoTs théories, for instance. By usin";

such displacement functions, we automat]cally satisfy the r-onvergence e'iterj on

of the finite-element method previously stated.



Figure l. Définition of the finite

élément used and the dis placement

vector associated with node i, [ô.].

2.2 Equations of Motion

Using Love's first appro-

ximation, we obtain the following

elasticity relationships between the

stress-resultant and the déformations

of the middle surface for the général

case of a multi-layer anisotropic

shell
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the éléments p^^ of the elasticity matrix [P] characterize the shelPs

anisotropy which dépends on the mechanical properties of the mat^rial of

the structure.

The strain vector (e) i.s the modified strain-displacemrnt relations

of Sanders [7] and is given by



(e}=

ex

e.'cp

2e_'xcp

^ H.x

M
9

2^.
xcp

» <<

ôU/ôx
(1/r) (ôV/ôcp) + (W/r)
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-ô W/àx2

-(1/r2) [(ô2W/ôcp2) - (ôV/àc?)^

-(2/r) (ô2W/âxôcp) + (3/2r) (ôV/âx)- (l/2r2) (ôU/ôcp).

(4)

Upon substituting équations (2) - (4) into Sanders' shell équations

of motion [7], the authors obtain the équations of equilibrium in terms of

éléments p.„ of [P] in terms of U, V and W, namcly

(ô2U/ôx2)+(l/r)p^(ôW/Qx)-p^(ô3W/ôx3)4<(Vr)(p^+p,,)-Kl/r2)(p^ +p^)-(3/4r3)p,J.12 rV33' '15 '^36; '66-

.(â2V/ôcpôx)+(l/r2)[p33 -(l/r)p^ +(l/4r2)p^^] (ô2U/ôcp2)-(l/r2) [p,, +2p^ -'33

-(Vr)p^](ô W/ôxôcp2) = 0 ,

r)[p33 +?2l +(l/r)P36 +(l/r)P5i -(3/4r2)p66l(â2U/ô(pox)4-(l/r2) [p^ +(l/r2)p +'33 ' P21 ' v'l'/i '"' /'t'36 ' ''J'/ x /F51 ~'''^/ ~TA '/F66

+(2/r)p,J(ô2V/ôcp2Hp^ +(3/r)p^ +(9/4r2)p^] (ô2V/âx2 )+[?,„ +(l/r)p,,](l/r2).'22 '52-

.(ôV/ô<p)-(l/r^)[p^ +(l/r)p^](&JW/ôcpJ)-(l/r) [2p^ 4-p^ +(3/r)p^ +(l/r)p,J."25 '55 '36 '^24 '66 '54-

.(ô'W/âcpàx'-) = 0 ,

/r)p^(ôU/ôx)-(l/r2) \_p^ +(l/r)p^5](ôV/ôcp)-(l/r2)p^^W+p^(ô3U/ôx3)+(l/r2)[p +

4. 2p^ -(l/r)p^](ô3U/âxôcp2)+(l/r3) [p^ +(l/r)p^](ô3V/Scp3)4-(l/r) [p^^ +2p 4-

+(l/r)p45 +(3/r)p^](ô3V/ôcpôx2)+(2/r3)p^5(ô2W/ôcp2)-(l/r4)p55(ô4W/ôcp4)+(^/r)p24 .

.(ô2W/ôx2)-p44(ô4W/âx4)-(l/r2)(2p45 +4p^)(ô4W/ôx2Scp2) = 0 .

(5)

Here U, V and W are, respectively, the axial, circumferential and

radiai displacements of the middle surface of the shell, and r its mean radius

(Fig. l). The solution of thèse équations will give the displacement functions.



2.3 The Displacement Functions

In the continuum, we express U, V and W of the middle surface of

the shell by

U(x,

W(x,

V(x,

9)

^
9)

^ ==:
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0

0
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0

0

0
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[T} <

un<x>

^(x)

v^(x)

where n is the circumferential wave-number. By substituting équation (6)

into équation (5) and letting

.Xx/r __ f__\ = B e'u^(x) = A eAA/l , v^(x)
xx/r , wjx) = G ewr

(6)

(7)

we obtain three simultaneous ordinary linear équations in A, B, C of the fonn

A

rm 4L" J B

e

lu J • (8)

For non-trivial solution, the déterminant of [H] must vanish, leading

t.o t.he following characteristic équation

hoXU - V +\\ - h^ + h,0 0 , (9)

where

(V^)(PUP44 - PÎ4) -

(nVr-) [h^p^ ^p^p^^ 4-4p^p^ -2h^rp^)4- h^(p^p^ -p^) - r2h^ -

-h3P44 + 2rh3hllPl4^(2/r)h9(I)llP24 -Pl4Pl2) -

(n7r') Ch^p^ +hgp^p^ +(2p4^ +4p^)(h^hg +^p^ -h^) 4-(p^ +(l/r)p^).

•<2h3Pl4 -2hllPur) +hllr2(2h3h5 -hlhll) - rhs(2h7Pi4 +rh5h9)] + ("2/r).

•C2(p25 +rp22) ((h3/r)Pu -hllPll) -^(h^r +h^p^ ^h^r) -Zp^h^ - ^^

+2h9PuP2.^ +hq (PllP99 -P^) .

- h
7^11'

11H22 ~V12'



;= (n6/r2) lh^h^2p^ +4p^) +P^\h9 +h7Pn -ÎÏ) -r2h|h^ + (p^ +(l/r)p55).

•(-2rhlhll +2rh3h5 -P11P25 -(l/r)pllp55)] + (n/r) ^2hlh?P24 +2P25(hlh9 +h7PU ~

-h^) -2p^(rh^ -h^p^ ~(h3/r)p^) -2(p^ +rp^^ +(l/r)p^p^ +(1,^^

^3h5)^2[P22(hlh9 +h7Pu -h^-<l/r)îP25 T-rP22)((l//r^uP25 +PllP22 -2h3Pl2)-

-h?PÎ2] .

= n\h^,^ +(2/r)n2p^ +(ï^/r2)p^-n\[(n3/rHp^ +{l/r)p^+(n/r)(p^ +rî>^

and the parameters h^ , i = l, 3, 5, 7, 9, 11 are given by

hl = P33 -(l/r)P36 +<l/4r^P66 ? h3 = Pl2 +P33 +(l/r)(Pl5 +P36)-(3/4r")P66 '

h5 = (l/r)(Pl5+2?36-(l/r)P66) ' h7 = P22+(l/r2)P55+(2/r)p25 '(10)

hg = p^ +{3/r)p^ +(9/4r2)p^ , h^= (l/r)[2p^ +p^ +(3/r)pçç +(l/r)p^.

This characteristic équation for anisotropic cylindrical shells which is a

2
quartic in \ , has the same général form as équation (5) of [4] for isotropic

one. The eight roots \^ may therefore be written as follows

\^ = -H^ 4- i p,^ , \^ = -H^ - i p,.^ , \^ =: -H^ + i ^ , \^ = -M,^ - i p,^ ,

(11)
X5 = Hl + i ^1 ' X6 :=H1 -1 tj'l ) X7 = M2 ''' i ^2 ' X8 =H2 ~i ^2

where H^ and p,_. are real. Each root, \ , yields a solution of équation (5),

the complète solution being obtained by the sum of all eight with the constants

AJ, BJ and CJ, j = l, 2,... 8.

For every J, the three constants Aj, BJ and CJ are related among

each other by the linear équations (8), so that u, v and w_ may be expressed

in tenns of only eight constants. To this end. we 3 et



Aj = aj CJ, BJ = pj CJ , (12)

where cfj and pj , for J = l and 3, may be expressed as follows

Q'l== "l + ia2 ? Q'3=: Q'3 + io/4 ? pl + i02 ) P3 = P3 + i84

The real and tmaginary parts of n/1, R1, 1 = 'l and 3, may be obtained from

the following relationships

all al2

a21 a22

aj

PJ
—~<

-al3

~a23

(13)

(14)

where

airn-hu-Àj PU ' ai2= -llÀjh3 , a.^ ~^(n2h^+p^)+(l/r)x^4

a2F al2 ' a22= -n~h7+^h9 ' a23= -(n/r) (1+n )p -nP^

-(n /r )pg5+ nxihu •

By inspecting the coefficients of équations (8), the other Q'J, pj can be given by

Qf2 = Qfl -i a2

a4 = a3 -1 a4

P2 = pl P2
P^ = ^ -i B.

a5 = a5 +i a6 = -a2

a6 = 0/5 -1 Q'6 = -°'l

"7 = ff7 +i ff8 = ~Q'4

a8 = a7 -1 "8 = ~ol3

P5 = P5 P6 =.P2

06 - PS -i h = pl

B7 - P7 -^ PS = P4 (15)

ftf, = ^ -i Ps = 33 •

Upon substituting the relations (l2)-(15) into équation (?) and

thence into équations (6) we obtain expressions for the displacement functions

in terms of eight constants C . Thèse expressions may be written as

"(x,cp)

W(x,cp)

V(x,ç)

= [T] [R] {G} , (16)



iT „. ... ^where [R] is given in appendix l and [G] == [C-, ... CQ]X. The eight G are

the only free constant which must be determined from eiffht boundary conditions,

four at each edge of the finite élément. Thc no^nl d i spl;u'onn'n( ,s(l''i,!T. l) ;i<

nodes l, ( x = 0 ) and j, (x == S.) arc dcfiticd by

ôi
[= [u_, w_, (dwYdx),, v^,, u^,, w^^(dwydx)^, v^,} = [A] [0} , (l?)'ni5 "ni* '•""n/ """•'i? "ni? MnJ? "njîv""n/ ""V''JJ> tnjj L"J l"'1 ?

where [A] is given in appcrniix l, its clcnent be.ing detct'mii'ieri f'rom those of

[R]. Finally, combining équations (16) and (17), we obtain

U(x,

W(x,

V(x,

<p)

^)

^
[T] [R] [A] -l

6.

[N] 1
6.

(18)

This équation defines the displacement functions in terms of iKp , x, the

éléments p. of [P1 and the nodal displacements
l J

&-.

2.4 Détermination of the Mass and Stiffness Matrices.

Substituting équations (18) into équations (4) we obtain the strain

vector [e] in terms of [6..} and [6.,} as follows:

le} =
T 0

0 T
[Q] [A]-l

ô.
[B]^ ôi

'î

(19)

where [Q] is given in Appendix l. The corresponding stress-resultant matrix

may be found from équation (2), i.e.,

[a} = [P] [e} - [P] [B]
6.

(20)

where [P] is the elasticity matrix for anisotropic shells.
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The stiffness and mass matrices for one finite élément [3] are

expressed as

[k] == JJ [B]T [P] [B] dA, [m] = pt JJ [N]T [N] dA, (21)

where dA = rdcpdx, p is the density of the shell ant t its thicKness . Inte-

grating over cp and using équations (18)-(20) we obtain

[k] = [ [A]-1]T [^r ^ [Q]T [P] [Q]dx} [A]-l-[ [A]-1]T [G] [A]-1 (22)

-l-J [nr ^ t:R^ ^R^dx} ^^3 = pt ^ ^A^1]T ^s] w1[m] = pt [ [A]-"]1 ^ ^ [R]1 [R]dx} [A]-J = pt [ [A]-"]1 [S] [A]-" (23)

where [G] and [S] are defined by the above équations.

[G] and [S] were obtained analytically for the case of isotropic

shel] in référence [4] by carrying out the necessary matrix opérations and

integrating over x in équations (22) and (23). To do this it was found

necessary to introduce several intermediate matrices, eventually obtaining

expressions for the général tenns K^- and n^. _, of [K] and [m], respectively.

For the case of anisotropic shells, the éléments of [G] and [S] are

similar to those of référence [4], for the following reason: in [4], the

(i,j)th tenns of [G] and [S] are detennined functions of the elemenls of [P]

and of the général terms, H and p, of thc roots A.'s which have the same

général form as those of équation (il). Because of the complexity of the

manipulations, only the final result will be given hore. The interested reader

is referred to référence [4] for détails.

The (i,j)th tenu of [G] is given by
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iG^

+

+

f[(£>i-û.,)^,-(£»,+Z)3)
'<; x(Bi+CO]cos[(fi,+CO/]

[A,S+(B,+C,)2]
l(D,-D,-)ÇB,+C,)

+ÇD,+D^A,]sin[ÇB,+W
[A,Z+(B,+C,Y]

[ÇD.+D^A.-ÇD^-Ds)
x(5i-Ci)]cos[(/?,-Ci)/j

Mi2+(5,-C,)2]

[(Z),+Z).)(5i-CO

+•

+

+

+(Z),-£>3MJsin[(B,-Ci)/];
[A,2+(B,-C\f]

(B,+Ci)(D.,+D3)-A,(D,-D,)
W+ÇB,+CJ2]

(5i -C,)(Ds-D^-A,(D, +Z)J
M,2+(5,-c,)2r

(24)

for all i,J = l, 2, ..., 8, except for the following éléments:

G(l,5), G(l,6), G(2,5), 0(2,6), G(.3,7), G(3,8), G(4,7), G(4,^),

G(5,l), 5(6,1), G(5,2), G(6,2), G(7,3), 0(8,3), G(7,4), G(8,4)

which can be written as follows:

^[ÇD,-D,)sm(2B,iy\-2(D,+D^in?-(B,î)6(^)^^_--"--^-

+(Z)i+D,i)/
(25)

In équations (24) and (25), Ap B , G , D^, D^, D^, D^ represent the (i,j)th

éléments, correspondingl.y, o-f matrices [A-^], [B^], [C^], [D^], [O^-l» i-D3-l and

[D^] which are given in appendix I.
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Similarly, the (i,j)th term of [S] is given by

Trr
s (.i, D

r[ÇE,-E,)A,-(E,+E,-)
= e/li'

+L

+-

+-

+:

+'-

x(B,+C,)]cos[ÇB,+C^l]
[A,2+(B,+C,y]

[(A\-£4X5i+Ci)+(£,+2?3)^i]sm[(B,+(7,)/]
[A,2+(B,+C,)2]

[(E,+E,)A,-ÇE,,-E.^
x(B,-C,)]œs[?-CO/]

[/li2+(5,-C,)2]

[?+£,)?-C,)
+(E,-E,)A,]sm{(B,-C,)l]\

[A, ;!+(fi,- C,)2]

(5, +C, )(/,,+/;,)-^, (/;,-/;•„)
[A,2+(B,+C\Y-l

(B,-C^E,-H,)-A,(E,+H,)
M^+(^-c,)2]

(26)

for all i,J = l, 2, ..., 8 except for the following éléments:

S(l,5), S(l,6), S(2,5), S(2,6), S(3,7), S(3,8), S(4,7), S(4,8),

S(5,l), S(6,l), S(5,2), S(6,2), S(7,3), S(8,3), S(7,4), S(8.4)

which can be written as follows:

5(^)=?[
L
(£, -E,) sin (25,/)+2(^+J?3) sin2 (B,l)

2B,

+ÇE,+E,y\
(27)

Here again, E^, E^,, E,, E^, B-, and C-,, in équations (2h) and (27),

represent the (i,j)th éléments of the corresponding matrices given in

appendix l.

With [m] and [k] determined, the global mass and stiffness matrices

for the whole shell, [M] and [K], rcspectively, may be constructod by
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superposition in the normal manner as describe in [4],Each of thèse matrices

is of order 4(N+l), where N is the total number of finite élément.

2.5 Elasticity Matruc

The elasticity matrix [P] given by équation (3) is quite général,

so this theory may be applied to: (i) shells consisting of single or an

arbitrary number of isotropic or orthotropic layers, (ii) double-walled,

gridwork or folded shells and (iii) shells with rings and strjngers provided

their characteristics are Known. Here we limit ourselves to shells consisting

of single or an arbitrary number of isotropic or orthotropic layers symmetri-

cally arranged relative to the coordinate surface.

For isotropic shells, the éléments p.^ of [P] are listed in référence

[4]. In the case of an arbitrary number of orthotropic layer;-; [8], we assume

thât thèse layers function concurrently without slippage and as previouslî'-

stated that the principal directions of elasticity at each point of the shell

coïncide with the directions of coordinate lines; (i) for an even number of

layers, 2v, the éléments p_. ., of [P] may be written in the form

pij ^ 2^. BiJ (ts"'ts+l)> i = 1 to 33 and J = 1 to b'

p,, = (2/3) ^ Bs_^, ,_., (t3 - t3^), i =4 to 6, and J =4 to 6.
l l-.l' J-.-! S

(ii) for an odd number, 2v+l, we obt.ain

pij = 2[BIj tv+l +1, BÎJ (ts '- ts4-l)^ i=l t°3 and J=l to 6,
5=1 ^ " "'^ (29)

Pij = ^3^BI:5,j-3 t3v4-l+^ BL3,J-3(^-t^l^- i=4 to 6 and J=4 to 6,

(28)
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where

^ . [E^/(l-^ V?] , B^ » [E^/d-^ v?] .

BÎ2 = B^l = [v^ EÏ/(1-VÏ v?3 ' B^3 = °= 0.5G:12

Fig. 2 Shells consisting

of an odd number (2\>+l)

of anisotropic layers.

t^ is the coordinate of the S"" la3^er with respect to the middle surface as

shown in Figure 2, (E^, v.,) and E^, v^) are ils Young?s modnlus and Poissants

g
ratio in the x and cp directions, respectively, and G^ is the shear modulus.

AU other terms of B^, are zéro.

2.6 Free Vibration

For free vibration, the équation of motion may be written in the form

[M] [û5 + [K] {A} = {0}, (30)

T
where [û] == [61, or,, ..., 6^^} ) N is the number of finite éléments,

[M] and [K] are real, symmetric matrices of order 4(N+l), and [6^_i_i} being

the displacement vector associated with the lower edge of the last finite

élément.
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In cases where the shell has rigid edge constraints, the Kinematic

boundary conditions must be taKen into considération. Accordingly, [K] and

[M] are redueed t® sqiaA-é mw-icef, cf order 4(N+'])-,l. xv'lier.1 .1 IR nie number

of constraint équations imposed. Thus, for a stu-'ll with tv.\> ed^^.y sup.pwt.edi

we must have v = w == 0 in the displacement vectors [6-.^ and [ô,,, -,}, and'n "n " "" """ —"^-—-—"v- •---"-" (.•-•j_j ••••" i.'-N+i^

J = 4; for a free shell, J = 0; and for one with two clamped edges J = 8.

The solution of équation (30) now follovns by standard matrix teclmiques,

ylelding the natural frequencies, u>^, i = l, 2, ..., 4(N4-l)-J, and the

corresponding eigenvectors.
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3. RESPONSE TO BOUNDARY-IAÏER PRESSURE FIELD

3.l Général Theory

In this section we are concerned with the vibration of thin anisotro-

pic cylindrical shells due to a pressure field arising from the turbulent

boundary layer of an internai subsonic flow. It is based on a recently

developped theory [5] by the author for the case of isotropic cylindrical

shells. Only an outline of the theory is given here; for a detailed account

the reader is referred to référence [5].

The équations of motion of the shell subjected to arbitrary load

is given by

EM] fy} + [C] {y} + [K] [y] - {F}, (3l)

where {y} is a nodal displacement vector, (F} is a vector of the external

forces, and [M], [G] and [K] are the mass, damping and stiffness matrices,

respectively.

Whereas équation (3l) is quite général, the particular form of its

constituent terms dépends on the particular theory used. In this theory [M]

and [K] are determined by équations (22) and (23), [C] is assunied to be

linearly related to [M] and [K], or to either one, and the external forces

(F} represent the internai random pressure field.

3.2 Assumptions

In référence [6] we have indicated how the intertial effects of a

stationnary fluid contained by the shell may be taken into account. However,

when the fluid is flowing, the shell is also subjected to "centrifugal" and

Coriolis-type pressure forces. The former have the effect of diminishing the

natural frequencies of the System, while the latter have a damping effect on

vibrations in cases where one end of the shell is free. Unless we are dealing
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with very flexible shells, very heavy fluids, or very high velocities, the

effects of thèse forces will ~be relatively small. Accordingly, for métal

shells conveying fluid with flow velocity in the normal engineering range,

thèse effects are negligible and are not taken into account.

The displacements are assumed small enough for the résultant forces

to be normal to the shellTs surface. It is also assumed that the pressure

field is spatially continuous and that it has the properties of a weaKly

stationary, ergodic process. Ve further assime that the pressure drop in

the length of the shell is sufficiently small for the mean pressure to be

considered constant over the length of the shell. Finally, the continuous

random pressure field of the deformable body is approximated by a finite set

fo discrète forces and moments acting at the nodal points [11].

3.3 Représentation of Pressure Field at Nodal Points.

As previously mentioned, the shell is divided into N finite éléments,

each of which is a cylindrical frustum. The position of the N+l nodal points

may be chosen arbitrarily (Fig. l).

Any pressure field is considered to be acting on an area S^ surroun-

ding the node e of coordinate t^ as shown in Figure 3 (a). We define the

pressure distribution acting over this area S by two mutually perpendicular

forces per unit length. We may write, for the actual résultant force per

unit length,

F(x,cp,t) = E fp^, (x,t).cos ncp + E f (x,t). sin ncp, (32)
n n

where fr,., and f^,_. are at a distance x from the oriein of the shell as
0

shown in Figure 3 (a).
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Thèse two forces acting at point A are transformed to two forces

and one moment, M, acting at the node e, as shown in figure 3 (b) .

N^

a b

Figure 3 (a) Représentation of the pressure field by a discrète force

field. (b) The équivalent discrète force field acting at the node e,

involving f^,_, f^_ and H_.LRn) "Cn """ "r"

The external force vector associated with the n"" circumferential wave number

at a typicalnode e can now be written in the following form:
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(F(t)}

/ 0

ft'i
^
•e

lp

f^(x^t) dxj

(x,-Jl,) f^,(x,,t) dx,3 3 ' K' 3 ' ' 3

fc(xp't) dxp

03)

where f^_ and f^_ are expressed in terms of the in^tantaneous pressure on

the surface, p(x, cp, t).

3,4 Mean Square Response

We proceed by first considering the free vibration of the conser-

vative System (30) and determining the natural frequencies uu.; and the

eigenvectors [ï^], i = l, 2, ..., 4(N+1)~J, where J is the number of

Kinematic boundaries.

We next form the modal matrix

W = C^, ^y •••, Î4(N+1)-J1> and define W~' W £2}. (34),(35)

Finally the équations of motion (3l) are dccoupled and the mean square

values of the displacements of the shell are expressod in tenus of the axial

and circumferential corrélation functions of the pre.ssure field, ^ (ç, o, o)

and ^ (o. T], o) , respectively; see équations (l0)-(25) of référence [5].

In the case of subsonic boundary-layer pressure fluctuations, the

streamwlse and latéral spatial corrélation fimctions have been examined

theoretically and experimentally by BaKewell at al. [9] and Clinch [10].
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BaKewell measured and derived expressions for the axial and cir-

cumferential corrélation functions in experiments with air flowing in a cylin-

drical pipe. He found the following approximate expressions for the (real)

spatial corrélations :

^ (Ç, 0, 0) M e-blsçicos a Sç, (36)

^(0, T], 0) ^ (l + e S^)-" [2 - e-"°Tl] (37)

where S = Çu/U conv. and S = T]u/U^ are the axial and circumferential

Strouhal number, ç = |x^ - x |, T| = |i"(<p.; - iy-,)| 5 œ is the center

frequency, and a, b, e, d are constants to be specified; U^^^,, and U^ are,

respectively, the convection and the centerline velocities.

The values of the constants used in thèse two expressions for axial

and circumferential corrélations dépend on the fluid. For turbulent flow in

air, the values of a, b, e and d are given in [9]

a ?= 8.7266,b = 1.0, for S,. == Çu/U,

(38)

e := 20,d == 100, for S = ^u/U

Clinch measurements in water proved that thèse constants are appro-

ximately the same for différent fluids at the same Strouhal number, at least

for sufficiently high Reynolds number.

Upon usign the exporimenta.lly based relations (36)-(38), we obtain

the following expression for the mean square response of the sliell [5]:
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4(W+_l)-J ^2

y,2(t)= E ^îzzîzr-^x^ "îr 16 ^w\M\

-W+l W+l-W+l W+l W+l N+l

x l E ^ ^,A.r\rl;,\ + 2 E E <P,Ajr»M| +
(=1 u=l (=1 A=l

W+lN+l W+lN+l 1
+ y y <?,-..î>,jrMMi + y T (P^JFLjty kf l •* j'fe l ' /„. /,„ '^pr '*';," \± Fy\ j tt

J=l k=l p=»l u=l

where 3>^ is the (qr) élément of the modal matrix [$], M^ is the élément

of the generalized mass matrix, uu^., the r"" natural frequency and r is the

-F _M . _MM
mean radius of the shell^ F^, r.^ and r'_,",^ are derived analytically in

xu

référence [5].

Equation (39) is then the response of the shell to a subsonic

boundary-layer pressure field at the nodal points q(x,cp). This response is

associated with a spécifie n, where n is the circumferential wave number

(section 2.3). By repeating the analysis for a sufficient number of n, the

total response for any point on the nodal circles may be obtained by superpo-

sition, in accordance with the asstnnption that there is no coupling between

the circuraferential wavenumbers.
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4. CÂLCUIATION AND DISCUSSION

The computer program of référence [5] has been modified to détermine

the eigenvalues, eigenvectors and the response of a given uniform or non-

unifonn anisotropic cylindrical shell subjected to a boundary-layer pressure

field. It is written in FORTRAN V language for the IBM 360/70 computer, using

double précision arithmetic throughout all the overlays.

The necessary step of the computational method may be outlined as

follows: a) We first specify the imposed boundary conditions, their number,

J, and the values of n (^ 2) for which calculations should be done; b) The

shell is then subdivided into a sufficient number. N, of finite éléments

(sufficiency in this context is related to the complexity of the structure);

e) And finally the computer program, for given input data, calculated the

mass and stiffness matrices for each élément, assembles the global mass and

stiffness matrices for the whole shell, calculâtes the natural frequencies

and the eigenvectors, détermines the damping matrix, and exécutes the necessary

steps to obtain the response.

The necessary input data for each finite élément are the mean

radius, r, wall thickness, t, length of the individual élément, Ji, material

density, p, and the éléments p. ^ of [P].

For given r, t. S,, p and p. , the computer program exécutes the

following steps for each élément: i) the eight complex roots, \^, of the

characteristic équation (9), are calculated by Newton-Raphson iterative

technique, and hence, we obtain Hp H^, ^ , p,^, cf , P^ (j = l, 2, ..., 8),



23

and a^, Ç.,; ii) the intermediate matrices are determined; iii) the displa-

cernent functions, mass and stiffness matrices, [N], [m] and [k], respectively,

are computed by the relationshpis given by équations (18), (22) and (23).

When the stiffness and mass matrices have thus been computed for

each élément, the global [M] and [K] are constructed and reduced appropriately

to taKe account of the boundary conditions.

For free vibration, the computer program proceeds to find the natural

frequencies, uui, where i == l, 2, ..., 4(N+l)-J for each n, and the corres-

ponding eigenvectors of a real square non-symmetric matrix of the spécial

form [M] [K], where both [M] and [K] are real, symmetric matrices and [M]

is positive definite.

Knowing the damping factor, the fluid velocity and its density at

each node of the structure, équation (39) is finally executed to obtain the

respcnse to a boundary-layer pressure field.

Calculations have already been conducted to test the theory in the

case of isotropic shells [5]. The free vibration characteristics of uniform

and axially non-unifonn shells were obtained for a variety of boundary

conditions [4]. The computed natural frequencies and the response were com-

pared with those obtained by other théories and from experiments ; agreement

was found to be good and, in the majority of cases, was even better with the

experiments.

Here we repeat only one calculation to test the computer program and

the modified theory. More results concerning the anisotropic shells will be

presented and discussed at the conférence.
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The set of calculations undertaken here was first studied experi-

mentally and theoretically by Clinch [12]. It is a long, simply supported

cylindrical shell conveying water with flow velocities in the range 248-

520 in/sec. The pertinent data are as follows : r = 3 in(.0762 m), L =

240 in(6.096 m), t. = 0.02.5 in( .63 x 10 m), E = 28.5 x 10 lb/in2(l.995

x 10 N/m2), v = 0.305, p = .749 x 10 lb-sec2/in (8.0048 x 103 Kg/m3).

Clinch obtained the response in the frequency range of 100-1,000 Hz, approxi-

mately.

This shell was also analysed by the theory of référence [5] by

sùbdividing the shell into 8 éléments and calculating the response for n == 2

to 6. Here we repeat the same calculations for n == 2 to 12 from which the

approxtmate "total" and the high-frequency responses of this theory are shown

in Figure 4; also shown are Clinch?s expérimental and theoretical results.

Figure 4. The mean square response of the

maximum radiai displacement of a shell

first studied by Clinch, as a function

of the centerline velocity. — 0 —,

ClinchT s expérimental and theoretical

results for high-frequency response; -—

theoretical results obtained by this

theory ( n == 2 to 12) for high frequency

response (98-1,000 Hz); ——, "total"

response obtained by this theory ( n = 2

to 12) considenng all frequency

components.
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It is évident from Figure 4 that the response at the high frequency

range is but a small part of the total. This observation demonstrates the

limitations of Clincîi theory if one is interested in the total response rather

than only the high-frequency range. On the other hand, the agreement between

this theory and experiment, in the frequency range nf 100-1,000 Hz, approxima-

tely, is quite good. This is the first and, so far, only expérimental verifi-

cation of this theory, as expérimental data are very scarce; the results lend

confidence that the values of the overall response of the shell are also

reliable.
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5. CONCLUSION

The hybrid fiînite-element, classical theory dcve'loped in tins papor

is used to obtain the free vibration cliaracterist tes and to predict the rc.sponsc,

to boundary-layer pressure field of an axially non-uniform, anisotropic thin

cylindrical shell. To this end the shell is subdivided into a number of

cylindrical fini te éléments, each with two nodes, the nodal displacements beiig

the axial, circumferential and radiai displacements and a rotation. The

shell équations employed which are solved for the détermination of the displa-

cernent functions, are such that the convergence criteria of the finite-ele-

ment method are satisfied. The pressure field is similarly rendered discrète

and is représentée! by two forces and a moment at each node. Finally, the

pressure corrélation functions used in this analysis are applicable only

for flow velocities corresponding to Mach nmnber 0.3 or less; there is no

assurance that such corrélation functions can be applied at higher Mach numbers

when compressibility effects become important.

This theory was computerized so that if the dimensions and material

properties of each finite élément, and the properties and flow velocity of the

fluid, are given as input, the program gives as output the natural frequencies

and eigenvectors of the shell and the r.m.s. values of the nodal displacements.

The analysis proceeds separately for each circumferential wavenumber, n;

the total response may then be found by summing over n.

The effort involved in producing such complex theory is deemed to

be Justified. In this connection, it is noted that accurate Knowledge of some

of the high and the low frequencies is essential for the accurate detennina-

tion of the response of shells to random pressure field, such as those gene-

rated by internai or external flow. Accordingly, the présent method, because
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of its usage of classical theory for the displacement functions, may lead to

the détermination of the high as well as the low frequencies with high accuracy

[4]. Apart from this, the main advantage of this theory is that it may be

used, withouf modification, to obtain the free vibration characteristics

and the response of any anisotropic cylindrical shell which is geometrically

axially symmetrjc, no matter how many propcrty discontinuities may be présent,

and for whatever boundary conditions.

The extension of this theory to the more général case of curved-

shell finite éléments is envisaged, with which shells of any shape could be

analysed with enhanced précision, Another extension to this work will be

to consider the effects of all the components arising from the présence of

flowing or stationary fluids, on the natural frequencies for the cases of

completely or partially-filled shells.
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APPENDIX l

List of Matrices

Appendix T contains the matrices referred to in the text which were

too large to be incl-uded therein.

Thèse matrices are listed as follows.

[R], [A] (see table l)

[Q] (see table 2)

[F] (see table 3)

[A], [A^] (see table 4)

[B^], [y, [D^] to [D^] (see table 5)

[E.,], FE^], [E-,], [E^,] are obtained, respectively, from matrices [D.,],

[Dr>]> [D-;L [D/<] by substituting in thèse matrices the éléments of matrix
Là

[y] = [r] [P] [r] by the éléments of matrix [RJ] = [A] [A].



Table l. Matrices [R] and [A].

Matrix [R]
>-^ir.:'[aicosîi-azsinÇi] e-*'[a2cos{i+aisinii] e-*2[a,cos ïi - a^sin $2] e-'h[a4cos ^ + Sssm 1,1]

e-^'cosîi e-^'sin^i e-^'cosîî e-^2sin?2
e-^i[5,cosî, -SîSinÇ,] e-'/'i[,ÔîCos £, +,j3,sin{!] e-;'^^cose3 -fi,sinÇ2] e-^[,^cos Ç, +,53sin ^]

e'<'i[ascosSi-5(sinîi] e'*'[a6CosÇi + assm îi] e02[a7cos d-a,sin {2] e'*'[a8cosîî + a7sin Ci]
e^cos^ e^sinîi ' e^cosî, e^sin^

e^cosîi-^sinîi] e*>[Â,cosi, +^sin Si] e^^cos ?2 - ^ sin {2] e^, cos ^ + ^, sin ^

Matrix [A]

«l

l
-«•i/r

^
e-"'[5icos>;i-

-aisirn?i]

e-"' eus»? i

e-"'
—[-«•lCOS»?| -

^iSi"î;i]

e-^icos7,i-

~^sini?i]

«2

0

l^-i/r

^
e-"'[aiCOST?i +

+aisin^i]

e-'u)sin7;i

e-""
— [^iCOSï?, -

-KiSinni]

e-u'[^cosî;i ^

+(§isini?i]

"3

l
-Ki/r

^
e-"2 [53 cos ^-

-^sini^]

e-uîcosî?2

g-u>î

~ - [-KÎ cas »?i -

- 'r'-î sin •11]

e-'-'^cosr],-

-^sin^î]

e

e'

e

e

tt4

0

t^ilr

^
-^[a4COST?2-

- a.iSin?;;]

-^ sin T]Î

-u,
— [/tiCOSl?2 -

- K;sinî;;1

-w'[fîicos^ +

+/3isin^]

as

l

K-ilr

^
e°'i[<î5cos^i -

-a<sin»?i]

eulcos?;i

e"'
COS7)|

-^'iSin^]

e-'^icosr?, -

-A.sini7i]

"6

0

t^ilr

^
e'ul[a,,COS7;i +

+a5Sin??i]

eulsini;i

e"'
,lCOS1?i +

!- K: sin Tîi]

eu'[^cosî?i +

+^5sini?i]

"7

l

«i/r

^
e'-2[a,COSr;î-

- Sssin^i]

e"2 cos T]:

e"2,
— [KÎ COS r]i

-"iSJn^i]

eu^cos^-
-AiSin^i]

a«

0

f^i/r

^
eu3[œgCOST;2 +

-a7Sin^i]

e"' sin T]I

e"'
—[ll^COSrj^

+ KI sin T;;]

e"''[^COSr]î +

+^smT]iï

i^l
0



Table 2. Matrix [Q].

[01 =

C-Cl
-j- [l.-l-'ini-flUaîcOSÇi —j— [(-•;;rt2+n;n.^cOS;. — (.-^n,-n;;,'COS^^ — [( - «2.11 +;l.y?.^ COS Ç; — ((i.'iu,, -Min») cos ti

+(i,id;)-tiiui)sinÇi] —(^tii+^iKa) sln ^i] +(K:,n^-<i2B.j1 sin Ça] -('<2U3+H2fî,) sin {3) -(k'idg+Hifisl sin ;,1

çt/i '' e^" r, . evî
— f(h'i«6+JUi(ïs) COS d ' -— [('<2d7~^2ft8) COS €2 -T- [(^'2«â+^2<î-) COS €2

4-fh'.r?- ~-u,f<^ sin ^-1 ~^2(îs+^2d7) sin Ça] +<*v'2<'7-—^ace) sin ^2]

~- — -[(llS, +1) COS d

-nSs sin {,]

e~ e^'i
[nf?a cos Ci — [i.ni'.i+l'l cas {2 1 — tn8< cos {a ; ^—' [(>if3s+l) cos ;i

+(«f5i+1) sin il)' -»3, sin Ça] i +('A!+I) sin {2] -ndesiniil
— [n^fi cos ^i

+()i.dg+l) sin t,]

i e-[(H(ÎT+l)cOSÇ; — ln3, cas ;2 l

~?^s sin L.^} 4-."^-+1'- sin :.^

—— [(-'~A-l'A-""i^ ——[(-Ki.32+»<iP'i-«<îs? — [(-^âj-iisAi-n".))! ——:'((-Kafl.i+tisflj-na-.i) e—((K|as-fii,5,,-nr;-,1 —'[(h'iiîs+t'ifSs-nu'e) e—((^5--^^fls-niî-l e^-'[^•s^+y.,;'--.^,'
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—2k'i^i sin ii] +(Ki;'-yi2) sin Ci]+(«ia-m'-') sin Ci +2k'2ti2 sin is] +1."21—^22) S'm {nll

:—(('ia+ 'i<^ cas Ci ! e^-[nfla cos ç, I^-'(;,,a+m\,)cosC2 —?-" t'Ai cos {3 ^ ((»2+n5s) cos t-i

-n^ssinîji +(n2+nf5i) sin ;i) -uS.i sin is] +(»2+w3.i) sin ia] -n-SaSin;i)

(*Vi
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+(na+n^s) sin i:i)

-e"',
~7S~

>^B
e7?'K"2

KSZ- fa2)
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2> sin
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^ [2«-2^2]

-^[^-^]

-^["•>2-^2]

F [2'<^iî

-p [2"'i^i]

-^[Xl2-^2]

l r 3 „-pl^"-^'

^ [2 «sfia]

—^ [2^2]

-p^z2-^2]

-^{—Kî^s—f-î^—nas}

-[Ks^—^zPa+nàt]

-^[—Ks^+^s—ndf]

- [ — K^s — ^i — ndy]

-[Kih-^i^e-nSs]

- [—x'i^e—^i^e+nac]

-[K^e+fti^s-nnK]

-iKih—^i^e—nàs]

-^.[Kî^-^s-nà-,]

-[-K^e-^+nds]

•^ t^B+fa^T—nuB]

^['<2^7—^2A)—""7]

^[n^+1]

1[-"AJ

^ ["^]

jl['A+l]

^3+1]

\[-nfS.}

;L ["/3<]

^3 +1]

^5+1]

l[-"/3e]

1 [^]

^[^5+1]

^7+1]

^[-"^]

^ Wsï

1 [",37+1]

- [—Kiui—^iaa]

^ [hl"2—^ûl]

- [—Kiûa+^tinJ

^•[—tlCi—^iaz]

^[—KsCl3—^2&i\

- ['<2"4—jU2"3]

^ [—K2"4+^2<Î3]

-[—'^aa—^aj

^ ['<l"5—^lûoî

^ [—'<l"6—fl<Î5]

^•[«l'îë+f.tias]

^ ['<'l°5—fl«s]

- [»C2n7—f2"B]

^[—Xrns—^sn^]

-[K-;iâ8+/X2<Î7]

-[K_,(Î7—^2"8]

^
.$h-l
CD
UJ

rt-
-j
K-

l—l
-l

OJ
t\3
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Ml=

«l

l

A

—"ï

0

-h

"2

0

^

"l

l

^

dg

l

fe

—en

0

-^

"4

0

^

"a

l

A,

"5

l

^

—KU

0

-^

"u

0

/5e

"6

l

^

a.,

l

/?7

•ff»

l

-/5.

"a

0

h

"7

l

^ -

[A,} =

-2

-2

"I

r

"l

r

0

0

KZ

r

«2

r

"•l

r

«l

r

fl'2

r

Ks

f

'<!

r

«•l

r

-2

-2

KI

r

Kl

r

0

0

KÎ

r

KÎ

r

«l

r

«l

r

K;.

r

KÎ

r

KI

r

Kî

r

KI

r

"•l

f

Kl

r

KI

r

0

0

«l

r

K'i

r

«a

r

KÎ

r

t2

f

k-a

r

KI

r

'<!

r

«l

r

KI

r

0

0

«l

r

KZ

r

KZ

r

"•2

r

KÎ.

r

1-2

r

0

0

Kl KÎ

r r

tl K.t

r r

2^
r

2^
r

t'2 , 11

7+7

«z , 1<1
7-r7

0

0

"•I KI

r r

"•l K.i

r r

2
r̂

2
r̂

KS l Kl

r r

"2 , «I
~r~r~r

«l , «s
-7+7

Kl , «a
-7-r7

0

0

'<! , KS

7T7

K1^KÎ
r r

2
r̂

2KS-
r

Kl , K-2
-7-1-7

Kl , ta
-7-1-7

0

0

ï.l-1-^
r r

K1^-K2
r r

2^2
r

2^
r
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Table 5. Matrices [B^], [C^] and [D ] to [D ] *

[Bi]=

f^l
f

"l

r

^1
r

tll
r

^1
r

f-1

r

^1
r

^1
r

;'!

r

r

/^l

Mi
r

tll

1^1
)•

/'l

/'l

r

;;1

r

,UI

r

f-2

r

V-î

r

P-2

r

f.2

r

^2
r

Juu

r

f11

r

";

r

1^2
r

^2
r

^2
I-

f-2

f

?a
r

Itï

r

f'I

r

"î

r

IM2
r

^2
r

^1
r

^1
r

^1
r

Ml
r

/tl

lt::
r

P-2

r

IMl

fl
r

IMt

r

r

f l
r

^_
r

V-1

r

^1
r

/^l

r

11'2

r

li2

r

r

fît
r

/12
r

M_2

r

Mi
r

^
r

r̂

'^
r

[C,]=

lll

f*-1

l^ï

r

lis

r

^1
r

^1
;•

1^2

r

/-tl2

r

I1!

i fil
i

v-i

r

f-2

f

<ïl

r

v-l
r

^2
r

P-î

r

/x»

(^

f*2
r

tt2
r

ful

r

Si
r

/l2

r

112

r

1^.

l'-'i

>t-l

r

/t2
r

f1
r

fl
r

ft2

r

V-f.

r

l11

^1

f-l

r

f-l

r

f^l
r

r̂

^2
r

?2
r

f^l

^1

IM1

r

pl
r

^1
r

&1
r

^2
r

V-i

r

1^.
r

^2

^2
r

V-î

r

^•1

r

lt2
r

^2
r

r̂

V-î

r

11-2

^2
r

V-î

r

/12

r

P2
r

P-2

r

v-î

)•

[Ci] =

3.n

3'r,l

3'7l

V91

Vu. l

Vi ,

3'a;i

y e,:,

l'T.I

y»:,

y 11. a

Vis

y:v,

VBE

Vis

Vas

y ii. o

J'13,5

Vie.s

y 17

y:n

y&7

y-n

.Va?

.Vu.7

VlS. 7

Vir,.s

y:a

Va»

Vsa

yw

Vas

3'H.B

Via.a

Vis.a

V,

.V3.

.Vr,.

V7,

y».

.Vu

Via

-Vie

îl

11

n

11

, 11

l 11

. H

y:.

y».

y s.

y-t.

y»,

y\\

y r.'

y 1 e

î;i

13

l;î

1;1

l:)

. in

> 1^

y».

y 'r,.

y^,

y».

Vu

Via

y ir,

15

10

15

10

, 15

. IR

, ÎTï

[0,]=

Vu

V32

yc.i

y-is

Vas

-Vll,2

3'13.2

_ ^16, 2

J"2;ï

J'43

VB4

Vit

y»*

yn. <

Via, <

VlG. 4

Vis

Vw,

y«r>

V7S

J'en

3'n.e

Via.s

yis,o

ya7

J'17

y«7

y»i

Vas

Vti.e

Via.a

Vis.s

ysa

Vw

Vee

Vsa

Vs.li

Vi.n

Ve.il

y». 11

-VIO.B ! Via.il

.yn.io

Via.10

-fl5,10

J'12,11

yz.u

Vt.ia

ye, 13

Va.ia

-VlO.13

Vî2.13

^13,13 j3/14,l3

Vi5, 12 13/15.14

VS.IB

Vi.is

Ve.ia

Va.is

^'10.15

J'12,15

Vn.is

Vie.15

[Oal

Vl2

v«

-y» i

.Va l

-fio,

Vl2.

Vu.

l

l

l

-Vu

y»,

y,»

y»:,

y,,,

Vu

Vu

.;»

.3

3

3'iu

y:w

-Vou

y»n

3'!0.0

Vis. s

.Vu. r,

.V. u

3';m

Vr.»

Vw

Vl n.

Vu.

Vu.

7

7

7

y\.

y:i,

Vr..

y^.

y»,

Vis

.Vu

U)

]0

10

in

«

n

y'.

y»,

•V'..

y^,

-y».

-Vu

.Vu

12

12

12

12

. 12

11

Vi.'

y:i. t

J'r..l

3'7.t

y«.i

-fil.

-V l.-l.

l't

1-1

1-1

t-l

14

1.1

3'!,

Va.

Vr..

y-l.

y».

Vu

.Via

16

m

Ifl

. 10

vid.i ^'t'..:~i ^'u>. R .\r^->.',- '^'in.r> .^Sfi.n Vtf,. TÏ L^'iR. ift

[D,] =

Vu

Vu

y»î

y»s

y '10.2

y 12. s

.VU.2

Vst

Vu

Vai

Vm

Via. ^

y\ 2,4

.VI4.4

Vîa

yw

y»»

y»n

y in.a

Vlï.l!

Vu.»

yw

Via

Vas

y»a

.fio.u

Vis.»

Vu.s

V2.

y*.

y e.

y».

Viu

Vis

Vu

10

ÏO

10

10

,10

, lu

. 10

Vî.

y t,

y».

y».

y M,

Vl2

Vu

12

12
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