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Summarx

A theory is presented for the determination of the free vibration
characteristics of uniform or axially non-uniform anisotropic thin cylindrical
shells and the response of such shells to boundary-layer pressure fields
caused by subsonic internal flow. It is a hybrid of finiteéelement and
classical shell theories. The finite elements are cylindrical frusta and
the displacement functions are determined from anisotropic shell equations.

The random pressure forces are Yumped atvthe nodes of the finite elements. The
mean square response of the displacements of the shell are obtained for a
boundary-layer pressure field and some calculations are conducted to illustrate

the theory.



1. INTRODUCTION

A careful study of the shells used in practical applications leads
to the conclusion that they are most often anisotropic (naturally or struc-
turally) and in many cases are anisotropic and laminar, Although the p
of determining the natural frequencies of isotropic shells has produced many

papers, the litterature reveals a very limited number of methods which have
been generally developed for special cases of anisotropic cylindrical shells.
The need is evident for a theory which can be used for the dynamic analysis
of any kind of anisotropic circular cylindrical shell subjected to various
boundary conditions. A practical case in point is concerned with the pre-—

diction of the natural frequencies of a double-walled steam generator [1-2].

This work attempts to fill these voids by prdducing a general
theory with a minimum of limitations for the free vibration characteristics
and the response of anisotropic cylindrical shells subjected to random
pressure fields which originate from the turbulent boundary layer of an in-

ternal flow.

The analysis is based on a recently developed method for the case
of isotropic qylindrical shells [4]. It is a hybrid theory based on the finite
element method, with the displacement functions determined by exact solution
of the equations of equilibrium of a thin cylindrical shell. The finite elements
are cylindrical frusta; thus a given non-uniform shell is first subdivided
into its component uniform cylindrical segments and then, generally, each

segment is similarly subdivided into a number of c¢ylindrical finite elements.
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The theory for predicting the response due to random pressure fields
is developed in reference [5]. The continuous pressure field is transformed
to a discrete set of forces; then, the cross—correlation spectral density
and the mean square values of the displacement of the shell are expressed

in terms of correlation functions of the bonndary-layer pressure fields,

Here the dynamics of a cylindrical shell and its response will be
considered, with the following aims: (i) to extend the theory of [4] to cases
_ where the shells are anisotropic and especially for the case of shells con-
sisting of an arbitrary number of orthotropic layers; (ii) to use the theory
ofk[5] to predict the response of such shells to a pressure field arising
from the turbulent boundary-layer of internal flow. This generalized theory
will be more directly pertinent to engineering applications, since in nearly
all practical cases the shells are often anisotropic; e.g., heat exchangers
and liquid metal cooled channels used in the nuclear industry. A number of
assumptions are made during the course of the investigation; a compendium of

these assumptions and the limitations of the theory will be given in the text.



2. FREE VIBRATION

2.1 General Theory

A given shell is subdivided into a number of finite elements, each
being defined by the two nodes, i and j, and the corresponding nodal circle

boundaries (Fig. 1). Then, the displacement functions may be defined by
T T
[U(X"-P)5 W(X’CP), V(XNP)] = [N] [55_9 6:]] (1)

where {5i} and {6j} represent the nodal displacements, and the elements of

[N] are in general functions of position and the shell's anisotropy.

It is noted that the finite-element method vields useful results
provided that the displacement functions chosen represent adequately the true
displacements; accordingly, the displacement functions should satisfy the
convergence criterion of the finite-element method stating that strains
within the element should be zero when the nodal displacements are gencrated
by rigid-body motions. To this end, we shall employ the equations of thin
cylindrical shells to obtain the displacement functions, instead of us ing

the more common arbitrary polynomial forms.

Sander's theory [7] for thin cylindrical shells is used for the
determination of these displacement functions. This shell theory which is
based on Love's first approximation was preferred, for the following reason:

in Sander's theory all strains vanish {or small rigid body motions, which
is not true for Love's or Timoshenko's theories, for instance. By usine
such displacement functions, we automatically satisfy the convergence citerion

of the finite-element method previously stated,
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the elements piJ of the elasticity matrix [P] characterize the shell's
anisotropy which depends on the mechanical properties of the material of

the structure.

The strain vector {e} is the modified strain-displacemcnt relations

of Sanders [7] and is given by



(e, 1 [ oW/
0 (1/r) (aV/39) + (W/r)
{e}= zemp - aV/ax + (1/r) (3u/xp)
< ne J —BZW/ax2 F(4)
" ~(1/78) [(3%W/36?) - (3V/30)]
) ~(2/r) (3"W/axdp) + (3/2r) (aV/ax) - (1/2r%) (30/g).
\ Y J

Upon substituting equations (2) - (4) into Sanders! shell equations
of motion [7], the authors obtain the equations of equilibrium in terms of

elements Pig of [P] and in terms of U, V and W, namecly

’(azu/ax2)+(1/r)p12(aW/BX)—p14(a3W/aX3)+{(1/r)(P12'*P33)+(1/r2)(p15 +’1"36)"(3/41"3)1’66]'
@ V/302)H(1/r) by ~(/r)pyg +(1/4 )pge ] (220/06%)-(1/52) [py +2m,y -
~(1/)pgg 1MW/ 3x25”) = 0,

r)lpy3 +pyy +H(1/r)pye H1/r)pgy -(3/4r2)p66](BZU/émBX)+(1/r2) [Py +(1/r2)é55 +
+(2/r)p25](azv/a;p2)+[p33 +(3/1)py +(9/4r2)p66] (azv/ax2)+[p22 +(1/r)p52](l/r2). (5)
- (3W/29)-(1/r)py g +(1/)pg 1(W/20°)=(1/x) [2py 41, +(3/0)pgg +H1/c)pg, 1.

(W 3px) =0,
/)0y (30/2)=(1/x%) [py, +H(1/2)py 5 (aV/29)~(1/5 Ipy it (3°0/x V(15 [y +

+ 2pgy »(1/r)p66](aBU/axam2)+(1/r3) (pe, +(1/r)p55](a3v/a¢3)+(1/r) [pyy +2pg3 +
H1/1)pyg +(3/r)pgg (V254 (2/17 p, g (3%W/20)-(1/ v )by o (3 20" 42/ 00, .

(@ W/ax")py O/ ax") -1/ (2p,5 +apge) (2H/axP0?) = 0 .

Here U, V and W are, respectively, the axial, circumferential and
radial displacements of the middle surface of the shell, and r its mean radius

(Fig. 1). The solution of these equations will give the displacement functions.



2.3

the shell by

o

The Displacement Functions

In the continuum, we express U, V and W of the middle surtace of

3 5
U(x,p) cos n g o ) un(x)W run(x)
{ W(x,q) ) cos n @ o J wn(x) »= [T} { wn(x) > (6)
V(x,p) 0 0 sin n o v (x) v (x)
\ J Jon J (1
where n is the circumferential wave-number. By substituting equation (6)
into equation (5) and letting
- Ax/r _ Ax/r
w(x) = A exx/r L v (x) B e , wn(x) Ce s (7)
n n
we obtain three simultaneous ordinary linear equations in A, B, C of the form
J A [
CIR S TN (8)

g

For non-trivial solution, the determinant of [H] must vanish, leading

to the following characteristic eguation

8 6 _
Bed™ = hd” +hA” = hA" +h = 0 (9)

where

| (hg/rz)(p11p44 - 91y)

2,2 |
| N . ) 2 2,2
(n7/x%) Tng(hypyy +2py1P45 +4py1Pgq ~2hgrpy )+ 1y (py b, “Piy) -

i TPy -
~h3Pgq + 2rhghy gy THZ/ TG (Py1pyy <Py pyy)

(/%) Thynpyy by pg 2By *+pge) (nyhg +Hhypyy hy) +(pyg +(1/r)pgg).
.(2h3p14 —2h11p11r) +h11r2(2h3h5_-h1h11) - rh5(2h7p14 +rh5h9)] + (n%/r).

.[2(p25 +rp22) ((h3/r)p14 —hllpll) -2p12(h5h9r +hpy —h3h11r) —2p24(h§ - h1h9 -
+2h '

h )
5 7’11
9P11P25d * hg (Py9Pyy -py,)



, =
.

6, 2 2 2.2
{n/r°) [h1h7(2p45 +4p66) +p55(h1h9 +hep 4 —h3) -r"hh, + (p25 +(l/T)P55)-

4 _
A(=2rhyhyy +2rhihg -pyipy g —(1/ 1) pyype)] + (nf/r) [2hyh;p,, +2p, (h g +§7P11
2 -
~h3) ~2pyp(rhghy ~hypyg ~(hy/r)pgs) —2(pyg +rpyy)(hyhyy +H(1/r)py by +H1/T)py P

2 /.. . s \
=h31"‘5)3*“2[?22(“1“9 thapyy h3)=(1/0)(pyg 40,0} ({(1/0)py 1 pyc +py4Py —2h3py5 )=
; .
“hopypl s

4 2 4,2 2 3 AT ) 2
n'hyh,[p,, H2/r)n"p, +Hn"/r )pg51-n"h [(n /r)(p,. +(1/r)pg Hn/r Pys TPy,) ]

and the parameters h, , i =1, 3, 5, 7, 9, 11 are given by

2 __ 2
- - 2
hg = (1/r)(py5 +2py6 ~(1/r)pge)  ,  hy = py,H(1/r )pgg H2/r)p,. C (10)
- — VN RN PRI 2\ o .
g = P33 H3/1)pye H9/4r )pcc s @11— (1/r)[2p36 P, 4 +(3/r)p66 +(1/r)p54].

This characteristic equation for anmisotropic cylindrical shells which is a
quartic in AZ, has the same general form as equation (5) of [4] for isotropic

one. The eight roots Ai may therefore be written as follows

MT T T s Ay Ty s d o, g =g iy, =y -y,
(11)
Mg T TR s Mg Ty mdn s A=y by, Ag =y -y

where no and by are real. Each root, kj’ yields a solution of equation (5),
the complete solution being obtained by the sum of all eight with the constants
Aj, Bjand CJ, j =1, 2,... 8.

For every j, the three constants Aj, Bj and Cj are related among
each other by the linear equations (8), so that u, v, oand w  may be expressed

in terms of only eight constants. To this end, we let



Ay = OleJ, BJ=BJCJ;
where o and BJ , for J =1 and 3, may be expressed as follows
UT o Fley, ogT oyt By tiB, . By =8y + B,
The real and imaginary parts of o, 83, J =1 and 3, may be obtained from
the following relationships

a. a. -a,

11 12 ol 13
= b
31 29 BIf |33
where
) 2 B 2 3
417 M hyy mAy Pyp s g by s 137 Ag(nhg+p ) )+ (/TR
a..= a a..= -n’h_+’h a,,= —-(n/r) (1+n2)p -np
217 3 22 7Ny s 83 25 “HP)y

2

3,0
=(07/x")pg gt mjhyy

(12)

(13)

(14)

By inspecting the coefficients of equations (8), the other ¢j, Bj can be given by

- e

I R 0 = o5 Hoag = -ay Bs = Bs ™1 Bg = By
% T iy % = %5 L o5 T -y P6 = Bs = Bg T By

Upon substituting the relations (12)-(15) into equation (7) and

thence into equations (6) we obtain expressions for the displacement functions

in terms of eight constants C.. These expressions may be written as

]
U(x, o)
Wix,g) ¢ = [T] [R] (§) ,
V(x,0)

(16)



where [R] is given in appendix I and {C} = [T ESJT. The eight Ej are

1 e

the only free constant which must be determined from eight boundary conditions,

four at each edge of the finite element. The nodal displacements(Fig, 1) at

li

nodes i, ( x 0 ) and j, (x = ¢2) are detined by

(o))

6

T ~
= {5 voe (dw /dx),, Vi Yy wnj’(dwr/dx)j’ an} =[A] (8}, (17)
J v

where [A] is given in appendix I, its clarent being determined from those of

[R]. Finally, combining equations (16) and (17), we obtain

rU(X,cp) 1
5, 5.
| Weee) b= [T1[R] (AT ] [ _ Ny (18)
8
V(x,qp) %3 ]
\ J

This equation defines the displacement functions in terms of ne , x, the
elements P; of [P] and the nodal displacements bi]

()j

[\
In

Determination of the Mass and Stiffness Matrices.
Substituting equations (18) into equations (4) we obtain the strain

vector {e} in terms of {éi} and {6J} as follows:

T 0 PR 5.
{e} = [Qj [aj = [B]¢{ ' , (19)
0T

% %

where [Q] is given in Appendix 1. The corresponding stress-resultant matrix
may be found from equation (2), i.e.,
5
= P ’ n= B

Oy

~where [P] is the elasticity matrix for anisotropic shells.
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The stiffness and mass matrices for one finite element [3] are

expressed as

T T
(1= [[[B)" [P) (B A, [m)=pe [ [N [N] da, (21)
where dA = rdpdx, p is the density of the shell ant t its thickness. Inte~
grating over ¢ and using equations (18)-(20) we obtain

(3 = 070" o [0 001" tp] [ (a1 =0 a1 (e (a1t (22

]

4
] = ot 00T 07 T ieg e 007 = e [ T 059 (A (29)

where [G] and [S] are defined by the above equations.

[G] and [S] weré obtained analytically for the case of isotropic
shell in reference [4] by carrying out the necessary matrix operations and
integrating over x in equations (22) and (23). To do this it was found
necessary to introduce several intermediate matrices, eventually obtaining

expressions for the general terms Kij and mij of [k] and [m], respectively.

For the case of anisotropic shells, the elements of [G] and [S] are
similar to those of reference [4], for the following reason: in [4], the
(i,37)th terms of [6] and [S] are determined functions of the elements of [P]

and of the general terms, u and s, of the roots A's which have the same
general form as those of equation (11). Because of the complexity of the

manipulations, only the final result will be given here, The interested reader

is referred to reference [4] for details.

The (i,J)th term of [G] is given by
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2 ...
;—rG(za.’)
[(D,—D,)A,—(D,+D,)
=eM! X (B, +C)Jcos[(B,+C,)l]
[4*4+(B,+C,)?]
[(D,~D,)B,+C))
+(D2+D3)A1]Sin[(31+cl)l]
+
[4,24+(B,+C,)? (24)
[(D:+Dy)A;,—(D,—Dy)
+ X (B, ~CJcos{(B,—C)iT|
[4,2+(B,—C,)*]
[(D,+D,)(B,—Cy)
+ +(D2-—D3)A,]Sin[(B,-Cl)l]
[4:24(B,—C,)?]
+(Bx+cl)(D2+Ds)‘Ax(D1“Da)
[4,°4+(B,+C,)%
+(Bx~C1)(Dz~Da)—A1(Dl+D4)
[4,+(B,—C,)?]
for all i,3=1, 2, ..., 8, except for the following elements:
G(l,s), G(1’6)’ G(295)s G(236)) G(3:7)} G(3,‘v8)5 G(4)7)7 G(A)ER)Q
6(5,1), 6(6,1), G6(5,2), c(6,2), 6(7,3), 6(8,3), 6(7,4), o(8,4)
which can be written as follows:
. 7_r_.1:F(Dl-—D,;)sin(2311)-%~2(D2+Dg)sin?(b’11)
G<7‘J]) — 2 [ 2Bl
- 25\
+(D,+Dy)l (25)

In equations (24) and (25), Ay By, Cq5 Dy, Dy, Dy, D, represent the (i,j)th

elements, correspondingly, of matrices [AIJ’ [B1], [C]], [Dlj, [Dzj, [D3] and

[1)4] which are given in appendix I,



Similarly, the (i, j)th term of [S] is given by

2
= 8G,)
[(E,—E)A,—(E,+Ey)
= el X (B, 4C))]cos[(B,+C))I]
[4,*4(B,+C))%
[(E,—E)(B, +Cl)+(E2+E3)A1]Sin[(BI+C1)[]
[4.°+(B,+C,)Y
[(E\+E)A,—(E,—Ey)
X (B, —Cy)]cos[(B,—C)I]}

+

-4

[4:°+(B,—C,)] (26)
[(E:+E)(B,—C)
" +(Fy— Ey)A,Jsin[(B, —Cn)ll}
[4,7+(B,—C\)*]

(B, +O T+ By —A,(F, -~ 1)
(4,24 (B, +C,)]
(B\—C\)(E,— Ly)—A,(E, +1I,)
[4*+(B,—C,)%)

-+

for all i,j =1, 2, ..., 8 except for the following elements:
S(1,5), s(1,6), s(2,5), S(2,6), 5(3,7), S(3,8), S(4,7), s(4,8),
s(s,1), s(e,1), s(5,2), S(6,2), s(7,3), S(8,3), S(7,4), S(8,4)
which can be written as follows:

.. wr [(E, —E,) sin (2B,1)+2(E,+ E;) sin* (B, 1)
S@G,j) = —El 2B,

(27)
+(E+E)I

Here again, E,, E,, E, E,, By and C;, in equations (26) and (27),
represent the (i, j)th elements of the corresponding matrices given in

appendix TI.

With [m] and [k] determined, the global mass and stiffness matrices

for the whole shell, [M] and [K], respectively, may be constructed by
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superposition in the normal manner as describe in [4],Each of these matrices

is of order 4(N+1), where N is the total mumber of finite element.

2.5 Elasticity Matrix
The elasticity matrix [P] given by equation (3) is quite general,

so this theory may be applied to: (i) shells consisting of single or an
arbitrary number of isotropic or orthotropic layers, (ii) double-walled,
gridwork or folded shells and (iii) shells with rings and stringers provided
their characteristics are known. Here we limit ourselves to shells consisting
of single or an arbitrary number of isotropic or orthotropic layers symmetri-

cally arranged relative to the coordinate surface.

For isotropic shells, the elements pij of [P] are listed in reference

[4]. In the case of an arbitrary number of orthotropic layers [8], we assume

ct

+hama Tacsaaes o
hnt t ~

hat these layers function concurrently without siippage and as previously
stated that the principal directions of elasticity at each point of the shell
coincide with the directions of coordinate lines; (i) for an even number of

layers, 2v, the elements Pig of [P] may be written in the form

s , | .. _ .
Py = zsgl By (b=t y), i=1t03, and j=1 to 6,
(28)
e v S 3 3 . —
Pig = (2/3) sz] B 35 423 (tS - tS+1), i=4to6, and J =4 to 6.
(ii) for an odd number, 2v+1, we obtain
_ vl S . _
Pig = 2[Bij ton +S§1 Bij (ts - ts+1)]’ i=1¢to3and j=1 to 6,
(29)
_ v+l 3 v s 3.3 . —
Py = (2/.3)[Bi—3,3—3 tont L Bi—3,j—3(ts"ts+1)]’ i=4to6and j=4 to 6,

s=1
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where

s _ s S S s _ S S S
B); = [E}/(1 vy Vo)l B,, = [E,/(1 v Vo)l

S RS ~ .S S S S s _ 5
Bj, = 321 [v2 El/(l v vz)] s By 0.5012 s

Fig. 2 Shells consisting

of an odd number (2v+1)

of anisotropic layers.

tS is the coordinate of the Sth layer with respect to the middle surface as
shown in Figure 2, (Ei, vi) and E;, vz) are its Young's modulus and Poisson's

ratio in the x and ¢ directions, respectively, and Giz is the shear modulus.

A1l other terms of Bi are zero.

J

2.6 Free Vibration

For free vibration, the equation of motion may be written in the form
[(M] {a} + [K] {a} = {0}, (30)

where {p} = {51, 52, ceey 5N+J}T , N is the number of finite elements,

[M] and [K] are real, symmetric matrices of order 4(N+1), and {6V+1} being
3

the displacement vector associated with the lower edge of the last finite

element.
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In cases where the shell has rigid edge constraints, the kinematic
boundary conditions must be taken into consideration. Accordingly, [K] and
[M] are reduced to square matrices of order 4(N+1)-i, whers ) is the mumber
of constraint equations imposed. Thus, for a shell with two edges supported,
we must have v =w_= 0 in the displacement vectors {6.} and {5 .1. and

n n * A g h\' 1
J =4; for a free shell, J = 0; and for one with two clamped edges J = 8.
The solution of equation (30) now follows by standard matrix techniques,

yielding the natural frequencies, w, =1, 2, ..., 4(M+1)-J, and the

corresponding eigenvectors.
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3. RESPONSE TO BOUNDARY-IAYFR PRESSURE FIELD

3.1 General Theory

In this section we are concerned with the vibration of thin anisotro-
pic cylindrical shells due to a pressure field arising from the turbulent
boundary layer of an internal subsonic flow. It is based on a recently
developped theory [5] by the author for the case of isotropic cylindrical
shells. Only an outline of the theory is given here; for a detailed account

the reader is referred to reference [5].

The equations of motion of the shell subjected to arbitrary load
is given by

EM] (¥} + [C] (3} + [K) {y} = (F}, (31)

where {y} is a nodal displacement vector, {F} is a vector of the external
forces, and [M], [C] and [K] are the mass, damping and stiffness matrices,

respectively.

Whereaslequation (31) is quite general, the particular form of its
constituent terms depends on the particular theory used. In this theory [M]
and [K] are determined by equations (22) and (23), [C] is assumed to be
linearly related to [M] and [K], or to either one, and the external forces

{F} represent the internal random pressure field,

3.2 Assumptions

In reference [6] we have indicated how the intertial effects of a
stationnary fluid contained by the shell may be taken into account. However,
when the fluid is flowing, the shell is also subjected to "centrifugal® and
Coriolis~type pressure forces. The former have the effect of diminishing the
natural frequencies of the System, while the latter have a damping effect on

vibrations in cases where one end of the shell is free. Unless we are dealing
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with very flexible shells, very heavy fluids, or very high velocities, the
effects of these forces will be relatively small. Accordingly, for metal
shells conveying fluid with flow velocity in the normal engineering range,

these effects are negligible and are not taken into account,

The displacements are assumed small enough for the resultant forces
to be normal to the shell's surface. It is also assumed that the pressure
field is spatially continuous and that it has the properties of a weakly
stationary, ergodic process. We further assume that the pressure drop in

the length of the shell is sufficiently small for the mean pressure to be
considered constant over the length of the shell. Finally, the continuous
random pressure field of the deformable body is approximated by a finite set

fo discrete forces and moments acting at the nodal points [11].

3.3 Representation of Pressure Field at Nodal Points.
As previously mentioned, the shell is divided into N finite elements,
each of which is a cylindrical frustum. The position of the N+l nodal points

may be chosen arbitrarily (Fig. 1).

Any pressure field is considered to be acting on an area Se surroun-—
ding the node e of coordinate ze as shown in Figure 3 (a). We define the
pressure distribution acting over this area Se by two mutually perpendicular
forces per unit length. We may write, for the actual resultant force per
unit length,

F(x,p,t) = i fon (x,t).cos np + i fon (x,t). sin nep, (32)

where fRn and an are at a distance X from the origin of the shell as

shown in Figure 3 (a).
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These two forces acting at point A are transformed to two forces

and one moment, Mr’ acting at the node e, as shown in Figure 3 (b).

=

a b

Figure 3 (a) Representation of the pressure field by a discrete force
field. (b) The equivalent discrete force field acting at the node e,
involving f w an and Mr'

The external force vector associated with the nth circumferential wave number

at a typicalnode e can now be written in the following form:
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0
" ’
1 |
[ f (X. ,t) Xm ;
{F(t)} = /4% R \
(=] lel :"
3 i (33)
) (xj—lj) fR(xj,t) dxj ;
%
rz; ,'
], fc(xp,t) dxp )
T Xp e

where fRn and an are expressed in terms of the instantaneous pressure on

the surface, p(x, ¢, t).

3.4 Mean Square Response

We proceed by first considering the free vibration of the conser-
vative system (30) and determining the natural frequencies w; and the
eigenvectors {@i}, i=1, 2, ..., 4N#1)-J, where J is the number of

Kinematic boundaries.

We next form the modal matrix

[¢] = [@1, By wnn Q4(N+1)_J]j and define {y}= [§] {Z}. (34),(35)

Finally the equations of motion (31) are decoupled and the mean square
values of the displacements of the shell are expressed in terms of the axial
and circumferential correlation functions of the pressure field, wp (g, o, o)
and wp (o, M, o) , respectively; see equations (10)-~(25) of reference [5].

In the case of subsonic boundary-layer pressure fluctuations, the
streamwise and lateral spatial correlation functions have been examined

theoretically and experimentally by Bakewell at al. [9] and Clinch (10].
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Bakewell measured and derived expressions for the axial and cir-
cumferential correlation functions in experiments with air flowing in a cylin-
drical pipe. He found the following approximate expressions for the (real)

spatial correlations:

) . ~hls 1
me (g, 0, 0) me ""glcos a Sg, (36)

wpw(o’ N, 0) =~ (1 + ¢ Sﬁ)-l [2 ~ e_dS%] - (37)
where Sg = gw/U conv, and Sn = T]uq/Ub are the axial and circumferential
Strouhal number, g = lxi - le’ M = |r(¢i - ¢j)] , w is the center
frequency, and a, b, ¢, d are constants to be specified; U and U, are,

conv E
respectively, the convection and the centerline velocities.

The values of the constants used in these two expressions for axial
and circumferential correlations depend on the fluid. For turbulent flow in

air, the values of a, b, ¢ and d are given in [9]

a = 8.,7266,b = 1,0, for sg o gm/UE

(38)
¢ = 20,d = 100, for sn = ﬂw/Ub

Clinch measurements in water proved that these constants are appro-
ximately the same for different fluids at the same Strouhal number, at least

for sufficiently high Reynolds number.

Upon usign the experimentally based relations (36)-(38), we obtain

the following expression for the mean square response of the shell [5]:
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AN+1)—J 2

)
ity = g X
7 () 2; " 16 it a2
N+1 N+1 N+1 N+1
x [Z Y BB TE +2Y Y @bl +
i=1 wu=1 i=1 k=1
N+1 N+1 N+1 N+1
+Y Y ey Y o0y,
J=1 k=1 ; p=1 v=1 _]

where @qr is the (qr)th element of the modal matrix [§], M is the element
of the generalized mass matrix, w the rth natural frequency and r is the
F M

mean radius of the shell; Fiu’ rki and F?f are derived analytically in

reference [5].

Equation (39) is then the response of the shell to a subsonic
boundary-layer pressure field at the nodal points q(x,¢). This response is
associated with a specific n, wherebn is the circumferential wave number
(section 2.3), By repeating the analysis for a sufficient number of n, the
total response for any point on the nodal circles may be obtained by superpo-
sition, in accordance with the assumption that there is no coupling between

the circumferential wavenumbers.

(39)
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4, CALCULATION AND DISCUSSION

The computer program of reference [5] has been modified to determine
the eigenvalues, eigenvectors and the response of a given uniform or non-
uniform anisotropic cylindrical shell subjected to a Boundary—layer pressure
field. It is written in FORTRAN V language for the IBM 360/70 computer, using

double precision arithmetic throughout all the overlays.

The necessary step of the computational method may be outlined as
follows: a) We first specify the imposed boundary conditions, their number,
J, and the values of n (g 2) for which calculations should be done; b) The
shell is then subdivided into a sufficient number, N, of finite elements
(sufficiency in this context is related to the complexity of the structure);
c) And finally the computer program, for given input data, calculated the
mass and stiffness matrices for each clement, assembles the global mass and
stiffness matrices for the whole shell, calculates the natural frequencies
and the eigenvectors, determines the damping matrix, and executes the necessary

steps to obtain the response.

The necessary input data for each finite element are the mean
radius, r, wall thickness, t, length of the individual element, ¢, material

density, p, and the elements Pi g of [P].

For given r, t, 4, p and pij’ the computer program executes the

following steps for each element: i) the eight complex roots, of the

j’

characteristic equation (9), are calculated by Newton-Raphson iterative

technique, and hence, we obtain Mo Mgs s bgs Qg By (1=1, 2, ..., 8),



23

and &j’ Ej; ii) the intermediate matrices are determined; iii) the displa-
cement functions, mass and stiffness matrices, [(N], [m] and [k], respectively,

are computed by the relationshpis given by equations (18), (22) and (23).

When the stiffness and mass matrices have thus been computed for
each element, the global [M] and [K] are constructed and reduced appropriately

to take account of the boundary conditions.

For free vibration, the computer program proceeds to find the natural
frequencies, wi, where i =1, 2, ..., 4(N+1)-J for each n, and the corres-
ponding eigenvectors of a real square non-symmetric matrix of the special
form [M]_l (K], where both [M] and [K] are real, symmetric matrices and [M]

is positive definite,

Knowing the damping factor, the fluid velocity and its density at
each node of the structure, equation (39) is finally executed to obtain the

respcnse to a boundary-layer pressure field.

Calculations have already been conducted to test the theory in the
case of isotropic shells [5]. The free vibration characteristics of uniform
and axially non-uniform shells were obtained for a variety of boundary
conditions [4]. The computed natural frequencies and the response were com—
pared with those obtained by other theories and from experiments; agreement
was found to be good and, in the majority of cases, was even better with the

experiments,

Here we repeat only one calculation to test the computer program and
the modified theory. More results concerning the anisotropic shells will be

presented and discussed at the conference.
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The set .of calculations undertaken here was first studied experi-
mentally and theoretically by Clinch [12]. It is a long, simply supported
cylindrical shell conveying water with flow velocities in the range 248
520~in/sec. The pertinent data are as follows: r = 3 in(.0762 m), L=
240 in(6.096 m), = 0.025 in( .63 x 107 m), E = 28.5 x 10° 1b/in2(1.995

10 ¥/m?), v =0.305, = .749 x 107> Ib-sec?/in(8.0048 x 10> kg/n’).

Clinch obtained the response in the frequency range of 100-1,000 Hz, approxi-

mately.

This shell was also analysed by the theory of reference [5] by
subdividing the shell into 8 elements and calculating the response fof n=2
to 6. Here we repeat the same calculations for n = 2 to 12 from which the
approximate "total® and the high-frequency responses of this theory are shown

in Figure 4; also shown are Clinch's experimental and theoretical results.

Figure 4. The mean square response of the

20,000 T T T —T—120,000 .
maximum radial displacement of a shell
10,000 —10,000
first studied by Clinch, as a function //
of the centerline velocity, —== 0 ——, 3000} // ST
1Y
Clinch's experimental and theoretical - 7 -
't'g 1,000~ / / -11,000 £
results for high-frequency response; ——-, % /l %
S /4 S
theoretical results obtained by this 00 47 e
/I
theory ( n = 2 to 12) for high frequency ol // oo
y
response (98-1,000 Hz); —-, ®total® /
1 i Il | I .
response obtained by this theory ( n = 2 *%5 200 300 400 500 600 808

Ye.
to 12) considering all frequency

components.
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It is evident from Figure 4 that the response at the high frequency
range is but a small part of the total. This observation demonstrates the
limitations ofiClinch theory if one is interested in the total response rather
than only the high-frequency range. On the other hand, the agreement between
this theory and experiment, in the frequency range of 100-1,000 Hz
tely, is quite good. This is the first and, so far, only experimental verifi-
cation of this theory, as experimental data are very scarce; the results lend
confidence that the values of the overall response of the shell are also

reliable.
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5. CONCLUSION

The hybrid finite-element, classical theory developed in this paper
is used to obtain the free vibration characteristics and to predict the response,
to boundary-layer pressure field of an axially non-uniform, anisotropic thin
cylindrical shell. To this end the shell is subdivided into a number of
cylindrical finite elements, each with two nodes, the nodal displa cements beirg
the axial, circumferential and radial displacements and a rotation. The

shell equations employed which are solved for the determination of the diépla—
cement functions, are such that the convergence criteria of the finite-—ele-
ment method are satisfied. The pressure field is similarly rendered discrete
and is represented by two forces and a moment at each node. Finally, the
pressure correlation functions used in this analysis are applicable only
for flow velocities corresponding to Mach number 0.3 or less; there is no
assurance that such corfelation functions can be applied at higher Mach numbers

when compressibility effects become important.

This theory was computerized so that if the dimensions and material
properties of each finite element, and the properties and flow velocity of the
fluid, are given as input, the program gives as output the natural frequencies
and eigenvectors of the shell and the r.m.s. values of the nodal displacements.
The analysis proceeds separately for each circumferential wavenumber, n;

the total response may then be found by summing over n.

The effort involved in producing such complex theory is deemed to
be justified. In this connection, it is noted that accurate knowledge of some
of the high and the low frequencies is essential for the accurate determina-
tion of the response of shells to random pressure field, such as those gene-

rated by internal or external flow. Accordingly, the present method, because
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of its usage of classical theory for the displacement functions, may lead to

the determination of the high as well as the low frequencies with high accuracy
[4]. Apart from this, the main advantage of this theory is that it may be
used, without modification, to obtain the free vibration characteristics

and the response of any anisotropic cylindrical shell which is geometrically

axially symmetric, no matter how many property discontinuities may be present,

and for whatever boundary conditions.

The extension of this theory to the more general case of curved-
shell finite elements is envisaged, with which shells of any shape could be
analysed with enhanced precision. Another extension to this work will be

to consider the effects of all the components arising from the presence of
flowing or stationary fluids, on the natural frequencies for the cases of

completely or partially-filled shells.
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APPENDIX I

List of Matrices

Appendix T contains the matrices referred to in the text which were

too large to be included therein.

These matrices are listed as follows.

[R], [A] (see table 1)
[Q] (see table 2)
(rl (see table 3)
[ad, [Ay] (see table 4)

(B2, [c,1, [D,] to [D,] (see table 5)

[El], FEZ], [E3], [E4] are obtained, respectively, from matrices [Dl],

[D2], [D3], [D4] by substituting in these matrices the elements of matrix

[v] = [F]T [P] [I'] by the elements of matrix [RI] = [A]T [a].



Table 1. Matrices [R] and [A].

Matrix [R]

ei[g cos yy ~ dasin ;] e Y[ cos Ly + & siny]  eYi[dycos Ly — desinfy] e~V cos { + & sin £;)
eicos _e¥isiny e~Yicos {; edsin g,
| e*t[Bicosly — Basinty] e [Bycos &y + Bisin ] e¥:[B;cos iy — Besin L] e~¥2[B, cos {y + Basin {)

e¥icos ¢ e’isin {; e¥zcos ¢, e¥zsin ¢,

e¥1[Escos {; — dgsin ;] e¥1[@gcos Ly + &s sin £1] e¥2[d@; cos {, — &gsin {]  e€¥2[&5cos {y + & sin L) ]
e“t[fscos {y — Besin 1] e“1[Bscos {; + Bssin L] e¥*[Brcos Ly — Pssin 2] e*2[Bscos ¢y + Bsin ;]

wy=wkdlr, my=plln, gy=w;xlr L=pyxfr; j=12,

Matrix [A]
&1 &1 &3 &‘ &5 &5 &7 &3
1 . 0 1 0 1 0 1 0
—Kyfr alr —Ka/r palr Ky/r pafr Kafr Hafr
B B Bs -  PBs Bs B Ps
e “t[Z cosn, — e & cosmy + e “?[&; cosm; — e2[d@scosn, + e“t[@scosm — e“&cosy + e“*fd;cosm —  e*?dzcosn,; +
"‘&15“\771] + & sinm] —&_;Si['ﬁ'];] - &;sinn;] —&Gsin 7)1} + &5 sin 771] — Xg sinn;] +&7Sin7)2]
e cosm, e “1siny, e “1cosn; e~1sin 7, e“tcos 7, e“tsiny,; e“2cos 7, e“1sin,
e—¢U| e-.wl e—w: e—ll): eLIJ] ewl ewz ewz
- [-x cosn, — i [pycosn, — o [~Kr2cos7m; — e [ptacosm; - T [x1cosn — = [1 cosmy + - [k2cosm; — - [p2cos7; +
- uysing] ' — x; siny;) — pzsinm;) — kysiny,] — u;siny;] + ey 8in gl — 3 sing,] + 13 8in 7]}
e~1[Bicosn, — e [Bicosm + e 2[fycosmy —  e~fBicosyy + e“[fscosy — e“MBscosn + e“2[Bicosy, ~ e“2[fscosn, +
-—B;sinm] +Bl sinm] "B4Siﬂ771] +B; Siﬂ'l];] —BQSiDT];] +Bs Siﬂ'fh] "Ba sinm] +B7Sin'l]z]

o¢
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Table 2.

-y

y

A (Kady = ppdy) sin &g)

[~ wad, — 8, cos 0y

Matrix [Q].

e Ve V¥

[(—Kp@; 4oy cos &y

— (K28 + pady) sin (o]

e {{x1G5 — uydg) cOs {y

—{K1dg +41d5) sin Iy

e
- [{x1@6 +uyds) cos &y

w0 sin )

evs N N
e [(x2@7 —pads) cos Ly

—(Kadg + uads) sin o]

evs
-5 [(xady + u2d-) cos &q

+ (Ko~ — updyg) sin (o]

evve
- [indy+1) cos &,

—n3; sin L)

e~ Vs

— [n8s cos {p

| +{(nBg+1) sin &p)

eV .
= [(nBs +1) cos ¢y

—nS¢ sin &}

ev .
- [n8g cos &y

+{(n3s+1) sin ,]

v
e—,—.“ [(n8: +1) cos &g

—~n3g sin {3}

evs: .
i [1#3g cos $o

+n3++1"sin 3}

o [(—wy iy~ py ) cos &y c“:“ [{—xyda 1@ cos ],
|
+(Kydg = pydy)sin 4] l —(k18y +p1d2) sin )
- ! -t
c—f: [(n8, +1) cos ¢, ; -e-—;u-: {nBa cos {,
—nfy sin £, | +(08; +1) sin &
e” v !

e (= w1 By 1 By — 1ddy) .

X €08 §y A (wyBo — w1 By :
+ndg) sin 41} |

e~ V¥
e [(= w182+ 1y By —ndip)

X cos {3 — (k1B +uy By
+ndy) sin &)

-V

-
X €08 Lo+ (Ky33 —uaBy
“+ndy) sin gp)

[(— K285 —pgBs — nidy)

I a—¥e 5 .
- [(—KaBy F By —ndy)

X €08 {g—(Kkafy + uoby
+nds) sin {,]

e
- [(ky 8~y B~ niis)

X €08 {y ~ (w135 + w135
—ndg) sin ;]

e
= [(K186 11 Bs — nédg)

X cos {y (w1 Bs — w1 Be
—nds) sin &}

I Y,
eVe
- {(x2Bs — py B — nd:)

X cos {p—(naBs + poad:
—ndg) sin {g)

evr
& xadatpadr~nas

X 08 {p+{np3z —uads
~—ndz) sin Ja)

—emVi N —emV . —emve . f Ve B —e¥y . R -t . | —eve —eVt
p [(87—uy?) cos §; et [—2kypy cos § s [(ro? —pz?) cos Lo : Y [ —2xqu2 cos {; 72 (12 —ui®) cos ¢y e} [2r3py cos ¢y LT [(xo® —uz?) cos o = [2x2pg cos {p
{ ;
- . o i s e oy o | . R L L L.
+2x sin ] + (K17 =y ?) sin +2x3pg sin {o] +{Ka% —ug®) sin Ly} =2k sin {;) + (k1% =1, %) sin &) —2Kapy Sin {g) k2% —us”Y sin (o)
e~ ¥ e~V e~V . R “Ye Cev: ; eva eV evs
= {2+ ndy) cos &y ! - [nBa cos £y - {2 4 n33) cos o e {nB4 cos Ly e [0 +n8s) cos &y = [186 cos £, ~z [(n2 +nB7) cos &g — [n3g cos Iy
2 2 g - et r= -
: | - . ; - . O3 ein . .
—nfz sin ;) ! +(n2+ndy) sin §,) —ndy sin g} ) + {1+ nuBy) sin o) —n3g sin &) + (12 +135) sin ] —ndg Sin (3] -t =nissin o)
e ™ 3 e~V ( 3 e~V 3 e~ Ve 3 eva 3 ev: 3 eve 3 evr
—2NRy =2 K - 2nuy —= Ky 8 —2nxg —% waB : 2npg —= Kof, = {20 + 5 8y 8e — [ 2nuy += x, 8 pas Ng = NS — IR N
P [( 175 A p 15 ibp = 25 K2ty i |\ 2rie—5 weba 73 x+2 154 73 4 x+2 186 < 21A2+2 waB; P 2nu 3 xads

nd .
—‘g w1y +"i"‘) cos §;

+(—2mu +g, Y-

+% Y- 1 +"—;?) cos &4

+( —2nx, ——% N

+% H253+"—;i) €os {z !
i

+( —2nu‘+:—3 Koy +( —2n~2—% Kofl3
R W | I WP WP |
g Jy IR —2 B e Y gin 2 1
3 Heds 5 ) sinfa Zﬁ:BM 5 ) sin e

3 ts .
—3 1Be +£'—;—) Cos &
+( -~ 2muy "g ’\'15-;

3., ,3,,'_"39\ sin ol
3 #Ps— 5y sin g

m=[”mﬂmmn=ﬂnm}mmwm

{o)T]

[ONT]

3 14,
+3 s +22) cos 4,
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3 -
2 k18 +’-‘¥) sin ':1]
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3 nd, ..
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Table 4,

Matrices [A] and [A1]
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|
& l—&. s &y d | —aq | @ &y s ’-au i @ | —dy | G q
1 ‘ 0 0 1 1 5*' 0 1 | 1 [ 0 0 ] 1 1 1 1 0 1
b | R ) B | =B | Bo | B

K Ky K1 Ky K1 Kg Ky | Kg Ky | Ky
-2 —2 - —_——— = 0 0 —— — =
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Matrices [Bl], [01] and [Dlj
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Yoz Yoa Yoo Yeos ‘ya, 10 !J’a,xz Vi, 14 “ye, 16
e s
Va2 Yua Yuu Vus 1Y, 50 [ Vs,12 | Ve, 14 [ Ve, 16
(D] = : e .
Yio,2 [ Yi0,4 |[YVio,a [Vio,s 'J’m,m Yo, 12 Yo, 1e i Yio, s
Yiz, 2 3.)’12,4 Yiz,6 | Yiz,s IJ’lz,mlJ’lz,lz V12,14 i V12,16
I | !
Vi, 2 ?yl4.4 Yia,8 (V14,8 EJ’\4.10;J’H.:2 _Vu,n‘yu.w
. i f !
L Vis,2 Vie, 4 "Vis.e !J’m.a !ym,m M6, 12 M6, 14 !}'16.16 n

5 in theses matrices are elements of the [y] matrix, where

[vl= [r1" [(p](ro.
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