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ABSTRACT

Time-frequency analysis has been found to be effective in monitoring the transient or time-varying

characteristics ofmachinery vibration signais, andtherefore its use in machine condition monitoring is

increasing. While the short-time Fourier transform and the Wigner-Ville distributions are generally

considérée! satisfactory in thefield oftime-frequency analysis, the developmentofsuch new techniques as

wavelet analysis, by which it is possible to compensate for weaknesses in other time-frequency methods,

may lead to new solutions to unsolved problems. Wavelet analysis has a spécial characteristic oftime-

frequency localization, which is very effective in the analysis oftransient or time-varying signais.

In this paper,we présent abriefsmdyofthewavelettransform,waveletfunctions,the discrète wavelet

transfonn,thewaveletpackettransfonnandadaptivewavelettransforms. Examples aregivento show

theadvantagesanddisadvantagesof différent wavelettransfoîins. FinaUy.theeffectivenessofwavelet

analysis in condition monitoring and diagnostics of machines is illustrated by expérimental results from a

defective bearing, followed by the application ofthis technique to the détection ofa broken tooth in a

gearbox.



l. INTRODUCTION

A diagnosis is not an assumption, it is a conclusion reached after a logical évaluation ofthe observée}

symptoms. The diagnostic process includes the following steps:

a) Observation ofthe differentsymptoms and détermination ofthe various defects in the machinery

which may have caused them;

b) A systematic search for possible defects in the measured signais;

e) Evaluation ofvarious hypothèses and détermination ofthe one which is compatible with all apparent

symptoms.

The diagnosis, therefore, is based onthe systematic analysis ofthe symptoms found inthe measured signais.

The key factor is the signal analysis. Agreatmany indicators have been developed for machine condition

monitoring and fauît détection, such as the crest factor and Kurtosis. Comparing new reading against

published severity chart such as VDI 2056 shows the existence ofdefaults.

Machine monitoring and/or diagnosis on the basis of variations in the indicator values ofthe signal spectrum

in "large bands" and in "narrow bands" is very unreliable. One reason for this is that it is necessary to

define a large number ofindicators corresponding to a small number ofdefects.

In addition, we need to take into considération not only the increase in the powerofthe signal, but also the

developmentofits form. Analysis ofthis development is camedoutinthefrequencydomain (diagnosis by

comparison ofthe spectrums).

On the other hand, the identification of tooth comb parts in high frequency by traditional spectmm analysis



is often impossible, sincethe frequencies of thèse components correspond to very high orders ofthe

rotation frequency, and all fluctuations inthe rotation frequency produce important frequency variations in

each ofthe components by sweeping across several spectral lines. Thespectrum obtained in this way is

very noisy and it is difficult to détermine the repetitive frequencies ofthe shocks.

Modifications to theform of représentation ofthesignal, such as Cepstmm (the inverse Fouriertransform

ofthe logarithmic spectrum ofthe signal) and theHilberttransfonn ofthe nanwvbandofthe signal, reveal

further information. Here, we are dealing with non-stationary or cyclo-stationary events in the time

demain. Advanced signal processing techniques are required to enableus to representthe signal in three

dimensions (time-frequency-amplitude). Thèse techniques permit us:

a) To detect and follow the development ofthe defects which generate weak vibrational power.

However, the weak vibrational power can modify the form ofthe signal to a considérable extent,

as happens when defects producethe amplitude modulation orfrequency modulation of certain

characteristiccomponents. Examplesofthisarethejoumalbearingofashaftwithasloworvery

slowrotationalvelocity, arotating oven, dryer cylinders, the press sections ofa paper machine,

etc.;

b) To supervise the installations in which the normal fimctional process produces high amplitude

periodic shocks (pistonorscrew compressor, reciprocatingmachinery [l] an d cam mechanisms

[2],...) which may mask thefaulty frequency producing the impulsive forces. (fault in abearing,

coupling, ...).

The time-frequency methods are regarded as advanced diagnostic techniques which offer high sensitivity



to faults and a good diagnostic capability.

The Short-TimeFourierTransform (STFT) is one methodoftime-frequency analysis which wehave

studied [3]. Inthe STFT, signal is eut by awindowwith length Fand centercd attime/; thespectmm

coefficients arecalculatedforthis portion ofthe signal. The window is thenmovedto a new position and

so on. The major drawback ofthe STFT is the fixed-length ofthe window(T) during the analysis ofthe

signal. This limitation ofthe STFT créâtes the fundamental problem ofthe STFT, namely that high

résolution cannotbeobtained simultaneously in thetimeandfrequency domains. Ifthewindow length is

T, then its frequency bandwidth is ofthe order 7/F(because oîBT=l). Thus, the two conditions ofa

narrow window and a narrow bandwidth are irreconcilable.

Anothertime-frequency method which we have studied [4] are theWigner-Ville distributions. In this case,

it is postulated that a séries ofsampled data is available for analysas. The instantaneous corrélation,

(T,/,), at time (/,) with a time lag r, is defined as

^(T,0=lim"J/((-^)/(/+^ (D
,1

and its Fourier transform may be written as fbllows:

S^t^fR^t^e-^dT: (2)

Where S^w^y) is the instantaneous spectrum density function according to frequency w and time t^ .

Theoretically, S^(û,t^) is the fiçquency content measurement ofa non-starionary random process at time ^.

In practice,itis impossible tocalculatethe corrélation function ^T,/^)onaseriesofsamplesfrom — co



to + co , because this type ofsample is never available.

Therefore, ifwe replace:

/1+T

fAt-^)Ât^)dî
2

fl

in the équation (2), by the instantaneous value: f(t~~^)fit^~) we will obtain
î~ ' Ï

w.r^)=fAt-^Ât+^e-^ch (3)

((û,t) is a fonction ofcy and / for a sampled single x and is called the Wigner Distribution oïf(t).

Inthe case ofdeterministic signais, weusethe analytical signal :(t) instead ofthe real signal/fy, and the

distribution is called the Wigner-Ville Distribution. The analytical signal z(t) is defined as

^)=/(0+/"AQ (4)

Where f(t), the imaginary part ofthe signal zft), is the Hilbert transform ofthe real signal/^.

In this way, the négative frequenci es are eliminated and the signal is represented only by the real part ofa

rotary phaser with positive frequencies.

The analytical signal is very useful when we study the amplitude and modulation ofthe phase sincethis

signal introduces the concept ofinstantaneous frequency and instantaneous power. The samplingfrequency

may also be used, followed by the Nyquist criteria because the spectrum ofan analytical signal is a

one-sided spectrum with only positive frequencies.



The Wigner-Ville Distribution is a distribution ofenergy in the time and frequency domains, where:

E^^WVD^(ù,t)dtd(ù (5)

Unfortunately, the Wigner-Ville transform présents several anomalies:

a) This transform is a bilinear transform i.e. the cross terms generate a certain non-linearity;

b) The random noise in the original signal has a tendency to spread to other régions in the time

demain. Since the intégral of équation (3 ) is centered at time /, the intégral covers an infmite period

ofT(timedelay). Therefore, it dépends on thecharacteristicsofx as distinct fromthe local time /;

e) Thèse transforms often give négative values, which makes the interprétation ofthe distribution

difficult.

Furthermore, theWigner-Ville method présents anotherdifFiculty: itis almost impossible to obtain a local

spectmm density becauseofthe continuity nature ofthe harmonie waves. To overcome this limitation

attributableto harmonie analysis, an alternative method of signal analysis bas, atatheoretical level, been

developed:

Instead ofusing sines and cosines as base functions to décompose a signal, a setoforthogonal functions,

called wavelets, has been used. Whilst, by définition, harmonie functions go to infinity, thewavelets are, in

contrast, local functions. Gathering thèse wavelets and using différent scales, it is possibleto assemble a

set of base functions in order to examine the local character of non-stationary signais.

Thetheory ofwavelets is a mathematical method in which a séries of spécial signais is used to constmct

a model for a signal, a System or aprocess. Thèse spécial signais are small waves orwavelets. They must

be oscillatory and possess an amplitudewhich decreases rapidly to zéro in both positive and négative



directions.

The firstclassical waveletwas derived by J. Moriet [5], ageophysical engineerataFrench oil company,

in 1982. He wanted to analyse some signais which had shorter-time transient œmponents in high fi'equency

than in low frequency. He needed both satisfactory frequency résolution in low frequency and satisfactory

time résolution in high frequency. The usual method oftime-frequency analysis at that time was the Short-

TimeFourierTransform (STFT). As previously mentioned, the major disadvantage ofthe STFT is that

it is impossible to obtainhigh résolution simultaneously intime and in frequency. Morlet's ideawas to use

asmoothwindowwithsomeoscillations,as l//(t) inFigure.3,andgeneratealabelfamilyfrom i/Çt) by

translation and dilation. As a basis forthewavelet transform, he chose awindowed œsine wave which was

compressée} in time for a higher frequency function and spread out for a low frequency function. He finally

characterized his signal by innerproducts ofthe signal with thèse transform functions. A few years later,

Alex Grossmann, a theoretical physicist, presented an exact inversion ofMoriet's formula and helped him

to find several applications forthewavelettransform [6]. In 1985, Y. Meyer, a pure mathematician,

recognizedthatthewavelettransform had been already introduced as a mathematical tool in harmonie

analysis by Calderon in the 1960s. He correlated the work ofGrossmann and Morlet with Calderon' s

formula in harmonie analysis and also œnstructedthebasis ofanorthonormal waveletwith excellent time-

frequency localizationproperties. In 1986, S. Mallat, aspecialistin œmputervision and image processing,

used the multi-resolution approaches in computer vision and its application to a method of image coding

called "Pyramid", in order to define a similar structure for wavelet expansions. Mallat and Meyer

succeeded in developing the mathematical structure forwavelet construction on the basis ofmulti-resolution



signal représentation [7,8]. Meyer's work onthe mathematical structure ofthewavelet is documented in

hisbook [9]. Usingmulti-resolutionanalysis, S, Mallat proposedthatthewavelet coefficients maybe

computed using an efficient algorithm produced by a filter bank. To usefilters in wavelet décomposition

insteadofderivingthefiltersfromawaveletbasis,wecanfirstconstiuctapairofappropriateFIR(finite

impulse response)filters andthen investigatewhetherthey correspond to anorthonormal waveletbasis.

The characteristics ofsuch apairoffilters were discovered in 1970 and given thename "quadraturemirror

filters" (QMF). Byusing QMF, exact construction oforthonormal waveletbases has been possible.A

suflRcient œndition for regularity of thèse filtershasbeengivenbyDaubechies[ 10,11]. Thiswoikresulted

in a discrete-time wavelet transform [l 2,13 ]. One ofthe important disadvantages ofthe wavelet transform

is the logarithmic scale ofthe frequency axis in the time-frequency plane. As an alternative, an interesting

generalization ofthefilterbanktrees ofthe wavelettransform is thewavelet packets transform, which

provides a linear scale frequency axis in the time-frequency plane f 14,15].

This paper présents thewaveletanalysis as a newly-developed technique with important properties which

make it a powerful tool in machine condition monitoring and fault détection. In section 2, thetheory of

wavelet transform is briefly described, followed by a discussion ofthe properties of différent wavelet

functions. Then, the discrète wavelettransform andthe fastwavelet transform based on multi-resolution

analysis are studied and the wavelet packet transform and adaptive wavelet transforms are presented as

variations ofwaveletanalysis. Inthis section, wealso présent a new method, calledthe"zoom in wavelet

transfonn", by means ofwhich the wavelet transfonn is used to obtain a finerresolution in the frequency

domain. This method is a variation ofthe adaptive wavelettransform. In section 3, a computerprogram

toimplementthedifferentmethodsofwaveletanalysisisdescribedandthedifferentwaysofusingthe



wavelettransformto détermine time-frequencylocalization are compared.Finally,waveletanalysisis

applied to expérimental vibration signais received from a damaged bearing and a broken tooth in a gearbox.

2. WAVELET TRANSFORMS

Itis knownthatdiscrete-time signal décompositions aremethods ofexpressing an energy-limited signal as

a linear combination oftransform bases. The linear intégral transforms can be considered as an inner

productof a signal /(/) with a transformation function. The standard exampleistheFouriertransfo rm

F f (û)) oî signal /(/) which is defined as:

F^œ)=<f,h>=[^f{t)h{t)dt (6)

where the transformation kernel is h(t} = e'
\' /

From a mathematical point view, équation (6) deœmposes f (t) intoafamilyof pure frequency signais e

which play the rôle ofthe Fourier transform bases. The sine-cosine functions are highiy localized in

frequency butwidely spread in time. Therefore, the time domain information ofthe spectral components

is hidden inthephaseoftheFouriertransform. Consequently, theFouriertransform is notwellsuitedfor

time-place analysis.

For non-stationary signais, the Short-Time FourierTransfonn (STFT) is the first and simplest method which

is defined as



STFT^t^co) =< f,h, >= \\f{t}h^t}dt (7)
1-ac - • •

where h (/) = g(/ - -r) e and r definethe translation ofthevvindowfunction g(t). ,-Vsthewindow

is shifted in time, a new spectnum is obtained at each position, producing a time-frequency represeritation

ofthe signal. The efficiency ofthe localization in the time-frequency plane dépends on the width ofthe

windowfunction.Theuncertaintyfactor, A/ Au» >: 1/2 ,setsalimitontheproductoftimeandfrequency.

This meansthatwecannotsimultaneouslyobtainhigh résolution in boththetimeand frequencydomains.

However, by changing the width ofthe window, we can trade résolution in time for résolution in frequency.

Inasimilarway,thewavelettransformcanbedefmediftheFouriertransformbasesarereplacedbythe

wavelet transform bases, h, (/) , as shown in Figure l .

The wavelet transform is defined as:

W^s,r)=<f,h^ >= \j{t)h{s.r}dt (8)
l—00

Thewavelet transform bases are afamily offunctions which are obtained from a single prototype wavelet

by translation and dilation/contraction :

h-r(l)-^-¥]

where"j' "isarealvariable,knownasthescaleofwavelettransformand /?(.) isafixedfunction,called

"motherwaveletfùnction". From équation (9), wecansaythatthewavelettransform extracts spectral
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information from the signal around time T by means ofinnerlinks befrween thesignal and scaled versions

of the wavelet.

In the case of the wavelet transform, the sélection ofthebasis fonctions is more flexible thanthe case with

the STFT. The choice ofshort basis functions for low frequencies and long basis functions for high

frequencies makes the wavelet transfonn sharper in time in the higher frequencies and sharper in frequency

at lowfrequencies.

2.1. Wavelet Functions

The motherwavelet fimction may be any function satisfying the necessary condition that warrants the

existence ofthe inverse wavelet transform. This admissible condition is defîned as

J/?(/)^=0 (10)

which means thatthewaveletbeoscillated to have a zéro mean. Différent familles ofwavelets can be

generatedbytakingdifferentadmissiblewaveletfunctions. Thechoiceofthewaveletfunction is important

and rather critical. The sélection ofthe wavelet dépends on the characteristics ofthe signal and on the

acceptability ofothereffects in the représentation due to thewavelet function. Inthefollowingwereview

some popular wavelets:

a) Haar Wavelet

The Haar wavelet is the first and the simplest wavelet function which was constructed by Haar in 1910.

He was a mathematician who looked for an orthonormal System with the functions
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/!o(.Y),/?i(J),---,/î^(^"),--- defined between interval [0,1], such that the séries

< /, h, >h,(x)+ </,/?, >/Î,(.Y)+...+</,/?„ >/Î,,(.Y)+... (11)

where < lt,v >= | u{x)v (x)dx

Haar chose the step function h(x'), called Haar's wavelet function, which is defined as:

h{x) = rectangle[2(j -1/4)]- rectangle [2(;c - 3/4)] (12)

which is real and antisymmetric about / = 1/2, as shown in Figure 2. For n >. l, we have

n = V: +kJ^ 0, 0 <.k ^ 2j,and h,, (x) = 2j/2 h(2j x-k). In this case, the séries

HQ (x}, /7, (x), • • • ,/!„ (x), • • • is called an orthonormal base or Hilbertian base of L [0,1].

It is easy to show thatthe functions ofthe séries are orthonormal with respectto the scalarproduct and they

arenormalizedbythefactor 2 . Severalyearslater,itwasshownthattheHaarbasehasthemultiscale

structure which is a prerequisite for wavelet function.

A major disadvantage of Haar's wavelets is the discontinuity ofthis waveletwhich cannât provide a good

approximation for smooth functions. The Fourier transform ofHaar's wavelet may be written as

l - COS TTf
H(f) = 2/ exp(-/^)— (13)

^

The decay ofthe Haar wavelet is very slow. Figure 2 shows Haar's wavelet and its Fourier spectrum.
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b) Morlet Wavelet

This wavelet is in essence a Gaussian modulated harmonie fùnction whichwas used by J. Morlet forthe

analysis ofsound pattems:

.^h(t)= exp(?2^0 expj-y Uf

Its real part is an even œs-Gaussian function. TheFouriertransform oftheMorietwavelet is the Gaussian

functions shifted to /y and — j g :

//(/)= 24xp[-2^2(/-/,)2]+exp[-2;r2(/+/,)2]} (15)

which is even and real positive valued. This wavelet does not satisfythe admissible œndition, because

H{0) ï. 0 .In practice, one often chooses /g so that the ratio ofthe highest and the second highest

maximumof/?(/)isapproximately 1:2, i.e. 2^/y » 5 .Inthiscase,thevalueof//(O) isverycloseto

zéro, i.e. H(0) = 3.7 x 10 . Here, it can be considered as zéro with a good approximation.

By this wavelet, the analysis is notorthogonal. The real partofthe hÇt) and its Fourierspectrum are

shown in Figure 3.

e) Mexican-hat Wavelet

This wavelet is in fact the second derivative ofthe Gaussian function which is introduced by Gabor.
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/?(/)= (l-1/|~ )exp

/ l .2 \
1/1

(16)
V /

It is even and real valued. The Fourier transform ofthe Mexican-hat wavelet is

//(/)= 4^2/2exp(-2<2) (17)

which is even and real valued, as shown in Figure 4. The decay ofthe wavelet coefficient is fast. This

wavelet has been applied in vision analysis.

d) Meyer Wavelet

Y. Meyer is a pure mathematicianwhoconstmcted an orthonormalwavelet bas iswith excellent time-

frequency localization properties in 1985. The Meyerwavelet is defined in the frequency domain as

/f(/)-exp(-/<)sm[v(/)]

which vÇf) is a symmetric function defined by

(18)

71
y(l_y)=_^y) for 1/3^/^2/3

7T
v(2/)=y-v(/) for 1/3^/^2/3

The Meyer wavelets in the time domain can be written as follows:

/?(/) = 2^sin[r(/)]cos[2^-l/2)/]^

(19)

(20)

Onecaneasilycheckthatitisarealsymmetricfiinctionat / = 1/2 .Bychangingtheauxiliaryfunction
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v(/),weobtainadifFerentfamilyof\vavelets.AlthoughtheMeyerwavelet shows rapidpolynomial

decay, it has wide support. This wavelet is also infinitely differentiable.

The Meyer wavelet for v(x) = x4 (3 5 - 84x + 70x2 - 20x ) is shown in Figure 5.

e) Lemarie-Battle's Wavelets

Lemarie was a student ofMeyerwho worked in harmonie analysis and Battle was a mathematical physicist

who was interested in quantum field theory. Independently ofone another, they developed wavelet bases

consisting ofspline functions. An explicit expression forthis wavelet family does not exist and the properties

ofeach member ofthe family can be différent and dépend on the choice ofthe spline function. For a

constant spline, thewavelets become similarto Haarwavelets. More détail for œnstructing filters usingthis

wavelet family may be found in [l l],

Although thewavelets have exponential decay which is an improvement over the decay ofthe Meyer

wavelet, they loseregularityand are notœmpactly supported. Oneofthewavelets is shown in Figure 6.

f) Daubechies Wavelets

Apart from the Haar wavelet function, almost all the orthonormal wavelet functions listed above cons ist of

infinitely supported functions. One desirable property is to haveawaveletwith compactsupport in the time

demain. Le., itistimelimited inthat it is non-zeroonlyoveragiven interval. Such awaveletgives a tme

sense oftime locality. Daubechies constructed a family oforthogonal wavelets which converse to

continuousfunctionswith compact support. Thesewaveletshavenoexplicitexpressionexceptfor db\,

15



which is the Haar wavelet. The Daubechies family wavelets are real but neither symmetrical nor

asymmetrical andtheirregularity increases as theorderofDaubiechies' \va\'eletincreases. Onemember

ofthe Daubechies family ( D4 ) is shown in Figure 7. Détails ofthe procédure for constructing au

orthonormal base ofcompactly supported wavelets may be found in Daubechies' original paper [10].

Thèse wavelets have other desirable properties. It can be shown that they are bounded, continuous

functions and they are continuously differentiable.

2.2. Discrète Wavelet Transform

Inordertoapplythewavelettransformfordigitalsignals,thewaveletparameters s, T mustbediscretized,

Ifwe considère = SQ and T = nSy TQ , the corresponding wavelets become:

(f\ ^ ç-'"'2 . /lfç-m/ _ MÏ 'l .^
îmn \' l ~ •JQ ~ "\JO ' — '" 0 / '-

where m, n e Z, S y >l, T^ ^ 0

Thiswayofdiscretizationmaybemodifiedtogiveadyadicgridbyconsidering Sy = 2, 7y = l :

therefore

h^=2-'"2-h(2-m{-n) m,n = 1,2,... (22)

It is possible to obtain an orthonormal basis for spécial choices of /z(/) . The dyadic sampling grid in the

time-scale plane is shown in Figure 8(a). The scale axis is often expressed in terms offrequency under

transformation s —> k l f where k isaconstant.Infact,itcanbeshownthattheShort-TimeFourier

Transform, time-frequency distributions and time-scale methods (wavelet transfonns) are members ofa

16



common class ofenergy représentations [l 6, 8]. A comparison between thebasis functions and thetime-

frequency plane ofthe Short-Time Fourier Transform (STFT) and thoseofthe wavelet transfonn is shown

in Figure 8(b); the self-adjusting window (zooming) property is the major differencebetween the wavelet

transform andthe STFT. Thezoomingpropertyofthewavelettransform is similarto a microscope or a

télescope, where the résolution is automatically adjusted to a différent scale ofmagnification. As shown in

Figure 8, the important properties ofthewavelettransform, such as its localisability and changeable

résolution inthetimeandfrequency domains, make itbothmoresuitable and more efïective in the analysis

of non-stationary vibration signais such as transients.

The implementation ofthe wavelet transform according to (22) may only be carried out with sorne difficulty

because, as m increases, /?(/)must be sampled at progressively more points. This makes the

computations veryslow. In 1989, Stéphane Mallat [l 7,7] proposed an efficient discrete-time algorithm

for the cornputation ofthe waveîet transfonn. Maliat, using quadrature mirror fiiters and multi-résolution

analysis, constructed anew algorithm forthe computation ofthewavelettransform, which calculâtes the

wavelet coefficients very rapidly. It is called the Fast Wavelet Transfonn and its idea comes from a

method called subband coding, which bas been used in speech compression. Subband coding, which

consists oftwo branches with filteringfollowedby down samplingby two, can décompose a signal into two

parts. The partthat is passed through a low-pass filter gives an approximation ofthe signal, and the part

that is passedthrough a high-pass filtergives the détail. Itis interestingto note thatthe original signalcan

be recovered from its two filtered and subsampled parts ifthe filters have the property ofperfect

reconstruction, as shown in Figure 9(a). Such filters are called quadrature min-orfilters. As shown in

17



équation (8), awavelet transform can be interpreted as a décomposition ofa signal into a set offrequency

channels ofdifferentband widths. Mallat's algorithm is acascade extension ofthis elementary two-channel

filter bank in a binary tree stmcture, as shown in Figure 9(b).

A review ofdiscrete-timewavelettransform and the relationship betvveen wavelet transform and filter

banks is given by Shensa [19], Vetterli et al. [15, 18].

2.3. Wavelet Packet Transform and Adaptive Wavelet Transforms

Inwavelettransform, thefrequency axishas alogarithmicscalewhich gives goodfrcquency résolution at

lowerfrequenciesandgoodtime résolution in thehigherfrequencies. Forthisreason,itissuggestedthat

thewav el et transformbeusedto analyse signais withlong-durationevents inthe lowerfrequencies and

short-duration events in the higher frequencies.

The généralisation ofthe discrete-timewavelettransform is called thewaveletpackettransform and can

be described as a full-tree-structured filterbank, as shown in Figure 10. An interesting advantage ofthe

wavelet packet is thatthe frequency axis has linear scale which gives betterfrequency résolution in the

higher frequencies, at the price ofsome loss oftime résolution.

It is clear that the wavelet transform is appropriate for signais with transient phenomena in the higher

frequencies; however, itmay perfbrm lesswell overothertime-frequency transforms. The résolution

exchange between time and frequency in the wavelet transfonn is always fixed and independent ofthe s ignal

being analysed. This may notbesatisfactory inthe analysis ofan arbitrary class of signais with either

unknown ortime-varying characteristics. To improvethe performance ofthewavelet transform, it is

necessary to use the signal-adaptive transform, which is more satisfactory than the original fixed transform
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although it is important to ensure that this flexibility does not come at too great a cost.

There are two way ofachieving this objective:

a) By selecting filter banks to optimize the time and frequency résolutions:

We may selectthe binary trees in filter banks by taking the characteristics ofthe signal into account,

instead ofusingthe fixed tree ofthe wavelettransfonn orthe wavelet packet transform [20], as

shown in Figure 11. In this way, we can locally exchange résolution in time for résolution in

frequency and vice versa.

b) By optimizing the wavelet function with respect to the signal strucftjre:

Thesecond way involves the construction ofwaveform libraries and the choice ofthose particular

waveforms which are the best adapted for the décomposition ofthe signal structures. Such

waveforms arecalled time-frequency atoms and the libraries ofwaveforms are called the dictionary

oftime-frequency atoms.

One method which follows the idea ofsearching for good représentation from a dictionary oftime-

frequencyatoms isthemethodofmatchingpursuit[21]. Thismethod is a linear décomposition of any signal

into waveforms that are selected from a dictionary ofGabor functions.

A général family oftime-frequency atoms can be generated by scaling (s > 0), translating (r) and

frequency modulating (<^) a single window function g(t).

s-(l)-is(t-1}'9

where the index y = (s. T, Ç) denotes an élément ofthisfamilyofatoms.The g(/)istheGaussian
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window^(/)=2' 4e~^ .

Then /(/) can be written

+00

/(/)=I>.^(0 (24)
n=-oo

where a „ are the expansion coefficients which provide some information on certain types ofproperties of

/(/), depending upon the choice ofthe atoms g (/) .

This method is parti cularly suitable for decomposing signais whose localizations in time and frequency vary

widely.

2.4. De-noising

Removing noise from a signal by wavelet analysis is oneofthe most récent applications ofwavelets [22].

The idea ofde-noising by wavelet analysis consists ofdecomposing the signal by wavelettransform,

removing noise from components, and reconstmcting the signal.

Wavelet analysis is a linearmethod; therefore the wavelet coefficients ofthe linear combination offrwo

signais are equal to the linear combination oftheir wavelet coefficients,

w.. ., =w. +w.(/1+/2) ~ rr A ' ff/2

A noisy signal can be modeled in the following form:

f (t) = s(t) + e(t) (26)
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Where/^ isanoisy signal, s(t) isthe original signal, and e(1) isthenoise. Eliminatingthenoisepartofthe

signal may be done in three following steps:

a) Compute the wavelet décomposition ofthe signal/^

b) Détermine a limit for optimal de-noising and suppress only the portion ofthe wavelet œefficients

that exceeds this limit.

e) Reconstruct the signal with the help of modified wavelet coefficients s(t).

In practice, the deœmposition and reconstruction procédures are accomplished respectively by the fast

wavelet transform and the inverse fast wavelet transform.

It is clearthat the performance ofthe de-noising method dépends mostly on the step (b). Suppressing a

part of a signal, calledthethresholding procédure, is carriedoutusing différent optimization techniques,

which give différent threshold values [23 ]. In next section, we\villseehowthis application ofthewavelets

can improve the wavelet transform représentation of signais.

3. APPLICATION 0F THE WAVELET TRANSFORM TO MACHINERY

FAULT DIAGNOSIS

The wavelet transform is one ofthe newer methods oftime-frequency analysis that have been used in

various science and engineering fields in récent decades. Although the wavelet transform bas been applied

to image processing and speech recognition with great success, therehave been only a few applications

in machinery diagnostics, for example, the work ofMcFadden et al. in the application ofthe wavelet
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transform to fault détection in a gearbox [24,27]. Damage in bearing éléments isoneof major problem

in rotating machines that can be detected by the wavelet transform [28, 29]. Fault détection and

identification in a helicopter gear-box was carried out by Lopez et al. [30].

It has been shown that, in the diagnosis offaults in reciprocating machines, the wavelettransform may be

cons idered as a satisfactory technique for extracting the characteristics of vibration signais [31]. Zhongxing

and Liangsheng [3 2] used the wavelet packet technique to analyse the vibration signais ofa compressor.

In another approach, Dalpiaz and Rivola [2,3 3 ] applied the wavelet transform to the condition monitoring

and diagnostics ofcam mechanisms. We note that in most ofthe above applications the Gaussian wavelet

fonction was chosen as a mother wavelet function.

3.1. Software for Wavelets Transforms

A user-friendly software has been developed to permitthe use of différent methods oftime-frequency

analysis such as the Short-TimeFourierTransform, the Wigner-Ville Distributions, and theWavelet

Transforms. The program allows theuserto carry out différent distributions ofCohen's class oftime-

frequency methods such as the Choi-Williams Distribution and theBom-Jordan-Cohen Distribution. In

addition, it provides différent kinds ofwavelettransforms, for example: the wavelettransform, the wavelet

packettransform,andthewavelettransformbytheGaborDictionary. In addition, thenewtechniqueof

the "zoom in wavelet transform" makes it possible to obtain very satisfactory frequency résolution.

This program has been developed especially forthe diagnosis ofdefects in machinery, and includes most

ofthe commonly-used methods oftime-frequency analysis. We have tried to use those kemels and filters

whicharecompatiblewiththecurrentsignalsinmachinediagnostics.Theprogramhassomeinteresting
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options which are of considérable practical value in such cases. For example, de-noising by wavelet

transfomi, which is an important tool in theanalysisofnoisy signais, allowstheusertoobtain an improved

time-frequency représentation.

Some examples from simulated signais have been used to verify the function and accuracy ofthe program.

Thefirstexampleisthesumofthreesines: 300Hz, 1000Hzand3000Hz; thetimefrequency plane shows

three constant frequency bands. Although thewavelettransform ofthe signal, as shown in Figure 12(b),

indicates a concentration ofthe signal s energy in thethreebands, there is also the dispersion ofthis energy

in the adj acent bands especially when an incorrect filter is chosen, as shown in Figure 12(c). On the other

hand, it is impossible to détermine the exact values ofthe frequencies by the logarithmic scale ofthe

frequency axis.

The wavelet packet transform ofthis example gives better représentation in the time-frequency plane than

the wavelettransform ofthis signal (Figure 13). The linearscale ofthefrequency axis gives betterfrequency

résolution. Filter sélection plays an important rôle here also.

The matching pursuitalgorithm gives the best représentation ofthis signal, as shown in Figure 14. The

résolution of frequencies in the time-frequency plane is very satisfactory.

The second example is aDiracfùnction in 0. l sec. This function is an example oftransitory signais. The

wavelettransform ofthe example is shown in Figure 15. This time, the wavelettransform gives thebest

représentation ofthe signal in thetime-frequency plane. ThepeakappearsexactlyatO.l sec. Thevery

good time résolution provided by the wavelet transform in the higher frequencies makes it a powerful tool

for the détection oftransitory phenomena in the signais.

The wavelet packettransform shows the Dirac function in approximately 0. l sec (Figure 16). Its time
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résolution is notas satisfactory as thatofthewavelettransform. There is a différence between the results

obtained by the wavelettransform and thoseobtained by the wavelet packet transform (thevvavelet packet

transform has betterfrequency résolution in the higherfrequencies thanthe wavelettransform, but atthe

expense ofa loss oftime résolution in thèse frequencies).

The matching pursuit algorithm gives a représentation ofthe signal that is not as good as that given by the

wavelet transform, but is better than that given by the wavelet packet transfbrm, as shown in Figure 17.

The next example is an amplitude-modulated wsine at 1000 Hz. The wavelettransform représentation of

the signal in the time-frequency plane shows the modulation ofthe signal. To obtain a clear représentation

ofthis signal, it is préférable to see simultaneously the mean-square wavelet map (three-dimensional

représentation) ofthe signal, as shown in Figure 18. The wavelet packet transform ofthe signal

accompanied with the mean-square wavelet packetmap of the signal show in Figure 19. Here, we use

Haarwaveletfunction which provides agood time résolution. To obtain more clear représentation ofthe

signal in frequency, we can use a Daubechies 20 wavelet function which provides good frequency

résolution at the expense ofaloss oftime résolution.

For this type of signal, thematchingpursuitalgorithmisnotrecommendedbecausethe modulation isnot

displayed (Figure 20).

The final example is afrequency-modulated signal at 1000 Hz. Thewavelettransform and themean-square

waveletmapofthe signal are showTi in Figure 21. In thetime-frequency plane, the représentation ofthe

signal is once again unclear. Ifthere are other components in the signal, itwill be very difficult to identify

the signal. The mean-square wavelet map ofthe signal is not clear, either.

Thewaveletpackettransform gives abetterreprcsentationofthesignal thanthewavelettransform; in
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particular, the mean-square wavelet packet map ofthe signal is clear, as shown in Figure 22.

Again, the matching pursuit algorithm cannotbe reœmmended becausethe frequency modulation cannot

be identified (Figure 23).

3.2. Expérimental application ofthe wavelet transforms

Aftercomparing thetheoretical behaviorofseveral variations ofthewavelettransform when applied to

différent signais, wenowinvestigate signais obtainedfrom expérimental cases. A pin-pointdefectwith

known characteristics and location was created on arollingbearing. The test set-up consisted ofan electric

motor, a shaftmounted on two journal bearings(SKF 1210EKTN9self-aligning,doublerow),labelled

A andB, agear-box and abreakto impose the load. Thedefectwas createdon supportAbyscratching

the inner raceway ofthe bearing with an electric pen. Figure 24 shows the expérimental set-up.

The vibration signal was measured on support A by an accelerometer and transferred to an analyser. The

measured signal was converted into American National Standard Code for Information Interchange

(ASCII) format and transferred to the in-house software program for analysis.

The frequencies of différent types ofbearing defectmay be œmputed usingthe géométrie characteristics

ofthe bearing and the rotating frequency [34]. Thegeometric characteristics ofthe damaged bearing are

as follows:

Pitch diameter D=69 mm

Diameter ofthe rolling body d=l 0.3 2 mm

Contact angle a =7.87 deg

Number ofrolling éléments N =17 (per row)
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Bearing frequency of rotation F =12.2 Hz

The frequency defect caused by damage on the inner raceway ofthis bearing can be computed by the

following formula:

F, =-L
F. N d

1+—COS((2) (27)
D

Equation (25) gives us a value for the pass frequency on a point ofthe inner raceway which equals

approximately238Hz.Notethatthefrequencyofthistypeofdefecthasaspecialcharacteristic.The

defaultfrequency should be an amplitude-modulated waveatapproxunately 23 8 Hz with the frequency of

modulation equal to the rotating frequency.

Figures 25-26 show respectively the wavelettransfonn and the wavelet packet transform ofthe vibrational

signal ofthe defected bearing it is almost impossible to identifythe defect by thèses figures because the

original signal is very noisy. To obtain more clear représentation ofthe signal, it is necessary to remove at

firstthe noise from the signal. To do this, therearetwo possibilities inthe software: De-fwisinsbyc/assica!

wave/ef transform and De-noismz hy Matchmg Pursuit algorithm. Here, we use the de-noising by

matching pursuit algorithm and The de-noised signal is called dn-beai'ing. Figures 27-28 show respectively

the wavelet transform and the wavelet packet transform ofthe de-noised signal. As shown, the wavelet

transform ofthe de-noised signal is clearly shown the repetitive peaks in frequency band 200-400 Hz. The

frequencyofamplitude modulation in thisbandisapproximately 12.2Hzwhichequalstotherotating

frequency. Then, the default in bearing maybe easily be identified by the wavelettransform ofthe de-

noised signal. The waveletpackettransform ofthis signal provides more frequency résolution but it is not
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as clear as the wavelet transform ofthe signal. The default fi'ecpjency is situated in frequency band 200-300 Hz.

3.3. Industrial application ofthe wavelet transform

In the last section, the performance ofwavelet transforms for a defect created on the inner raceway ofa

bearing was described. In this section, the efficiency ofwavelettransforms for an industrial casewithout

any prediction ofdefects is demonstrated. This case comes from the defective gear-train ofa hoist drum

in a large shovel operating at an open-pit iron mine.

Gearboxfaultsmaybeclassifiedintoshaft(misalignment, imbalance)andtooth(wear, scuffing, cracking)

related problems. Damage to a single tooth is called a local tooth fault, and will be investigated in this

section. Vibration signais measured on a gearbox includethetooth-meshingfrequency, transient events

caused by defects, gearbox résonance vibrations and System and sensor transmission characteristics. Thèse

vibration signais are non-stationary signais whichrequirespecifictechniquesbecause application ofthe

conventional methods, such as Fourieranalysis, to gearbox fault détection are often difficult. Time-

frequency methods provide new techniques forthe analysis of non-stationary signais and have advanced

capabilitiesfortheseparationofdifferentphenomena.Theapplicationofsometime-frequencymethods

to the analysis ofgearbox faults has been described in [3,4], and here, the application ofanothergroup

oftime-frequency methods, called time-scale analysis, is presented.

Thetime signal ofthe damaged gearbox and itswavelettransform are shown in Figure 29. The repetitive

puises in the wavelet transform in the band between 320 Hz and 640 Hz are caused by a broken tooth.

The mean square wavelet map ofthis signal gives représentation ofthe wavelet transform in three

dimensions. ThewaveletpackettransformofthesignalinFigure30givesnotonlyabettertime-frequency
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représentation ofthe signal butalso betterfrequency résolution than thewavelet transform. The mean

square wavelet packet ofthe signal clearly shows the puises.

Thetime-frequency plane projection by the GaborDictionary ofthe signal is shown in Figure 31 but it is

not easy to obtain the characteristics ofthe signal from this figure.

Although the mean squarewavelet packetmap ofthe signal gives the best représentation ofthe signal, the

frequency résolution ofthe signal may notbe as fine as is needed. To obtain a finer frequency résolution

, we can use the zoom in wavelet transform which is based on choosing the best trees in the filter bank.

By this method, first, the desired frequencyband is selected and, seœnd, asuitablefrequency résolution

is achieved by wavelet packet transform ofthis frequency band. A zoom in wcn'elet transform in the

frequency band between 320 Hz and 640 Hz is shown in Figure 32.

4. CONCLUSION

Theabove study has shown the performance cfa newmethod forthe diagnosis ofdefects inmachinery.

We have demonstrated that the wavelet transform provides a high frequency résolution in the lower

frequencies and a high time résolution in the higher frequencies. This characteristic ofthe wavelet transfonn

may be advantageous in machmery fault détection. The wavelet functions play an important rôle in obtaining

a good représentation ofa signal and they are chosen in accordancewith the characteristics ofthe signal.

Thewaveletpackettransformisafulltreefilterbankwhichgivesalinear-scalefrequencyaxis.Itgives

betterfrequency résolution than thewavelettransformbutthe lattergives superiortime résolution. In

machine monitoring and fault détection, it is sometimes necessary to have high fi'equency résolution in order
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to identify the type ofdefect and, in this case, one could recommend the use ofthe wavelet packet

transform. However, this approach does result in a loss of information in the time domain and the time-

frequency représentation becomes complicated. Forthis reason, wehave présentée! a new technique

which is called the "zoom inwavelettransform". This technique permits us to obtain desirablefrequency

résolution with clear time-frequency représentation.

This article bas also présentée! an easy-to-use software package which includes the majority ofmethods

oftime-frequency analysis and compares the wavelet transforms with other methods . The software is

equipped withseveralinteresting options such as a new methodofde-noisingbywavelettransform.This

method, which has been applied recently in signal processing, improves the time-frequency représentation

ofnoisy signais.

Thetransient and the time-varying signais in machine œndition monitoring présent différent behavior in their

time-duration. Theadaptivewavelettransforms arepowerful tools which are capable ofdecomposingthe

signal into those waveforms that are best adapted to the signal structure.

A computer program implementing the wavelet transforms has been used to compare the performanceof

differentwaveletmethods. It has been shown, by thenumerically generated signais and two expérimental

tests on a damaged bearing and a broken gear tooth, that thewavelet analysis methods are effective in

machine condition monitoring especiallywhen a transient phenomenon exists in the signal. In the casewhere

a defect in a machine générâtes amplitude-modulation signais or frequency-modulation signais, it is

préférable to use other time-frequency methods such as the Wigner-Ville distributions or the STFT.
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Figure 17: Time-frequency représentation of a Dirac function by Gabor dictionary



cos10ma1000.asc

0.1 0.2
Time (S)

N'

5000 T-

2500 t

1250 il

625 -f"^
§ 312.5}
0-

•^ 156.25-1

78.125-1

39.0625

ffiï 118

wavelet Transform

111111
un

0.3

Mean-Square Wavelet Map

0.05 0.1 0.15

time (S)
0.2

0.1

0.15

0.2

0.25 5000 2500
1250 625

312.5
156.25

78.125
39.0625

time (S) frequency (HZ)

Figure 18 : Wavelet transform and mean-square wavelet map of an amplitude-modulated sine
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modulated sine
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dictionary
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Figure 21 : Wavelet transform and mean-square wavelet map of a frequency-modulated sine
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Figure 22 : Wavelet packet transform and mean-square wavelet packet map of a frequency-

modulated sine
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Figure 24: Test setup.
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Figure 25 : Wavelet transform and mean-square wavelet map of the measured signal on a
defective bearing.
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Figure 26 : Wavelet packet transform and mean-square wavelet packet map of the measured

signal on a defective bearing.
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Figure 27 : Wavelet transform and mean-square wavelet map of the de-noised signal of the

defective bearing.
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signal ofthe defective bearing.
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Figure 29: Wavelet transform and mean-square wavelet map ofthe signal measured on a
defective gearbox.
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Figure 3 0 : Wavelet packet transform and mean-square wavelet packet map of the signal

measured on a defective gearbox.
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Figure 31 : Time-frequency représentation of the signal measured on a defective gearbox by

the Gabor dictionary.
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