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ABSTRACT

Time-frequency analysis has been found to be effective in monitoring the transient or time-varying
characteristics of machinery vibration signals, and therefore its use in machine condition monitoring is
increasing. While the short-time Fourier transform and the Wigner-Ville distributions are generally
considered satisfactory in the field of time-frequency analysis, the development of such new techniques as
wavelet analysis, by which itis possible to compensate for weaknesses in other time-frequency methods,
may lead to new solutions to unsolved problems. Wavelet analysis has a special characteristic of time-
frequency localization, which is very effective in the analysis of transient or time-varying signals.
In this paper, we present abrief study of the wavelet transform, wavelet functions, the discrete wavelet

transform, the wavelet packet transform and adaptive wavelet transforms. Examples are given to show

analysis in condition monitoring and diagnostics of machines is illustrated by experimental results from a
defective bearing, followed by the application of this technique to the detection of a broken toothin a

gearbox.



1. INTRODUCTION

A diagnosis is not an assumption, it is a conclusion reached after a logical evaluation of the observed
symptoms. The diagnostic process includes the following steps:
a) Observation of the different symptoms and determination of the various defects in the machinery

which may have caused them,;

b) A systematic search for possible defects in the measured signals;
c) Evaluation of various hypotheses and determination of the one which is compatible with all apparent
symptoms.

The diagnosis, therefore, is based on the systematic analysis of the symptoms found in the measured signals.
Thekey factor is the signal analysis. A greatmany indicators have been developed for machine condition
monitoring and fault detection, such as the crest factor and Kurtosis. Comparing new readingagainst
published severity chart such as VDI 2056 shows the existence of defaults.

Machine monitoring and/or diagnosis on the basis of vaniations in the indicator values of the signal spectrum
in "large bands" and in "narrow bands" is very unreliable. Onereason for this is that it is necessary to
define a large number of indicators corresponding to a small number of defects.

In addition, we need to take into consideration not only the increase in the power of the signal, but also the
development of its form. Analysis of this development is carried out in the frequency domain (diagnosis by
comparison of the spectrums).

On the other hand, the identification of tooth comb parts in high frequency by traditional spectrum analysis



is often impossible, since the frequencies of these components correspond to very high orders of the
rotation frequency, and all fluctuations in the rotation frequency produce important frequency variations in
each of the components by sweeping across several spectral lines. Thespectrum obtained in this way is
very noisy and it is difficult to determine the repetitive frequencies of the shocks.

Modifications to the form of representation of the signal, such as Cepstrum (the inverse Fourier transform
of the logarithmic spectrum of the signal) and the Hilbert transform of the narrow band of the signal, reveal
further information. Here, we are dealing with non-stationary or cyclo-stationary events in the time
domain. Advanced signal processing techniques are required to enableus to represent the signal in three

dimensions (time-frequency-amplitude). These techniques permit us:

a) To detect and follow the development of the defects which generate weak vibrational power.
However, the weak vibrational power can modify the form of the signal to a considerable extent,
as happens when defects produce the amplitude modulation or frequency modulation of certain
characteristic components. Examples of this are the journal bearing of ashaft with a slow or very
slowrotational velocity, arotating oven, dryer cylinders, the press sections of a paper machine,
etc.;

b) Tosupervisethe installations in which the normal functional process produces high amplitude
periodic shocks (piston or screw compressor, reciprocating machinery [ 1]and cam mechanisms
[2], ...) which may mask the faulty frequency producing the impulsive forces. (faultin abearing,
coupling, ...).

Thetime-frequency methods areregarded as advanced diagnostic techniques which offer high sensitivity



to faults and a good diagnostic capability.

The Short-TimeFourier Transform (STFT) is one method of time-frequency analysis which we have
studied [3]. Inthe STFT, signalis cutby awindow with length 7"and centered attime 7, the spectrum
coefficients are calculated for this portion of the signal. The window is then moved to a new position and
soon. Themajor drawback of the STFT is the fixed-length of the window (7) during the analysis of the
signal. This limitation of the STFT creates the fundamental problem of the STFT, namely that high
resolution can not be obtained simultaneously in the time and frequency domains. Ifthe window length is
T, then its frequency bandwidth is of the order //T (because of BT=1). Thus, the two conditions of a
narrow window and a narrow bandwidth are irreconcilable.

Another time-frequency method which we have studied [4] are the Wigner-Ville distributions. In this case,
it is postulated that a series of sampled data is available for analysis. The instantaneous correlation,

Rf(r,t1 ), at time (¢,) with a time lag , is defined as

LT

R (z.0)=lim [ f(t=2)f(t+2)ds 0

and its Fourier transform may be written as follows:

S(01))= f R(tt) e dt 2)

Where § /(w,tl) is the instantaneous spectrum density function according to frequency w and time ¢, .
Theoretically, S f(m,tl) is the frequency content measurement of a non-stationary random process at time f .

Inpractice, itis impossible to calculate the correlation function R/(r,tl) onaseries of samples from — oo
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to + o , because this type of sample is never available.

Therefore, if we replace:

T T
f =) ey

t.
°1

in the equation (2), by the instantaneous value: ﬂt—%)/(h%) we will obtain

_ y T T i .
W)= [fit-2) fitr-) e # dr ©

Wf(m,t) is a function of w and ¢ for a sampled single x and is called the Wigner Distribution of f{7).
Inthe case of deterministic signals, weuse the analytical signal z(7) instead of the real signal f{1), and the

distribution is called the Wigner-Ville Distribution. The analytical signal z(#) is defined as
2(0)=1)+j f2) )

Where f{¢), the imaginary part of the si gnal z(?), 1s the Hilbert transform of the real signal /7).
Inthis way, the negative frequencies are eliminated and the signal is represented only by thereal part of a
rotary phaser with positive frequencies.

Theanalytical signal is very useful when we study the amplitude and modulation of the phase since this
signal introduces the concept of instantaneous frequency and instantaneous power. The sampling frequency
may also be used, followed by the Nyquist criteria because the spectrum of an analytical signal is a

one-sided spectrum with only positive frequencies.



The Wigner-Ville Distribution is a distribution of energy in the time and frequency domains, where:

E- f f WVD,(,1) dt do 5)

Unfortunately, the Wigner-Ville transform presents several anomalies:

a) This transform is a bilinear transform i.e. the cross terms generate a certain non-linearity;

b) The random noise in the original signal has a tendency to spread to other regions in the time
domain. Since the integral of equation (3) is centered at time 7, the integral covers an infinite period
of r(timedelay). Therefore, it depends on the characteristics of x as distinct from the local time #;

c) These transforms often give negative values, which makes the interpretation of the distribution
difficult.

Furthermore, the Wigner-Ville method presents another difficulty: itis almostimpossible to obtain a local

spectrum density because of the continuity nature of the harmonic waves. To overcome this limitation

attributable to harmonicanalysis, an alternative method of signal analysis has, at atheoretical level, been

developed:

Instead of using sines and cosines as base functions to decompose a signal, aset of orthogonal functions,

called wavelets, has been used. Whilst, by definition, harmonic functions go to infinity, the wavelets are, in

contrast, local functions. Gathering these wavelets and using differentscales, it is possible to assemble a

set of base functions in order to examine the local character of non-stationary signals.

Thetheory of wavelets is a mathematical method in which aseries of special signals is used to construct

amodel forasignal, asystem oraprocess. These special signals are small waves or wavelets. They must

be oscillatory and possess an amplitude which decreases rapidly to zero in both positive and negative



directions.

Thefirstclassical wavelet was derived by J. Morlet [S], ageophysical engineer ata French oil company,
in 1982. He wanted to analyse some signals which had shorter-time transient components in high frequency
than in low frequency. He needed both satisfactory frequency resolution in low frequency and satisfactory
time resolution in high frequency. The usual method of time-frequency analysis at that time was the Short-
TimeFourier Transform (STFT). As previously mentioned, the major disadvantage of the STFT is that
it 1s impossible to obtain high resolution simultaneously in time and in frequency. Morlet’s idea was to use

asmooth window with some oscillations, as /() inFigure. 3, and generatealabel family from y(#) by

translation and dilation. As a basis for the wavelet transform, he chose a windowed cosine wave which was
compressed in time for ahigher frequency function and spread out for alow frequency function. He finally
characterized his signal by inner products of the signal with these transform functions. A few years later,
Alex Grossmann, a theoretical physicist, presented an exact inversion of Morlet’s formula and helped him
to find several applications for the wavelet transform [6]. In 1985, Y. Meyer, a pure mathematician,
recognized that the wavelet transform had been already introduced as a mathematical tool in harmonic
analysis by Calderon in the 1960s. He correlated the work of Grossmann and Morlet with Calderon’s
formula in harmonic analysis and also constructed the basis of an orthonormal wavelet with excellent time-
frequency localization properties. In 1986, S. Mallat, a specialist in computer vision and image processing,
used the multi-resolution approaches in computer vision and its application to a method of image coding
called “Pyramid”, in order to define a similar structure for wavelet expansions. Mallat and Meyer

succeeded in developing the mathematical structure for wavelet construction on the basis of multi-resolution



signal representation [7, 8]. Meyer’s work on the mathematical structure of the wavelet is documented in
his book [9]. Using multi-resolution analysis, S. Mallat proposed that the wavelet coefficients may be
computed using an efficient algorithm produced by a filter bank. To use filters in wavelet decomposition
instead of deriving the filters from a wavelet basis, we can first construct a pair of appropriate FIR (finite
impulseresponse) filters and then investigate whether they correspond to an orthonormal wavelet basis.
The characteristics of such a pair of filters were discovered in 1970 and given the name “quadrature mirror
filters” (QMF). By using QMF, exact construction of orthonormal waveletbases has been possible. A
sufficient condition for regularity of these filters has been given by Daubechies [10, 11]. This work resulted
inadiscrete-time wavelet transform [12, 13]. One of the important disadvantages of the wavelet transform
is the logarithmic scale of the frequency axis in the time-frequency plane. As analternative, an interesting
generalization of the filter bank trees of the wavelet transform is the wavelet packets transform, which
provides a linear scale frequency axis in the time-frequency plane [14, 15].

This paper presents the wavelet analysis as a newly-developed technique with important properties which
make ita powerfultool inmachine condition monitoring and fault detection. In section 2, the theory of
wavelet transform is briefly described, followed by a discussion of the properties of different wavelet
functions. Then, the discrete wavelet transform and the fast wavelet transform based on multi-resolution
analysis are studied and the wavelet packet transform and adaptive wavelet transforms are presented as
variations of waveletanalysis. In this section, we also presentanew method, called the “zoom in wavelet
transform”, by means of which the wavelet transform is used to obtain a finerresolution in the frequency
domain. This method is avariation of the adaptive wavelet transform. Insection 3,a computer program

to implement the different methods of wavelet analysis is described and the different ways of using the



wavelet transform to determine time-frequency localization are compared. Finally, wavelet analysis is

applied to experimental vibration signals received from a damaged bearing and abroken tooth in a gearbox.

2. WAVELET TRANSFORNMS

Itis known that discrete-time signal decompositions are methods of expressing an energy-limited signal as
a linear combination of transform bases. The linear integral transforms can be considered as an inner

productofasignal () withatransformationfunction. Thestandard exampleisthe Fourier transform

F (@) of signal f(f) which is defined as:

Fp(@) =< f.h>= [ royh@yar ©)

where the transformation kernel is /(f) = ' |

From a mathematical point view, equation(6) decomposes [ (#) into afamily of purefrequency signals e’

which play the role of the Fourier transform bases. The sine-cosine functions are highly localized in
frequency but widely spread in time. Therefore, the time domain information of the spectral components
is hidden inthe phase of the Fourier transform. Consequently, the Fourier transform is not well suited for
time-place analysis.

For non-stationary signals, the Short-Time Fourier Transform (STFT) is the first and simplest method which

is defined as



STFT,(t,) =< f,h, >= [ f(1)h (1) di )

where /(1) = g(t = 7) e’ and 7 definethe translation of the window function 2 (7). As the window
. g 8

isshifted intim osition, producing a time-frequency

e,anews
ofthesignal. Theefficiency ofthelocalization in the time-frequency plane depends on the width of the

window function. Theuncertainty factor, A Aw 21/ 2 setsalimiton the product of time and frequency.

This means that we cannot simultaneously obtain high resolution in both the time and frequency domains.
However, by changing the width of the window, we can trade resolution in time for resolution in frequency.

In asimilar way, the wavelet transform can be defined if the Fourier transform bases are replaced by the

wavelet transform bases, A, (f), as shown in Figure 1.

The wavelet transform is defined as:
W,(s,7) =< f,h,, >= L f() h(s.t)drf 8)

The wavelet transform bases are afamily of functions which are obtained from a single prototype wavelet

by translation and dilation/contraction :

h,,(r) = ?lr;‘”(%r‘) ©)

where* s ”is areal variable, known as the scale of wavelettransformand  4(.) isafixed function, called

“mother wavelet function”. From equation (9), we can say that the wavelet transform extracts spectral
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information from the signal around time t by means of inner links between the signal and scaled versions
of the wavelet.

Inthe case of the wavelet transform, the selection of the basts functions is more flexible than the case with
the STFT. The choice of short basis functions for low frequencies and long basis functions for high
frequencies makes the wavelet transform sharper in time in the higher frequencies and sharper in frequency

at low frequencies.

2.1. Wavelet Functions
The mother wavelet function may be any function satisfying the necessary condition that warrants the

existence of the inverse wavelet transform. This admissible condition is defined as

[ hndr =0 (10)

which means that the wavelet be oscillated to have a zero mean. Different families of wavelets can be
generated by taking different admissible wavelet functions. The choice of the wavelet function is important
and rather critical. The selection of the wavelet depends on the characteristics of the signal and on the
acceptability of other effects in the representation due to the wavelet function. In the following we review

some popular wavelets:

a) Haar Wavelet
The Haar wavelet is the first and the simplest wavelet function which was constructed by Haar in 1910.

He was a mathematician who looked for an orthonormal system with the functions
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hy(x),h, (x), -+, h,(x), - defined between interval [0,1], such that the series

< Sfohy > hy(x)+ < foh >h(xX)+-+< f,h >h (x)+: (11)

1 *
where < u,v >= _Lu(x)v (x)dx

Haar chose the step function A(x), called Haar’s wavelet function, which is defined as:

h(x) = rectangle [2(x — 1/ 4)]- rectangle [2(x-3/4)] (12)

which is real and antisymmetric about # =1/2, as shown in Figure 2. For n>1, we have

n=2"+k,j20,0<k<2’ and h, (x)= 272h(27 x = k). In this case, the series
hy(x),h(x), -+, h,(x), - is called an orthonormal base or Hilbertian base of L*[0,1].

Itis easy to show that the functions of the series are orthonormal with respect to the scalar product and they
arenormalized by thefactor 27/ % Several years later, it was shown that the Haar base has the multiscale

structure which is a prerequisite for wavelet function.
A major disadvantage of Haar’s wavelets is the discontinuity of this wavelet which cannot providea good

approximation for smooth functions. The Fourier transform of Haar’s wavelet may be written as

—-cosnf

H 2
(f) = 24 exp(-inf) =T -

(13)

The decay of the Haar wavelet is very slow. Figure 2 shows Haar’s wavelet and its Fourier spectrum.
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b) Morlet Wavelet
This waveletis in essence a Gaussian modulated harmonic function which was used by J. Morlet for the

analysis of sound patterns:

x
L—
(]
»4
3
N
|
N
o~
4
SN

Its real part is an even cos-Gaussian function. The Fourier transform of the Morlet wavelet is the Gaussian

functions shifted to f,and — f:

H(f) = 2nfxpl =273 (f = f,) 1+ exp[-272°(f + £,)*1} (15)

which is even and real positive valued. This wavelet does not satisfy the admissible condition, because

H (0) = 0. Inpractice, one often chooses f| so that the ratio of the highest and the second highest
maximum of /(1) is approximately 1:2, i.e. 27f, = 5.Inthis case, thevalueof H (0) is very closeto

zero, i.e. H(0)=3.7x107°. Here, it can be considered as zero with a good approximation.
By this wavelet, the analysis is not orthogonal. The real part of the h(t ) and its Fourier spectrum are

shown in Figure 3.

¢) Mexican-hat Wavelet

This wavelet is in fact the second derivative of the Gaussian function which is introduced by Gabor.

13
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h(t) = (1-]t|"yexp —'-"-2- (16)

It is even and real valued. The Fourier transform of the Mexican-hat wavelet is
H(f)=47"f* exp(-27f") an
which is even and real valued, as shown in Figure 4. The decay of the wavelet coefficient is fast. This

wavelet has been applied in vision analysis.

d) Meyer Wavelet
Y. Meyer is apure mathematician who constructed an orthonormal wavelet basis with excellent time-

frequency localization properties in 1985. The Meyer wavelet is defined in the frequency domain as

H(f) = exp(-iaf)sin[v( f)] (18)

11 J )

which v(f) is a symmetric function defined by

v(1- f)=2-w(f) for 1/3<f<2/3
2 (19)
v(2f)=-§--—v(f) for 1/3<f£<2/3

The Meyer wavelets in the time domain can be written as follows:

h(t) = 2 sin[v(f)]cos[2z (- 1/2) Jaf (20)
One can easily check thatitis areal symmetric functionat # = 1/2 . By changing the auxiliary function

14



v( /') ,weobtainadifferent family of wavelets. Although the Meyer wavelet shows rapid polynomial

decay, it has wide support. This wavelet is also infinitely differentiable.

The Meyer wavelet for v(x) = x*(35 — 84x + 70x* — 20x’) is shown in Figure 5.

e) Lemarie-Battle’s Wavelets

Lemarie was a student of Meyer who worked in harmonic analysis and Battle was a mathematical physicist
who was interested in quantum field theory. Independently of one another, they developed wavelet bases
consisting of spline functions. An explicit expression for this wavelet family does not exist and the properties
of each member of the family can be different and depend on the choice of the spline function. For a
constant spline, the wavelets become similar to Haar wavelets. More detail for constructing filters using this
wavelet family may be found in [11].

Although the wavelets have exponential decay which is an improvement over the decay of the Meyer

wavelet, they lose regularity and are not compactly supported. One ofthe wavelets is shown in Figure 6.

f) Daubechies Wavelets

Apartfrom the Haar wavelet function, almost all the orthonormal waveletfunctions listed above consist of
infinitely supported functions. One desirable property is to have a wavelet with compact support in the time
domain, i.e,, itistimelimited in that it is non-zero only over a given interval. Such awavelet gives a true

sense of time locality. Daubechies constructed a family of orthogonal wavelets which converge to

continuous functions with compact support. These wavelets have no explicit expression exceptfor dbl ,

15



which is the Haar wavelet. The Daubechies family wavelets are real but neither symmetrical nor

asymmetrical and theirregularity increases as the order of Daubiechies’ wavelet increases. One member

of the Daubechies family ( D4 ) is shown in Figure 7. Details of the procedure for constructing au

orthonormal base of compactly supported wavelets may be found in Daubechies’ original paper [10].
These wavelets have other desirable properties. It can be shown that they are bounded, continuous

functions and they are continuously differentiable.

2.2. Discrete Wavelet Transform

Inorderto apply the wavelet transform for digital signals, the wavelet parameters s, 7 mustbediscretized.

If we consider s = S;" and 7 = nS,'T,, the corresponding wavelets become:

h (1) — ¢Tmi2 h(c””’t —_nT \‘
\l/ UO "\UO [ 3 ""0/

-
19
—

~—

where m,ne Z, S, =1, T,#0
This way of discretization may be modified to give a dyadic grid by considering S, =2, 7, =1:
therefore
h, =277 -h(2‘”’f —n) m,n=12,... (22
Itis possible to obtain an orthonormal basis for special choices of /(#) . The dyadic sampling gridin the

time-scale plane is shown in Figure 8(a). The scale axis is often expressed in terms of frequency under

transformation s — k/ f where k isaconstant. Infact, it can beshown that the Short-Time Fourier

Transform, time-frequency distributions and time-scale methods (wavelet transforms) are members of a

16



common class of energy representations [ 16, 8]. A comparison between the basis functions and the time-
frequency plane of the Short-Time Fourier Transform (STFT) and those of the wavelet transform is shown
inFigure 8(b); the self-adjusting window (zooming) property is the major difference between the wavelet
transform and the STFT. The zooming property of the wavelet transform is s imilar toamicroscopeora
telescope, where theresolution is automatically adjusted to a different scale of magnification. As shown in
Figure 8, the important properties of the wavelet transform, such as its localisability and changeable
resolution in the timeand frequency domains, make it both more suitable and more effective in the analysis
of non-stationary vibration signals such as transients.

Theimplementation of the wavelet transform according to (22) may only be carried out with some difficulty

because, as m increases, A(?)must be sampled at progressively more points. This makes the

computations very slow. In 1989, Stephane Mallat[17, 7] proposed an efficient discrete-time algorithm
the wavelet transform. Mallat, using quadrature mirror filters and multi-resolution
analysis, constructed anew algorithm for the computation of the wavelet transform, which calculates the
wavelet coefficients very rapidly. Itis called the Fast Wavelet Transform and its idea comes from a
method called subband coding, which has been used in speech compression. Subband coding, which
consists of two branches with filtering followed by down sampling by two, can decompose a signal into two
parts. The partthat is passed through a low-pass filter gives an approximation of the signal, and the part
thatis passed through a high-pass filter gives the detail. Itis interesting to note thatthe original signal can

be recovered from its two filtered and subsampled parts if the filters have the property of perfect

reconstruction, as shown in Figure 9(a). Such filters are called quadrature mirror filters. As shown in

17



equation (8),awavelet transform can beinterpreted as a decomposition of a signal into a set of frequency
channels of differentband widths. Mallat’s algorithm is a cascade extension of this elementary two-channel
filter bank in a binary tree structure, as shown in Figure 9(b).

A review of discrete-time wavelet transform and the relationship between wavelet transform and filter

banks is given by Shensa [19], Vetterli et al. [15, 18].

2.3. Wavelet Packet Transform and Adaptive Wavelet Transforms

In wavelet transform, the frequency axis has a logarithmic scale which gives good frequency resolution at
lower frequencies and good time resolution in the higher frequencies. Forthis reason, it is suggested that
the wavelettransform beused to analyse signals with long-duration events in the lower frequencies and
short-duration events in the higher frequencies.

The generalisation of the discrete-time wavelet transform is called the wavelet packet transform and can
be described as a full-tree-structured filter bank, as shown in Figure 10. An interesting advantage of the
wavelet packet is that the frequency axis has linear scale which gives better frequency resolution in the
higher frequencies, at the price of some loss of time resolution.

Itis clear that the wavelet transform is appropriate for signals with transient phenomena in the higher
frequencies; however, it may perform less well over other time-frequency transforms. Theresolution
exchange between time and frequency inthe wavelet transform is always fixed and independent of the signal
being analysed. This may not be satisfactory in the analysis of an arbitrary class of signals with either
unknown or time-varying characteristics. To improve the performance of the wavelet transform, it is

necessary to use the signal-adaptive transform, which is more satisfactory than the original fixed transform

18



although it is important to ensure that this flexibility does not come at too great a cost.

There are two way of achieving this objective:

a) By selecting filter banks to optimize the time and frequency resolutions:
Wemay selectthe binary trees in filter banks by taking the characteristigs of the signal into account,
instead of using the fixed tree of the wavelet transform or the wavelet packet transform [20], as
shown in Figure 11. In this way, we can locally exchange resolution in time for resolution in
frequency and vice versa.

b) By optimizing the wavelet function with respect to the signal structure:
Thesecond way involves the construction of waveform libraries and the choice of those particular
waveforms which are the best adapted for the decomposition of the signal structures. Such
waveforms arecalled time-frequency atoms and the libraries of waveforms are called the dictionary
of time-frequency atoms.

One method which follows the idea of searching for good representation from a dictionary of time-

frequency atoms is themethod of matching pursuit [21]. This method is a linear decomposition of any signal

into waveforms that are selected from a dictionary of Gabor functions.

A general family of time-frequency atoms can be generated by scaling (s > 0) , translating (7) and

frequency modulating (£) a single window function g(?).

1 -7 iér
8,(’)=7—;g(—s—‘je‘ (23)

where theindex ¥ = (5,7, &) denotes an element of this family of atoms. The g () is the Gaussian
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window g(7) = 2" e

Then f(f) can be written

0= ag,@) | (24

n=-—w

where a, arethe expansion coefficients which provide some information on certain types of properties of
/ (1), depending upon the choice of the atoms g (7).

This method is particularly suitable for decomposing signals whose localizations in time and frequency vary

widely.

2.4. De-noising

Removing noise from asignal by wavelet analysis is one of the most recent applications of wavelets [22].
The idea of de-noising by wavelet analysis consists of decomposing the signal by wavelet transform,
removing noise from components, and reconstructing the signal.

Waveletanalysis is a linear method; therefore the wavelet coefficients of the linear combination of two

signals are equal to the linear combination of their wavelet coefficients.

Wiy =W, +W, (25)

i+ )

A noisy signal can be modeled in the following form:

J(@)=s)+e(?) (26)

20



Where f{7) is anoisy signal, s(?) is theoriginal signal, and e(?) is the noise. Eliminating the noise partof the
signal may be done in three following steps:

a) Compute the wavelet decomposition of the signal f{7)

b) Determine a limit for optimal de-noising and suppress only the portion of the wavelet coefficients

that exceeds this limit.

¢) Reconstruct the signal with the help of modified wavelet coefficients s(7).
In practice, the decomposition and reconstruction procedures are accomplished respectively by the fast
wavelet transform and the inverse fast wavelet transform.
Itis clearthat the performance of the de-noising method depends mostly onthe step (5). Suppressinga
partofasignal, called the thresholding procedure, is carried out using different optimization techniques,
which give different threshold values [23]. In next section, we will see how this application of the wavelets

can improve the wavelet transform representation of signals.

3. APPLICATION OF THE WAVELET TRANSFORM TO MACHINERY

FAULT DIAGNOSIS

The wavelet transform is one of the newer methods of time-frequency analysis that have been used in
various science and engineering fields inrecent decades. Although the wavelet transform has been applied
to image processing and speech recognition with great success, therehave beenonly afew applications

in machinery diagnostics, for example, the work of McFadden et al. in the application of the wavelet
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transform to fault detection in a gearbox 24, 27). Damage in bearing elements is one of major problem
in rotating machines that can be detected by the wavelet transform [28, 29]. Fault detection and
identification in a helicopter gear-box was carried out by Lopez et al. [30].

Ithas been shown that, in the diagnosis of faults in reciprocating machines, the wavelet transform may be
considered as a satisfactory technique for extracting the characteristics of vibration signals [31]. Zhongxing
and Liangsheng [32] used the wavelet packet technique to analyse the vibration signals of a compressor.
In another approach, Dalpiaz and Rivola [2, 33] applied the wavelet transform to the condition monitoring
and diagnostics of cam mechanisms. We note that in most of the above applications the Gaussian wavelet

function was chosen as a mother wavelet function.

3.1. Software for Wavelets Transforms

A user-friendly software has been developed to permit the use of different methods of time-frequency
analysis such as the Short-Time Fourier Transform, the Wigner-Ville Distributions, and the Wavelet
Transforms. The program allows theuser to carry out different distributions of Cohen’s class of time-
frequency methods such as the Choi-Williams Distribution and the Born-Jordan-Cohen Distribution. In
addition, it provides different kinds of wavelet transforms, for example: the wavelet transform, the wavelet
packet transform, and the wavelet transform by the Gabor Dictionary. Inaddition, the new technique of
the “zoom in wavelet transform” makes it possible to obtain very satisfactory frequency resolution.
This program has been developed especially for the diagnosis of defects in machinery, and includes most
of the commonly-used methods of time-frequency analysis. Wehavetried to use those kernels and filters

which are compatible with the current signals in machine diagnostics. The program has some interesting
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options which are of considerable practical value in such cases. For example, de-noising by wavelet
transform, which is an important tool in the analysis of noisy signals, allows the userto obtain an improved
time-frequency representation.

Some examples from simulated signals have been used to verify the function and accuracy of the program.
The firstexample is the sum of three sines: 300Hz, 1000 Hz and 3000 Hz; thetime frequency plane shows
three constant frequency bands. Although the wavelet transform of the signal, as shown in Figure 12(b),
indicates a concentration of the signal’s energy in the threebands, there is also the dispersion of this energy
inthe adjacent bands especially when an incorrect filter is chosen, as shown in Figure 12(c). On the other
hand, it is impossible to determine the exact values of the frequencies by the logarithmic scale of the
frequency axis.

The wavelet packet transform of this example gives better representation in the time-frequency plane than
the wavelet transform of this signal (Figure 13). The linear scale of the frequency axis gives better frequency
resolution. Filter selection plays an important role here also.

The matching pursuitalgorithm gives the best representation of this signal, as shown in Figure 14. The
resolution of frequencies in the time-frequency plane is very satisfactory.

Thesecond example is aDirac functionin 0.1 sec. This function is an example of transitory signals. The
wavelet transform of the example is shown in Figure 15. This time, the wavelettransform gives thebest
representation of the signal in the time-frequency plane. The peak appears exactly at 0.1 sec. Thevery
good time resolution provided by the wavelet transform in the higher frequencies makes ita powerful tool
for the detection of transitory phenomena in the signals.

The wavelet packet transform shows the Dirac function in approximately 0.1 sec (Figure 16). Its time
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resolution is notas satisfactory as thatof the wavelet transform. There is a difference between the results
obtained by the wavelet transform and those obtained by the wavelet packet transform (the wavelet packet
transform has better frequency resolution in the higher frequencies than the wavelet transform, but at the
expense of a loss of time resolution in these frequencies).

The matching pursuit algorithm gives a representation of the signal that is notas good as that given by the
wavelet transform, but is better than that given by the wavelet packet transform, as shown in Figure 17.
Thenext example s an amplitude-modulated cosine at 1000 Hz. The wavelet transform representation of
the signal in the time-frequency plane shows the modulation of the signal. To obtain a clear representation
of this signal, itis preferable to see simultaneously the mean-square wavelet map (three-dimensional
representation) of the signal, as shown in Figure 18. The wavelet packet transform of the signal
accompanied with the mean-square wavelet packet map of the signal show inFigure 19. Here, weuse
Haar wavelet function which provides a good time resolution. To obtain more clear representation of the
signal in frequency, we can use a Daubechies 20 wavelet function which provides good frequency
resolution at the expense of a loss of time resolution.

For this type of signal, the matching pursuit algorithm is not recommended because the modulation is not
displayed (Figure 20).

Thefinal example is afrequency-modulated signal at 1000 Hz. The wavelet transform and the mean-square
wavelet map of the signal are shown inFigure 21. Inthe time-frequency plane, the representation of the
signal is once againunclear. Ifthere areother components in thesignal, itwill be very difficult to identify
the signal. The mean-square wavelet map of the signal is not clear, either.

The wavelet packet transform gives a better representation of the signal than the wavelet transform; in
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particular, the mean-square wavelet packet map of the signal is clear, as shown in Figure 22.
Again, the matching pursuit algorithm cannot be recommended because the frequency modulation cannot

be identified (Figure 23).

3.2. Experimental application of the wavelet transforms

After comparing the theoretical behavior of several variations of the wavelet transform when applied to
differentsignals, we now investigate signals obtained from experimental cases. A pin-pointdefect with
known characteristics and location was created on arolling bearing. The test set-up consisted of an electric
motor, ashaft mounted on two journal bearings (SKF 1210 EK TN9 self-aligning, double row), labelled
AandB, agear-box and abreak to impose the load. The defect was created on support A by scratching
the inner raceway of the bearing with an electric pen. Figure 24 shows the experimental set-up.
The vibration signal was measured onsupport A by an accelerometer and transferred to an analyser. The
measured signal was converted into American National Standard Code for Information Interchange
(ASCII) format and transferred to the in-house software program for analvsis.

The frequencies of different types of bearing defect may be computed using the geometric characteristics
of the bearing and the rotating frequency [34]. The geometric characteristics of the damaged bearing are
as follows:

Pitch diameter D=69 mm

Diameter of the rolling body d=10.32 mm

Contact angle @ =7.87 deg

Number of rolling elements N =17 (per row)
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Bearing frequency of rotation /,=12.2 Hz

The frequency defect caused by damage on the inner raceway of this bearing can be computed by the

following formula:

‘l""’_ r 1 ‘

F N a
F o=z 1+ —cos(x 27
Rl { 5 ( )} (27)

Equation (25) gives us a value for the pass frequency on a point of the inner raceway which equals
approximately 238 Hz. Note that the frequency of this type of defect has a special characteristic. The
defaultfrequency should be an amplitude-modulated waveat approximately 238 Hz with the frequency of
modulation equal to the rotating frequency.

Figures 25-26 show respectively the wavelet transform and the wavelet packet transform of the vibrational
signal of the defected bearing itis almostimpossible to identify the defect by theses figures because the
originai signal is very noisy. To obtain more clear representation of the signal, it is necessary toremove at

firstthe noise from the signal. To do this, there are two possibilities in the software: De-noising by classical

wavelel transform and De-noising by Matching Pursuit algorithm. Here, we use the de-noising by

matching pursuit algorithm and The de-noised signal is called dh-bearing. Figures 27-28 show respectively
the wavelet transform and the wavelet packet transform of the de-noised signal. As shown, the wavelet
transform of the de-noised signal is clearly shown the repetitive peaks in frequency band 200-400 Hz. The
frequency of amplitude modulation in this band is approximately 12.2 Hz which equals to the rotating
frequency. Then, the defaultin bearing may be easily beidentified by the wavelet transform of the de-

noised signal. The wavelet packet transform of this signal provides more frequency resolution but it is not
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as clear as the wavelet transform of the signal. The default frequency is situated in frequency band 200-300 Hz.

3.3. Industrial application of the wavelet transform

Inthe last section, the performance of wavelet transforms for a defect created on the inner raceway of a
bearing was described. In this section, the efficiency of wavelet transforms for an industrial case without
any prediction of defects is demonstrated. This case comes from the defective gear-train of a hoist drum
in a large shovel operating at an open-pit iron mine.

Gearbox faults may be classified into shaft (misalignment, imbalance) and tooth (wear, scuffing, cracking)
related problems. Damage to a single tooth is called a local tooth fault, and will be investigated in this
section. Vibration signals measured on a gearbox include the tooth-meshing frequency, transient events
caused by defects, gearbox resonance vibrations and system and sensor transmission characteristics. These
vibration signals are non-stationary signals which require specific techniques because application of the
conventional methods, such as Fourier analysis, to gearbox fault detection are often difficult. Time-
frequency methods provide new techniques for the analysis of non-stationary signals and have advanced
capabilities forthe separation of different phenomena. The application of some time-frequency methods
to the analysis of gearbox faults has been described in [3, 4], and here, the application of another group
of time-frequency methods, called time-scale analysis, is presented.

Thetimesignal of the damaged gearbox and its wavelet transform are shown in Figure 29. The repetitive
pulses in the wavelet transform in the band between 320 Hz and 640 Hz are caused by a broken tooth.
The mean square wavelet map of this signal gives representation of the wavelet transform in three

dimensions. The wavelet packet transform of the signal in Figure 30 gives notonly a better time-frequency
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representation of the signal but also better frequency resolution than the wavelet transform. The mean
square wavelet packet of the signal clearly shows the pulses.

Thetime-frequency plane projection by the Gabor Dictionary of the signal is shown in Figure 31 but itis
not easy to obtain the characteristics of the signal from this figure.

Although the mean square wavelet packet map of the signal gives the best representation of the signal, the
frequency resolution of the signal may not be as fine as is needed. To obtain a finer frequency resolution

, we can use the zoom in wavelet transform which is based on choosing the best trees in the filter bank.

By this method, first, the desired frequency band is selected and, second, asuitable frequency resolution

is achieved by wavelet packet transform of this frequency band. A zoom in wavelet transform in the

frequency band between 320 Hz and 640 Hz is shown in Figure 32.

4. CONCLUSION

The above study has shown the performance of a new method for the diagnosis of defects in machinery.
We have demonstrated that the wavelet transform provides a high frequency resolution in the lower
frequencies and ahigh timeresolution in the higher frequencies. This characteristic of the wavelet transform
may be advantageous in machinery fault detection. The wavelet functions play an important role in obtaining
agood representation of a signal and they are chosen in accordance with the characteristics of the signal.
The wavelet packet transform is afull tree filter bank which gives a linear-scale frequency axis. It gives
better frequency resolution than the wavelet transform but the latter gives superior time resolution. In

machine monitoring and fault detection, it is sometimes necessary to have high frequency resolution in order
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to identify the type of defect and, in this case, one could recommend the use of the wavelet packet
transform. However, this approach does resultin aloss of information in thetime domain and the time-
frequency representation becomes complicated. Forthis reason, we have presented a new technique
which is called the “zoom in wavelet transform”. This technique permits us to obtain desirable frequency
resolution with clear time-frequency representation.

This article has also presented an easy-to-use software package which includes the majority of methods
of time-frequency analysis and compares the wavelet transforms with other methods. The software is
equipped with several interesting options such as a new method of de-noising by wavelet transform. This
method, which has been applied recently insignal processing, improves the time-frequency representation
of noisy signals.

Thetransient and the time-varying signals in machine condition monitoring present different behavior in their
time-duration. The adaptive wavelet transforms are powerful tools which are capable of decomposing the
signal into those waveforms that are best adapted to the signal structure.

A computer program implementing the wavelet transforms has been used to compare the performance of
different wavelet methods. It has been shown, by the numerically generated signals and two experimental
tests on a damaged bearing and a broken gear tooth, that the wavelet analysis methods are effectivein
machine condition monitoring especially when a transient phenomenon exists in the signal. Inthe case where
a defect in a machine generates amplitude-modulation signals or frequency-modulation signals, it is

preferable to use other time-frequency methods such as the Wigner-Ville distributions or the STFT.
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Figure 2: Haar wavelet and its Fourier spectrum.




Morlet wavelet

Fourier spectrum of Morlet wavelet
8 1 T T I i I |

Figure 3: Morlet wavelet and its Fourier spectrum.
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Battle-Lemarie wavelet function

T L) A
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Daubechies wavelet function (D4)

Figure 7: Daubechies wavelet function.
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Figure 22: Wavelet packet transform and mean-square wavelet packet map of a frequency-

modulated sine
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Figure 24: Test setup.
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Figure 27: Wavelet transform and mean-square wavelet map of the de-noised signal of the

defective bearing.
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Figure 28: Wavelet packet transform and mean-square wavelet packet map of the de-noised
signal of the defective bearing.
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Figure 29: Wavelet transform and mean-square wavelet map of the signal measured on a

defective gearbox.
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Figure 30: Wavelet packet transform and mean-square wavelet packet map of the signal

measured on a defective gearbox.
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Figure 32: Zoom in wavelet transform of the signal measured on a defective gearbox
between the frequency band 320 Hz and 640 Hz.



£ DE MONTREAL

(LTI,

[h&‘.,{?i:ﬂ

i

34

Ecole Polytechnique de Montréal
C.P.6079, Suce. Centre-ville
Montréal (Québec)
H3C 3A7




