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0. Summary

Questions relevant to the design of a path-tracking controller

for a mobile wheeled robot with a differential drive are

considered. The development assumes a motion that is planar and

free from latéral and longitudinal slippages, uses a model that

takes into account both dynamic and kinematic properties of the

vehicle, and is based on the concept of géométrie path-tracking.

The results lead to a path-tracking action that is a memoryless

function of the latéral, heading, and velocity path-tracking

off sets. If thèse off sets are kept small and the assigned tracking

velocity is constant, then the ensuing controller turns out to have

a linear, time-invariant and decoupled PID structure.

Keywords: mobile-robots, motion-control, path-tracking, slippage,
heading, autonomous, non-holonomic constraints
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l. Introduction.

One of the problems encountered in the application of mobile

wheeled robots to automate office, hospital, and factory floors

opérations [An.l, Co.l, Gi.l, He.l, Ka.l, Sh.l] is the design of

adéquate path-tracking controllers. Currently, thèse controllers

are designed by tacitly assuming that the forward speed of the

vehicle is constant and that the path is a straight line. The

typical approach is to develop an ad hoc dynamic model of the

vehicle and to then consider a heuristic path-tracking controller

of which the action is usually proportional to the latéral and

orientation path-tracking off sets. A number of test-bench and

simulation expérimente are then implemented to analyze the

properties of the proposed controller [Bo.l, De.l, Fe.l, He.l,

Le.l, Ka.l].

While this ad hoc approach has led to a number of concrète

applications, a more systematic and more comprehensive approach to

the design of path-tracking controllers is desirable. Ideally, this

approach should remain applicable when the path is not necessarily

a straight line, or when the required velocity is not constant, or

when thèse eventualities both occur at the same time. It should

enable one to clearly relate the ensuing control to such physically

meaningful tracking measurements as latéral, heading and velocity

off sets. It should clarify how the various characterizations of

path tracking assignments (such as required velocity and radius of

curvature of the path) influence the controller's structure and

gains. Finally, whenever possible, one would like this approach to
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lead to a control law characterized by such practical features as

a possibly time-invariant, decentralized and memoryless structure.

The objective of the présent paper is to develop such an

approach in the spécial case of a mobile wheeled robot equipped

with a differential drive. The locomotion platfonn of this robot is

equipped with a pair of front castors and a pair of rear co-axial

drive wheels (figure l); each of thèse latter wheels is

independently driven by a DC motor which is in turn energized by a

control voltage. Robots with this geometry are found in a number of

applications and their study has already been considered by several

authors [Bo.l, De.l, He.l, Sa.l].

The steps characterizing our approach incorporate many of the

ideas that have been recently established in the context of the

control of robotic manipulators [Cr.l, Spo.l]: the development of

a dynamic model relating the state of the vehicle to the control

action; nonlinear feedback linearization and decoupling by means of

a partition of the control action; the establishment of a feedback

controller on the basis of the linearized model. A difficulty in

carrying out thèse steps, is in selecting a mathematical

formulation that is both sufficiently simple for an analytical

development to be feasible, and meaningful enough as to retain the

physical features of the problem. In most of the robotic

literature [Co.l, Da.l, Gi.l, Ka.l, Ke.l, Mû.l], path-tracking is

meant to imply the convergence of the state of the vehicle to a

desired state which is itself a prescribed function of time. In

what follows, we prefer to adopt the interprétation that is
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traditional in automotive applications [Fe.l] and that has more

recently also been adopted (albeit rather informally) in robotic

applications [De.l, De.4, De.5, He.l, Sh.2]. According to this

interprétation, path-tracking still entails the convergence of the

vehicle's state to a desired state. This latter state, however,

rather than a prescribed function of time, is now a function of

the position and of the orientation of the vehicle with respect to

the path to be followed.

2. Vehicle's Basic Dynamic Model

The mobile wheeled robot will be modeled under the standard

assuroptions that the motion of the vehicle is planar, that the

vehicle's properties are symmetrical with respect to its

longitudinal axis, that the contact between tires and surface of

motion is point-wise, and that no force is exerted from the castors

on the vehicle. In describing this model we adopt the following

notations: (x, y) is the position of the center of mass of the

vehicle (e.o.m.) with respect to a fixed frame; (v , v ) denotes the

velocity of the e.o.m. expressed in vehicle's f rame coordinates; e

gives the orientation (heading) of the vehicle; n is the angular

velocity (yaw rate); F^ and F 3 denote the longitudinal forces

exerted on the vehicle by the right (l) and left tires (2);

Fy, and F g are the latéral forces exerted by the right (l) and left

tires (2) ; a is the distance between the e.o.m and the drive

wheels' axle; £ is the distance between a drive wheel and the

longitudinal axis; m is the mass of the vehicle; j: is the yaw
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moment of inertia with respect to the e.o.m..

Proposition l. (Vehicle's basic dynamic model). The dynamic model

of the mobile wheeled robot with a differential drive is given by

_ . Fu1 + Fu2
vu = vwn + ——" (l)

m

Fw1 + Fw2
vw = - vu" + —— (2)

m

l (Fw1 + F.2)a . (FUI - Fu2)£
n = - —„—„— + „——„- (3)
j j

•

x = cos9v - sin6v (4)

•

y = sineVy + cosGv (5)

•

e = n. (6)

Proof: The Newton équation in vehicle's f rame coordinates gives

mau = Fu1 + Fu2

maw = Fw1 + Fw2

where a and a denote the accélération of the center of mass of the

vehicle (c.o.m) expressed in vehicle's f rame coordinates. By

observing that
•

au = vu - vw"
•

aw = vw + vu"

we obtain (1,2). Eqn (3) is the expression of the Euler équation;

kinematic eqns (4,5,6) give the velocity of the vehicle in fixed
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frame coordinates starting from the expression of this velocity in

vehicle's f rame coordinates.

In what follows, the vectors q:=[x, y, 9], t:= [v v II], and
• • •

a := [v v 0] will be, respectively, referred to as the vehicle's

configuration, twist and accélération; the vector X:= [x y 9 VyVy

0] is referred to as the state of the vehicle.

2. Absence of Slippage and Servomotors' Dynamics.

The absence of slippage in the motion of the wheels créâtes an

interdependence among the forwa.rà., latéral and angular velocities

that considerably simplifies the model given by (1-6).

Proposition 2 (Dynamic model in the absence of slippage).

In the absence of a latéral slippage, (1-3) are équivalent to

-, . F"1 + F"2
v^ = an2 + ——^- (7)

m

• (Fu1 - Fuz)£ mvuna
n = :-ï—-^_ - —--,. (8)

(j + ma':) (j + ma^)

v, = aïl. (9)

In the absence of a longitudinal slippage, we also have

(®1 + ®2)Ra
V, = ——'—a- (10)

2

(©1 - ©2)Ra
n = —L—^l-.i (il)

2H

where: 9, is the angular displacement of the i-th drive wheel, and



7

R is the radius of the drive wheel (assumed to be identical for

the two wheels).

Proof: Because of the absence of a latéral slippage, the latéral

velocity of the center-point of the drive wheels' axle is null; it

follows

v^ = an (12)

from which we obtain
• •

Vy = an. (13)

Combining (2) with (13), it follows
•

Fui + Fwz = m (an + v^n) (14)

Inserting (12) into (2) and (14) into (3), yields (7-9). To

complète the proof, note that the longitudinal velocity of the

vehicle's e.o.m. is given by the mean value of the velocities of

the points of contact of the tires with the surface on which the

vehicle moves. Since in the absence of a longitudinal slippage

thèse velocities are given by ©jRg, one has (10) . A similar

reasoning gives (11).

Remark l. A général method to model mechanical Systems sub ject to

holonomic and nonholonomic constraints (in particular, mobile

wheeled robots amy be found in [De.6] and [Sa.l].

Proposition 3 (Influence of the DC motors* dynamics). In the

absence of latéral and longitudinal slippage, and with the

propulsion forces (F.,, F 3) produced by DC motors applied on the

drive wheels' axes, the vehicle's dynamic model is described by



:. _ -.2 IW" , 2K^
v^ = an2 - —~1 + — (15)

IWm ReRam

mv^Oa 2K,K^2n 2K,£U^
n = - ——„ - —————— + -___—— (16)

(j + ma2) ReRa2(J + roa2) ReRa^ + ma2)

v^ = an, (17)

where

U,:= (V, + ^)/2 (18)

0,:= (V^ - V2)/2 (19)

and where V, is the control voltage applied to the i-th motor.

Proof: Using the classical équation of a DC motor [An.2], the

torques applied by the motors to the drive wheels' axes are given

by

r, = K,,I. (20)

where

v, = Re,1,- + Kb,e, (21)

with I. the current flowing in the inductor of the i-th motor, and

K,, K^ and R ^ the DC motor characteristic parameters (assumed to

be identical for the two motors). In the absence of a longitudinal

slippage^

r,
FU, = — (22)

Ra

and therefore, from (20,21),

K»,
Fur = <v,- - Kb,e,} -_• (23)

ReiRa



The desired result follows by inserting (23) in (7,8), by using

(18,19) and by conveniently re-arranging the terms of the ensuing

équations.

Remark 2: In the spécial case where a=0, the model described by

proposition 3 coïncides with that given in [De.l]. If in addition

to a=0, we also impose m=4j/£ then rrjia model also coincides with

that developed in [Bo.l]. The relations among thèse models is

further illustrated by the following proposition.

Proposition 4 (Vehicle's model when its e.o.m. is located on the

wheels' axle). If a=0 the vehicle's model becomes

vjs) Kg,

U,(S)

n(s) KORIENT

where

KSPEED '

KOR IENT'

VSPEED

(1 + STSPEED)

U,(S)

Ra

Kb

v

(l + STORIENT )

SPEED •

ORIENT*

ReRa2m

K<Kb

ReRa23

2K,K,£2

(24)

(25)

(26)

(27)

Proof: Eqns (24,25) follow by simply setting a=0 in (15-17), by

applying Laplace transforms and by introducing notations (26,27)

(see figure 4).

4. The Path-Tracking Problem



10

A path-tracking assignment is the combination of a path and

of a profile of linear and angular velocities and accélérations

with which this path has to be followed. A path [La.l, ch.9] is

described by a set of continuous functions,

qp(s):=[Xp(s) yp(s) 6p(s)],

where se [0, oo) is a parameter defining a point of the path, and

q (s) is the value of the configuration that the vehicle is

required to have at the point of the path defined by s. Similarly,

a velocity and accélération profile along a path is described by a

set of continuons functions

tp(s);=[Vup(s) v,p(s) np(s)],

âp(s) :=[a^p(s) a^p(s) agp(s)], se [0, oo) ,

where tp(s) and a (s) represent the desired twist and accélération

of the vehicle at point s.

A path tracking assignment is admissable if there existe a

smooth function s (t), te [0, oo) , such that, using the notations

Xp(t):=Xp(s(t)); Yp(t) :=Yp(s(t) ) ; 6p(t) :=9p(s(t) ) ;

vup(fc) :=vup(s(t) ) '• vwp(t) ;=v,p(s(t) ) ; np(t) :=0p(s(t) ) ;

aup(t) :=aup(s(t) ) '• awp(fc) ;=a,p(s(t) ) ; a^(t) :=a^(s(t)),

one has

Vup(t)= Xp(t)cos9p(t) + yp(t)sinep(t)

vwp<t)= -Xp(t)sin6p(t) + yp(t)cosep(t)

"p(t);= ®p(t)

and

a,^(t)= v^(t); a^(t)= v^(t); a^(t)= n^(t)
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We require the function X^(s):=[q^(s) t^(s)] to be continuous with

respect to its projection into the work-space. More specifically,

s) t^(s) ] must be such that, given any e>0, there exists a

/n(e)>0 with the property that, for any s, Sg e [0, oo) one has

j[qp(s,) tp(s,)] - [q^) tpCSg)]; < e,

provided that

! (Xp(s,),Yp(s,)) - (Xp(s;,),yp(s;,)) j < Me),

where

[<3p(s,-) tp(s,)]î= [Xp(s,) Yp(s,) Qp(s,) v,p(s.) v,p(s,) np(s,)], i= 1.2.

Given an admissable path-tracking assignment, path-tracking

is the problem of generating the control action required for the

vehicle to follow the assigned path with the specified velocity.

More formally, the control action must be selected so that

lim X(t) = X^(s), (28)
t-> 00

for some s e [0, oo) .

For technical purposes (soon to become évident), it is

convenient to re-state this problem by using the concept of a

desired state. Given a state of the vehicle,

x:=[x y e v^v^ n], (29)

the vehicle's desired state in correspondence to a path-tracking

assignment is defined by

Xd:=[qd t^] (30)

<3d;=[Xd Yd ©dî (31)

td:=[vud vwd nd]' (32)

where
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[XdYdQd]:= Exp(s') yp(sl) Qp(s')]' (33)

and

[vud vwd "d]:= Evup(st) vwp(sl) "p(s')]- (34)

The value of s'€[0, °o), in (33, 34), is selected so that (x^(s'),

y^(s')) is the point of the path (in work space) closest to (x, y).

More specifically, s' is such that

(x-Xp(s'))2+(y-Yp(s'))2 < (x-Xp(s))2+(y-yp(s))2 (35)

for each sos', se [0, oo) .

Proposition 5. Path-tracking is équivalent to generating the

control action required to have

lim X(t) = X^(t) (36)
t-> 00

where X(t) is the state of the vehicle at time t, and X^(t) the

desired state associated with X(t) .

Proof. If (36) holds, then

lim X(t) = X^(s), (37)
t-> oo

where s is such that X (s) :=X^(t) . Conversely, if (37) holds, then

lim j(x(t),y(t)) - (Xd(t),y^(t)) j<
t-> 00

lim !(x(t),y(t)) - (x^(s),y^(s))! = 0.
t-> oo'

(38)
hence

lim !(Xd(t),Yd(t)) - (Xp(s),yp(s))! =0. (39)
t—> °0

By invoking the continuity of X^(.) with respect to its workspace
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projection, it follows

lim X^(t) = X^(s). (40)
t-> 00

which combined with (37) gives (36) .

Remark 3. The above statement of the path-tracking problem can be

easily modified so as to be applicable to mobile wheeled robots the

geometry of which is not necessarily of the power-wheel-chair

type. The modifications required in the case of car-like and

tractor-trailer-like robots are illustrated in [De.4, De.5].

5. The Path Tracking Controller

The accuracy with which the vehicle motion complies with the

path-tracking assignment may be described in terms of velocity

(v^g) , heading (Q^) , and latéral (£pg) of f sets. Thèse of f sets are

defined as follows

Vos(t);= Vu(t) - vud(fc) (41)

e^(t):= e(t) - e,(t) (42)

£^(t):=-{x(t)-x^(t)}sine^(t) + {y(t))-y^t)}cos9^(t) (43)

where t^ represents the (signed) distance between the position of

the center of mass of the vehicle and the projection of the

assigned path in work-space.

Proposition 6. Path-tracking is équivalent to generating the

control required to have

lim [v^(t) e^(t) £,,(t)] = 0 (44)
t -> 00.

Proof. Clearly, if
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lim X(t) = X^(t) (45)
t->00

then (44) holds. Conversely, if (45) holds then

lim [x(t) y(t) 9(t)] = lim [x^(t) y^t) 6^(t)]. (46)
t->00 t->00

By the smoothness of thèse functions, it follows

lim [x(t) y(t) 0(t)] = lim [x^t) y^t) ^(t)], (47)
t->00 t->00

and therefore (44).

Proposition 7 (Path-tracking off sets dynamics) . The dynamics of the

path-tracking offsets is described by

:. - :. , ^2 K^v- , W
vos= - vud + an2 - -—'— + — (48)

RgRg'm ReRam

mvjla 2K,K^2n 2K,£U2
e^:= -n^ - ———— - ————— + ———„ (49)os

(j + ma") ReRa':(3 + ma£) ReRa(J + ma<i)

•

£os=(vud+vos)sineos + (ncos9os - "d)a- (50)

Proof: Eqns (48,49) follow from (17,18) by simply subtracting,

respectively, v^ and n^ from the left and right members of thèse

équations and by using the définition of v^g and e . To prove (50),

compute the time derivative of (43) so as to obtain

£,,(t):= -{x(t)-Xd(t)}sine^(t) + {y(t))-y^t)}cos9^t)

-{x(t)-Xd(t)}^cose^t) - {y(t))-yd(t)}fViin9^(t) (51)

Noting that, by the définition of (x^, y^) , the vector (x-x^y-y^)

is perpendicular to the tangent to the path, (cos9^, sin9^) , it
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fol lows

^os(t) ;=-x(t)cose^(t)+y(t)sined(t) +Xd(t)sin9^(t)-y^tîcose^t) (52)

and therefore

£^(t):=-x(t)sin9(t)+y(t)cos9(t) + x^(t) sine^ (t) -y^t)cosQ^(t)

• •

-x(t){sin9^ - sin6} + y(t){coseçi -cos9}. (53)

Using (4,5), simple algebraic manipulations lead to
e

£os ss vwcos9os - vwd + vusineos- (54)

which combined with (17) gives (50) .

Proposition 8 (Decoupling and Nonlinear Feedback Linearization). By

partitioning the control according to the relation

^

(55)
U1} /a1 °

Ug / 10 a^

u^ .l6'
^ l '6.

where (Up, Ug) is viewed as the new control, and a,, a^, B, and Bg

are given by

R Rm ReRa(3 + Inaz)
a := —— a^:= ————— (56)

K$ ~ 2K$è

,/ -.2 , W"B1:= a1<vud - an' + —;— î
R.R.'m-e--a

mv^na 2K,K^2n
132:= a,{n, + ——— + ————^-), (57)

(j + ma2) R^2(j + ma2)

the dynamics of the path-tracking offsets is given by
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Vos= up (58)

9os= us (59)
•

£os=(vud+vos)sineos + (ncos9os - "d)a- (60)

Proposition 8 suggests that path tracking may be now studied

by bringing to bear well-known '«ovrpoÀ theory results [Ch.l, Ka.2].

Proposition 9. A path tracking controller exists and its action may

be computed in terms of the path tracking assignment and of the

heading, latéral and velocity off sets.

Proof: By virtue of proposition 8, to prove existence it is

suffiaient to show the stabilizability of (58-60). To do this, we

first prove local stabilizability. Applying Lyapunov's first method

(lenuna l below) , this may be done by proving the stabilizability of

the linear approximant

•

X = Ax + Bu, (61)

where

X:=(X, X;, X, X^) U:=(U, u^)

with
•

X1:=vos X2:=9os X3:=eos X4:=£os

U,:= Up U;,:= U,.

and

0000
0010

A:= B:= (62)
0000
0 v., a 0

l
0

0
0

0
0

l
0
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The stabilizability of this system may, in turn, be obtained by

proving its controllability. Controllability is a conséquence of

the fact that dim{B AB}=4, and of the forthcoming lemma 2. To

complète the proof, it suffices to observe that, in the spécifie

case under considération, local stabilizability implies

stabilizability in the large. Indeed, by appropriately re-defining

a first segment of the path tracking assignment, the assumption of

small initial values of v (t) , eos(t) and £os(t) :may always be

satisfied.

Lemma l [Ka.2, p. 184]. Let x=0 be an equilibrium point for the

nonlinear system

•

x = f(t, x) (63)

where f: [0, oo) x D -> R" is continuously differentiable, D:= {x e

R", x2 < r}, and the Jacobian matrix [6f/5x] is bounded and

unifonnly Lipschitz continuous on D. Then, the origin is an

exponentially stable equilibrium point for the nonlinear system, if

and only if it is an exponentially stable equilibrium point for the

linear approximant

•

X = A(t)x. (64)

where

6f(t, x) j
A(t):= —

Sx \ X=0. (65)

Lemma 2 [Ch.l, p.179]. The System

•

X = A(t)x + B(t)u, (66)
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with matrices A(t), B(t) continuously differentiable n-1 times, is

controllable if

dim([Mo(t)!M,(t) j...!M^.i(t)]} =n (67)

where

d
M^(t)= - A(t)M^t) + —M^(t), k= 0, l,.. , n-1

dt

with

M(,(t) = B(t). (68)

Among the options opened up by Proposition 9, a particularly

attractive design is represented by a decentralized controller

consisting of a steering component generating Ug as a function of

9 (t) , and ^os(t)» and of a propulsion component providing u as a

function of v (t) .

Proposition 10. (Path-tracking by means of a decentralized

controller). If the path-tracking offsets are kept sufficiently

small, then path-tracking may be obtained by means of a speed

controller

r
up = - Kp1vos + Kp2 ,vos dt (69)

and of a steering controller

Us<t) = -Ks19os(t) + Ks2eos(t) + K^^(t). (70)

Proposition 11. (Path-tracking by means of decentralized PID

controllers). If the path-tracking off sets are kept sufficiently
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small, and the desired tracking velocity is constant, then the

gains in (69, 70) are constant.

Remark 4. The control voltages to be applied to the DC motors are

obtained from (69,70) by taking into account (18,19) and (55).

Remark 5. While it is clear that (69) represents a speed controller

with a PI (proportional + intégral) feedback, it is noted that,

when the desired tracking velocity is constant, the steering

controller (70) may also be interpreted as a PID (proportional +

intégral + derivative) feedback. To justify this interprétation, it

suffices to note that from (50) one obtains (for small off sets)

f.
Los= vud , 9os + eos- (71)

The interest of this interprétation is in that it enables to design

a path-tracking controller by applying both classical and more

récent PID technology [Ku.l, De.2, De.3].

Remark 6. As clarified by the following proposition, the gains of

the PID controller described by (69,70) may be selected so as to

obtain a dynamics for the speed offset and for the latéral and

heading off sets that is completely decoupled. Moreover, the pôles

associated with this dynamics are arbitrarily selectable.

Proposition 12. (Design of a path-tracking PID controller). The

path-tracking PID controller described by (69,70) has the following
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properties:

a) the dynamics of v is described by

vos - (PU + Pl2)vos + PnPl2vos ss 0' (72)

where

Kpi= - (Pu + Piz). K^= pnp^; (73)

b) if the desired path tracking velocity is constant, then the

dynamics of 9^ is described by
os

9os - (PZI + PZZ + P23)eos + (P21P22 +P2lPz3 +Pz2P23)eos

- P2lP22P239os = ° C74)

where

Ks1 = P2lP22 +P2lP23 +P22P23 - Ks3a

Ks2 = PZI + PZZ + P23

Ks3 = - P2lP22P23/vud- (75)

6. An Application Example

Consider a mobile wheeled robot equipped with the locomotion

unit of the power wheel-chair Model 6755, by Fortress Eng. Co.,

Montréal. The parameters characterizing this unit have the values

indicated in table l. Consider the task of tracking with a constant

velocity v^=5m/s a circle of radius equal to 10 m. The design of

PID controllers capable of implementing this task may be carried

out by applying propositions 8-12.

Following the procédure suggested by thèse propositions, one

first selects the pôles associated with the desired dynamics of the

speed of f set (p^, p^) and of the latéral and orientation off set
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(PZI» Pzz' Pzs) • Let

PU = ~3 p^ = -5

Pg, = -1.5 p^ =-1.5 p^ =-3

The gains K, and K^, and Kg^, Kgg, and Kg^ may then be computed by

using (73) and (75). This gives

Kp1 = 8 Kp2 = 15

K^ = 11 K^ =6 Kg3 = 6.75/25 =.025.

At this point, one coroputes (u , Ug) using (69,70), and (U^Ug) using

(55-57) . Finally, V, and Vg, the voltages to apply to the DC motors,

are computed from U^ and Ug by applying (18,19).

Table I: Vehicle's Parameters

a = .5 m (distance between the e.o.m and the drive wheels* axle);

SL = .5m (distance between a drive wheel and the longitudinal

axis);

m = 200 Kg (mass of the vehicle);

j = 12.5 Kg m2 (yaw moment of inertia with respect to the c.o.m);

R = .12 m (drive wheel's radius);

Rg = 8 n (résistance of the DC motor inductor);

K^, K^: .35 volt/rad/s (characteristic parameters of the DC motor);
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Conclusion

The assumption of a slippage-free motion and the concept of

géométrie path-tracking adopted in the présent paper, allow an

analytical discussion of the questions of existence, structure and

design of path-tracking controllers for mobile wheeled robots

with a differential drive. In particular, they lead to useful

descriptions of the vehicle's kinematic and dynamic properties

(Propositions 1-4), and they allow to establish the équivalence of

various formulations of the path-tracking problem (Propositions

5,6). This équivalence leads to the équivalence between path-

tracking and the stabilization of an appropriate dynamic system

(Proposition 7,8). This in turn, makes it possible to design a

path-tracking controller by bringing to bear decoupling and

nonlinear feedback linearization techniques (Propositions 9, 10).

From the application of thèse techniques, it follows that such

controller may consist of two simple, linear and decoupled

controllers (Proposition 11), the gains of which may be selected by

means of well-familiar PID techniques (Proposition 12). AU thèse

results can be easily extended to other types of mobile wheeled

robots as car-like or tractor-trailer-like robots (see, for

example, [De.4] and [De.5]).
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Figure 3: Latéral and Orientation Off sets

t * '.CM'

spccd
j dcs-specd

l

Au '

pos/oftent
controBcf

L__i_J

<-+-

L_ -J

spced

cas ( )

•In (l

deslfed-posHlon

dûslfcd-oficntation

Figure 4: Structure of the vehicle's model when a=0,



27

List of Symbole

(x, y) : position of the center of mass of the vehicle (e.o.m.) with

respect to a fixed f rame;

(Vy, Vy) : velocity of the e.o.m. expressed in vehicle's frame

coordinates;

e: orientation (heading) of the vehicle;

n: angular velocity (yaw rate) ;

Fuv Fu2: longitudinal forces exerted on the vehicle by the right

(l) and left tires (2);

Fwr Fu2: lateral forces exerted by the right (l) and left tires (2);

a : distance between the e.o.m and the drive wheels* axle;

£ : distance between a drive wheel and the longitudinal axis;

m: mass of the vehicle;

j: yaw moment of inertia with respect to the e.o.m.

(a^, a^) : accélération of the e.o.m expressed in vehicle's f rame

coordinates;

(u, u): propulsion, steering control;

Kç, K^, Rg: DC motor characteristic parameters;

V,,, Vg: control voltages applied to the DC motors;

Rg: drive wheel's radius (identical for the two);

R : résistance of the DC motor inductor;

K,, K^: characteristic parameters of the DC motor;

<3(t):=[x(t), y(t), 9(t)]': vehicle configuration vector;

[xn(s) Yn(s) en(s)]» se[0, oo) : assigned path in configuration space;

vup(s) vwp(s) wp(s) aup(s) awp(s) aep(s) : linear and angular

velocities and accélérations with which the assigned path has to be
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followed;

xd:=Exd y<l ed vud vwd "dl': desired state;

e := e - e^: heading off set;

£„„ := latéral of f set, i.e.: distance between the e.o.m. of the
vëhicle and the path;

vos := vu ~ vud: velocity of f set;

PI l Pi2: P°les associated with the speed off set dynamics;

PZI ?22 Pz3: Poles associated with the orientation off set dynamics;

Kp1 Kp2: 9alns °f tlle speed controller feed-back component;

Ks1 Ks2 Ks3: 9ains of the steering controller feed-back component;




