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Featured Application: In this paper, a fast, one-step method to prepare acrylate-based coatings on
titanium through the atmospheric pressure plasma polymerization of HEMA is described. The
coating shows lower surface bacterial adhesion and enhanced cell adhesion when compared with
pristine titanium.

Abstract: Dental implants can fail due to various factors, in which bad tissue integration is believed to
have a significant role. Specific properties of the implant surface, such as its chemistry and roughness,
are of paramount importance to address specific cell responses, such as the adsorption of proteins,
as well as the adhesion and differentiation of cells, which are suitable for biomaterial and tissue
engineering. In this study, an acrylate-containing coating was produced on titanium surfaces through
the atmospheric pressure plasma treatment of a liquid precursor, 2-hydroxyethyl methacrylate. A
hydrophilic coating was obtained, showing retention of the monomer chemistry as assessed by FTIR
analysis and XPS. Enhanced fibroblast adhesion and decreased Staphylococcus aureus and Escherichia
coli adhesion were recorded, showing that this is a suitable method to produce biocompatible coatings
with a reduced bacterial adhesion.

Keywords: atmospheric pressure plasma jet; plasma polymerization; acrylate coating; titanium
implants; biocompatible

1. Introduction

Dental implants are a common solution to overcome the problem of tooth loss [1]. How-
ever, these implants can fail due to various factors, in which the lack of osseointegration—the
ingrowth of the implant into the bone structure—and implant-related infections are thought
to play a key role [2-5]. The lack of osseointegration can be explained by the implant’s
mobility, the surface properties of the implant, medical treatments applied to the patient
(radiation therapy or pharmacological agents) and the patient’s related factors, including
osteoporosis, rheumatoid arthritis, renal insufficiency or smoking [6-9].
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Titanium is widely used to produce dental implants, mainly due to its biocompatibility,
corrosion resistance, mechanical properties and low immunogenic potential [10]. Titanium
is naturally covered by a titanium oxide layer that facilitates the adsorption of biomolecules,
supporting cell adhesion and spreading [1].

Specific properties of the implant surface, such as chemistry and roughness, play
a determining role to address specific cell responses (e.g., the adsorption of proteins,
as well as the adhesion and differentiation of cells) suitable for biomaterial and tissue
engineering. Therefore, various attempts have been made to increase the success rate of
implants by tailoring the surface properties, including modification of the topography
features [11], doping with inorganic antimicrobial agents [12-18], immobilizing bioactive
molecules like antibiotics [19,20] or peptides [21-27] and coating the titanium surface with
polymers [28-31].

Plasma polymerization has been widely used as a process for preparing biocompatible
coatings, but until recently, the application was limited mostly to low-pressure plasma
polymerization [32-34] or, alternatively, with atmospheric pressure plasma polymeriza-
tion [35-37]. In the latter, either dielectric barrier discharges or plasma jets are employed,
introducing monomers in the discharge by producing an aerosol which was led by the gas
flow toward the surface of the material [38]. Lately, the interest in atmospheric pressure
plasma jets has been growing, as they enable spatially resolved surface treatments, along
with the creation of chemically heterogeneous surfaces to foster specific cell-surface inter-
actions.

Atmospheric pressure plasma jets (APPJs) have been used for the treatment of medical
devices in order to produce chemically reactive surfaces with different functionalities [39],
such as the preparation of carboxyl [39,40] or amino rich surfaces [40], which can be
further used for the immobilization of biomolecules like proteins or peptides. Those
surfaces have been proven to increase the number of cells adhered on the plasma-treated
material. APPJs have also been used to produce antifouling polyethyleneglycol (PEG)
coatings by plasma polymerization in order to prepare antithrombogenic materials [41],
or as a pretreatment of the substrate to immobilize cell adhesion peptides [42]. When
focusing on the titanium dental implants, APP]s have been used as a methodology to
render antibacterial surfaces [43] or to sterilize titanium implants [44]. A nanocomposite
coating to be used as a drug delivery system, containing silica and poly(lactic-co-glycolide),
has also been prepared using this technique, showing increased adhesion of osteoblasts
and fibroblasts [45].

Besides that, for the improvement of biocompatibility, nitrogen- or oxygen-containing
functional groups are known to support cell attachment and proliferation [46]. Recent
developments are focused on the generation of oxygen-rich, hydrocarbon-based poly-
mer coatings by using plasmas for the polymerization of polyethylene glycol, poly &-
caprolactone or acrylic acid to modify cell attachment on a variety of substrates, such
as silicon [47,48], polypropylene meshes [49], glass [50] or titanium [51]. Based on the
oxygen functional groups present on the surface, ion-ion and ion—dipole interactions occur
that favor the attachment of proteins. With respect to dental implants, where suitable
cell adhesion is required, especially coatings rich in carboxylic or hydroxyl groups are
favored. These coatings can be prepared, for instance, via the polymerization of liquid
2-hydroxyethyl methacrylate (HEMA) at atmospheric pressure by using a plasma jet. So
far, grafting of HEMA grafting on dentin [52] and other substrates [53] was reported, but it
has not been studied previously on titanium substrates, which might be a fast and easy
processing method to obtain biocompatible coatings with reduced bacterial adhesion on
dental implants.

Accordingly, the aim of this study is to investigate the polymerization of 2-hydroxyethyl
methacrylate (HEMA) in its liquid phase by employing an atmospheric pressure plasma
jet and ascertaining whether this could provide suitable properties for titanium surfaces
from the standpoint of future clinical applications in dentistry. With this in mind, different
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Commercially pure titanium (Ti) grade 2 was purchased as rods 10 mm in diameter
(VDM metals, Germany) and cut into 2 mm disks. Ti samples were ground in a sequence
of silicon carbide grinding papers with decreasing particle sizes (P400, P600, P800, P1200,
P2500, Neurtek, Spain) and polished with a colloidal silica suspension (Eposil M11, particle
size 0.06 pm, Neurtek). The samples were cleaned in a sequence of solvents—distilled
water, ethanol and acetone (Panreac, Germany)—in an ultrasonic bath.

The 2-hydroxyethyl methacrylate at 98% purity (HEMA) was purchased from Sigma
Aldrich (Germany) and used without further purification.

Dulbecco’s modified Eagle medium (DMEM, Invitrogen, Carlsbad, CA, USA) sup-
plemented with 10% fetal bovine serum (FBS, Invitrogen, Carlsbad, CA, USA), 2 mM L-
glutamine (Invitrogen), 50 U/mL streptomycin/penicillin (Invitrogen), phosphate buffered
saline (Gibco, UK), a lactate dehydrogenase (LDH) cytotoxicity detection kit (Roche, USA)
and a mammalian protein extraction reagent (mPER, Thermo Scientific, USA) were used
for biocompatibility assays.

Brain heart infusion (BHI, Scharlab, Spain) and agar bacteriological (Scharlab, Spain)
were used for bacterial adhesion assays.

2.3. Surface Characterization
2.3.1. Surface Free Energy

The contact angles of distilled water, diiodemethane and ethylene glycol were mea-
sured at room temperature by the sessile drop method, using an OCA 30 contact angle
analyzer (DataPhysics Instruments GmbH) and a drop of 1 uL. The surface free energy
was calculated by using the Owens, Wendt, Rabel and Kaelble (OWRK) method [55] with
SCA20 software.

2.3.2. Fourier Transformed Infrared Spectroscopy (FTIR)

FTIR spectra were acquired in the attenuated total reflectance (ATR) mode, using a
diamond crystal and recording 32 scans in the range of 650-4000 cm !, with Spectrum One
equipment (Perkin Elmer).

2.3.3. X-ray Photoelectron Spectroscopy (XPS)

XPS spectra were acquired using an Axis Supra DLD electron spectrometer (Kratos
Analytical Ltd., Mandhester, UK) with a monochromatic Al Ko source (1486.6 eV). Survey-
and core-level spectra of O 1s, N 1s, C 1s, Ti 2p and Si 2p were collected by applying
15 kV and 10 mA for the survey spectra and core-level spectra, respectively, and 15 kV
and 15 mA for the highly resolved measured C 1s peaks. All XPS measurements were
collected with a 250 um spot size, using a charge neutralizer during acquisition. Data
processing were carried out using CasaXPS software, version 2.3.22PR1.0 (Casa Software,
Ltd., Teingnmouth, UK). Curve fitting of the high-resolution C 1s spectra was also carried
out using CasaXPS software. The line shape used was a Gaussian-Lorentzian (GL 30)
function with a Shirley background. Due to sample charging, the binding energy scale was
corrected for all samples by setting the C 1s binding energy to 285.0 eV. Concentrations
were provided in atomic percent (at.%). A depth profile was generated by alternating cycles
of spectral acquisition of the sample surface, followed by 10 keV Arjppp+ bombardment of

the sample surface. The beam was rastered over an area of 1.5 x 1.5 mm?.

2.3.4. Coating Stability

The stability of the coatings was studied by immersing the coated samples in deionized
water for 24 h and 48 h, or by applying an ultrasonic treatment in water for 5 min. The
wettability of each coating was studied by water contact angle measurements, and the
chemical composition was assessed by ATR-FTIR and XPS analysis after drying the samples
with a nitrogen gas flow.



Appl. Sci. 2021, 11, 662

50f 16

2.4. Biocompatibility Studies
2.4.1. Indirect Cytotoxicity

The indirect cytotoxicity of the samples was evaluated following the ISO 10993-5
standard [56] with human foreskin fibroblasts (hFFs, Merck Millipore Corporation, Bedford,
USA). Details on the protocol can be found elsewhere [29]. Briefly, the non-treated and
plasma-treated samples were sterilized in ethanol for 10 min, washed three times with
Phosphate Buffer Saline (PBS) and immersed in DMEM for 72 h at 37 °C. The hFFs were
cultured at a cell density of 5 x 103 cells/well on a 96 well tissue culture polystyrene
(TCPS) plate for 24 h. Dilutions of the sample extracts (1:1, 1:10, 1:100, 1:1000) were used
to incubate the cells for 24 h, and afterward, the cells were lysed with mPER in order to
quantify the cell viability with the LDH kit.

2.4.2. Cell Adhesion

Cell adhesion assays were performed with hFFs according to the protocol described
in [29]. Briefly, 2 x 10* cells per sample in 1 mL of medium were seeded on the sterilized
samples and incubated for 6 h at 37 °C. After the incubation time, the adhered cells were
lysed with mPER, and the viability was quantified with the LDH kit.

2.5. Bacterial Adhesion

Bacterial adhesion was performed with Staphylococcus aureus (S. aureus, CCUG 15915,
Culture Collection University of Goteborg, Goteborg, Sweden) and Escherichia coli (E. coli,
CECT 101, Coleccion Espafiola de Cultivos Tipo, Valencia, Spain). The protocol followed
can be found elsewhere [57]. Briefly, the samples were sterilized by immersion in ethanol
and washed three times with PBS. Then, 1 mL of the bacterial suspension—adjusted to
an absorbance of 0.2 & 0.01—was placed on the samples and incubated for 2 h at 37 °C.
Bacteria were detached from the surface and plated on agar plates by serial dilution.

2.6. Statistical Analysis

The cell and microbiological results were presented as the average 4 standard devia-
tion of at least three independent samples. Statistical analysis was performed with Minitab
17™ software (Minitab Inc, State College, PA, USA). Data were analyzed by one-way
ANOVA tables with Tukey’s multiple comparison tests in order to evaluate any statistically
significant differences between sample groups. The differences were considered statistically
significant when p < 0.05.

3. Results
3.1. Surface Characterization
3.1.1. Surface Free Energy

For the calculation of the free surface energy of the coatings, the method of Owens,
Wendt, Rabel and Kaelble was used, whereby the free surface energy is divided into a polar
and a dispersive component. Due to a static plasma treatment and the local confinement
of the area that was directly exposed to the plasma, the contact angles were measured
on two different positions: one in the center of the coating and the other one in the edge
region of the coating. Figure 2 shows the free surface energies of coatings polymerized
at different process parameters. The data obtained revealed that the surface free energy
were independent of the measurement position and process conditions. Compared to the
titanium, all the coated samples showed a higher polar component and thus, in total, an
increased surface free energy, revealing that the coating was more hydrophilic.
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surface free energy was more than twofold higher than that of pristine titanium, resulting
in an improved wettability. Similar results were found in previous studies for PHEMA
coatings [60], with a higher polar component and a lower dispersive component. This fact
indicates that the coatings presented here had a higher amount of polar groups when com-
pared with other methods employed to synthesize HEMA-based polymer films. The higher
wettability enhances the suitability of the coating for biomedical applications [61,62].

Regarding the chemical analysis by ATR-FTIR, the main peaks of a PHEMA coating
could be detected [63]. The elemental compositions of the coatings, determined by XPS,
are comparable to the one reported by other authors for PHEMA coatings, obtained by
plasma polymerization [64,65], and they are similar to the theoretical one of the precursor
(67% carbon, 33% oxygen). However, the stoichiometry of the different carbon-oxygen
bonds is slightly different to the theoretical one, indicating that some changes on these
functionalities might have occurred during the plasma treatment. The stability studies
showed that the coating was stable after being stored in air and immersed in water. This
can be associated with the formation of a chemical bond between the polymer and the
substrate during the plasma treatment.

No toxicity was observed in the in vitro cytotoxicity assay, with a cell viability above
80% for all samples. It has been reported that HEMA exerts cell toxicity via apoptosiss,
among other effects [66-68]. In contrast, its polymerized counterpart, PHEMA, is biocom-
patible and has no toxic effects [69,70]. From the results obtained in this study;, it can be
concluded that the HEMA precursor was polymerized during the plasma treatment, at
least to the extent that the toxicity effect was not observed. Moreover, an indicator of the
stability of the coating can also be extracted from these results, since no changes in the cell
viability were observed after its immersion in a cell culture medium for 72 h.

The hFF adhesion on the HEMA-based coatings was higher than the control, indicating
the possibility of better tissue integration around the material. Even though PHEMA
coatings have been reported to be antifouling and reduce the protein adsorption and cell
adhesion [65], there are also reports regarding the ability of such coatings to allow cell
adhesion [60]. Moreover, some modifications of the coatings, such as UV cross-linking, can
impart chemical functionalities which enhance cell adhesion [71]. In the case of fibroblasts,
a good adhesion brings forward the possibility of optimum biosealing around the implant,
which further avoids bacterial infiltration and infection [72,73]. The sealing has been also
observed to be promoted by the lower bacterial adhesion, both of E. coli and S. aureus, in
similar coatings [35,74,75]. This is due to the water retention of the coating, which in turn
produces an antifouling effect, reducing the number of bacteria adhered. Similar results
were observed with coatings obtained in low-pressure plasma systems. For example,
Cokelier et al. [76] found a reduction of 62% in the adhesion of Staphylococcus epidermidis
when applying the HEMA coating, and Alves et al. [32] found an inhibition of the biofilm
formation of E. coli when in contact with a HEMA coating.

5. Conclusions

A plasma-polymerized, HEMA-based coating has been successfully prepared by
treating the liquid monomer with an atmospheric pressure plasma jet. The coating showed
retained wettability and chemical composition compared with the precursor. While part of
the coating was lost after stability treatments, the remaining coating displayed sufficient
stability after immersion in deionized water or ultrasonication. Fibroblast adhesion was
enhanced due to the oxygen-rich polymer film, while the bacterial adhesion of both S. aureus
and E. coli was reduced to 50%, as compared with the control sample. These promising
results indicate that HEMA-based coatings may have a future in clinical applications of
titanium in dentistry.
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