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1. Introduction
Heavy to very heavy precipitation (from now on extreme precipitation) events are recurrently occurring 
on global and regional scales. Nepal, lying along the southern slopes of the central Himalayas, is highly 
susceptible to the development of extreme precipitation and subsequent flooding (Karki et al., 2018). Sev-
eral incidences of extreme precipitation are observed affecting lives and properties, especially during the 
summer monsoon season (SMS) in Nepal. For instance, a multi-day cloudburst of June 13–19, 2013 in the 
north-western mountainous region near the Nepal-India border resulted in large flash floods and massive 
landslides. A huge loss of life and property was reported (Karki et al., 2017; Paudel et al., 2013). An extreme 
precipitation event of August 14–15, 2014, is another seriously destructive event of recent time in which 

Abstract Heavy precipitation events are recurrently occurring in Nepal, affecting lives and properties 
every year, especially in the summer monsoon season (i.e., June-September). We investigated an extreme 
(heavy) precipitation event of August 2014 over the West Rapti River (WRR) Basin, Nepal. First, we 
forced a rainfall-runoff model with ground-based (gauge) hourly rainfall data of nine stations. Second, 
we validated against hourly water level at an outlet of the WRR Basin. This study then evaluated the 
performance of different satellite-based rainfall estimates (SREs) in capturing an extreme precipitation 
event. We considered the use of half-hourly data of Integrated Multi-satellite Retrievals for GPM 
(IMERG) (Early, Late, and Final versions), spatial resolution (10 km), and hourly data of Precipitation 
Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), spatial 
resolution (25 km), and Precipitation Estimation from Remotely Sensed Information using Artificial 
Neural Networks-Cloud Classification System (PERSIANN-CCS), spatial resolution (4 km). Also, we 
used 3 h data of Tropical Multi-satellite Precipitation Analysis (TMPA) product real-time (3B42RT), 
spatial resolution (25 km). In general, we find that all selected SREs depicted a similar pattern of extreme 
precipitation as shown by the gauge data on a daily scale. However, we find these products could not 
replicate precisely on a sub-daily scale. Overall, IMERG and TMPA showed a better performance than 
PERSIANN and PERSIANN-CCS. Finally, we corrected poor-performed SREs with respect to gauge 
data and also filled data gaps of gauge rainfall using the information of good-performed SREs. Our 
study reveals that there is a great challenge in local flood simulation employing SREs at high-temporal 
resolution in Nepal.

Plain Language Summary We assessed a heavy precipitation event of August 2014, where 
hourly rainfall data were applied in a hydrologic model in the WRR basin, Nepal. We evaluated the 
performance of different SREs and found all selected SREs demonstrated a similar tendency compared 
to gauge data on a daily scale. However, they failed to replicate on a sub-daily scale. Finally, we corrected 
poor-performed SREs (PERSIANN family) with respect to gauge data and also filled data gaps of gauge 
rainfall using the information of good-performed SREs (IMERG family and TMPA). Thus, we find there is 
a great challenge in local flood simulation using SREs at high-temporal resolution in Nepal.
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a maximum precipitation amount of 528 mm in 24 h (08:45 Local Time, i.e., 03UTC August 14–15, 2014) 
was observed at Chisapani station (location shown in Figure 1a), which is the highest ever recorded 24 h 
accumulated precipitation in Nepal (Karki et al., 2018). Similarly, severe floods were seen in many regions 
across the country in the SMS in recent times, like 2015, 2017, and 2019. Recently, a new pattern of a flood 
is observed across the entire range (i.e., from east to west) of the southern plain of the country during the 
SMS at the same time every year. The frequency of occurrences of rainfall >100 mm/day shows a significant 
increasing trend in most of the southern part of Nepal (<2,000 m asl), which was not common before 2000 
(Pokharel et al., 2019).

Interestingly, two significant rainfall peaks appear over the southern slope of the central Himalayas due to 
its unique topographical setting, the first peak appears along 500–700 m above sea level (asl), and the second 
peak appears along 2,000–2,200 m asl (D. Shrestha et al., 2012; Talchabhadel et al., 2018). The former is at-
tributed to fewer but heavy rainfall events, whereas the latter is weak but frequent and persistent (D. Shres-
tha et al., 2012). Therefore, a higher amount of seasonal precipitation is observed along 2,000–3,000 m asl 
compared to the southern plain. Still, when it comes to extreme precipitation, the southern plain receives 
intermittent high-intensity extreme precipitation. During extreme precipitation, warm moist monsoonal air 
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Figure 1. (a) Locations of West Rapti River (WRR) Basin, Babai River Basin (adjacent to the WRR basin), and Chisapani station (ever recorded 24 h 
accumulated precipitation = 528 mm/hr) over Nepal, (b) location of water level and streamflow measuring stations (i.e., Upstream: Jhimruk, Midstream: 
Bagasoti, and Downstream: Jalkundi), and (c) network of rainfall stations (daily and hourly) overlaid on the spatial distribution of cumulative precipitation of 
selected 10 days (August 10–19, 2014). Spatial interpolation considers precipitation as a function of latitude, longitude, and elevation (Karki et al., 2016).
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primarily strikes the first southern lower hill ranges (Churia range), resulting in a heavy downpour (Tal-
chabhadel et al., 2018). Karki et al. (2017), Talchabhadel, Aryal, Kawaike, Yamanoi, and Nakagawa, 2021, 
and Bohlinger and Sorteberg (2018) reported that heavy precipitation related indices; maximum 1-day pre-
cipitation amount (RX1day), maximum 5-days precipitation amount (RX5day), and precipitation of days in 
>95th percentile (R95p), are rising significantly in lower hills of the western region of the country.

During the latitudinal swaying of monsoon trough to the north of normal position, meaning shifts to foot-
hills of Himalayas, break monsoon occurs. As a result, westerly winds prevail, and rainfall amounts in Cen-
tral India are small. In contrast, rainfall amounts enhance across foothills of the Himalayas, including the 
southern plains of Nepal. One or two major breaks in monsoon are observed frequently in a year. However, 
sporadically mid-latitude cyclonic systems coincide with the monsoonal system during the break monsoon, 
resulting in extreme precipitation in the form of cloudburst over the Himalayas (A. Shrestha, 2016). In gen-
eral, this type of interaction provides a suitable synoptic condition to converge massive moisture from both 
the Arabian Sea and the Bay of Bengal, affecting the country's western region (Talchabhadel et al., 2018). 
Bohlinger et al. (2017) systematically investigated synoptic conditions and moisture sources triggering ex-
treme precipitation in Nepal during 1979–2010, employing FLEXible PARTicle (FLEXPART), a Lagrangian 
transport and dispersion model of the atmospheric transport process. Rigorous exploration is needed case-
wise to investigate the complex dynamics of any extreme precipitation. Responses of watershed/river ba-
sins on different cases of extreme precipitation are different. Observation constraints (sub-daily resolution) 
make such exploration difficult.

Space-borne products like satellite-based rainfall estimates (SREs) are helpful on many occasions, but we 
need to take care of underlying biases. Currently, there is the availability of several SREs, and a compre-
hensive review of SREs’ algorithm is beyond the scope of this paper. Please see Sun et al. (2018) for detailed 
information on the global precipitation data set, including SREs. Products based on multiple-satellite and 
merging satellite and gauge data have been considered to improve the accuracy of SREs. Verification of 
SREs is essential for any practical application. In general, we can perform an error evaluation of SREs if 
sufficient gauge data exist. After then, systematic biases can be reduced. There are many studies (Aghak-
ouchak et al., 2011; Almazroui, 2011; Hong et al., 2007; Mahbod et al., 2019; Pakoksung & Takagi, 2016; 
Pombo & de Oliveira, 2015; Talchabhadel, Aryal, Kawaike, Yamanoi, Nakagawa, Bhatta, et al., 2021; Tarek 
et al., 2017; Yoshimoto & Amarnath, 2017) dealing with error evaluation of SREs and their applications but 
most of these studies are carried out on a daily, monthly, seasonal or annual scale. Here, we tried to assess 
the potential of using SREs during an extreme precipitation event. We chose the extreme precipitation 
event of August 14–15, 2014 across the WRR basin of Nepal and conducted our analysis for the study period 
August 10–19, 2014.

The torrential rain seriously affected the southern plain of west Nepal, and water levels in most rivers in-
creased above warning and danger levels. These warning and danger levels are set based on hydrodynamic 
modeling and inundation scenarios in downstream settlements. The warning level is anticipated flood flow 
representing the riverbank's full stage and the beginning of inundation in the settlement areas. In contrast, 
the danger level is that level of flow in which the floodwater enters the settlements affecting people and 
properties, or the inundation depth remains within one meter (Gautam & Dulal, 2013). In Babai River, ad-
jacent to the WRR basin shown in Figure 1a, the early warning system (EWS) was completely washed away 
by the flood, and no EWS worked, which caused human deaths and huge property loss (Reliefweb, 2014). 
Such a scenario highlights the importance of SREs at the time of failure of gauge data. The rain gradually 
reduced from the afternoon of August 15, 2014 even though floodwaters took some days to recede from 
inundated villages. For a numerical analysis of such temporarily dynamic processes, sub-daily (e.g., hourly 
hydrometeorological) data are required. There are four hydrometric and nine precipitation stations with 
sub-daily temporal resolution (shown in Figure 1c) across the WRR basin. We selected the WRR basin for 
our analysis because other adjacent basins of the affected region (i.e., Babai, Karnali) do not have sufficient 
sub-daily data.

In this study, we applied a kinematic wave flow model on hill slopes for simulating surface runoff. A shal-
low-water unsteady flow model was used to simulate the inundation propagation. First, the hydrologic 
model was validated against hourly gauge river discharge. This study evaluated the performance of SREs 
in capturing an extreme precipitation event. We used (a) NASA Global Precipitation Measurement (GPM) 
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Integrated Multi-satellitE Retrievals for GPM (IMERG) -Early, -Late and -Final versions, (b) Precipitation 
Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), (c) PER-
SIANN-Cloud Classification System (PERSIANN-CCS), and (d) Tropical Rainfall Measuring Mission 
(TRMM) Multi-satellite Precipitation Analysis (TMPA) products. In this study, we proposed corrections of 
SREs with respect to (wrt) gauge data, and at the same time, we also filled data gaps of gauge data using the 
information of SREs.

The paper is organized as follows. First, the study area is described in Section 2. Next, we describe precipi-
tation data (gauge and SREs) in Section 3. This section also includes a description of the error evaluation of 
SREs and numerical simulation of the response of extreme precipitation in the study area. Next, Section 4 
presents our results, and we offer some discussions. Finally, Section 5 concludes the overall study.

2. Materials and Methods
2.1. Study Area

The study area (Figure 1a), a catchment area of 6,368 km2 up to the Nepal-India border, has a diverse ele-
vation range (shown in Figure 1b) varying from 100 to 3,600 m above-sea-level (asl) within a small latitude 
extent of nearly 1°. The response time of extreme precipitation events is very quick due to the steep topog-
raphy. The mean annual precipitation (MAP) is about 1,500 mm, and more than 80% of it occurs during 
the SMS. Figure 1c shows a spatial distribution of total precipitation of the selected period (August 10–19, 
2014). A localized nature of heavy precipitation, almost 45% of the MAP, is observed around station 3. Sta-
tions 1–5 (from left) are located in the lower elevation (0–500 m asl), and stations 6–9 (from left) are located 
in the upper region of the study area.

2.2. Hydrometeorological Data

We used hourly rainfall data of nine automatic precipitation stations and water level data of four auto-
matic hydrologic stations distributed across the WRR basin maintained by the Department of Hydrology 
and Meteorology (DHM), Government of Nepal. Hourly discharges at stations were estimated employing 
the stage-discharge relation. However, the developed stage-discharge association was based on the limit-
ed number of streamflow measurements. Also, peak discharge is challenging to measure; therefore, it is 
estimated using different empirical approaches. Generally, daily average water levels (i.e., the arithmetic 
average of three recordings at 8 a.m., 12 noon, and 4 p.m.) are used to estimate daily average streamflow. 
Thus, the estimation of hourly discharge has some uncertainty, and their quantification is beyond this 
study's scope.

The automatic network includes tipping bucket-type precipitation gauges. Please see Talchabhadel 
et al. (2017) for detailed information about precipitation measurement in Nepal. We used half-hourly data 
of IMERG (Early, Late, and Final versions), resolution (10  km), hourly data of PERSIANN, resolution 
(25 km), and PERSIANN-CCS, resolution (4 km), and 3-h data of TMPA (3B42RT), resolution (25 km).

IMERG evaluates rainfall from the various passive microwave (PMW) sensors comprising GPM constella-
tion are computed employing Goddard Profiling Algorithm (GPROF2017). Detailed information could be 
found in Huffman et al. (2019). We used a current version, that is, 06B version, of Early, Late, and Final 
products of IMERG. Early product is accessible after ∼4 h of observation time, and Late product after ∼14 h 
of observation time without an ultimate calibration, whereas Final product is available after ∼3.5 months 
of observation time after the ultimate calibration based on monthly gauge analysis. TMPA algorithm (Huff-
man et al. 2007) offers rainfall estimates in the TRMM regions using microwave-calibrated infrared approx-
imations. We used a 3B42RT version7 TMPA product in this study. The TMPA products ended on December 
31, 2019. New products to supersede the TMPA datasets are being produced under the GPM umbrella with 
the IMERG algorithm.

PERSIANN system is developed by the Center for Hydrometeorology and Remote Sensing (CHRS), which 
employs a neural network to estimate rainfall rate using the infrared brightness temperature image of ge-
ostationary satellites (Hsu et al., 1997). The system has an updating adaptive training feature of the pa-
rameters upon the availability of independent rainfall estimates, for instance, TRMM. PERSIANN-CCS is 

TALCHABHADEL ET AL.

10.1029/2020EA001518

4 of 15



Earth and Space Science

a real-time global high-resolution satellite product that permits the categorization of cloud-patch features 

based on cloud information, including height, areal extent, and variability of texture estimated from sat-

ellite imagery (Hong et al., 2004). Detailed information of the PERSIANN family is presented in Nguyen 

et al. (2018).

2.3.  Performance Analysis of Satellite-Based Rainfall Estimates

Inter-comparisons of different data sources were conducted with gauged data at nine stations. At first, the 

gauge data was checked for any data gaps. Then, at the station without any data gaps, rainfall detection 

abilities were evaluated using four statistical indices, namely (a) probability of detection (POD), (b) critical 

success index (CSI), (c) false alarm ratio (FAR), and (d) frequency bias index (FBI). Table 1 shows a detail of 

the calculation of indices. POD denotes the proportion of the number of correctly detected rainfall events 

of SRE wrt to the number of rainfall occurrences observed by gauge data. Similarly, CSI displays an overall 

ratio of rainfall events correctly identified by SRE, whereas FAR indicates the proportion of false status. 

POD, CSI, and FAR vary from 0 to 1: 0 being an ideal FAR and 1 being a perfect POD and CSI. FBI represents 

a simple bias between gauge data and SRE. Detection indices were calculated on hourly, 3 h, 6 h, 12 h, 18, 

and 24 h scales.

For a magnitude-based evaluation of SREs, mean difference (MD), mean absolute difference (MAD), root 

mean square error (RMSE), and percentage bias (PBIAS) wrt gauge data were computed.
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 (4)

where i represents the station, N represents the number of stations (i.e., nine in this study). The pixel value 

at the station location of SREs was used for the comparison, following the point-to-pixel approach. Negative 

values of MD and PBIAS represent an underestimation, and positive values represent an overestimation of 

SRE wrt gauge data. A lower value is ideal for MAD and RMSE. This study applied a simple linear scaling 

correction to SREs on an event basis at stations without any data gaps. The gauge stations with data gaps 

were filled using the SREs having good performances.
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Status Satellite Gauge Detection indices Equation Range Ideal value

True Rainy Rainy Probability of detection T/(T + M) 0 to 1 1

False Rainy Non-Rainy Critical success index T/(T + M + F) 0 to 1 1

Miss Non-Rainy Rainy False alarm ratio F/(T + F) 0 to 1 0

Null Non-Rainy Non-Rainy Frequency bias index (T + F)/(T + M) 0 to ∞ 1

Note. Rainfall less than 0.2 mm in an hour is treated as a non-rainy event.

Rain threshold = 0.2 mm per hr.

Abbreviations: F, False; M, Miss; T, True; X, Null.

Table 1 
Statistical Indices for Rainfall Detection Evaluation
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2.4.  Hydrologic Modeling

An RRI model (Sayama et al., 2012), developed by the International Center for Water Hazard and Risk Man-

agement (ICHARM), was used employing a 2D kinematic wave model for hillslope and a 1D river-routing 

model for river channel for simulating rainfall-runoff processes. We used the topography data of Hydro-

SHEDS (Lehner et al., 2008) with 30-s (approximately 900-m) resolution, provided by the U.S. Geological 

Survey. Governing equations are based on the conservation of mass and momentum.
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where h is water depth, xq and xq are the unit width discharges in x- and y-directions respectively, r is rain-

fall intensity, u and u are flow velocities in x- and y-directions respectively, g is the gravitational acceleration, 

n is Manning's roughness parameter, and H is the height of the water from the datum.

Under kinematic wave approximation, local acceleration, convective acceleration, and pressure terms are 

neglected, meaning the gravity and friction forces balance each other. Detailed information is described in 

Sayama et al. (2012) and the RRI model manual (ICHARM, 2015). The RRI model uses flow accumulation 

and direction to locate river channels but not for flood routing (Sayama et al., 2015). River width and depth 

are estimated using the following functions of the upstream contributing area.

SW
WW C AW C A WW C AW (8)

SD
DD CAD CA DD CAD (9)

where, W and D are river width and river depth respectively in meters, WC, WSWSW, DC, and DS are geometry pa-

rameters. These coefficients are used to estimate the river width and depth at all computation grids. In this 

study, we used the default values (ICHARM, 2015): WC = 5.0, WSWSW = 0.35, DC = 0.95, and DS = 0.2. Based on 

observed data of river width and river depth at different cross-sections, these parameters could be precisely 

estimated in a local context. Since we do not have observed cross-sections at river channels upstream of 

Kusum station, we limited this study with the default values. However, we pay attention to calibrating the 

model by changing the roughness coefficient of river and hill slopes. In this study, the geometry is assumed 

to be a rectangle for simplicity. These geometric details are sensitive to hydrodynamic routing.

We first calibrated the hydrologic model on the flood event of August 2012, one of the big floods in WRR 

during the recent time after implementing the automatic hydrometeorological station. The WRR crossed 

the danger level set by the DHM for 19 h during that event (Talchabhadel & Sharma, 2014). After checking 

the model applicability, it was applied for the case of August 2014. The hydrologic model was fed with (a) 

gauge data, (b) SREs data, (c) bias-corrected SREs, and (d) gauge data after filling data gaps. We assessed 

the performance of hydrologic simulation using Nash-Sutcliffe Efficiency (NSE), percentage bias (PBIAS), 

and square of correlation coefficient (R2) by comparing simulated and observed streamflow on an hourly 

timescale for calibration, validation, and all scenarios. NSE is a normalized index that tells the magnitude 

of residual variance compared to observed variance (Nash & Sutcliffe, 1970). NSE ranges from -∞ to +1. The 

ideal value of NSE is 1. PBIAS informs the volume deviation compared to observed values. Here, negative 

PBIAS represents an underestimation, and positive PBIAS represents an overestimation. R2 describes the 

correlation between observed and simulated streamflow. A value close to zero represents poor correlation, 

whereas a value close to one represents a strong correlation. Please see Krause et al. (2005) and Moriasi 

et al. (2007) for detailed information on these performance metrics.
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3. Results and Discussion
3.1. Performance Analysis of Satellite-Based Rainfall Estimates

Figure 2 shows basin averaged rainfall computed using the Thiessen weightage method during the selected 
period (August 10–19, 2014) based on gauged data and different selected SREs. In general, PERSIANN and 
PERSIANN-CCS showed an underestimation, whereas IMERG (Early, Late, and Final versions) and TMPA 
showed an overestimation wrt to gauge data on a spatially average scale. All SRE products depicted clear 
information on heavy precipitation from the evening of 14 August to the afternoon of 15 August. However, 
they showed rain on the morning of 14 August, which was not depicted by the gauge data. Also, detection 
and magnitude-based indices were used for the evaluation of the performance of SREs. Before evaluating 
the performance of any SREs, we first need to understand the reliability and continuity of the gauge data 
during the selected period. In our case, station 2 did not record any rainfall throughout the study period. 
Similarly, stations 1 and 9 had data gaps more than 35% of the time, and station 4 had data gaps almost 60% 
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Figure 2. Temporal distribution of basin-averaged hourly rainfall of the study area during August 10–19, 2014 based on gauged data and different satellite-
based rainfall estimates. The basin averaged rainfall is computed using Thiessen's weightage method.
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time. The remaining five stations had uninterrupted data during the selected period. Detection and mag-
nitude-based indices were calculated at these five stations for the evaluation of the performance of SREs.

Table 2 summarizes total rainfall during the selected period at different stations based on gauge data and 
different SREs. A linear correction factor (CF) on a 10 days event scale was computed for the stations with-
out any data interruption. And the CF was assumed to be 1 (meaning no corrections) for the stations with 
data gaps. Out of five stations, four stations showed underestimation for PERSIANN and PERSIANN-CCS. 
Other SREs showed overestimation most of the time except for station 3 for IMERG-Final and TMPA. Thus, 
we have two main challenges in using such data: (a) filling the gauge data gap and (b) correcting SREs.

Figure 3 shows the performance of different SREs on different hourly, 3, 6, 12, 18, and 24 h scales for the 
uncorrected SREs. Rainfall detection indices on a coarser temporal resolution showed better values (i.e., 
toward ideal value shown in Table 1), indicating that SREs perform quite well on a daily scale. However, all 
SREs had a considerable false alarm, and FAR values were almost similar. On an hourly scale, FAR values 
were around 0.5, and on a daily scale, they were around 0.25. PERSIANN performed better in FAR and 
FBI; however, PERSIANN was inferior to IMERG (Early, Late, and Final versions) in terms of POD. PER-
SIANN-CCS was the most poor-performed SRE.

Table 3 shows the error values of different SREs wrt to the gauge data on an hourly scale for uncorrect-
ed SREs. PERSIANN and PERSIANN-CCS highly underestimated rainfall, indicating a requirement of 
bias correction. IMERG Early and IMERG Late had relatively higher positive biases. IMERG Final version 
showed significantly improved performance than Early and Late versions. TMPA had the lowest mean de-
viation and PBIAS; however, RMSE and MAD values were larger, indicating a mismatch between SRE and 
gauge data on an hourly scale.

3.2. Hydrologic Modeling

We conducted seven cases of hydrologic simulation using gauge data and six individual SREs. Since 
PERSIANN and PERSIANN-CCS underestimated rainfall significantly, we corrected them using above 
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  Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8 Station 9

Gauge 52.40 0.00 620.00 11.80 278.60 112.40 182.60 189.20 13.60

No data hours 82 241 0 141 0 0 0 0 91

PERSIANN 206.83 206.83 181.87 171.01 150.07 154.41 126.55 150.07 150.07

CF_PERSIANN 1.00 1.00 3.41 1.00 1.86 0.73 1.44 1.26 1.00

PERSIANN-CCS 334.00 298.00 288.00 215.00 160.00 135.00 102.00 157.00 119.00

CF_PERSIANN-CCS 1.00 1.00 2.15 1.00 1.74 0.83 1.79 1.21 1.00

IMERG early 421.75 469.51 653.01 324.85 340.12 308.73 193.32 214.83 224.55

CF_IMERG early 1.00 1.00 0.95 1.00 0.82 0.36 0.94 0.88 1.00

IMERG late 422.38 501.62 699.20 339.31 381.57 319.97 198.04 207.81 227.88

CF_IMERG late 1.00 1.00 0.89 1.00 0.73 0.35 0.92 0.91 1.00

IMERG final 293.57 317 354.49 314.72 362.92 276.78 287.09 260.35 308.09

CF_IMERG final 1.00 1.00 1.75 1.00 0.77 0.41 0.64 0.73 1.00

TMPA 327.63 351.45 295.14 316.59 338.97 277.38 256.92 303.93 303.93

CF_TMPA 1.00 1.00 2.10 1.00 0.82 0.41 0.71 0.62 1.00

Note. Bold values represent an underestimation of SREs.
Abbreviations: CF, Correction Factor; IMERG, Integrated Multi-satellitE Retrievals for GPM; PERSIANN, Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks; PERSIANN-CCS, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-
Cloud Classification System; TMPA, Tropical Multi-satellite Precipitation Analysis.

Table 2 
Correction Factors for Satellite-Based Rainfall Estimates at Station Locations With Respect to Gauge Data Over the Study Area for the Selected Period (August 
10–19, 2014)
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mentioned CFs and simulated two more cases. We simulated additional four cases after filling data gaps in 
gauge data from TMPA and IMERG (Early, Late, and Final versions). Figure 4a shows a comparison plot 
between simulated and observed hourly discharge at three outlets: (a) Upstream, (b) Midstream, and (c) 
Downstream during the calibration period of August 1–10, 2012. Though the model did not precisely repre-
sent base flow, peaks were in an acceptable range. Since our simulation period is only for an event and we 
simulated for only 10 days, the initial water and moisture properties are difficult to replicate. Therefore, the 
baseflow is not mimicked with the current simulation. A long-term hydrologic simulation, incorporating 
spatially different land use and soil types, is needed for a base flow and water balance analysis. The calibrat-
ed roughness coefficients for slopes and river channels were 0.1 and 0.018, respectively. They are analogous 
with Musumari et al. (2019).
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Figure 3. Performance of different satellite-based rainfall estimates with respect to gauge data on different time scales (hourly, 3, 6, 12, 18, and 24 h) in the 
study area during August 10–19, 2014. POD: probability of detection, CSI: critical success index, FAR: false alarm ratio, and FBI: frequency bias index.

Magnitude based indices TMPA IMERG early IMERG late IMERG final PERSIANN PERSIANN-CCS

MD (mm/h) 0.07 0.27 0.35 0.13 −0.51 −0.43

MAD (mm/h) 1.38 1.58 1.61 1.32 1.10 1.39

RMSE (mm/h) 4.07 5.19 5.32 4.15 3.91 4.67

PBIAS (%) 6.48 23.66 30.65 11.49 −44.82 −37.52

Note. Uniform hourly rain is used for TMPA 3 h resolution.
Abbreviations: MD, mean difference; MAD, mean absolute difference; PERSIANN, Precipitation Estimation from 
Remotely Sensed Information using Artificial Neural Networks; PERSIANN-CCS, Precipitation Estimation from 
Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System; RMSE, root mean square 
error; RMSE (refer to Equations 1–4), percentage bias; TMPA, Tropical Multi-satellite Precipitation Analysis.

Table 3 
Error Evaluation of Different Satellite-Based Rainfall Estimates With Respect to Gauge Data Before Applying Correction 
During August 10–19, 2014
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The developed model was then used for the study period (August 10–19, 2014). Figure 4b shows the hydro-
logic response of the extreme precipitation event of the selected period. Our result showed that the peak 
values did not match accurately, but the hydrograph's tendency was congruous. Moreover, a double-peak 
in observed streamflow could not be replicated by the simulation. More localized and sub-hourly rainfall 
details may be required to mimic such local features. However, since gauge data suffered some data gaps in 
a few stations, spatial interpolation from the limited stations might bring underestimation. Therefore, we 
tried to fill gauge data gaps with different SREs to evaluate this issue. Another possible reason is also asso-
ciated with uncertainty related to the stage-discharge relationship at high peaks. In addition, tipping bucket 
type automatic rainfall measurement normally underestimates by about 10% compared with manual rain 
gauges (Talchabhadel et al., 2017). Moreover, though it records about 10% underestimation on a daily scale, 
it is again hard to quantify at the sub-daily or hourly level. Therefore, one possible reason for underestimat-
ing simulated discharge could be underestimating precipitation estimates by the tipping bucket method.

In the WRR basin, out of nine stations, only three stations are collocated with automatic and manual rain 
gauges. Therefore, station-wise comparisons were not straightforward possible. Figure 5 shows the spatial 
distribution of station-wise total precipitation for the selected period based on gauge data of DHM. Fig-
ure 5a presents aggregated hourly precipitation for the chosen period, and Figure 5b illustrates 10 days total 
precipitation based on manual 24 h recorded precipitation. As mentioned earlier, four precipitation stations 
had data gaps hours (gap values and locations shown in Figure 5a). Apart from those four stations with data 
gaps, tipping bucket type automatic rainfall recorded almost similar amounts of manually observed 24 h 
accumulated precipitation during the selected period, indicating the good performance of automatic gauges 
wrt to manual gauges. The maximum total station-wise precipitation for the chosen period is 620 mm for 
automatic and 597.5 mm for manual. 24 h accumulated precipitation data from more stations, in total >20 
stations (inside and outside the basin), are crucial information for better understanding spatial variability. 
We need to keep in mind that though these SREs show similar results on a daily scale or accumulated pre-
cipitation amounts for a longer period, they have high hour-to-hour fluctuations. These fluctuations result 
in discrepancies between observed and simulated streamflow at a sub-daily level. If the disintegration of 
24 h accumulated precipitation can be performed on an hourly scale, such data would be used in numerical 
simulation of the basin's response to extreme precipitation.

A sample of correction of SREs for PERSIANN and PERSIANN-CCS is shown in Figure 6 for station 3 (Ta-
ble 2 shows CFs for all stations). Since we used a temporally static CF, a prior precipitation increase could 
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Figure 4. Comparisons of simulated and observed discharges for (a) calibration period of August 1–10, 2012 (Upstream, Midstream, and Downstream 
stations), and (b) the study period of August 10–19, 2014. During the study period, the water level at upstream and midstream stations were not recorded due to 
technical issues. Inverted bars represent basin averaged rainfall. Nash-Sutcliffe Efficiency, R2, and percentage bias are performance metrics at the Downstream 
station.
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be found due to false alarm values. Therefore, for this study, we employed an event-based linear CF for 
PERSIANN and PERSIANN-CCS.

Figures 7–9 show hydrologic responses of the study area based on different data sources. Figure 7a shows 
a comparison plot between observed and simulated discharge from the gauge, PERSIANN, and PER-
SIANN-CCS. As mentioned earlier, both PERSIANN and PERSIANN-CCS underestimated rainfall, due 
to which simulated discharges were also highly underestimated. PERSIANN and PERSIANN-CCS show 
over 40% underestimation of the streamflow. However, the R2 and NSE values are fairly good, indicating 
that the tendency of variation is well replicated. Figure 7b shows a comparison after bias correction. We 
found peak discharge was increased to some extent but was still underestimated. PBIAS improved from over 
−40% to about −10%. NSE and R2 were also enhanced by a noticeable amount. The bias-corrected products 
show a good agreement between observed and simulated peaks. However, due to false alarms before a peak 
rain, there was a double peak nature of the hydrograph, and the false alarms are pronounced after the bias 

correction. It suggests using a temporally dynamic bias correction on a 
sub-daily to daily scale rather than using a static CF based on an event.

Figures 8a and 8b show a comparison for IMERG (Early, Late, and Fi-
nal) and TMPA. They delivered superior results than PERSIANN and 
PERSIANN-CCS. They show NSE values over 0.65. However, all three 
IMERG products and TMPA provide an overestimation. All three IM-
ERG products offer an R2 value over 0.74, whereas TMPA shows R2 to 
be approximately 0.7. The double peak was still visible, but it was com-
paratively lesser in IMERG Final. By looking into simulation results and 
performance metrics, IMERG Final proved better in hydrograph nature 
even though it showed an overestimation (PBIAS = 26%). Similarly, look-
ing at the magnitude of peak value, IMERG Late and TMPA performed 
better. However, they still possessed significant false alarms before peak 
rainfall events.

Figures 9a and 9b show a comparison plot between observed and simu-
lated discharge from the gauge and gauge gaps filled using the informa-
tion of IMERG (Early, Late, and Final) and TMPA. NSE and R2 values 
improved to over 0.85, and PBIAS is in the range of 5% deviation. We find 
the simulations were better than gauge rainfall, indicating that SREs are 
important to fill data gaps of gauge rainfall. And at the complete wash 
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Figure 5. Comparisons of gauge data based on manual observations: (a) 24 h aggregated hourly precipitation, and (b) 
manually observed daily precipitation over the study area for the selected period.

Figure 6. Sample of correction of satellite-based rainfall estimates 
(Precipitation Estimation from Remotely Sensed Information using 
Artificial Neural Networks [PERSIANN] and Precipitation Estimation 
from Remotely Sensed Information using Artificial Neural Networks-
Cloud Classification System [PERSIANN-CCS]) with respect to gauge 
data using correction factor on event basis for station three during August 
10–19, 2014. PERSIANN_BC and PERSIANN-CCS_BC expressed using 
dotted lines show bias-corrected data.
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away of the hydrometeorological monitoring system (though not desired), SREs play a vital role in under-
standing the hydrologic response of the catchment.

Overall, our results reveal the prospective of SREs’ application for the hydrologic analysis. Based on the 
presented results, we recommend using IMERG products for the numerical simulation of extreme precip-
itation. However, this study is based on a single event and does not draw a general conclusion. Therefore, 
further research is necessary to evaluate the performance of SREs. Furthermore, gauge data are always val-
uable information. Thus, the number of automatic rainfall gauges should be increased, and these stations 
should be taken care of with proper continuity and regular maintenance. This study uses a stage-discharge 
relationship developed based on limited streamflow measurements. In general, qualified hydrologists only 
measure about 10–15 measurements in a year during low, mid, and high flows (Talchabhadel, Aryal, Ka-
waike, Yamanoi, & Nakagawa,  2021). Since the streamflow measurement during the extreme instances 
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Figure 7. Comparisons of observed (black dotted) and simulated discharges (solid) based on gauge rainfall (blue) and different satellite-based rainfall estimates 
in different cases: (a) Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Precipitation Estimation 
from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS), and (b) PERSIANN and PERSIANN-CCS 
after bias correction. Basin averaged rainfall for various data sources is shown by inverter bars.

Figure 8. Same as Figure 7 but for (a) Integrated Multi-satellitE Retrievals for GPM (IMERG) Early and Late versions, (b) IMERG Final and Tropical Multi-
satellite Precipitation Analysis.



Earth and Space Science

is challenging, extreme hourly streamflow has uncertainty. However, for a mean daily discharge, these 
stage-discharge relations have a good application. We need special measuring techniques to measure the 
streamflow during such extreme instances. In addition, the introduction of an X-band radar is quite de-
manding for a precise understanding of the dynamics of heavy precipitation events and numerical simu-
lation of catchment response on such extreme precipitation events. Because, X-band radar has very short 
wavelengths (2.5–4 cm), the product has a high spatiotemporal resolution (for instance, 250 m and 1 min). 
However, the observation range is limited to less than 100 km (Talchabhadel, Ghimire, et al., 2021).

4. Conclusions and Recommendation
This study evaluates six SRE products’ performance in capturing an extreme precipitation event using de-
tection and magnitude-based indices and hydrologic simulation. We find that IMERG (Early, Late, and 
Final versions) and TMPA showed a better result than PERSIANN and PERSIANN-CCS in capturing the 
magnitude of extreme precipitation. Furthermore, for the selected study period in the WRR basin, this 
study finds that the IMERG Late version showed a better result than others. Importantly, all SREs replicate 
the general tendency of precipitation patterns. However, they all possess equally false alarms. These false 
alarms are critical in operational flood forecasting and early warning dissemination.

This study faced two major challenges related to the rainfall data. One is data gaps of gauge rainfall, and 
another is biases contaminated with SREs. By comparing gauge and SREs on an hourly scale, this study 
corrected poor-performed SREs. Since PERSIANN showed a significant underestimation, we applied bias 
correction and got improved results. At the same time, we also filled the data gaps in ground-based obser-
vations using well-performed SREs (IMERG Early, Late, and Final versions and TMPA) and found more 
agreeable results than gauges only. For a precise replication of the local rainfall scenario and likely river 
response, we recommend the inclusion of bias correction of SREs on a daily or sub-daily basis. At the same 
time, the performance of gauge data should be checked properly by comparing it with other data sources. 
Therefore, we aim to incorporate a dynamic bias correction of SREs in the coming days.

Data Availability Statement
Gauge hydrometeorological data are available in DHM and can be purchased. Space-borne rainfall esti-
mates are freely available on their websites, respectively. Data used in the study will be provided on request.
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Figure 9. Same as Figure 7 but for (a) Gauge data filled using Integrated Multi-satellitE Retrievals for GPM (IMERG) Early and Late versions, and (b) Gauge 
data filled using IMERG Final and Tropical Multi-satellite Precipitation Analysis.
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