
Titre:
Title:

Multimodal Autoencoder Predicts fNIRS Resting State From EEG 
Signals

Auteurs:
Authors:

Parikshat Sirpal, Rafat Damseh, Ke Peng, Dang Khoa Nguyen et 
Frédéric Lesage

Date: 2021

Type: Article de revue / Journal article

Référence:
Citation:

Sirpal, P., Damseh, R., Peng, K., Nguyen, D. K. & Lesage, F. (2021). Multimodal 
Autoencoder Predicts fNIRS Resting State From EEG 
Signals. Neuroinformatics, 2021. doi:10.1007/s12021-021-09538-3

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: https://publications.polymtl.ca/9262/

Version: Version officielle de l'éditeur / Published version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: CC BY

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title: Neuroinformatics (vol. 2021)

Maison d’édition:
Publisher: Springer Nature

URL officiel:
Official URL: https://doi.org/10.1007/s12021-021-09538-3

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, 
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

https://doi.org/10.1007/s12021-021-09538-3
https://publications.polymtl.ca/9262/
https://doi.org/10.1007/s12021-021-09538-3
http://publications.polymtl.ca/


Vol.:(0123456789)1 3

Neuroinformatics 
https://doi.org/10.1007/s12021-021-09538-3

ORIGINAL ARTICLE

Multimodal Autoencoder Predicts fNIRS Resting State From EEG 
Signals

Parikshat Sirpal1,2  · Rafat Damseh1 · Ke Peng2 · Dang Khoa Nguyen2 · Frédéric Lesage1,3

Accepted: 27 July 2021 
© The Author(s) 2021

Abstract
In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and 
functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and 
convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural 
network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra 
and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with 
the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional 
connectivity validates similar patterns between experimental fNIRS and our model’s fNIRS reconstructions. This is the 
first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting 
human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific 
hypotheses about how EEG frequency bands decode fNIRS signals.

Keywords EEG-fNIRS · Functional brain imaging · Deep neural networks · Epilepsy · Resting state · Functional 
connectivity · Neurovascular coupling

Introduction

Functional near infrared spectroscopy (fNIRS) is a non-
invasive, mobile, and cost-effective neuroimaging tech-
nology that uses near infrared light to continually monitor 
changes in cerebral hemodynamic parameters (i.e., oxygen-
ated (HbO) and deoxygenated hemoglobin (HbR), and total 
hemoglobin (HbT)) (Jobsis, 1977). The fNIRS method relies 
on the neurovascular coupling phenomenon which describes 
the intimate spatial and temporal relationship between neu-
ral activity and cerebral blood flow to map acute functional 
changes in the brain (Girouard & Iadecola, 2006). In a typi-
cal fNIRS setup, optodes corresponding to near-infrared 
light sources and their complimentary detectors are placed 

on the surface of the subject’s head. Infrared light emitted 
from the light source is absorbed or scattered as it enters 
cerebral tissue. Detected light is used to calculate the blood 
oxygenation changes associated with cerebral hemodynamic 
activity using the modified Beer-Lambert law (Kocsis et al., 
2006; Scholkmann et al., 2014). Concentration changes in 
the oxygenation of hemoglobin quantifies the absorption of 
infrared light by the brain.

The fNIRS method offers several advantages as an alter-
native or complement to other functional imaging techniques 
(i.e., fMRI) (Strangman et al., 2002). fNIRS offers increased 
temporal resolution as compared to fMRI, and fNIRS hard-
ware can be integrated with other modalities such as scalp 
electroencephalography (EEG) (Fazli et al., 2012; Khan & 
Hong, 2017; Miller, 2012). fNIRS signals have been recently 
used in studying brain state decoding as well as proven use-
ful for brain computer interfacing over the last decade (Hong 
et al., 2015; Khan & Hong, 2015).

Scalp EEG technology is the clinical gold standard for stud-
ying the human brain (Müller-Putz, 2020) and EEG recordings 
can be classified into specific frequency bands: alpha, beta, 
delta, gamma, and theta (Cho et al., 2014; Freeman et al., 2003; 
Pedregosa et al., 2011; Zhao et al., 2018). The delta frequency 
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range encompasses low frequencies with relatively high ampli-
tude and slow waveforms ranging from 0.25–3.0 Hz. Delta 
frequencies are common in normal sleep and may inciden-
tally appear with focal lesions, metabolic encephalopathy, or 
hydrocephalus (Amzica & Steriade, 1998; Hofle et al., 1997; 
Knyazev, 2012). The theta band includes frequencies between 
4 and 7 Hz. While normal in young individuals, the theta fre-
quency envelope is interpreted as slow activity in awake adults 
(Mantini et al., 2007; Pizzo et al., 2016; Sitnikova et al., 2016). 
As with delta waves, theta waves may be seen in focal lesions 
or in a more generalized distribution in diffuse neurological 
disorders. Alpha frequencies are between 8 and 13 Hz, rep-
resenting the dominant rhythm in awake adults (Koch et al., 
2008; Sigala et al., 2014). Beta activity ranges in frequency 
between 14–30 Hz and is usually observed in a bilaterally fron-
tal symmetrical distribution (Canolty et al., 2006; Freeman 
et al., 2003; Merker, 2016). Higher frequency ranges represent 
gamma wave oscillations between 30–100 Hz. Gamma activ-
ity is seen during a wide range of activities, and is enhanced 
in rapid eye movement during sleep (Gross & Gotman, 1999; 
Hughes, 2008).

Multimodal EEG-fNIRS experimental setups record the 
spatiotemporal dynamics of brain activity, provide opportu-
nities to observe the population dynamics of neural ensem-
bles and offer increased benefit in fundamental and clinical 
analyses (Goldman et al., 2002; Laufs et al., 2003; Martinez-
Montes et al., 2004; McKenna et al., 1994; Salek-Haddadi 
et al., 2003). In such setups, scalp EEG measures the brain’s  
electrical activity, and fNIRS signals encode the brain’s 
hemodynamic response (Chiarelli et al., 2017; Ogawa et al., 
1992), with a delay of approximately 3 seconds post neural  
activity. Data from EEG-fNIRS setups have established causality  
between neuronal firing and changes in HbO, HbR, and HbT, 
reflecting electrical and hemodynamic fluctuations dictated 
by neurovascular coupling (Hughes, 2008; Logothetis et al., 
2001; Mukamel et al., 2005; Singh, 2012). Recent interest has 
focused on determining spatial hemodynamic correlates from 
EEG recorded activity, particularly, in the blood oxygen level 
dependent signal (BOLD) (Czisch et al., 2004; Lemieux et al., 
2001; Lövblad et al., 1999). Resting state studies have suc-
cessfully demonstrated that low frequency EEG band signals 
are negatively correlated with modulations in the BOLD sig-
nal, particularly, infra-low gamma EEG band envelopes (Jia 
& Kohn, 2011; Niessing et al., 2005; Sumiyoshi et al., 2012).

The characterization of the relationship between electro-
physiology and cerebral hemodynamics is clinically relevant 
in epilepsy. Seizures are self-terminating paroxysmal rep-
resentations of aberrant brain activity (Moshé et al., 2015). 
It is believed that the neurovascular machinery causing 
seizures is similarly present in the brain interictally during 
normal function, suggesting to some extent that epilepsy 
is a dynamic disorder (Kobayashi et al., 2006; Richardson, 
2012). The resting epileptic brain displays spontaneous 

neural activity believed to reflect its functional organization 
(Rojas et al., 2018; Tracy & Doucet, 2015). The interde-
pendence of each component (i.e., neural and vascular) is a 
topic of interest to the wider clinical and neuroscience com-
munity. fMRI studies have shown that resting state networks 
in the epileptic brain undergo changes in their functional 
architecture (Luo et al., 2011; Wang et al., 2011). Increas-
ingly, “task-free” resting state conditions in fMRI studies 
have been conducted with the assumption that functionally 
connected brain networks show similar profiles of activity 
over time (De Luca et al., 2006; He & Liu, 2008; Niu & He, 
2014; Palva et al., 2010; Richardson, 2012; Shen, 2015).

In the context of epilepsy, resting state fMRI studies have 
shown that functional networks are abnormal (Bettus et al., 
2009; Honda et al., 2021; Tracy & Doucet, 2015; Zhang et al., 
2009, 2010a, b). Pre-clinical studies have proposed that there 
is a correlation between slow fluctuations in the resting state 
BOLD signal (~0.1 Hz) and slow fluctuations in neuronal fir-
ing rates in gamma band local field potentials (Richardson, 
2012; Shmuel & Leopold, 2008; Zhang et al., 2020). This 
suggests that the resting state is related to physiologically 
active dynamic neuronal processes. Utilizing fNIRS signals 
for resting state functional connectivity has gained attention 
as a promising imaging tool to study brain function and pro-
vide valuable insight into the intrinsic networks present within 
the human epileptic brain (Fishburn et al., 2014; Geng et al., 
2017; Niu & He, 2014; Wang et al., 2017).

In this study, we hypothesize that we can predict brain 
hemodynamics from electrical signals using a deep learn-
ing architecture from resting state multimodal EEG-fNIRS 
recordings collected from a cohort of 40 epileptic patients. 
Following which, we hypothesize that functional connectivity 
patterns derived from higher EEG frequency envelopes are 
increased as compared to lower EEG frequency envelopes.

Methods

Subjects and Protocol

Forty patients (27 males, 13 females; ranging in age of 11 
to 62 years in age; mean age of 32.42 years, and standard 
deviation of 13.97 years) with refractory focal epilepsy were 
recruited for prolonged EEG-fNIRS recordings. Epilepsy 
diagnosis and epileptic focus localization was based on a 
comprehensive evaluation which included clinical history, 
video-EEG recording of interictal spikes and seizures, mag-
netic resonance imaging (MRI), positron emission tomogra-
phy (PET) and for some patients ictal single photon emission 
computed tomography (SPECT) and magnetoencephalog-
raphy (MEG) scans. Full details regarding patient profiles 
including age, gender, EEG and MRI findings are found in 
Table 1 of (Peng et al., 2014; Sirpal et al., 2019). A subset 
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of patients had MRI evidence of encephalomalacia, cortical 
dysplasia, and/or hippocampal atrophy, a common finding in 
epilepsy, but this was neither an inclusion nor exclusion cri-
terion. The presence of such findings (Dhamija et al., 2011; 
Woermann & Vollmar, 2009) is a common MRI finding in 
epileptic brains. The institutional review boards of Sainte-
Justine Hospital and Centre Hospitalier de l’Université de 
Montréal approved the study.

EEG-fNIRS Data Acquisition and Pre-Processing

Continuous EEG-fNIRS recordings were performed at the 
Optical Imaging Laboratory of Sainte-Justine Hospital in  
Montréal, Canada. Experimental protocol ensured ambient 

noise and lights were maintained at a minimum for patient com-
fort during data acquisition. Patients were further instructed  
to remain calm and placed in comfortable, climate-controlled 
ambulatory suites with curtains drawn to limit ambient light. 
Patients were continually telemonitored by trained clinical 
staff. fNIRS data was collected using the Imagent Tissue  
Oximeter system (ISS Inc.), a multi-channel frequency  
domain system recording at 19.5 Hz with wavelengths of 
690 nm and 830 nm for sensitivity to HbR and HbO respec-
tively. EEG data was recorded according to the standard  
10–20 system using 21 electrodes (in positions Fp1, Fp2,  
F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4,  
P8, O1, O2) at 500 Hz (Neuroscan Synamps 2TM system). 
Custom-made helmets, taking into consideration different 

Table 1  Detailed overview of the proposed convolutional neural net-
work long-short term autoencoder (CNN-LSTM AE) model. The 
network receives as input resting state EEG time-series sequences, 
represented as a single matrix, and is trained to reconstruct the corre-
sponding fNIRS resting state output. Model specifications and hyper-
parameters were heuristically determined. Convolutions and deconvo-

lutions have kernels of size (1,2), and thus their effect is along the 
time dimension. Convolutions help in generating embeddings with 
higher level abstraction of the input EEG sequence. Deconvolutions 
reconstruct the fNIRS sequence at full resolution based on output 
embeddings. The decoder and encoder LSTM units have ReLU (Rec-
tified linear units) activations

Layer Description Output size

Input EEG sample sequence (EEG sequence length,
number of time points is 500,
number of EEG channels is 21)

EEG Sequence Embedding

 2-Dimensional convolution + Average Pooling + 
 Dropout

2Dconvolution ∶ stride = (1,2);

kernelsize = (1,7);

ReLUactivation.

Dropout ∶ 20%.

AveragePoolingkernel ∶ (1,2)

(EEG sequence length,
125, number of Features Maps)

 2-Dimensional convolution + Average Pooling + 
 Dropout

2Dconvolution ∶ stride = (1,2);

kernelsize = (1,7);

ReLUactivation.

Dropout ∶ 20%.

AveragePoolingkernel ∶ (1,2)

(EEG sequence length,
62, number of Features Maps)

 Reshape Reshape into an elongated tensor (EEG sequence length,
62 * number of Features Maps)

Encoder

 LSTM 1 + Dropout An LSTM layer with number of cells equal to the number of 
EEG sequence length. ReLU activation. Dropout: 20%

(EEG sequence length, 512)

 LSTM 2 + Dropout An LSTM layer with number of cells equal to the number of 
EEG sequence length. ReLU activation. Dropout: 20%

(1, 256)

Decoder

 Repeat Create repeated version of the latent vector (fNIRS sequence length, 256)

 LSTM 3 + Dropout An LSTM layer with number of cells equal to the number of 
EEG sequence length. ReLU activation. Dropout: 20%

(fNIRS sequence length, 312)

 LSTM 4 + Dropout An LSTM layer with number of cells equal to the number of 
EEG sequence length. ReLU activation. Dropout: 20%

(fNIRS sequence length, 695)

fNIRS Sequence Reconstruction

 Reshape Reshape into a 2D tensor (fNIRS sequence length, 5,
number of Feature Maps 3)

 Deconvolution1 + Dropout 2Ddeconvolution ∶ stride = (1,2);ReLUactivation;

kernelsize = (1,2).Dropout ∶ 20%.

(fNIRS sequence length, 10,
number of Feature Maps 4)

 Deconvolution2 + Dropout 2Ddeconvolution ∶ stride = (1,2);ReLUactivation;

kernelsize = (1,2).Dropout ∶ 20%.

(fNIRS sequence length, 20,
number of fNIRS channels)
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head sizes and shapes were made to fit comfortably. Plastic 
and polyvinyl chloride manufacturing materials made them 
rigid and light. The helmets were equipped with a total of 
64 light sources, 16 light detectors and 19 EEG electrodes 
that allowed for stable optical coupling between cortical 
regions and the scalp. This further prevented inter-optode 
shifting and movement artifacts to a large extent. Sensitiv-
ity of near-infrared light to cortical tissue was maintained 
by positioning the optodes approximately 3–4  cm apart. 
Electrodes were placed following the 10–20 EEG instru-
mentation standard, allowing for full head coverage (Barlow 
et al., 1974). Figure 1 shows the EEG-fNIRS helmet placed  
on a patient’s head.

EEG data was bandpass filtered between 0.1–100 Hz 
to remove instrumental noise and to remove drift related 
to physiological activity, particularly, higher frequencies. 
The unprocessed raw time series of the HbO and HbR 
signals was bandpass filtered to remove specific frequency 
components attributed to cardiac (approximately 1 Hz) 
and/or respiratory activity (approximately 0.2–0.3 Hz) 
(Gramfort et al., 2014; Lu et al., 2010; Peng et al., 2014). 
Signal fidelity was examined prior to analysis by channel-
wise verification of signal intensity. Bandpass filtering 
was applied to EEG data to compute frequency bands of 
interest. We used a FIR bandpass filter and the lowcut and 
highcut values (Hz) for the delta, theta, alpha, beta, and 
gamma frequencies were set as: [1, 4], [4, 8], [8, 12], [12, 
30], [30, 100] respectively (Gramfort et al., 2014). The 

signal to noise ratio (SNR) threshold applied in channel 
analysis was defined as those channels less than 30% of the 
mean SNR of all channels. fNIRS channels deemed to have 
SNR were eliminated and not included for analysis. This 
led to an average of 138 channels per patient. Changes in 
HbO and HbR were calculated via the HomER and MNE 
software packages (Gramfort et al., 2014; Huppert et al., 
2009).

Multiple consecutive recordings were performed, with 
each recording approximately 15 min led to a compendium  
of 200 recordings totaling 50 hours of recording time. Data was  
bandpass filtered in the 0.01 to 0.1 Hz frequency range to 
be in the resting state range (Tong et al., 2012). The resting 
state period (indexed from patients when they were resting 
comfortably) ranged between 7 to 10 minutes with a mean of 
8.35 minutes (Geng et al., 2017; Li et al., 2015; Zhang et al., 
2010a, b). To correct for motion, we performed dimension 
reduction via principal component analysis on EEG-fNIRS 
data and removed components with the most variance. Fur-
ther, artifact rejection with (10% variation from normalized 
intensity) was applied to remove additional motion artifacts. 
Artifact-free data points were then filtered for the effects of  
respiratory and cardiac signal with a cutoff frequency of 
0.2 Hz. Finally, HbO concentrations were calculated for each 
channel using the modified Beer–Lambert law.

Structural MRI registration of optode and electrode posi-
tion was done using neuro-navigation (Brainsight, Rogue-
Research Inc.). Channel positions were cross-referenced 

Fig. 1  EEG and fNIRS channel-configuration and custom-made mul-
timodal EEG-fNIRS helmets used for EEG and fNIRS data acquisi-
tion. Helmets of different sizes and shapes to fit patients’ head com-
fortably were made from plastic and polyvinyl chloride making them 
rigid and light. The EEG-fNIRS configuration allows for full head 
coverage and follows the 10–20 EEG placement system. The fNIRS 

channel configuration, as well as the EEG (which are in blue dots), 
are superimposed on the patient’s MRI. We used a 3D camera and 
stereotaxic system (Frameless 39 from Rogue research) to determine 
the 3-D coordinates of the optodes relative to the patient’s anatomical 
MRI
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with the patient MRI and adapted to ensure coverage of the 
epileptic focus, the contralateral homologous region, and as 
much area as possible of other brain regions. The MRI was 
segmented into six different layers: air, scalp, skull, CSF, 
gray matter and white matter. The gray matter layer was 
used to extract six two-dimensional cortical projections. The 
three-dimensional position of each channel was projected 
onto these two-dimensional topographic maps, of which the 
following views were considered: dorsal, frontal, left and 
right views.

Neural Network Architecture

We built a deep sequence-to-sequence multimodal autoen-
coder to predict fNIRS signals from input scalp EEG signals. 
Autoencoders are powerful machine learning models trained 
in a self-supervised fashion to reconstruct inputs by learning 
their abstract representations (Kocsis et al., 2006; Lindauer 
et al., 2010; Socher et al., 2011; Vincent et al., 2010). The 
autoencoder embedded signals in a low dimensional latent 
space, where both the encoder and decoder are formulated 
as deep neural networks.

Recurrent neural networks (RNN) have been widely used 
in time series modeling since they account for the tem-
poral state within data (Baytas et al., 2017; Chung et al., 
2016; Merity et al., 2018; Mikolov et al., 2010). The output 
depends on hidden states and feedback connections present 
within hidden units. Previous states can be used as inputs, 
thereby allowing RNNs to hold memory. In our model, we 
used backpropagation through time, a common gradient 
descent type training technique (Sutskever et al., 2014). The 
innate problem of RNN gradient based training is that deriv-
atives propagated via recurrent connections either become 
exceedingly small or large (Goodfellow et al., 2016; Luong 
et al., 2015), causing a vanishing or exploding gradient 
respectively. Long short-term memory units (LSTM), a vari-
ant of the vanilla RNN architecture overcomes the vanishing 
gradient problem (Greff et al., 2017; Gregor et al., 2015; 
Lecun et al., 2015). LSTM units receive external inputs and 
generate hidden outputs via input, output, and forget gates 
and a memory cell. The gates and memory cell are internally 
connected with weighted links. The gates are connected with 
external sources, which are current state sequential inputs 
and previous hidden states. This prevents the LSTM from 
storing useless or noisy input information (Greff et al., 2017; 
Gregor et al., 2015; Lecun et al., 2015).

The LSTM autoencoder model (LSTM-AE) as proposed 
by Srivastava et al. consists of encoder LSTM units and 
decoder LSTM units (Srivastava et al., 2015). The encoder 
LSTM receives input sequences and encodes them into a 
feature vector as the LSTM generates hidden outputs (Lipton 
et al., 2016; Wang et al., 2016). Likewise, the decoder LSTM 

receives the feature vector and decodes it into the original 
input sequences. LSTM-AEs learn a compressed represen-
tation of sequential data and have been used in video, text, 
audio, and time series sequence data (Lipton et al., 2016; 
Srivastava et al., 2015; Wang et al., 2016). In this work, 
multiple LSTM layers were incorporated to learn tempo-
ral representations. Our model also includes convolutional 
layers to extract high level spatial percepts from channel 
combinations. We input EEG sequential data accounting 
for hemodynamic delays to perform sequence-to-sequence 
encoding (Luong et al., 2015; Truong et al., 2018; Vincent 
et al., 2008; Zhang, 2018). These input EEG sequences are 
convolved by two convolutional neural networks (CNN) and 
subsequently fed into the first two encoding long short-term 
memory (LSTM) modules. EEG data samples are projected 
in the latent space with fixed length vectors that provide 
more compressed representations, which are then used to 
decode and reconstruct the output fNIRS data, by the LSTM 
decoding modules.

After testing multiple architectures with exhaustive 
hyper-parameter optimization, we designed our model as 
follows: The encoder is comprised of LSTM layers preceded 
by convolutional blocks. Convolutions in each block have a 
kernel size of (1, 7) and stride size of (1, 2). The decoder 
is comprised of LSTM layers which manipulate the vec-
tors in the latent space to provide a final output dimension 
equal to that of an fNIRS sample. We evaluated our model 
in terms of cross-modal reconstruction error (Zhao et al., 
2018), denoted as RE. The objective is to simultaneously 
minimize the distance between fNIRS data samples and 
maximize the distance between each fNIRS and EEG data 
points (i.e., minimizing the RE is equivalent to maximizing 
the likelihood function). Once the model was trained, the 
corresponding RE was calculated on an independent testing 
subset (see below) by computing the sum of the Euclidean 
distance between xt and its corresponding reconstruction, x̂ , 
over all L dimensions, as expressed in Eq. 1 below:

Model output is denoted as |̂xt|.
EEG data is processed as follows. First, matching EEG 

and fNIRS data are parsed from our data directory, following 
which the respective data (EEG or fNIRS) is labeled accord-
ing to the resting state periods. Feature scaling is performed 
using the MinMaxScaler class (Pedregosa et al., 2011) on 
EEG input data which sets the range of values between 0 and 
1. Input signals are mean centered prior to being fed into the 
model. Then, data is fed into the convolutional layers and 
travels to the LSTM and deconvolution modules. A detailed 
schematic view of our model is shown in Fig. 2 below.

(1)∈t =

L∑
l=1

||̂xt,l − xt,l
||, t𝜖 T
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Training Details

The model was designed to use patient specific EEG signals 
as input to decode fNIRS signals. For each patient, the data 
was randomly split into training, validation, and testing sub-
sets, with a proportion of 60% training, 20% testing and 20% 
respectively. We experimented with various model depths and 
determined deep LSTMs to outperform shallow LSTMs. This 
is likely due to the larger hidden state which occurs because of 
increasing layers. Complete training details are given below.

• We initialized the LSTM’s parameters with the uniform 
distribution between 0 and 1. This was done to counter-
act the exploding gradients problem intrinsic to LSTMs, 
thereby enforcing a hard constraint on the norm of the 
gradient by scaling it between 0 and 1. Simultaneously, 
we specified starting node values for the LSTM computa-
tions by preparing a feed dictionary which has input EEG 
data and a target label. It is important to note that the 
LSTM can learn how to map input sequences as model 
training is patient specific into a fixed dimensional vector 
representation and can learn temporal dependencies.

• Backpropagation through time was used with a learning 
rate of 0.05, batch size of 60 and 50 epochs, all of which 
were heuristically determined.

• Each fNIRS signal generated corresponds to an EEG 
sequence input. An element in the EEG sequence corre-
sponds to 1 second of recording with 500 time points (sam-
pling frequency is 500 Hz) for each EEG channel. Data  
batches were generated for sequence processing by using 
the utility class for batch generation in the Keras frame-
work. Briefly, this class uses as input a sequence of data 
points to produce batches for training and validation. 
Data points outside of the start and end indices of rest-
ing state periods (as marked in our ground truth) are not 
used in the output sequences. The final EEG data used as  
input is two dimensional, i.e., [data points, channels].

To summarize, the model was trained as follows: (a) we 
designed LSTM layers with corresponding LSTM cells (b) 
model parameters were uniformly initialized in the range 
between [0,1], (c) dropout was applied with value of 0.2, 
and average pooling was applied to reduce the probability 
of model overfitting, (d) we used backpropagation through 

Fig. 2  Multimodal EEG to fNIRS reconstruction using our patient 
specific sequence to sequence LSTM autoencoder model. Given 
EEG input data into the encoder, the model decodes and reconstructs 
fNIRS output. After data collection and resting state segment annota-
tion, data processing and model development, the data is finalized as 

a 4-D tensor with shape: (samples per batch, sequence length, time 
points, and channels). The model has encoder and decoder compart-
ments, each with 2 LSTM layers, determined heuristically. Table  1 
below provides details of the model
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time with a learning rate of 0.05, (e) we used a batch size of 
60 and 50 training epochs for each patient.

Model Validation

After training and saving our model’s weights, we validated 
the model’s intra-patient predictive capacity by using indi-
vidual EEG recordings as input to predict fNIRS signals. 
This was possible since our dataset contains multiple record-
ings from each patient. To diagnose performance, we plotted 
learning curves to ensure we did not overfit during training. 
As an illustrative example, Fig. 3 shows the learning curves 
for patients 1, 4, and 23.

Model Predictions

The model predicts signals by appending ‘output state’, and 
‘output prediction’ matrices. LSTM cells are connected recur-
rently to each other. Decoder inputs are two-dimensional 
matrices which are passed into decoder LSTM layers. fNIRS 
data is shifted one sequence ahead to hold data in LSTM 
memory and finally decoder outputs are returned due to the 
data passing through the deconvolution layers.

Functional Connectivity Validation

We chose the seed channel from a region of interest, defined 
to be a region which had adequate optode coverage con-
firmed by our source/detector montage and an acceptable  

level of signal fidelity. That is, signals that were ± 2 stand-
ard deviations of the mean and displayed low SNR (i.e., 
signal amplitude less than 30% of mean signal amplitude) 
were removed from analysis. We then computed the Pearson 
product-moment correlation coefficients between the experi-
mental fNIRS timeseries of the seed channel and the experi-
mental fNIRS timeseries of all other channels. Subsequently, 
the Pearson product-moment correlations (and corresponding 
Fisher z-scores) were computed between the experimental 
seed channel timeseries and our model’s predicted fNIRS 
timeseries for all other channels. The two sets of correla-
tion coefficients were respectively projected to an MRI head 
template based on the three dimensional coordinates of the 
corresponding channels using Atlasviewer (Aasted et al., 
2015). The connectivity value at each voxel of the cortex 
was obtained from the correlation coefficients of all channels 
with a weighted-average method using the reciprocal of the 
cube of the distance from the voxel to each fNIRS channel.

In order to quantitively evaluate and compare the results 
of our functional connectivity studies, we computed the root 
mean square error (Eq. 2) i.e., the standard deviation of the 
residuals between functional connectivity values in experi-
mental fNIRS and reconstructed fNIRS time courses derived 
from full spectrum EEG and specific EEG frequency band 
signals for all patients in our cohort.

(2)
RMSEFCC

=

√√√√√∑
i=c

(
fci − f̂c

)2

C

Fig. 3  Learning curves are generated for the training and validation 
sets. The training and validation loss decrease to a point of stability 
with a minimal gap between the two final loss values. We note that 
the validation loss decreases to a point of stability with a minimal 

gap between the two final loss values. We note that the validation loss 
decreases to a point of stability and has a small gap with the training 
loss, mean squared error (MSE)
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where “C” is the number of channels per functional con-
nectivity analysis, fci is the connectivity value of experimen-
tal fNIRS and f̂C is the connectivity value of model fNIRS 
reconstructions.

Results

This section describes the reconstruction results obtained 
using full spectrum EEG and subsequently EEG frequency 
ranges as model input. Intra-patient reconstructions are 
also presented; we explore spatial reconstruction, resting 
state predictions, and functional connectivity.

Full Spectrum EEG Performance and Feature 

Analysis

Resting state full spectrum EEG signals from all channels 
were input in the model. To decode fNIRS channels from 
encoded EEG channels, the model’s decoder layers used the 
encoder’s latent state as input as data traveled through LSTM 
units. Figure 4 below quantifies performance on selected 
individual patients with full spectrum EEG signals as input.

Figure 5 provides the group estimate of reconstruction error 
for all patients given scalp full spectrum EEG recordings.

Intra-patient Reconstructions on Separate Recording 
Sessions

Here, we report results on intra-patient fNIRS reconstruc-
tions provided EEG resting state as input. Specifically, we 
hypothesized that our model when trained with a patient’s 
single recording was able to reconstruct fNIRS signals from 
a subsequent recording. To examine our model’s predictive 
capacity and to cross-validate our model, we first trained 
our network on a patient’s single recording. Next, we used 
our trained network and aimed to reconstruct fNIRS signals 
from a subsequent recording from the same patient. The data 
was partitioned into training, testing, and validation subsets 
in a 60/20/20 manner. This was done for all data across all 
patients and recordings. Figure 6 displays the group results 
for intra-patient fNIRS signal reconstructions and Fig. 7 dis-
plays the fNIRS reconstructions for channel 5 from patient 
10 across recordings 1, 3, 4.

Spatial Variability of Reconstructions

We then explored the model’s predictions sensitivity to 
channel location on the head. The topographic robustness of 
the model suggests the predictions are reasonably invariant 

across the brain. Channel locations were chosen if they 
offered coverage of most of the brain within the constraints 
of the source/detector montage and had an acceptable level 
of signal fidelity as indicated in “EEG-fNIRS Data Acquisi-
tion and Pre-Processing” section. As an illustrative example, 
Fig. 8 shows the model’s spatial predictions for patient 10.

EEG Frequency Decomposition and Resting State 

Predictions

After model training and validation, we computed EEG fre-
quency bands, namely: delta [0.5–3 Hz], theta [4–7 Hz], alpha 
[8–13 Hz], beta [14–30 Hz], and gamma [30–100 Hz]. To 
ensure the presence of appropriate power in the frequency 
ranges, the spectral power of EEG signals was obtained using 
the Welch’s power spectral density function. Welch's method 
was preferred over other methods (i.e., standard periodogram  
spectrum estimation and Bartlett's method) as Welch’s  
method offsets a reduced frequency resolution with a reduc-
tion in signal noise in the estimated power spectra in exchange 
for reducing the frequency resolution (Welch, 1967). The 
Welch method partitions the signal into overlapping segments 
thereby mitigating the loss of edge data. The overlapped data 
segments are then windowed in the time domain. Subsequent 
computation includes the discrete Fourier transform, followed 
by averaging the periodograms leading to a final nxm array 
representing power measurements by frequency bins.

All computations (including Fourier decomposition, 
Welch’s power spectral density) were performed using the 
MNE software package (Gramfort et al., 2014). Figure 9 
shows the model’s predictions from EEG frequency ranges 
input using patient 10 (fNIRS channel 10).

We calculated decoded fNIRS reconstruction error met-
rics, as shown in Fig. 10, for each EEG frequency range 
and calculated patient wise reconstruction error. The gamma 
and beta frequency bands demonstrated the lowest error 
rates and in the lower EEG frequency ranges, we noticed 
increased fNIRS reconstruction error, possibly owing to the 
fact that our model was possibly not able to learn appropriate 
features to reconstruct fNIRS signals.

To further determine which EEG frequency band can 
reconstruct fNIRS signals with the lowest reconstruction 
error on average, we calculated band wise reconstruction 
error for all patients, as shown in Fig. 11. Following which, 
we conducted one-tailed paired t-tests to test whether there 
is a statistical difference in reconstruction error between 
any two of the five bands when compared to gamma in the 
following combinations: [delta, gamma], [theta, gamma], 
[alpha, gamma], and [beta, gamma]. Bonferroni correction 
was then applied to control the family-wise error rate to be 
less than 0.05. The gamma frequency band reconstructs 
fNIRS signals with increased fidelity on average as com-
pared to other frequency bands.
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Fig. 4  Decoded predictions of hemodynamic signals from cerebral 
electrical activity. Full spectrum EEG signals from all channels were 
used as input. fNIRS HbO reconstructions are shown from 3 patients 
in channel 10 (Channel 10’s SNR was adequate, located on the left 
temporal lobe). Black and red curves correspond to experimental 
and reconstructed fNIRS signals respectively. Data from patient 22 

reconstructed with the lowest reconstruction error, RE, while patient 
10 had the highest. The data has been mean centered and baseline is 
near zero, 250 s is shown here to illustrate seizure free, resting state 
periods. Note that the model accounts for the delay between EEG and 
fNIRS and the model fNIRS predictions are indicative of this delay
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Functional Connectivity Results

We computed functional connectivity mappings for experi-
mental fNIRS and our model’s fNIRS reconstructions. We 
compared experimental fNIRS and fNIRS reconstructions 
derived from both full spectrum EEG and the EEG gamma 
band for all patients. The root mean square error (stand-
ard deviation of the residuals) was used as an estimator of 
the error in our connectivity studies. On a group level, we 
noticed a lower error in functional connectivity analyses 
between experimental fNIRS and fNIRS reconstructions 
derived from full spectrum EEG as compared with experi-
mental fNIRS and fNIRS reconstructions derived from the 
gamma band and are shown in Fig. 12.

Figures 13, 14 show examples of the functional connec-
tivity mapping results generated using the correlations of the 
timeseries from patient 22, with the seed channel chosen as 
20. First, we used full spectrum EEG predictions as input 

for functional connectivity computations (Fig. 13), followed 
by analysis using the EEG gamma frequency band as input 
(Fig. 14).

Discussion

Deep learning models obviate cumbersome and brittle fea-
ture engineering processes replacing them with hierarchical 
feature learning. In this work, we developed a deep learning 
CNN-LSTM sequence-to-sequence autoencoder to predict 
fNIRS signals from resting state EEG signals in the epi-
leptic brain. Our model was trained using a 60/20/20 split 
for training, testing, and validation, respectively. The results 
here demonstrate that in the context of epileptic resting state 
recordings, fNIRS signals can be predicted using full spec-
trum as well as specific frequency range EEG signals to a 
certain extent. We further validated our method by recon-
structing the functional connectivity in the brain using the 
predicted fNIRS and compared it to the functional connec-
tivity using experimental fNIRS.

From a neurophysiological standpoint, the resting epi-
leptic brain is in a dynamic state and cerebral blood flow 
is in constant flux (Wang et al., 2011). Recent work has 
shown the presence of abnormal functional networks in 
the interictal state (Murta et al., 2015; Richardson, 2012). 
Thus, even with removal of systemic physiological com-
ponents underlying compensation by molecular and cel-
lular mechanisms can possibly help predict components 
of systemic physiology in addition to hemodynamic brain 
activity (Pressl et al., 2019). Our experimental findings 
can be related to known physiological phenomena being 
generated at the frequency of Mayer waves (~0.1 Hz), as 
these oscillations reflect fluctuation in cerebral arterial 
blood pressure (Nikulin et al., 2014; Schwab et al., 2009). 

Fig. 5  Full spectrum EEG to fNIRS reconstructions. The group esti-
mate of full spectrum EEG signals from all channels were used as 
input in our network architecture, to reconstruct full fNIRS signals 
from all fNIRS channels

Fig. 6  Group results for intra-
patient fNIRS reconstructions. 
The network was trained on 
a patient’s single recording. 
Next, the network reconstructed 
subsequent recordings from 
the same patient. The data was 
partitioned into training, test-
ing, and validation subsets in a 
60/20/20 manner. This was done 
for all data across all patients 
and recordings
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The presence of these oscillations persisting after filter-
ing can be partly due to the fact that they share a com-
mon spectral range with typical hemodynamic responses 
(Yücel et al., 2016). On the other hand, these oscillations 
correspond to cerebral vasomotion (i.e., extra neuronal) 
and are possibly related to blood vessel tonal oscillation 
(Aalkjær et al., 2011; Julien, 2006; Quaresima & Ferrari, 
2019; Sassaroli et al., 2012).

The exact mechanics of physiological signal presence 
within EEG signals has not been established with cer-
tainty. However, experimental results from this work sug-
gest the following: our model can capture subtle hemody-
namic dependencies within the EEG resting state signal 

and its fNIRS correlate via the neurovascular coupling 
phenomenon.

These nuanced features within the EEG signal are 
encoded and subsequently decoded by the architectural 
components of the model, particularly the convolutional 
LSTM parameters (Greff et al., 2017; Sutskever et al., 
2014). The model’s encoder and decoder and parameters 
(e.g., the activation function) may have enhanced feature 
extraction in resting state EEG data and its corresponding 
correlate in fNIRS signals. In addition, the features com-
puted by using the outputs or hidden states of the recur-
rent units and the model may extract long-term dependen-
cies (electrical and/or physiological) in resting state EEG 

Fig. 7  Intra-patient predictions of hemodynamic signals from cer-
ebral electrical activity. A full spectrum resting state EEG sin-
gle recording (patient 10 all channels) was used to train the model. 
After training, we saved the model weights and used as input a sub-
sequent recording from the same patient. fNIRS reconstructions are 

shown here from 3 such recordings. Panels “A”, “B”, and “C” show 
the respective reconstruction of channel 5 from recordings 1, 3, and 
4 (patient 10). The reconstruction error is 2.98 ×  10–2. Black and red 
curves correspond to experimental and reconstructed fNIRS signals 
respectively
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signals from the LSTM modules via the gating mechanism 
(Sutskever et al., 2014). Furthermore, when cerebral blood 
flow (CBF) varies, changes occur in both the metabolic and 
electrical activity of cortical neurons with corresponding 
EEG changes (Sassaroli et al., 2012).

Events responsible for evoking the fNIRS response can 
be divided into subthreshold synaptic and suprathreshold 
spiking activities (Curtin et al., 2019; Sharbrough et al., 
1973). Excitatory and inhibitory neurons which are often 
located within close proximity in the brain are simulta-
neously active and may contribute to the hemodynamic 
response (Franaszczuk et al., 2003). Slower EEG frequency 
envelopes (i.e., delta and theta) are generated by the thala-
mus and cortical cells in layers II-VI. Faster frequencies 
(i.e., beta and gamma) arise from cells in layers IV and V 
of the cortex (Foreman & Claassen, 2012; Merker, 2016). 
Changes in electrical potential seen in EEG recordings 
are closely tied to cerebral blood flow (CBF) and when 
normal CBF declines to approximately 25– 35 ml/100 g/
min, the EEG signal first loses faster frequencies, then as 
the CBF decreases to approximately 17–18 ml/100 g/min, 
slower frequencies gradually increase. The interdependent 

relationship between CBF and neuronal activity in the 
resting epileptic brain is theorized to be captured by the 
model used in this work. Exploring the spatial localiza-
tion of EEG frequency oscillations can help to determine 
if the presence of physiological signals is variable across 
patients and electrodes thereby possibly lending credence 
to the hypothesis that these oscillations are unlikely to be 
generated by a single source.

We show spatial decoding is possible using our model. 
Examination of the LSTM memory units and the latent 
space architecture in autoencoders can demonstrate cor-
relation between data that were previously unknown. 
Utilizing the architecture developed here to predict brain 
hemodynamics, a next step would be to understand the 
structure of the latent variable (multidimensional vec-
tor) to unpack the principal components of the fNIRS or 
EEG signal.

A second point for further investigation is to integrate 
an attention mechanism in our model. Since LSTM cells 
can lead to ambiguous memory activations, an attention 
mechanism allows for encoding input into a sequence of 
vectors and from this, we can choose a subset adaptively 

Fig. 8  fNIRS spatial reconstructions, patient 10. To illustrate our net-
work’s fNIRS reconstructions spatially, signals from multiple EEG 
channels are used as input, for which the locations are shown on 
the brain (blue circles). Reconstruction error ranges from 6.41x10−1 

(channel 11) to 7.83x10−3 (channel 62), with the mean RE being 
6.52x10−2 for all reconstructions. Black and red curves correspond to 
experimental and reconstructed fNIRS signals respectively
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during decoding. In this condition, the model no longer 
needs to utilize fixed length vectors thereby increasing 
performance metrics at the cost of computational time. 

Attention implemented in our model would enable us to 
inspect the relationship between encoded and decoded 
sequences by model weight visualization.

Fig. 9  Resting state fNIRS predictions given EEG frequency range 
input, patient 10, channel 10. We obtained predicted fNIRS recon-
structions given filtered EEG input for the following frequency bands: 
Delta: 0–3  Hz; Theta: 4–7  Hz; Alpha: 8–13  Hz; Beta: 14–30  Hz; 
Gamma: 30–100 Hz. Black and red curves correspond to experimen-

tal and reconstructed fNIRS signals respectively. We used a constant 
experimental fNIRS signal for comparison. The gamma range, which 
contains the greatest number of EEG frequencies reconstructs with 
more fidelity compared to ranges with less frequency components
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In comparison with lower frequency range EEG signals, 
results here suggest that higher frequency EEG envelopes 
reconstruct fNIRS signals with less error. Our results 
corroborate that EEG gamma band based fNIRS recon-
structions show a closer fit between the observed and pre-
dicted hemodynamic responses as opposed to other EEG 
frequency ranges (Ebisch et al., 2005; Murta et al., 2015; 
Niessing et al., 2005). This is possibly because higher fre-
quencies engage an increased number of neurons, but it is 
less apparent if this is attributed to baseline network activ-
ity or part of a pivotal functional role. Gamma rhythms 
in the brain provide an indication of engaged networks 
and have been observed in several cortical and subcorti-
cal structures. These rhythms are typically stronger for 
some stimuli as compared to others, thereby displaying 

selectivity to that of nearby neuronal activity (Jia & Kohn, 
2011; Whittingstall & Logothetis, 2009). GABA-ergic 
inhibitory interneuron activity is considered to be crucial 
to generate EEG gamma frequency activity and this may 
be increased via interactions with excitatory neurons (Jia 
& Kohn, 2011; Park et al., 2011; Ray & Maunsell, 2010). 
However, to fully interpret the impact of this activity war-
rants an investigation into the cellular mechanisms respon-
sible for their generation.

In the second part of our work, we explored functional 
connectivity in the resting state of the epileptic brain. 
We hypothesized that our network’s predictions can help 
reveal functional connections and on a group level, pre-
dicted fNIRS from full spectrum EEG have higher con-
nectivity as compared to predictions derived from the 

Fig. 10  fNIRS reconstruc-
tion error given specific 
EEG frequency ranges for 
all patients, all channels. We 
obtained predicted reconstruc-
tions given filtered EEG input 
for the following frequency 
ranges: Delta: 0–3 Hz; Theta: 
4–7 Hz; Alpha: 8–13 Hz; Beta: 
14–30 Hz; Gamma: 30–100 Hz. 
The gamma range, which 
contains the greatest number of 
EEG frequencies, reconstructs 
with more fidelity and lowest 
reconstruction error metrics 
compared to ranges with less 
frequency components

Fig. 11  Mean fNIRS recon-
struction error given specific 
EEG frequency ranges for all 
patients. The gamma range, 
which contains the greatest 
number of EEG frequencies, 
reconstructs with more fidelity 
and lowest reconstruction error 
metrics compared to other 
ranges with less frequency 
components
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EEG gamma band. Experimental resting state fNIRS data 
and predicted fNIRS data was correlated to reveal simi-
lar connections near the set seed but metrics decreased 
generally as distance increased from the seed. This can 
be due to numerous factors: 1. noise causing a decrease 
in reconstruction quality, 2. a decrease in gamma activa-
tions at the region of interest, and 3. model parameters 
unable to completely learn the nuances present within 
the signal. Furthermore, systemic artifacts from the scalp 
and skull behave as dominant noise sources in resting 
state fNIRS signals, leading to inaccurate reconstruction. 
Utilizing an EEG-fNIRS experimental setup with short 
separation channels, measuring approximately 1–2 cm 
in spatial separation between source and detector could 
lead to sufficient noise reduction and improved signal 
sensitivity (Gagnon et al., 2012; Kohno et al., 2007). We 
hypothesize that reconstruction metrics and correspond-
ing functional connectivity network measures stabilize 
with increased signal quality and resting state duration, 
thereby decreasing the disparities present between experi-
mental and predicted time series.

The resting state epileptic brain and connectivity between 
brain networks is dynamic (Deco et al., 2011; McKenna 
et al., 1994). Typically, fMRI has been used for computing 
functional connectivity but there are inherent limitations 
of fMRI, particularly, slow dynamics, regional variability 

of the hemodynamic response to neuron firing and the fact 
that some patients are not able to undergo an fMRI scan 
easily (i.e., claustrophobia, paroxysmal seizure occurrence 
during scanning) (Pressl et al., 2019; Richardson, 2012). By 
showing the possibility of obtaining brain hemodynamic 
data from neural signals, the results here add an additional 
dimension for understanding the epileptic human brain, aid 
in clinical decision making, and provide a complementary 
measure to fMRI, particularly in locations where access to 
fMRI technology is scarce or not possible.

Scalp EEG technology remains the clinical gold standard 
for the noninvasive assessment of electrical brain activity 
(Dash et al., 2017). Using EEG signals in conjunction with 
predicted brain hemodynamics can possibly improve clini-
cal management and ultimately patient outcomes (Connolly 
et al., 2015; Helbok & Claassen, 2013). Multimodal EEG-
fNIRS analysis using deep learning frameworks, as the one 
presented in this work, can improve our understanding of 
cerebral neurovascular coupling and pathophysiology. The 
results from this work can be abstracted for applications 
to other neurological and neuropsychiatric pathologies, 
such as stroke, spinal cord injuries, traumatic brain inju-
ries, Alzheimer’s disease, attention-deficit hyperactivity 
disorder, post-traumatic stress disorder, and dementia to 
name a few (Fair et al., 2013; Phillips et al., 2018; Siegel 
et al., 2016). Furthermore, hemodynamic predictions from 

Fig. 12  Estimator error (RMSE) for functional connectivity results 
for all patients. Error for connectivity analyses between experimen-
tal fNIRS and predictions using full spectrum and gamma band EEG 

signal input. The connectivity derived from the full spectrum EEG 
time series consistently has lower error compared to the connectivity 
derived from the gamma band



 Neuroinformatics

1 3

electrical brain signals can be useful in treatment strategies 
utilizing neurofeedback (i.e., neuroprosthetics, transcranial 
direct current stimulation) as well as towards developing 
precision medicine strategies (DeBettencourt et al., 2015; 
Dutta et al., 2015; Kotliar et al., 2017; Nicholson et al., 
2016; Ros et al., 2014; Sitaram et al., 2017; Thair et al., 
2017). Predicting hemodynamics from EEG increases clin-
ical diagnostic specificity, allowing differentiation between 
pathological conditions that may appear similar but require 

different treatments (Citerio et al., 2015; Le Roux, 2013). 
Currently, therapeutic strategies follow a ‘reactive’ model: 
corrective actions are triggered by abnormal values in sin-
gle parameters (i.e., EEG signals) and a stepwise approach 
is used with increasing therapeutic intensity. Comprehen-
sive signals (i.e., EEG and predicted hemodynamics) can 
shift this paradigm towards a ‘goal-directed’ management 
strategy (Le Roux, 2013; Maas et al., 2012; Schmidt & De 
Georgia, 2014).

Fig. 13  Functional connectivity results between experimental fNIRS 
and predicted resting state fNIRS using full frequency spectrum EEG 
as input for patient 22. We employed seed based functional con-
nectivity analysis to obtain a surface brain map that describes brain 
functional connectivity correlation patterns. The seed region of inter-
est (dark circle) is shown and full spectrum EEG was used as input 
into the model. Bilateral brain correlations using experimental fNIRS 

(A, C) and predicted resting state fNIRS (B, D) are shown. A and 
B display the right side of the brain, C and D display the left side 
of the brain. The connectivity profiles are seen to be similar between 
the maps generated using the experimental fNIRS results and the pre-
dictions of the model. A RMSE value of 0.07 corresponds to fNIRS 
signal reconstruction from experimental fNIRS and predicted fNIRS 
from full frequency spectrum EEG as model input
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Conclusion

We designed and implemented a deep learning model to 
predict resting state hemodynamics given specific resting 
state scalp EEG frequencies from a cohort of epileptic 
patients. The robust multidimensional dataset used here 
allowed us to investigate the relationship between brain 
hemodynamics and neural signals via neurovascular cou-
pling. Using a deep learning architecture, we performed 
a thorough analysis of each EEG frequency range and its 
complementary fNIRS prediction; further we analyzed 
functional connectivity between brain regions using fre-
quency range predictions. We noted that higher EEG fre-
quency bands provided hemodynamic predictions with 
the highest metrics.

Information Sharing Statement

Sharing the data used in this study is bound by the ethics 
of the institutional review boards of Sainte-Justine Hospital 
and Centre Hospitalier de l’Université de Montréal which 
approved the study. The custom code used in this study is 
available upon reasonable request.

Acknowledgements This project was generously supported by The 
Natural Sciences and Engineering Research Council of Canada grant 
NSERC: NSERC, 239876-and Canadian Institutes of Health Research 
grant 87183.

Declarations 

Conflict of Interest The authors have no relevant financial interests in 
this article and no potential conflicts of interest to disclose.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 

Fig. 14  Functional connectivity results between experimental fNIRS 
and predicted fNIRS resting state using EEG gamma band as input 
for patient 22. Correlations from experimental fNIRS and predicted 
resting state fNIRS using EEG gamma band as input into our model 
are displayed. Bilateral brain correlations using experimental fNIRS 

(A, C) and predicted fNIRS (B, D) are shown. A RMSE value of 
0.15 corresponds to fNIRS signal reconstruction from experimen-
tal fNIRS and predicted fNIRS from signals derived from the EEG 
gamma band as model input
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