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Abstract
Themost important ingredient for solvingmixed-integer nonlinear programs (MINLPs)
to global ε-optimality with spatial branch and bound is a tight, computationally
tractable relaxation.Due to both theoretical and practical considerations, relaxations of
MINLPs are usually required to be convex. Nonetheless, current optimization solvers
can often successfully handle a moderate presence of nonconvexities, which opens
the door for the use of potentially tighter nonconvex relaxations. In this work, we
exploit this fact and make use of a nonconvex relaxation obtained via aggregation of
constraints: a surrogate relaxation. These relaxations were actively studied for linear
integer programs in the 70s and 80s, but they have been scarcely considered since. We
revisit these relaxations in anMINLP setting and show the computational benefits and
challenges they can have. Additionally, we study a generalization of such relaxation
that allows for multiple aggregations simultaneously and present the first algorithm
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that is capable of computing the best set of aggregations. We propose a multitude of
computational enhancements for improving its practical performance and evaluate the
algorithm’s ability to generate strong dual bounds through extensive computational
experiments.

Keywords Surrogate relaxation · MINLP · Nonconvex optimization

Mathematics Subject Classification 90-08 · 90C27 · 90C26

1 Introduction

We consider a mixed-integer nonlinear program (MINLP) of the form

min
x∈X

{
cTx | gi (x) ≤ 0 for all i ∈ M

}
, (1)

where X := {x ∈ R
n−p × Z

p | Ax ≤ b} is a compact mixed-integer linear set,
each gi : Rn → R is a factorable continuous function [41], and M := {1, . . . ,m}
denotes the index set of nonlinear constraints. Such a problem is called nonconvex
if at least one gi is nonconvex, and convex otherwise. Many real-world applications
are inherently nonlinear, and can be formulated as a MINLP. See, e.g., [28] for an
overview.

The state-of-the-art algorithm for solving nonconvex MINLPs to global ε-
optimality is spatial branch and bound, see, e.g., [30,51,52], whose performance
highly depends on the tightness of the relaxations used. Those relaxations are typ-
ically convex, and are iteratively refined by branching, cutting planes, and variable
bound tightening, e.g., feasibility- and optimality-based bound tightening [8,50].

As a result of the rapid progress during the last decades, current solvers can often
handle a moderate presence of nonconvex constraints efficiently. This progress opens
the door for practical use of potentially tighter nonconvex relaxations in MINLP
solvers. One example are MILP relaxations, see [11,43,68]. In this paper, we go one
step further and explore a nonconvex relaxation referred to as surrogate relaxation [21].

Definition 1 (Surrogate relaxation) For a given λ ∈ R
m+, we call the following opti-

mization problem a surrogate relaxation of (1)

S(λ) := min
x∈X

⎧
⎨
⎩cTx |

∑
i∈M

λi gi (x) ≤ 0

⎫
⎬
⎭ . (2)

Let F ⊆ R
n be the feasible region of the original problem (1), and let Sλ ⊆ R

n

be the feasible region of a surrogate relaxation given in (2). Throughout the whole
paper we assume that F is not empty. Clearly, F ⊆ Sλ holds for every λ ∈ R

m+,
and as such (2) provides a valid lower bound of (1). Moreover, solving (2) might be
computationally more convenient than solving the original problem (1), since there is
only one nonconvex constraint in S(λ). Note that one may turn Sλ into a continuous
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relaxation of (1) by removing the integrality restrictions. However, in this work we
purposely choose to retain integrality in the relaxation and compare directly to the
optimal value of (1) as opposed to its continuous relaxation.

The quality of the bound provided by S(λ)may be highly dependent on the value of
λ, and therefore it is natural to consider the surrogate dual problem in order to obtain
the tightest surrogate relaxation.

Definition 2 (Surrogate dual). The following optimization problem is the surrogate
dual of (1):

sup
λ∈Rm+

S(λ). (3)

The function S is only lower semi-continuous [27], thus, there might be no λ such that
S(λ) is equal to (3). The surrogate dual is closely related to thewell-knownLagrangian
dual maxλ∈Rm+L(λ), where

L(λ) := min
x∈X

⎧⎨
⎩cTx +

∑
i∈M

λi gi (x)

⎫⎬
⎭ , (4)

but always results in a bound that is at least as good [27,35], i.e.,

S(λ) ≥ L(λ) for all λ ∈ R
m+. (5)

Figure 1 shows the difference between S(λ) and L(λ) on the two-dimensional
instance of Example 1 below. In contrast to L : R

m+ → R, which is a continuous
and concave function, S : Rm+ → R is only quasi-concave [27] and is, in general,
discontinuous. As shown in Fig. 1, the main difficulty in optimizing S(λ) is that the
function is most of the time “flat”, and leads to nontrivial dual bounds for only a small
subset of the λ-space.

Example 1 Consider the following nonconvex problem

min − y

s.t. g1(x, y) := 2xy + x2 − y2 − x ≤ 0,

g2(x, y) := −xy − 0.3x2 − 0.2y2 − 0.5x + 1.5y ≤ 0,

(x, y) ∈ [0, 1]2,

which attains its optimal value −0.37 at (x∗, y∗) ≈ (0.52, 0.37). The surrogate dual
is

sup
(λ1,λ2)∈R2+

⎧⎪⎨
⎪⎩

min − y

s.t. λ1g1(x, y) + λ2g2(x, y) ≤ 0

(x, y) ∈ [0, 1]2

⎫⎪⎬
⎪⎭

,

123



B. Müller et al.

Fig. 1 Plot of the surrogate and Lagrangian relaxations values for the MINLP detailed in Example 1. For
display purposes, we plot both relaxations with respect to λ1 only. Note that since the surrogate relaxation
is invariant to scaling, we can add a normalization constraint which makes λ1 the only free parameter

and the Lagrangian dual is

max
(λ1,λ2)∈R2+

{
min − y + λ1g1(x, y) + λ2g2(x, y)

s.t. (x, y) ∈ [0, 1]2
}

.

The value of the surrogate dual is S(0.56, 0.44) ≈ −0.38, and the value of the
Lagrangian dual is L(0.67, 0.82) ≈ −0.78.Neither dual proves optimality of (x∗, y∗).

Contribution In this paper, we revisit surrogate duality in the context of mixed-
integer nonlinear programming. To the best of our knowledge, surrogate relaxations
have never been considered for solving general MINLPs. The first contribution
of the paper is an algorithm capable of solving a generalized surrogate dual that
allows for multiple aggregations of the nonlinear constraints simultaneously. We
also prove its convergence guarantees. Secondly, we present computational enhance-
ments to make the algorithm practical. Our developed algorithm allows us to
compare the performance of the classical surrogate relaxation with the general-
ized one. Finally, we provide an exhaustive computational analysis using publicly
available benchmark instances, and we show the practical utility of our proposed
approach.

Structure The rest of the paper is organized as follows. In Sect. 2, we present a
literature review of surrogate duality. Sect. 3 discusses an algorithm from the lit-
erature for solving the classic surrogate dual problem and our new computational
enhancements. In Sect. 4, we review a generalization of surrogate relaxations from
the literature. Afterward, in Sect. 5, we adapt an algorithm for the classic surro-
gate dual problem to the general case and prove its convergence. An exhaustive
computational study on publicly available benchmark instances is given in Sect. 6.
Afterward, Sect. 7 presents ideas for future work on how to include surrogate relax-
ations in the tree search of spatial branch and bound. Section 8 presents concluding
remarks.
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2 Background

Surrogate constraints were first introduced by Glover [21] in the context of zero-one
linear integer programming problems. He defined the strength of a surrogate constraint
according to the dual bound achieved by it—the same notion we use. Extensions were
provided by Balas [5] and Geoffrion [20], although under an alternative notion of
strength. Glover [22] provided a unified view on these approaches and proposed a
generalization where only a subset of constraints are used in an aggregation, leaving
the rest explicitly enforced.

A theoretical analysis of surrogate duality in a nonlinear setting was first presented
by Greenberg and Pierskalla [27]. This includes results such as quasi-concavity of the
surrogate relaxation and a comparison with the Lagrangian dual. They also proposed a
generalization usingmultipledisjoint aggregation constraints.A similar generalization
allowing multiple aggregations was later proposed by Glover [23]. These were pro-
posed without computational evaluation. Regarding the link with Lagrangian duality,
Karwan and Rardin [35] presented necessary conditions for having no gap between the
Lagrangian and surrogate duals. Constraint qualification conditions for the surrogate
dual have been exhaustively studied, see [23,49,58] and references therein.

The first algorithmic method for solving (3) is attributed to Banerjee [7]. In the
context of integer linear programming, he proposed a Benders’ approach similar to
the one considered by us in order to find the best multipliers. Karwan [34] expanded
on this approach, including a refinement of that of Banerjee and subgradient-based
methods. Independently, Dyer [17] proposed similar methods to those of Karwan.
Karwan and Rardin [35,38] further developed both Benders- and subgradient-based
approaches. Other search procedures for solving (3) involve consecutive Lagrangian
dual searches [39,53] and heuristics [19].

From a different perspective, Karwan and Rardin [37] described the interplay
between the branch-and-bound trees of an integer programming problem and its
surrogate relaxations. Later on, Sarin et al. [54] showed how to integrate their
Lagrangian-based multiplier search proposed in [53] into branch and bound.

Surrogate constraints have been used in various applications: in primal heuristics
for IPs [24], knapsack problems with a quadratic objective function [15], the job shop
problem [18], generalized assignment problems [46], among others. We refer the
reader to [3,25] for reviews on surrogate duality methods including other applications
and alternativemethods for generating surrogate constraints not based on aggregations.

To the best of our knowledge, the efforts for practical implementations of mul-
tiplier search methods have mainly focused on linear integer programs. This focus
can be explained by the maturity of computational optimization tools available dur-
ing the time where most of these implementations have been developed. We are only
aware of two exceptions: the entropy approach to nonlinear programming (see [59,67])
which uses an entropy-based surrogate reformulation instead of a weighted sum of
the constraints; and the work by Nakagawa [45], who considered separable nonlinear
integer programming and presented a novel, albeit expensive, algorithm for solving
the surrogate dual.

Regarding the generalization of the surrogate dual that considers multiple aggre-
gated constraints, we are not aware of anywork considering amultiplier searchmethod
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Fig. 2 Surrogate relaxations for the nonconvex optimization problem in Example 1. The feasible region
defined by each nonlinear constraint is blue and the set Sλ is orange (line shaded). Sλ can be nonconvex,
disconnected, convex, or reverse convex (color figure online)

with provable guarantees or a computational implementation of a heuristic approach.
We are only aware of the discussion by Karwan and Rardin [36] where they argue that
the lack of desirable structures (such as quasi-concavity) may impair some multiplier
searches for the surrogate dual generalizations proposed by Greenberg and Pierskalla
[27] and Glover [23].

3 Surrogate duality in MINLPs

While surrogate duality in its broader definition can be applied to any MINLP, to the
best of our knowledge, only mixed-integer linear programming problems have been
considered for practical applications.Much less attention has been given to the general
MINLP case, due to the potential nonconvexity of the resulting problems. Figure 2
illustrates the possible drawbacks and benefits of a nonconvex surrogate relaxation,
namely, potentially tight convex relaxations (Fig. 2c), nonconvex (Fig. 2a and 2d), and
even disconnected (Fig. 2b) feasible regions.

In this section, we investigate the trade-off between the computational effort
required to solve surrogate relaxations and the quality of the resulting bounds. We
review how to solve the surrogate dual (3) via a Benders’ algorithm (see [7,17,34])
and how to overcome some of the computational difficulties that arise. As we men-
tioned in Sect. 2, alternative algorithms for solving the surrogate dual exist. However,
we use a Benders’ approach because its extension to the generalized surrogate dual
problem (Sect. 4) is more direct. It is unclear if, e.g., subgradient-based algorithms
can be extended to work for the generalization.

3.1 Solving the surrogate dual via Benders

The Benders’ algorithm is an iterative approach that alternates between solving a
master and a sub-problem. The master problem searches for an aggregation vector
λ ∈ R

m+ and the sub-problem solves (2) to evaluate S(λ). Note that the value of an
optimal solution x̄ of S(λ), i.e., cT x̄ , is a valid dual bound for (1). To ensure that the
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Algorithm 1: Algorithm for the surrogate dual.
Input: MINLP of the form (1), threshold ε > 0
Output: optimal value D ∈ R of the surrogate dual, subject to ε-feasibility
1: initialize λ ← 0 ∈ R

m+, Ψ ← ∞,X ← ∅, D ← −∞
2: while Ψ ≥ ε do
3: x̄ ← argminx {cTx | x ∈ Sλ}
4: D ← max{D, cT x̄}
5: X ← X ∪ {x̄}
6: (λ, Ψ ) ← optimal solution of (6) forX
7: end while
8: return D

point x̄ is not considered in later iterations, i.e., x̄ /∈ Sλ′ , the Benders’ algorithm uses
themaster problem to compute a new vector λ′ ∈ R

m+ that ensures
∑

i∈M λ′
i gi (x̄) > 0.

This can be done by maximizing constraint violation. More precisely, given X the
set of previously generated points of the sub-problems, the master problem is the
following linear program:

max
Ψ ,λ

Ψ

s.t.
∑
i∈M

λi gi (x̄) ≥ Ψ for all x̄ ∈ X ,

‖λ‖1 ≤ 1,

λ ∈ R
m+. (6)

The normalization constraint ‖λ‖1 ≤ 1 can be addedwithout loss of generality, and it is
used to avoid unboundedness of (6). The resulting scheme, formalized in Algorithm 1,
terminates once the solution value of (6) is smaller than a fixed value ε ≥ 0. Note that,
with this stopping criterion, the best bound D found by the algorithm is “subject to
ε-feasibility”. This means that when the algorithm stops, it holds that

∀λ ∈ R
m+, ‖λ‖1 ≤ 1, ∃x̄ ∈ X , cT x̄ ≤ D ∧

∑
i∈M

λi gi (x̄) < ε.

If a numerical feasibility tolerance of ε is used in a solver (which is usually the case),
then for every surrogate relaxation, some x̄ ∈ X would be considered feasible and
thus prevent the dual bound from improving. The consideration of ε here is meant
mostly for accommodating these numerical tolerances.

An illustration of the algorithm for Example 1 is given in Fig. 3.

Remark 1 Instead of finding an aggregation vector that maximizes the violation of all
points in X , Dyer [17] uses an interior point for the polytope in (6). This can be
achieved by scalingΨ in each constraint of (6) depending on the values gi (x̄) for each
i ∈ M . In our experiments, however, we have observed that maximizing the violation
significantly improves the quality of the computed dual bounds.

Using the analysis in [7], Karwan [34] proved the following in the linear case.
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Fig. 3 Algorithm 1 applied to Example 1. The black point is the optimal solution to the original problem, the
dashed lines correspond to the variable bounds, the light blue regions are the feasible sets of each nonlinear
constraint, and the orange (line shaded) region is Sλ for the different values of λ ∈ R

2+ that are computed by
the algorithm. The red points are the optimal solutions at each iteration and any red point becomes blue in
the next iteration as part of the setX . The algorithm converges after seven iterations, and the best multiplier
λ∗ ≈ (0.56, 0.44) was found after five iterations (color figure online)

Theorem 1 Denote by ((λt , Ψ t ))t∈N the sequence of values obtained in Step 6 of
Algorithm 1 for ε = 0. Let OPT be the value of the surrogate dual (3). If all gi are
linear for all i ∈ M , then Algorithm 1 either

– terminates in T steps, in which case max1≤t≤T S(λt ) = OPT , or
– the sequence (S(λt ))t∈N has a sub-sequence converging to OPT .

We prove a stronger version of this theorem in Sect. 5 that also works for nonlinear
constraints. This stronger result, in particular, shows finite convergence of the algo-
rithm for ε > 0. Note that the convergence of the algorithm only relies on the solution
of an LP and a nonconvex problem S(λ), and does not make any assumption on the
nature of S(λ) besides the fact that it can be solved.

3.2 Algorithmic enhancements

In this section, we present computational enhancements that speed up Algorithm 1
and improve the quality of the dual bound that can be achieved from (3). For the sake
of completeness, we also discuss techniques that have been tested but did not improve
the quality of the computed dual bounds significantly.

3.2.1 Refined MILP relaxation

Instead of only using the initial linear constraints Ax ≤ b to define X in (1), we
exploit a linear programming (LP) relaxation of (1) that is available in LP-based
spatial branch and bound. This relaxation contains Ax ≤ b but also linear constraints
that have been derived from, e.g., integrality restrictions of variables (e.g., MIR cuts
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[48] and Gomory cuts [26]), gradient cuts [32], RLT cuts [56], SDP cuts [57], or other
valid underestimators for each gi with i ∈ M . Using a linear relaxation A′x ≤ b′
with

X ′ := {x ∈ X | A′x ≤ b′} (7)

in the definition of Sλ improves the value of (3) because a relaxed version of the
nonlinear constraint gi (x) ≤ 0 is captured in Sλ even if λi is zero.

Another way to strengthen the linear relaxation is to make use of objective cutoff
information. If there is a feasible, but not necessarily optimal, solution x∗ to (1), the
linear relaxation can be strengthened with the inequality cTx ≤ cTx∗. This inequal-
ity preserves all optimal solutions of (1) and can improve the performance when
solving (3) (for example, an objective cutoff can lead to dual reductions found by
reduced-cost strengthening).

3.2.2 Dual objective cutoff in the sub-problem

Anundesired phenomenon inAlgorithm1 is that the sequence of dual bounds provided
by cT x̄ in Step 3 might not be monotone. One way to overcome this problem is to add a
dual objective cutoff cTx ≥ D to the sub-problem S(λ), thus enforcing monotonicity
in the sequence of dual bounds. This does not change the convergence/correctness
guarantees of Algorithm 1 and it can improve the progress of the subsequent dual
bounds. Moreover, such cutoff can be used to filter the setX and thus reduce the size
of the LP (6). For example, in Fig. 3 the two last iterations could be avoided.

However, this cutoff has an unfortunate drawback: it increases degeneracy, which
affects essential components of a branch-and-bound solver, e.g., pseudocost branching
[9]. In the case of Algorithm 1, adding this cutoff significantly increases the time for
solving the sub-problem, resulting in an overall negative effect on the algorithm. We
confirmed this with extensive computational experiments and decided not to include
this feature in our final implementation.

Fortunately, we can still carry dual information through different iterations and
improve the performance of the algorithm.

3.2.3 Early stopping in the sub-problem

One important ingredient to speed upAlgorithm 1, proposed byKarwan [34] and Dyer
[17] independently, is an early stopping criterion while solving S(λ). In our setting,
problem S(λ) is the bottleneck of Algorithm 1.

Assume that Algorithm 1 proved a dual bound D in some previous iteration. It is
possible to stop the solving process of S(λ) if a point x̄ ∈ Sλ with cT x̄ ≤ D has been
found. The point x̄ both provides a new inequality for (6) violated by λ (as x̄ ∈ Sλ)
and shows S(λ) ≤ D, i.e., λ will not lead to a better dual bound. All convergence and
correctness statements regarding Theorem 1 remain valid after this modification.

Furthermore, we can apply the same idea for any choice of D. In this scenario, D
would act as a target dual bound that we want to prove. Since the Benders’ algorithm
is computationally expensive, one might require a minimum improvement in the dual
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bound. Empirically, we observed that solving S(λ) to global optimality for difficult
MINLPs requires a lot of time. However, finding a good quality solution for S(λ) is
usually fast. This allows us to early stop most of the sub-problems and only spend
time on those sub-problems that will likely result in a dual bound that is at least as
good as the target value D.

3.3 Initial empirical observations

For the implementation of Algorithm 1, we use the MINLP solver SCIP

1. to construct a linear relaxation A′x ≤ b′ for (1),
2. to find a feasible solution x∗ to (1) to be used as an objective cutoff cTx ≤ cTx∗

when solving S(λ), and
3. to use it as a black box to solve each S(λ) sub-problem.

We provide extensive details of our implementation and the results in Sect. 6, but we
would like to summarize some important observations to the reader.

Our proposed algorithmic enhancements proved to be key for obtaining a practical
algorithm for the surrogate dual, especially the use of a refined MILP relaxation. The
achieved dual bounds by only using the initial linear relaxation in Algorithm 1 were
almost always dominated by the dual bounds obtained by the refinedMILP relaxation.
Thus, utilizing the refined MILP relaxation seems mandatory for obtaining strong
surrogate relaxations. Our computational study in Sect. 6 shows that our algorithmic
enhancements of Algorithm 1 allows us to compute dual bounds that close on average
35.0% more gap (w.r.t. the best known primal bound) than the dual bounds obtained
by the refined MILP relaxations, i.e., S(0), on 469 affected instances.
While the overall impact of this “classic” surrogate duality is positive, we observed
that the dual bound deteriorates with increasing number of nonlinear constraints;
aggregating a large number of nonconvex constraints into a single constraint may not
capture the structure of the underlying MINLP. For this reason, in the next Section
we propose the use of a generalized surrogate relaxation for solving MINLPs, which
includes multiple aggregation constraints.

4 Generalized surrogate duality

In the following, we discuss a generalization of surrogate relaxations that has been
introduced by [23]. Instead of a single aggregation, it allows for K ∈ N aggregations of
the nonlinear constraints of (1). The nonnegative vector λ = (λ1, λ2, . . . , λK ) ∈ R

Km+
encodes these K aggregations

∑
i∈M

λki gi (x) ≤ 0, k ∈ {1, . . . , K }

of the nonlinear constraints. Note that, for convenience, we are denoting as λki the
component λ(k−1)m+i of the λ vector, as it can also be seen as the i-th component
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of the λk sub-vector. For a vector λ ∈ R
Km+ , the feasible region of the K -surrogate

relaxation is given by the intersection

SKλ :=
K⋂

k=1

Sλk ,

where Sλk is the feasible region of the surrogate relaxation S(λk) for λk ∈ R
m+. It

clearly follows that SKλ is a relaxation for (1). The best dual bound for (1) generated
by a K -surrogate relaxation is given by

sup
λ∈RKm+

SK (λ), (8)

which we call the K -surrogate dual. Note that scaling each λk ∈ R
m+ individually by

a positive scalar does not affect the value of SK (λ), i.e.,

SK (. . . , λk, . . .) = SK (. . . , αλk, . . .)

for any α > 0. Therefore, it is possible to impose additional normalization constraints∥∥λk
∥∥
1 ≤ 1 for each k ∈ {1, . . . , K }.

In [27], a related generalization was proposed, although not computationally tested.
The paper considers a partition of constraints which are aggregated; equivalently, the
support of sub-vectors λk are assumed to be fixed and disjoint. Glover’s generalization
[23] does not make any assumption on the structure of the λk sub-vectors. As we argue
below, this makes a significant difference for two reasons: (a) selecting the “best”
partition of constraints a-priori is a challenging task and (b) restricting the support of
sub-vectors λk to be disjoint can weaken the bound given by (8).

The function SK remains lower semi-continuous for any choice of K . The proof
idea is similar to the one given by Glover [23] for the case of K = 1.

Proposition 1 If gi is continuous for every i ∈ M and X is compact, then SK :
R

Km+ → R is lower semi-continuous for any choice of K .

Proof Let (λt )t∈N ⊆ R
Km+ a sequence that converges to λ∗. We denote the k-th sub-

vector of λt as λt,k . Denote with xt ∈ X an optimal solution of SK (λt ).
We need to show that SK (λ∗) ≤ lim inf t→∞ SK (λt ).
By definition, there exists a subsequence (λτ )τ∈N of (λt )t∈N such that SK (λτ ) →

lim inf t→∞ SK (λt ).
Since X is compact, there exists a subsequence (xl)l∈N of (xτ )τ∈N such

that liml→∞ xl = x∗. As (λl)l∈N is a subsequence of (λτ )τ∈N, we have that
liml→∞ SK (λl) = lim inf t→∞ SK (λt ). From xl ∈ SK

λl
it follows that

∑
i∈M

λ
l,k
i gi (x

l) ≤ 0
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for every k ∈ {1, . . . , K }, which is equivalent to

max
1≤k≤K

∑
i∈M

λ
l,k
i gi (x

l) ≤ 0 .

Because the gi are continuous and the maximum of continuous functions is still
continuous, it follows that

max
1≤k≤K

∑
i∈M

(λ∗)ki gi (x∗) = lim
l→∞ max

1≤k≤K

∑
i∈M

λ
l,k
i gi (x

l) ≤ 0.

Hence, x∗ is feasible but not necessarily optimal for SK (λ∗). Therefore,

SK (λ∗) ≤ cTx∗ = lim
l→∞ cTxl = lim

l→∞ SK (λl) = lim inf
t→∞ SK (λt ) .

��
One important difference to the classic surrogate dual is that SK (λ) is no longer

quasi-concave, even for the case of K = 2 and two linear constraints, as the following
example shows.

Example 2 Let K = 2 and consider the linear program

min y

s.t. 4x − 8y + 3.2 ≤ 0,

5x − y − 1.5 ≤ 0,

(x, y) ∈ [0, 1]2.

Due to the symmetry of the generalized surrogate dual, S2(λ) = S2(μ) ≈
0.30 holds for the aggregation vectors λ := ((0.7, 0.3), (0.3, 0.7)) and μ :=
((0.3, 0.7), (0.7, 0.3)). However, using the convex combination λ/2 + μ/2 we have
that S2(λ/2+μ/2) ≈ 0.19, which is smaller than S2(λ) and S2(μ) and thereby shows
that S2 is not quasi-concave.

See Fig. 4 for an illustration of the counterexample.

Since SK may not be quasi-concave, gradient descent-based algorithms for optimiz-
ing (3), as in [34], become inadequate for solving (8). Even though (8) is substantially
more difficult to solve than (3), it might be beneficial to consider larger K to obtain
tight relaxations for (1). The following proposition formalizes this. We omit its proof
as it is elementary.

Proposition 2 The inequality

sup
λ∈RKm+

SK (λ) ≤ sup
λ∈R(K+1)m

+

SK+1(λ) (9)

holds for any K ∈ N. Furthermore, sup
λ∈Rm2

+
Sm(λ) is equal to the value of (1).
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Fig. 4 A visualization of Example 2 that shows that SK is in general not quasi-concave for K > 1. The blue
line shaded region (left) is the feasible set defined by two original inequalities. The orange region (center)
depicts both S2λ and S2μ, while the green region (right) is their convex combination S2

(λ+μ)/2. The example

shows S2(λ) = S2(μ) > S2((λ + μ)/2), which proves that S2 is not quasi-concave (color figure online)

The following example shows that going from K = 1 to K = 2 can have a
tremendous impact on the quality of the surrogate relaxation:

Example 3 Consider the following NLP with four nonlinear constraints and four
unbounded variables:

min − x − y

s.t. x3 − z ≤ 0

x3 + z ≤ 0

y2 + w ≤ 0

y2 − w ≤ 0

It is easy to see that (0, 0, 0, 0) is the optimal solution.
First, we show that the classic surrogate dual is unbounded. For an aggregation

λ ∈ R
4, the sole constraint in the corresponding surrogate relaxation is

(λ1 + λ2)x
3 + (−λ1 + λ2)z + (λ3 + λ4)y

2 + (λ3 − λ4)w ≤ 0.

If either λ1 �= λ2 or λ3 �= λ4, then the relaxation is clearly unbounded, as z and
w are free variables with coefficient 0 in the objective. If λ1 = λ2 and λ3 = λ4,
the aggregation reads 2λ1x3 + 2λ3y2 ≤ 0. We split this case in two: (1) if λ1 = 0,
then (x, y, w, z) = (M, 0, 0, 0) is feasible for any M . (2) Otherwise, we can set
(x, y, w, z) = (−M, 2M, 0, 0) and 2λ1x3 + 2λ3y2 = −2λ1M3 + 8λ3M2. The last
expression is negative for large enough M .

In both cases the objective evaluates to −M . Letting M → ∞ shows unbounded-
ness.

Now consider the two aggregations λ = (λ1, λ2) with λ1 = (1/2, 1/2, 0, 0) and
λ2 = (0, 0, 1/2, 1/2). Using the 2-surrogate relaxation obtained from λ immediately
implies x ≤ 0 and y = 0, which proves optimality of (0, 0, 0, 0).

123



B. Müller et al.

5 An algorithm for the K -surrogate dual

Even though (8) yields a strong relaxation for large K , it is computationally more
challenging to solve than (3). To the best of our knowledge, there is no algorithm in
the literature known that can solve (8). Due to the missing quasi-concavity property of
SK , it is not possible to adjust each aggregation vector independently; an alternating-
type method based on the K = 1 case could provide weak bounds.

In this section, we present the first algorithm for solving (8). The idea of the algo-
rithm is the same as before: a master problem will generate an aggregation vector
(λ1, . . . , λK ) and the sub-problem will solve the K -surrogate relaxation correspond-
ing to (λ1, . . . , λK ). The only differences to Algorithm 1 are that we replace the LP
master problem by aMILPmaster problem and solve SK (λ1, . . . , λK ) instead of S(λ).

GeneralizingAlgorithm1Assume thatwehave a solution x̄ of problem SK (λ1, . . . , λK ).
In the next iteration, we need to make sure that x̄ is infeasible for at least one of the
aggregated constraints. This can be written as a disjunctive constraint

K∨
k=1

⎛
⎝ ∑

i∈M
λki gi (x̄) > 0

⎞
⎠ . (10)

As in (6), we replace the strict inequality bymaximizing the activity of
∑

i∈M λki gi (x̄)
for all k ∈ {1, . . . , K }. The master problem then reads as

max
Ψ ,λ

Ψ

s.t.
K∨

k=1

⎛
⎝ ∑

i∈M
λki gi (x̄) ≥ Ψ

⎞
⎠ for all x̄ ∈ X ,

∥∥∥λk
∥∥∥
1

≤ 1, λk ∈ R
m+ for all k ∈ {1, . . . , K }, (11)

where X is the set of generated points of the sub-problems.

Solving the master problem The disjunction in the master problem (11) is encoding
K |X | many LPs, thus an enumeration approach for tackling the disjunction is imprac-
tical. Instead, we use a, so-called, big-M formulation. This enables us to solve (11)
with moderate running times. Such MILP formulation of (11) reads

max
Ψ ,λ

Ψ

s.t.
∑
i∈M

λki gi (x̄) ≥ Ψ − M(1 − zx̄k ) for all k ∈ {1, . . . , K }, x̄ ∈ X ,

K∑
k=1

zx̄k = 1 for all x̄ ∈ X ,
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zx̄k ∈ {0, 1} for all k ∈ {1, . . . , K }, x̄ ∈ X ,∥∥∥λk
∥∥∥
1

≤ 1, λk ∈ R
m+ for all k ∈ {1, . . . , K }, (12)

where M is a large constant. A binary variable zx̄k indicates if the k-th disjunction
of (11) is used to cut off the point x̄ ∈ X . Due to the normalization

∥∥λk
∥∥
1 ≤ 1, it

is possible to bound M by maxi∈M |gi (x̄)|. Even more, since the optimal Ψ values
of (12) are non-increasing, we could use the optimal Ψprev of the previous iteration
as a bound on M . Thus, it is possible to bound M by min{maxi∈M |gi (x̄)|, Ψprev}.
Remark 2 Big-M formulations are typically not considered strong in MILPs, given
their usual weak LP relaxations. Other formulations in extended spaces can yield
better theoretical guarantees (see, e.g., [6,10,62]). The drawback of these extended
formulations is that they require to add copies of the λ variables depending on the
number of disjunctions, which in our case is rapidly increasing.

In [61], the author proposes an alternative that does not create variable copies, but
that can be costly to construct unless special structure is present.

In our case, as we discuss in Sect. 5.2.2, we do not require a tight LP relaxation
of (11) and thus we opted to use (12).

The algorithm for the K -surrogate dual problem is stated inAlgorithm 2. For details
on the exact meaning of “subject to ε-feasibility”, please see the discussion following
Algorithm1. The following example shows thatAlgorithm2 can compute significantly
better dual bounds than Algorithm 1.

Algorithm 2: Algorithm for the K -surrogate dual.
Input: MINLP of the form (1), threshold ε > 0, K ∈ N aggregations
Output: optimal value D ∈ R of the K -surrogate dual, subject to ε-feasibility
1: initialize λ ← 0 ∈ R

Km+ , Ψ ← ∞,X ← ∅, D ← −∞
2: while Ψ ≥ ε do
3: x̄ ← argminx {cTx | x ∈ SKλ }
4: D ← max{D, cT x̄}
5: X ← X ∪ {x̄}
6: (λ, Ψ ) ← optimal solution of (11) forX
7: end while
8: return D

Example 4 We briefly discuss the results of Algorithm 2 for the genpooling_lee1
instance fromMINLPLib. The instance consists of 20 nonlinear, 59 linear constraints,
9 binary, and 40 continuous variables after preprocessing. The classic surrogate dual,
i.e., K = 1, could be solved to optimality, whereas for K = 2 and K = 3 the algorithm
hit the iteration limit. Nevertheless, the dual bound −4829.6 achieved for K = 2 and
the dual bound −4864.87 for K = 3 are significantly better than the dual bound of
−5246.0 for K = 1, see Fig. 5.
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Fig. 5 Results of Algorithm 2 for the instance genpooling_lee1 for different choices of K . The first
plot shows the progress of the proved dual bound and the second plot the value of Ψ for the first 600
iterations. The blue line is the optimal solution value of the MINLP and the yellow line that of the MILP
relaxation (color figure online)

5.1 Convergence

In the following, we show that the dual bounds obtained by Algorithm 2 converge to
the optimal value of the K -surrogate dual. The idea of the proof is similar to the one
presented by [38] for the case of K = 1 and linear constraints.

Theorem 2 Denote by ((λt , Ψ t ))t∈N the sequence of values obtained after solving (11)
in Algorithm 2 for ε = 0. Let OPT be the optimal value of the K -surrogate dual (8).
The algorithm either

(a) terminates in T steps, in which case max1≤t≤T SK (λt ) = OPT , or
(b) supt≥1 S

K (λt ) = OPT .

Proof As in Proposition 1, we denote the k-th sub-vector of λt as λt,k . Let xt ∈ X be
an optimal solution obtained from solving SK (λt ) at iteration t .
(a) If the algorithm terminates after T iterations, i.e., Ψ T = 0, then for any choice
λ ∈ R

Km , there is at least one point x1, . . . , xT that is feasible for SK (λ). This implies
OPT = max1≤t≤T {cTxt }.
(b) Now assume that the algorithm does not converge in a finite number of steps, i.e.,
Ψ t > 0 for all t ≥ 1. Since (Ψ t )t∈N defines a decreasing sequence which is bounded
below by 0, it must converge to a value Ψ ∗ ≥ 0. The same holds for any subsequence
of (Ψ t )t∈N. Furthermore, the sequence (λt , xt )t∈N belongs to a compact set: indeed,∥∥λt

∥∥
1 ≤ 1 for all t ∈ N and X is assumed to be compact. Therefore, there exists

a subsequence of (Ψ t , λt , xt )t∈N that converges. With slight abuse of notation, we
denote this subsequence by (Ψ l , λl , xl)l∈N. To summarize, we have that

– liml→∞ Ψ l = Ψ ∗ ≥ 0,
– liml→∞ λl = λ∗, and
– liml→∞ xl = x∗.

for some (Ψ ∗, λ∗, x∗).
First, we show Ψ ∗ = 0. Note that xl is an optimal solution to SK (λl). This

means that xl satisfies all aggregation constraints, i.e.,
∑

i∈M λ
l,k
i gi (xl) ≤ 0 for all

k = 1, . . . , K , which is equivalent to the inequalitymax1≤k≤K
∑

i∈M λ
l,k
i gi (xl) ≤ 0.

123



On generalized surrogate duality in mixed-integer…

After solving (11), we know that Ψ l is equal to the minimum violation of the disjunc-
tion constraints for the points x1, . . . , xl−1. This implies the inequality

Ψ l = min
1≤t≤l−1

max
1≤k≤K

∑
i∈M

λ
l,k
i gi (x

t ) ≤ max
1≤k≤K

∑
i∈M

λ
l,k
i gi (x

l−1),

which uses the fact that the minimum over all points x1, . . . , xl−1 is bounded by
the value for xl−1. Both inequalities combined show that

max
1≤k≤K

∑
i∈M

λ
l,k
i gi (x

l) ≤ 0 < Ψ l ≤ max
1≤k≤K

∑
i∈M

λ
l,k
i gi (x

l−1)

for all l ≥ 0. Using the continuity of gi and the fact that the maximum of finitely
many continuous functions is continuous, we obtain

max
1≤k≤K

∑
i∈M

(λ∗)ki gi (x∗) ≤ 0 ≤ Ψ ∗ ≤ max
1≤k≤K

∑
i∈M

(λ∗)ki gi (x∗),

which shows Ψ ∗ = 0.
Next, we show that supt≥1 S

K (λt ) = OPT .
Clearly, supt≥1 S

K (λt ) ≤ OPT .
Let us now prove that supt≥1 S

K (λt ) ≥ OPT .
Take any ε > 0 and let λ̄ be such that SK (λ̄) ≥ OPT − ε. Such λ̄ always exists

by definition of OPT . Furthermore, via a re-scaling we may assume ‖λ̄k‖ ≤ 1 for all
k ∈ {1, . . . , K }.

By definition,

Ψ l ≥ min
1≤t≤l−1

max
1≤k≤K

∑
i∈M

λ̄ki gi (x
t ).

Computing the limit when l goes to infinity, we obtain

0 ≥ inf
1≤t

max
1≤k≤K

∑
i∈M

λ̄ki gi (x
t ).

Let x̄ be xt0 if the infimum is achieved at t0 or x∗ if the infimum is not achieved.
Then,

max
1≤k≤K

∑
i∈M

λ̄ki gi (x̄) ≤ 0.

This last inequality implies that x̄ is feasible for SK (λ̄).
Hence,

OPT − ε ≤ SK (λ̄) ≤ cT x̄ ≤ sup
t≥1

SK (λt ).
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Since ε > 0 is arbitrary, we conclude that supt≥1 S
K (λt ) ≥ OPT . ��

The proof of Theorem 2 shows that (Ψ t )t∈N always converges to zero. Therefore,
the proof also establishes that Algorithm 2 terminates after a finite number of steps
for any ε > 0.

5.2 Computational enhancements

Wenow discuss computational enhancements additional to those discussed in Sect. 3.2
for improving the performance of Algorithm 2. Due to the increasing complexity of
the master problemwith each iteration, solving theMILP (11) is for most instances the
bottleneck of Algorithm 2. For this reason, most of our computational enhancements
are devoted to reduce the computational effort spent in the master problem.

As in the case K = 1, we also report techniques that we did not include in our final
implementation.

5.2.1 Multiplier symmetry breaking

One difficulty of the K -surrogate dual is that (11) and (12) might contain many
equivalent solutions. For example, any permutation π of the set {1, . . . , K } implies
that the sub-problem SK (λ) with λ = (λ1, . . . , λK ) is equivalent to SK (λπ ) with
λπ = (λπ1, . . . , λπK ). This can heavily impact the solution time of the master prob-
lem. We refer to [40] for an overview of symmetry in integer programming. Ideally,
in order to break symmetry, we would like to impose λ1 �lex λ2 �lex . . . �lex λK

where �lex indicates a lexicographical order. Such order can be imposed using lin-
ear constraints with additional binary variables and big-M constraints. However, this
yields prohibitive running times. Two more efficient alternatives that only partially
break symmetries, are as follows. First, the constraints

λ11 ≥ λ21 ≥ . . . ≥ λK
1 (13)

enforce that λ1, . . . , λK are sorted with respect to the first component. The drawback
of this sorting is that if λk1 = 0 for all k ∈ {1, . . . , K }, then (13) does not break any of
the symmetry of (12). Our second idea for breaking symmetry is to use

λ
j
j ≥ λkj for all j ∈ {1, . . . , K − 1} for all k ∈ { j + 1, . . . , K }. (14)

In our experiments, we observed that slightly better dual bounds could be computed
when using (13) instead of (14). However, the overall impact was not significant, and
we decided to not include this in our final implementation.

5.2.2 Early stopping of the master problem

Solving (12) to optimality in every iteration of Algorithm 2 is computationally expen-
sive for K ≥ 2. On one hand, the true optimal value of Ψ is needed to decide whether
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the algorithm terminated. On the other hand, to ensure progress of the algorithm it is
enough to only compute a feasible point (Ψ , λ1, . . . , λK ) of (12) with Ψ > 0. We
balance these two opposing forces with the following early stopping method.

While solving (12), we have access to both a valid dual boundΨd and primal bound
Ψp such that the optimal Ψ is contained in [Ψp, Ψd ]. Note that the primal bound can
be assumed to be nonnegative as the vector of zeros is always feasible for (12). Let Ψ t

d
and Ψ t

p be the primal and dual bounds obtained from the master problem in iteration t
of Algorithm 2. We stop the master problem in iteration t + 1 as soon as Ψ t+1

p ≥ αΨ t
d

holds for a fixed α ∈ (0, 1]. The parameter α controls the trade-off between proving
a good dual bound Ψ t+1

d and saving time for solving the master problem. On the one
hand, α = 1 implies

Ψ t+1
p ≥ αΨ t

d ≥ αΨ t+1
d = Ψ t+1

d ,

which can only be true if Ψ t+1
p = Ψ t+1

d holds. This equality proves optimality of the
master problem in iteration t + 1. On the other hand, setting α close to zero means
that we would stop as soon as a non-trivial feasible solution to the master problem has
been found. In our experiments, we observed that setting α to 0.2 performs well.

5.2.3 Constraint filtering

Another potential way of alleviating the computational burden of solving the master
problem, is to reduce the set of nonlinear constraints to only those that are needed for
a good quality solution of (8). Of course, this set of constraints is unknown in advance
and challenging to compute because of the nonconvexity of the MINLP.

We tested different heuristics to preselect nonlinear constraints. We used the vio-
lation of the constraints with respect to the LP, MILP, and convex NLP relaxation of
the MINLP, as measures of “importance” of nonlinear constraints. We also used the
connectivity of nonlinear constraints in the variable-constraint graph1 for discarding
some constraints. Unfortunately, we could not identify a good filtering rule that results
in strong bounds for (8).

However, we were able to find a way of reducing the number of constraints con-
sidered in the master problem without imposing a strong a-priori filter: an adaptive
filtering, which we call support stabilization. We specify this next.

5.2.4 Support stabilization

Direct implementations of Benders-based algorithms, much like column generation
approaches, are known to suffer from convergence issues. Deriving “stabilization”
techniques that can avoid oscillations of the λ variables and tailing-off effects, among
others, are a common goal for improving performance, see, e.g., [4,16,60].

We developed a support stabilization technique to address the exponential increase
in complexity of the master problem (12) and to prevent the oscillations of the λ

1 Bipartite graph where each variable and each constraint are represented as nodes, and edges are included
when a variable appears in a constraint.
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variables. Once Algorithm 2 finds a multiplier vector that improves the overall dual
bound, we restrict the support to that of the improving dual multiplier. This restricts the
search space and drastically improves solution times. Once stalling is detected (which
corresponds to finding a local optimum of (8)), we remove the support restriction until
another multiplier vector that improves the dual bound is found. This technique not
only improves solution times, but also leads to better bounds on (8) in fewer iterations.

5.2.5 Trust-region stabilization

While the previous stabilization alleviates some of the computational burden in the
master problem, the non-zero entries of the λ vectors can (and do, in practice) vary
significantly from iteration to iteration. To remedy this, we incorporated a classic
stabilization technique: a box trust-region stabilization, see [14]. Given a reference
solution (λ̂1, . . . , λ̂k), we impose the following constraint in (12)

‖(λ1, . . . , λk) − (λ̂1, . . . , λ̂k)‖∞ ≤ δ

for some parameter δ. This prevents the λ variables from oscillating excessively. In
addition, by removing the trust-regionwhen stalling is detected,we are able to preserve
the convergence guarantees of Theorem 2. In our implementation, we maintain a fixed
(λ̂1, . . . , λ̂k) until we obtain a bound improvement or the algorithm stalls. When any
of this happens, we remove the box and compute a new (λ̂1, . . . , λ̂k)with (12) without
any stabilization added.

Remark 3 We also tested another stabilization technique inspired by column genera-
tion’s smoothing by [65] and [47]. Let λbest be the best found primal solution so far
and let λnew be the solution of the current master problem. Instead of using λnew as a
new multiplier vector, we choose a convex combination between λbest and λnew.

While this stabilization technique improved the performance of Algorithm 2 with
respect to the algorithmwith no stabilization, it performed significantly worse than the
trust-region stabilization. Therefore, we did not include it in our final implementation.

6 Computational experiments

In this section, we present a computational study of the classic and generalized surro-
gate duality on publicly available instances of the MINLPLib [42]. We conduct three
main experiments to answer the following questions:

1. ROOTGAP: How much of the root gap with respect to the MILP relaxation can be
closed by using the K -surrogate dual?

2. BENDERS: How much do the ideas of Sect. 5 improve the performance of Algo-
rithm 2?

3. DUALBOUND: Can Algorithm 2 improve on the dual bounds obtained by the
MINLP solver SCIP?

Our ideas are embedded in the MINLP solver SCIP [55]. We refer to [1,63,64] for
an overview of the general solving algorithm and MINLP features of SCIP.
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6.1 Experimental setup

In all experiments, Algorithm 2 is called after the root node has been completely
processed by SCIP. All generated and initial linear inequalities are added to Sλ.

For the ROOTGAP experiment, we run Algorithm 2 for one hour for each choice of
K ∈ {1, 2, 3}. To measure the improvement in using K + 1 instead of K , we use the
best found aggregation vector of K as an initial point for K + 1.

In the BENDERS experiment we focus on K = 3 and do not start with an initial
point for the aggregation vector. This allows us to better analyze the impact of each
proposed enhancement. We compare the following settings:

– DEFAULT: Algorithm 2 with all enhancements described in Sects. 3.2 and 5.2.
– PLAIN: Plain version of Algorithm 2 with no enhancement.
– NOSTAB: Same as DEFAULT but without using the trust-region of Sect. 5.2.5 and
support stabilization of Sect. 5.2.4.

– NOSUPP: Same as DEFAULT but without using the support stabilization.
– NOEARLY: Same as DEFAULT but without using early termination for the master
problem, described in Sect. 5.2.2.

Each of the five settings uses a time limit of one hour.
Finally, in the DUALBOUND experiment we evaluate how much the dual bounds

obtained by SCIP can be improved by Algorithm 2. First, we collect the dual bounds
for all instances that could not be solved by SCIP within three hours. Afterward, we
apply Algorithm 2 for K = 3, a time limit of three hours, and set a target dual bound
(see Sect. 3.2.3) of

D + (P − D) · 0.2,

where D is the dual bound obtained by default SCIP and P be the best known primal
bound reported in the MINLPLib. This means that we aim for a gap closed reduction
of at least 20% and early stop each sub-problem in Algorithm 2 that will provably lead
to a smaller reduction.

During all three experiments, we use a gap limit of 10−4 for each sub-problem
of Algorithm 2. Additionally, we chose a dual feasibility tolerance of 10−8 (SCIP’s
default is 10−7) and a primal feasibility tolerance of 10−7 (SCIP’s default is 10−6).

Stabilization detailsThe trust-region and support stabilization have been implemented
as follows. Both stabilization methods are applied once an improving aggregation λ∗
could be found. Each entry λi with λ∗

i = 0 is fixed to zero. Otherwise, the domain of
λi is restricted to the interval

[
max{0, λ∗

i − 0.1},min{1, λ∗
i + 0.1}] .

Once a new improving solution has been found, we update the trust region accordingly.
We remove the trust region and support stabilization in case no improving solution
could be found for 20 iterations.

Test set We used the publicly available instances of the MINLPLib [42], which at
time of the experiments contained 1683 instances. We selected the instances that were
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available in OSiL format and consisted of nonlinear expressions that could be handled
by SCIP, in total 1671 instances.
Gap closed We use the gap closed in order to compare dual bounds. Let d1 ∈ R and
d2 ∈ R be two dual bounds for (1) and p ∈ R a reference primal bound. The gap
closed improvement is measured by the function GC : R3 → [−1, 1] defined as

GC(p, d1, d2) :=

⎧⎪⎨
⎪⎩

0, if d1 = d2
+1 − p−d1

p−d2
, if d1 > d2

−1 + p−d2
p−d1

, if d1 < d2

.

Performance evaluation To evaluate algorithmic performance we use the shifted geo-
metric means, which provide a measure for relative differences. The shifted geometric
mean of values v1, . . . , vN ≥ 0 with shift s ≥ 0 is defined as

(
N∏
i=1

(vi + s)

)1/N

− s.

This measure avoids results being dominated by outliers with large absolute values,
and also avoids an over-representation of differences among very small values. See
also the discussion in [1,2,29]. As shift values we use 10 seconds for averaging over
running time and 5% for averaging over gap closed values.

Hardware and software The experiments were performed on a cluster of 64bit Intel
Xeon X5672 CPUs at 3.2GHz with 12MB cache and 48GBmain memory. In order to
safeguard against a potential mutual slowdown of parallel processes, we ran only one
job per node at a time. We used a development version of SCIP with CPLEX 12.8.0.0
as LP solver [31], the graph automorphism package bliss 0.73 [33] for detecting
MILP symmetry, the algorithmic differentiation code CppAD 20180000.0 [12] and
Ipopt 3.12.11 with Mumps 4.10.0 [44] as NLP solver [13,66].

6.2 Computational results

ROOTGAP Experiment From all instances of MINLPLib, we filter those for which
SCIP’s MILP relaxation proves optimality in the root node, no primal solution is
known, or SCIP aborted due to numerical issues in the LP solver. This leaves 633
instances for the ROOTGAP experiment.

Figure 6 visualizes the achieved gap closed values via scatter plots. The plots show
that for the majority of the instances we can close significantly more gap than the
MILP relaxation. There are 173 instances for which K = 2 closes at least 1% more
gap than K = 1, and even more gap can be closed using K = 3. There are 21
instances for which K = 1 could not close any gap, but K = 2 could close some. On
11 additional instances K = 3 could close gap, which was not possible with K = 2.
Finally, comparing K = 2 and K = 3 shows that on 105 instances K = 3 could close
at least 1% more gap than K = 2. Interestingly, for most of these instances K = 2
could already close at least 50% of the root gap.
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Fig. 6 Scatter plot comparing the root gap closed values of the ROOTGAP experiment comparing (K =
1, K = 2), (K = 1, K = 3), and (K = 2, K = 3). For example, each point (x, y) ∈ [0, 1]2 in the top
left plot corresponds to an instance for which 100x% of the gap is closed by K = 1 and 100y% closed by
K = 2

Table 1 Aggregated results for the ROOTGAP experiment

Group # instances K = 1 (%) K = 2 (%) K = 3 (%)

ALL 633 18.4 21.4 23.4

m ≥ 10 528 14.6 16.9 18.4

m ≥ 20 391 10.7 12.3 13.5

m ≥ 50 229 7.1 7.9 8.5

AFFECTED

ALL 469 35.0 42.2 46.9

m ≥ 10 370 30.1 36.0 40.1

m ≥ 20 244 26.2 31.5 35.4

m ≥ 50 115 23.9 28.0 30.8

A row m ≥ x considers all instances that have at least x many nonlinear constraints. The second part of the
table only considers instances where at least one setting closes at least 1% of the root gap

Aggregated results are reported in Table 1 and we refer to the supplementary mate-
rial for detailed instance-wise results. First, we observe an average gap reduction of
18.4% for K = 1, 21.4% for K = 2, and 23.4% for K = 3, respectively. The same
tendency is true when considering groups of instances that are defined by a bound
on the minimum number of nonlinear constraints. For example, for the 391 instances
with at least 20 nonlinear constraints after preprocessing, K = 2 and K = 3 close
1.6% and 2.8% more gap than K = 1, respectively. Table 1 also reports results when
filtering out the 164 instances for which less than 1% gap was closed by Algorithm 2.
We consider these instances unaffected. On the 469 affected instances we close on
average up to 46.9% of the gap, and we see that K = 3 closes 4.7% more gap than
K = 2 and 11.9% more than K = 1.

These results show that using surrogate relaxations has a significant impact on
reducing the root gap. Additionally, using the generalized surrogate dual for K = 2
and K = 3 reduces significantly more gap than the classic surrogate dual.
BENDERS Experiment Table 2 reports aggregated results for the BENDERS experi-
ment. We refer to the supplementary material for detailed instance-wise results.

First, we observe that the DEFAULT performs significantly better than PLAIN.
Table 2 shows that on 100 of the 457 affected instances DEFAULT closes at least 1%
more gap than PLAIN. Only on 36 instances PLAIN closes more gap, but over all
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Table 2 Aggregated results for the BENDERS experiment

Group |P| PLAIN NOSTAB NOSUPP NOEARLY
M L rgc M L rgc M L rgc M L rgc

ALL 457 100 36 86.9 40 31 98.3 41 27 98.4 94 40 88.2

m ≥ 10 346 90 29 84.1 34 27 98.7 38 24 98.5 85 33 85.4

m ≥ 20 222 72 10 77.2 25 17 98.5 32 20 98.2 65 12 79.7

m ≥ 50 107 35 1 74.2 13 7 98.9 14 12 98.4 32 2 76.3

The column “M”/“L” reports the number of instances for which DEFAULT could close at least 1%more/less
root gap than the settings of the corresponding column. Column “rgc” reports the average root gap closed
relative to our default settings (in %). Instances for which no setting could close at least 1% of the root gap
are filtered out

instances it closes on average 13.1% less gap than DEFAULT. On instances with a
larger number of nonlinear constraints, DEFAULT performs even better: on the 107
instances with at least 50 nonlinear constraints, DEFAULT computes 35 times a better
and only 1 time a worse dual bound than PLAIN. For these 107 instances, PLAIN
closes 25.8% less gap than DEFAULT. Interestingly, there are instances for which
PLAIN could not close any gap but DEFAULT could. There is no instance for which
the opposite is true.

Next, we analyze which components of Algorithm 2 are responsible for the sig-
nificantly better performance of DEFAULT compared to PLAIN. Table 2 shows that
DEFAULT dominates NOSTAB, NOSUPP, and NOEARLY with respect to the average
gap closed and the difference between the number of wins and the number of losses on
each subset of the instances. The most important component is the early termination
of the master problem. By disabling this feature, Algorithm 2 closes 11.8% less gap
on all instances and even 23.7% on those which have at least 50 nonlinear constraints.

Regarding both stabilization techniques, Table 2 seems to suggest that they are
not crucial. However, both techniques are important to exploit the λ space in a more
structured way, which help us to find better aggregation vectors faster. To visualize
this, we use the instance genpooling_lee1 from Example 4. Figure 7 shows the
achieved dual bounds in each iteration of Algorithm 2 for DEFAULT and NOSTAB.
Both settings run with an iteration limit of 600. First, we observe that the achieved
dual bound of −4775.26 with DEFAULT is significantly better than the dual bound
of −5006.95 when using NOSTAB. The best dual bound is found after 97 iterations
by DEFAULT and after 494 iterations with NOSTAB. The steepest improvement in
the dual bounds for DEFAULT is seen between iterations 62 and 112, where the
support was fixed and the trust region was enforced. After iteration 112 the algorithm
removed both stabilizers and no further dual bound improvement could be found. In
the iterations where no stabilization is used by DEFAULT, we do not observe any
pattern indicating which of the two settings finds a better dual bound—the behavior
seems rather random. This randomness, and the large time limit used, might explain
the similar results for DEFAULT and NOSTAB of Table 2.
DUALBOUND Experiment For this experiment, we include all instances which could
not be solved by SCIP with default settings within three hours, have a final gap of
at least ten percent, terminate without an error, and contain at least four nonlinear
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Fig. 7 Comparison of the achieved dual bounds and the obtained aggregation vectors during Algorithm 2
for DEFAULT (left) and NOSTAB (right) on genpooling_lee1 using K = 3. The red dashed curve
shows the best found dual bound so far, whereas the blue curve shows the computed dual bound in every
iteration (color figure online)

Table 3 Dual bounds computed by SCIP, Algorithm 2, and the best known dual bounds reported in the
MINLPLib for all polygon* and four facloc* instances

Instance best primal DB (MINLPLib) DB (SCIP) DUALBOUND

polygon25 − 0.78 − 5.80 − 4.24 − 3.94

polygon50 − 0.78 − 15.27 − 10.78 − 8.72

polygon75 − 0.78 − 24.87 − 16.82 − 13.55

polygon100 − 0.78 − 34.00 − 24.37 − 19.03

facloc1_3_95 12.30 4.46 5.50 5.70

facloc1_4_80 7.88 0.16 0.09 0.41

facloc1_4_90 10.46 0.48 0.49 1.18

facloc1_4_95 11.18 0.79 1.40 2.40

constraints. This leaves in total 209 instances for the DUALBOUND experiment. The
supplementary material reports detailed results on the subset of instances for which
the Algorithm 2 was able to improve on the bound obtained by SCIP with default
settings, which was the case for 53 of the 209 instances. On these, the average gap of
284.3% for SCIP with default settings could be reduced to an average gap of 142.8%.

Two notable subsets of instances are the challenging polygon* instances and four
of the facloc* instances. In these, Algorithm 2 finds better bounds than the reported
best known dual bounds from the MINLPLib, as shown in Table 3.

7 Surrogate duality during the tree search

While we obtain strong dual bounds with Algorithm 2, complex instances still require
branching in order to solve them to provable optimality. In this section, we show a
promising technique to incorporate Algorithm 2 into spatial branch and bound. We
discuss this technique in two instances of MINLPLib, while a full implementation is
subject of future work.
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Algorithm 3: Surrogate approximation
Input: node v, parent node p, parent aggregation candidates Cp ⊆ Λ

Output: D ∈ R valid dual bound for v, aggregation candidates Cv ⊆ Cp

1: initialize D ← SKv (0)
2: initialize Cv ← Cp
3: for λ ∈ Cv do
4: if D < SKv (λ) then
5: return (SKv (λ),Cv)

6: else
7: Cv ← Cv \ {λ}
8: end if
9: end for
10: return (D, ∅)

Fig. 8 Visualization of Algorithm 3 for the instance himmel16 of theMINLPLib. The size of the aggrega-
tion pool has been limited to three and we used bread-first-search as the node selection strategy. The colors
determine |Cv | at each node v: green for three, blue for two, orange for one, white for zero aggregations.
Red square nodes could be pruned by Algorithm 3, i.e., the proven dual bound exceeds the value of an
incumbent solution (color figure online)

Since Algorithm 2 is too costly to be used in every node of a branch-and-bound tree,
our technique focuses on extracting information of a single execution of Algorithm 2
in the root node, and reuses this information throughout the tree.

Let Λ := {λ1, . . . , λL} ⊆ R
Km be the set of aggregation vectors that have been

computed during Algorithm 2 in the root node, and that imply a tighter dual bound
than the MILP relaxation. Instead of using Algorithm 2 in a node v, we select an
aggregation vector λ from Λ and solve SKv (λ), which is equal to SK (λ) except that
the global linear relaxation is replaced with a locally valid linear relaxation for v. If
SKv (λ) results in a better dual bound than the local MILP relaxation, i.e., SKv (0), then
we skip the remaining aggregation vectors in Λ and continue with the tree search. If
the dual bound does not improve, then we discard λ in the sub-tree with root v.

The intuition behind discarding aggregations as we search down the tree is twofold.
First, since the aggregations are computed in the root node, their ability to provide
good dual bounds is expected to deteriorate with the increasing depth of an explored
node. Second, we would like to alleviate the computational load of checking for too
many aggregations as the branch-and-bound tree-size increases. The idea is stated in
Algorithm 3; the algorithm assumesCr = Λ for the root node r . In Fig. 8 we illustrate
Algorithm 3 for the instance himmel16.

In principle, Algorithm 3 can lead to stronger dual bounds in local nodes of the
branch-and-bound tree, which could result in a smaller tree. However, for the chal-
lenging instances of the DUALBOUND experiment we observed that solving SKv (λ)

is too costly and almost always runs into the time limit. In these cases, Algorithm 3
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was not able to improve the dual bound. An exception to this behavior is instance
multiplants_mtg1c2, which contains 28 nonlinear constraints, 193 continuous
variables, and 104 integer variables. SCIP with default settings proves a dual bound
of −4096.04. This bound is improved by Algorithm 2 to −3161.13, and Algorithm 3
can further improve it to−2935.58. This last bound improvement happens in the early
stages of the tree search; there were only seven nodes for which a better local dual
bound was found, and the aggregation candidates were quickly filtered out. After this,
SCIP was not able to improve the dual bound any further. In total, SCIP processed
491860 nodes.

8 Summary and future work

In this article, we studied theoretical and computational aspects of surrogate relax-
ations for MINLPs. We developed the first algorithm to solve a generalization of the
surrogate dual problem that allows multiple aggregations of nonlinear constraints. We
also proposed computational enhancements and discussed a first idea on how to exploit
surrogate duality in a spatial branch-and-bound solver.

Our extensive computational study on the heterogeneous set of publicly available
instances of theMINLPLib shows that surrogate duality can lead to significantly better
dual bounds than using SCIPwith default settings. Additionally, our experiments show
that the presented computational enhancements are important to obtain good dual
bounds for problems with a large number of nonlinear constraints. Finally, our tree
experiments show that using the result of Algorithm 2 during the tree search can lead
to significantly better dual bounds than solving MINLPs with standard spatial branch
and bound, although in this latter direction the research is still preliminary.

There are two open questions related to generalized surrogate duality we would like
to highlight. First, consider the case that each constraint of (1) is quadratic, i.e., gi (x) =
xTQi x + qTi x + bi for each i ∈ M . Adding the constraints

∑
i∈M λki Qi � 0 for all

k ∈ {1, . . . , K } to the master problem (12) enforces that each sub-problem is a convex
mixed-integer quadratically-constrained program. This increases the complexity of
the master problem but, at the same time, reduces the complexity of the sub-problems.
It would be interesting to understand this trade-off computationally. Second, it remains
an open question howapure surrogate-based spatial branch-and-bound approach could
perform in practice.Warm-start strategies based on the generated pointsX of a parent
node and branching rules based on surrogates relaxations are some examples of tools
that could be developed in order to successfully incorporate surrogate duality into
branch and bound.
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