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A B S T R A C T

An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and
accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated
segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close
or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-
sectional size and shape, and active research is being conducted by several groups around the world in this field.
Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of
various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo
sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new
opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed
independently by various research groups across the world and their performance were compared to manual
segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting
the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data
have been made publicly available and the challenge web site remains open to new submissions. No
modifications were introduced to any of the presented methods as a result of this challenge for the purposes
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of this publication.

Introduction

A large spectrum of (non)-traumatic neurological disorders have
been linked with spinal cord grey matter (GM) and white matter (WM)
tissue changes (Amukotuwa and Cook, 2015). The spinal cord is a
challenging area for magnetic resonance imaging (MRI) (Wheeler-
Kingshott et al., 2014; Stroman et al., 2014) due to the small cross-
sectional area dimension of the spinal cord, the presence of motion,
susceptibility artifacts and, in particular, the complex shape and small
area fraction of GM tissue. Recently, Yiannakas et al. (2012) demon-
strated the feasibility to distinguish between the WM and GM by
performing manual segmentation of the cervical cord using a T1-
weighted fast field echo (FFE) data acquired in a 3 T scanner with
reasonable acquisition times and an in-plane resolution of
0.5×0.5 mm2. More recently, Schlaeger et al. (2014, 2015) also
demonstrated that spinal cord GM area was the strongest correlate of
disability in multiple sclerosis using multivariate models that included
brain GM and WM volumes, fluid-attenuated inversion recovery lesion
load, T1 lesion load, spinal cord cross-sectional area (CSA), T2 lesion
load, age, sex, and disease duration.

Several semi- or fully-automated segmentation methods have been
proposed in the last decade for cervical CSA estimation (Losseff et al.,
1996; Hickman et al., 2004; Tench et al., 2005; Zivadinov et al., 2008;
Horsfield et al., 2010; McIntosh et al., 2011; Bergo et al., 2012; Chen
et al., 2013; de Leener et al., 2014, 2016; Asman and Bryan, 2014; Taso
et al., 2015; El Mendili et al., 2015). While most methods present good
performance, interpretation and comparison of results between differ-
ent methods is seldom possible due to the use of different imaging
datasets (usually in-house data), different MRI sequences, different
ways to obtain gold standard segmentations (number of raters and
consensus mask) and the use of various performance scores (2D/slice-
wise or 3D/volumetric). Recent cervical cord CSA segmentation
methods have reached a performance close to manual segmentation
(de Leener et al., 2014; Asman and Bryan, 2014; El Mendili et al.,
2015), but accurate GM segmentation remains a challenge. Moreover,
there is a lack of publicly available datasets with GM/WM contrast and
corresponding ground truth that facilitate a fair and reliable compar-
ison across methods.

A GM spinal cord segmentation challenge was organised in
conjunction by four internationally recognised spinal cord imaging
research groups (University College London, Polytechnique Montreal,
University of Zurich and Vanderbilt University) to test the different
performances of various methods, with the aim of characterizing the
state-of-the-art in the field according to a pre-defined set of assessment
criteria as well as identifying opportunities for future improvement.
Several GM spinal cord segmentation methods developed indepen-
dently by various research groups across the world were compared.
These methods were used to segment the same multi-centre and multi-
vendor dataset acquired with distinct 3D gradient-echo sequences,
which are available to the community at http://cmictig.cs.ucl.ac.uk/
niftyweb/challenge, and the obtained results were compared to the
manual segmentation performed by 4 raters.

Material

Participating teams applied their automatic or semi-automatic
segmentation algorithms to anatomical MR images of 40 healthy spinal
cords. Challenge data was composed by 80 datasets, split in 40 training
and 40 test datasets, 20 each acquired at 4 different sites (University
College London, Polytechnique Montreal, University of Zurich and
Vanderbilt University). See Table 1 for demographic data. Algorithms

were evaluated against manual segmentations from four trained raters
(one from each site who each analysed all data from all sites) in terms
of segmentation accuracy and precision using several validation
metrics.

Data

A multi-centre, multi-vendor dataset of spinal cord anatomical
images of healthy subjects was provided. Each site provided images
from 20 healthy subjects along with WM/GM manual segmentation
masks. The acquisition parameters for each site were the following:

• Site 1, University College London. Acquisition was performed using
a 3 T Philips Achieva MRI system with dual-transmit technology
enabled for all scans (Philips Healthcare, Best, Netherlands) and the
manufacturer's product 16-channel neurovascular coil. All partici-
pants were immobilised using a MRI-compatible cervical collar
(TalarMade Ltd, Chesterfield, UK). The cervical cord was imaged
in the axial-oblique plane (i.e. slices perpendicular to the long-
itudinal axis of the cord) with the center of the imaging volume
positioned at the level of C2-3 intervertebral disc. The MRI
acquisition parameters were: fat-suppressed 3D slab-selective fast
field echo (3D-FFE) with time of repetition (TR)=23 ms; time of
echo (TE)=5 ms, flip angle α=7°, field-of-view (FOV)
=240×180 mm2, voxel size=0.5×0.5×5 mm3, NEX=8, 10 axial con-
tiguous slices, scanning time 13:34 min. A 15 mm section of the
high-resolution 3D-FFE volumetric scan (i.e. 3 slices) was extracted,
with the middle slice passing through the C2/C3 intervertebral disc.

• Site 2, Polytechnique Montreal. Acquisition was performed using a
3 T Siemens TIM Trio, with the body coil used for RF transmission
and the 12 channels head coil+4 channels neck coil for RF reception.
All participants were immobilised with padding. Axial 2D spoiled
gradient echo, TR=539 ms, TE=5.41, 12.56 and 19.16 ms (averaged
off-line to create a single image with increased SNR), flip angle
α=35°, readout bandwidth (BW)=200 Hz per pixel, voxel si-
ze=0.5×0.5×5 mm3, 10 slices, matrix size of 320×320, R=2 accel-
eration along RL direction with GRAPPA reconstruction, phase
stabilization. Scanning time 4:38 min.

• Site 3, University of Zurich. Scanning was performed on a 3 T
Siemens Skyra MRI scanner (Siemens Healthcare, Erlangen,
Germany) using a 16-channel radio-frequency receive head and
neck coil and radio-frequency body transmit coil. All participants
wore an MRI-compatible neck collar (Laerdal Medicals, Stavanger,
Norway). A 3D high-resolution optimized T2*-weighted multi-echo
sequence (multiple echo data image combination; MEDIC) was
applied to acquire five high-resolution 3D volumes of the cervical
cord at C2/C3 level. Each volume consisted of twenty contiguous
slices acquired in the axial-oblique plane and was obtained with a
resolution of 0.5×0.5×2.5 mm3 within 2:08 min for each of the five
volumes. Following parameters were applied: TE=19 ms,
TR=44 ms, FOV=192×162 mm2, matrix size=384×324, flip angle

Table 1
Demographic data per site, first row: number of healthy controls per site, second row:
gender - female (F):male (M); third row: mean age in years. Std: standard deviation.

Site 1 –

UCL
Site 2 –

Montreal
Site 3 –

Zurich
Site 4 –

Vanderbilt

Subjects 20 20 20 20
Gender 14F:6M 11F:9M 6F:14M 7F:13M
Mean Age

(Std)
44.3 (10.4) 33.7 (17.4) 40.6 (10.4) 28.3 (8.2)
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α=11°, and readout bandwidth=260 Hz per pixel. After data acqui-
sition, zero-interpolation filling was used to double in-plane resolu-
tion (0.25×0.25 mm2) and the five 3D volumes were averaged in the
spatial domain to create a single image with increased SNR.

• Site 4, Vanderbilt University. Imaging was performed on a 3 T whole
body Philips scanner (Philips Achieva, Best, Netherlands). A two-
channel body coil was used in multi-transmit mode for excitation
and a 16-channel SENSE neurovascular coil was used for reception.
All participants were immobilised using foam pads around the head
between the coil and a foam neck pillow. The sequence consisted of a
multi-slice, multi-echo fast field echo (mFFE) acquired in the axial
plane with the following parameters: TR=700 ms, TE/δTE=7.2/
8.9 ms, FOV=160×160 mm2, flip angle α=28°, voxel si-
ze=0.65×0.65×5 mm3 interpolated to 0.29×0.29×5 mm3, number
of echoes=3, NSA=2, 14 axial contiguous slices, SENSE: RL=2. The
resulting scan time was 5:46 min. The centre of the imaging volume
was positioned at C3/C4 intervertebral disc.

At all sites, the imaging volume was carefully positioned to ensure
comparable results across all scans. Written informed consent was
obtained from all participants and the work was approved by the
respective institution's local research committee. Table 2 summarises
the acquisition parameters of the 4 sequences used in this study.

Image quality assessment

Image quality assessments were performed for each site at subject
level. Signal-to-noise ratio within WM and contrast-to-noise ratio
between GM and WM (Grussu et al., 2015; Yiannakas et al., 2016)
were computed as: μ σSNR = /WM WM WM and μ μ σ σCNR = | − |/ +WM GM WM GM

2 2 .

GM mask delineation

Four expert raters, one per site, working independently, manually
segmented the GM and WM masks using different software packages
following (Yiannakas et al., 2012) guidelines.

Rater 1 (MY) and rater 3 (GD), first outlined GM manually and
subsequently outlined the cord CSA in all subjects using the semi-
automated cord finder option available with JIM (v. 6.0, Xinapse
Systems, Northants, UK; http://www.xinapse.com/). GM and cord CSA
JIM masks were converted to NIFTI using the JIM masker tool. Pixels
that were at least 50% within ROIs were defined to be inside the mask.

Rater 2 (SMD) and 4 (BL) manually outlined both GM and WM
masks. Rater 2 used FSLView (Jenkinson et al., 2012) and Rater 4 used
MIPAV http://mipav.cit.nih.gov/.

Additionally, in order to assess rater performance, a consensus
segmentation of the four raters was calculated using majority voting. In
this paper, consensus is defined as voxels receiving three or more rater
votes.

Evaluation framework

An online automatic evaluation tool was made publicly available as
part of NiftyWeb (Prados et al., 2016a) at http://cmictig.cs.ucl.ac.uk/
niftyweb/. From this website, training and testing data were publicly
available for download. The training dataset contained a total of 40
volumes (18F:22M, mean age 36.33 ± 13.98 years), 10 per site, with the
WM and GM spinal cord segmentation from 4 expert raters and a text
file with the vertebral level of each slice. The testing dataset contained a
total of 40 volumes (20F:20M, mean age 37.10 ± 13.01 years), 10 per
site, and a text file with the vertebral level. Participants were required
to accept a data usage license agreement prior to downloading the data.

Teams submitted their binary tissue segmentation masks and
obtained the performance results automatically for both training or
testing datasets. The submitted segmentations were assessed using the
validation metrics described in the following section.

The evaluation website will remain open to new submissions. Gold
standard segmentations of the testing dataset will remain hidden.

Validation metrics

A number of quantitative scores were used to validate the quality of
the submitted binary segmentations. All evaluations were performed in
3D and, in order to cover the same area/volume, only the slices that
were processed by all the raters were taken into account. Manual binary
segmentation masks were considered as the ground truth (GT). For
each provided mask (PM) by the teams, each voxel was classified as:
True positive (TP), if it was a GM voxel in GT mask and it was
segmented as GM; true negative (TN), if it was a non-GM voxel in GT
mask and it was segmented as non-GM; false positive (FP), if it was a
non-GM voxel in GT mask and it was segmented as GM; and finally,
false negative (FN), if it was a GM voxel in GT mask and it was
segmented as non-GM.

The evaluation scores included three overlapping metrics:

• Dice Similarity Coefficient (DSC): a measure of the spatial overlap
between two masks (Dice, 1945).

GT PM
GT PM

DSC(GT, PM) = 2 × | ∩ |
| | + | | (1)

• Jaccard Index (JI): similarity index between two masks (Jaccard,
1912), which is related to the DSC.

JI GT PM GT PM
GT PM GT PM

( , ) = | ∩ |
| | + | | − | ∩ | (2)

• Conformity Coefficient (CC): measures the ratio between mis-
segmented voxels and correctly segmented voxels (Chang et al.,

Table 2
A summary of acquisition parameters from each site.

Site 1 – UCL Site 2 – Montreal Site 3 – Zurich Site 4 – Vanderbilt

Scanner 3 T Philips Achieva 3 T Siemens TIM Trio 3 T Siemens Skyra 3 T Philips Achieva
Sequence 3D Gradient echo 2D spoiled gradient multi-echo 3D multi-echo gradient-echo 3D multi-echo gradient-echo
TE (ms) 5 5.41, 12.56, 19.16 19 7.2, 16.1, 25
TR (ms) 23 539 44 700
Flip Angle (deg) 7 35 11 28
FOV (mm) 240×180 320×320 162×192 160×160
Resolution (mm) 0.5 × 0.5 × 5 0.5 × 0.5 × 5 0.25 × 0.25 × 2.5 0.3 × 0.3 × 5
NEX 8 1 5 2
Slices 10 (3 extracted) 10 20 14
Time (m:s) 13:34 4:38 10:40 5:46
Coil (channels) 16 12 + 4 16 16
Coil type Neurovascular Head+Neck Neurovascular Neurovascular
Acceleration – GRAPPA factor 2 – SENSE RL=2
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2009).

⎛
⎝⎜

⎞
⎠⎟CC GT PM FP FN

TP
( , ) = 1 − + × 100

(3)

if the number of TP voxels is 0, the CC is undefined.

Four distance based metrics:

• Symmetric Mean Absolute Surface Distance (MSD): the mean of the
sum of the Euclidean distance (for each voxel) between mask
contours.

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑GT PM

N N
d dMSD( , ) = 1

+
| | + | |

GT PM i

N

i
GT PM

i

N

i
PM GT

=1

→

=1

→
GT PM

(4)

where NGT and NPM are the total number of voxels in the contour
for GT and PM respectively. The distance values are obtained
through the use of a 3D Euclidean distance transform (Gerig et al.,
2001).

• Hausdorff Surface Distance (HSD): measures the maximal contour
distance between the two segmentations.

d X Y d i N( → ) = max( ), = 1 ..i
X Y

X
→ (5)

GT PM d GT PM d PM GTHSD( , ) = max( ( → ), ( → )) (6)

where d is the Euclidean distance between voxel x and y.

• Skeletonized Hausdorff Distance (SHD): measures the maximum
distance between the two skeletonized (Zhang and Suen, 1984) GM
segmentations as an indicator of maximal local error (Dupont,
2016).

• Skeletonized Median distance (SMD): measures the median distance
between the two skeletonized GM segmentations as an indicator of
global errors (Dupont, 2016).

And three statistical based metrics:

• Sensitivity or True Positive Rate (TPR): represents a methods ability
to segment GM as a proportion of all correctly labelled voxels.

TPR GT PM TP
TP FN

( , ) = 100 ×
+ (7)

TPR values ranges between 0 and 100, values close to 100 mean a
good quality segmentation, whilst low TPR values mean that the
method tends to under-segment.

• Specificity or True Negative Rate (TNR): measures the proportion of
correctly segmented background (non-GM) voxels, i.e. the ratio
between the number of correctly labeled background voxels in the

automated segmentation and the total number of background voxels
in the manual segmentation.

TNR GT PM TN
TN FP

( , ) = 100 ×
+ (8)

TNR values range between 0 and 100. Methods with a lower number
of FP voxels will have a higher TNR. Due to the small size of the GM
when compared to the total image size, TNR values are naturally very
high in this scenario.

• Precision or Positive Predictive Value, (PPV): measures the degree of
compromise between true and false positive.

PPV GT PM TP
TP FP

( , ) = 100 ×
+ (9)

PPV values range is between 0 and 100. A high PPV (close to 100)
represents optimal segmentations with a low amount or absence of
FP, while low PPV values represent over-segmented results.

Skeletonized measures were calculated using the Spinal Cord
Toolbox (de Leener, 2016) and the others using NiftySeg (niftyseg.sf.
net). MSD, HSD, SHD and SMD are presented in millimetres, with
lower scores reflecting better results. Finally, for DSC, JI, CC, TNR,
TPR and PPV, higher scores reflect better results. Table 3 summarises
the metrics used.

Statistical analysis

Each PM was compared to the equivalent GT mask of each rater.
Then, the mean and standard deviation for all the evaluation scores
were computed. Both the per rater and overall metric results were
included in a report e-mail that was sent automatically to the teams
immediately after the submission of the results.

For each metric, a two-tailed unequal variance paired t-test was
used to assess if the there were any significant differences in perfor-
mance between the best result and the others. Tests were also
performed for significant differences between each method and the
consensus of the manual segmentations in order to assess the
performance of the proposed techniques against human raters.

Results are presented using box plots where the bottom and the top
of the box plot are the 25% and the 75% percentiles, or Q1 and Q3
quartiles, respectively; the upper and lower whiskers represent: upper
whisker=min(max(y), Q3+1.5×IQR) and lower whisker=max(min(y),
Q1-1.5×IQR), where IQR stands for interquartile range that is the
difference between Q3 and Q1. Additionally, each of the obtained
results is represented as a black dot and the mean using a rhombus.

Using STATA 14, we computed a generalized linear model to assess
whether the results of any presented method and metric were biased by
sequence or age. All sequence interaction coefficients (categorical
variables) were jointly compared with an F-test to estimate between-

Table 3
A summary of the validation metrics.

Name Abbr. Range Qualitative Interpretation Quantitative Interpretation Category

Dice Similarity Coefficient DSC 0 − 1 Similarity between masks Higher values are better Overlap
Jaccard Index PPV 0 − 100 Similarity between masks Higher values are better Overlap
Conformity Coefficient CC <100 Ratio between mis-segmented and correctly segmented Higher values are better Overlap
Symmetric Mean Absolute Surface

Distance
MSD >0 Mean euclidean distance between mask contours (mean error) Smaller values are better Distance

Hausdorff Surface Distance HSD >0 Longest euclidean distance between mask contours (absolute
error)

Smaller values are better Distance

Skeletonized Hausdorff Distance SHD >0 Indicator of maximal local error Smaller values are better Distance
Skeletonized Median Distance SMD >0 Indicator of global errors Smaller values are better Distance
True Positive Rate or Sensitivity TPR 0 − 100 Low values mean that method tends to under-segment Higher values are better Statistical
True Negative Rate or Specificity TNR 0 − 100 Quality of segmented background Higher values are better Statistical
Positive Predictive Value or Precision PPV 0 − 100 Low values mean that method tends to over-segment Higher values are better Statistical

F. Prados et al. NeuroImage 152 (2017) 312–329

315

http://niftyseg.sf.net
http://niftyseg.sf.net


sequence differences. Interactions with age (continuous variable) were
obtained using an independent linear regression model without
sequence interaction.

Submission guidelines

In this challenge, the participating teams were allowed unlimited
submissions. Teams were also allowed to use other publicly available
datasets within their algorithms. Numerical input parameters were
permitted, but under the requirement that they would be kept constant
for all data sets. Output GM segmentations were provided in the same
space and resolution as the input data. There were no restrictions on
how the algorithms were implemented with regards to platform,
programming language, or software library dependencies. Algorithms
were executed solely by the competing team with the segmentation
results provided to the organizers. Output segmentations were saved in
NIFTI format with a label of 1 assigned to spinal cord GM and 0
otherwise. Methods and results were presented during the 3rd Annual
Spinal Cord MRI Workshop, held immediately following the ISMRM
annual meeting in Singapore, May 2016. If human interaction was
required to run an algorithm, teams were asked to provide a descrip-
tion of the required steps (e.g., cropping, normalization, centering, pre-
segmentation, etc.).

Methods

Eleven different users requested the data and seven institutions
initially entered the challenge. Finally, six teams submitted final results
to the challenge and presented their method during the workshop.

• Team 1 – University College London, led by FP, MJC, CWK and SO.
Method name: Joint collaboration for spinal cord grey matter
segmentation (Prados et al., 2016b), referred to as: JCSCS.

• Team 2 – University of British Columbia, led by EL, TB and RT.
Method name: Deepseg, referred to as: DEEPSEG.

• Team 3 – University of California San Francisco, led by ED, NP, RS,
AZ, JCG and RH. Method name: Morphological geodesic active
contours algorithm (Datta et al., 2016) -, referred to as: MGAC.

• Team 4– Eindhoven University of Technology and University
College London, led by SS, FG, FP and CWK. Method name: Grey
matter segmentation based on maximum entropy, referred to as:
GSBME.

• Team 5 – Polytechnique Montreal, led by SMD, BDL and JCA.
Method name: Multi-atlas based segmentation method for the
spinal cord white and grey matter (Dupont, 2016) implemented
in the Spinal Cord Toolbox (de Leener, 2016), referred to as: SCT.

• Team 6 – University of Zurich and University College London, led by
CB, PF and JA. Method name: Semisupervised VBEM (Blaiotta
et al., 2016), referred to as: VBEM.

All methods are described in the Appendix A and Table 4 presents a
summary of each method. No modifications were introduced to any of
the presented spinal cord GM segmentation methods as a result of this

challenge for the purposes of this publication.

Results

In order to assess inter-rater variability, using leave-one-out cross-
validation, the quantitative analysis results of the performance of each
rater segmentation using the testing dataset are presented in Table 5
and Fig. 1.

In addition, Table 6, Figs. 2 and 3 present the results of each
method also using the testing dataset against each rater independently.
In Figs. 2 and 3, the results are split by site, with a boxplot drawn for
each metric and site. In Fig. 2, MSD, HSD, SMD and SHD are in
millimetres but are represented using a logarithmic scale in order to
highlight the various results. Table 6 presents the obtained results per
method, with the mean (std) and p-value for each metric estimated
with respect to the best result of the same metric (marked in bold face).
Using a two-tailed unequal variance paired t-test, significant differ-
ences (p < 0.05) between a method and the best performing method
have been marked with “*”. Methods that were found to not be
statistically significantly different from the consensus of manual
segmentations are marked with script “+” (p>0.05).

For a qualitative analysis, a randomly selected slice is shown from
subject 11 of each site. Original image, consensus segmentation mask
from the four raters, the corresponding binary segmentation result for
each method and DSC value are shown (see Fig. 4).

Using the WM and GM consensus masks, we computed the mean
and standard deviation of SNRWM and CNR. Site 1 had a
SNR = 11.01 ± 1.28WM and a CNR = 0.85 ± 0.27. Site 2 had a
SNR = 9.65 ± 1.60WM and a CNR = 1.19 ± 0.15. Site 3 had a
SNR = 7.06 ± 1.72WM and a CNR = 0.66 ± 0.14. Finally, Site 4 had a

Table 4
Setup parameters and characteristics for each presented method. Note atlas size is in number of slices and that computational time per slice is an approximation, has been obtained in
different workstations and might vary depending on the resolution.

Name Init. Training Atlas size Time per slice Available

JCSCS Automatic No 820 4–5 min niftyseg.sf.net
DEEPSEG Automatic Yes (4 h) 160 <1 s Soon
MGAC Automatic No 1 1 s Soon
GSBME Manual Yes (<1 min) No 5–80 s Upon request
SCT Automatic No 447 8–10 s spinalcordtoolbox.sf.net
VBEM Automatic No No 5 s Soon

Table 5
Comparison of each rater segmentation versus the majority voting mask of all raters for
the test dataset with the mean (std) Dice similarity coefficient (DSC), mean surface
distance (MSD), Hausdorff surface distance (HSD), skeletonized Hausdorff distance
(SHD), skeletonized median distance (SMD), true positive rate (TPR), true negative rate
(TNR), positive predictive value (PPV), Jaccard index (JI) and conformity coefficient
(CC). In bold face, the best obtained result for each particular metric. The script *
represents significant differences (paired t-test with p<0.05) between the obtained result
by a rater and the best result. MSD, HSD, SHD and SMD are in millimetres and lower
values mean better, for all the other scores higher values mean better score.

Rater 1 Rater 2 Rater 3 Rater 4

DSC 0.91 (0.02)* 0.89 (0.03)* 0.90 (0.03)* 0.93 (0.03)
MSD 0.20 (0.21) 0.30 (0.31)* 0.21 (0.22) 0.14 (0.15)
HSD 1.80 (0.68)* 1.75 (0.57)* 1.53 (0.44) 1.44 (0.55)
SHD 0.71 (0.28) 1.10 (0.39)* 0.70 (0.31) 0.66 (0.30)
SMD 0.37 (0.18) 0.43 (0.21) 0.36 (0.18) 0.35 (0.17)
TPR 89.27 (3.7) 81.99 (5.39)* 84.64 (3.76)* 90.19 (4.38)
TNR 99.990 (0.02) 99.995 (0.01) 99.995 (0.01) 99.994 (0.01)
PPV 92.01 (3.48)* 96.52 (1.87) 96.04 (1.92) 95.08 (2.06)*
JI 0.83 (0.04)* 0.80 (0.05)* 0.82 (0.04)* 0.86 (0.04)
CC 78.95 (5.94)* 73.80 (8.89)* 77.45 (6.40)* 83.62 (6.21)
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SNR = 8.36 ± 1.30WM and a CNR = 0.92 ± 0.13.
The generalized linear model for assessing bias related to the type

of sequence (see Table 7) showed that DEEPSEG results are signifi-
cantly affected (p<0.05) by image quality (i.e. site) for all the metrics.
We also found that most of the distance metrics results obtained by the

methods (MSD, HSD, SHD and SMD) are influenced by the sequences
(p<0.05) due to the different resolutions. Furthermore, Table 8 shows
that age (atrophy) significantly influences the JCSCS and GBSME
algorithms when overlap metrics are considered (DSC, JI and CC).

Fig. 1. Results of the raters for the testing dataset. Boxplot, the mean value is represented by a rhombus and dots show original obtained values per mask. Each rater's results are
compared to the majority voting mask. From left to right, first row: Dice similarity coefficient (DSC), mean surface distance (MSD), Hausdorff surface distance (HSD), skeletonized
median distance (SMD) and skeletonized Hausdorff distance (SHD). Second row: true positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), Jaccard index (JI)
and conformity coefficient (CC).

Table 6
Comparison of each method segmentation versus each one of the four raters masks for the test dataset with the mean (std) Dice similarity coefficient (DSC), mean surface distance
(MSD), Hausdorff surface distance (HSD), skeletonized Hausdorff distance (SHD), skeletonized median distance (SMD), true positive rate (TPR), true negative rate (TNR), positive
predictive value (PPV), Jaccard index (JI) and conformity coefficient (CC). In bold face, the best obtained result for each particular metric. The script * represents significant differences
(paired t-test with p<0.05) between the obtained result and the best result. The script + represents non-significant differences (paired t-test with p>0.05) between the obtained result and
the consensus of the raters. MSD, HSD, SHD and SMD are in millimetres and lower values mean better, for all the other scores higher values mean better score.

JCSCS DEEPSEG MGAC GSBME SCT VBEM

DSC 0.79 (0.04) 0.80 (0.06) 0.75 (0.07)* 0.76 (0.06)* 0.69 (0.07)* 0.61 (0.13)*
MSD 0.39 (0.44) 0.46 (0.48) 0.70 (0.79)* 0.62 (0.64) 0.69 (0.76)* 1.04 (1.14)*
HSD 2.65 (3.40)+ 4.07 (3.27)* 3.56 (1.34) 4.92 (3.30)* 3.26 (1.35) 5.34 (15.35)+
SHD 1.00 (0.35) 1.26 (0.65)* 1.07 (0.37) 1.86 (0.85)* 1.12 (0.41) 2.77 (8.10)+
SMD 0.37 (0.18)+ 0.45 (0.20)*+ 0.39 (0.17)*+ 0.61 (0.35)* 0.39 (0.16)+ 0.54 (0.25)*
TPR 77.98 (4.88)* 78.89 (10.33)* 87.51 (6.65)+ 75.69 (8.08)* 70.29 (6.76)* 65.66 (14.39)*
TNR 99.98 (0.03) 99.97 (0.04) 99.94 (0.08)* 99.97 (0.05) 99.95 (0.06) 99.93 (0.09)*
PPV 81.06 (5.97) 82.78 (5.19) 65.60 (9.01)* 76.26 (7.41)* 67.87 (8.62)* 59.07 (13.69)*
JI 0.66 (0.05) 0.68 (0.08) 0.60 (0.08)* 0.61 (0.08)* 0.53 (0.08)* 0.45 (0.13)*
CC 47.17 (11.87) 49.52 (20.29) 29.36 (29.53)* 33.69 (24.23)* 6.46 (30.59)* −44.25 (90.61)*
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Fig. 2. Dice similarity coefficient (DSC), mean surface distance (MSD), Hausdorff surface distance (HSD), skeletonized Hausdorff distance (SHD), skeletonized median distance (SMD)
results of the presented methods per site using the testing dataset. Boxplot, the mean value is represented by a rhombus and dots show original obtained values per mask. MSD, HSD,
SMD and SHD are in mm and represented using a logarithmic scale.
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Fig. 3. True positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), Jaccard index (JI) and conformity coefficient (CC) results of the presented methods per site
using the testing dataset. Boxplot, the mean value is represented by a rhombus and dots show original obtained values per mask.
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Discussion

Presented algorithms were found to be able to identify and segment
GM on all datasets with an acceptable precision and shape (see Fig. 4).
It is important to highlight the fact that the small size of the spinal cord
GM makes the process of segmenting the GM algorithmically challen-

ging, as the inclusion/exclusion of one voxel can have a substantial
impact on the performance scores (see Tables 7 and 8).

Raters delineated very similar masks, however in comparison to the
majority voting-based consensus segmentation, rater 4 performs sig-
nificantly better than the remaining raters (see Table 5). Note that
significant differences in performance between raters does not neces-

Fig. 4. Binary grey matter segmentation results for the same single slice for subject 11 of each site. From top to bottom row: input image, majority voting segmentation from the 4 raters
and the segmentation methods: JCSCS, DEEPSEG, MGAC, GSBME, SCT and VBEM. Obtained 3D DSC is overlayed.
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sarily mean clinically significant differences. The statistically significant
difference between raters is mostly due to small differences in
segmentation protocol when drawing the GM. This is further corrobo-
rated by the small standard deviations of most performance scores (see
Table 5 and Fig. 1).

JCSCS was found to be a method that provides similar mask
contour and shape when compared to the ground truth, obtaining
amongst some of the best scores for MSD, HSD, SHD and SMD (see
Table 6 and Fig. 2). In terms of HSD and SMD, JCSCS was not found to
be significantly different from a consensus manual rater (p > 0.05; see
Table 6). Regarding the overlap scores between JCSCS and rater
masks, the obtained results were found not to differ significantly
(p > 0.05) from the best results (see DSC, PPV, JI and CC in
Table 6). The low TPR values obtained by JCSCS means that it tends
to marginally undersegment the GM producing more conservative
masks and consequently getting high TNR values. The lowest standard
deviation obtained by JCSCS in seven out of ten validation metrics
demonstrates its robustness and reliability across different vendors,
independent sites, various acquisition parameters and image resolu-
tion.

With the highest DSC among all presented techniques (DSC=0.8)

Table 7
Generalized linear model results for the method's performance per each metric
depending on the scanner sequence expressed as p-value (F-test between all site
coefficients in a regression model). Values with p < 0.05 (in bold face) mean that the
image quality has an statistically significant influence over the performance of this metric
and method. Dice similarity coefficient (DSC), mean surface distance (MSD), Hausdorff
surface distance (HSD), skeletonized Hausdorff distance (SHD), skeletonized median
distance (SMD), true positive rate (TPR), true negative rate (TNR), positive predictive
value (PPV), Jaccard index (JI) and conformity coefficient (CC).

JCSCS DEEPSEG MGAC GSBME SCT VBEM

DSC 0.233 <0.001 0.210 0.174 0.286 0.010
MSD <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HSD 0.270 <0.001 <0.001 <0.001 <0.001 0.295
SHD <0.001 <0.001 <0.001 <0.001 <0.001 0.345
SMD <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
TPR 0.120 <0.001 0.145 0.263 0.869 0.005
TNR <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
PPV 0.155 <0.001 0.032 0.009 0.030 0.140
JI 0.217 <0.001 0.172 0.212 0.261 0.003
CC 0.256 <0.001 0.289 0.161 0.346 0.041

Table 8
Generalized linear model results for the method's performance per each metric depending on the age of each subject expressed as regression coefficient, 95% confidence interval (CI) and
p-value. DSC, TPR, TNR, PPV, JI, CC are in years−1 and SHD, SMD, MSD, HSD are in mm years−1. Values with p < 0.05 mean that the age (atrophy) has a statistically significant
influence over the performance of this metric and method. Dice similarity coefficient (DSC), mean surface distance (MSD), Hausdorff surface distance (HSD), skeletonized Hausdorff
distance (SHD), skeletonized median distance (SMD), true positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), Jaccard index (JI) and conformity coefficient
(CC).

JCSCS DEEPSEG MGAC GSBME SCT VBEM

DSC 9 × 10 4− 0.001 −0.001 0.001 −3 × 10 4− 9 × 10 4−

CI=[1 × 10 4− to 17 × 10 4− ] CI=[−2 × 10 4− to
26 × 10 4− ]

CI=[−27 × 10 4− to
6 × 10 4− ]

CI=[−1 × 10 4− to
30 × 10 4− ]

CI=[−19 × 10 4− to
13 × 10 4− ]

CI=[−41 × 10 4− to
21 × 10 4− ]

p=0.02 p=0.11 p=0.22 p=0.03 p=0.70 p=0.54

MSD −0.002 −0.003 2 × 10 4− −0.005 −0.002 7 × 10 4−

CI=[−0.013 to 0.008] CI=[−0.014 to 0.009] CI=[−0.020 to 0.020] CI=[−0.021 to 0.011] CI=[−0.021 to 0.018] CI=[−0.028 to 0.030]
p=0.66 p=0.65 p=0.99 p=0.53 p=0.87 p=0.96

HSD −0.036 −0.022 −0.013 −0.049 −0.009 0.070
CI=[−0.121 to 0.049] CI=[−0.104 to 0.059] CI=[−0.045 to 0.018] CI=[−0.130 to 0.034] CI=[−0.040 to 0.023] CI=[−0.321 to 0.460]
p=0.40 p=0.58 p=0.40 p=0.24 p=0.58 p=0.72

SHD −0.002 −0.012 5 × 10 4− −0.021 5 × 10 4− 0.043
CI=[−0.009 to 0.005] CI=[−0.028 to 0.003] CI=[−0.008 to 0.009] CI=[−0.040 to −0.002] CI=[−0.009 to 0.010] CI=[−0.163 to 0.249]
p=0.62 p=0.12 p=0.90 p=0.03 p=0.91 p=0.67

SMD 0.001 −8 × 10 4− −7 × 10 4− −0.004 8 × 10 4− 0.003
CI=[−0.003 to 0.005] CI=[−0.006 to 0.004] CI=[−0.003 to 0.005] CI=[−0.012 to 0.004] CI=[−0.003 to 0.005] CI=[−0.003 to 0.009]
p=0.63 p=0.75 p=0.72 p=0.31 p=0.65 p=0.32

TPR 0.074 0.085 −0.097 0.102 −0.052 −0.199
CI=[−0.019 to 0.167] CI=[−0.165 to 0.335] CI=[−0.254 to 0.059] CI=[−0.084 to 0.288] CI=[−0.213 to 0.110] CI=[−0.554 to 0.155]
p=0.11 p=0.49 p=0.21 p=0.27 p=0.52 p=0.26

TNR 6 × 10 4− 7 × 10 4− 0.5 × 10 4− 8 × 10 4− −4 × 10 4− 12 × 10 4−

CI=[−2 × 10 4− to14 × 10 4− ] CI=[−3 × 10 4− to
17 × 10 4− ]

CI=[−19 × 10 4− to
20 × 10 4− ]

CI=[−2 × 10 4− to
20 × 10 4− ]

CI=[−10 × 10 4− to
19 × 10 4− ]

CI=[−9 × 10 4− to
33 × 10 4− ]

p=0.13 p=0.19 p=0.96 p=0.13 p=0.57 p=0.24

PPV 0.109 0.125 −0.099 0.221 −0.013 −0.006
CI=[−0.010 to 0.229] CI=[0.039–0.211] CI=[−0.307 to 0.108] CI=[0.068–0.373] CI=[−0.210 to 0.183] CI=[−0.344 to 0.331]
p=0.07 p=0.005 p=0.34 p=0.006 p=0.89 p=0.97

JI 0.001 0.002 −0.001 0.221 3 × 10 4− −0.001
CI=[2 × 10 4− to 24 × 10 4− ] CI=[−4 × 10 4− to

35 × 10 4− ]
CI=[−32 × 10 4− to
8 × 10 4− ]

CI=[2 × 10 4− to
37 × 10 4− ]

CI=[−22 × 10 4− to
14 × 10 4− ]

CI=[−0.004 to 0.002]

p=0.02 p=0.12 p=0.24 p=0.03 p=0.68 p=0.46

CC 0.312 0.400 −0.461 0.623 0.104 −0.447
CI=[0.049–0.574] CI=[−0.081 to 0.883] CI=[−1.170 to 0.249] CI=[0.068–1.179] CI=[−0.845 to 0.638] CI=[−2.704 to 1.810]
p=0.02 p=0.10 p=0.20 p=0.03 p=0.78 p=0.69
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DEEPSEG has shown the potential of deep learning for spinal cord
segmentation. Furthermore, the algorithm, which was originally in-
tended for brain lesion segmentation, was only slightly adjusted for the
spinal cord, lending further support to the strengths of deep learning.
The DEEPSEG algorithm performs significantly worse than the best
technique on four scores: HSD, SHD, SMD, and TPR. However, the
SMD, which quantifies global errors, was found not to be significantly
different from human raters, suggesting that DEEPSEG captures the
gold standard skeletonised structure of the GM. In some occurrences,
the DEEPSEG algorithm will fail to connect the two horns of the GM, as
seen in Fig. 4, potentially linked to the relatively low number of
training samples commonly necessary for deep learning applications.

The MGAC method scored high amongst the methods in TPR,
indicating the highest level of specificity. In addition, the MGAC
method scored amongst the highest in both SHD and SMD, demon-
strating the methods ability to determine the underlying shape of the
GM. However, MGAC did not score as highly in TNR, representing a
lower level of sensitivity. This lower sensitivity is also seen in the lower
MSD and PPV scores. These results suggest that the MGAC method is
excellent at determining the underlying shape of the GM, but may
overestimate the GM volumes compared to human raters. This over-
estimation in volume can be seen in Fig. 4. One strong advantage of the
MGAC algorithm is its ability to work on images with different
contrasts. This algorithm was developed for use on PSIR images, but
has also been shown to work well on T2*weighted images.

The GSBME method consists of three steps: preprocessing, max-
imum-entropy thresholding and outlier detection. As far as its perfor-
mance is concerned, GSBME provides consistent values of quality-of-
segmentation scores in all sites. It ranks intermediately when scores
that measure the degree of overlap between masks (i.e. DSC and JI) or
the ability of rejecting false/accepting true segmentations are consid-
ered (i.e. TNR and TPR). However, its performance worsens when
using scores that measure the physical distance between segmented
voxels, especially in their skeletonized version (i.e. SMD, SHD). While
the performance of the algorithm could be potentially improved, the
current implementation appears to suffice for the characterisation of
grey/white matter differences in future studies involving healthy
controls. From an algorithmic point of view, the current implementa-
tion includes a number of operations to standardise data from different
sites (i.e. normalisation, denoising). These could potentially be un-
necessary for single-site studies, leading to a further simplification of
the algorithm. The bottle-neck of the method is the initial detection of
the spinal cord, a semi-automatic procedure requiring manual input.
Further improvements to the technique should focus on the final step
of outlier detection, which effectively reduces false positives but that
can also lead to false negatives.

The GM segmentation as implemented in the Spinal Cord Toolbox
(SCT) is an atlas-based method. Therefore, the output segmentation is
a fusion of manual segmentations that constitute the model, implying
that segmentations always have a shape that resembles the GM.
Moreover, unlike contour deformation or intensity based methods,
SCT is very robust to artefacts or pathologies as demonstrated in
Dupont (2016). The scores computed for SCT were satisfying.
However, the relatively low PPV suggests that SCT has a tendency to
over segment the GM, which could be addressed by adjusting the
threshold of the output probabilistic segmentation. Results obtained
with SCT for shape sensitive indicators (HSD, SHD and SMD) were
amongst the best ones, suggesting that SCT captures properly the GM
shape in the input image. Moreover, the SMD score of SCT was similar
to the gold standard, suggesting that this method performs as well as
human raters in capturing the overall GM shape. Finally, SCT is
available as an open-source software package (http://
spinalcordtoolbox.sf.net) (de Leener, 2016).

Compared to some of the other competing algorithms, the semi-
supervised VBEM method exhibited a relatively poor performance in
terms of overlap scores with the manual segmentations. On the other

hand, the results were submitted for evaluation only once. Therefore no
parameter tuning was performed in order to maximize the performance
with respect to the selected accuracy measures. The method tries to
capture the most parsimonious partitioning of the data based on the
observed image intensities, therefore structures that have partially
overlapping intensity distributions, such as GM and WM in the spinal
cord might be particularly hard to resolve. Additionally, if the training
data set is not sufficiently large, volumetric approaches also suffer from
having a relatively small amount of training labels available at each
anatomical cross section (especially for images with different fields of
view), compared to slice based methods. Nevertheless, such a prob-
abilistic modelling framework represents an ideal environment for
performing statistical morphometric group studies, which can poten-
tially help to unravel the mechanisms underlying neurological dis-
orders. It should also be noted that, for this purpose, conformity with
manual labelling protocols does not constitute a primary concern, as
long as there is internal consistency of the results across subjects.

Finally, as no single method has consistently outperformed all other
methods for every site and assessment metric, no hard conclusions can
be drawn with regards to the true best performing method; the choice
of an optimal method would change depending on the target sequence,
computational time and choice of performance metrics.

Conclusions

This paper demonstrates the feasibility of six emerging segmenta-
tion methods to fully automatically and robustly segment the butterfly
shape of the GM in the spinal cord. Thus, next to established voxel-wise
segmentation algorithms optimized for the brain, the spinal cord tissue
is entering the field of voxel-wise analysis opening new avenues to
make statistical inferences of volume and shape across the entire
neuroaxis (Freund et al., 2016).

We have presented the results of the first spinal cord GM
segmentation challenge. Six institutions across the world have colla-
borated in order to compare their cutting edge methods using the same
dataset from multiple vendors and sites. The challenge was successful
and the presented methods provided highly promising results using
different underlying principles. This variety showed that spinal cord
GM segmentation remains challenging within a vibrant research field.

Finally, training data and masks, and testing data without masks,
will remain publicly available at http://cmictig.cs.ucl.ac.uk/niftyweb
for the community to continue to evaluate their methods.

Future spinal cord GM challenges will aim to include other image
modalities, more vendors, neurological conditions, other spinal cord
levels and attempt to harmonise the manual segmentation software
and protocol.
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Joint collaboration for spinal cord grey matter segmentation

The proposed method (Prados et al., 2016b) combines two existing label fusion segmentation techniques: OPAL (Optimized PatchMatch Label
Fusion) (Ta et al., 2014; Prados et al., 2015; Giraud et al., 2016) for detecting the spinal cord and STEPS (Similarity and Truth Estimation for
Propagated Segmentations) (Cardoso et al., 2013) to accurately segment the GM. The proposed method uses a multi-atlas segmentation
propagation strategy with all registrations and segmentations performed in a 2D slice-wise manner before merging them into a 3D volume. A
schematic representation of the proposed pipeline is shown in Fig. 5.

Due to the low computational time and decent segmentation accuracy in some applications, OPAL is used here in its original form to simply
localise the spinal cord. This cord localisation step is achieved by providing a dictionary of spinal cord images and associated manually segmented
cords to the OPAL algorithm, all of which are then propagated to the new unseen image. This step has an average computational time of less than
1 s. The rough cord localisation obtained from OPAL is then used to initialise a multi-atlas propagation approach.

The main characteristic of STEPS is that it introduces a spatially variant image similarity term the classical STAPLE framework (Cardoso et al.,
2013), enabling the characterisation of both image similarity and human rater performance in a unified manner. The STEPS segmentation process
is divided in two stages: segmentation propagation and fusion. Starting from a template library with associated manual segmentations, all the
templates are first registered to the target image using initially a rigid-only registration and then a non-rigid registration. All registrations were done
using the NiftyReg software package (niftyreg.sf.net). The normalised cross correlation (NCC) is then estimated between each deformed template
and the target image, quantifying the similarity between the two images. The top X most similar deformed templates according to the NCC are then
finally fused into a consensus segmentation using STEPS. STEPS uses the locally normalised cross correlation (LNCC) between the registered
template images and the target image to locally select the best atlases to fuse. A consensus probabilistic GM segmentation is obtained using the
STEPS algorithm as implemented in NiftySeg (niftyseg.sf.net). The probabilistic nature of the consensus segmentation implicitly encodes partial
volume effect, improving tissue boundary localisation and delineation. Finally, the probabilistic consensus masks are thresholded at 0.5 to produce
binary segmentations.

Note that, in order to increase the performance of the fusion step, the centre of mass of the OPAL cord segmentation is used to initialise the rigid
registration step between templates and target image. The OPAL cord segmentation is also used to mask non-cord regions from the non-linear
registration step, further improving the performance of the template registration step.

All experiments used the following parameters. OPAL was used with the original parameters (Ta et al., 2014; Giraud et al., 2016): the 2D patch
size was 5x5 and the number of inner iterations was 5. Finally, the numbers of threads and the number of best-matches were both set to 10. STEPS
also used the original parameters (Cardoso et al., 2013): the number of best templates was X=15, standard deviation of the Gaussian smoothing
kernel for LNCC estimation σ = 1.5 and the Markov Random Field (MRF) spatial consistency set to 0.55. In order to maximise the size of the STEPS
library, all the scans were left-right flipped.

Both, OPAL and STEPS, are public available inside NiftySeg software package (niftyseg.sf.net), thus making the method fully open source.

Fig. 5. Schematic representation of the proposed pipeline.
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Deepseg

The implementation of Deepseg is a further development of the deep 3D convolutional encoder network with shortcut connections proposed by
Brosch et al. (2016). The neural network (LeCun et al., 1998) used in that study was optimized for lesion segmentation in the brain in subjects with
multiple sclerosis (MS). Since the neural network approach does not make any assumptions that are specific to the segmentation of MS lesions, the
same approach can be used for a variety of segmentation problems such as the segmentation of GM in the spinal cord.

The network structure used in this work is similar to the u-net (Ronneberger et al., 2015) structure with a contracting and an expanding
pathway. The contracting pathway consists of alternating convolutional (Lecun et al., 1998) and pooling layers. The expanding pathway consists of
alternating deconvolutional (Zeiler et al., 2011) and unpooling layers, in contrast to the u-net structure which consists of alternating convolutional
and upsampling operations. This allows the Deepseg network structure to produce feature maps of exactly the same size as the corresponding
convolutional layers, which enables easy shortcut connections between layers (Brosch et al., 2016). This is utilized in the Deepseg algorithm to
directly predict the entire segmentation without special handling of the border region, see Fig. 6.

To optimize the method for GM segmentation, the network design proposed by Brosch et al. (2016) was slightly adjusted. Each pathway of the
network was extended with two more layers, extending the model from 7 to 11 layers. This ensures that the receptive field of the neurons captures
the full size of the spinal cord. As a consequence of this, the pre-training step outlined in Brosch et al. (2016) that is used to obtain initial parameters
for the convolutional layers was modified to include 3 convolutional restricted Boltzmann machines (Lee et al., 2011) to provide prediction
parameters to all the layers of the fine-tuning network shown in Fig. 6.

Instead of using the commonly used sum of squared differences or cross-entropy as the objective function, a weighted sum of two terms: the
mean square differences of the GM voxels and the non-GM voxels (Brosch et al., 2016) was used. The weighting of these terms will balance the
sensitivity (the first term) and specificity (second term) of the final segmentation. The sensitivity threshold was fixed at 0.1 in this study.

Before training the model, all scans were resampled to an in-plane voxel size of 0.25×0.25 mm2 and subsequently cropped to a standardized
image size of 256×256 in-plane with 12 slices. If the volume contained more than 12 slices, the central 12 slices were chosen, and, if the volume had
fewer than 12 slices, zero-padding was performed. Image cropping was only performed on the training images to reduce the training time. When
applied to new images, the network can be resized to match the size of new images.

The same network structure was used to train two models; one for full cord segmentation, and another for GM segmentation. In the first step,
the full cord is segmented, and the image is subsequently cropped to a region of interest of size 100×100 voxels, with the cord centered. In the
second step, the cropped cord is used to predict a probabilistic GM segmentation, which is then binarized using a constant threshold. The threshold
is empirically tuned as part of the training procedure and the same threshold is used to produce all subsequent segmentations. The binary GM
segmentation is then warped back to native image space. With data from 40 subjects and manual GM segmentations from 4 raters, a total of 160
training pairs were used for training the model for the GM segmentation. Training of the entire network took 4 h using a NVIDIA GeForce GTX 660
with 960 cores operating at 1.03 GHz using a custom GPU implementation developed by Brosch and Tam (2015). Prediction, i.e. segmentation, of
all the data took only a few seconds using the same hardware.

Morphological geodesic active contours algorithm

This spinal cord GM segmentation technique (Datta et al., 2016) uses shape template registration methods along with Morphological Geodesic
Active Contour (MGAC) models.

Preprocessing
In each of the images from the training and test set, the whole spinal cord was first segmented using the software JIM (v. 6.0, Xinapse Systems,

Fig. 6. Diagram showing the 11-layer network structure used in the present work, based on the network presented by Brosch et al. (2016). The shortcut connections between
corresponding convolutional and deconvolutional layers allow for the learning of features at different scales.
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Northants, UK; http://www.xinapse.com/). Then, all images were up-sampled and cropped so that the resulting images were centered on the
segmented spinal cord and each slice had a field of view of 15 mm×15 mm and a resolution of 0.05 mm×0.05 mm.

Creating level specific templates
Level specific templates of the GM and the whole cord were first created from the training set. Distance maps were created from the whole cord

masks created with JIM as well as the manually segmented GM masks provided in the training set, where the value of each voxel represented the
closest distance from the contour. The distance maps from each slice of the 20 files in the training set were separated by level and then used to create
templates for the overall cross-sectional shape of the whole cord and templates of the cross-sectional spinal cord grey-matter shape. The registration
software used was an internally developed tool (Carballido-Gamio et al., 2013), which was programmed in MATLAB (The Mathworks, Inc. Natick,
MA) to enable distance map based registrations (Reinertsen et al., 2004; Suh and Wyatt, 2006).

Creating an initial guess for grey matter segmentation based on registration
To segment the GM in an image of the spinal cord, an initial guess of the segmentation must be provided to the active contours algorithm. This

initial guess is based on the non-linear transformation of the previously created level specific whole cord template to the delineated whole cord in
the image slice. The computed affine and non-linear transformations are then applied to the previously created spinal cord GM template. The
transformed GM template gives a rough idea of the GM segmentation in each subject.

Morphological geodesic active contour model
The registered GM template is then used as an initial guess to initialize the geodesic active contour algorithm. Traditional active contour models

are methods used in computer vision where a deformable spline is warped, subject to certain constraints and image forces, until a predefined overall
energy is minimized (Kass et al., 1988). The standard solution for contour evolution algorithms involves numerical methods of integration that are
computationally costly and may have issues with stability. The original active contours approach also depends on the parametrization of the contour
and has trouble handling changes in curve topology. The geodesic active contour method addresses these issues, reduces the need for preprocessing

Fig. 7. Example of MGAC with comparisons to manual segmentations.

Fig. 8. Block diagram describing the three-stage GSBME procedure for grey matter segmentation in anatomical MRI data of the spinal cord. The first step of the procedure is pre-
processing, which implements whole-cord segmentation, signal intensity normalisation and image denoising. The second step is the thresholding of the sum of grey/white matter signal
intensity entropies. The final stage consists of a one-class classifier for supervised outlier detection.
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since it utilizes fewer parameters, and is better able to recognize an object with non-ideal edges (Caselles et al., 1997). Recently, a new approach
(Márquez-Neila et al., 2014) that utilizes morphological operators with a geodesic active contour method was developed that allows for a much
faster and more stable process of contour evolution. The MGAC algorithm makes use of a publicly available Python implementation of the
morphological geodesic active contour method (http://github.com/pmneila/morphsnakes). To use this implementation, the user provides an initial
contour which is then deformed in a method driven by three image forces: a smoothing force that controls the smoothness of the contour, a balloon
force that inflates or deflates the contour in areas where information is lacking, and an image attraction force, which drives the contour to the
maximum gradient areas in the image. Our parameters were selected according to the methods and guidelines stated in the study that developed
this morphological geodesic active contour method (Márquez-Neila et al., 2014). A comparison of MGAC results with manual segmentations is
shown in Fig. 7.

Grey matter segmentation based on maximum entropy

The Grey matter Segmentation Based on Maximum Entropy (GSBME) algorithm is a three-stage procedure for the semi-automatic, supervised
segmentation of the GM in anatomical magnetic resonance images of the human spinal cord. Fig. 8 summarises the three stages of the GMSE
algorithm. The first stage is pre-processing; the second stage is the thresholding of the sum of grey/white matter signal intensity entropies; the final
stage represents an outlier detector. Details of each stage are provided below. All stages were implemented in MATLAB® 2015a (The MathWorks,
Inc., Natick, Massachusetts, USA), unless otherwise stated.

Preprocessing
The aim of the pre-processing stage is to detect the spinal cord and to increase the quality of the data for the thresholding stage. Additionally, a

step of signal normalisation was also implemented, as for the challenge images from different sites were provided in different ranges. Specifically, in
the pre-processing stage, the following steps were carried out.

1. The spinal cord was detected with the Spinal Cord Toolbox sct_propseg command (de Leener et al., 2014), using manual initialisation.
2. Signal intensities were normalised slice-by-slice as u s s= ( − )u u u

s s L
+ ( − )
( − )

L H L
H L

, setting uL=0.2, uH=0.7. Above, s is the intensity in the non-normalised

image, while sL and sM (s s<L M) are the two means obtained fitting a two-component Gaussian mixture model (GMM). The GMM was fitted to
the intensity values of the spinal cord in each slice after filtering the image with a 2D median filter (3×3 voxel×voxel).

3. The normalised images were denoised slice-by-slice with Split Bergman isotropic total variation approach (Goldstein and Osher, 2009). A freely
available MATLAB implementation was used,1 setting the weight of the regularising term to μ = 0.15.

Thresholding
The denoised images were thresholded slice-by-slice with the aim of identifying signal hyperintensities likely to be GM. The thresholding was

performed within a sliding window whose size was defined as π A1.5 −1 , where A is the cord area, evaluated from the cord mask. The optimal
threshold T* for each position of the sliding window was obtained maximising the sum of grey and white matter signal intensity entropies, i.e.
T H T* = arg max ( )

T
, with H(T) calculated as

∑ ∑H T p u u T p u u T p u u T p u u T( ) = − ( | < )log ( ( | < )) + …… + − ( | ≥ )log ( ( | ≥ )).
u u

2 2
(10)

Above, the first and second summations represent respectively the entropy of the white and GM signal, while u is the signal intensity after
normalisation and denoising. Prior to thresholding, the map of maximum-entropy thresholds was smoothed with a Gaussian filter.

Outlier detection
The last stage consisted of an outlier detector that discards segmented hyperintensities depending on their morphological features, implemented

with the Data Description Toolbox DDTools2 (Tax, 2015). The features were morphological characteristics derived from each candidate
hyperintense region: major/minor axis length; equivalent diameter; perimeter; eccentricity; filled area; extent; solidity; weighted/unweighted
centroid; seven invariant moments (Hu, 1962). Features were normalised in [ − 1 ;+ 1], and a one-class Gaussian model was trained on the binary
segmentations of the GM from the training data (majority voting of the raters), with a target error of 2%. Data were resampled at the same
resolution for this particular step.

Spinal cord toolbox

The proposed GM segmentation as implemented in the Spinal Cord Toolbox (SCT) (de Leener, 2016), is based on multi-atlas segmentation and
was built from previous work (Asman and Bryan, 2014), and includes additional features to improve robustness (vertebral level information) and
applicability to other contrasts (via intensity normalization) (Dupont, 2016).

Model construction
The model is constructed out of a dataset of WM/GM contrasted images and manual segmentation of the GM (Fig. 9-1). Each image is

preprocessed with the following steps: (i) the SC is automatically segmented using PropSeg (de Leener et al., 2014), (ii) the image is resampled to an
axial resolution of 0.3×0.3 mm2, (iii) and smoothed using a non-local means adaptative algorithm (Manjón et al., 2010), (iv) the image is masked
using the SC segmentation, (v) and cropped using a square mask of 75×75 pixels centered on the spinal cord (constituting a rigid pre-registration at
the same time), finally (vi) the image is splitted along the rostro-caudal direction and considered slice by slice. After preprocessing, each slice is co-
registered to a common space as follows: the WM segmentation (obtained by subtracting the manual GM segmentation to the automatic SC

1 http://www.mathworks.com/matlabcentral/fileexchange/36278-split-bregman-method-for-total-variation-denoising.
2 http://prlab.tudelft.nl/david-tax/dd_tools.html.
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segmentation) is registered to the average WM segmentation (averaged using majority voting label fusion) using an affine transformation (gradient
step=0.5, metric=mutual information) as implemented in ANTs (Avants and Tustison, 2014). The same transformation is then applied to the
associated image. The intensity of the WM and GM of the image is normalized to the median WM and GM from the dictionary.

The images are then used to perform a principal component analysis (PCA): the dictionary images constitute the original space, in which each
dimension corresponds to the variation of intensity in one given pixel among the dictionary slices. To perform the PCA, the covariance matrix of all
the dictionary slices is computed, and eigenvectors and eigenvalues are deduced by diagonalization. The eigenvectors are sorted by decreasing
eigenvalues and the first eigenvectors explaining 80% of the variability are kept (this value was chosen based on preliminary results). The kept
eigenvectors are the dimensions of a reduced space that constitutes the model.

Image segmentation
The image to segment is first preprocessed following the same 6 steps described above (Fig. 9-2). Then, each slice is registered on the dictionary

mean image using an affine registration (same parameters as described above). All transformations are stored to be able to apply the inverse
transformations to the results of segmentation. To have the method work with any contrast, the intensity of the GM and WM in the image to
segment is estimated using the dictionary manual segmentations averaged per vertebral level, then the slice intensity is normalized as described

Fig. 9. Multi-atlas based segmentation method.

Fig. 10. Directed acyclic graph representing the Gaussian mixture model that the VBEM method relies on.
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above. Each slice of the image to segment is then projected into the model space (Fig. 9-3) and the similarity (βi j, ) between the image slice (i) and

each dictionary slice (j) is computed (Fig. 9-4) using the coordinates of the slices in the model space (wi
τ and wdic

i ) as well as the vertebral level
information of each slice (li

τ and ldici) as described in Eq. (11). With Z, the partition function such as β∑ = 1j
J

i j=1 , ; J, the total number of slices in the
dictionary; γ, a weighting parameter associated with the vertebral level and empirically set to 2.5; τ, a weighting parameter related with the geodesic
distance defined by Asman et al. in Eq. (16) of their paper (Asman and Bryan, 2014).

β
Z

γ l l τ w w= 1 exp( − | − |)exp( − ∥ − ∥ )i j i
im

j
dic

i
im

j
dic

, 2 (11)

The dictionary slices the most similar to the image slice are selected (Fig. 9-5) using an arbitrary threshold ( =
J
1

2 , cannot be larger than
J
1 for

the sake of the computation of τ). Then, the manual GM and WM segmentations associated with selected dictionary slices are averaged using the
majority voting label fusion (Fig. 9-6). Finally, the automatic segmentations are resampled and registered back into the image original space using
the inverse of the preprocessing transformations.

Semisupervised VBEM

The proposed method (Semisupervised VBEM) relies on a quite general Bayesian generative model of structural MRI data, which can potentially
be applied to any large MR database.

The purpose of the framework is to capture both shape and intensity variability of MR data, within a population. This is, in fact, a primary
research topic, as it permits addressing many problems related to the processing and interpretation medical of imaging data, such as image
segmentation (Ashburner and Friston, 2005), structural labeling (Tzourio-Mazoyer et al., 2002) and spatial normalization (Ashburner and Friston,
1999). These processing tasks, in turn, constitute the basis for performing morphometric group studies, which have been extensively used, in the
neuroimaging community, for the in-vivo investigation of brain structures, in both physiological and pathological conditions (Ashburner and
Friston, 2000; Good et al., 2002).

Within the proposed method, MR signals are treated as observed data generated by warping of an average shaped reference anatomy. The
intensity values of the different tissue types are assumed to be drawn from Gaussian Mixture distributions (GM) (Ashburner and Friston, 2005).

In formulas, the probability of observing intensity x at voxel j, with j belonging to tissue class k, can be expressed as

∏μ μp z π πx x Σ x Σ( , = 1) = ( | , ) = [ ( | , )] ,j jk k j k k
c

K

c j c c
z

=1

jc

(12)

where z is a binary latent variable encoding class memberships, μk and Σk are the mean and covariance matrix of the kth mixture component and
πk represents the prior probability of finding tissue type k at voxel j. In other words, the prior terms π{ }k serve to define an average-shaped reference
anatomy, in the form of tissue probability maps (TPMs). Additionally, the robustness of the model is augmented by introducing Gaussian-Wishart
priors on the intensity distribution parameters μ Σ{ , }k k .

A graphical representation of the model is reported in Fig. 10, which synthetically highlights the conditional dependencies among all variables.
Model fitting is performed with a variational version of the expectation maximization (EM) algorithm (Bishop, 2006; Corduneanu and Bishop,

2001). For every subject of the data set, this involves alternating between computing sufficient statistics of the observed data and updating the
Gaussian means and covariance matrices of all tissue classes, so as to maximize a lower bound on the model evidence. Additionally, deformation
fields have to be estimated in order to map between the individual and common reference spaces. This is treated as a complementary optimization
problem, which can be solved using numerical optimization techniques (such as the Gauss-Newton method) to maximize the same lower bound on
the marginal likelihood (evidence) with respect to a set of deformation parameters.

The tissue probability maps encoded in the priors π{ }k can either be considered as fixed parameters or unknown quantities to be estimated form
the data. As opposed to brain atlases, which are widely available for different healthy and pathological populations (Fonov et al., 2011; Thompson
et al., 2001; Tang et al., 2010), reliable and unbiased spine templates have only recently started to be proposed (Fonov et al., 2014). Nevertheless,
our method can easily be applied in a fully unsupervised fashion. In such a case, the TPMs are automatically built during model fitting, which also
ensures that they are best representative of the population of interest. The framework can be made even more robust by incorporating training data
with manual labels, thus leading to a semisupervised learning scheme.
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