
  
 

Titre: 
Title: 

Statistical atlas-based descriptor for an early detection of optic disc 
abnormalities 

Auteurs: 
Authors: Fantin Girard, Conrad Kavalec et Farida Cheriet 

Date: 2018 

Type: Article de revue / Journal article

Référence:
Citation: 

Girard, F., Kavalec, C. & Cheriet, F. (2018). Statistical atlas-based descriptor for 
an early detection of optic disc abnormalities. Journal of Medical Imaging, 5(1). 
doi:10.1117/1.jmi.5.1.014006 

 
Document en libre accès dans PolyPublie
Open Access document in PolyPublie 

  

URL de PolyPublie: 
PolyPublie URL: https://publications.polymtl.ca/4894/ 

Version: Version officielle de l'éditeur / Published version 
Révisé par les pairs / Refereed 

Conditions d’utilisation: 
Terms of Use: CC BY 

 
Document publié chez l’éditeur officiel 
Document issued by the official publisher 

  

Titre de la revue: 
Journal Title: Journal of Medical Imaging (vol. 5, no 1)

Maison d’édition: 
Publisher: SPIE 

URL officiel: 
Official URL: https://doi.org/10.1117/1.jmi.5.1.014006 

Mention légale: 
Legal notice: 

© The Authors. Published by SPIE under a Creative Commons Attribution 
3.0 Unported License. Distribution or reproduction of this work in whole or in part 
requires full attribution of the original publication, including its DOI. [DOI: 
10.1117/1.JMI.5.1.014006] 

Ce fichier a été téléchargé à partir de PolyPublie,  
 le dépôt institutionnel de Polytechnique Montréal 

This file has been downloaded from PolyPublie, the 
 institutional repository of Polytechnique Montréal 

http://publications.polymtl.ca 

https://publications.polymtl.ca/4894/
https://doi.org/10.1117/1.jmi.5.1.014006
http://publications.polymtl.ca/


Statistical atlas-based descriptor for
an early detection of optic disc
abnormalities

Fantin Girard
Conrad Kavalec
Farida Cheriet

Fantin Girard, Conrad Kavalec, Farida Cheriet, “Statistical atlas-based descriptor for an early detection of
optic disc abnormalities,” J. Med. Imag. 5(1), 014006 (2018), doi: 10.1117/1.JMI.5.1.014006.



Statistical atlas-based descriptor for an early
detection of optic disc abnormalities

Fantin Girard,a,* Conrad Kavalec,b and Farida Cherieta
aPolytechnique Montreal, Montreal, Quebec, Canada
bSt. Mary’s Hospital, Montreal, Quebec, Canada

Abstract. Optic disc (OD) appearance in fundus images is one of the clinical indicators considered in the
assessment of retinal diseases such as glaucoma. The cup-to-disc ratio (CDR) is the most common clinical
measurement used to characterize glaucoma. However, the CDR only evaluates the relative sizes of the
cup and the OD via their diameters. We propose to construct an atlas-based shape descriptor (ASD) to sta-
tistically characterize the geometric deformations of the OD shape and of the blood vessels’ configuration inside
the OD region. A local representation of the OD region is proposed to construct a well-defined statistical atlas
using nonlinear registration and statistical analysis of deformation fields. The shape descriptor is defined as
being composed of several statistical measures from the atlas. Analysis of the average model and its principal
modes of deformation are performed on a healthy population. The components of the ASD show a significant
difference between pathological and healthy ODs. We show that the ASD is able to characterize healthy and
glaucomatous OD regions. The deviation map extracted from the atlas can be used to assist clinicians in an early
detection of deformation abnormalities in the OD region. © The Authors. Published by SPIE under a Creative Commons Attribution

3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI:

10.1117/1.JMI.5.1.014006]
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1 Introduction
Geometric deformation of the optic disc (OD) region is one of
the signs of many pathologies affecting the eye. One of the most
prevalent pathology that affects the OD is glaucoma. It is char-
acterized by nerve fiber defects caused by an abnormal increase
in intraocular pressure.1 Glaucoma has a global prevalence of
3.5% in the population aged 40 years and over, the risk increas-
ing with age.2 It is the third cause of blindness after diabetic
retinopathy and age-related macular degeneration.3 Evaluation
of OD appearance in the fundus image (see Fig. 1, left/middle)
is one of the diagnostic tests used clinically along with visual
and intraocular pressure (IOP) tests.4 Visual field abnormalities
and IOP higher than 22 mm Hg are two clinical findings of
glaucoma.4 OD appearance can be visualized by standard
color fundus photography. Changes can be very subtle, espe-
cially in early stages, and clinicians observe different abnormal-
ities in the fundus images to assess early signs of glaucoma.
These include generalized or localized enlargement of the
optic cup, nerve fiber loss, asymmetry of the cups between
the two eyes, narrowing of the neuroretinal rim, and hemor-
rhages in the OD. The enlargement of the cup is evaluated
with respect to the size of the disc. Secondary signs include
nasal displacement of the blood vessels, peripapillary atrophy,
translucency of the neuroretinal rim, development of vessels
overpass, and vessels kinks.4 The final diagnosis of glaucoma
is supported when at least two or more findings are present,
especially in the presence of other risk factors, such as age,
sex, family history, identified genes associated with glaucoma,

African descent, or myopia.4 If detected early, the progression of
glaucoma can be slowed down by preventive treatments.5

Patients with these symptoms need follow-up exams to check
if there is an abnormal progression, but the early signs are dif-
ficult to detect on fundus image due to the variability of the OD
shapes among patients.

The most commonly used index is the cup-to-disc ratio
(CDR), which measures the ratio between the cup diameter and
the OD diameter in the vertical direction (VCDR6; see Fig. 1).
The index can also be defined as the square root of the ratio of
the cup area over the disc area called the linear CDR (LCDR).7

These CDR measures are used in automatic glaucoma detection
and achieve acceptable accuracy.7–11 Using this indicator
requires an adequate segmentation of the disc and the cup.
Thus, much research effort has been devoted to segmenting
the OD and cup in fundus images.6,7,10,12,13 Other indices, such
as the ISNT rule (in a normal retina the neuroretinal rim width
follows the decreasing order: inferior > superior > nasal >
temporal14) and the measurement of the nasal displacement
of vessels15 and vessels kinks,13 are used to determine the pres-
ence of glaucoma (see Fig. 1, right). While the CDR evaluates
general enlargement of the cup, the ISNT rule evaluates its
enlargement in the four main directions (temporal, nasal,
inferior, and superior).

But the usefulness and accuracy of these indicators are
debated among ophthalmologists. Indeed, an OD with a CDR
as low as 0.3 can be glaucomatous, while a CDR of 0.8 does
not necessarily indicate glaucoma,16 which reduces the diagnos-
tic accuracy of this measurement. In a recent study, the ISNT
rule, originally assessed on 457 normal fundus in 1988,17

was proven to have limited usefulness in assessing glaucoma-
tous damage to the optic nerve.18*Address all correspondence to: Fantin Girard, E-mail: fantin.girard@polymtl.ca
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Simple geometric indicators extracted from fundus images,
like the CDR and ISNT rule, are not sufficient to diagnose early
geometric abnormalities, which are signs of potential glaucoma-
teous condition of the OD.

The early signs of glaucoma are very subtle, whereas the
CDR and ISNT measures describe only advanced stage of glau-
coma. Furthermore, the geometric deformations of the vessels,
cup, and disc are correlated because their geometric changes
occur simultaneously. For example, a large disc size artificially
increases the CDR, but it does not indicate pathological condi-
tion as nerve fibers need the same space across patients. In addi-
tion, when the cup is enlarged, it can induce a nasal rejection of
the vessels. The CDR does not evaluate neither vessels defor-
mation nor local deformations of the cup. The ISNT rule
does not account for vessels deformation either and evaluates
only simple local deformations of the cup.

One way to implicitly exploit all the geometric information
contained in the fundus images is to use statistics on deforma-
tion fields by computing an atlas of the anatomy of interest.
Retinal atlases found in the literature allow detection of abnor-
malities, such as imaging artifacts19 or exudates,20 in the fundus
image. The registration method used to build the atlas in these
methods is an affine registration followed by a thin-plate spline
warping guided by the main vessel arches.19 Thus, inside the
OD, the geometric deformation is not fully described and is lim-
ited to affine registration, which restricts the statistical charac-
terization of glaucoma that can be achieved using such an atlas.
Finally, other researchers use “topological component
analysis”21 and “principal orthogonal decomposition”22 to char-
acterize the topological changes between one reference exam
and its follow-up exams and to quantify the progression of glau-
coma. These techniques were not devised to take into account
the significant changes between images of different subjects and
therefore are not applicable for interpatients statistical analysis.

In this article, we propose to build a statistical atlas of the OD
region to analyze the variability of this part of the retina within a
healthy population. We build this OD atlas from a population of
healthy retinae using the most recent methods of nonlinear
registration23,24 and statistical analysis.25,26 One major contribu-
tion of this work is a representation of the OD region (cup and
rim), including the vessels, resulting in a well-defined atlas. The
key to success in constructing our atlas is the use of log-demons
registration combined with this local representation of the OD
region. The proposed representation captures all the structures
including the blood vessels that are likely to deform when the
patient is subject to pathological condition. To construct this
representation, we reject those vessels that cannot be registered
between images and thereby form a probabilistic model contain-
ing only the statistically significant vessels. In this way, the atlas

construction is not corrupted by the large residuals that would
otherwise ensue from keeping all the vessels. An atlas-based
shape descriptor (ASD) is then derived from the statistical
atlas. This descriptor expresses the shape variability of the
whole OD region. The main contribution of this work is to over-
come the limitations of simple clinical indicators, such as the
CDR by providing a descriptor to identify abnormalities by
characterizing any significant deviation from the normal geo-
metric variability. The paper is organized as follows. In
Sec. 2, we present the methods for constructing the atlas, includ-
ing registration, statistical analysis, and defining the ASD. We
also introduce a specific representation of the OD region used to
build the atlas. In Sec. 3, we present the results of the atlas con-
struction from a healthy population, along with some statistics
on the ASD showing its ability to characterize OD normality
versus abnormalities. Section 4 concludes this article and
presents ongoing and future work.

2 Methodology
The construction of the ASD involves five major steps: the
extraction of an image patch centered on the OD, the segmen-
tation of the anatomical structures leading to a suitable represen-
tation for registration, the construction of an average model
through nonlinear registration, the use of statistical tools to re-
present the atlas variability, and finally the construction of ASD.

Figure 2 illustrates the whole methodology to obtain the
ASD, detailed in the following subsections.

2.1 Extraction of the Optic Disc Region Patch

In the following, we consider that we have N fundus images
noted Ii (i for the i’th fundus image) in a healthy population.

2.1.1 Optic disc and macula localization

The method to simultaneously localize the macula and the OD in
fundus images presented in Girard et al.27 is used. First, several
feature maps are processed from the color fundus images, high-
lighting different properties of the OD or the macula. The OD is
defined as a sharp and bright area, radially symmetric and with
blood vessels convergence. The macula is defined as an avas-
cular dark area and radially symmetric. Seed points are then
placed in the image and evolve toward a set of candidate
local minima for the macula. Similarly, circular seeds evolve
toward candidate local maxima for the OD. Each seed is
given a score calculated from the different maps. Pair scores
are formed resulting in the best macula/OD pair noted
ðxiOD; yiODÞ and ðximac; yimacÞ.

Fig. 1 Anatomy of the OD [(a), (b)]; ISNT rule and CDR (c).
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2.1.2 Affine registration

Affine transformation occurs inevitably between fundus images
from different acquisitions. Translation and rotation are due to
the patient placement and eye movement during acquisition.
Scaling is due to different ocular sizes in the population
under study and also different resolutions from different retina
cameras. Finally, a flip is necessary to map right eyes onto left
eyes. The centers of the ODs and maculae previously detected
are used to parameterize these affine transformations. First, all
right eyes are mirrored into left eyes by applying a horizontal
flip around the vertical axis passing through the center of the
image, whose coordinates are noted ðxic; yicÞ. If the OD is located
to the right of the macula, then the horizontal flip given in
Eq. (1) is applied as follows:

EQ-TARGET;temp:intralink-;e001;63;275Iifx; yÞ ¼
�
Iið−xþ 2xc; yÞ; if ðximac − xiODÞ < 0

Iiðx; yÞ; if ðximac − xiODÞ ≥ 0
: (1)

Then, a translation and a small rotation due to patient place-
ment and eye movement are parameterized with the OD position
ðxiOD; yiODÞ and the angle αi between the horizontal and the line
joining the macula and OD centers:

EQ-TARGET;temp:intralink-;e002;63;190αi ¼ arctan
−yimac þ yiOD
ðximac − xiODÞ

: (2)

The scaling s ¼ davg

di is based on the distance di between the
macula and the OD center:

EQ-TARGET;temp:intralink-;e003;63;125di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðximac − xiODÞ2 þ ðyimac − yiODÞ2

q
: (3)

We consider that the new image coordinate system is defined
by the average of the angles and distances over the set of fundus

images. This leads us to define the following affine transforma-
tion Ai applied to each Ii:

EQ-TARGET;temp:intralink-;e004;326;414Ai

���� xy
���� ¼ davg

di
Rðαi−αavgÞ

���� xy
����þ Ti (4)

with

EQ-TARGET;temp:intralink-;e005;326;358Rα ¼
���� cos α − sin α
sin α cos α

����; (5)

EQ-TARGET;temp:intralink-;e006;326;319Ti ¼
���� x

avg
OD

yavgOD

���� − davg

di
Rðαi−αavgÞ

���� x
i
OD

yiOD

����; (6)

EQ-TARGET;temp:intralink-;e007;326;280davg ¼ 1

N

XN
i

di; (7)

EQ-TARGET;temp:intralink-;e008;326;237αavg ¼ 1

N

XN
i

αi with αi ∈
�
−
π

2
;
π

2

�
: (8)

After applying the affine transformation, each fundus image
is cropped around the OD to form a square patch of size m ×m
noted Iic that we will use from now on (m is set to 384).

2.2 Four-Clusters Representation of the Optic Disc
Region

We propose a representation of the OD region that contains the
main structures inside that area of the retina: the neuroretinal
rim, the cup, and the blood vessels. Generalized or localized
enlargement of the optic cup, narrowing of the neuroretinal
rim, and nasal displacement of the blood vessels are geometric

Fig. 2 Methodology to form the ASD: each OD is represented as a four-cluster image. The OD region
atlas is constructed by iteratively registering the four-cluster representations to the current reference.
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deformation occurring on these structures for a pathological
OD. Thus, the proposed representation takes into account
these pathological signs.

2.2.1 Optic disc and cup segmentation

Segmentation of the OD is achieved via a local K-means clus-
tering applied to color coordinates in polar space followed by
a polynomial fitting regularization step.27 This segmentation
method achieves a very competitive overlapping ratio of 0.9
on the MESSIDOR database.28 The cup is located using an
ellipse fitting method. This is achieved by locating the high gra-
dients in polar space; the resulting ellipse is the one that max-
imizes gradients along its borders (see Fig. 3).

2.2.2 Vessels segmentation

Ultimately, we want to be able to analyze not only the optic
cup’s deformation but also the vessels’ displacement. One of
the signs of pathological OD is the displacement of blood ves-
sels. To segment the vessels inside the OD, a K-means clustering
is performed in RGB space, considering that there are three
classes inside the OD (see Fig. 4). The class whose average
color is closest to dark red is then labeled as the vessels.

However, this initial K-means method segments all the ves-
sels that are visible in the OD region but some smaller vessels
will be present in only few of the images. It would not be rel-
evant to consider their displacement in our model. Moreover,
due to topological changes that can affect these vessels, it is
not guaranteed that we will be able to register them without
large residuals between two OD representations, which would
corrupt the atlas statistics. Therefore, to find the statistically
significant vessels that the registration method will handle

correctly, a vessels average model is constructed from the ves-
sels and disc representation obtained previously [see Fig. 4(c)],
using the method described in Sec. 2.3.2 below. The resulting
vessels average model is used to generate a simplified vessels
model that contains only the statistically significant vessels, i.e.,
those that are common to all the OD images in the atlas pop-
ulation and that we will be able to register without residuals.
This simplified vessels model is obtained by thresholding the
average model (see Fig. 5), so that at each nonzero locations
of the simplified model, the probability to have a vessel after
registration onto the vessels average model is over 75%. This
value is a trade-off that is set to have the most simple vessels
model while keeping the most significant vessels.

We can observe in Fig. 5 that this simplified model is actually
related to the main branches of the vessels in the OD. The final
vessel segmentation is obtained by registering this simplified
vessel model onto the initial K-means vessel segmentation using
the log-demons algorithm,23 presented in Sec. 2.3.1 below [see
Fig. 6(b)]. We end up with an image comprising four clusters
representing the background, the vessels, the cup, and the
rim [Fig. 6(c)]. The OD region atlas, constructed from this sim-
plified four-clusters representation, is noted R.

2.3 Construction of the Optic Disc Region Atlas

The atlas construction method consists in finding the average
model and the pairwise geometric transformations between
the average model and each OD image.

2.3.1 Optic disc region registration

The log-demons algorithm23 is used to perform the pairwise
registration between two OD region representations Ri and

Fig. 3 OD and cup segmentation: (a) OD region patch with disc segmentation from Ref. 27; (b) cup
segmentation by ellipse fitting (the fitted ellipse is marked in red and green, high polar gradients are
marked in black); and (c) cup and neuroretinal rim clusters.

Fig. 4 Initial vessels segmentation: (a) OD region patch; (b) K-means clustering with K ¼ 3; and
(c) selection of the vessels cluster.
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Rref . The registration is modeled by a deformation field that enc-
odes at each image position the displacement vector. The log-
demons algorithm is a fast iterative method that enforces the
diffeomorphic properties of the resulting deformation field by
computing stationary velocity fields defined by the following
ordinary differential equation vðxÞ ¼ d

dtϕðtÞ. The exponential
of the velocity field is a solution of this ordinary differential
equation at time 1, i.e., ϕ ¼ expðvÞ. The diffeomorphic proper-
ties of the transformation ensure that no folding will appear in
the deformation field. This is the model we want for the OD
region because the geometric deformation that appears in this
region should be smooth and with no folding. The fact that
we manipulate velocity fields in the exponential map guarantees
that the corresponding deformation field ϕ is diffeomorphic.
The log-demons algorithm can be formulated as a minimization
of energy E with the resulting velocity field v and an auxiliary
variable vc, called the correspondences. This variable is intro-
duced to separate the energy minimization into two steps: one
with respect to the correspondences vc with v fixed and the other
with respect to the transformation v with vc fixed:

EQ-TARGET;temp:intralink-;e009;63;191EðRi; Rref ; v; vcÞ ¼
1

σ2i
kRref − Ri ∘ expðvcÞk2

þ 1

σ2x
kvc − vk2 þ 1

σ2T
k∇vk2; (9)

where σ2i is the error we allow on the intensities, σ2x is the error
we allow between the transformation and the correspondences,
and σ2T is a smoothing parameter. At each iteration of the log-
demons algorithm, we first find the update u to apply to the
velocity field, which is the minimization of the first part of

Eq. (9) (we make the same assumptions as in Vercauteren
et al.,23 namely that σ2x ≈ 1 and σ2i ≈ kRref − Ri ∘ expðvÞk2):

EQ-TARGET;temp:intralink-;e010;326;389u ¼ ∇R̃i Rref − R̃i

kRref − R̃ik2 þ k∇R̃ik2
; (10)

where

EQ-TARGET;temp:intralink-;e011;326;328R̃i ¼ Ri ∘ expðvÞ: (11)

Then, the second minimization is performed with two
Gaussian regularizations corresponding to convolutions with
Gaussian kernels: one, which has a fluid behavior, on the update
field obtained in Eq. (10); the other, which corresponds to an
elastic regularization, on the velocity field itself:

EQ-TARGET;temp:intralink-;e012;326;245v ¼ vþ u � Kfluid; (12)

EQ-TARGET;temp:intralink-;e013;326;203v ¼ v � Kdiff ; (13)

where Kfluid and Kdiff are Gaussian kernels with standard devia-
tions of σfluid and σdiff , respectively.

The alternation between the two minimization steps (corre-
spondences update and field regularization) accelerates the min-
imization of the energy. The addition in Eq. (12) is possible due
to the Baker–Campbell–Hausdorff approximation that simpli-
fies the addition of the update u to the velocity field
[expðvÞ ∘ expðuÞ ≈ expðvþ uÞ]. The scaling and squaring
method29 is used to efficiently calculate exponentials of fields.
A multiresolution scheme is used to accelerate the computation

Fig. 5 Construction of simplified vessels model: (a) initial vessels segmentations via K-means; (b) ves-
sels average model; and (c) simplified vessels model obtained by thresholding the average model.

Fig. 6 Construction of four-cluster representation: (a) initial vessels segmentation via K-means; (b) sim-
plified vessels model registered onto K-means vessels segmentation; and (c) final four-cluster
representation.
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by reducing the number of iterations of the minimization at each
scale. We first start with a downscaled representation and apply
the resulting velocity field to the upscaled representation.

2.3.2 Average model construction

The average model is constructed following the iterative method
of Guimond et al.24 A reference Rref

ðk¼0Þ is first arbitrarily chosen
from the set of OD images. At each iteration k, each OD rep-
resentation Ri is registered to Rref

k by means of the diffeomor-
phic transformation ϕi

k ¼ expðvikÞ obtained with the log-demons
algorithm.

After registering each Ri to Rref
k with the corresponding

velocity field vik, we average the intensities of the resulting reg-
istered images:

EQ-TARGET;temp:intralink-;e014;63;590Rref 0
k ¼ 1

N

XN−1

i¼0

Ri ∘ expðvikÞ: (14)

The inverse of the average velocity field is next applied to
Rref 0
k . This transformation brings the current reference toward

the average model. As the log-demons method returns a velocity
field, it can be directly averaged or inverted using the log-
Euclidean framework described in Arsigny et al.,25 which sim-
plifies calculation of the transformation to apply to Rref 0

k :

EQ-TARGET;temp:intralink-;e015;63;474Rref
kþ1 ¼ Rref 0

k ∘ exp
�
−
1

N

XN−1

i¼0

vik

�
: (15)

The final average model Rref
∞ is obtained when the inverse of

the average velocity field approaches a null displacement field, i.
e., Rref

∞ ∘ expð− 1
N

P
N−1
i¼0 vi∞Þ ¼ Rref

∞ . A few iterations (less than
10) are usually sufficient to reach this solution.

The RGB average model Iref∞ can be calculated by applying
the final velocity fields vi∞ to the three-color channels:

EQ-TARGET;temp:intralink-;e016;63;358Iref∞ ¼
XN−1

i¼0

Iic ∘ expðvi∞Þ: (16)

2.4 Statistical Analysis

The statistical analysis step aims at studying the variability of
geometric deformations in the atlas population. We have con-
structed the average model that allows us to compute the veloc-
ity fields vi∞ from all the images of the atlas onto the average
model. These velocity fields represent the range of geometric
deformations that exists in the set of OD regions used to
build the atlas. Since the space of velocity fields is a vector
space (i.e., the addition of two velocity fields is meaningful),
the standard statistical analysis tools are available.

2.4.1 Variance field

First, we calculate the variance of the velocity fields. The vari-
ance field can be formulated as follows:

EQ-TARGET;temp:intralink-;e017;63;131σ2R∞
¼ 1

N

XN−1

i¼0

v2i : (17)

The variance field quantifies the expected velocity (or defor-
mation) at each position, thereby revealing the locations in the

OD region having the highest geometric variability in the atlas
population.

2.4.2 Principal component analysis

Another way to study the variability more globally is to identify
the principal modes of variation using principal component
analysis (PCA). Each velocity field contains M ¼ 2m2 veloc-
ities at each point of the grid of size m ×m. If we want to con-
struct the M × N matrix V of all velocity fields from the N
images, V ¼ ðv0; v1; · · · ; vN−1Þ the covariance matrix Σ ¼ VVT

will be huge and the Eigen decomposition Σ ¼ PΛPT , with P
the matrix of eigenvectors, exceedingly costly to compute.
Furthermore, the decomposition will lead to ðN − 1Þmeaningful
eigenvectors as the covariance matrix will be of rank ðN − 1Þ.
Turk and Pentland30 showed that VE corresponds to the eigen-
vectors matrix P of the covariance matrix, where E is the eigen-
vector matrix of the N × N matrix Γ ¼ VTV.

We will use these two atlas statistics, namely the variance
field and PCA, to propose the ASD.

2.5 Atlas-Based Shape Descriptor

Let us consider a new fundus image Inew. First, we perform mac-
ula and OD localization and apply the affine registration to
obtain the OD region patch Inewc . Second, we compute the cor-
responding four-clusters representation Rnew, as shown in
Sec. 2.2 above. Third, we project Rnew onto the atlas by com-
puting its velocity field vnew to the average model Rref

∞ . The local
deviation map dnew is computed by dividing the velocity field by
the variance field:

EQ-TARGET;temp:intralink-;e018;326;417dnew ¼ vnew

σR∞

: (18)

Local velocity values are thereby weighted by the corre-
sponding variance values: where the atlas variance is high,
a high velocity will be less significant; on the contrary,
where the atlas variance is low, a low velocity will become
more significant.

The projection pj of the new velocity field vnew onto the j’th
mode of variation (from the PCA), can be written as follows:

EQ-TARGET;temp:intralink-;e019;326;296pj ¼ vnew · ðVEÞj: (19)

The ASD we propose is composed of the maximum dmax and
the mean davg of the local deviation map and of the projections
onto all the modes of variation:

EQ-TARGET;temp:intralink-;e020;326;230ASD ¼ ½davg; dmax; p0; p1; · · · ; pN−1�: (20)

3 Experiments and Discussion
We first validated the construction of the statistical atlas by com-
paring the registration residuals resulting from using different
representations and different registration methods. Then, the
OD statistical atlas was further validated by analyzing the aver-
age model and its variance field and principal variation modes.
Finally, we examined whether the ASD was able to distinguish
between healthy cases and pathological conditions, such as
glaucomateous or prone to develop abnormalities ODs.
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3.1 Construction of the Optic Disc Atlas

We selected 60 healthy fundus images from the MESSIDOR
database,28 each having a wholly visible OD and cup and there-
fore a high confidence in the segmentation accuracy, to construct
the statistical atlas. These images were captured using a Topcon
TRC NW6 nonmydriatic retinal camera with a 45-deg field
of view. The image sizes were 1440 × 960;2240 × 1488 or
2304 × 1536 pixels.

A glaucoma specialist was asked to eventually correct the
automatic results of the segmentation by manually adjusting
the optic cup and disc boundaries. This step was required to
avoid any bias in the atlas construction method and the proposed
descriptor.

To validate the construction of the OD atlas, including the
choice of representation and the registration method, we quan-
titatively evaluated the residuals from the registration phase. The
residual is defined as follows, with Rref

∞ the average model:

EQ-TARGET;temp:intralink-;e021;63;558Residuali ¼ kRref
∞ − Ri ∘ expðviÞk2: (21)

The regularization parameters of the log-demons algorithm,
σfluid and σdiff , were both set to 1.5 to constrain the smoothness
of the transformation. These values were set by minimizing the
registration residuals on a random set of OD representation from
MESSIDOR dataset.

We compare the residuals from the atlas construction to
evaluate the contribution of the log-demons registration method
over simpler affine registration used in this work and in Lee
et al.19 Likewise, the proposed four-clusters representation of
the OD region was compared to the grayscale representation,
obtained by averaging the R,G, and B intensities. The impact
of a large registration residual is that when we average the reg-
istered image intensities to form the average model, the edges
will be blurry and hence not well preserved. Furthermore, the
variability will not be correctly calculated as the ODs will
not be registered correctly onto the average model.

Figure 7 shows how the residuals evolve as a function of the
number of iterations in the average model construction process.
Clearly, using the four-cluster representation is better than the
grayscale representation and log-demons registration performs
better than affine registration. We achieve the best average
residual using log-demons and the four-cluster representation.
As expected, the affine registration residual does not decrease
after the first iteration because the average model is directly cal-
culated from the affine transformation. From these results, we

can first see that the smooth diffeomorphic transformation,
which has more degrees of freedom than an affine transforma-
tion, and reduces registration errors. Second, the four-cluster
representation is less complex to register for the log-demons
than the grayscale representation. The grayscale representation
leads to incorrect registrations because the gradients and the disc
and cup edges that contribute to the velocity update are noisy
and the small vessels are difficult to register. The strength of
our representation is that we extract only the statistically signifi-
cant vessels inside the OD region and the registration is not cor-
rupted by vessels that are not present in the whole population.
For example, the cilioretinal artery coming from the temporal
side of the OD is present only in 30% of retinae.1

We evaluate that the resulting average model is well defined
by calculating the norm of the average of velocity fields
k 1
N

P
N
i¼0 v

i
kk and observe how this quantity evolves throughout

the minimization (see Fig. 7). The norm of the average of veloc-
ity fields converges after four iterations and its final value cor-
responds to a change of less than 0.5 pixels on average.

Next, we conducted a test to determine the influence of the
choice of initial reference image Rref

k¼0; five different images,
chosen randomly, were tested. We can observe, in Fig. 8, the
initial references, their four-cluster representations, and the cor-
responding final average models. The resulting average models
are very similar. This is confirmed by the fact that after four
iterations, the average and standard deviation of the root-
mean square error of intensities between the five average models
is very low (see Fig. 9).

These results indicate that the average model construction
behaves well with the representation we have chosen and
that it is robust with respect to the choice of the first reference
image.

3.2 Optic Disc Atlas Analysis

We can now present the results of the statistical analysis of the
average model and its variability measures (local variance and
principal components). First, we analyzed the average model
qualitatively. In Fig. 10, we can observe that the average
model constructed with only affine registration is very blurry.
By contrast, using the log-demons registration results in well-
preserved edges of the principal anatomical structures, namely
the cup, the disc, and the vessels, while keeping a smooth and
invertible transformation. The variance field is shown in
Fig. 10(c). This map emphasizes that the variability is high
for the vessels inside the OD, whereas it is moderate on the
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boundaries of the OD and cup and low inside the neuroreti-
nal rim.

The average OD model is slightly elliptical with the vertical
axis as the major axis, which is consistent with normal
anatomy.4 The LCDR of the average model is 0.49 and the
VCDR is 0.51, which are close to the average of the CDR mea-
sures in the atlas population (0.51 for both the LCDR and
VCDR). The cup’s location is slightly temporal with respect
to the center of the OD and the ISNT rule (I > S > N > T)
is respected (see Fig. 11).

The PCA applied to the OD atlas is another way to visualize
the variability. Rather than expressing the variability locally, the
eigenvectors represent velocity fields and therefore global dis-
placement. Each eigenvector explains a proportion of the total
variability equal to its eigenvalue divided by the sum of all
eigenvalues.

We observe the first eigenvector, explaining 29% of the vari-
ability, in Fig. 12. This figure shows the principal deformation
covering the range of variability from −2σ to 2σ and the corre-
sponding closest OD image from the atlas projected onto the
eigenvector. The first mode corresponds to a simultaneous
enlargement of the disc and the cup. The size of the cup is
more variable horizontally, thus a vertical enlargement of the
cup would more likely be abnormal than a horizontal one.

The second eigenvector, explaining 22% of the variability,
corresponds to a nasal displacement of the vessels as they are
pushed by the enlargement of the cup (see Fig. 12 left).
Interestingly, this mode of variation characterizes a type of
deformation that is one of the less-specific clinical signs of
glaucoma.4

The two following eigenvectors, explaining, respectively,
10% and 9% of the variability, are close to small rotations
with different centers (see Fig. 13). These two eigenvectors
are certainly related to the eye placement during the image
acquisition. The fifth eigenvector (accounting for 6% of the

Fig. 8 Influence of initial reference selection: (a) initial image chosen as reference; (b) corresponding
four-cluster representation Rref

k¼0; (c) resulting final average model Rref
∞ ; and (d) corresponding average

model I ref∞ in RGB space.
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variability) is a vertical stretching of the OD combined with a
vertical stretching of the cup (see Fig. 13). These first five eigen-
vectors explain 76% of the variability in the atlas population.

The sixth eigenvector, shown in Fig. 14, explains 4% of the
variability and corresponds to a horizontal enlargement of the
cup while the disc boundary does not move. The seventh eigen-
vector, illustrated in Fig. 14, explains 3% of the variability and
corresponds mainly to a vertical enlargement of the cup. It is

important to note that these two modes characterize specific
deformations that can help to detect glaucoma.

The first 10 eigenvectors explain 90% of the variability,
whereas the first 20 account for 96.4% of the variability
(see Fig. 15).

3.3 Assessing Abnormal Conditions Using the
Atlas-Based Shape Descriptor

We want to evaluate the ability of the ASD to capture early
changes in the geometry of OD and characterize pathological
cases. Experiments are conducted on two datasets. The first
one contains 16 OD-centered fundus images from Ibn-El-
Haythem, Algers, Algeria. These fundus images have been iden-
tified as pathological by two ophthalmologists. Pathological
case present symptomatic signs and needs, according to the
opthalmologists, close follow-up examination to control the
potential evolution of the pathology, which is important to detect
as early as possible. For the second dataset, 255 fundus images
were acquired from the CARA screening platform (Diagnos
Inc., Montreal, Canada). These images were captured using dig-
ital retina cameras from different manufacturers (Centervue,

Fig. 10 Atlas analysis: (a) average model calculated using only affine registration; (b) average model
using log-demons algorithm; and (c) variance map of model in (b).

Fig. 11 Anatomical validity of average model: VCDR measure and
conformity with ISNT rule (lengths indicated in pixels.)

Fig. 12 First (a) and second (b) mode of variation: (first row) expððVEÞ0Þ applied to RGB average model;
(second row) corresponding four-clusters averagemodel; (last two rows) closest element of the database
to the corresponding expðαðVEÞ1;2Þ, with α ∈ ½−2;−1; 0; 1; 2�.
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Canon, Topcon and Zeiss) with a 45-deg field of view and
are of size 1620 × 1444, 2196 × 1958, 2592 × 1944, or 3872 ×
2592 pixels. Among the 255 images, 126 fundus images were
identified as glaucomatous cases by two ophthalmologists. The
other 129 fundus images were not suspected to have glaucoma
and considered to be healthy.

The box plots of the distribution of several ASD components
are shown in Fig. 16 for the four resulting populations (atlas,
healthy, pathological, and glaucomateous). We can see that for
all of these measures, the atlas and healthy groups’ distributions

follow each other closely, whereas the pathological and glauco-
mateous group is always shifted with respect to the other two.
The results of Mann–Whitney test show strong difference
between healthy and pathological or glaucoma population
with most of the time a p-value less than 0.0001 (see Table 1).

Scatter plot on the two variables p47 and p59 show that these
two components of the ASD are uncorrelated (see Fig. 17).

These components of the ASD correspond to the projection
on a specific eigenvector of the atlas. We have already seen
that p5 looks like an enlargement of the cup horizontally. In
Fig. 18, we show the projection corresponding to p47 and
p59. Interestingly, this seems visually to correspond to a vertical
and horizontal displacement of the cup, respectively.

We can observe in Fig. 19 that the LCDR is uncorrelated with
p47. The LCDR is the square root of the ratio of the cup area
over the disc area. It shows that the ASD has at least one com-
ponent with discriminative information not present in LCDR.

In summary, several components of the ASD show signifi-
cant differences between glaucomatous and healthy ODs while
the healthy ODs lie inside the expected variability of the atlas.
While some components of the ASD have low discriminating
power to characterize glaucoma by themselves, most of the com-
ponents of the ASD are uncorrelated with each other, which is
very promising for the prospect of combining several ASD

Fig. 13 Third, fourth, and fifth modes of variation applied to RGB average model [expððVEÞi Þ] with
i ∈ ½2; 3; 4�).

Fig. 14 (a) Seventh mode of variation applied to RGB and four-clusters average model ½expððVEÞ6Þ�.
(b) Sixth mode of variation applied to RGB and four-clusters average model ½expððVEÞ5Þ�.
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Table 1 Significance difference between healthy and abnormal OD with CDR and ASD.

Healthy Pathological Glaucoma

Mean� Std Mean� Std p-valuea Mean� Std p-valuea

LCDR 0.48� 0.05 0.54� 0.05 <0.0001 0.59� 0.07 <0.0001

Max deviation 0.22� 0.05 0.31� 0.17 <0.01 0.41� 0.19 <0.0001

p5 −0.07� 0.12 0.05� 0.13 <0.001 0.08� 0.16 <0.0001

p27 −0.06� 0.20 0.09� 0.18 <0.0001 0.11� 0.23 <0.0001

p32 −0.05� 0.22 0.09� 0.20 <0.01 0.17� 0.24 <0.0001

p47 0.10� 0.09 −0.23� 0.24 <0.001 −0.37� 0.38 <0.0001

p59 0.05� 0.19 −0.28� 0.21 <0.0001 −0.49� 0.47 <0.0001

aFor Mann–Whitney test.

Fig. 16 (a) Distribution of measures between the four image sets, for p32, p47, and p59. P-value of Mann–
Whitney test of ***, <0.0001; **, <0.001; *, <0.01. (b) Distribution of measures between the four image
sets, for dmax, p5, and p27. P-value of Mann–Whitney test of ***, <0.0001; **, <0.001; *, <0.01.
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Journal of Medical Imaging 014006-11 Jan–Mar 2018 • Vol. 5(1)

Girard, Kavalec, and Cheriet: Statistical atlas-based descriptor for an early detection. . .



components to improve their discriminating power and special-
ize them for a specific pathology affected by specific geometric
deformations.

4 Discussion and Conclusion
We have proposed a method to construct a statistical ASD to
represent the geometric deformation of the OD region in fundus
images. It is the first time that a validated atlas of the OD region
is constructed. The atlas construction methods have been vali-
dated, and the resulting components of the ASD have been ana-
lyzed. Finally, we have showed that these components were able
to characterize discriminative deformation and therefore distin-
guish between healthy ODs and pathological ODs.

The CDR is a good measure for comparative exam but is not
able to deal with the variability of OD shape among patients, for
example, OD size. This is the strength of our new atlas approach
that through the shape descriptor, obtained from a PCA of the
atlas velocity fields, we are able to separate the OD size vari-
ability among healthy patients from the pathological variability.
Therefore, the ASD is able to characterize abnormalities from
only one fundus image. We have shown that the ASD is able
to distinguish normality as well as abnormalities including glau-
coma. Many components of the ASD are uncorrelated with
CDR measures, which confirm that all the available geometric
information is not being exploited when using only the CDR.
Additionally, the CDR is specific to describing glaucoma,
whereas the ASD can highlight any significant deviation
from the average mode and can reveal more signs than the CDR.

One big advantage of the atlas approach is the easiness to
interpret results and what have been learned in the atlas. We
have already seen that each element of the ASD has a geometric
meaning and that we can visualize the modes as a geometric
deformation and therefore explain on which deformation
mode a pathological OD is outside the healthy variability.
Furthermore, the local deviation map dnew is very useful to
track the local deformations that are outside the atlas variability
(see Fig. 20). The ASD is able to assist the clinicians in the
assessment of pathological ODs and supplement the use of clini-
cal measures, such as the CDR. The local deviation map high-
lights the local deformation and can assist the clinicians to detect
these early local deformations.

To further assist the clinicians, the statistical atlas will help
the clinicians in early glaucoma detection and stratification with
the computation of a new glaucoma likelihood score calculated
from the ASD. More generally, this statistical atlas will help to
study the correlation of the ASD components with clinical
assessment in pathologic cases. We will be able to analyze
and quantify the morphological variability of OD region in
healthy populations and better understand ethnic differences.
As well, we will be able to study the asymmetry of the OD
region abnormalities between right and left eyes.

In this work, the statistical atlas is constructed with a healthy
OD region to model the variability of a healthy population
regardless of other demographic data. With added information
such as age, we would be able to construct a longitudinal stat-
istical atlas to analyze the variability due to aging and those
related to a pathology. Furthermore, the atlas construction
framework could be extended to characterize 3-D deformations
with optical coherence tomography exams of the OD. The 3-D
shape of the OD carries useful information and the variability
could be studied using the same framework by adapting the
registration procedure to 3-D velocity fields.

However, the number of fundus images chosen to construct
the atlas is currently limited. We chose to validate each segmen-
tation by an ophthalmologist so that the results of the study are
not biased by any segmentation errors. The similarity of the
ASD components between the atlas population and the other
129 healthy population, however, indicates that the current
atlas represents well an unknown healthy population. In addi-
tion, our method for constructing the average model is incre-
mental so we can easily add new ODs to the average model.
An easy way is to begin with the current average model as
the representation and iterate toward the new average model.

Fig. 18 p47 and p59 corresponding mode of variation applied to the RGB average model.
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sure extracted from the ASD.

Journal of Medical Imaging 014006-12 Jan–Mar 2018 • Vol. 5(1)

Girard, Kavalec, and Cheriet: Statistical atlas-based descriptor for an early detection. . .



So, adding new patients to the atlas is fast, which is a real ad-
vantage of an atlas approach.

In this study, only one ophthalmologist has validated the seg-
mentation. Thus, the interexpert variability in OD region seg-
mentation should be studied. For future improvements, we
could construct the atlas from the average segmentation of
multiple experts when available.

As for now, the proposed method is semiautomatic. Full
automatic cup segmentation could be achieved with the recent
development of deep learning techniques. However, lack of
annotated data requires realistic data augmentation, especially
for medical images. Our proposed atlas would be able to procure
realistic deformation of the OD region and therefore improve
automatic segmentation of the OD region.

Ongoing work focus on gathering more pathological data
and then proposing a method to construct specific scores derived
from the ASD, specialized to detect different pathologies.
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