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Abstract

In this paper, we present some identities of Gaussian binomial coefficients
with respect to recursive sequences, Fibonomial coefficients, and complete
functions by use of their relationships.
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1. Introduction

𝑞-series are defined by

(𝑞)𝑛 = (1− 𝑞)(1− 𝑞2) · · · (1− 𝑞𝑛) (1.1)
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for integer 𝑛 > 0 and (𝑞)0 = 1. Arising out of these are Gaussian binomial coeffi-
cients (or Gaussian coefficients as an abbreviation) for integers 𝑛, 𝑘 ≥ 0,

(︂
𝑛

𝑘

)︂

𝑞

=

{︃
(1−𝑞𝑛)(1−𝑞𝑛−1)···(1−𝑞𝑛−𝑘+1)

(𝑞)𝑘
, 0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛,

=
[𝑛]𝑞!

[𝑘]𝑞![𝑛− 𝑘]𝑞!
, 𝑘 ≤ 𝑛, (1.2)

where the 𝑞-factorial [𝑚]𝑞! is defined by [𝑚]𝑞! = Π𝑚
𝑘=1[𝑘]𝑞 = [1]𝑞[2]𝑞 · · · [𝑚]𝑞, and

[𝑘]𝑞 =
𝑘−1∑︁

𝑖=0

𝑞𝑖 = 1 + 𝑞 + 𝑞2 + · · ·+ 𝑞𝑘−1 =

{︃
1−𝑞𝑘

1−𝑞 for 𝑞 ̸= 1,

𝑘 for 𝑞 = 1.

From (1.2) we have
(︀
𝑛
0

)︀
𝑞
=
(︀
𝑛
𝑛

)︀
𝑞
= 1,

(︀
𝑛
𝑘

)︀
𝑞
=
(︀

𝑛
𝑛−𝑘

)︀
𝑞
,

(1− 𝑞𝑘)

(︂
𝑛

𝑘

)︂

𝑞

= (1− 𝑞𝑛)

(︂
𝑛− 1

𝑘 − 1

)︂

𝑞

, (1.3)

and for 0 < 𝑘 < 𝑛
(︂
𝑛

𝑘

)︂

𝑞

= 𝑞𝑘
(︂
𝑛− 1

𝑘

)︂

𝑞

+

(︂
𝑛− 1

𝑘 − 1

)︂

𝑞

, (1.4)

(︂
𝑛

𝑘

)︂

𝑞

=

(︂
𝑛− 1

𝑘

)︂

𝑞

+ 𝑞𝑛−𝑘

(︂
𝑛− 1

𝑘 − 1

)︂

𝑞

. (1.5)

Identities (1.4) and (1.5) are analogs of Pascal’s identities. Alternatively using (1.4)
and (1.5), we obtain the identity

(︂
𝑛

𝑘

)︂

𝑞

=

(︂
𝑛− 1

𝑘

)︂

𝑞

+

(︂
𝑛− 1

𝑘 − 1

)︂

𝑞

− (1− 𝑞𝑛−1)

(︂
𝑛− 2

𝑘 − 1

)︂

𝑞

(1.6)

More precisely, by substituting (1.4) with the transformation 𝑛 → 𝑛− 1 and 𝑘 →
𝑘 − 1 into (1.5), we have

(︂
𝑛

𝑘

)︂

𝑞

=

(︂
𝑛− 1

𝑘

)︂

𝑞

+ 𝑞𝑛−1

(︂
𝑛− 2

𝑘 − 1

)︂

𝑞

+ 𝑞𝑛−𝑘

(︂
𝑛− 2

𝑘 − 2

)︂

𝑞

.

Substituting (1.5) with the transformation 𝑛 → 𝑛− 1 and 𝑘 → 𝑘 − 1 into the last
term of the above identity, we have

(︂
𝑛

𝑘

)︂

𝑞

=

(︂
𝑛− 1

𝑘

)︂

𝑞

+ 𝑞𝑛−1

(︂
𝑛− 2

𝑘 − 1

)︂

𝑞

+

(︂
𝑛− 1

𝑘 − 1

)︂

𝑞

−
(︂
𝑛− 2

𝑘 − 1

)︂

𝑞

,

which implies (1.6).
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In 1915 Georges Fontené (1848–1928) published a one page note [8] suggest-
ing a generalization of binomial coefficients, replacing the natural numbers by an
arbitrary sequence (𝐴𝑛) of real or complex numbers, namely,

(︂
𝑛

𝑘

)︂

𝐴

=
𝐴𝑛𝐴𝑛−1 · · ·𝐴𝑛−𝑘+1

𝐴𝑘𝐴𝑘−1 · · ·𝐴1
(1.7)

with
(︀
𝑛
0

)︀
𝐴
=
(︀
𝑛
𝑛

)︀
𝐴
= 1, where 𝐴 stands for (𝐴𝑛). He gave the fundamental recur-

rence relation for these generalized coefficients and include the ordinary binomial
coefficients as a special case for 𝐴𝑛 = 𝑛, while for 𝐴𝑛 = 𝑞𝑛 − 1 we obtain the
Gaussian binomial coefficients (or 𝑞-binomial coefficients) (1.6) studied by Gauss
(as well as Euler, Cauchy, F . H, Jackson, and many others later). The history of
Gaussian binomial coefficients can be seen in a recent paper by Shannon [18] and
its references.

These generalized coefficients of Fontené were rediscovered by Morgan Ward
(1901–1963) in a remarkable paper [23] in 1936 which developed a symbolic cal-
culus of sequences without mentioning Fontené. In that paper, Ward posed the
problem whether a suitable definition for generalized Bernoulli numbers could be
framed so that a generalized Staudt-Clausen theorem [7] existed for them within
the framework of the Jackson calculus [14]; the Staudt-Clausen theorem deals with
the fractional part of Bernoulli numbers [20]. Rado [17] and Carlitz [4, 5] outlined
partial generalizations of the theorem with the Jackson operators for 𝑞-Bernoulli
numbers, and Horadam and Shannon completed this proof [13]. We shall follow
Gould [10] and call the generalized coefficients (1.7) the Fontené-Ward generalized
binomial coefficients.

Since 1964, there has been an accelerated interest in Fibonomial coefficients,
which correspond to the choice 𝐴𝑛 = 𝐹𝑛, where 𝐹𝑛 are the Fibonacci numbers
defined by 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛, with 𝐹0 = 0, and 𝐹1 = 1. For instance, see
Trojovský [21] and its references. As far as we know, the first person to name
them (not utilize them) was Stephen Jerbic, a research Master student of Verner
Hoggatt, who completed his thesis in 1968 [15]. One of the authors of this paper
read his MA thesis in 1975 when the author visited Verner Hoggatt in San Jose.

If the recursive number sequence (𝑈𝑛(𝑎, 𝑏; 𝑝1, 𝑝2)) that satisfies𝑈𝑛+2 = 𝑝1𝑈𝑛+1−
𝑝2𝑈𝑛 (𝑛 ≥ 0) and has initials 𝑈0 = 𝑎 and 𝑈1 = 𝑏 is used to replace (𝐴𝑛) in
the Fontené-Ward generalized binomial coefficients, then the corresponding Gaus-
sian binomial coefficients are called the generalized Fibonacci binomial coefficients,
which are shown in the recent paper [18] by Shannon. 𝑈𝑛(0, 1; 𝑝1, 𝑝2) can be rep-
resented by its Binet from 𝑈𝑛 = (𝛼𝑛 − 𝛽𝑛)/(𝛼− 𝛽) (cf. the authors [11]), where 𝛼
and 𝛽 are two distinct roots of the (𝑈𝑛)

′𝑠 characteristic equation 𝑥2−𝑝1𝑥+𝑝2 = 0.
Throughout this paper, we always assume the characteristic equation 𝑥2−𝑝1𝑥+𝑝2 =
0 has non-zero constant term 𝑝2 and two distinct roots 𝛼 and 𝛽. Since 𝛼𝛽 = 𝑝2,
we have 𝛼, 𝛽 ̸= 0. Shannon’s paper starts from a nice relationship between the
Gaussian binomial coefficients defined by (1.7) with 𝑞 = 𝛽/𝛼 (𝛼 ̸= 0, 𝑖.𝑒., 𝑝2 ̸= 0)
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for 𝑈𝑛(0, 1; 𝑝1, 𝑝2) and the generalized Fibonacci binomial coefficients
(︂
𝑛

𝑘

)︂

𝑈

=
𝑈𝑛𝑈𝑛−1 · · ·𝑈𝑛−𝑘+1

𝑈1𝑈2 · · ·𝑈𝑘
, (1.8)

where 𝑈 stands for (𝑈𝑛(0, 1; 𝑝1, 𝑝2)), represented by
(︂
𝑛

𝑘

)︂

𝑞

= 𝛼−𝑘(𝑛−𝑘)

(︂
𝑛

𝑘

)︂

𝑈

, (1.9)

where 𝑞 = 𝛽/𝛼, and 𝛼 ̸= 0 and 𝛽 are two distinct roots of the (𝑈𝑛)
′𝑠 characteristic

equation 𝑥2 − 𝑝1𝑥+ 𝑝2 = 0 assumed before. In fact, we have
(︂
𝑛

𝑘

)︂

𝑞

=
(1− (𝛽/𝛼)𝑛)(1− (𝛽/𝛼)𝑛−1) · · · (1− (𝛽/𝛼)𝑛−𝑘+1)

(1− 𝛽/𝛼)(1− (𝛽/𝛼)2) · · · (1− (𝛽/𝛼)𝑘)

=
(𝛼𝑛 − 𝛽𝑛)(𝛼𝑛−1 − 𝛽𝑛−1) · · · (𝛼𝑛−𝑘+1 − 𝛽𝑛−𝑘+1)

(𝛼− 𝛽)(𝛼2 − 𝛽2) · · · (𝛼𝑘 − 𝛽𝑘)

(1/𝛼𝑛)(1/𝛼𝑛−1) · · · (1/𝛼𝑛−𝑘+1)

(1/𝛼𝑘)(1/𝛼𝑘−1) · · · (1/𝛼)

=
𝑈𝑛𝑈𝑛−1 · · ·𝑈𝑛−𝑘+1

𝑈1𝑈2 · · ·𝑈𝑘

(︂
1

𝛼𝑛−𝑘

)︂𝑘

,

which implies (1.9).
Based on the relationship (1.9), several interesting identities are established.

For instance, [18] used (1.9) to establish the following identity.
(︂
𝑛− 1

𝑘

)︂

𝑞

+

(︂
𝑛− 1

𝑘 − 1

)︂

𝑞

=
2− 𝑞𝑘 − 𝑞𝑛−𝑘

1− 𝑞𝑛

(︂
𝑛

𝑘

)︂

𝑞

. (1.10)

Obviously, identity (1.10) can also be proved by using (1.3) and

(1− 𝑞𝑛−𝑘)

(︂
𝑛

𝑘

)︂

𝑞

= (1− 𝑞𝑛−𝑘)

(︂
𝑛

𝑛− 𝑘

)︂

𝑞

= (1− 𝑞𝑛)

(︂
𝑛− 1

𝑛− 𝑘 − 1

)︂

𝑞

= (1− 𝑞𝑛)

(︂
𝑛− 1

𝑘

)︂

𝑞

.

Consequently, combining (1 − 𝑞𝑘)
(︀
𝑛
𝑘

)︀
𝑞
= (1 − 𝑞𝑛)

(︀
𝑛−1
𝑘−1

)︀
𝑞

on the leftmost side and
the rightmost side of the last equation yields

(1− 𝑞𝑛)

(︃(︂
𝑛− 1

𝑘

)︂

𝑞

+

(︂
𝑛− 1

𝑘 − 1

)︂

𝑞

)︃
= (2− 𝑞𝑘 − 𝑞𝑛−𝑘)

(︂
𝑛

𝑘

)︂

𝑞

.

In this paper, we will continue Shannon’s work to construct a few more identities.
The second part of this paper concerns complete homogenous symmetric func-

tions, which have a natural connection with Gaussian coefficients. A good source
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of information for the early history of symmetric functions, such as the fundamen-
tal theorem of symmetric functions and the symmetry of the matrix, is [22] by
Vahlen. In particular, the first published work on symmetric functions is due to
Girard [9] in 1629, who gave an explicit formula expressing symmetric polynomials.
The complete homogeneous symmetric polynomials are a specific kind of symmet-
ric polynomials. Every symmetric polynomial can be expressed as a polynomial
expression in complete homogeneous symmetric polynomials. The fundamental
relation between the elementary symmetric polynomials and the complete homo-
geneous ones can be found in [16] by Macdonald. More historical context on the
symmetric functions and the complete homogeneous symmetric polynomials can
be found in [16] and Stanley [19]. The complete functions are 𝑞 analogies of the
complete homogenous symmetric polynomials.

The complete homogeneous symmetric polynomial of degree 𝑘 in 𝑛 variables
𝑥1, 𝑥2, . . . , 𝑥𝑛, written ℎ𝑘 for 𝑘 = 0, 1, 2, . . ., is the sum of all monomials of total
degree 𝑘 in the variables. More precisely, for integers 𝑖1, 𝑖2, . . . , 𝑖𝑘,

ℎ𝑘(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
∑︁

1≤𝑖1≤𝑖2≤···≤𝑖𝑘≤𝑛

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑘 . (1.11)

or equivalently, for integers 𝑙1, 𝑙2, . . . , 𝑙𝑘

ℎ𝑘(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
∑︁

𝑙1+𝑙2+···+𝑙𝑛=𝑘, 𝑙𝑖≥0

𝑥𝑙1
1 𝑥

𝑙2
2 · · ·𝑥𝑙𝑛

𝑛 . (1.12)

Here, 𝑙𝑝 is the multiplicity of 𝑝 in the sequence 𝑖𝑘. The first few of these polynomials
are

ℎ0(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 1,

ℎ1(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
∑︁

1≤𝑗≤𝑛

𝑥𝑗 ,

ℎ2(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
∑︁

1≤𝑗≤𝑘≤𝑛

𝑥𝑗𝑥𝑘,

ℎ3(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
∑︁

1≤𝑗≤𝑘≤ℓ≤𝑛

𝑥𝑗𝑥𝑘𝑥ℓ.

Thus, for each nonnegative integer 𝑘, there exists exactly one complete homo-
geneous symmetric polynomial of degree 𝑘 in 𝑛 variables. Further results about
complete homogeneous symmetric polynomials can be expressed in terms of their
generating function (see, for example, Bhatnagar [1])

𝐻(𝑡) =
∑︁

𝑛≥0

ℎ𝑛𝑡
𝑛 = Π𝑛

𝑟=1(1− 𝑥𝑟𝑡)
−1.

If 𝑥𝑖 = 𝑞𝑖−1, from Cameron [3] (cf. P. 224), (1.11) defines the following relationship
between ℎ𝑟(1, 𝑞, 𝑞

2, . . . , 𝑞𝑛−1) and Gaussian coefficients, where ℎ𝑟(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−1)
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is called the complete function of order (𝑛, 𝑘).

ℎ𝑟(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−1) =

(︂
𝑛+ 𝑟 − 1

𝑟

)︂

𝑞

. (1.13)

From (1.9), we also have a relationship between ℎ𝑟(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−1) and general-

ized Fibonomial coefficients as follows:
(︂
𝑛

𝑘

)︂

𝑈

= 𝛼𝑘(𝑛−𝑘)ℎ𝑘(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−𝑘), (1.14)

where 𝑞 = 𝛽/𝛼 (recall that 𝛼 ̸= 0 and 𝛽 are two distinct roots of the equation
𝑥2−𝑝1𝑥+𝑝2 = 0), and 𝑈 is referred to as recursive sequence (𝑈𝑛(𝑎0, 𝑎1; 𝑝1, 𝑝2))𝑛≥0.

In the next section, we give identities of Gaussian coefficients and generalized
Fibonomial coefficients. In Section 3, by using formula (1.13) we will transfer the
results between Gaussian coefficients and the complete functions.

2. Identities of Gaussian coefficients and Fibonomial
coefficients

Theorem 2.1. Let
(︀
𝑛
𝑘

)︀
𝑞

be the Gaussian binomial coefficients defined by (1.2).
Then

(1− 𝑞𝑘)(1− 𝑞𝑛−𝑘)

(︂
𝑛

𝑘

)︂

𝑞

= (1− 𝑞𝑛)(1− 𝑞𝑛−1)

(︂
𝑛− 2

𝑘 − 1

)︂

𝑞

(2.1)

for 1 ≤ 𝑘 ≤ 𝑛− 1.

Proof. By applying (1.3) we have

(1− 𝑞𝑘)(1− 𝑞𝑛−𝑘)

(︂
𝑛

𝑘

)︂

𝑞

= (1− 𝑞𝑛−𝑘)(1− 𝑞𝑛)

(︂
𝑛− 1

𝑘 − 1

)︂

𝑞

= (1− 𝑞𝑛)(1− 𝑞𝑛−𝑘)

(︂
𝑛− 1

𝑛− 𝑘

)︂

𝑞

= (1− 𝑞𝑛)(1− 𝑞𝑛−1)

(︂
𝑛− 2

𝑘 − 1

)︂

𝑞

.

An alternative proof may provides an example of the use of (1.6). Starting from
(1.6) and noting (1.10), we have

(1− 𝑞𝑛)

(︂
𝑛

𝑘

)︂

𝑞

= (1− 𝑞𝑛)

(︃(︂
𝑛− 1

𝑘

)︂

𝑞

+

(︂
𝑛− 1

𝑘 − 1

)︂

𝑞

)︃
− (1− 𝑞𝑛)(1− 𝑞𝑛−1)

(︂
𝑛− 2

𝑘 − 1

)︂

𝑞

= (2− 𝑞𝑘 − 𝑞𝑛−𝑘)

(︂
𝑛

𝑘

)︂

𝑞

− (1− 𝑞𝑛)(1− 𝑞𝑛−1)

(︂
𝑛− 2

𝑘 − 1

)︂

𝑞

,
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or equivalently,

(1− 𝑞𝑛 − (2− 𝑞𝑘 − 𝑞𝑛−𝑘))

(︂
𝑛

𝑘

)︂

𝑞

= −(1− 𝑞𝑛)(1− 𝑞𝑛−1)

(︂
𝑛− 2

𝑘 − 1

)︂

𝑞

,

which implies (2.1).

By applying mathematical induction to the recursive relation (2.1), we may
prove the following formula.

Corollary 2.2. Let
(︀
𝑛
𝑘

)︀
𝑞

be the Gaussian binomial coefficients defined by (1.2).
Then for 0 ≤ 𝑗 ≤ 𝑛 and 𝑗 ≤ 𝑘 ≤ 𝑛− 𝑗

(︁
Π𝑗−1

ℓ=0(1− 𝑞𝑘−ℓ)(1− 𝑞𝑛−𝑘−ℓ)
)︁(︂𝑛

𝑘

)︂

𝑞

=
(︁
Π2𝑗−1

ℓ=0 (1− 𝑞𝑛−ℓ)
)︁(︂𝑛− 2𝑗

𝑘 − 𝑗

)︂

𝑞

. (2.2)

Relationship (1.9) can be used to change an identity for Gaussian binomial
coefficients to an identity for generalized Fibonomial coefficients and vice versa.

Corollary 2.3. Let
(︀
𝑛
𝑘

)︀
𝑞

be the Gaussian binomial coefficients defined by (1.2)
with 𝑞 = 𝛽/𝛼, and let

(︀
𝑛
𝑘

)︀
𝑈

be the generalized Fibonomial coefficients defined by
(1.8). Then

𝛼𝑘𝑈𝑛−𝑘 + 𝛼𝑛−𝑘𝑈𝑘 =
2− 𝑞𝑘 − 𝑞𝑛−𝑘

1− 𝑞𝑛
𝑈𝑛. (2.3)

Proof. Substituting
(︂
𝑛− 1

𝑘

)︂

𝑞

= 𝛼−𝑘(𝑛−𝑘−1)

(︂
𝑛− 1

𝑘

)︂

𝑈

= 𝛼−𝑘(𝑛−𝑘−1)𝑈𝑛−1𝑈𝑛−2 · · ·𝑈𝑛−𝑘

𝑈1𝑈2 · · ·𝑈𝑘(︂
𝑛− 1

𝑘 − 1

)︂

𝑞

= 𝛼−(𝑘−1)(𝑛−𝑘)

(︂
𝑛− 1

𝑘 − 1

)︂

𝑈

= 𝛼−(𝑘−1)(𝑛−𝑘)𝑈𝑛−1𝑈𝑛−2 · · ·𝑈𝑛−𝑘+1

𝑈1𝑈2 · · ·𝑈𝑘−1(︂
𝑛

𝑘

)︂

𝑞

= 𝛼−𝑘(𝑛−𝑘)

(︂
𝑛

𝑘

)︂

𝑈

= 𝛼−𝑘(𝑛−𝑘)𝑈𝑛𝑈𝑛−1 · · ·𝑈𝑛−𝑘+1

𝑈1𝑈2 · · ·𝑈𝑘

into (1.10), we have

𝛼−𝑘(𝑛−𝑘−1)𝑈𝑛−1𝑈𝑛−2 · · ·𝑈𝑛−𝑘

𝑈1𝑈2 · · ·𝑈𝑘
+ 𝛼−(𝑘−1)(𝑛−𝑘)𝑈𝑛−1𝑈𝑛−2 · · ·𝑈𝑛−𝑘+1

𝑈1𝑈2 · · ·𝑈𝑘−1

=
2− 𝑞𝑘 − 𝑞𝑛−𝑘

1− 𝑞𝑛
𝛼−𝑘(𝑛−𝑘)𝑈𝑛𝑈𝑛−1 · · ·𝑈𝑛−𝑘+1

𝑈1𝑈2 · · ·𝑈𝑘
,

which implies (2.3).

From [10], we have analogues of identities (1.4) and (1.5) for the generalized
coefficients defined by (1.7).
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Proposition 2.4. Let
(︀
𝑛
𝑘

)︀
𝑞

be the Gaussian binomial coefficients defined by (1.2),
and let

(︀
𝑛
𝑘

)︀
𝐴

be the generalized coefficients defined by (1.7). Then we have
(︂
𝑛

𝑘

)︂

𝐴

−
(︂
𝑛− 1

𝑘 − 1

)︂

𝐴

=

(︂
𝑛− 1

𝑘

)︂

𝐴

𝐴𝑛 −𝐴𝑘

𝐴𝑛−𝑘
and (2.4)

(︂
𝑛

𝑘

)︂

𝐴

−
(︂
𝑛− 1

𝑘

)︂

𝐴

=

(︂
𝑛− 1

𝑘 − 1

)︂

𝐴

𝐴𝑛 −𝐴𝑛−𝑘

𝐴𝑘
, (2.5)

which generate the identities (1.4) and (1.5), respectively, as the special cases for
𝐴𝑛 = 𝑞𝑛 − 1.

Proof. From definition (1.7), we may write the left-hand side of (2.4) as

𝐴𝑛𝐴𝑛−1 · · ·𝐴𝑛−𝑘+1

𝐴1𝐴2 · · ·𝐴𝑘
− 𝐴𝑛−1𝐴𝑛−2 · · ·𝐴𝑛−𝑘+1

𝐴1𝐴2 · · ·𝐴𝑘−1

=
𝐴𝑛−1𝐴𝑛−2 · · ·𝐴𝑛−𝑘+1𝐴𝑛−𝑘

𝐴1𝐴2 · · ·𝐴𝑘

𝐴𝑛 −𝐴𝑘

𝐴𝑛−𝑘
=

(︂
𝑛− 1

𝑘

)︂

𝐴

𝐴𝑛 −𝐴𝑘

𝐴𝑛−𝑘
,

which proves (2.4). Identity (2.5) can be proved similarly. To show (1.4) is a special
case of (2.4) for𝐴𝑛 = 𝑞𝑛 − 1, we only need to notice that

(︀
𝑛
𝑘

)︀
𝐴
=
(︀
𝑛
𝑘

)︀
𝑞

and

𝐴𝑛 −𝐴𝑘

𝐴𝑛−𝑘
=

𝑞𝑛 − 1− (𝑞𝑘 − 1)

𝑞𝑛−𝑘 − 1
= 𝑞𝑘,

which will convert identity (2.4) to (1.4). Similarly, the transformation 𝐴𝑛 = 𝑞𝑛−1
will convert identity (2.5) to (1.5).

Identities of Fibonomial coefficients can be changed to the identities of Fibonacci
number sequence and vice versa. For instance, Hoggatt [12] (cf. formula (D)) gives
the following identity for Fibonomial coefficients

(︀
𝑛
𝑘

)︀
𝐹
, where 𝐹 = (𝐹𝑛(0, 1, 1,−1))

is the Fibonacci number sequence.
(︂
𝑛

𝑘

)︂

𝐹

= 𝐹𝑘+1

(︂
𝑛− 1

𝑘

)︂

𝐹

+ 𝐹𝑛−𝑘−1

(︂
𝑛− 1

𝑘 − 1

)︂

𝐹

. (2.6)

By substituting
(︀
𝑛
𝑘

)︀
𝐹
= (𝐹𝑛𝐹𝑛−1 · · ·𝐹𝑛−𝑘+1)/(𝐹1𝐹2 · · ·𝐹𝑘) into the above identity

and cancelling the same terms on the both sides of the equation, we obtain the
following well-known identity for the Fibonacci number sequence:

𝐹𝑛 = 𝐹𝑛−𝑘𝐹𝑘+1 + 𝐹𝑛−𝑘−1𝐹𝑘, (2.7)

which presents a Fibonacci number in terms of smaller Fibonacci numbers. Con-
versely, from an identity of recursive number sequences, one may obtain identities
of Fibonacci coefficients. For instance from Cassini’s identity

𝐹𝑛+1𝐹𝑛−1 − 𝐹 2
𝑛 = (−1)𝑛 (2.8)
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we may obtain the following identity for Fibonacci coefficients:

𝐹𝑛𝐹𝑛−𝑘

(︂
𝑛

𝑘

)︂

𝐹

= (𝐹𝑛+1𝐹𝑛−1 − (−1)𝑛)

(︂
𝑛− 1

𝑘

)︂

𝐹

, (2.9)

which returns to Cassini’s identity when 𝑘 = 0. Hence, we have the following
results that can also be extended to other transformation between the identities of
recursive sequences and the identities of Gaussian coefficients.

Proposition 2.5. From Cassini’s identity (2.8) and the identity (2.7) presenting
Fibonacci numbers in terms of smaller Fibonacci numbers, we may derive the cor-
responding Gaussian Coefficient identities (2.9) and (2.6), respectively, and vice
versa.

3. Identities of the complete functions

Using the relationship (1.13), ℎ𝑟(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−1) =

(︀
𝑛+𝑟−1

𝑟

)︀
𝑞
, we may re-write the

identities of Gaussian coefficients in terms of the complete functions. For instance,
from the property of Gaussian coefficients

(︀
𝑛+𝑟−1

𝑟

)︀
𝑞
=
(︀
𝑛+𝑟−1
𝑛−1

)︀
𝑞

and identities
(1.3)-(1.6), we immediately have the following results.

Proposition 3.1. Let ℎ𝑟(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−1) and

(︀
𝑛
𝑘

)︀
𝑞

be defined as before. Then

ℎ𝑟(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−1) = ℎ𝑛−1(1, 𝑞, 𝑞

2, . . . , 𝑞𝑟), (3.1)

(1− 𝑞𝑘)ℎ𝑘(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−𝑘) = (1− 𝑞𝑛)ℎ𝑘−1(1, 𝑞, 𝑞

2, . . . , 𝑞𝑛−𝑘), (3.2)

ℎ𝑘(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−𝑘) = 𝑞𝑘ℎ𝑘(1, 𝑞, 𝑞

2, . . . , 𝑞𝑛−𝑘−1)

+ ℎ𝑘−1(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−𝑘), (3.3)

ℎ𝑘(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−𝑘) = ℎ𝑘(1, 𝑞, 𝑞

2, . . . , 𝑞𝑛−𝑘−1)

+ 𝑞𝑛−𝑘ℎ𝑘−1(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−𝑘), (3.4)

ℎ𝑘(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−𝑘) = ℎ𝑘(1, 𝑞, 𝑞

2, . . . , 𝑞𝑛−𝑘−1)

+ ℎ𝑘−1(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−𝑘) + (𝑞𝑛−1 − 1)ℎ𝑘−1(1, 𝑞, 𝑞

2, . . . , 𝑞𝑛−𝑘−1). (3.5)

From (3.1), we have

ℎ1(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−1) = ℎ𝑛−1(1, 𝑞).

Then, by using (1.9) the recursive sequence 𝑈𝑛 = 𝑈𝑛(𝑎0, 𝑎1; 𝑝1, 𝑝2) = (𝛼𝑛 −
𝛽𝑛)/(𝛼−𝛽), where 𝛼 and 𝛽 are two distinct roots of the equation 𝑥2−𝑝1𝑥+𝑝2 = 0,
can be written as

𝑈𝑛 = 𝛼𝑛−1 1− 𝑞𝑛

1− 𝑞
= 𝛼𝑛−1

(︂
𝑛

1

)︂

𝑞

= 𝛼𝑛−1ℎ1(1, 𝑞, 𝑞
2, . . . , 𝑞𝑛−1) = 𝛼𝑛−1ℎ𝑛−1(1, 𝑞), (3.6)
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where 𝑞 = 𝛽/𝛼. From the definition of ℎ𝑟(1, 𝑞, . . . , 𝑞
𝑛−1) given by (1.12), we obtain

𝑈𝑛 = 𝛼𝑛−1ℎ𝑛−1(1, 𝑞) = 𝛼𝑛−1
∑︁

𝑙1+𝑙2=𝑛−1, 𝑙1,𝑙2≥0

1𝑙1𝑞𝑙2

= 𝛼𝑛−1
∑︁

𝑙1+𝑙2=𝑛−1, 𝑙1,𝑙2≥0

1𝑙1
(︂
𝛽

𝛼

)︂𝑙2

=
∑︁

𝑙1+𝑙2=𝑛−1, 𝑙1,𝑙2≥0

𝛼𝑙1𝛽𝑙2 = ℎ𝑛−1(𝛼, 𝛽).

For Fibonacci numbers
𝐹𝑘+1 = ℎ𝑘(𝛼, 𝛽),

where 𝛼 = (1 +
√
5)/2 and 𝑞 = (1−

√
5)/(1 +

√
5), from (1.9) and (2.6) we obtain

ℎ𝑘(1, 𝑞, . . . , 𝑞
𝑛−𝑘)

= 𝛼−𝑘ℎ𝑘(𝛼, 𝛽)ℎ𝑘(1, 𝑞, . . . , 𝑞
𝑛−𝑘−1)

+ 𝛼−𝑛+𝑘ℎ𝑛−𝑘+2(𝛼, 𝛽)ℎ𝑘−1(1, 𝑞 . . . , 𝑞
𝑛−𝑘).

From (3.6) we may establish the following theorem.

Theorem 3.2. Let (𝑈𝑛 = 𝑈𝑛(𝑎, 𝑏; 𝑝1, 𝑝2)) be the recursive sequence defined by
𝑈𝑛+2 = 𝑝1𝑈𝑛+1 − 𝑝2𝑈𝑛 (𝑛 ≥ 0) with the initials 𝑈0 = 𝑎 and 𝑈1 = 𝑏, and let 𝛼 and
𝛽 be two distinct roots of the characteristic equation 𝑥2 − 𝑝1𝑥+ 𝑝2 = 0. Then

𝛼2

(︂
𝑛+ 2

1

)︂

𝑞

= 𝛼𝑝1

(︂
𝑛+ 1

1

)︂

𝑞

− 𝑝2

(︂
𝑛

1

)︂

𝑞

, (3.7)

or equivalently,
𝛼2ℎ𝑛+1(1, 𝑞) = 𝛼𝑝1ℎ𝑛(1, 𝑞)− 𝑝2ℎ𝑛−1(1, 𝑞). (3.8)

Proof. Noting 𝑝1 = 𝛼 + 𝛽, 𝑝2 = 𝛼𝛽, and 𝑞 = 𝛽/𝛼, where 𝛼 ̸= 0 (i.e., 𝑝2 ̸= 0), the
right-hand side of (3.7) can be re-written as

𝛼𝑝1

(︂
𝑛+ 1

1

)︂

𝑞

− 𝑝2

(︂
𝑛

1

)︂

𝑞

= 𝛼𝑝1
1− 𝑞𝑛+1

1− 𝑞
− 𝑝2

1− 𝑞𝑛

1− 𝑞

=
1

1− 𝑞

(︀
𝛼𝑝1(1− 𝑞𝑛+1)− 𝑝2(1− 𝑞𝑛)

)︀

=
1

1− 𝑞
((𝛼𝑝1 − 𝑝2)− 𝑞𝑛(𝛼𝑝1𝑞 − 𝑝2))

=
1

1− 𝑞

(︀
𝛼2 − 𝛽2𝑞𝑛

)︀
= 𝛼2 1− 𝑞𝑛+2

1− 𝑞
,
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which implies (3.7). Consequently, we obtain (3.8) by substituting
(︂
𝑚

1

)︂

𝑞

= ℎ1(1, 𝑞, . . . , 𝑞
𝑚−1) = ℎ𝑚−1(1, 𝑞) (3.9)

into (3.7) for 𝑚 = 𝑛, 𝑛+ 1, and 𝑛+ 2, respectively.

Chen and Louck [6] and Bhatnagar [1] present different approaches to Sylvester’s
identity related to the complete homogeneous symmetric functions.

Theorem 3.3 (Sylvester’s identity). For each integer 𝑚 ≥ 0, we have

𝑛∑︁

𝑖=1

𝑥𝑚
𝑖

Π𝑗 ̸=𝑖(𝑥𝑖 − 𝑥𝑗)
= ℎ𝑚−𝑛+1(𝑥1, 𝑥2, . . . , 𝑥𝑛), (3.10)

where ℎ𝑘 is the 𝑘th homogeneous symmetric function, which is defined to be zero
for 𝑘 < 0.

Divided differences is a recursive division process. The method can be used to
calculate the coefficients of the interpolation polynomial in the Newton form. The
divided difference of a function 𝑓 at knots 𝑥1, 𝑥2, . . ., 𝑥𝑛 has the formula (see, for
example, Burden and Faires [2])

[𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑓 =

𝑛∑︁

𝑖=1

𝑓(𝑥𝑖)

Π𝑗 ̸=𝑖(𝑥𝑖 − 𝑥𝑗)
=

𝑛∑︁

𝑖=1

𝑓(𝑥𝑖)

𝑔′(𝑥𝑖)
. (3.11)

where 𝑔(𝑡) = (𝑡−𝑥1)(𝑡−𝑥2) · · · (𝑡−𝑥𝑛). Thus, from formulas (3.10) and (3.11) we
obtain a corollary of Theorem 3.3.

Corollary 3.4. The value of the complete homogeneous symmetric polynomial,
ℎ𝑚−𝑛+1(𝑥1, 𝑥2, . . . , 𝑥𝑛), of degree 𝑚−𝑛+1 at 𝑛 distinct points 𝑥1, 𝑥2, . . . , 𝑥𝑛 is the
coefficient of the highest power term of the Newton interpolation of function 𝑓(𝑥) =
𝑥𝑚 at points 𝑥1, 𝑥2, . . . , 𝑥𝑛. Particularly, if 𝑚 = 𝑛, then the coefficient of power 𝑛
in the Newton interpolation of 𝑓(𝑥) = 𝑥𝑛 is ℎ1(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑥1+𝑥2+ · · ·+𝑥𝑛.

Corollary 3.5. If evaluating points of an interpolation are arranged geometrically
as 𝑥𝑖 = 𝑞𝑖−1, 𝑖 = 1, 2, . . . , 𝑛, then the coefficient of power 𝑛 in the Newton in-
terpolation of 𝑓(𝑥) = 𝑥𝑛 is the Gaussian coefficient ℎ1(1, 𝑞, . . . , 𝑞

𝑛−1) =
(︀
𝑛
1

)︀
𝑞
=

(1− 𝑞𝑛)/(1− 𝑞).

Corollary 3.6. If evaluating points of an interpolation are arranged geometrically
as 𝑥𝑖 = 𝑞𝑖−1, 𝑖 = 1, 2, . . . , 𝑛, where 𝑞 = 𝛽/𝛼 and 𝛼 ̸= 0 and 𝛽 are two distinct
roots of the equation 𝑥2 − 𝑝1𝑥 + 𝑝2 = 0, then the coefficient of power 𝑛 in the
Newton interpolation of 𝑓(𝑥) = 𝑥𝑛 is the 𝛼−(𝑛−1) multiple of the Fibonacci binomial
coefficient

(︀
𝑛
1

)︀
𝑈
, i.e., ℎ1(1, 𝑞, . . . , 𝑞

𝑛−1) = 𝛼−(𝑛−1)
(︀
𝑛
1

)︀
𝑈
. Here, 𝑈 is referred to as

recursive sequence (𝑈𝑛(𝑎0, 𝑎1; 𝑝1, 𝑝2))𝑛≥0.
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