University of Windsor Scholarship at UWindsor

UWill Discover Conference

UWill Discover 2022

Novel Cell Cycle Therapeutic Strategy Against Type 2 Medulloblastoma

Sahar Mouawad University of Windsor, mouaw113@uwindsor.ca

Dorota Lubanska University of Windsor, lubanskd@uwindsor.ca

Lisa Porter University of Windsor, lporter@uwindsor.ca

Follow this and additional works at: https://scholar.uwindsor.ca/uwilldiscover

Mouawad, Sahar; Lubanska, Dorota; and Porter, Lisa, "Novel Cell Cycle Therapeutic Strategy Against Type 2 Medulloblastoma" (2022). *UWill Discover Conference*. 20. https://scholar.uwindsor.ca/uwilldiscover/2022/2022Day3/20

This Event is brought to you for free and open access by the Conferences and Conference Proceedings at Scholarship at UWindsor. It has been accepted for inclusion in UWill Discover Conference by an authorized administrator of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.

Novel Cell Cycle Therapeutic Strategy Against Type 2 Medulloblastoma

By: Sahar Mouawad

What is Medulloblastoma?

- Medulloblastoma (MB) is a primary central nervous system tumour that occurs in the cerebellum.
- Classified as Grade IV tumour
- Constitutes 16% to 25% of brain cancer cases
- It is common in children between the age of 5 and 9 years old.
- Tumour recurrence in about 30% of children

- Shh type 2 medulloblastoma
- One of the most prevalent and driven by a pathway involved in stemness of neural cells

Subgroup		WNT	SHH	Group 3	Group 4
Clinical Characteristics	% of Cases	10	30	25	35
	Age at Diagnosis	π	* * *	÷ †	Ť
	Gender Ratio (M:F)	1:1	1:1	2:1	3:1
	Anatomic Location				
	Histology	Classic, Rarely LCA	Desmoplastic, Classic, LCA	Classic, LCA	Classic, LCA
	Metastasis at Diagnosis (%)	5-10	15-20	40-45	35-40
	Recurrence Pattern	Rare; Local or metastatic	Local	Metastatic	Metastatic
	Prognosis	Very good	Infants good, others intermediate	Poor	Intermediate
Molecular Characteristics	Proposed Cell of Origin	Progenitor cells in the lower rhombic lip	Granule precursors of the external granule layer	Neural stem cells	Unipolar brush cells
	Recurrent Gene Amplifications	-	MYCN GLI1 or GLI2	MYC MYCN OTX2	SNCAIP MYCN OTX2 CDK6
	Recurrent SNVs	CTNNB1 DDX3X SMARCA4 TP53	PTCH1 TERT SUFU SMO TP53	SMARCA4 KBTBD4 CTDNEP1 KMT2D	KDM6A ZMYM3 KTM2C KBTBD4
	Cytogenetic Events Gain Loss	6	3q, 9p 9q, 10q, 17p	1q, 7, 18 8, 10q, 11, 16q i17q	7, 18q 8, 11p, X i17q
	Other Recurrent Genetic Events	-	-	GFI1 and GFI1B enhancer hijacking	PRDM6, GFI1, and GFI1B enhancer hijacking

Age: 👶 Infant 🛉 Child 👖 Adult

3

Therapeutic options in MB

TICs are the treatment obstacle in MB

What is the role of Spy1 in therapy response of MB?

Objective 1: To study the impact of standard of care chemotherapy on Spy1 expression and its effects in MB.

Objective 2: To determine the role of Spy1 in therapy response of MB treated in combination with CKIs and Shh inhibitors.

Objective 3: To investigate the molecular mechanisms regulating the levels of Spy1 in type 2 MB.

Addressing these objectives will allow us to further validate Spy1 as a potential therapeutic target against MB

Spy1 expression levels in response to chemotherapy

Spy1 expression levels are upregulated in MB cells treated with standard of care chemotherapy

Overexpressing Spy1 using lentivirus

Manipulation of the activity of the Shh pathway

experiment

- Treatment with forskolin
- Successfully inhibited the Shh pathway activity

Spy1 mRNA expression levels are downregulated with inhibited Shh pathway

Potential regulation of Spy1 levels by Shh pathway has important implications in effective treatment of MB and needs to be further investigated

Acknowledgments

- Supervisors: Dr. Lisa Porter and Dr. Dorota Lubanska
- Porter Lab Members

