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ABSTRACT

1. A combination of timing of and body condition (i.e., mass) at arrival on the breeding grounds interact to influence the optimal combination 
of the timing of reproduction and clutch size in migratory species. This relationship has been formalized by Rowe et al. in a condition-
dependent individual optimization model (American Naturalist, 1994, 143, 689-722), which has been empirically tested and validated in 
avian species with a capital-based breeding strategy.

2. This model makes a key, but currently untested prediction; that variation in the rate of body condition gain will shift the optimal 
combination of laying date and clutch size. This prediction is essential because it implies that individuals can compensate for the challenges 
associated with late timing of arrival or poor body condition at arrival on the breeding grounds through adjustment of their life history 
investment decisions, in an attempt to maximize fitness.

3. Using an 11-year data set in arctic-nesting common eiders (Somateria mollissima), quantification of fattening rates using plasma 
triglycerides (an energetic metabolite), and a path analysis approach, we test this prediction of this optimization model; controlling for 
arrival date and body condition, females that fatten more quickly will adjust the optimal combination of lay date and clutch size, in favour 
of a larger clutch size.

4. As predicted, females fattening at higher rates initiated clutches earlier and produced larger clutch sizes, indicating that fattening rate is 
an important factor in addition to arrival date and body condition in predicting individual variation in reproductive investment. However, 
there was no direct effect of fattening rate on clutch size (i.e., birds laying on the same date had similar clutch sizes, independent of their 
fattening rate). Instead, fattening rate indirectly affected clutch size via earlier lay dates, thus not supporting the original predictions of the 
optimization model.

5. Our results demonstrate that variation in the rate of condition gain allows individuals to shift flexibly along the seasonal decline in clutch 
size to presumably optimize the combination of laying date and clutch size.

1. INTRODUCTION

Trade-offs can be driven by the allocation of limited energy stores to multiple life-history traits, and shape the life-history decisions of 
individuals (McNamara & Houston, 1996; Stearns, 1989). The allocation of energy stores to multiple life-history traits and biological functions is 
predicted to occur within an optimality framework in which individuals attempt to minimize the costs and maximize the benefits associated with 
allocation decisions within the context of a stochastic environment (Brommer, Kokko, & Pietiäinen, 2000). As such, individuals that are better able to 
overcome extrinsic or intrinsic challenges (i.e., resource availability or assimilation, respectively) to obtain or manage energy stores are predicted to 
have greater flexibility in mitigating trade-offs associated with fitness-related life history decisions (Kisdi, Meszéna, & Pásztor, 1998; McNamara & 
Houston, 1996; Rowe, Ludwig, & Schluter, 1994; Stearns, 1989).

Studies across multiple taxa have demonstrated that individuals face a decline in the survival probability of offspring as the breeding season 
progresses (mammals: e.g., Morris, 1998; insects: e.g., Johansson & Rowe, 1999, reptiles: e.g., Doody, Gorges, & Young, 2003, fish: e.g., Poulos 
& McCormick, 2015, and birds: e.g., Rowe et al., 1994; Bêty, Gauthier, & Giroux, 2003). For many species breeding in seasonal environments, a 
critical trade-off occurs between the delay in timing of reproduction in favour of increased body condition and the ability to increase investment in 
reproduction, against this declining survival probability of the resulting offspring (Bêty et al., 2003; Drent & Daan, 1980; Lepage, Gauthier, & Menu, 
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2000; Morris, 1998; Rowe & Ludwig, 1991; Rowe et al., 1994). In avian species, particularly those reliant on stored energy for reproduction, the 
trade-off between offspring survival and female body condition is heavily influenced by the timing of breeding, in which females can delay laying to 
gain in greater condition (also promoting a greater investment in clutch size); however, as females delay breeding and therefore hatching, offspring 
have less time to grow and prepare for the upcoming winter; it is this trade-off between female investment in body condition and offspring survival 
that is thought to underlie the seasonal decline in clutch size seen across many species (Bêty et al., 2003; Drent & Daan, 1980; Rowe et al., 1994). 
Therefore, females must carefully optimize the allocation of resources between self-maintenance and greater reproductive investment with offspring 
survival within the context of timing constraints (i.e., timing of arrival, laying, hatching and fledging; McNamara & Houston, 1996; McNamara, 
1997).

The relationships between individual condition, timing of arrival on the breeding grounds, timing of reproduction and investment in clutch size 
have been formalized in a condition-dependent individual optimization model (hereafter “optimization model”) proposed by Rowe et al. (1994; figure 
1). The optimization model predicts that females arriving on the breeding grounds earlier and in greater condition will meet the condition threshold 
for breeding earlier, thereby allowing for an earlier lay date and investment in a larger clutch (Rowe et al., 1994). Although this component of the 
optimization model has been tested empirically and demonstrated previously (Bêty et al., 2003; Descamps, Bêty, Love, & Gilchrist, 2011; Hennin, 
Bêty, et al., 2016), the model makes an additional set of important predictions about the impact of the rate of condition gain on clutch size (Rowe 
et al., 1994). In a specific manner, a female with a high fattening rate is predicted to meet the condition threshold for breeding earlier, allowing for 
an earlier lay date and investment in a larger clutch compared to if she had a slower fattening rate (Figure 1). Moreover, the benefit of delaying 
laying (i.e., increased body condition) would increase for a female with a higher fattening rate, generating a different optimal switch curve (slope of 
relationship outlining the seasonal decline in clutch size) for lay date and clutch size (Figure 1; short-dashed vs. long-dashed lines, or dashed-dotted 
line in A and B). Hence, a female with a slower fattening rate would have a different optimal switch curve and would meet the condition threshold for 
breeding later, resulting in a later lay date and a smaller clutch size (Figure 1; dashed-dotted lines). In an interesting manner, within this framework, a 
female arriving in lower condition or at a later date, but capable of a higher fattening rate, may be able to lay earlier and invest in a larger clutch size 
compared to females that arrived earlier or in better condition, but with a lower fattening rate. 

There is a substantial amount of variation in the ability of females to gain in condition, resulting in different delays prior to laying. For example, 
in arctic-nesting common eiders (Somateria mollissima), a migratory species with a partly capital-based breeding strategy, females take up to 30 days 
to initiate laying postarrival at the breeding colony (Descamps et al., 2011; Hennin, Bêty, et al., 2016), indicating that they have the opportunity to 
fatten prior to breeding and demonstrating that the Rowe et al. model (1994) regarding gain in condition is ecologically realistic. Further, fattening 
rate has been shown to play a role in influencing this variation, where hens with higher fattening rates are capable of laying within a shorter period of 
time (Hennin, Bêty, et al., 2016). Although some studies have used supplemental feeding to test predictions of the optimization model experimentally 
(Schoech & Hahn, 2007), supplemental feeding can simultaneously alter several parameters (e.g., perception of habitat quality), potentially 
artificially impacting timing of laying and clutch size by attracting higher quality individuals to food-supplemented territories, or acting as an 
environmental cue of food abundance (Davies & Deviche, 2014; Nager, 2006; Williams, 2012). In an important way, these studies have not quantified 
traits such as fattening rate to relate to investment in clutch size per se. As such, despite the significant impact fattening rate is predicted to have on 
fitness-related metrics, few studies have been able to empirically test this component of the optimization model.

Physiological traits are prime candidates for enhancing the predictive capacity of theoretical models because they can represent the collective 
result of individual phenotypes responding to environmental variables (Ricklefs & Wikelski, 2002), and a single sample can often be used as a 
proxy for variation in individual condition (Zera & Harshman, 2001). Plasma triglycerides are intermediate metabolites assembled in the liver which 
increase in the body following foraging (Gibbons, Wiggins, Brown, & Hebbachi, 2004), and have been used by physiological ecologists to measure 
the fattening rate of individuals, particularly during hyperphagic life-history stages (Williams, Warnock, Takekawa, & Bishop, 2007). Triglycerides 
are positively related to the rate of condition gain (i.e., fattening rate) within an individual, which has been validated experimentally in several 
vertebrates including bats (McGuire, Fenton, Faur, & Guglielmo, 2009), turtles (Price, Jones, Wallace, & Guglielmo, 2013) and many avian species 
(Cerasale & Guglielmo, 2006; Jenni-Eiermann & Jenni, 1994; Williams et al., 2007) including ducks (Anteau & Afton, 2008). The consistency in the 
interpretation of this trait within and across taxa makes it a useful and reliable metric to apply to other systems in which these relationships have yet 
to be tested, or that are too challenging to test in a wild system. Furthermore, in common eiders, triglycerides have been shown to not only increase 
in relation to increasing energetic demands prior to growing follicles, and influence body mass thresholds required to initiate reproduction (Hennin et 
al., 2015), but also interact with signals of energetic demand to predict the timing of reproduction (Hennin, Bêty, et al., 2016). Taken together, these 
results provide confidence that triglycerides can be employed as a useful physiological mechanism to quantify fattening rate and its downstream 
impacts on reproductive investment decisions. 

Combining a 10-year dataset of more than 120 arctic-nesting common eiders with a path analysis approach, we test the influence of variation 
in fattening rates on laying date and clutch size within the framework of the condition-dependent individual optimization model (Bêty et al., 2003; 
Descamps et al., 2011; Hennin, Bêty, et al., 2016; Rowe et al., 1994). Common eiders are a circumpolar breeding species and an ideal system to test 
the predictions of this model because: (a) eiders use a mixed (i.e., both capital and income resources) breeding strategy for reproduction and must 
meet a minimum body mass threshold to invest in reproduction (Legagneux et al., 2016; Sénéchal, Bêty, Gilchrist, Hobson, & Jamieson, 2011), (b) 
triglycerides appear to influence the body mass threshold and the transition from the prerecruiting to the follicle growth stage (Hennin et al., 2015), 
(c) prior to reproductive investment (i.e., follicle recruitment) females are in a hyperphagic life-history stage and must acquire enough endogenous 
fat stores to both fuel follicle growth and complete their 24-day incubation period in which they fast (Bottitta, Nol, & Gilchrist, 2003), and (d) they 
reproduce within an extreme seasonal environment and must therefore optimally time their reproduction to maximize both within year reproductive 
productivity and future offspring survival (Love, Gilchrist, Descamps, Semeniuk, & Bêty, 2010). Based on the optimization model, we predict that 
individuals with higher rates of condition gain (i.e., higher fattening rates/triglycerides) will have earlier timing of laying and larger clutch sizes 
compared to females with lower rates of condition gain (Figure 1).
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2. MATERIALS AND METHODS

2.1 General field methods and study site

This study was conducted from 2003 to 2014 (excluding 2005 as blood samples were not collected in this year) in the Canadian low Arctic at 
Mitivik Island in the East Bay Migratory Bird Sanctuary, Nunavut (64°02′N, 81°47′W). Females arrive from their wintering grounds to Mitivik Island 
in early June and lay between mid-June to early July (Mosbech et al., 2006). At this time, females begin foraging to gain in body condition to invest 
in reproduction, largely eating molluscs, bivalves and amphipods (Sénéchal et al., 2011). We initiate captures when eiders are first seen flying around 
the colony in mid-June until early July, annually (Love et al., 2010). We therefore use capture date as a proxy for individual arrival date at the colony 
(Descamps et al., 2011; Hennin, Bêty, et al., 2016).

Birds were captured passively as they flew over the colony using large flight nets. As birds hit the net, they were extracted and blood sampled 
from the tarsus within 10 min of capture using 26 G needles with heparinized 75-μl capillary tubes (2003), heparinized vacutainers with a 26 G 
butterfly needle (2004), or 23 G thin-wall, 1-inch needles attached to a heparinized 1-ml syringe (2006–2014). After collection, blood samples were 
transferred to a 1.5-ml heparinized tube, kept cool (~4°C) and centrifuged at 2,000 g within 6 hr of collection to separate plasma and red blood cells. 
Samples were stored at −80°C until further analysis. 

Following blood sampling, females were banded with one full and one half alpha-numeric darvic band, and a metal band. Body mass was 
measured (g), and then, females were given a set of uniquely shaped and coloured nasal tags for ease of identification in the colony postrelease. Nasal 
tags were attached using UV degradable monofilament and fall off prior to fall migration. Using the nasal tags to identify individuals, females were 
monitored using spotting scopes from seven permanent blinds along the periphery of the colony using standardized behavioural observations from 
trained observers (Descamps et al., 2011; Hennin, Bêty, et al., 2016; Love et al., 2010). Based on direct monitoring or candling of eggs during nest 
visits, we determined Julian lay date. Clutch size was determined either by counting eggs during nest visits, or by posthatching nest visits to count the 
number of hatched eggs membranes. To minimize disturbance and possible predation events, we only entered the colony to candle nests when laying 
dates were uncertain, opportunistically recording clutch size of other nasal-tagged hens nesting en route to the focal nest to be candled. 

Only prerecruiting females (i.e., uncommitted to reproduction at the time of capture and far from laying; N = 127; see Supporting Information 
Table S1) were included in our analyses. Females were classified as prerecruiting if they were 8 days or longer prior to laying at capture (Hennin et 
al., 2015), as it takes approximately 6 days to completely grow a follicle (Alisauskas & Ankney, 1992), and approximately 28 hr to complete egg 
formation (Watson, Robertson, & Cooke, 1993). Females that were 7 days or less away from laying were considered to be in rapid follicle growth 
(RFG; Challenger, Williams, Christians, & Vézina, 2001; Salvante & Williams, 2002; Hennin et al., 2015) and therefore excluded. We excluded RFG 
females because they no longer produce generic triglycerides for somatic fattening, but begin producing yolk-targeted very low-density lipoprotein 
(VLDLy) for fat deposition into yolks exclusively (Salvante, Lin, Walzem, & Williams, 2007; Salvante & Williams, 2002; Williams, 2012), meaning 
that our total triglyceride measure no longer represents a metric of fattening.

2.2 Plasma triglyceride assays

Triglycerides were quantified using a commercially available enzyme immunoassay kit (Sigma Aldrich, U.S.A., #TR0100-1KT), previously 
validated in common eiders (Hennin et al., 2015). After dilution, samples were added to a 96-well plate with 240 μl of Reagent A (measures free 
glycerol), followed by the addition of 60 μl of Reagent B (measures total glycerol). After the addition of each reagent, the plate was agitated and 
incubated at 37°C then read in a spectrophotometer plate reader (Biotek Synergy H1, Biotek, USA) at 540 nm. To obtain final triglyceride values, 
the free glycerol values were subtracted from the total glycerol values. We regressed triglycerides against body mass to obtain the residuals to obtain 
fattening rates for further analyses (Williams et al., 2007). Inter-and intra-assay coefficients of variation for total triglycerides were 11.27% and 
4.42%, respectively, and 5.51% and 6.29% for free glycerol, respectively.

2.3 Statistical analyses

As some variables required in this study (arrival date, body mass, fattening rate, laying date and clutch size) may be intercorrelated, we used 
d-separation path analysis (Shipley, 2000, 2009) to determine the most likely casual relationships among variables in the dataset. This method 
allowed us to test for the potential direct and indirect (i.e., mediated through other variables) relationships of fattening rate on clutch size as outlined 
in the condition-dependent individual optimization model. We first derived 10 conceptual models of hypothesized direct and indirect relationships 
among the variables of interest, based on previous literature (Bêty et al., 2003; Descamps et al., 2011; Hennin, Bêty, et al., 2016; figure 2). The full 
test of Rowe et al.’s (1994) model is Model A where fattening rate directly impacts both lay date and clutch size. We excluded linkages between 
fattening rate, body mass or arrival date because the optimization model predicts that there is no covariance between body mass and arrival date (Bêty 
et al., 2003; Descamps et al., 2011; Rowe et al., 1994), nor do we predict that fattening rate should covary with arrival date. In addition, as fattening 
rate is calculated from body mass, including linkages between these variables may result in spurious relationships. We also tested additional plausible 
direct and indirect effects of fattening rate on laying date and clutch size (Figure 2). Although not a direct prediction of the optimization model, we 
tested for potential direct effects of body mass on clutch size as body mass can represent a reserve of potential resources (fat stores) which can be 
allocated towards the production and growth of eggs in common eiders. In previous tests of this model (Hennin, Bêty, et al., 2016), we included 
baseline corticosterone (i.e., energetic demand at arrival); however, as sampling for corticosterone began in 2006, we did not have enough females 
with both corticosterone and clutch sizes quantified to include this trait in the current analyses. The conceptual acyclic models were then converted 
to a set of conditional independencies (see Shipley, 2000 for details) and tested using GLMMs. In each of these statistical models, we included Year 
as a random intercept (to account for shared variance among individuals captured in the same year; Shipley, 2009). Although we had low sample 
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sizes in some years due to manipulative experiments in the colony (see Supporting Information Table S1), results were consistent when these years 
were included and excluded; we have therefore kept years with smaller sample sizes in our analyses. Body mass and fattening rate were coded as 
continuous data, and dates as ordinal. We used either a Gaussian model with an identity function (normally distributed data; lay date) or Poisson 
model with a log link function (Poisson distributed data; clutch size). Using these statistical models, we then calculated Fisher’s C statistic (which is 
equivalent to a maximum-likelihood estimate) and the C-statistic Information Criterion (CICc) for each conceptual model (Shipley, 2013). 

For the four most competitive models (A, C, D and F), we calculated path coefficients using GLMMs (Figure 3) calculate from standardized and 
centred data (Schielzeth, 2010) and are therefore comparable within and between models. Analyses were run in R version 3.3.0 (R Core Team, 2016) 
using the LME4 (Bates, Maechler, Bolker, & Walker, 2015) and igraph (Csardi & Nepusz, 2006) packages.

3. RESULTS

Comparison of models based on CICc values indicated that model A was the highest ranked model and competitive with models C, D and E 
(Table 1). All four models had similar structures suggesting a direct effect of fattening rate, body mass and arrival date on laying date, and indirect 
effects of all three on clutch size mediated through laying date (Figure 3). In essence, higher fattening rate, earlier arrival and heavier body mass 
predicted earlier laying (Figure 3). At last, there was a direct, negative effect of the timing of laying on clutch size (Figure 3); individuals that 
initiated laying earlier had larger clutch sizes. Models without a direct effect of fattening rate on laying date (models B, G, H, I and J) performed 
poorly, indicating strong support for the hypothesis that accounting for fattening rate (i.e., triglycerides) enhances our ability to explain individual 
variation in lay date and clutch size.

The highest ranked model included a direct relationship between fattening rate and clutch size (Model A; Figure 3a), and two of our other 
competitive models included a direct effect of body mass (Model D; Figure 3c), or body mass and fattening rate (Model F; Figure 3d) on clutch size. 
However, the path coefficients for these direct links to clutch size were low (i.e., weak effects) and highly nonsignificant (Figure 3a,c,d), suggesting 
these relationships are not biologically important.

4. DISCUSSION

Using a 10-year dataset across an 11-year period in arctic-nesting common eiders, we tested an important prediction of the condition-dependent 
individual optimization model as outlined by Rowe et al. (1994); that rates of condition gain (i.e., fattening rate) will influence the optimal 
combination of laying date and clutch size. After controlling for the effect of arrival date and body condition, we demonstrate that fattening rate plays 
a significant role in influencing the timing of laying and has an indirect, downstream impact on clutch size; females with higher fattening rates have 
earlier laying dates and larger clutch sizes. Although intuitive, these results are compelling because they demonstrate that a physiological component 
of fattening rate impacts the investment decisions underlying reproductive trade-offs, and that some females have the flexibility to mitigate the 
potential fitness costs (i.e., reduced clutch size) generated by the constraints of late arrival and/or poor condition on arrival at the breeding grounds.

Our four best models all suggest that fattening rate, arrival date and body mass have strong direct effects on laying date, while laying date 
has a strong effect on clutch size (representing the shift in the optimal combination curve, i.e., higher clutch size for a given lay date; Figure 1). 
While these four models differed slightly in the additional variables with direct effects on clutch size, these additional links among models had low 
path coefficients and were nonsignificant (Figure 3). When using information-theoretic approaches, the inclusion of an additional, uninformative 
parameter can create an apparently competitive model via small changes in CICc values and some have argued that the simpler model should be 
preferred in such situations (Arnold, 2010; Burnham & Anderson, 2002).

We may not have found strong support for the predicted direct linkage between physiological fattening rate and clutch size for a few reasons. 
First, our captured individuals were already optimized for their current level of investment within their environmental context and often it is not until 
individuals are pushed outside their optimum via a manipulation that causal relationships become evident and the associated trade-offs become more 
clear (Ketterson, Nolan, Cawthorn, Parker, & Ziegenfus, 1996; Williams, 2008). Instead, our signal of fattening rate may be taken too early in the 
season and, although capable of predicting timing of investment, may not be strong enough to predict overall investment (clutch size), or perhaps 
instead influenced other clutch-based metrics (e.g., egg size). At last, we may have not found support for the full Rowe et al. (1994) model because 
it may not account for all parameters, relationships among parameters may be more complex in nature, or there may be sources of imprecision in the 
trait measurements (e.g., missed predation events resulting in underestimates of clutch size, candling nests to obtain lay date estimates) reducing the 
strength of relationships among variables. Future studies aiming to test this theoretical model and further validate this prediction may better clarify 
these relationships by manipulating individual rate of condition gain outside of their current optimum (e.g., manipulating foraging rates via elevations 
of baseline glucocorticoids; Hennin, Wells-Berlin, & Love, 2016), without impacting other relevant ecological parameters (e.g., habitat quality).

The optimal combination of timing of laying and clutch size is driven largely by the trade-off between delaying laying to gain in body condition 
and invest in a larger clutch size against the declining value of offspring as the breeding season progresses (Bêty et al., 2003; Drent & Daan, 1980; 
Lepage et al., 2000; Rowe et al., 1994). A potential physiological mechanism underlying this trade-off is the shift in lipoprotein metabolism in 
females prior to the onset of rapid follicle growth. At the physiological level, females face a trade-off between the costs and benefits of meeting 
their own energetic needs (maintaining larger generic very low-density lipoprotein (VLDL) particles for triglyceride transport to adipose tissue and 
fattening) and the allocation of resources to eggs/offspring (increased, smaller-particle, yolk-targeted VLDL or VLDLy production for triglyceride 
transport). Although domesticated species show a complete shift from generic VLDL to VLDLy production (Salvante, Lin, et al., 2007; Walzem, 
1996), it is unlikely that free-living birds would exhibit such an abrupt shift as egg production must occur in less favourable environmental conditions 
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(e.g., very low ambient temperatures), particularly early in the breeding season. Nevertheless, at some point females must physiologically switch  
from generic VLDL to initiate synthesis of VLDLy, decreasing the ability to allocate generic VLDL production to self-maintenance and fattening. 
Our study highlights that the costs and benefits, and therefore the resolution, of this trade-off between self-maintenance and investment in eggs should 
be related to both the timing of laying, and the relative importance of maintaining a sufficient supply of generic VLDL for self-maintenance. In 
income-breeding species, the costs of initiating the production of VLDLy too early should be relatively low because they do not rely on accumulated 
somatic stores for reproduction. However, in species with a capital or partly capital-based strategy, like common eiders, females must maintain or 
even accumulate, fat stores during the prelaying period and face a greater cost to switching to producing VLDLy at the onset of RFG. An earlier or 
a more complete shift towards VLDLy production may compromise the condition of laying females that rely on stored reserves during subsequent 
life-history stages (e.g., incubation), which may negatively impact subsequent breeding performance (Salvante, Walzem, & Williams, 2007). Within 
the context of the optimization model, we found that females with higher fattening rates had earlier lay dates, thus initiating the production of 
VLDLy to invest in reproduction earlier, and thereby having the ability to invest in a larger clutch size. Considering the importance of prelaying 
fattening and maintaining somatic resources for subsequent life-history stages in this species, faster fattening females may be more physiologically 
and energetically prepared to mitigate the cost of reduced investment in self-maintenance in favour of initiating the allocation of resources towards 
follicle growth at an earlier time.

Although females can theoretically benefit from fattening quickly, not all females appear to do so, which may stem from several factors, 
including: (a) physiological/behavioural capability to gain in condition, (b) resource availability and (c) mate quality. First, individuals demonstrate a 
substantial amount of variation in foraging behaviour (Rigou & Guillemette, 2010; Woo, Elliott, Davidson, Gaston, & Davoren, 2008), prey selection 
(Smith, Miller, Merchant, & Sankoh, 2015), metabolic or physiological limitations in mass gain (Cornelius, Boswell, Jenni-Eiermann, Breuner, & 
Ramenofsky, 2013; Dierschke, Delingat, & Schmaljohann, 2003), and digestion or assimilation efficiency (Bond & Esler, 2006; McWilliams & 
Carasov, 2001), many of which have been shown to change with age (Angelier, Schaffer, Weimerskirch, & Chastel, 2006; Desrochers, 1993; Elliott et 
al., 2014; Zimmer, Ropert-Coudert, Kato, Ancel, & Chiaradi, 2011). Although our current techniques for ageing (e.g., Carney, 1992) in our colony are 
unreliable (H. G. Gilchrist, unpublished data), and instances of recapturing known-age individuals are rare, higher fattening females may represent 
an age class that is more experienced in foraging, reproducing and more invested in reproduction (Froy, Phillips, Wood, Nussey, & Lewis, 2013; 
Martin, 1995). Second, as a gregarious-feeding seaduck species (Guillemette & Himmelman, 1996) breeding in the Arctic, sea ice plays an important 
role throughout common eider life-history stages (Love et al., 2010; Mallory, Gaston, Gilchrist, Robertson, & Braune, 2010) and often restricts the 
availability of foraging locations, increasing competition for resources and potentially reducing fattening rates (e.g., Moore & Yong, 1991). Lower 
fattening females may therefore represent a group of less dominant females that may have shifted their diet to lower quality prey items (Clark & 
Ekman, 1995; Witter & Swaddle, 1995), affecting their fattening rates (Seaman, Guglielmo, & Williams, 2005; Smith, McWilliams, & Guglielmo, 
2007). At last, in species with little to no male parental investment, females will often invest in larger clutch sizes (Harris & Uller, 2009; Horváthová, 
Nakagawa, & Uller, 2011; Sheldon, 2000) or in greater egg quality (Cunningham & Russell, 2000) when paired to a high-quality male. As an 
iteroparous, long-lived species with female-biased offspring incubation and guarding (Coulson, 1984), lower fattening common eider females may be 
paired to a lower quality mate, investing more in self-maintenance by reducing the costs of increased foraging workloads (e.g., increased oxidative 
damage; Bize, Devevey, Monaghan, Doligez, & Christe, 2008).

Despite being published more than 20 years ago, no studies have yet tested the impact of fattening rate per se, in the context of the condition-
dependent individual optimization model to explain the seasonal decline in clutch size. We demonstrate that there is variation in the rate of condition 
gain in prerecruiting female common eiders, a capital-income-breeding species, and that this variation impacts both the timing of reproduction and 
clutch size. Although fattening rate did indirectly influence clutch size through changes in laying date, birds laying on the same date had similar 
clutch sizes, independent of their fattening rate. Hence, we did not detect a change in the optimal shift curves for timing of laying and clutch size, 
and therefore, this specific prediction of the condition-dependent individual model has yet to be confirmed. Overall, our results are novel because 
they illustrate that females with a higher fattening rate could overcome late timing of arrival or poor arrival body condition to achieve a similar clutch 
size of females arriving earlier or in greater condition. It is currently unknown whether these high fattening females represent a specific phenotype; 
however, future studies may be able to discern this by examining the behavioural and physiological traits of the same females over multiple breeding 
seasons.
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Figure 3 Final path diagrams in order of CIC rank for competing paths linking fattening rate to clutch 
size in prerecruiting female common eiders at East Bay. Arrows are coloured according to whether the 
causal relationship is positive (black) or negative (red), and arrow size is proportional to the strength of 
the effect. The values listed beside each arrow are the standardized path coeffi cients, and the p-value, 
respectively. The variables included in each model are fattening rate (FR), body mass (BM), Julian 
arrival date (AD), Julian laying date (LD) and clutch size (CS)
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