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Synergistic broad‑spectrum 
antibacterial activity of Hypoxis 
hemerocallidea‑derived silver 
nanoparticles and streptomycin 
against respiratory pathobionts
Oluwole S. Aremu1,3*, T. Qwebani‑Ogunleye1, Lebogang Katata‑Seru2*, Zimbili Mkhize2 & 
John F. Trant3*

Respiratory tract infections arise due to the introduction of microbes into the airway, disrupting 
the normal, healthy, complex interdependent microbiome. The selective disruption of this 
community can be either beneficial or dangerous. Nanoparticles are a potential tool for modifying 
this population. Coated silver nanoparticles (AgNPs) were synthesized using ethanolic extracts of 
Hypoxis hemerocallidea (EEHH), a Southern African plant used extensively in traditional medicine 
and the source of many bioactive secondary metabolites. The room temperature reaction between 
silver nitrate and EEHH forms largely spherical AgNPs with an average diameter of 6–20 nm. 
These nanoparticles show similar levels of antibacterial activity as the broad-spectrum antibiotic 
streptomycin against Bacillus cereus, Streptococcus pneumonia, Escherichia coli, Pseudomonas 
aeuroginosa, and Moraxella catarrhalis. However, the AgNPs synergistically increase the antibacterial 
activity of streptomycin when they are applied in combination (30–52%). AgNPs are reiterated to be 
promising dual-function antibiotics, synergistically enhancing activity while also acting as delivery 
agents for small molecules.

Acute respiratory infections and lung disease remain a deadly public health issue with an estimated 3.5 million 
deaths in 2019 prior to the emergence of SARS-CoV-21. The death rates peak during both infancy and late adult-
hood. Over 2 million pediatric cases have been reported, more than for any other public health disease2,3. Lung 
disease and acute middle ear infections also harm global health. Many pediatric and adult patients experience 
inflammation from middle ear infection with reoccurrence, which is common in developing countries4.

Pathobionts, a mixed population of bacteria universally present in the human upper respiratory tract, include 
Streptococcus pneumoniae (pneumococcus), Hemophilus influenza, Moraxella catarrhalis, and Staphylococcus 
aureus5,6. Changes in this respiratory microbial community can open niches allowing for colonization by new 
pathogens that can lead to respiratory disease, especially in individuals with compromised or naïve immune 
systems7. The use of metallic nanoparticles in personal protective equipment and/or consumer goods could 
prove useful in limiting the availability of these pathogens in the environment, protecting these populations 
from infection.

Nanoparticle synthesis from inorganic salts requires the addition of reducing and capping β-agents to provide 
the organic passivating shell around the metal core. Although many reagents can be used, employing complex 
matrices from plant extracts offers several advantages including likely biocompatibility, ready access to the start-
ing material from non petroleum sources, and, often, low cost by repurposing otherwise waste material8. Some of 
the phytochemicals can survive the synthetic process endowing the nanoparticles with additional functionality 
beyond that provided by the metal itself9,10. Fortunately, many secondary metabolites from plants, like carbohy-
drates and flavonoids, have been shown to be capable of reducing of Ag+ to AgNPs11. Furthermore, the stability 
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of the resulting AgNPs and the kinetics of their growth and consequent resulting size, can be tuned through 
the changing the identity of the capping agents. The capping agents determine these parameters through their 
electrostatic and non-covalent bonding interactions with the nascent AgNP surface12,13.

Hypoxis hemerocallidea (HH), the “African potato,” is used in traditional medicine across Southern Africa, 
especially for endocrine gland dysplasia14, and as a purgative and remedy for delirium, bad dreams, impotency, 
and apprehension by the Zulu15,16. HH is a vascular plant with bright yellow flowers inspiring its common name: 
"yellow stars." HH contains some rather unusual phytochemicals like the ene-yne-containing hypoxoside and 
rooperol, the iridoid glycoside harpagoside, and the unusual steroid β-sitosterol (Fig. 1), which collectively 
have demonstrated pharmacological potential for antibacterial, anti-inflammatory, antioxidant, and anticancer 
activity17–19. It is often consumed by HIV/AIDS patients to boost their immunity and improve their general 
wellbeing20; however, as its constituents have been shown to inhibit Cytochorme p450 metabolism, it could pos-
sibly interfere with many retroviral drugs21, although the evidence remains inconclusive to date22. Best practice 
recommends that its use be discussed with clinicians when starting antiretroviral therapy23. This species could 
be used in the synthesis of AgNPs to manufacture a synergistic product with therapeutic potential. To the best 
of our knowledge, AgNPs have never been prepared using HH, and the synergistic impact of co-administering 
HH ethanolic extract (EEHH) and its AgNPs with antibiotics to treat pathogens has never been studied. This is 
the goal of this work.

Materials and methods
Extraction of phytochemicals from Hypoxis heamerocallidea for the synthesis of AgNPs.  Fresh 
HH corms, cultivated, were purchased from local commercial farms in Sebokeng in Gauteng, South Africa. 
Cultivation of these plants was conducted using normal commercial farming practices in line with South Afri-
can regulations. Authentication of their identity was conducted by botanist Dr. Bukola Aremu of the School of 
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Figure 1.   Structures of major known secondary metabolites in Hypoxis hemerocallidea. 
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Biological Sciences, North-West University, Mafikeng, South Africa, and the University of Windsor, Windsor, 
Canada. The corms were then extensively washed under running water, dried at room temperature (24 °C), and 
pulverized into a powder with a commercial blender. Pulverized corms (500 g) were soaked in absolute ethanol 
(1.5 L) with mechanical shaking for 72 h. The extract was filtered to remove the powder, then concentrated under 
reduced pressure using a rotary evaporator at 70.1 °C to obtain a dark brown powder. After drying under high 
vacuum for an additional 16 h to constant mass, 23.6 g of a dark brown powder was obtained18. This fraction, the 
ethanolic extract of Hypoxis heamerocallidea is referred to as EEHH.

Synthesis of AgNPs‑HH.  A stock solution of EEHH was prepared by suspending 2 g of the crude powder 
in 50 mL of 70% ethanol (v/v). Next, it was sonicated for 10 min to solubilize the solution to a translucent deep 
yellow solution with no observable turbidity. To a 40 mL aliquot of this solution was then added 400 µL of 0.1 M 
AgNO3 in one portion with vigorous stirring. The reaction mixture immediately changed to a dark brown colour, 
indicative of the formation of the AgNPs. The process was carried out at ambient room temperature open to the 
atmosphere, and progress was monitored by measuring the UV–Vis spectrum of the reactant mixture at hourly 
intervals over 4 h according to our previously reported procedure24. With no further changes being observed 
between 3 and 4 h, the particles were purified by dialysis (against water, cut-off of 3.5 kDa), then dried by lyophi-
lization and stored until resuspended when needed.

Phytochemical screening.  A qualitative phytochemical analysis of the EEHH (independent of the pres-
ence of the silver) was carried out using standard procedures25–27. The crude extract was screened for the pres-
ence of saponins, tannins, phenols, coumarins, flavonoids, terpenoids, glycosides, alkaloids, and proteins. To test 
for tannins, we performed a ferric chloride test by placing 5 mL of the extracts from nine plants inside test tubes. 
A few drops of 0.1% ferric chloride were added. The presence of brownish green or blue–black color indicated 
the presence of tannins in the sample. For sterols and triterpenoids, we performed the Salkowski test. 5 mL of the 
extracts from nine plants were placed in test tubes, and 2 mL of chloroform and 3 mL of concentrated sulfuric 
acid were added consecutively. We shook them well and allowed them to stand for a few minutes. Red color in 
the lower layer indicates the presence of sterols, and yellow color in the lower layer indicates the presence of trit-
erpenoids. To test for flavonoids, we performed an alkaline reagent test. A few drops of 1% liquor ammonia were 
put in a test tube containing the sample. The emergence of a yellow color confirmed the presence of flavonoids. 
To test for glycosides, we performed a bromine water test. We added 5 mL of bromine water to the test extract 
solutions, and a yellow precipitate indicated the presence of glycosides. To test for saponins, we did a foam test. 
To 10 mL of the sample, 3 mL of distilled water was added and shaken well to obtain a froth. A few drops of 
olive oil were added to the froth, and the formation of an emulsion indicates the presence of saponins. To test 
for cardiac glycosides, we did the Kellar–Kiliani test. To 5 mL of a sample, 2 mL of glacial acetic acid containing 
a drop of ferric chloride was added. This was followed by the addition of 1 mL of concentrated sulfuric acid. A 
brown ring obtained indicates a positive result for the test. To test for alkaloids, 0.1 mg of the extract was added 
to 6 mL of dilute hydrochloric acid (1 M) and boiled, cooled, and filtered. The filtrate was divided into three parts 
and subjected to the following tests. To the first aliquot, 2 drops of Dragendorff ’s reagent were added. The forma-
tion of red precipitate indicated the presence of alkaloids. To the second aliquot, 2 drops of Meyer’s reagent were 
added. A creamy white precipitate revealed the presence of alkaloids. To the third aliquot, 2 drops of Wagner’s 
reagent were added. The formation of a reddish-brown precipitate indicated the presence of alkaloids. To test for 
phenol, 0.5 mL of extract was added to 5 mL of Foalin Ciocletu reagent and 4 mL of aqueous sodium carbonate. 
The generation of a blue colour indicated the presence of phenol.

Characterization of the nanoparticles.  The absorption spectra of the AgNPs were measured between 
300 and 700 nm using a PerkinElmer (Germany) 365 UV–Vis spectrometer at 24 °C. The morphology of the 
AgNPs was examined on a JEOL 3010 high-resolution transmission electron microscope equipped with energy-
dispersive X-ray (EDX) functionality (Bruker, Germany). The FTIR spectra of the crude extract and the AgNPs 
were obtained on a Bruker Alpha-P FTIR spectrophotometer (Germany) from 500 to 4000 cm−1. The structural 
characterization of the AgNPs was carried out using an X-ray diffractometer. XRD analysis was conducted using 
Bruker equipment with monochromatic Cu kα radiation (λ = 1:5406 Å) at 40 kV. Scanning was conducted in 
the region of 20–100 2θ angles. Dynamic light scattering (Malvern Zetasizer Nano-ZS) was used to analyze 
the zeta potential of the synthesized AgNPs. For the DLS measurements, powder AgNPs were resuspended 
in distilled water and sonicated for 15–20 min to properly disperse the particles in water. Zeta potential, and 
hydrodynamic diameter values were obtained from the triplicate analysis of the nanoparticles in the aqueous 
media24. Gas Chromatography–Mass Spectrometry (GC–MS) analysis was performed using a Bruker GC–TOF–
MS Gas Chromatography coupled with a 5973 Mass selective detector. The capillary column (Rxi-5SilMS) with 
an internal diameter of 30 × 25 mm and 0.2 μm film thickness (Restek, Bellefonte, PA, USA) was used. Ultrahigh 
purity helium (Afrox, South Africa) was used as the carrier gas at a constant flow rate of 1.0 mL/min and a linear 
velocity of 37 cm/s. An aliquot of 1 μL of sample diluted in the respective solvents was injected into the column 
with an inlet temperature of 250 °C in a splitless mode at time of 30 s. An initial oven temperature of 40 °C was 
set and programmed to increase up to 300 °C at the rate of 10 °C per min with a holding time of 3 min at each 
increment. The electron ionization mode of 70 eV (EI+) and electron multiplier/detector voltage at 1750 V was 
used to operate the mass spectrometry. The other operating parameters were as follows: ion source temperature 
of 230 °C, MS transfer line temperature 280 °C, MS solvent delay time of 5 min and mass acquisition range of 
40–550 DA and data acquisition rate of 10 spectra/S. The compounds were identified by direct comparison of the 
mass spectrum of the analyte at a particular retention time to that of reference standards found in the National 
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Institute of Standards and Technology (NIST) library. The area percentage of each component was calculated by 
comparing its average peak area to the total areas obtained28.

Antibacterial susceptibility.  The antibacterial activity of the EEHH, AgNPs, and a combination treatment 
of AgNPs and streptomycin (50 µL:50 µL), were investigated against five pathogenic bacterial strains: Gram-
positive S. pneumoniae (ATCC 27336) and Bacillus cereus (ATCC 10876); and Gram-negative M. catarrhalis 
(ATCC 25240), Escherichia coli (ATCC 25922), and Pseudomonas aeruginosa (ATCC 27853)29. Using the disc 
diffusion technique, pure cultures of these microorganisms were sub-cultured on nutrient agar and incubated 
at 37 °C for 24 h.

Fresh overnight cultures were inoculated on Mueller Hinton agar (MHA) plates using sterile swabs and 
allowed to stand for 20 min. Wells of 6-mm diameter were made on MHA plates with the bacterial lawn. Each 
well was filled with 50 μL of different concentrations (50, 100, and 150 μg/mL) EEHH in distilled water and HH 
AgNPs in dimethyl sulfoxide (DMSO) prepared from 10 mg/mL stock. DMSO (5%) was used as the negative 
control, and streptomycin (10 μg/mL) served as the reference standard. The plates were incubated at 37 °C for 
24 h, and the diameters of the inhibition zones around the wells were measured. Experiments were carried out 
in triplicate to reduce error30. The minimum inhibition concentration (MIC) and minimum bactericidal concen-
tration (MBC) of green synthesized AgNPs were determined using the modified method described in the CLSI 
guideline (2012)31. The MIC test was performed in a 96-well round bottom microtiter plate using standard broth 
microdilution methods while the MBC test was performed on the MHA plates. The bacterial inoculums were 
adjusted to the concentration of 106 CFU/mL. For the MIC test, 100 μL of the synthesized AgNPs stock solution 
(500 μg/mL) was added and diluted twofold with the bacterial inoculums in 100 μL of MHB started from column 
12 to column 3. Column 12 of the microtiter plate contained the highest concentration of AgNPs, while column 
3 contained the lowest concentration. Column 1 served as negative control (only medium) and the column 2 
served as positive control (medium and bacterial inoculums). Each well of the microtiter plate was added with 
30 μL of the resazurin solution and incubated at 37 °C for 24 h. Any colour changes were observed. Blue/purple 
colour indicated no bacterial growth while pink/colourless indicated bacterial growth. The MIC value was taken 
at the lowest concentration of antibacterial agents that inhibits the growth of bacteria (colour remained in blue).

Streptomycin (Sigma, St. Louis) treatments were all conducted at 10 μg/mL. This was prepared as needed from 
a stock solution by diluting tenfold with the assay media. The stock solution was prepared by transferring 10 mg 
of streptomycin into a 1 mL volumetric flask, and making up the volume with a 1:1 ethanol: water solution, pro-
viding a 10 mg/mL solution. This was then diluted 100-fold by transferring 10 μL of this solution to a new 1 mL 
volumetric flask, and making up the volume with the 50% ethanolic solution. This provided the 100 μg/mL stock.

The MBC was defined as the lowest concentration of the antibacterial agents that completely kill the bacteria. 
MBC test was performed by plating the suspension from each well of microtiter plates that exhibited no colour 
change into MHA plate. The plates were incubated at 37 °C for 24 h. The lowest concentration with no visible 
growths on the MHA plate was taken as MBC value. The log of reduction RFvalue were enumerated accordingly.

Results and discussion
Phytochemical screening.  The results from the qualitative analysis of the EEHH are provided as Table 1. 
The EEHH ethanolic extract was positive for alkaloids, flavonoids, steroids, phenols, terpenes, glycosides, carbo-
hydrates, saponins, and tannins as expected, but the tests were negative for cardiac glycosides32.

GC–MS profiling.  The volatile phytochemicals present in the ethanolic crude extract were subjected to GC–
MS analysis (Table 2). The extract is dominated with high molecular mass unsaturated fatty acid palmitoleic 
acid, unusual sugar d-allose, and the unusual chlorinated long-chain hydrocarbon 2-chloroethyl linoleate. Con-
siderable amounts of siloxanes were observed, these are likely environmental contaminants from the growing 
conditions, but are not naturally produced by the plant.

UV–Vis analysis.  The UV–vis absorption spectra of the AgNPs as a function of time during synthesis are 
provided as Fig. 2A. EEHH-AgNPs produced surface plasmon resonance (SPR) peaks at 430–434 nm, which is 

Table 1.   Phytochemical analysis of the crude extract of Hypoxis hemerocallidea. 

Metabolite Ethanolic extract

Glycosides +

Flavonoids +

Alkaloids +

Terpenes +

Steroids +

Tannins +

Saponins +

Phenol +

Cardiac glycosides −
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consistent with no agglomeration. The generated AgNPs were stable over the reaction period, and the UV–vis 
peak stabilized at 434 nm without further movement beyond 4 h indicating the presence of a steady state. How-
ever, because the response time increased, the SPR peak position became bathochromically shifted, indicating a 
gradual increase in nanoparticle size32–34.

FTIR analysis.  The FTIR spectrum is consistent with the incorporation of the secondary metabolites and 
their degradation products into the AgNPs as the same functional groups are present in both the extract and the 
nanoparticles. As noted by others, many classes of phytochemicals can reduce silver salts to metallic silver, while 
others can act as capping agents. This will, of course, affect the chemical structure of these organic compounds, 
and these transitions are noted by the changes in the relative intensity of the vibrational bands.

The pronounced peaks of the extract were at 3284, 2920, 1591, 1507, 1246, 1037, and 586 cm−1, whereas 
those of the AgNPs were at 3225, 2910, 1620, and 990 cm−1. The broad vibration at 3284/3225 cm−1 is typical of 
hydroxyl groups on carbohydrates, flavonoids, and saponins. The peaks at 2920/2910 cm−1 arise from aliphatic 

Table 2.   Major constituents of the chemical composition of the ethanolic crude extract of HH corms using 
GC–MS. Other trace components < 1.00%.

No Name Retention time (m) % Area

1 Palmitoleic acid 19.31 12.84

2 d-Allose 12.56 10.58

3 2-Chloroethyl linoleate 19.250 10.16

4 Pentadecanoic acid 15.59 4.83

5 1,2,3,5-Cyclohexanetetrol 14.01 3.61

6 O-geranyl-β-d-Mannofuranoside 21.68 2.68

7 5-Hydroxymethylfurfural 8.79 2.50

8 (E,E,E)-9-Octadecenoic acid, 1,2,3-propanetriyl ester 23.84 2.47

9 Stearic acid 19.49 2.18

10 5,6,6-trimethyl-Undeca-3,4-diene-2,10-dione 13.40 2.11

11 3-Deoxy-d-mannoic lactone 13.83 1.91

12 Benzaldehyde, 3,4-dihydroxy- 13.54 1.61

13 Octadecamethyl-cyclononasiloxane 23.09 1.44

14 2,5-Monomethylene-l-rhamnitol 10.03 1.41

15 Hexadecamethylheptasiloxane 24.05 1.41

16 eicosamethyl-Cyclodecasiloxane 22.07 1.26

17 N-Nitrosoazacyclononane 6.63 1.25

18 Hexadecamethylheptasiloxane 20.99 1.19

19 Tetracosamethyl-cyclododecasiloxane 24.93 1.19

Figure 2.   Nanoparticle formation: (A) UV spectrum of the AgNPs formed, (B) surface charge: FTIR spectra of 
the extract and AgNPs.
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C–H stretches in alkyl groups, 1591 and 1507 cm−1 from aromatic ortho disubstituted C–H stretches, 1246 cm-1 
is typical of phenol O–H stretches, while 1037 cm−1 suggests the presence of aliphatic ethers and alcohol C–O 
bonds35,36. These alcohols and phenols are probably involved in the reduction of ionic silver to zero-valent AgNPs 
and decrease upon reaction (Fig. 2B)37.

The reduction of the relative intensity of the aliphatic C–H stretching region during AgNPs synthesis sug-
gests conversion of C–H bonds in the phytocompounds to multiple bonds or oxidation38. The FTIR analysis is 
consistent with the formation of AgNPs through reduction of Ag(I) to Ag (0) with concomitant oxidation of 
the HH phytochemicals.

Phytochemical screening of crude EEHH confirmed the presence of flavonoids and carbohydrates. Flavonoids 
release free reactive hydrogen during their tautomeric transformations (keto-enol rearrangement), which can 
assist in the reduction of AgNPs39. Furthermore, alcohols facilitate the reduction of ionic silver to zero-valent 
AgNPs as they oxidize to carbonyls40.

TEM, SAED, and EDX analysis.  TEM analysis supports a largely spherical morphology for the AgNPs 
(Fig. 3A). Through sizing 30 randomly selected particles observed by TEM we observed the mode was between 
12 and 14 nm, with the mean value being 13.3 nm (Fig. 3B). As noted above, these are core–shell structures; 
this is suggested in the TEM images, but the distinct rings found in the SAED patterns (Fig. 3C) of the AgNPs 
confirm the polycrystalline property of the as-synthesized AgNPs41. Elemental composition analysis by EDX 
supports the contention that the nanoparticles comprise a metallic core with an organic shell: strong silver (Ag) 
signals and weaker signals from C and O atoms are consistent with this hypothesis. There is no significant con-
tamination from the nitrogen in the nitrate or from other opportunistic metals. The position of the signal at 
13cps/eV suggest that the silver core is crystalline rather than amorphous (Fig. 3D)41.

X‑ray diffraction.  The XRD pattern of the AgNPs shows sharp diffraction peaks corresponding to the (111), 
(200), (220), and (311) crystal planes (Fig. 4), which are associated with the face-centered cubic lattice of silver. 
The XRD profile indicates that our materials crystallize in a monoclinic phase, and this spectrum is in line with 

Figure 3.   Morphology: (A) TEM, (B) Particle size distribution (C) TEM-SAED, (D) EDX.
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those reported for other organic-silver nanoparticles prepared from other botanical extracts42–44. This confirms 
the formation of silver nanocrystals as the metallic core of the nanoparticles24.

Dynamic light scattering and Zeta potential analysis of the nanoparticles.  The zeta potential 
value of HH mediated AgNPs in aqueous suspension was established as − 29.2 mV (Fig. 5). This suggests that the 
surface of the nanoparticles is negatively charged and that the particles are uniformly dispersed in the aqueous 
medium. The high negative value is evident of the extreme stability of the nanoparticles because of electrostatic 
repulsive forces between the particles. Zeta potential value of about − 29 mV ensures a high energy barrier for 
the stabilization of the nanosuspension. DLS suggests a hydrodynamic diameter of 119 nm with a polydispersity 
index of 0.188. This is an order of magnitude larger than that observed by TEM. Although there are many small 
particles generated, the TEM images suggest the presence of larger structures. These might move as an assembly 
in solution together to provide this larger observed size in solution.

Antibacterial susceptibility.  The antibacterial activity of the crude extracts, AgNPs, and the AgNPs co-
administered with streptomycin, were investigated against both Gram-positive and Gram-negative bacteria. 
This was quantified using a standard Kirby–Bauer disc diffusion assay with DMSO as the negative control and 
pure streptomycin as the positive control (Fig. 6).

The extract alone only shows mild activity. The components of EEHH have been a traditional medicine, and 
like most secondary plant metabolites likely have some role in plant defense against infection. However, the 
AgNPs show good activity against all bacteria regardless of Gram-status and are similar in potency to streptomy-
cin. However, when streptomycin and the AgNPs are used together, the effect is synergistic: the area of disinfec-
tion is considerably greater than a simple addition of their individual activities would indicate. DMSO showed 
no activity with no area of inhibition (data not shown) confirming the viability of the tested bacteria strains. 
Silver salts have long been known to be potent antimicrobials, and the development of silver nanoparticles, with 
their far higher surface area of activated silver metal, has greatly accelerated their investigation45. However, the 
overuse of silver can decrease its efficacy against microorganisms as they develop resistance46.

The MIC result (Table 3) shows the bacteriostatic effect of the AgNP at 0.156 µg/mL for Streptococcus pneumo-
nia, Moraxella catarrhalis and Pseudomonas aeruginosa and 0.312 µg/mL upon exposure to Escherichia coli and 
Bacillus cereus. The bactericidal effect of the AgNP ranges from 0.312 to 5 µg/mL for Streptococcus pneumonia, 
Moraxella catarrhalis and Pseudomonas aeruginosa and 0.625–5 µg/mL with Escherichia coli and Bacillus cereus. 
The log of reduction RFvalue > 4 in all the bacteria challenge irrespective of their Gram status. The nanoparticle 
thus possessed high efficacy with a percentage greater than 90%.
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Figure 4.   XRD pattern of green synthesized AgNPs using HH. 
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This synergistic effect is expected and has been seen with other silver nanoparticles47,48. The mechanism of 
action of the AgNPs is through adsorption to the bacterial cell membranes, followed by passive penetration into 
the bacteria. The surface then becomes transiently exposed, and they can cause damage by interacting strongly 
with essential phosphorous and sulfur-containing compounds such as DNA and proteins, resulting in bacterial 
cell death49. They could also assist in preventing the bacteria from initiating gene expression changes due to 
the presence of the streptomycin, or streptomycin might better enter the cell by adsorbing to the surface of the 
nanoparticle and being carried into the cell itself along with the toxic silver particle50.

Conclusions
HH corm extract is readily obtained in large amounts from even small amounts of plant material (5% mass 
recovery from crude material) and can be used to initiate the solution-phase synthesis of low dispersity AgNPs 
under ambient conditions.

These biosynthesized AgNPs showed no agglomeration and had sizes typically ranging from 6 to 20 nm with a 
roughly spherical or ovoid shape. These HH-AgNPs show broad spectrum antibacterial activity against common 
respiratory pathobionts and synergistically enhance the antibacterial activity of streptomycin. We propose that 
these could be useful agents for transporting largely insoluble antibiotics in the body as potential biologically-
active drug delivery vehicles, but much more analysis needs to be conducted.

Figure 5.   Zeta potential and size distribution of the AgNPs. Analyses were conducted in triplicate for three 
freshly prepared samples, and each run is plotted in the different colours.
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