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Abstract
Inconel 718, a hard-to-cut superalloy is reputed for having poor machining performance due to its low thermal conduc-
tivity. Consequently, the surface quality of the machined parts suffers. The surface roughness value must fall within the 
stringent limits to ensure the functional performance of the components used in aerospace and bioimplant applications. One 
doable way to enhance its machinability is the adequate dissipation of heat from the machining zone through efficient and 
ecofriendly cooling environment. With this perspective, an experimental and integrated green-response surface machining-
based-evolutionary optimization (G-RSM-EO) approach is presented during this investigation. The results are compared 
with two base-line techniques: the traditional flooded approach with Hocut WS 8065 mineral oil, and the dry green approach. 
A Box-Behnken response surface methodology (RSM) is employed to design the milling tests considering three control 
parameters, i.e., cutting speed (vs), feed/flute (fz), and axial depth of cut (ap). These control parameters are used in the vari-
ous experiments conducted during this research work. The parametric analysis is then accomplished through surface plots, 
and the analysis of variance (ANOVA) is presented to assess the effects of these control parameters. Afterwards, a multiple 
regression model is developed to identify the parametric relevance of vs, fz, and ap, with surface roughness (SR) as the 
response attribute. A residual analysis is performed to validate the statistical adequacy of the predicted model. Lastly, the 
surface roughness regression model is considered as the objective function of the particle swarm optimization (PSO) model 
to minimize the surface roughness of the machined parts. The optimized SR results are compared to the widely employed 
genetic algorithm (GA) and RSM-based desirability function approach (DF). The confirmatory machining tests proved that 
the integrated optimization approach with PSO being an evolutionary technique is more effective compared to GA and DF 
with respect to accuracy (0.05% error), adequacy, and processing time (3.19 min). Furthermore, the study reveals that the 
Mecagreen 450 biodegradable oil-enriched flooded strategy has significantly improved the milling of Inconel 718 in terms 
of eco-sustainability and productivity, i.e., 42.9% cost reduction in cutting fluid consumption and 73.5% improvement in 
surface quality compared to the traditional flooded approach and the dry green approach. Moreover, the G-RSM-EO approach 
presents a sustainable alternative by achieving a Ra of 0.3942 μm that is finer than a post-finishing operation used to produce 
close tolerance reliable components for aerospace industry.

Keywords Inconel 718 · Green-RSM-based-evolutionary optimization (G-RSM-EO) · Biodegradable-enriched flooded 
strategy · RSM · PSO · GA · DF

1 Introduction

Due to their desirable properties such as having high corro-
sion and oxidation endurance limits and mechanical stabil-
ity in extreme conditions, Ni-based superalloys-Inconel 718 
have widespread applications in leading industries such as 
aerospace and marine [1, 2]. It is believed that half of the 
aerospace engine weight consists of these superalloys [3]. 
To ensure the functional performance of these mechanical 
components, the surface roughness of the machined parts 
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must confine to the stringent limits [4, 5]. Despite its supe-
rior properties, Inconel 718 exhibits poor machinability due 
to its low thermal conductivity, work hardening, and high 
affinity towards tool materials [6, 7]. These particularities 
have detrimental imprints on the part’s surface finish and 
tool life, thus impacting productivity and processing costs. 
Machinability can be enhanced through adequate heat dis-
sipation at the tool-workpiece interface via efficient cooling 
approaches. In this regard, the conventional flooded strategy 
has been employed for years. However, with the growing 
interest regarding the environmentally conscious machin-
ing, attempts have been made to replace this strategy with 
more ecofriendly alternatives such as dry, minimum quan-
tity lubrication (MQL), and cryogenic MQL. It is reasoned 
that the cutting fluids employed during the conventional 
wet approach consist of many harmful additives such as 
sulphates, chlorine, and phosphates, which adversely affect 
the worker’s health, the environment, and the machine tool 
itself [8–10].

Extensive research has been dedicated to improving the 
machinability aspects of Inconel 718 via different cool-
ing environments. For instance, Ucun et al. [11] perform 
micro-milling of Inconel 718 using dry and MQL cutting 
approaches taking three control parameters: 48 m/min cut-
ting speed,1.25, 2.5, 3.75, and 5 mm/flute feed; and 0.1-, 
0.15-, and 0.2-mm depth of cut. The study concludes that 
the MQL works better to improve the reduction of tool 
radius. Working on the similar alloy, Kaynak et al. [12]   
investigate the effects of different cooling conditions for its 
machinability in terms of cutting forces and tool wear during 
the milling at 90 m/min cutting speed and 0.5-mm depth of 
cut. The research reveals that the cryogenic approach pre-
sents improved results compared to dry and traditional oil-
based methods. To upgrade the machinability of Inconel 
718, Feyzi and Safavi [13] propose a hybrid cutting approach 
combining cryogenic, plasma heating, and ultrasonic vibra-
tions method while performing milling process at much 
lower values of cutting speed such as 5, 7.5, and 10 m/min. 
The experimental findings suggest that the surface finish and 
the tool wear have been improved compared to conventional 
milling. Similarly, Hafiz et al. [14] evaluate the effects of 
ultrasonic machining for the surface quality of Inconel 718. 
Their research concludes that 27 kHz ultrasonic vibrations 
are not capable to reduce the surface roughness significantly.

In contrast to the above-cited literature, recent research 
suggests that these ecological sustainable methods are still 
inadequate to match the performance of traditional flooded 
techniques. For example, Fernandez et al. [15] present an 
experimental comparison for the turning of Inconel 718 
under conventional wet and ecofriendly alternatives. Their 
results claim that the cold air MQL works more efficiently 
than a dry environment but no better than the traditional 
cooling. The work of Iturbe et al. [16] supports this claim 

through a surface integrity and tool wear analysis of Inconel 
718. It suggests that the traditional wet method is worth con-
sidering for the enhanced machinability attributes. It further 
adds that the achieved tool life in case of cryoMQL is three 
times shorter when compared to conventional environment.

During the recent developments involving the application 
of plant-based biodegradable oils as green cutting fluids, 
the research trend inclines in favor of MQL strategy [8, 9, 
17, 18]. Pereira et al. [17] employ various biodegradable 
oils integrated with MQL technique. A 15% improvement 
in surface finish is seen for high oleic sunflower oil with 
better ecological impacts. Studies are also available which 
tried to combine the advantages of biodegradable oil in a 
flooded environment [19, 20]. Zahoor et al. [19] weigh the  
outcomes of Mecagreen 450 biodegradable oil when applied 
in a flood form in the machining zone. The research reveals 
that the biodegradable oil integrated with flooded approach 
being a green alternative can work effectively compared to 
contemporary methods to improve the surface quality, tool 
life, and material removal rate for the slot milling of Inconel 
718.

While there is a notable research on the machinability 
improvement aspects of Inconel 718 employing biodegrad-
able oil in flooded conditions, there is no absolute machina-
bility conditions to acquire an optimum output value. Con-
sequently, the process optimization represents a current 
research need, particularly for a complex nonlinear system 
that depends on multiple input variables like the milling 
process. Considering that the production economy and part 
quality are the ultimate objectives for the manufacturers, the 
efficient and suitable utilization of input parameters is imper-
ative for economic gains in the industry. This need extends 
the research domain in a new direction, i.e., optimization. 
In totality, the optimization techniques can adequately con-
trol the machining outcomes in favor of the manufacturer 
after identifying the significance between input and response 
variables. Among the dominant optimization approaches, the 
intelligent techniques are reputed more evolutionary, fast, 
highly accurate in approximation, and effective for nonlinear 
complex machining systems [21–23]. Similarly, this exper-
imental investigation utilizes the optimization for surface 
roughness (SR) with respect to cutting speed (vs), feed/flute 
(fz), axial depth of cut (ap), and eco-efficient cooling strat-
egy, which is not reported before. The novelty of the present 
work includes effectively designing the input parameters for 
the required response attribute, i.e., surface roughness (SR), 
by a systematic comparison of results obtained from three 
different intelligent approaches.

In the field of optimization for the machining characteris-
tics of Ni-based hard-to-cut materials, Gupta and Sood [24]  
improve turning operation for the aerospace alloys under 
MQL green approach. The authors apply particle swarm 
optimization (PSO) and bacteria forging optimization (BFO) 
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evolutionary techniques and compare the results with desir-
ability approach. The research concludes that PSO is the 
best among all with respect to processing time and percent-
age error. Ali et al. [25] optimize the turning process of 
the same superalloy under MQL mixed with  Al2O3 nano-
particles. The study utilizes Taguchi-based signal-to-noise 
(S/N) ratio for the optimization and determines that 70 m/
min cutting speed, 0.05-mm depth of cut, and 0.05 m/rev 
feed rate are optimal parameters for surface roughness. Simi-
larly, Thirmalai et al. [26] use Taguchi-based optimization 
for the turning of Inconel 718 under wet (mineral oil-based) 
and dry conditions, considering surface roughness and flank 
wear as response attributes. The results reveal that the flood 
conditions produce better surface roughness and wear with 
7% and 8% error, respectively.

The optimization of the milling process, which is widely 
used in various industries, becomes vital. Therefore, Jang 
et al. [27] optimize the process for dry and MQL-assisted 
milling using evolutionary techniques such as neural net-
works, and PSO with respect to energy optimization. The 
study determines that more specific energy reduction is  
possible under MQL and that the PSO is the preferred opti-
mization tool with 1% error. Likewise, Pimenov et al. [28]  
apply artificial neural networks (ANN) and random forest for 
the optimization of face milling regarding wear and surface 
roughness. It is revealed that the random forest approach is 
more efficient with high accuracy. Zhou et al. [29] accom-
plish the multi-attribute optimization for Inconel 718 during 
the ball-end milling using grey relational analysis, ANN and 
PSO. Sing et al. [30] perform parametric optimization for 
tool wear while milling Inconel 718 under three different 
environments, i.e., dry, traditional wet (mineral oil-based) 
and MQL. The PSO and BFO methods are used to optimize 
the flank wear. The study reveals that the PSO and the MQL 
yield good results. More recently, Kar et al. [31] give multi-
objective optimization for the CNC milling of Inconel 718 
alloy through Fuzzy logic-based desirability approach. The 
optimum combination of 3500 rpm spindle speed, 100 mm/
min feed rate, and 0.25-mm depth of cut are obtained for 
the required surface roughness and material removal rate.

Based on the literature, it is evident that the conducted 
research tackling the thermal ills during the machining of 
Inconel 718 with inclusion of ecofriendly cutting fluids is 
mostly dedicated to MQL, and intelligent optimization has 
been explored for either conventional flooded conditions 
embedded with traditional cutting fluids or MQL employ-
ing eco-efficient fluids. The addition of ecofriendly fluids 
in flooded strategy is critical, particularly in the machining  
of the high resistant super alloys Inconel 718 [15, 16, 19]. 
Moreover, the incorporation of intelligent optimization 
techniques is worth to consider as they can help determine 
the values of control parameters for desired machinability 
characteristics. Therefore, the proposed research presents a 

novel integrated green-RSM-based-evolutionary optimiza-
tion (G-RSM-EO) approach that evaluates the advantages of 
synthetic vegetable ester-based biodegradable oil embedded 
with flooded method, and carefully determines the optimal 
values of the milling parameters (vs, fz, ap) for a better sur-
face quality, which is a fundamental requirement for aero-
space and bioimplants applications. These surface quality or 
surface roughness (SR) values are then compared with the 
baseline values achieved under wet and dry machining envi-
ronments. In addition, the optimization approach presents a 
systematic comparison of the results obtained from three dif-
ferent techniques, i.e., particle swarm optimization, genetic 
algorithm, and RSM-based desirability function approach. 
Lastly, the confirmatory milling (machining) tests are per-
formed to validate the robustness of all the three intelligent 
methods. Figure 1 below provides a flowchart depicting 
all the steps of the G-RSM-EO approach employed in this 
research work.

2  Experimental conditions

This section addresses the experimental setup used for the 
milling of Inconel 718 under flooded conditions enriched 
with biodegradable oil. The extensive usage of Inconel 718 
in aerospace and marine applications is the motivation for 
its selection as work piece material in this investigation. 
Table 1 indicates the spectroscopic results for the chemi-
cal composition of the alloy. The methodology adopted  
during this research is presented as a block diagram (see 

Section 2 

Experimental set-up and experimentation:

1. Selection of material and tooling 

2. Selection of control process variables

3. Design of experimentation (DOE)

4. Preparation of machining setup 

and cutting environment

5. Conduct machining experiments

6. Collection of machining data

Section 3: 

3.1; 3.2

Statistical parametric analysis:

1. Qualitative 

2. Quantitative 

3. Regression modelling 

Section 3:

3.3–3.3.1; 3.3.2; 

3.3.3, 3.3.4

Optimization:

1. Optimization using PSO, GA and DF 

2. Comparison between PSO, GA and DF

Validation:

Confirmatory machining tests 

Section 3:

3.4

Section 4

Potential gains with respect to sustainability 

and productivity

Conclusions and future recommendations

Fig. 1  Experimental methodology flowchart
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Fig. 1). The titanium aluminum nitride (TiAlN) coated 
micro-grained carbide inserts with wiper edge (0.4 mm 
tool nose radius, 90° flank angle, and 0.7 mm wiper edge 
length) were selected for the milling process on LG-800 
Hartford CNC machining center. The manufacturer highly 
recommends these inserts for the interrupted cutting of 
high-strength alloys because they show low affinity towards 
work piece metal [32]. The inserts were securely fixed on a  
specially designed two-flute tool-holder to mill a 63 × 9.7 × 3 
 mm3 slot. During the machining, new cutting inserts  
were used for each experiment to precisely evaluate the 
effects of process parameters on the machining response. 
The machining time (Tm) for each slot was noted using a 
stopwatch.

During this experimental work, ecofriendly cooling 
conditions using Mecagreen 450 synthetic vegetable ester-
based biodegradable oil with a concentration ratio of 6% 
were applied. The 0.05 l/s flow rate was recorded using 
two nozzles, 2 mm in diameter each, at a 120° angle to 
target the machining zone at 20-bar pressure [19, 33]. The 
prominent machinability indicator or the surface rough-
ness (SR) was calculated with the help of surface pro-
filometer (WYKO NY 1100), and the established range 
of surface roughness for aerospace applications was set 
as a benchmark, i.e., 0.8 to 1.6 µm [34]. The arithmetic 
average (Ra) mode was selected for the SR measurements, 
and they were accomplished at three different positions 
on the milled slot (Fig. 2a–b), and the average of all three 

readings was calculated using Eq. (1) below and used in 
statistical analysis presented in the forthcoming section. 
The milling tests were carried out at three different lev-
els of cutting speed (vs), feed/flute (fz), and axial depth 
of cut (ap). Table 2 below presents the full description 
of the parameters with their levels. The selection of the 
parametric levels was purely based on the feedback from 
the pilot runs, the literature review, and the manufacturer 
recommendations [10, 30, 35].

The experiments were designed using the Box-
Behnken response surface methodology (RSM), which 
recommends a set of 15 test runs. The Box-Behnken 
method was preferred over central composite design 
(CCD) due to its high-quality prediction capability for 
the fewer combinations of experimental runs with the 
focus to reduce the tooling cost [36, 37]. The milling 
tests were performed in three replicate sets (45 runs) to 
measure the dispersion in the data, which turned out to 
be insignificant. For baseline comparison purposes, addi-
tional experimental runs (Tests A and B) were carried-
out under traditional wet approach using Hocut WS 8065 
mineral oil at 6% concentration ratio and dry milling (as 
a green strategy) at vs 60 m/min, fz 0.10 mm/flute, and ap 
0.3 mm. A multiple regression model was developed to 
identify the parametric relevance (vs, fz, ap) with the SR 

(1)Ra(slot) =
Ra(start) + Ra(middle) + Ra(end)

3

Table 1  Spectroscopic results 
of elemental composition of 
Inconel 718

Element C Mn S Cu Ni Mo Cr Al Ti Nb Si Co Fe

Weight (%) 0.03 0.08 0.00001 0.06 53.51 3.00 18.23 0.52 1.01 5.10 0.11 0.14 balanced

Fig. 2  Machining of Inconel 718 under biodegradable oil-enriched flooded environment: a Work piece after machining; b schematic of work 
piece
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response attribute. The analysis of variance (ANOVA) 
and the residual analysis were performed to validate the 
statistical adequacy of the predicted model. Afterwards, 
an integrated G-RSM-EO approach was employed to 
optimize the SR with respect to three control parameters. 
Also, the obtained results were compared with Genetic 
algorithm (GA) and desirability function (DF) approach. 
The same range of parametric levels given in Table 2 
was used for the PSO, GA, and the DF optimization. 
Lastly, the confirmatory machining tests were carried out 
at optimal parametric values obtained from the PSO, GA, 
and the DF. Moreover, the achieved work piece surface 
topography was analyzed using FEI Quanta 200F scan-
ning electron microscope (SEM).

3  Experimental results and discussion

The experimental results for surface roughness and machin-
ing time of the Inconel 718 milling under green-flooded con-
ditions, the statistical analysis, and the process optimization 
are all discussed systematically in the following subsections.

3.1  Parametric analysis of surface roughness

The response surface methodology (RSM) - an advanced 
design of experiments [38, 39] that helps to better under-
stand and optimize the response - is employed during this 
study. The design matrix based on Box-Behnken’s response 
surface methodology along with the average SR and Tm 
results is presented in Table 3. The surface roughness and 
machining time results for an additional experiment (Test A) 
are presented in Table 4.

For the sake of parametric analysis, the surface plots for 
the three control parameters are presented against SR (see 
Fig. 3a–c).

From Fig. 3a, the cutting speed (vs) and the feed/flute 
(ƒz) demonstrate a similar increasing behavior towards sur-
face roughness, while the axial depth of cut (ap) possesses 
a nonlinear trend (Fig. 3b). Figure 3a shows that there is 
an increment in Ra values with the increase in ƒz and vs 
values. The behavior in the case of ƒz is expected. It can 
be explained based on a metal cutting phenomenon that fz 
increases the pitch of the peaks and valleys generated on 
the machined surface (i.e., Ra = ƒ2/32 r, where ƒ is the feed 
rate and r is the tool nose radius). Moreover, the higher 
values of feed rate contribute to the tool vibration and 
excessive heat generation [40]. Consequently, tool wear 

Table 2  Parametric details of experimentation during the current 
study

Parameters Specifications

Cutting speed (vs), m/min 60, 70, 80
Feed/flute (fz), mm/flute 0.1, 0.15, 0.20
Axial depth of cut (ap), mm 0.2, 0.3, 0.4
Tool hang, mm 32
Cutting environment Biodegradable oil-

assisted flooded 
approach

Flow rate for flooded conditions, l/s 0.05
Applied pressure, bar 20
Lubricant concentration, % 6
Cutting inserts TiAlN coated micro-

grained carbide 
inserts

Work piece alloy Inconel 718

Table 3  RSM-based Box-
Behnken layout with Ra and 
Tm values for Inconel 718 
milled under green-flooded 
environment

Experimental 
run, #

Cutting speed vs 
(m/min)

Feed/flute ƒz 
(mm/flute)

Axial depth of cut 
ap (mm)

Surface roughness 
Ra (µm)

Machining 
time Tm (s)

1 80 0.10 0.3 1.20 67
2 60 0.15 0.4 0.59 63
3 70 0.10 0.2 0.70 69
4 80 0.20 0.3 1.40 59
5 80 0.15 0.4 1.58 58
6 70 0.10 0.4 0.78 71
7 60 0.20 0.3 0.58 60
8 70 0.20 0.4 0.83 59
9 60 0.15 0.2 0.46 58
10 70 0.15 0.3 0.71 61
11 60 0.10 0.3 0.45 72
12 70 0.20 0.2 0.78 59
13 70 0.15 0.3 0.77 65
14 80 0.15 0.2 1.45 58
15 70 0.15 0.3 0.78 66
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occurs due to the formation of built-up edges. In addition, 
considerable heat results in thermal softening of the work 
piece material. This ultimately yields work hardening due 
to sudden quenching, as machining was performed under 
the flooded conditions. The behavior of feed rate is con-
sistent with other works [3, 40]. Zahoor et al. [40]reveal 
that the spindle vibrations and the feed rate are the most 
influencing variables for the surface roughness during 
the vertical milling of AISI P20 (a hard-to-cut material). 
Regarding the axial depth of cut (ap), a nonlinear impact 
can be visualized (Fig. 3b). Firstly, Ra decreases, then 

increases. This initial decrease could be due to the chip-
ping of tool nose [40].

In the case of cutting speed (vs), a contradictory pat-
tern has been observed. In general, smaller cutting speed 
values are associated with deteriorated surface finish [41]. 
Reportedly, at low vs, high temperature production takes 
place, which traps heat in the machining zone due to the 
low thermal conductivity of Inconel 718 (11.2 W  m−1  K−1 
[42]). Further, the detrimental impacts of heat worsen due to 
ineffective dissipation of heat under the conventional cutting 
environments. Moreover, the work hardening property of 

Table 4  Test A, Test B, Ra, 
and Tm values for Inconel 
718 milled under mineral oil-
flooded environment and dry 
environment

Experimental run Cutting speed vs 
(m/min)

Feed/flute ƒz 
(mm/flute)

Axial depth of 
cut ap (mm)

Surface roughness 
Ra (µm)

Machining 
time Tm (s)

Test A
Flooded + mineral

60 0.10 0.3 1.7 71

Test B
Dry condition

60 0.10 0.3 1.81 69

Fig. 3  Surafce plots for the Ra of Inconel 718: a cutting speed vs feed/flute; b feed/flute vs axial depth of cut; c cutting speed vs axial depth of 
cut
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Inconel 718 reduces the machinability at high temperature, 
thus resulting in high Ra values. During the present study, 
the small Ra (0.45 μm) was achieved at low vs (60 m/min). 
Although the surface roughness increases with vs, lower Ra 
values (0.45–1.58 μm) are achieved as compared to studies 
reported on the milling of the same alloy under different 
cutting strategies, such as dry, conventional wet, MQL, and 
cryoMQL [3, 26]. For example, Qiang et al. [3] obtained 
Ra ranges from 2.5 to 3.5 μm under dry and 2.0 to 2.6 μm 
under MQL environments while milling the Inconel 718. 
This can be attributed to the biodegradable oil-enriched 
flooded approach that makes the milling process capable 
of producing a better surface finish, even at a low cutting 
speed of 60 m/min. This is due to the excellent lubricating 
and cooling characteristics of the biodegradable-assisted 
wet approach over other current methods. This green alter-
native enhances the heat dissipating ability of the cutting 
environment, thus flushing away most of the heat from 
the machining envelope. In addition, the Mecagreen 450 
biodegradable cutting oil penetrates effectively into the 
tool-workpiece interface and develops a strong fatty acid 
adhesive cushion. The sliding effects of this adhesive film 
decrease the friction at the tool nose, eventually reducing 
the tool wear and improving the surface quality [10, 43]. 
These results are aligned with the previous work of Zahoor 
et al. [19].

To summarize, this biodegradable-assisted flooded 
approach shows an ability to improve the machining of Ni-
based alloys in terms of sustainability and productivity (i.e., 
part surface quality and manufacturing cost reduction). With 
respect to eco-sustainability, the Mecagreen 450 is a respon-
sive choice to the environment, machine tool, and machinist 
as it is fully made of renewable sources, completely boron 
free to anticipate health regulations, paraffin free thus pro-
viding stability from harmful bacteria, and it can be easily 

washed by alkaline solvent as compared to conventional 
methods utilizing mineral-based soluble fluids.

Regarding productivity, superior surface quality 
(0.45 μm) is obtained with the existing strategy compared 
to 1.7 μm when using Hocut WS 8065 mineral fluid and 
1.81 μm under dry conditions (see Table 4 above), thus 
achieving a 73.5% surface quality improvement. The current 
approach offers a cost reduction associated with the cutting 
oil consumption. Only a 6% concentration ratio with water 
is recommended, which provides a 30–45% reduction in use 
as compared to mineral oils (10–20% concentration ratio). 
For instance, 180 l/h. flow rate is calculated according to 
the above-stated specifications (see Table 2). For an hour of 
machining, an approximate amount of $54 for Mecagreen 
450 ($5 per liter) and $94.5 for Hocut WS 8065 ($3.5 per 
liter using an average of 15% concentration rate) were esti-
mated yielding an average of 42.9% cost reduction in fluid 
consumption.

3.2  Statistical analysis and modeling

After analyzing the process parameters of the superalloy, 
the quantitative effects of these independent parameters, 
as well as the RSM model accuracy, have been determined 
using ANOVA. The analysis has been carried out at 95% 
confidence interval (α = 5%). To comprehend the impact of 
each parameter with respect to the response characteristics, 
the “F-value” was obtained using “higher-the-better” rule. 
Likewise, “R2” suggests the significance of the model, i.e., 
the higher the “R2”, the better the model [24]. Table 5 pre-
sents the ANOVA results for the Ra of Inconel 718. It can be 
observed that the RSM model proves significant, because its 
“p-value” is less than 0.05. Additionally, the cutting speed 
(vs) is identified as the most significant variable affecting Ra 
among all the three parameters with a higher “F-value.” The 

Table 5  ANOVA results for 
Ra of Inconel 718 milled under 
green-flooded approach using 
RSM-based Box-Behnken 
design matrix

Source DF Adjusted sum 
of squares

Adjusted mean squares F-value P-value Remarks

RSM model 6 1.79525 0.299209 73.78 0.000 Significant
vs 1 0.10538 0.105379 25.99 0.001 Significant
fz 1 0.01153 0.011535 2.84 0.130
ap 1 0.01214 0.012141 2.99 0.122
vs × vs 1 0.14893 0.148926 36.72 0.000
fz × fz 1 0.00804 0.008041 1.98 0.197
ap × ap 1 0.01600 0.016003 3.95 0.082
Error 8 0.03244 0.004055
Lack-of-fit 6 0.02957 0.004929 3.44 0.242 Insignificant
Pure error 2 0.00287 0.001433
Total 14 1.82769
S R2 R2 (adjusted) R2 (predicted)
0.0636805 98.22% 96.89% 93.17%
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results from the other reported works are aligned with this 
research [24, 30]. It is also noted that the lack-of-fit is insig-
nificant at a 95% confidence interval, depicting the robust-
ness of the model, which is further validated by the “R2” 
value that turned out to be an extremely high or 98.22%.

Afterwards, the statistical approach of regression analy-
sis was employed to model a predictive equation based on 
the experimental data presented in Table 3 above using 
MINITAB 19.0. Equation (2) represents the developed 
regression model for Ra of the Inconel 718 milled under 
the Mecagreen 450 green fluid-enriched flooded condition.

Further, the validation of the developed regression 
model was performed to ensure its accuracy and adequacy. 
For the said purpose, different statistical tools are avail-
able but residual analysis is the most employed technique. 
Hence, the same approach is utilized in the present study 
to validate the predictive model for Ra. The basic working 
principle (Eq. (3)) of this technique is to calculate the dif-
ference between the achieved value of the response param-
eter and the predicted value of the same parameter through 
the regression Eq. (2) under the same cutting conditions.

(2)
Ra = 7.34 −

(
0.2368 × vs

)
+
(
6.75 × fz

)
−
(
3.46 × ap

)

+
(
0.002008 × vs

2
)
−
(
18.7 × fz

2
)
+ (6.58 × ap

2)

The residuals for the Ra of Inconel 718 difficult-to-cut-
alloy considering a green wet approach were calculated 
and illustrated in Fig. 4. As it can be observed, the residu-
als appear in a straight-line pattern on the normal prob-
ability plot except a few points on both ends of the line, 
which are expected in the normal plot. While on the versus 
fit plot, the residuals scatter randomly suggesting that the 
predictive model fits the data well through approximating 
the error; thus, validating the regression equation. This 
Eq. (2) will serve as the objective function in the particle 
swarm optimization (PSO) algorithm.

3.3  Experimental optimization using RSM‑based 
PSO, GA, and DF

This section will discuss the methodology and results of the 
proposed integrated G-RSM-EO approach and compare it 
with DF approach.

3.3.1  Particle swarm optimization

Various authors offered their contribution to optimize differ-
ent machining processes using several traditional approaches 

(3)ei = Ractual − Rpredicted

Fig. 4  Residual plots for Ra values of Inconel 718 superalloy
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such as Taguchi signal-to-noise (S/N) ratios and grey relation 
analysis [25, 26, 29, 44]. However, drawbacks associated with 
the local optimal solution reduce their accuracy and robust-
ness. To overcome these deficiencies, the adoption of evolu-
tionary approaches is practical. The PSO is selected since it 
is an efficient and time saving evolutionary technique [45].

As mentioned earlier, PSO has been utilized successfully 
in certain research works using different cooling environ-
ments [27, 28, 31, 35]. However, no work is reported in 
which PSO has been employed for the milling of Inconel 
718 under biodegradable-assisted flooded strategy. Hence, 
it gives an inspiration for the current experimental research 
to optimize the surface quality of Inconel 718. To obtain a 
global optimal, continuous type PSO classical variant tech-
nique was employed for the parametric optimization of sur-
face roughness of Inconel 718. Further, the PSO results were 
compared with DF approach. The parameters vs, fz, and ap 
were considered as the swarms/particles in PSO. The range 
of these control parameters was presented earlier in Table 2.

After a careful literature review [46–51], and multiple 
simulation runs, the PSO working parameters were selected 
and presented in Table 6.

The following are the PSO steps used to optimize the 
milling parameters during this study:

 i. Creation and initialization of an array of 250 parti-
cles possessing random positions and velocities. The 
velocity vector has three components: cutting speed 
(vs), feed per flute (fz), and axial depth of cut (ap). To 
avoid premature convergence of solution as well as 
long processing time [50, 51], a careful selection of 
250 particle population size was made after perform-
ing multiple simulations. These simulation runs were 
tried with particle sizes 50, 100, 250, 500, 750, and 
1000.

 ii. PSO objective function (i.e., minimization of surface 
roughness with respect to each particle): the regres-
sion Eq. (2) presented in Sect. 3.2 above serves as 
the objective function and was inputted in the PSO 
program in MATLAB (R2020b) software.

 iii. New position of each particle was calculated using Eq. 
(4) [30]:

  where vi
t is the velocity of the “ith” particle at “t” 

iteration, xi
t is the particle current position, and xi

t − 1 
is the particle previous position. The pbest value for 
each particle is replaced with the current value in case 
a better position is attained.

 iv. Determination of gbest: if the particle finds a better 
gbest value (minimum surface roughness) than the pre-
vious one, it is updated and stored. If f(xi) < f(gbest), 
then f(gbest) = f(xi) and gbest = xi. The optimized value 
is a vector gbest having three components, i.e., vs, fz, 
and ap.

 v. Evaluation of particle’s new velocity using Eq. (5) 
[30] and updating the new position towards achieving 
the objective function of minimum surface roughness.

  where w is the inertia weight, c1 and c2 are learning 
coefficients, u1 and u2 are random variables uniformly 
distributed (0, 1) to start the search,  pbesti stands for 
local best position of particle “i,” and gbest presents 
the global best position. The inertia weight “w” was 
calculated using Eq. (6) [30].

  where wmax and wmin are the maximum and minimum  
inertia weight, respectively, and  itercurrent and  itertotal 
stand for current iteration and total number of itera-
tions. All Eqs. (3)–(5) were inputted in the PSO pro-
gram in MATLAB (R2020b) software.

 vi. Repeating steps ii–v until the stopping criterion of a 
predefined iteration number was achieved, i.e., 100. To 
decide the stopping criterion, the established norms 
of the PSO technique were followed [24, 29, 30, 51, 
52] and PSO for various stopping criteria ranging 
from iterations 5 to 120 was simulated.

Table 7 represents the optimized values of the objective 
function (fitness function = 0.3940 µm) up to 16 digits pre-
cision for stopping criteria of 5, 10, 30, 40, 50, 100, 110, 
and 120 iterations at 250 population size. From the fitness 
function precision, it is noted that the gbest value of fit-
ness function (Ra = 0.3940 µm) is achieved at 100 iterations 
at vs = 60 m/min, fz = 0.10 mm/flute, ap = 0.26 mm and no 
further improvements are observed at 110 and 120 itera-
tions. The fitness function or evaluation function estimates 

(4)xt
i
= xt−1

i
+ vt

i

(5)
vt

i
= wvt−1

i
+ c

1
u1

(
pbest i − xt

i

)
+ c

2
u2(gbest − xt

i
)

(6)w = wmax − [(wmax − wmin) × itercurrent]

Table 6  PSO working parameters

Input Parameter Specification

Number of parameters 3
Population size/number of particles 250
Number of Iterations 100
Inertia weight, w 0.9 (max), 0.4 (min)
Acceleration factor, c1 1
Acceleration factor, c2 2
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that how close a given solution is to the optimum solution 
of the given problem. The fitness function value represents 
the specific type of objective function (i.e., minimization of 
surface roughness for the present research). The rounded-off 
optimized value of surface roughness (0.3940 µm) obtained 
from PSO is shown in Table 9 below.

3.3.2  Genetic algorithm

Genetic algorithm (GA) is considered as a novel method 
that provides a wide range of optimal settings of process 
control variables (parameters); hence, it offers flexibility to 
the machining operation. In this study, the GA optimiza-
tion was accomplished to minimize the surface roughness of 
Inconel 718, which is one of the direct measures of process 
productivity. The main reason to select GA for the com-
parison with PSO is its discrete nature since it converts the 
process variables into binary ones; therefore, it can easily 
solve discrete problems such as machining [53], while PSO 
is continuous and needs to be modified for the discrete opti-
mization problems.

The above-cited regression model (Eq. (2)) was used as 
an objective function, and the GA parameters (see Table 8) 
were set to run the optimization code. The range of the con-
trol parameters presented in Table 2 above was employed 
as the boundary limits. To observe the weighted average 

variation of fitness function, a stopping criterion of 500 
generations was selected [54]. However, the optimal solu-
tion was achieved after eighteen iterations utilizing 3.56 min 
processing time and is presented in Table 9 below.

3.3.3  Desirability function approach

DF is an optimization technique introduced by Suich and 
Derringer in 1980. The approach finds the optimum para-
metric combinations targeting the desired values of response 
attributes. Here, in this approach, each response attribute is 
converted into an individual desirability function di which 
ranges from 0 < di < 1. The desirability function has three 
categories: (i) smaller-the-better, (ii) greater-the-better, 
and (iii) target-the-better. In this present work, the objec-
tive function and surface roughness were optimized using 
smaller-the-better desirability function as per Eq. (7).

where di(Yi) is the desirability function for “Yi” response 
attribute; i.e., Ra, Ti, and Ui are the target and the upper 
values of control parameters (vs, fz, ap), respectively; s is the 
function values; i.e., linear, convex, and concave.

During the DF approach, all the three control param-
eters (vs, fz, ap), were permitted to vary to the full range 
of their variability and the combined goal was chosen to 
be minimized (using Eq. (7)), i.e., SR, in MINITAB 19.0. 
Figure 5 graphically demonstrates the optimization process 
performed under the desirability function approach with an 
ideal composite desirability function value of 1. In Fig. 5, 
the optimal level of each control process is indicated in red 
as the current value to achieve a minimum Ra of 0.4117 μm 
(see Table 9 below).

Table 9 compares the optimal values of the control and 
response parameters obtained from the three different 
optimization approaches, i.e., PSO, GA, and DF. It can be 
clearly noticed that all the three optimization methods yield 
different results for the SR of Inconel 718 using Mecagreen 
450 wet cutting conditions. Further, it is important to note 
that optimal Ra = 0.3940 µm (PSO), Ra = 0.4110 µm (GA), 
and Ra = 0.4117 µm (DF), are obtained at vs = 60 m/min, 
fz = 0.10 mm/flute, and ap = 0.26 mm.

3.3.4  Validation through confirmatory milling test

To validate the results produced by PSO, GA, and DF 
approach, Table 10 lists the experimental results of the 
confirmatory milling tests that are carried out on the CNC 
machining center (LG-800 Hartford) under three different 

(7)di

�
Yi

�
=

⎧
⎪⎨⎪⎩

1.0 if Yi(x) < Ti�
Yi(x)−Ui

Ti−Ui

�s

if Ti ≤ Yi(x) ≤ Ui

0 if Yi(x) > Ui

Table 7  PSO simulation results up to 16 digits precision for different 
stopping criteria

Simulation 
run

Particle size Fitness function (µm) Stopping 
criteria

1 250 0.393952056326780 5
2 250 0.393951976627593 10
3 250 0.393951975691943 30
4 250 0.393951975683928 40
5 250 0.393951975683892 50
6 250 0.393951975683889 100
7 250 0.393951975683889 110
8 250 0.393951975683889 120

Table 8  Setting parameters for GA used for the optimization of Ra

Setting parameter Value

Selection function Tournament of size 2
Crossover function Uniform
Mutation function Gaussian
Direction of migration Forward with migration fraction of 0.2
Distance measure function Distance-crowding
Population size 50
Stopping criteria 100 × number of input process variables
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environment, i.e., G-RSM-EO, flooded + Mineral oil, and 
dry. The confirmatory machining runs were performed in 
three replicate sets for each environment to measure the 
dispersion. From Table 10, it is obvious that the achieved 
experimental value of Ra (0.3942 µm) is very close to the 
PSO predicted value for all the three cutting conditions. 
Thus, confirming that the PSO provides a better accuracy 
over the GA and DF approaches with very small error 
(0.05%). It can also be noted from Table 10 that the PSO 
reading (0.3940 µm) is practically like the experimental Ra 
value (0.3942 µm). This very small percentage error can be 
attributed to the surface profilometer precision limitation.

It is important to note that the optimized (predicted) 
Ra obtained at vs = 60 m/min, fz = 0.10 mm/flute, and ap = 
0.26 mm is close or even better than the post-polishing pro-
cesses that are employed to improve the surface quality of  
Inconel 718 parts [55–58]. Moreover, the G-RSM-EO 
approach improves the productivity through reducing the 
machining time. The average machining time before opti-
mization was 63 s/slot (see Table 3 above). This time has 
reduced to 52 s/slot, thus achieving a saving of 17.5% of 
machining time.

Additionally, the SEM image of surface topography of 
confirmatory tests of the Inconel 718 workpiece milled 
under Mecagreen 450 biodegradable-enriched flooded envi-
ronment (Fig. 6a) reveals that a fine surface is achieved at 
the optimized parametric values vs = 60 m/min, fz = 0.10 mm/
flute, and ap = 0.26 mm. A very few traces of built-up-layer 
(BUL) with clear feed marks can be easily observed com-
pared to the surface obtained under flooded approach inte-
grated with mineral oil and dry conditions, respectively. 
Figure 6b–c reveals that the tearing, microcrack, and BUL 
are the prominent topographical features of the machined 
surface. The excessive formation of BUL can be observed 
in case of dry machining, thus confirms the achieved sur-
face roughness results. These results can be explained on 
the basis that tearing and BUL are attributed to the improper 
flushing of metal chips. The excessive heat generation dur-
ing the machining of Inconel 718 causes the chip material 
to melt and stick with the machined surface [19]. Conse-
quently, this leads to the formation of built-up-layer (BUL). 

Error(%) =
Rapred − Raexp

Rapred
× 100

Fig. 5  Ra optimization using 
RSM-based desirability func-
tion approach

Table 9  Comparison of results 
obtained from PSO, GA and DF 
modeling approaches

Optimi-
zation 
approach

Cutting 
speed, vs (m/
min)

Feed/flute, 
fz (mm/
flute)

Axial depth 
of cut, ap 
(mm)

Surface 
roughness, Ra 
(µm)

Processor 
time (min)

Improvement in 
response attribute 
(%)

PSO 60 0.10 0.26 0.3940 3.19 12.44
GA 60 0.10 0.26 0.4110 3.56 8.67
DF 60 0.10 0.26 (0.2566) 0.4117 6 8.51
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The BUL is more aggressive in case of dry machining due 
to the absence of flushing mechanism, while the microcracks 
happened due to sudden quenching when machining is per-
formed under the flooded conditions.

3.4  Potential gains with respect to sustainability 
and productivity

Inconel 718 is widely used in airfoils, pressure vessels of air-
craft engine, critical rotating components, and bioimplants. 
Accordingly, improving machined surface quality and reduc-
ing manufacturing cost are a vital concern of the manufac-
turing community. Moreover, sustainable machining encour-
ages the use of alternative strategies, which are ecofriendly 
as well as efficient to the machining gains. The experimental 
results of the current study show that G-RSM-EO approach 
produced better results in terms of surface roughness and 
machining time as compared to flooded approach integrated 
with mineral oil and dry approach. A comparison of the pro-
posed G-RSM-EO approach to its counterparts is presented 
in Table 11 below.

Recently, additive manufacturing (AM) is considered as 
a gateway to the sustainable manufacturing of Inconel 718 
for aerospace and bioimplant markets. One inherent disad-
vantage of AM is that it fosters a need to incorporate the 
post-finishing operations to meet the surface quality require-
ments for final products. The literature indicates that several 
methods are currently employed such as milling, grinding, 
electropolishing, and drag finishing. To further enlighten the 
significance of proposed G-RSM-EO strategy, a comparison 
of the G-RSM-EO approach is also made with several AM 
variants and is presented in Table 11, separately.

From Table 11, the one-to-one comparison G-RSM-EO 
approach with base-line techniques (flooded + mineral oil 
and dry approach) reveals that it enables the conventional 
milling operation to produce a better surface quality com-
pared to its counterparts as well as existing non-conventional 
manufacturing methods. Although there is not an available 
one-to-one cost comparison, the current approach presents 
substantial advantages over advanced manufacturing opera-
tions (i.e., AM and its variants) with respect to the following 
significant cost factors: (i) post-finishing operation cost, (ii) 
AM equipment cost itself, and (iii) raw material cost due to 
lack of economy of scale as the literature reveals that AM 
is limited to small batch production environment [59, 60]. 
Moreover, the G-RSM-EO approach can anticipate a promis-
ing post-finishing operation to machine the near-net shape 
complex profiles for the above-mentioned applications. Fur-
ther, G-RSM-EO strategy reveals a 12.44% SR improvement 
(see Table 9) and 17.5% savings in machining time.

Additionally, the proposed cooling approach demonstrates 
several gains regarding sustainability and productivity. As 
indicated earlier, it provides a 42.5% cost reduction associated Ta
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Built-up-layer of chip

material

Feed marks 

Feed marks 

Tearing

Built-up-layer of chip

material

Microcrack

a) b)

c)

Built-up-layer of chip material

Feed marks 

Fig. 6  SEM image for surface topography at 60 m/min vs, 0.10 mm/flute fz, and 0.26 mm ap optimized parameters given by PSO, GA, and DF; a 
under G-RSM-EO, b under flooded approach integrated with mineral oil, and c under dry environment

Table 11  Surface roughness 
comparison of G-RSM-EO to 
its counterparts and additive 
manufacturing (AM) variants

Approach Workpiece material Achieved 
Ra (µm)

G-RSM-EO Inconel 718 0.39
RSM-EO under flooded + mineral oil strategy Inconel 718 0.41
RSM-EO under dry approach Inconel 718 0.41
Comparison with AM variants
Main manufacturing process: laser melting AM
Post-finishing process: conventional flooded milling [54]

Inconel 625 1.28

Main manufacturing process: AM
Post-finishing process: grinding [55]

Inconel 718 0.5

Main manufacturing process: laser powder bed fusion AM
Post-finishing process: electropolishing [56]

Inconel 718  ~ 3

Main manufacturing process: selective laser melting AM
Post-finishing process: drag finishing operation [58]

Inconel 718 2.56
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with the cutting oil consumption and 73.5% surface quality 
improvement compared to the traditional wet strategy.

4  Conclusions and suggested future 
research

This research work undertook various experiments and 
tests while milling Inconel 718 alloy by considering an 
integrated G-RSM-EO approach with Mecagreen 450 bio-
degradable cutting fluid. Based on the experimental out-
comes, statistical analysis, and parametric optimization, 
the following can be noted:

1. The milling process of Inconel 718 in terms of surface 
roughness (SR) has been considerably improved under 
the proposed G-RSM-EO evolutionary cutting approach. 
This research work presented a green alternative offering 
the advantages of superior cooling attributes of flooded 
condition, ecofriendly traits of biodegradable oil as a 
cutting fluid, and process optimization by particle swarm 
optimization (PSO) technique.

2. The parametric analysis reveals that as cutting speed and 
feed/flute increase, the surface roughness increases. A 
contradiction lies in the cutting speed behavior, as high 
surface roughness values are traditionally associated 
with low cutting speeds when milling Inconel 718. Thus, 
it can be claimed that the presently employed cooling 
strategy enables the milling operation to produce better 
surface quality even at low cutting speeds.

3. Through ANOVA analysis, it has been demonstrated 
that the surface roughness was more sensitive to the 
cutting speed with higher “F-value” during the milling 
of Inconel 718.

4. The Mecagreen 450 assisted cooling approach proves 
itself as a sustainable alternative through yielding a 
42.5% cost reduction in cutting oil consumption and 
73.5% enhancement in surface quality of the machined 
part compared to the mineral oil (Hocut WS 8065)–
assisted conventional wet approach, and dry green 
machining approach.

5. The optimization results show that 60 m/min cutting 
speed, 0.10 mm/flute feed, and 0.26 mm axial depth of 
cut were the best values of the control parameters sug-
gested by particle swarm optimization (PSO) to achieve 
a 0.3940-µm Ra at 52 s/slot machining time (Tm). Based 
on these values, 12.44% and 17.5% reduction in surface 
roughness and Tm have been obtained, respectively. 
These results have been validated through confirmatory 
milling tests with 0.05% error. The achieved surface 
quality is better than the one produced through post-
polishing operations, which are employed to achieve the 

desired surface quality of Inconel 718 components for 
aerospace and biomedical applications.

6. The PSO approach shows better performance for all the 
three environments in terms of accuracy (0.05%, 1.2%, 
and 1.7%, respectively), adequacy, and processing time 
(3.19 min) in determining the optimal solution compared 
to GA (accuracy 4.08%, 2.91%, and 2.4%, respectively; 
processing time 3.56 min) and DF approaches (accuracy 
4.25%, 3.08%, and 2.60%, respectively; processing time 
6 min).

To summarize, the findings are dedicated to Inconel 
718 superalloy, a specific mill cutter and a cooling method 
though. The proposed approach can be utilized for other 
similar materials such as different grades of Ni-based 
alloys, and titanium and its alloys. Regarding optimization, 
aerospace and biomedical manufacturing industries will 
directly benefit from the proposed integrated G-RSM-EO 
approach by designing cost-effective machining of Inconel 
718.
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