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ABSTRACT 

A Charge Simulation based Computer-Aided Design (CAD) Package which facilitates the 

development of a charge simulation model for high voltage (HV) systems consisting of a number 

of electrodes and one or two dielectric regions has been developed. The package calculates the 

potential and electric field distributions for practical systems. It avoids the necessity for creating 

individual programs for each system studied by allowing the geometry to be specified using a 

minimum of entered data. 

The application of the CAD package to several electrode systems which have analytical 

solutions is presented. Good agreement, generally within 0.5% was found between the fields 

produced by the Charge Simulation Method (CSM) and the analytical results. 

A study of the effect of several parameters controlling the charge simulation model is 

conducted to determine their optimum ranges. Recommendations for these values are made. It is 

found that for best simulation, discontinuities in alignment of the simulating charges should be 

avoided. 

The rod-plane gap configuration and a HV shielding system are modelled and results are 

compared with existing literature values. Some simulation quality measures which have not 

previously been published are given. 

The computation of fields in a sphere/slab arrangement is conducted and results are 

presented for a wide range of permittivity ratios and gap spacings. It is found that the maximum 

electric field strength occurs at the triple point for high dielectric constant unrecessed slabs, and 

away from the axis for low dielectric constant slabs. 

Two high. voltage systems which have not been analyzed before using the CSM are studied. 

One is a rotationally symmetrical triggering electrode configuration. The other is a 22 - shed 
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polymer insulator with a grading ring included to reduce the non-linearity of the voltage 

distribution. In the triggering electrode system it is found that both the main gap distance and the 

pilot gap distance affect the potential and the field distributions along the axial main gap line. The 

location of the maximum electric field changes with both gaps and always occurs on the 

hemispherical part of the triggering electrode, but not necessarily at the tip. 

Optimum values for the location and size of the grading ring are determined for the polymer 

insulator. 

TI1e simulations of additional complicated three-dimensional field problems with and 

without axial symmetry using the CSM are presented. A tilted rod-electrode versus ground plane 

and a hemispherical capped rod electrode versus a grounded plane with another offset 

hemispherically capped electrode embedded are modelled. A detailed examination of the field 

distribution for a triggering high voltage system without axial symmetry is also presented. 
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# 

ABBREVIATIONS AND NOTATION 

centimeter 

Difference 
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High voltage 

Kilo volt 

Low voltage 

Maximum 

Minimum 

millimeter 

Maximum potential error 

Maximum tangential field difference 

Mega volt 

Potential 
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Notation: 

ax, ay, 3z 

ai , ht , Ci, d1 

[a,b] 

D 

Eav 

E'n 

E't 

Emax 

E'max 

Fij 

g 

G 

G/r 

Hg 

j 

Cross section radius of the grading ring 

Unit vectors in the x, y and z directions 

Coefficients of a cubic spline function 

Interval for the Chebyshev distribution of points 

Assignment factor 

Diameter of the electrode, m 

Distance between two successive contour points, m 

Total electric field intensity, V /m 

Electric field component at the i-th point, V /m 

Normalized total electric field 

Normal electric field, V/m 

Tangential electric field, V /m 

Average electric field, V /m 

Normalized normal field 

Normalized tangential field 

Maximum electric field, V /m 

Normalized maximum electric field 

Field coefficient factor 

Gap separation between two spheres or gap distance, m 

Gap distance, m 

Gap spacing/comer radius 

Height of the grading ring from the HV electrode, m 

Index used for positioning contour points 

Index used for positioning charges 

Distance from the high voltage electrode, m 
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I' 

n 

ned 

r 

r' 

r1 

r2 

s 

Sa 

S(x) 

S'(x) 

S"(x) 

Tx,Ty,Tz 

Normalized gap distance measured from the tip of the triggering electrode 

Total number of contour points or charges 

Number of boundary points on the dielectric interface 

Number of charges on the curved portion of the standard electrode 

Number of charges on the electrodes 

Number of charges on the air side 

Number of charges on the dielectric side 

Number of charges per unit length 

Potential coefficient at location i due to a charge located at position j 

Total charge on the isolated sphere, C 

Charge located at position j, C 

Radius of the sphere or corner radius, m 

Radius of the electrode, m 

Ratio of the the electrode radius to corner radius 

Mean radius of the grading ring, m 

Radius of the isolated sphere, m 

Radius of the trigger electrode, m 

Distance from the isolated sphere center to the point where the potential is to be 

calculated, m 

Radius of the high voltage sphere, m 

Radius of the low voltage sphere, m 

Distance between the centers of the spheres, m 

Distance between a contour point and a charge, m 

A cubic spline function 

First derivative of S(x) 

Second derivative of S(x) 

Translation distances from the coordinate axes, m 



V 

V' 

(x',y',z') 

p 

£ 
r 

oV 
0 

Potential, V 

Calculated potential, V 

Potential difference between two spheres, V 

Electrode or contour points potential, V 

Potential of the triggering system HV electrode, V 

Potential at the i-th contour point, V 

Computed potential at the i-th contour point due to the j-th charge, V 

Potential of the triggering system L V electrode, V 

Potential of the isolated sphere, V 

Triggering electrode potential, V 

Normalized potential 

Potential of the high voltage electrode in the non-axial triggering system, V 

Potential of the low voltage electrode in the non-axial triggering system, V 

Initial position of a point or a charge 

Final position of a point or a charge 

Volume charge density, C/m3 

Permittivity of the medium, F/m 

Gradient operator 

Relative dielectric constant of the material 

Error in potential 

Rotation angle in degrees 

Percentage 

Permittivity ratio of the dielectric slab to the surrounding medium 

Potential, V 

Normalized potential 
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1.1 Preamble 

Chapter I 

INTRODUCTION 

A knowledge of the electric field distribution is important in the design of high voltage 

system components. The predetermination of discharge voltages needs an accurate knowledge of 

the electric field in some special regions (normally those near the electrodes) of the configuration 

of interest. 

In the study of corona and electrical breakdown of gases, the hemispherical capped 

rod-plane is sometimes used to investigate that phenomena due to the concentration of breakdown 

ionization at the rod tip [ 1]. A detailed investigation of the breakdown phenomenon of gases 

requires the calculation of the electric field distribution with reasonable accuracy in the entire 

interelectrode space. 

In response to an increasing demand for electrical energy, operating transmission voltages 

have increased considerably over the last two decades. Effective designs at high voltages with 

minimum corona losses are possible only through an understanding of the properties of insulating 

materials and knowledge of electric fields and methods of reducing electric stress (2]. 

In the design of high voltage transmission lines, the knowledge of the electric field at the 

conductor surface as well as in the interelectrode space is essential to calculate the corona-onset 

voltage, corona loss and radio interference [3]. 

Insulating spacers are used to support high voltage conductors in vacuum and in gas 

insulated systems. It is well established that the electrical insulation of a vacuum gap bridged by a 

solid insulator fails at a lower voltage than the unbridged gap, and that the insulation failure 

occurs by a flashover across the insulator surface [4,5,6]. Usually the surface flashover of the 
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2 

insulator is the limiting factor in the operation of the vacuum and gaseous insulated equipment. 

Therefore, it is useful to know the electric field and potential distribution along the 

insulator-vacuum (or gas) interface for determining the mechanisms leading to the flashover and 

their dependence on the field strength. The determination of the electric field distribution also 

aims at achieving better designs of optimum shapes of insulators from the viewpoint of achieving 

higher withstand voltages [7]. A high electric field, say at a poorly designed triple junction, may 

initiate electrons from the cathode at much lower applied voltage than if the geometry produced a 

lower electric field. The electrons emitted from the cathode junction may lead to a flashover of 

the gap when increasing the applied voltage [4]. 

The calculation of electric fields requires the solution of Laplace's and Poisson's equations 

with the boundary conditions satisfied [8]. The analytical solution of Laplace's equation can only 

be obtained for relatively simple charge distributions and conductor configurations. However, 

field distributions of physical systems that are frequently used in high voltage apparatus can not 

be generated by such simple charge distributions and therefore the analytical solution of Laplace's 

or Poisson's equations for these cases is very difficult, if not impossible. 

The availability of digital computers with large memory has made it possible to determine 

accurately the design parameters and to evaluate the expected performance of devices by means 

of numerical techniques. 

In recent years several numerical methods for solving partial differential equations and thus 

also Laplace's and Poisson's equations have become available. The available numerical methods 

are normally based on difference or integral concepts. The difference concept employs Laplace's 

and Poisson's equations in the space where the field is to be determined. This is done by dividing 

the whole space by a fine mesh. These include the Finite Difference Method [9-17] and the Finite 

Element Method [ 18-20]. The integral concept of the computation of fields is based on 

integration of Laplace's equation either by employing discrete charges, or by dividing the 

electrode surface into subsections with charges associated with each. This method of 



3 

computation is known as the Charge Simulation Method [21,22]. The Charge Simulation Method 

has been receiving attention during the past few years. It is a numerical method which uses a 

number of discrete modelling charges or finite charge distributions. 

The conventional Charge Simulation Method (CSM) is a widely used and powerful method 

for numerical calculation of electric fields. It expresses a solution to Laplace's equation as a 

superposition of particular solutions (i.e. those due to discrete charges). These charges replace the 

physically distributed surface charges of the electrodes. They are placed outside the region where 

the field is to be calculated. The magnitudes of these charges must be calculated so that their 

integrated effect satisfies the boundary conditions of the particular configuration to an acceptable 

degree of accuracy. This method has been successfully applied to many high voltage field 

problems. It is applicable to any system that includes one or more homogeneous media and it is 

also suitable for the solution of three dimensional fields without any particular symmetry [21]. 

1.2 Statement of the Problem 

It is acknowledged that there is a degree of complexity in setting up a problem using the 

conventional charge simulation method, and that the time required to prepare a problem for 

computation can sometimes be excessive. It is also known that the CSM is a direct method which 

involves a priori assumptions about the location of the equivalent charge distribution which are 

made on the basis of experience, and may be different for different researchers. The assumptions 

determine the degree of accuracy in the result. To attain a reasonable accuracy, some of the 

controlling parameters which affect the simulation may have to be adjusted and this takes much 

time in the conventional implementation of the Charge Simulation Method, since the user has to 

address the details of the geometry when the controlling parameters are changed. Therefore, 

emphasis is laid on the development of a Computer-Aided Design (CAD) package which allows a 

user to conveniently and rapidly define the geometry of a system consisting of a number of 

electrodes and one or two dielectric regions [23-24]. The package automatically calculates the 
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coordinates of contour points for cases for which the contour consists of straight lines, parts of 

circles or any other curved portion that can be adequately fitted using a cubic spline. The package 

forms the system of linear equations and solves it. Finally, the package presents the results in the 

form selected by the user from a broad range of alternatives. The package has been used to 

investigate general electrostatic field problems in two and three dimensions with and without 

axial symmetry. In this work a description of this package and its application are given. 

To assess the accuracy obtained with this package, extensive studies of the quality of the 

solutions are undertaken. The amount of error and discrepancy data provided is much more 

extensive than that which has been available in the literature. This allows other workers to assess 

for themselves the quality of this model against their own requirements. Where applicable, ~ 

numerical values of the fields are compared with the values previously determined in the 

literature. 

1.3 Organization of the Dissertation 

Chapter 2 gives a brief review of the different methods used in electrostatic field 

computations. It also gives a review of the available literature on the charge simulation technique. 

The applications of the method to single and two dielectric systems are reviewed in separate 

sections. 

Chapter 3 introduces the theory of the Charge Simulation Method as a technique for solving 

electrostatic field problems. Computation of fields in two dielectric systems are discussed in 

detail in addition to the different solution quality measures of the CSM model. Some other 

modifications to the conventional charge simulation technique are also explained. Features of the 

CSM with reference to the other methods are discussed briefly at the end of this chapter. 

Chapter 4 describes in detail an implementation of a general purpose Charge Simulation 

based Computer-Aided Design package. The input data required to generate the geometry, the 

input data required for charge simulation model generation and the different output options 
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available for the user are described. Mathematical approaches used in the implementation of the 

program package are briefly discussed. Finally, limitations associated with using the package are 

introduced. 

Chapter 5 presents the application of the CAD package to several standard and practical 

electrode systems which have analytical solutions. A comparison between the analytical solution 

and the CSM solution is presented through graphs representing the difference between the 

potentials and fields of the two solutions. 

A study of the effect of different parameters controlling the modelling of the charge 

simulation model is conducted to optimize the parameters using the CAD package and presented 

in chapter 6. This chapter also presents a comparison between full and partial modelling in the 

case of symmetry, and the effect of varying the gap separation on the solution quality measures. 

Chapter 7 is on the modelling and refinement of several engineering systems using the CAD 

package. The rod-plane gap configuration and a high voltage shielding system are modelled and 

results are presented and compared with those previously presented in the literature. In addition, 

solution quality measures which have not previously been published are provided. The 

computation of fields in a sphere/slab arrangement (both plane and recessed dielectric slab) was 

conducted as an example of a two-dielectric two-dimensional field problem. Two high voltage 

systems which have not been analyzed before using the Charge Simulation Method are selected 

and simulated with the package and presented in this chapter. These systems include a triggering 

electrode configuration and a 22-shed long rod polymer insulator. The latter is also modelled with 

the inclusion of grading rings introduced to improve the voltage distribution along the insulator. 

Chapter 8 is devoted to the application of the package to complicated three-dimensional field 

problems with and without axial symmetry. A tilted rod-electrode versus ground plane is 

simulated with the package. A hemispherical capped rod electrode versus a grounded plane 

having another hemispherical capped electrode embedded in it is modelled. A detailed and 

thorough examination of the field distribution for a triggering high voltage electrode system 

which represents a more complicated three-dimensional field problem is presented. 
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In chapter 9 the conclusions and recommendations for future work are given. 



Chapter II 

FIELD CALCULATION METHODS AND SURVEY OF LITERATURE 

2. 1 Summary of Field Calculation Methods 

It is very important to know the potential and electric field distributions in the design of high 

voltage equipment. Inaccurate estimation of the field and potential distributions may result in a 

loss of accuracy and efficiency of the manufactured equipment. The prior know ledge of the 

potential and electric field distributions by means of computational techniques can be used to 

determine appropriate design parameters and to conduct a performance evaluation of devices. 

In recent years several numerical methods for solving partial differential equations, 

including Laplace's and Poisson's equations have become available. There are inherent difficulties 

in solving partial differential equations for general two- or three-dimensional fields with mixed 

boundary conditions or for insulating materials with different permittivities and/or conductivities. 

Each of the different numerical methods, however, has inherent advantages and disadvantages 

[25]. The calculation of the potential and electric fields requires the solution of Laplace's and 

Poisson's equations with the boundary conditions satisfied. The field equations for an electrostatic 

field in a homogeneous medium is given by Poisson's equation: 

where 

2 p Vq,=-­
£ 

cl>= potential, 

p = volume charge density , and 

£ = permitivity of the medium. 

For zero charge density Poisson's equation reduces to Laplace's equation: 
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(2-2) 

In cartesian coordination equation (2-2) becomes 

., 2 ., 

v2 <I> = a-<1> + a <l> + a-<l> = 0 
a/ ay2 az2 

This equation can be solved either by analytical or numerical techniques. When the solution of 

this equation is given as the potential q>( x, y, z), the electric field is calculated from the negative 

gradient of the potential 

= - ( a<1> a + a<l> a + a<1> a ) 
dX X dy y dz z 

However, many physical systems are so complicated that analytical solutions are seldom 

applicable and hence numerical methods are commonly used [26]. Two numerical methods are 

being extensively used in the calculation of electrostatic fields in high voltage systems. The first 

method is based on the difference technique. This is implemented by dividing the whole space 

into a fine mesh and Laplace's equation is then approximated at each mesh point by equations 

which relate the unknown potential of the mesh point to the unknown value at other mesh points 

and to known boundary potentials. These difference techniques include the Finite Difference and 

the Finite Element methods. 

The Finite Difference and Finite Element methods have been very extensively described in 

the literature [9-20]. 

Difference techniques are very powerful when the region of interest contains a number of 

different materials or a dielectric constant which varies in space [ 18]. In more simple cases (such 

as the case where only conductors are present), difference techniques may be more cumbersome 

due to the large number of linear equations that must be solved [27]. Furthermore, Finite Element 

and Finite Difference methods are particularly suited for use in bounded regions, but many 

physical problems of interest are unbounded. However, attempts have been made to use 

difference techniques for the solution of electric field problems where the field is not bounded in 
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space but extends indefinitely [19,20]. In one of these methods an artificial finite boundary 

condition is initially introduced to obtain a solution and is then iteratively moved to more distant 

locations as the solution proceeds. In order to have a minimum effect of errors in specifying the 

known potentials on the calculated potential values in the region of interest, the artificial 

boundary must be placed far away from the region of major interest. Hence Laplace's equation 

must be solved for a larger region than the region of interest. Thus a larger number of equations 

must be solved which adds to the computation time [20]. 

The accuracy in the Finite Element Method depends on the number of divided elements, how 

they are divided, as well as on the approximation function. A potential approximation function 

valid in each element is used to allow the electrostatic energy of the entire field to be minimized 

by correct relation of the node point potential values. Variational principles are used to generate 

the necessary equations relating the node point potential values. 

In the application to electric field problems within insulation systems, the advantages of the 

FEM may be summarized as follows: 

1. It is readily applicable to non-homogeneous systems (i.e. with materials of different 

permittivities) as well as to anisotropic systems. 

2. The shapes and sizes of the elements may be chosen to fit arbitrary boundaries and the 

grid size may easily be adapted to the gradient of the potentials, i.e. small elements can 

be placed into regions with high gradients and vice versa. 

3. Accuracy may also be improved using higher order elements, without complicating 

boundary conditions. 

4. Dielectric materials may also be treated as the case where conduction currents 

contribute to the potential distribution. This can be done by assuming a complex 

permittivity with real and imaginary parts. 

For the calculation of electric field intensities within insulation systems, the only 

disadvantage of the FEM is related to the limited and a priori unknown accuracy which can be 
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achieved. For two-dimensional problems and highly divergent fields, a very large nwnber of 

triangular elements or nodes would be necessary to obtain an adequate accuracy within the highly 

divergent field regions. 

Another method used for potential and electric field calculations is the Mont Carlo Method 

[28]. In this method, Laplace's equation is solved for an unknown potential at any point as the 

expected boundary value at the intersection of simulated random walks starting from the point 

and terminating on the boundary. 

The other approach to the solution of fields is the use of integrals of Laplace's or Poisson's 

equations either by dividing the electrode surface into subsections of charges or by using discrete 

charges. This is explained in the following sections. 

2.1.1 Electrode Surface Subsectioning 

The electrode surface is divided into subsections with their associated charges. It will be 

assumed here that the medium consists of several different homogeneous materials and that as a 

result, the only charges are the surface charges. If this is not the case, then volume charges must 

be considered [29]. The integral equation can be solved for the surface charge densities by 

approximating the integral as a sum of subsections considered on the entire electrode surface. The 

sum is set equal to the known potential at the centre of each subsection. As a result of this 

discretization process, a set of linear algebraic equations is obtained in terms of unknown 

segments of charges which when solved with a digital computer gives values of these charges. 

Once the charge densities are obtained , potential and electric field values can be evaluated at any 

point. 

2.1 .2 Discretization of Charges 

The distributed surface charges of the electrode are replaced by discrete line, ring and point 

charges (instead of assuming them to be surface charges). These charges are placed outside the 

space in which the field is to be computed. The potentials due to these charges will be smoothly 
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varying (mathematically represents a well behaved function) at, and in front of, the surface and 

thus can simulate approximately the field of a surf ace charge. 

This method of discretization is known as the Charge Simulation Method (CSM) and was 

first presented by Singer et al. [21]. It proved to be successful for many high voltage field 

problems. It is simple and applicable to any system that includes one or more homogeneous 

media. A special advantage of this method is the good applicability to three-dimensional fields 

without axial symmetry and to space charge problems. 

A few papers have been published which deal with a combination method in which the 

Charge Simulation method is combined with the Finite Element method, for electric field 

calculations [30,31]. The combined method has the advantages of the Charge Simulation method 

and the Finite Element method with an overall improvement in the accuracy of the simulation. In 

the combination method, the field is divided into two regions, one covered by the Charge 

Simulation method and the other by the Finite Element method. These two regions are combined 

using the continuous conditions for potentials and electric flux densities at the boundary. 

The combination method enables the calculation of an electric field which could not be 

solved with enough accuracy by an individual calculation method. For example, the combination 

method can be applied to non-enclosed fields with multiple-dielectrics, a space charge field, a 

field with leakage current and so on. In addition, modelling a part of a field with another method, 

can reduce the memory requirement of the computer and improve the calculation accuracy. 

The work presented in this dissertation is based on Singer's technique of the Charge 

Simulation. A survey of the available literature on the charge simulation technique is therefore 

carried out in order to observe the applicability of the method to many high voltage field 

problems. 



12 

2.2 The Conventional Charge Simulation Method 

Toe conventional Charge Simulation Method (CSM) consists of placing a number of discrete 

charges or a finite charge distribution outside the region where the field is to be calculated [21]. 

These charges are used to approximate the effect of the surface charges associated with the field 

of the physical system. Making use of the linearity of Laplace's equation in applying the Charge 

Simulation method, the solution to Laplace's equation is expressed as a superposition of particular 

solutions such as those for point, line or ring charges. Compared with the other methods, only 

boundary surfaces (electrode surfaces and medium interfaces) are subdivided and boundary 

charges (or charge densities) are taken as unknowns in the Charge Simulation method. It follows 

then that the amount of human time and effort needed for subdivision is greatly reduced in the 

CSM. Also the matrix equation thus obtained by discretization is one dimension smaller 

compared to the matrices obtained in the Finite Element or the Finite Difference methods. The 

electric field strength can be expressed explicitly in terms of the simulating charges ( or charge 

densities) without resorting to the numerical differentiation of the potential. This last 

characteristic is very important because the field strength is more crucial in insulator design than 

the potential, and furthermore, numerical differentiation often results in significant errors. 

The increasing availability of high speed digital computers allowed the Charge Simulation 

method to be extensively used in the calculation of electrostatic fields of high voltage systems. 

The Charge Simulation method is particularly appropriate for many high voltage problems that 

include one or more homogeneous media in unbounded regions [21,22]. This method is also 

suitable for modelling three dimensional fields with and without axial symmetry. Using the 

Charge Simulation method it is also possible to calculate electric fields for systems in which 

space charges are present. 
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2.3 Previous Applications of the CSM 

2.3.1 Applications to One Dielectric HV Systems 

Considerable attention has been given to electrode configurations used in high voltage 

experimentation by many authors. Singer et al. [21] calculated the electric field between a 

conductor strip and a plane as an example of a two dimensional field. The influence of an earthed 

cage on the field of a sphere-gap was also analyzed by Singer as an example of an axial 

symmetrical problem. He also applied the method to an electrode arrangement used for the 

shielding of high voltage apparatus to calculate the maximum electric field. Singer also explained 

the principle of the method applied to three-dimensional fields without axial symmetry by a 

single example, a rod-rod gap with a trigger electrode. He studied the effectiveness of the method 

for three-dimensional electric fields by applying the technique to two practical field problems of 

high voltage engineering: the influence of adjacent conductors on the field of a sphere-gap, and 

the field distribution near the bundle of a three phase overhead-line under the influence of the 

tower. Abou-Seada [1] applied the Charge Simulation method to the calculation of electric fields 

of a rod-rod gap. Parekh et al. [32] computed the electric field for rotationally symmetric 

electrodes. Yializis et al. [33] calculated the potential distribution for a rod-plane electrode 

configuration and presented an optimized version of the charge simulation technique. The 

objective function used by Yializis et al. was the accumulated squared potential error while the 

position of the charges and their values were the variables of optimization. Akazaki and 

Mishijima [34] examined the field distribution of multiple axisymmetric electrodes displacing 

and rotating the plane of the symmetric model charges. They made calculations for a 

three-dimensional axisymmetric gap for a tilted upper rod-plane electrode arrangement and the 

rod-plane with lower rod arrangement. Iravani and Raghuveer [35] suggested a method in which 

an optimization technique employing a modified objective function which minimized not only the 

accumulated squared potential error but also the tangential electric field along the conducting 

surface. 
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The application of the Charge Simulation method to single dielectric systems finds its 

greater use in the evaluation of the electric fields around high voltage overhead transmission 

lines. The existence of corona and radio interference around the insulator-line conductors is more 

acute with transmission at EHV and UHV levels [36]. Therefore, electric field calculations are 

made for bundle conductors used for such transmission lines. Abou-Seada and Nasser (3 7] used 

the method of Charge Simulation to calculate the electric field and potential around a twin 

subconductor bundle. In this method, the actual charge distribution on each subconductor surface 

was represented by several discrete line charges placed inside each subconductor. These line 

charges of unknown magnitude were placed on a fictitious cylinder whose radius was half of the 

subconductor radius. The correct angular positions of these line charges on the fictitious cylinder 

were determined by a trial and error method to achieve better accuracy of the results. The results 

obtained by Abou-Seada and Nasser gave an error of about one percent in the values of the 

direction of electric field. However, their method was applicable for the case of twin 

subconductot bundles. They also calculated the potential gradient of twin cylindrical bipolar 

conductors with various geometrical parameters [38]. Parekh et al. [39] described a method 

based on charge simulation which used arbitrary specifications of location of the images and 

boundary points and was applied to bundles of up to eight cylindrical subconductors. 

2.3.2 Applications to Multiple Dielectric HV Systems 

Electrical machines and high voltage devices often contain multi-dielectric insulation layers 

between conductors or cores, etc. For the design and testing of these devices, it is important to 

have accurate information on the electric field distribution within. The method of computation of 

potential and electrostatic fields in two dielectric arrangements was also developed by Singer et 

al. [21]. As an application of this method, they modelled a sphere electrode with a dielectric slab. 

For studies of the electric strength of solid insulating material, flat-slab specimens are often tested 

by such arrangements (i.e. a dielectric slab between a sphere and a plane). They also applied the 

method to a practical electrode arrangement used for shielding of high voltage apparatus, and to 
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the calculation of the field strength at the shielding electrodes of UHV transformers. Following 

the same concept of computation as proposed by Singer, Mukerjee and Roy [22] applied the 

method to the calculation of fields in a multiple dielectric three-dimensional system. They applied 

it to a parallel plate arrangement as a test example and then to a disc insulator, the shape of which 

was simplified to a truncated cone. Khaled [40] used the Charge Simulation method for 

computation of the corona onset voltage. The main feature of his work was the development of a 

new simulation model of the avalanche growth. Takuma [ 41] using the charge simulation 

technique studied the optimal profiles of disc-type spacers for gas insulation. He also studied the 

field behaviour near triple points in composite dielectrics [42]. Takuma et al. [43] calculated the 

electric field very accurately in configurations including volume resistance or surface resistance 

using the Charge Simulation method. They used the same numerical method (CSM) to study the 

effect of conduction on field behaviour near singular points in composite medium arrangements 

[44]. Takuma also used the Charge Simulation method to describe the field intensification at the 

contact point in various arrangements where a rounded electrode contacts a solid dielectric at a 

zero contact angle [45]. Nosseir and Zaky [46] described a method based on the charge 

simulation technique to evaluate electrical stresses in three core cables. In this method, each 

conductor was replaced by a line charge, assumed to vary sinusoidally with time and with a phase 

shift of 120 degrees between each pair of line charges. They expressed the mathematical 

expressions in terms of the cable geometrical parameters. The results were checked by using an 

electrolytic tank. Takashima and Ishibashi [47] described a way to determine the electric field of 

a point charge by the method of images in three or more dielectric layers on a plane conductor. 

They applied this method in combination with charge simulation to calculate the field of a 

spherical conductor enclosed by three concentric dielectric layers on a plane conductor [ 48]. In 

this method, ring charges in the spherical conductor together with their images were used for 

representing the field. Sakakibara [49] applied this method to the calculation of 

three-dimensional asymmetric fields for a post-type spacer with two dielectric media. A 
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simplified post-type spacer used in SF6 gas insulated apparatus was modelled. A high voltage 

impulse test was also carried out by those authors to verify the validity of the method and the 

results were found to be in good agreement. Khan and Alexander [50] applied the Charge 

Simulation method to a typical transmission line disc insulator (unsimplified) section under 

pollution-free conditions. They used ring and line charges for the modelling of the field 

distribution in and around the insulator with an accuracy in the representation of electrode 

potentials well within 1 % of the maximum potential difference. Elmoursi and Malik [51] 

investigated the electric field uniformity of a high voltage test electrode system by using the 

charge simulation technique. Iravani and Raghuveer [52] computed the potential distribution 

along a high voltage transmission line insulator chain ( cap and pin type) taking into account the 

influence of tower, crossarm, conductor, and ground by using a combination of the integral 

equation and the Charge Simulation technique. Anis and Mohsen [53] extended the charge 

simulation technique for computing time-varying electric fields and potentials. They applied the 

extended method to three-cored gas-insulated (GIS) cables where the new treatment was shown 

to help in examining the problem of gas contaminations with conducting particles. Pillai et al. 

[54] studied the influence of radius of curvature, contact angle and material of solid insulator on 

the electric field in vacuum (and gaseous) gaps by using the charge simulation technique. Pillai 

and Hackam [55] computed the electric field and potential distributions of the interfacial 

boundary between the solid insulator and vacuum for different realistic surface charges by 

applying the charge simulation technique. They also used the method for calculating the electric 

field and the potential distributions for unequal spheres using symmetric and asymmetric applied 

voltages [56]. Pillai and Hackam [57] also applied the Charge Simulation method to investigate 

the surface flashover of conical insulators in vacuum. The electric field distribution along the 

interface of a solid insulator-vacuum (or gas) was analyzed by Pillai and Hackam for different 

solid insulator-electrode configurations with and without the presence of surface charges using 

the charge siml.ilation technique [58,59]. They also used this method for improving the 
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performance of cylindrical solid insulators with concave curved edges in vacuum [60]. Salama 

and Hackam [ 61] presented a theoretical model, based on the charge simulation technique, from 

which design parameters and dimensions of polymer sheets can be obtained to construct 

substation inclosures. They applied this method to design grading rings for air-core power 

reactors for improving the impulse voltage distribution along the axial length of the reactors [62]. 

2.4 Other Modifications of the Charge Simulation Technique 

It is highly desirable to get a high degree of precision in computing the potential at the 

electrode surf ace. However, improving the accuracy beyond a given limit is not worthwhile 

because of the increase in the computer time and memory requirement. An algorithm aimed at 

reducing the overall computer time and memory requirements, precision being equal, is valuable 

since, either the cost of a given computation could be reduced, or at a given cost, a more complex 

problem could be solved [ 50,63]. 

Several attempts have been made by several authors proposing optimization techniques to 

reduce the cost of numerical computation on the basis of a fixed degree of precision required. A 

function fitting-oriented modification to the Charge Simulation method for estimating electric 

field was introduced by Anis et al. [ 64] aiming at the reduction of computation time and cost. In 

this method, a multiple linear regression makes it possible to reduce the size of the simulating 

charge system without decreasing the number of selected boundary points. The direct 

optimization approach for the computation of electric fields, based on the charge simulation 

technique described by Yializis et al. [33], used the accumulated squared error in boundary 

potential values as the objective function. The positions of the charges and their values were 

chosen to be the variables of optimization subject to constraints imposed according to the 

geometry of the problem described. The objective function was minimized to 1 % . However the 

optimization algorithm (Rosenbrok's optimization technique) used [65] is not the most rapidly 

converging technique and therefore savings in computation time did not result. Fast convergence 
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techniques such as Davidson's method modified by Fletcher and Powel [ 66] have been suggested 

for reducing computation time with comparable accuracy. According to the authors [3 3], other 

factors that could influence the computation time are the initial values of the optimization 

parameters and the effectiveness of the objective function. The latter parameter is important, 

since for more complex configurations it is possible that the minimum accumulated squared error 

may not be an efficient criterion. Chow and Charalambous [67] presented a similar approach but 

with unconstrained optimization. This approach has been applied to a number of geometries 

encountered in engineering applications. Toe objective function in this method was the mean 

square error in the boundary potential. The optimization technique used was due to Fletcher [ 68] 

which has the advantage that since it requires the gradient of the objective function, the electric 

field intensity on the conducting boundary is implicitly obtained. Therefore it can be extracted 

without further computation. 

Mohsen and Abdel Salam [69] presented a development of the charge simulation technique 

for the calculation of electric field around conductor bundles of EHV transmission lines. In this 

method a known initial set of charges which are deduced from the analysis of a similar but 

simpler problem is introduced. These initial charges may be used in addition to a set of unknown 

charges which are determined from the boundary conditions. The better the initial charges, the 

lower will be the number of unknown charges. This is expected to lead to a considerable saving in 

computational time. Sakakibara et al. [ 49] described a modification of the Charge Simulation 

method applicable to three-dimensional asymmetric fields with two dielectric media. Since the 

fommlation of a large potential coefficient matrix results in an extensive computation time and 

memory requirements, they have taken advantage of symmetry to reduce the size of the 

computational problem. Recently Iravani and Raghuveer [35] suggested a method which uses an 

optimization technique employing a modified objective function for numerical field calculations. 

Several other papers have been published which used the Charge Simulation method for 

optimizing the electrode geometries and the high voltage electric fields [70-73]. 



Chapter Ill 

THE CHARGE SIMULATION METHOD 

3. 1 Theory of the Charge Simulation Method 

The potential at a point in the region of interest can be expressed by two integrals over the 

bounding surface. These integrals can be interpreted as being associated with a distribution of 

charges and a distribution of dipoles. Since in actual electrostatic problems the boundaries are 

generally equipotentials (i.e., conductors or surfaces at infinity) no dipole layer is required and 

the potential can be expressed using only the surface charge [26]. However, the CSM replaces 

these surface charges by a finite nwnber of discrete charges located outside the region where the 

field is to be calculated [21]. 

The type of the charges commonly used are ring charges which are used to model axially 

symmetrical profiles, line charges (finite or infinite) which are appropriate for cylindrical 

configurations that include regions with translated geometry, and point charges which, due to 

their spherically symmetrical field behaviour, suit spherically symmetrical surfaces. These three 

forms of charge arrangements for a particular high voltage electrode configuration cover almost 

all possible system configurations. 

The distributed charge on the surf ace of a conductor is replaced by n charges arranged inside 

the conductor as shown in Figure 3. la. If the conductor is located in the vicinity of the ground, 

then the effect of the ground must be taken into account. Since the potential of the ground is 

assumed to be zero, for each fictitious charge inside the conductor, an image charge of opposite 

polarity is appropriately placed with respect to the ground surface as shown in Fig. 3.1 b. 

In order to determine the magnitude of these charges, n points on the surface of the 

conductors ( contour points) are chosen. It is required that the potential resulting from the 

superposition of the charges is equal to the conductor potential at that point: 
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where, 

n 

n 'P .. Q . = V. .L..J lj J l 
(i=l,2, ... ,n) 

j.::1 

is the number of contour points (or charges), 

is the the associated potential coefficient, 

is the potential at the i-th contour point. 
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(3-1) 

The potential coefficient Pij is defined as the potential at the i-th contour point due to a unit 

charge located at the position of Q/ The potential coefficients of line, ring and point charges are 

given in Appendix A. Applying equation (3-1) to the n contour points leads to a system of linear 

equations for n charges, which can be expressed in matrix form as: 

[P] [Q] = [V] 

[a] 

- Q j {Xj,-Yj) 

[b] 
Figure 3 .1: Principles of the Charge Simulation Method. 

·(a) modelling charges with contour points 
(b) a point charge and its image 

(3-2) 

contour point 

+ charge location 

p .. ( X· y. ) 
I J I I I 
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The matrix of potential coefficients [P] can be calculated; the potential matrix [V] is known at 

every contour point, and thus the magnitudes of the set of charges Q are the only unknown 

variables, which can readily be obtained from the solution of equation (3-2). 

After obtaining the values of these charges, the potential at any point in the region of interest 

can be computed, which is regarded as being due to the integral effect of these charges. The 

potential Vat any point due to the charges Q can be expressed as: 

where P1 is the potential at that point due to a unit charge located at the position j. The electric 

field intensity at any arbitrary point can be determined outside the boundary of the electrodes. 

lbis is achieved by a vectorial superposition of the contributions from every charge as given in 

the following equation 

where, 

n 

E.= ~ F .. Q . 
j .L...J l/ / 

j=l 

is the electric field component at the i-th point. 

is the charge value at location j 

is the field coefficient factor, which incorporates the appropriate component of 

the field vector. 

The expression for the field coefficient for the different types of charges are given in the 

Appendix A. 

The accuracy of the Charge Simulation method depends on several factors, the most 

important of which are the positions of the charges and of the corresponding contour points. An 

assignment factor is defined as 

s 
~ = a 

a D 
Q 
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where D a is the distance between two successive contour points and Sa the distance between the 

contour point and the corresponding charge as shown in Figure 3.2. Experience shows that for 

efficient computation ~a should be between 0.7 and 2.0 and its value depends upon the nature of 

the surface [21 ]. Another factor which affects the accuracy of the method is the density of the 

boundary points. To improve the accuracy in a certain region, generally a higher density of 

boundary points is placed in that region. A limit will be reached beyond which an increase in the 

number of the charges will have no significant effect on increasing the accuracy or the error in the 

simulation will be increased. 

• contour point 

+ charge lo cat ion 

Figure 3 .2: Relationship between contour points and charge locations. 

Looking again to the matrix form (equation (3-2)) which describes the model in a system of 

linear equations, we will find that each element of the square matrix requires one storage element 

in the computer. Since a minimum of n(n+l) such elements are required for n modelling charges, 

the selection of the number of ·such charges is restricted by the storage capacity of the computer. 

An increased accuracy of the charge simulation technique is mostly obtained with an increased 

number of charges. In order to achieve higher accuracy, the CSM can be applied in the 
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following modified way for determination of the field and the potential in a symmetric system. 

For each contour point one modelling charge is selected if the arrangement is wholly 

asymmetrical. Then the term P 11 describes the effect of only one charge. If the arrangement is 

symmetrical about the x-x or y-y axis, then two charges of equal value can be positioned 

symmetrically about the axis of symmetry, shown in Fig. 3.3a, and only one-half of the system 

need be analyzed for the field. Then P 11 is computed as the combined effect of both charges on 

the potential of the i-th contour point and the storage requirement is reduced appreciably. Again if 

the arrangement is symmetrical about both x-x and y-y axes then for each contour point, four 

equal charges can be positioned, as in Fig. 3.3b, and the term P .. is the total effect of all four 
. 9 

charges. For n selected contour points in one quadrant, effectively 4n charges are positioned and 

the computer storage requirement is proportionately reduced as compared to a totally 

asymmetrical system with 4n charges. 

+q +(a,b,c) 

x.-- ~x X 
• (x,y,z) 

+q + (a,-b,c) 

• contour point 
[a] 

+ charge location 

Figure 3 .3: Charge distribution in symmetric system. 
(a) symmetry about x-axis 
(b) symmetry about both x and y axis. 

y 
+q + q 
+ + 

(-a, b, C) (a, b,c) 

X 

(-a,-b,c) (a,-b,c) 
+ + 
+q + q 

y 
[b] 
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3.2 Computation of Fields in Two-Dielectric HV Systems 

A conductor is a substance containing electrons which are free to move under the action of 

an electric field distances which are large compared with atomic dimensions. The movement of 

the electrons in the substance occurs even when the electric fields are very small. 

Unlike the conductor, a dielectric is defined as a substance containing an array of charges 

which will remain in equilibrium when the electric field is not zero inside the substance. Thus, a 

dielectric or an insulator is characterized by the fact that it does not contain free electrons in any 

appreciable numbers. 

The behaviour of the electric field in a medium depends on the structure of the material. In a 

conducting medium the free charges appear as surface charge density on the exterior surface of 

the conductor. In dielectric materials or insulators, charges can only be displaced by small 

distances locally. However, a dielectric in an electric field can be viewed as a free-space region 

containing atomic-sized electric dipoles, or positive and negative bound charges, the centers of 

which do not quite coincide; these charges can be treated as any other sources of electrostatic 

field. 

The characteristic which all dielectric materials (insulators) have in common, whether they 

are solid, liquid, or gas, is their ability to store electrical energy. This storage takes place by a 

shift in the relative positions of the internal positive and negative charges against the normal 

molecular and atomic forces. The actual mechanisms of the charge displacement differs in the 

various dielectric materials [8]. Some molecules, termed polar molecules, have a permanent 

displacement existing between the centers of "gravity" of the positive and negative charges, and 

each pair of charges acts as a dipole. Normally the dipoles are oriented in a random way 

throughout the interior of the material, and the action of the electric field is to align these 

molecules to· some extent parallel to the electric field. A sufficiently strong field may even 

produce an additional displacement between the positive and negative charges. A nonpolar 

molecule does not have this dipole arrangement until after a field is applied. The negative and 
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positive charges shift in opposite directions against their mutual attraction and produce a dipole 

which is aligned with the electric field. In the interior of the dielectric material (insulator) the 

electrical effects of the molecules tend to cancel each other but on the surface of the dielectric 

boundary the dipoles produce net surf ace charges. 

The effect of any surface charge distribution is equivalent to (or can be replaced by) the 

identical effect of other charges located beyond the surface as far as effects on "this side" of the 

surface are concerned. Therefore, a dielectric surf ace can be approximately simulated by discrete 

charges located appropriately on either side of the dielectric boundary. The magnitudes of these 

charges should be such that they satisfy the following conditions on the dielectric interface 

provided that the interface has no free charges and the two media are homogeneous and isotropic. 

1. The potential at any point on the dielectric surface must be the same when computed 

from either side of the dielectric surf ace. 

2. The normal component of the electric flux density at any point in either medium at the 

surface must be the same. 

3. The tangential component of the electric field intensity at any point in either medium at 

the surf ace must be the same. 

The last boundary condition is not imposed as an explicit condition in the solution because once 

the first condition is imposed and satisfied the last boundary condition will be automatically 

satisfied. 

3.2.1 Computation Procedure 

The procedure for computation of fields and potentials of a two-dielectric system, shown in 

Fig. 3.4 with relative permittivity£,, is as follows: 

1. Electrodes (conductors) are replaced by a number of discrete charges ne with the same 

number of contour (boundary) points on the electrode, of which nea contour points are 

on the side of the air and ne - nea = ned contour points are on the side of the dielectric. 

These ne charges contribute to the potential and field strength in both sides. 
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2. The dielectric boundary is replaced by nb contour points with nb charges in the dielectric 

and nb in air. The charges in the dielectric contribute to the potential when it is 

evaluated at contour points on the air side of the conductors. The contributions of the 

charges in the air should be taken into account when evaluating the JX)tential at contour 

points on the dielectric side of the conductors. There are thus ne + 2nb equations 

involving these charges. These charges can be described as follows: 

In conductor -------------> 1, ... , ne 

In air -------------> ne+l , ... 'ne+nb 

In dielectric -------------> ne+nb+l , . .. , ne+2nb 

The points on the dielectric side of the conductor are labelled: 

1,2, .. . , ned; 

The points on the air side of the conductor are labelled: 

The points on the air-dielectric interface are labelled: 

The symbols used are: 

: index for contour points. 

: index for the charges. 

: The potential coefficient. This depends on the type of the charges, their location 

and the location of the point at which the potential is being specified. 

: The discrete charge at the j-th location. 

: The normal component of the electric field vector. It is defined as the 

contribution of the j-th charge to that component of the electric field vector 

which is normal to the dielectric boundary. 

: The conductor potential. 



• contour point 

+ charge location 

Air Dielectric 
ne = 4 

nea = 2 

ned :2 

nb =2 

( a ) n :8 

+ 
+ Conductor + Conductor 

+ ... ... + 

Air ... Dielectric 

+ 

( b) ( C) 

Figure 3 .4: Procedure for computation of fields and potential of a two dielectric system. 
(a) conductor interfaced with dielectric material and air 
(b) charges contributing to potential at contour points on air/conductor side 
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(c) charges contributing to potential at contour points on dielectric/conductor side 



28 

3.2.2 Formulation of the equations 

The system of equations required for determination of the simulating charges can be 

formulated in the following manner: 

1. The potential Ve at the contour points on the dielectric side of the electrode is the 

integrated effect of all the ne charges on the electrode and the nb charges in air, that is, 

n . 
'P .. Q . + ' P .. Q . = V L.J 1) j L.J lj j c? 

J=l J=n.+1 

for i = 1, 2, ... , n ed 

2. The potential Ve at the contour points on the air side of the electrode is the integrated 

effect of all the ne electrode charges and the nb charges in the dielectric. Therefore, 

P .. Q . = V 
lj J c? 

3. The potential at contour points on the dielectric boundary is unknown but the potential 

at each point on the boundary must be the same whether it is calculated from the region 

of air or from the dielectric region. Thus these equations can be written as: 

" .. n,.+2n0 "• n,+n0 

'P .. Q . + ' P .. Q . = 'P .. Q. + ' P .. Q . L.J 1) j L.J lj } L.J lj j L.J lj j 

J=l J=n,+n0+l J=l .J=n,+1 

or simplifying 

n +2n 
• l, 

'P .. Q.-L.J lj J L P .. Q . = 0 
1) J 

4. At the contour points on the dielectric interface, the normal electric field intensity in air 

must be er times that in the dielectric. If F;i denotes the field intensity normal to the 

surface at the i-th contour point due to a unit charge at the position of Qi' then the 

following equation applies: 



or 

or 

where I= i - nb 

[

n n+n J 
E ~ F.. Q . + ~b F .. Q . 

r ~ '1 1 L,; '1 1 
.i= I j=n, + I 

n . 

= 

n n,+2nb 
I 

LF .. Q . + 
'1 1 L F .. Q . 

'1 1 
j= l j=n,+nb+1 

i=n,+2.nb 

( £ - 1)' F .. Q . + E ' F .. Q . - ' F .. Q . = 0 
r ~ '1 1 r ~ '1 1 ~ '1 1 

j=I .i=n,+1 .i=n,+nb+I 
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All the above ne + 2n" equations can be written in a matrix form as shown in Fig. 3.5. One 

equation is written for every contour point on the conductor and two are written for each contour 

point on the dielectric boundary. Thus in the matrix form, the row number corresponds to the 

number of the contour point and the column number corresponds to the number of the charge. 
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-

Figure 3 .5: Matrix representation of equations for application to two dielectric systems. 

3.3 Evaluation of the Charge Simulation Method 

Two factors which introduce errors in the fields computed using the CSM are the location 

and type of the simulating charges. Since these have been removed from the boundary which is 

where they properly belong, and since they are discrete instead of contineous distribution, some 

error is thus introduced. Therefore, there must be a check on how well the calculated set of 

charges satisfy the boundary conditions. For instance the potential at a number of check points 

located on the boundary can be calculated. The difference between these potentials and the given 

boundary potential is a measure of the accuracy of the simulation. If the coincidence between the 

actual conductor surface and the corresponding equipotential surface is sufficiently accurate, the 

electric fields at any point can be calculated from concise analytic expressions by superposition. 

The following quality measures are used to evaluate the accuracy of the Charge Simulation 

method: 
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1. The potential error: this is the deviation of the calculated potentials from their specified 

values on the conductor surface and is preferable to be less than 0.1 % [22]. 

The significance of keeping the potential error below 0.1 % is important since all 

corona calculations are very sensitive to the values of electric fields. Very small errors 

in the values of electric field might result in a very large error in the values of the 

corona onset voltage, corona loss, and radio interference. The practical goal for 

accuracy in the simulation of electrodes is limited by tl1e manufacturing tolerances of 

conductors. Similarly the accuracy of the simulation of dielectrics has as its practical 

goal, the accuracy of the measurement of dielectric constant values. However, the 

dielectric constant ~\ is not only limited by measurements but also by variation from 

sample to sample and within the sample itself due to the presence of impurities. 

The percentage potential error oV can be expressed as: 

where, 

L
" V. . -V 

OV = 'I e * 100 
V 

j=l e 

is the computed potential at the i-th contour point due to-the j-th charge. 

is the electrode potential, other than zero. 

2. The potential difference: this is defined as the difference between the potential along 

the boundary of a grounded electrode (which is zero) and the calculated value resulting 

from the CSM. 

3. The percentage normal field error: this error is defined as the difference between the 

known normal electric field component and the calculated value resulting from the 

CSM expressed in percentage of the known normal value. 
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4. The tangential field difference: this is defined as the difference between the tangential 

field component along the surface of the conductor which is equal to zero and the 

calculated value of the tangential field (which has very small non-zero value due to the 

discreteness of the charges). 

5. The percentage potential discrepancy: this is defined as the difference between the 

potentials calculated on each side of the solid dielectric-vacuum ( or gas) interface 

expressed in percentage of the average potential value. This error should be very small 

(typically less than 1 %) [50]. 

6. The percentage normal flux density discrepancy: it is defined as the difference in 

normal flux density solutions at the solid dielectric-gas interface evaluated from either 

side expressed in percentage of the average normal flux density. 

7. The percentage tangential field discrepancy: it is defined as the difference in the 

tangential fields calculated on each side of the interface of the solid dielectric-gas 

boundary expressed as a percentage of the average tangential field. 

The tangential field discrepancy condition is a good check of how well the system has been 

modelled, since we recall that the continuity of the tangential field at the interface is not one of 

the imposed conditions, though indirectly implied by the continuity of the potential at the 

interface. It is usually higher than the previously described quality measures. 

The difficulty associated with the charge simulation technique is that a critical placement of 

equivalent modelling charges is needed to obtain reasonable accuracy [50]. As a result, the best 

location of the equivalent charges is guided by experience. Thus the accuracy is usually checked 

after the problem is solved by determining how closely the boundary conditions are matched 

along all the interfaces. Also the accuracy in the so!ution is sensitive to the number of charges 

chosen for a particular ·problem. The suggestion that the larger the number of charges, the better is 

the solution, is not necessarily true. The situation depends to a major extent on the geometric 

complexity of the model and the number charge density [50]. Mukerjee and Roy [22] reported 
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that for a dielectric disc, an increase in the number of charges beyond a certain limit does not 

have a significant influence on the solution. Beasely et al. [25] made a comparative study of three 

methods - the Finite Element method, the Mont Carlo method, and the Charge Simulation method 

- and applied them to different geometries of a practical engineering nature. They concluded that 

for some very large and complex configurations it may not be possible to obtain satisfactory 

solutions using only one method. They suggested that in such cases the Mont Carlo method or the 

Charge Simulation method may be used to derive a first approximation followed by the Finite 

Element method within some reduced subregion of interest. 

3.4 Features of the CSM With Reference to FDM 

In summarizing the features of the Charge Simulation method with reference to the Finite 

Difference method, the following statements can be made. 

For the specific tasks of field calculations within high voltage insulation systems, in which, 

in general, Dirichlet boundary conditions are given, all types of interfaces are predominantly 

curved and field distributions are of utmost interest in highly stressed areas, the inherent feature 

of CSM to simulate curved interfaces by relatively simple means is a major advantage. 

Field regions need not be limited by a closed boundary, as the solution is not based upon a 

computation of potential within a given field space. Nevertheless, potential and even field stresses 

can be computed based upon analytical solutions within any point in the field region as soon as a 

proper charge distribution is found. 

Proper charge distributions and thus field simulations need in general less computation time 

for digital computers, as fewer linear equations are involved and thus the potential coefficient 

matrix [P] is similar, though densely occupied. in comparison with adequate matrix equations 

within the Finite Difference method or the Finite Element method. 

The accuracy of this method may be controlled more strictly quantitively. 
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With a reasonable amount of computation three-dimensional fields without any symmetry 

can be handled. 

Toe greatest disadvantages of the CSM are related to multidielectric problems, though the 

current development based upon surface charges may greatly improve the method [74,75]. 



Chapter IV 

CHARGE SIMULATION BASED COMPUTER-AIDED DESIGN 

PACKAGE 

4.1 General 

The formulation of a model for field calculations of a high voltage system using the 

well-known Charge Simulation method has proved to be tedious and time consuming. Therefore, 

emphasis was laid on the development of a Computer-Aided Design (CAD) package which 

allows a user to conveniently (with a minimum of entered data) define the geometry of a system 

consisting of a number of electrodes and one or two dielectric regions. The package automatically 

generates a charge simulation model of the system by assigning the number and locations of the 

boundary points and charges to be used. Where desired, a cubic spline is fitted to boundary 

profiles defined by discrete points and identification of segment type which is provided by the 

user. The user can modify the model by redefining the system geometry, or by deleting, adding, 

or re-positioning boundary points and/or modelling charges. Decisions on revising the model can 

be based on quality measures of the results which the user selects. The resulting equations are 

solved and the results presented in the form(s) desired by the designer from a number of available 

options. 

4.2 Package Capabilities 

The capabilities of the CAD package are summarized in the following points: 

1. It allows a wide variety of problems to be formulated without having to address the 

details of the geometry through direct programming. 

2. One and two dielectric arrangements can be easily formulated. 

- 35 -
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3. It allows three-dimensional field problems with and without axial symmetry to be 

readily analyzed. 

4. It allows consistent comparison among various trial models by keeping most of the 

parameters fixed at the default values during comparative analyses. 

5. Iterative refinement of charge simulation models can be achieved for complicated 

geometries. 

6. A large nwnber of solution quality measures of the model can be examined. 

7. Field profiles can be produced for arbitrary paths or approximations of them. 

8. Equipotential contour maps and details in small windows can be produced for the single 

and two dielectric systems examined. 

9. Decisions can be directed to refining the model after defining the system or to studying 

alternative systems. 

10. A short time is required to analyze a model using the package compared to the time 

required to prepare a separate program for that model. 

4.3 Input Data for Generation of the Geometry 

The CAD package allows the user to conveniently define the geometry of the model to be 

examined. Three types of sections can be generated by the program. These include straight lines 

(horizontal, vertical or inclined), parts of circles and any other curved portion that can be 

adequately fitted using a cubic spline function. 

Any system is initially defined by giving the package three parameters. The first parameter 

specifies the number of sections; the second, the total number of points which will describe those 

sections; and the third, is a number of parameters, each defines the number of points for each 

section. These parameters are fed to the package in addition to the coordinates of the points 

describing the modelled system. The type of the section will be automatically defined by the 

program according to the number of points in each section. The type of the section will be a 
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straight line if the number of the points is 2, a part of a circle if 3, and a curved part that will be 

fitted by a cubic spline if the segment is defined by more than three points. 

Once the input data of the geometry is supplied to the program from a separate file or from 

the terminal, the package will automatically generate the geometry and display it on the screen of 

the terminal. The user can modify the geometry or revise the input data of the system and can 

take another look after the modification. 

The program package allows the user to make translations and rotations for any point or 

section around any axis in the three dimensional space by giving the package the data required to 

make these operations in an interactive way. After making these operations the user can display 

the geometry on a terminal. 

4.4 Input Data for Charge Simulation Model Generation 

After generating the geometry, a charge simulation model of the system will be 

automatically created. The input data required consists of some parameters which are described in 

detail in the following paragraphs. 

The first parameter given by the user is the number of contour points which is always the 

same as the number of the charges for each section in the modelled system. This gives the user 

the capability of varying the number of charges if a higher accuracy is required. 

The second parameter defines the most effective controlling factor in the charge simulation 

model which is the assignment factor. This factor takes a positive or negative value according to 

how the charges should be located in the section. Positive assignment factors are given to the 

package if the charges will be allocated above a horizontal line segment, to the left of vertical or 

inclined line segment, above or to the left of a curved line that can be fitted by a cubic spline or to 

the left of a part of a circle if this part starts from the top to the bottom as in the case of spherical 

coordinates. Otherwise, negative assignment factors should be supplied to the package. The 

recommended range of the magnitude of the assignment factor is 0.7 to 1.5. 
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The third parameter defines the type of charges used to model each section. Three types of 

charges can be used in the package. These are ring charges, infinite line charges, and finite line 

charges. A combination of these charges can be used according to the shape of the geometry. 

Point charges are not included in the package because most of the modelled systems have 

rotational and translational symmetry. Even those systems which have not rotational symmetry 

are modelled by using ring charges with small radii. 

Associated with each parameter defining the charge type there is another parameter which 

defines how that charge is located along the axis of symmetry. For the ring charges, this 

parameter is used to define whether the charge is perpendicular to the x, y, or z axis in the 

three-dimensional space. In the case of infinite and finite line charges, it is used to define whether 

the charges are parallel to the x, y, or z axis, respectively. 

Three other parameters associated with each section in the model are used to specify the 

displacement of the axis of symmetry from the original reference axes x, y, and z. 

If the system contains two dielectric regions, another two parameters are used to define the 

dielectric constant of the second dielectric material and the location of the section, i.e., whether or 

not this boundary section is adjacent to the air/vacuum region, adjacent to the second dielectric 

material or is an interface between the two materials. 

The final parameter in the input data list is the specified potential associated with each 

modelled section. The package is implemented in such a way that the input voltage associated 

with each interface section between two dielectrics should be zero in the input data list. The 

CAD package is implemented in a way such that the user has the flexibility of entering the data of 

the modelled system in any way he desires. In other words, there is not any specific order for 

entering the data of the different sections of the model. This means that the user can start P-ntering 

the data for any section and follow it by that for other sections in a random order. If the system 

contains two dielectric regions (dielectric/ air or vacuum), the package will arrange the charges 

in such a way that the first set of charges will be located along the different sections of the 
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electrodes, the second set of charges will be located on the dielectric side of the interface(s) and 

the third set of charges will be located in the air side of the interface(s). 

Once the input data are given to the program package, the package automatically calculates 

the coordinates of contour points and the corresponding charges, displays a graph of the contour 

points, charge locations or both together on the same graph according to the desire of the user. It 

allows the user to modify the location of the contour points and the corresponding charges by 

changing the number of points and the assignment factor in a boundary segment. It is 

recommended that the user see a plot of the charge locations in order to eliminate any undesired 

discontinuity in their alignment along the different sections of the system geometry. 

After generating the contour points and the charge locations, the user can make translations 

and rotations of any set of contour points or charge locations around any axis in the 

three-dimensional space. After implementing these operations the user can display the modified 

contour and charge locations. 

Two examples of input data for modelling two different systems are illustrated: 

The first example is the hemispherical capped electrode above a grounded plane electrode as 

shown in Fig. 4.1. The data required to generate a charge simulation model for this problem 

consists of the number of sections to be modelled which are 2 in this example, the hemispherical 

part and the cylindrical part. The other parameter which should be given in the data set is the 

total number of points describing these sections which are 5 points and their coordinates specified 

in the 3-dimensional space; three points for the hemispherical part and two points for the 

cylindrical part. The displacements of the axis of symmetry of each section from the three 

reference axes are zeroes. The coordinates of the straight lines and any curve that can be fitted by 

a cubic spline fit are entered in cartesian coordinates while those for the parts of circles are 

entered in the spherical coordinate system. Both the hemispherical and the cylindrical parts are 

modelled using ring charges. The ring charges are perpendicular to the z-axis. Since the system 

is a single dielectric arrangement, no value is given to the parameter defining the dielectric 
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constant. Also no value is given to the parameter which defines the location of each section. The 

number of ring charges for the two sections are given to the package. The final parameter is the 

specified value of the potential associated with each section. The effect of the infinite grounded 

plane is taken into consideration by including the image charges. The package is implemented in 

such a way that the user has the choice to take the image charges into consideration by answering 

a prompting question. Table 4.1 summarizes the data input required to generate a complete 

charge simulation model of the system of Fig. 4.1. The data shouid be entered in the same order 

as they appear in the table. 

The second example is a high voltage spherical electrode above a dielectric slab as shown in 

Fig. 4.2. The system has rotational symmetry about the z-axis and hence ring charges are used to 

model both the electrode and the dielectric slab. The number of points describing the arrangement 

is 5. Three are for the spherical electrode and two for the interface of the dielectric slab (the 

system consists only of two sections). The displacements of the axis of symmetry of each section 

from the three reference axes are zeroes. The ring charges are perpendicular to the z-axis for both 

sections. The number of ring charges modelling each section should be given to the package. 

Since this system is a two dielectric arrangement, the value of the dielectric constant of the 

second material should be specified. Also, the parameter which defines the location of the 

section should be given in the list of data input. The final parameters are the specified potentials 

for the spherical electrode V = 1 and V = 0 for potential discrepancy at the dielectric interface. 

Table 4.2 summarizes the data required to generate the geometry and to simulate the arrangement 

using the Charge Simulation Computer-Aided Design package. 

As mentioned before, the user can model this arrangement starting with the data for the 

spherical electrode section and followed by the data for the interface or he can start by entering 

the data for the interface and follow that by the data for the spherical electrode section. Whatever 

section with which he begins, the order of the input data parameters for each section should be the 

same as they appear in the table. The effect of the grounded electrode is taken into consideration 
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Figure 4.1: A hemispherical capped electrode above a grounded plane. 
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Figure 4.2: A high voltage spherical electrode above a plane dielectric slab. 
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by including the image charges. Of course the user has the choice of modelling the grounded 

electrode instead of taking the images into consideration. In this case the data set in Table 4.2 

should be modified such that the number of sections in the arrangement becomes 3 and the total 

number of points describing the system is 7. Also the data for the third section should be added to 

Table 4.2. A complete data set for modelling the arrangement without including the images but 

modelling the grounded electrode is shown in Table 4.3. Definitions of the symbols used in Figs. 

4.1 and 4.2 and in the previous tables are given in Appendix B. 

Figure 4.3a shows the distribution of contour points and charge locations for modelling the 

sphere/slab arrangement by taking the image charges due to the presence of the grounded 

electrode into consideration. Fig. 4.3b also shows the distribution of the contour points and 

charge locations for modelling the same arrangement, modelling the grounded electrode explicitly 

instead of using the image charges. 
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Figure 4.3: Distribution of contour points and charge locations. 
(a) without modelling the grounded electrode explicitly 
(b) explicitly modelling the grounded electrode 
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4.5 Output Options 

4.5.1 Modelling Quality Measures 

The criteria for evaluating the quality of the solution of the model are examined. These 

criteria are the potential error and the tangential electric field error at the electrodes, the potential 

discrepancy, the tangential field discrepancy and the normal field discrepancy along the dielectric 

interfaces. These segments of electrodes and interfaces can be any type of straight line, part of a 

circle, or any other curved part that can be fitted by a cubic spline function as described before. 

These errors and discrepancies can be determined and plotted along any portion of the described 

loci as the user desires. 

4.5.2 Field Features Of Interest 

The forms of the field features that can be selected for display are: 

1. A graph of electrostatic potential versus position along any path defined by the user. 

These paths are usually straight lines, parts of a circle or any other curved line that can 

be approximated by a cubic spline in the region of interest. Also, paths representing 

interfaces between different media are considered in the package. 

2. Graphs of electric field components along paths as defined in 1; 

3. Graphs of electric field magnitude along paths as defined in 1; 

4. Two dimensional equipotential contour plots in the region of interest. 

4.5.3 Modification Of The Model 

After considering the quality of the solution of the model, decisions can be directed to 

modifying it if the evaluation criteria are not within acceptable limits. The user can modify the 

model by deleting, adding, or re-positioning boundary points and/or modelling charges as deemed 

necessary. This can be done by changing the assignment factor and keeping the number of 

boundary points or charges fixed for repositioning the charges only or by changing the number of 

boundary points ( or charges) keeping the assignment factor fixed or changing both for 

repositioning the charges and the contour points together. 
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4.6 Alternative Approaches for Programming 

The basic requirements of the Computer-Aided Design package can be implemented in 

several ways, some of which are more convenient to the user, but which may be more challenging 

to achieve. Three alternative ways of programming will be discussed below. 

4.6.1 Wylbur Implementation: 

If the package is implemented in the Wylbur system, it will be of necessity a quasi-batch (as 

opposed to interactive) package. This is the most cumbersome for a user to use, since all 

decisions about user input must be made before the "run". If more flexibility is desired, this may 

be incorporated through the use of a sequence of segmented runs, for which output is examined at 

each stage in order to make decisions on parameter values and other user choices which will be 

used in the following stages. 

4.6.2 CMS Implementation: 

If the package is implemented using CMS (The Conversational Monitor System), there is a 

minimal change from using Wylbur, and also minimal additional flexibility is obtained. Since the 

runs can be "on-line", the segmenting referred to above can simply be pauses in the on-line run, at 

which points the user is prompted for the input required for the next stage after being presented 

with the results of the immediately prior stage of computer calculation. For example, the user 

inputs the information describing the geometry as numerical data, the package determines the 

coordinates of boundary points and charge locations, displays them in a graphical manner, and 

pauses to allow the user to decide whether to change any aspect of the model. These changes 

must be entered (again as numerical data), and the package released to compute the charge 

simulation solution for that model. Similar interaction takes place after each stage of calculation. 
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4.6.3 Text/Graphics Implementation 

It should be apparent that the use of graphics to present the details of the model and the 

resulting field relationships is quite important. Using the capabilities of the CAD/CAM system, it 

is possible to implement the CAD package in a much more convenient way. 

With the VT-240 medium resolution terminals, the graphical displays can be quite detailed, 

and colour could be used where it represents an advantageous method of displaying the results. 

Working with the VAX 11/785 in an on-line manner, a screen cursor could be controlled from the 

keyboard to find points on the screen corresponding to the location of charges and boundary 

points or to find the potential and the electric field at a specific point on the screen. 

It is found that the most convenient implementation among the three alternative approaches 

is the last one. Therefore the Charge Simulation Computer-Aided Design package was 

implemented using the VAX 11/785 located in the CAD/CAM system, with access provided 

through a VT-240 terminal. FOR TRAN 77 is used throughout the programming. 

4.7 Mathematical Aids Used in the CAD Package 

Mathematical techniques are required to implement the requirements of the Computer-Aided 

Design package. These include transformations method in the three-dimensional space, 

Chebyshev distribution of points and cubic spline interpolatory scheme. These techniques are 

discussed breifely in the following sections. 

4.7.1 Three-Dimensional Transformations 

Methods for translating and rotating objects in three dimensions are extended from two 

dimensional methods by including considerations for the z-coordinate [76]. A translation is now 

accomplished by specifying a three-dimensional translation vector. Extensions for 

three-dimensional rotations are less straightforward, since rotations can now be performed about 

an axis with any spatial orientation. Geometric transformation equations can be expressed in 

terms of transformation matrices. Any sequence of transformations is then represented as a single · 
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matrix, fonned by concatenating the matrices for the individual transformations in the sequence. 

Details of the three dimensional transformations and the matrices representations of translation 

and rotation implemented in the package are given in Appendix (C) 

4.7 .2 Chebyshev Distribution Of Points 

The CAD package allows the charges to be located in one of two different distributions 

according to the user desire. The two alternatives are a uniform distribution which distributes the 

contour points and the corresponding charges at equally spaced points and a Chebyshev 

distribution. Although the Chebyshev distribution of points is based on minimizing the maximum 

error in a polynomial approximation to the smooth curve through those points, it is used here to 

determine (empirically) whether it results in any improvement in the potential error along 

boundary segments associated with those points [77]. Details of Chebyshev distribution is given 

in Appendix (D). 

4.7.3 Cubic Spline lnterpolatory Scheme 

One of the capabilities of the CAD package is that it can be used to model systems which 

contain any curved sections which can be fitted by employing an appropriate interpolating 

scheme. 

Several interpolation techniques are available for approximating functions and "smoothing" 

data such as Taylor's polynomials, interpolation polynomials, and splines. One of the most 

effective and direct ways to approximate a function defined at a finite set of points is to fit a 

polynomial of suitable degree to the discrete data. In addition to its simplicity, polynomial 

approximation has some advantageous properties. But the chief disadvantage is that it may 

become excessively oscillatory between the nodes as the number of points to be interpolated 

increases. To eliminate this drawback and also when the curve or data set has more erratic 

features, piecewise polynomial approximation and splines have some appealing advantages. 
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Specific situations for which splines afford advantages over interpolation polynomials are 

1. The number n of data points to be interpolated is moderate to large (e.g., n is greater 

than 20). 

2. The data points are associated with some known or unknown function F(x) the 

derivatives of which are large or do not exist. 

3. The data points arise from a natural or non-mathematical source. 

Spline functions are piecewise polynomials with derivatives constrained at the common 

boundary points of the polynomial pieces for the purpose of making the resulting function smooth 

at the node points. 

Cubic ( degree 3) interpolating splines are the most common splines in the application 

literature. Reasons for this popularity include their ability to interpolate data with curves that look 

smooth. Lower-degree splines do not disguise the data points well, and higher-degree splines 

have the instabilities inherent in high- degree polynomials. Cubic splines appear to flow smoothly 

and indeed possess a minimum curvature property. The construction of a cubic spline 

interpolatory scheme is described in Appendix (E). 

4.8 Limitations of the Package 

The limitations of the CAD package are: 

1. Point charges are not implemented in the program since most of the modelled systems 

in this work have rotational and translational symmetry and therefore ring, finite and 

infinite line charges are used. The systems which have not symmetry about a common 

axis are modelled by using ring charges of small radii. 

2. The package is not implemented to model systems which have more than two dielectric 

media. 

3. Sinusoidal time varying fields are not considered in the package. 
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4. There is no limitation on the numbers of charges and boundary points used. The only 

limitation regarding these numbers are the limitations on the computer capacity and 

storage memory. The approximate maximum number of charges which can be used 

without using disk storage during the run is 900 charges. 

5. The computation time is another imposed limitation on the package since as the number 

of modelling charges increases the execution time increases. Typical run times for 50, 

100, and 150 charges are 4, 27, and 112 seconds, respecfr; ely while the run time for 

500 charges is approximately 90 minutes. 

6. Three dimensional field plots are not implemented in this package. 

7. Space and surface charges are not taken into consideration. 



Chapter V 

VERIFICATION OF THE CHARGE SIMULATION BASED CAD 

PACKAGE 

5.1 General 

The work presented in this chapter is · based on the application of a Charge Simulation 

Computer-Aided-Design package for several standard electrod~ systems for calculating the 

potential and the electric field. A comparison is made with the results obtained from analytical 

solutions in order to check the validity and the accuracy of the numerical method. In addition, 

solution quality measures are provided. 

5.2 Application of the CSM to Spherical Electrodes 

5.2.1 Isolated Spherical Electrode 

The CSM is applied to the isolated spherical electrode shown in Fig. 5.1. The sphere has a 

radius of 2 cm and an applied voltage of 1 V (R
0 
= 2cm,V

0 
= 1 V). The sphere is simulated by 10 

ring charges corresponding to 10 contour points distributed around the right hemispherical part of 

the electrode (from e = 0° to e = 180° ). Figure 5.2 shows the distribution of the contour points 

and the corresponqing charges. The assignment factor is kept at 1.5 throughout the calculations. 

The potential at any point in the space due to an isolated spherical conductor is given by, 

VR 
V = __!!_:!_ 

r' 

where r' is the distance from the center of the sphere. 

(5-1) 

The potential is calculated using (5-1) and the CSM package. The difference between the 

two solutions is plotted as a function of 9 for r'= R
0 

and 2R
0 

in Figs. 5.3 and 5.4 respectively. 

- 53 -
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Figure 5 .1: Isolated spherical electrode. 

• contour point 

+ charge location 

Figure 5 .2: Distribution of contour points and charges in the isolated spherical electrode. 



The electric field is given by, 

dV 
E=-­

d r' 

VR 
0 0 

:i. r 
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The normal field error which is defined as the difference between the analytical and the numerical 

solutions divided by the analytical value of the electric field is plotted as a function of e for r'= R
0 

Fig. 5.3a shows the distribution of the potential error around the surface of half the sphere 

(from 8=0° to 0=180°) as a percentage of the applied potential. The maximum error is found to be 

Fig. 5.3b shows also the distribution of the normal electric field error which has a maximum 

value of 0.002%. 

Figs. 5.4a and 5.4b present the distribution of both the percentage potential and the normal 

field errors for a locus which has a radius of r' = 2R
0

• It is clear from these figures that the errors 

decrease as the radius increases from the surface of the sphere. 

The errors are also plotted in Figs. 5.5a and 5.5b, respectively for r'=5R
0

• 

Figs. 5.6a and 5.6b show the distribution of the potential and the normal field errors for a 

radial line which extends from r' = R
0 

up to r' = 5R
0 

and 8 = 30°. It is clear that the maximwn 

percentage errors are very small. 

5.2.2 Isolated Spherical Electrode With Rotated Axis Of Symmetry 

The CSM is applied to the same spherical electrode with the axis of symmetry rotated by 

-45° about the x-axis. Fig. 5.7 shows the distribution of contour points and charge locations. 

The distributions of the potential and the normal field errors around the modelled 

hemispherical part (from e = 0° to e = 180° after rotation ) are shown in Figs. 5.8a and 5.8b, 

respectively. 
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• .contour point 

+ charge location 

Figure 5 .7: Isolated spherical electrode with rotated axis of symmetry. 

Figs. 5.9a and 5.9b show the distribution of the potential and the normal field errors for the 

other half of the sphere which is specified from 0 = 0° to 0 = - 180°. It is clear that the errors 

are the same for both halves of the sphere since the sphere is isolated and this case corresponds 

exactly to the case of the sphere without rotation of the axis of symmetry. 
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5.2.3 Spherical Electrode With Rotated Axis Of Symmetry Above A grounded 

Plane. 

5.2.3.1 Modelling Using One Set of Contour Boundary Points 

60 

The spherical electrode is modelled by using one set of contour points (and charges) 

distributed around that portion of the surface of the sphere which extends from 0 = 0° to 0 = 180° 

after rotation about the x-axis by -45°. Since the grounded plane is included, the spherical 

electrode model no longer has a symmetry around the main z-axis after rotation. Fig. 5.10 shows 

the contour points and charge locations for this case. 

Figs. 5. lla and 5.11 b show the percentage potential error and the tangential field difference 

distributions, respectively along the surface of the sphere (from 0 = 0° to 0 = 180° after rotation). 

Figs. 5.12a and 5.12b also show the same errors but for the other part of the sphere which has not 

been explicitly modelled. It is clear from these plots that the values of the errors are large 

compared to those values obtained for the spherical electrode without a grounded plane. 

/ 

• contour point 

+ charge location 

1//l//l!!II/IIIIIIIIIIIIIIIIIIIIIIIIIIII/I~ 

Figure 5 .10: Distribution of contour points and charges for the rotated spherical electrode above 
a ground plane. 
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5.2.3.2 Modelling By Using Two Sets Of Contour Boundary points 

The spherical electrode is modelled by using two sets of contour points (and ring charges) to 

compensate for the lack of symmetry when a grounded plane is included and the axis of 

symmetry is tilted by -45° around the x-axis as shown in Fig. 5.13. The two sets of contour points 

are used to apply the boundary conditions to a better distribution of points on the entire sphere 

surface. The ring charges are distributed such that there is a displacement between the centers of 

each pair of charges corresponding to boundary points on each side of the sphere. The symmetry 

is destroyed by tilting the axis to determine the degree to which small values of quality measures 

depend on symmetry. 

• c o nt o u r p o i nt 

+ charge location 

777717 777777771177771777711111111111111111 

Figure 5 .13: Distribution of contour points and charges around the whole electrode boundary. 

Figs. 5.14a and 5.14b present the distribution of the potential error and the tangential field · 

difference, respectively around the surface of the sphere from 8 = 0° to 8 = 180° after rotation. 

The distribution of the same errors along the other part of the sphere (from 8 = 0° to 8 = -180°) 

after rotation is shown in Figs. 5.15a and 5.15b, respectively. 

It is clear from Figs. 5.14 through 5.15 that the errors are very small since we compensated 

for the lack of symmetry by modelling the whole boundary of the spherical electrode in the y-z 

plane. 
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5.3 Calculation of the Electric Field in A sphere Gap 

The electric field in a sphere gap is calculated by using the Charge Simulation 

Computer-Aided-Design package. A solution was obtained analytically through the direct 

solution of Laplace's equation in di polar coordinates by Carter [79]. Detailed graphical solution 

quality measures of the Charge Simulation method for this system are provided. Two cases are 

studied: 1. symmetrically applied positive and negative voltages, and 2. unsymmetrical gap for 

which one electrode is grounded. The zero reference of the potential is at infinity for both cases. 

5.3.1 Solution Quality Measures 

The sphere gap may be used in two distinct ways: as a symmetrical gap, in which the spheres 

carry equal and opposite charges and are at equal and opposite potentials, and as an 

unsymmetrical gap, in which one sphere is earthed. Fig. 5.16 shows the two systems. The 

number of charges used for modelling is chosen as 3 charges per centimeter of arc length of a 1 

cm radius spheres and the assignment factor is kept at 1.2 everywhere in the model. 

V= 0 V=1V 

{b) 

Figure 5 .16: Different systems for field calculations. 
(a) symmetrical gap form 
(b) unsymmetrical gap form 

V= -0.5V V=0.5 V 

(a) 
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Figs. 5.17a and 5.17b show the distribution of the potential error and the potential difference 

along the surfaces of the high and the low voltage spheres respectively, for the unsymmetrical 

gap. The maximum percentage potential error was found to be less than 0.004% on the surface of 

the HV sphere. 

The tangential field difference distributions along the surfaces of the spheres are shown in 

Fig. 5.18. It is found also that the maximum value of that difference is approximately 0.4 * 10·3
• 

The potential errors and the tangential field differences are plotted for the symmetrical form 

of the gap spheres. Figs. 5. l 9a and 5. l 9b show the potential error distribution along the surface of 

the high and low voltage sphere, respectively. The maximum percentage error in the potential is 

less than 0.005%. 

Fig. 5.20 shows the distribution of the tangential field difference around the surface of the 

high and low voltage spheres for the symmetrical gap spheres. The maximum tangential field 

difference was found to be less than 0.3 * 10-3
• 

The errors on the HV and L V spheres in the symmetrical system case are almost the same 

while these errors are not the same on the surfaces of the HV and L V spheres for the 

unsymmetrical system case. 

5.3.2 Maximum Voltage Gradient in the Sphere Gap 

For the symmetrical gap, the potential is constant over each of the two spheres and is taken 

as +0.5 V and -0.5 V. The spheres are separated by a distance g and each sphere has a radius r. 

For the unsymmetrical gap, one of the spheres (high-voltage sphere) is connected to 1.0 V and the 

other sphere (low- voltage sphere) is connected to 0. 

The mean voltage gradient between the spheres along the line joining their point of nearest 

approach is defined as 

E = 
mean g s-2r 
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Where Vd is the potential difference between the spheres, s is the distance between the centers of 

the two spheres and r is the radius of the sphere. 

The ratio £=/£mean is plotted in Fig. 5.21a as a function of the spacing/sphere-diameter 

ratio (g/2r) for the symmetrical and assymetrical forms of the gap. The radius of the sphere is kept 

constant at IO cm while g is varied. This ratio is extended in this work to 2.0 from 1.4 as in 

Carter's paper. 

For the case when the radius of the sphere is 10 cm and the gap distance is 20 cm (i.e. g/2r = 

1.0), the calculated value of Ema_)Emean from _the charge simulation technique is found to be 1.77 

and 2.3384 for the symmetrical and asymmetrical gap, respectively while the values of EmaJEmean 

taken from the analytical solution by Carter [79] are found to be 1.77 and 2.34 for the two cases, 

respectively. 

The ratio Emin.fEmean is also plotted in Fig. 5.21b as a function of 

sphere-spacing/sphere-diameter ratio. 
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Figure 5 .21: Variation of the electric field with the sphere-spacing/sphere-diameter ratio. 
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Fig. 5.22 shows the potential and the electric field distributions in the gap along the line 

joining the centers of the spheres for two different values of the ratio g/2r for the symmetrical gap 

form. It is clear from this figure that the nonlinearity in the potential distribution increases with 

increasing g/2r. Also the dissymmetry in the field distribution starts to appear as g/2r increases 

from 0.2 to 0.5. 
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5.4 Circular Cylinders and Spheres 

The main concern in the calculation of the field between cylindrical and spherical electrodes 

is the points of maximum field intensity on the electrode surfaces [80]. Limited information 

concerning quantitative values of the potential gradient across the minimum-gap region has been 

published, for particular cases, by Pedersen [81] for equal spheres, and by Abou-Seada and 

Nasser [1] for a rod plane geometry. Shalla} and Harrison [82] have given graphical values of the 

potential gradient for a particular sphere-plane geometry. Abou-Seada and Nasser [38] have 

applied the charge simulation technique to twin cylindrical bipolar conductors. Mattingley and 

Ryan [15] provided formulas, and tabulated data of the potential and potential gradients along the 

line of minimum electrode separation for standard electrode systems. They also presented various 

forward-,central- and backward difference equations for computing the fields for many arbitrarily 

shaped practical electrode systems. 

In this work the Charge Simulation-based CAD package is applied to the same standard 

electrodes presented previously [15] to calculate the potential and the electric field distributions 

along the line of minimum electrode separation for a wide range of gap/radius ratios and for 

different ratios of the radii of the spheres and cylinders. For purposes of comparison, the notation 

is kept the same as in reference 15 throughout the study. 

5.4.1 External Spheres 

The CAD package is applied to the system shown in Fig. 5.23a which consists of two 

spheres separated by a distance g. The form of the gap is an unsymmetrical one in which one of 

the spheres is connected to 1.0 V and the other sphere is connected to 0. The distance along the 

line of the minimum electrode gap from the surface of the high voltage electrode is defined as 1. 

The results are plotted and tabulated in a normalized format. For the sake of comparison with 

[15] we now define the normalized potential V' and the normalized electric field Fas: 

V 
V' = C v' 

and 
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Figure 5 .23: Different systems for field calculations. 
(a) external spheres 
(b) concentric spheres and cylinders 
(c) eccentric spheres and cylinders 
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where V is the voltage at the high-voltage electrode, which has a radius rl' Ve and E are the 

calculated potential and electric field, respectively. 

The analytical expressions for the potential and the potential gradient are found in reference 

15. 

The number of charges used to model the system for different gap distance/sphere radius 

ratios and for different radii ratios is based on a fixed number of charges per unit length and is 

taken here as 3 charges/cm of arc length. The assignment factor is kept at 1.2. 

The calculations of potential and potential gradients are executed for different values of the 

ratio r/r1 which represents the ratio of the low-voltage sphere to the high-voltage sphere radii. 

This ratio is varied from 1 to 6. The gap separation g is varied over a wide range, from 0.05 to 

100.0 of the high-voltage sphere radius rl' to determine its effect on the potential and potential 

gradient distributions. 

Computed values of the normalized potential V' and normalized electric field F are given in 

Table 5 .1 at specific points along the line of the minimum gap distance. 

The potential and potential gradient are plotted along the line of minimum gap distance for 

four values of g/r1 for each value of the ratio rifr1• Fig. 5.24 show the potential distribution for 

different values of the ratio rifr1 • It is clear from these figures that as the ratio g/r1 increases, the 

nonlinearity in the potential distribution increases. The most linear curve is that when g/r 1 is equal 

to 0.1, and the most nonlinear curve is that when g/r 1 is equal to 100.0. It is clear also from these 

graphs that as the ratio r if r 
1 

increases for a fixed value of g/r 1, the nonlinearity does not increase 

much as compared to the effect of the change of the ratio g/r1 keeping rifr1 fixed. 

Typical values of the potential at 1/g=0.4 and r/r1 = 1 are 0.598, 0.548, 0.189 and 0.024 for 

g/r1 equals 0.1, 1_, 10 and 100, respectively. The corresponding analytical values taken from [15] 



are 0.5984. 0.5482, 0.1893 and 0.0242. It is found that a good agreement between the numerical 

and the analytical solution is obtained. 

Fig. 5 .25 shows the potential gradient distribution along the line of the minimum gap 

distance for different values of the ratio rifr1 and different ratios of glr1 for r 1=1 cm. It is clear 

from these graphs that as the ratio glr 1 increases, the normalized electric field decreases and at the 

same time the assymetry in the field increases. Typical values of the electric field at r/r1 = 1 and 

glr1 = 0.1 are 10.345 and 10.345 for 1/g equals 0.0 and 1.0, respectively. While at r/r1 = 1 and 

glr1 = 100 are 1.0001 and 0.0101 for 1/g equals 0.0 and 1.0, respectively. These graphs also show 

that as the ratio r/r1 increases for a fixed glr1, the normalized potential gradient increases slightly 

so that the effect of this ratio can be neglected. Typical values of F at 1/g=0.4 and r/r1 = 1 are 

9.852, 0.895, 0.042 and 0.0006 for glr1 equals 0.1, 1, 10, and 100, respectively. The 

corresponding analytical values taken from [15] are 9.8549. 0.8950, 0.0420, and 0.0006, 

respectively. A comparison between the results obtained from the numerical solution and those 

obtained analytically in [ 15] indicates that the calculated values of the potential gradient using the 

CAD package are correct to three decimal places compared to the analytical values. The 

maximum error between the two solutions is found to be 0.03% of the actual value. 



Table 5.1 : Potential and field distribution for external spheres for r
1 
= I cm .. 

-------------------------------- ·---------------------------
I I g 

0.0 0.2 0.4 0.6 0.8 1.0 

V' 1.0000 0.7984 0.5992 0.4008 0.2016 0.0000 
0.05 --------------------------------------------------

F 20.3430 20.0130 19.8510 19.8510 20.0130 20.3430 

V' 1.0000 0.7964 0.5984 0.4016 0.2033 0.0000 
0.10 --------------------------------------------------

F 10.3450 10.0120 · 9.8517 9.8516 10.0120 10.3450 

V' 1.0000 0.7935 0.5967 0.4029 0.2062 0.0000 
0.20 --------------------------------------------------

F 5.3434 5.0127 4.8569 4.8550 5.0075 5.3363 

V' 1.0000 0.7799 0.5854 0.4006 0.2110 0.0000 
0.50 --------------------------------------------------

F 2.3980 2.0423 1.8728 1.8474 1.9699 2.2922 

V' 1.0000 0.7443 0.5483 0.3773 0.2056 0.0000 
1.00 --------------------------------------------------

F 1.5168 1.0926 0.8950 0.8349 0.9077 1.2009 
l.0---------------------------------------------------------

V' 1.0000 0.6630 0.4642 0.3179 0.1810 0.0000 
2.00 --------------------------------------------------

F 1.1692 0.6149 0.4101 0.3381 0.3652 0.60 1 1 

V' 1.0000 0.4814 0.3030 0.2044 0.1258 0.0000 
5.00 --------------------------------------------------

F 1.0334 0.2624 0.1235 0.0818 0.0832 0.2271 

V' 1.0000 0.3263 0.1893 0.1268 0.0831 0.0000 
10.00 --------------------------------------------------

F 1.0091 0.1130 0.0420 0.0240 0.0223 0.1082 

V' 1.0000 0.1977 0.1078 0.0720 0.0498 0.0000 
20.00 --------------------------------------------------

F 1.0023 0.0402 0.0126 0.0065 0.0053 0.0523 

V' 1.0000 0.0905 0.0470 0.0314 0.0023 0.0000 
50.00 --------------------------------------------------

F 1.0004 0.0083 0.0023 0.0011 0.0008 0.0204 
---------------------------------------------------------

V' . 1.0000 0.0475 0.0242 0.0162 0.0119 0.0000 
100.00 --------------------------------------------------

F 1.0001 0.0023 0.0006 0.0003 0.0002 0.0101 
---------------------------------------------------------
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Table 5.1---continued 

------------------------------------------------------------
I I g 

-----------------------------------------------
0.0 0.2 0.4 0.6 0.8 1. 0 

------------------------------------------------------------
V' 1.0000 0.7973 0.5974 0.3988 0.2001 0.0000 

0.05 --------------------------------------------------
F 20.4540 20.1070 19.9050 19.8420 19.9160 20.1300 

---------------------------------------------------------
V' 1.0000 0.7947 0.5947 0.3974 0.2001 0.0000 

0.10 ---------------------------------~----------------
F 10.4550 10.1070 9.9077 9.8441 9.9131 10.1210 

V' 1.0000 0.7894 · 0.5896 0.3949 0.2001 0.0000 
0.20 --------------------------------------------------

F 5.4536 5.1043 4.9098 4.8482 4.9134 5.1139 

V' 1.0000 0.7715 0.5713 0.3842 0.1981 0.0000 
0.50 --------------------------------------------------

F 2.4927 2.1143 1.9146 1.8460 1.8980 2.0900 

V' 1.0000 0.7336 0.5305 0.3563 0.1876 0.0000 
1.00 --------------------------------------------------

F 1.5815 1.1362 0.9216 0.8392 0.8672 1.0395 
l.5---------------------------------------------------------

V' 1.0000 0.6531 0.4482 0.2980 0.1619 0.0000 
2.00 --------------------------------------------------

F 1.2033 0.6336 0.4224 0.3438 0.3517 0.4907 

V' 1.0000 0.4758 0.2943 0.1931 0.1123 0.00 0 0 
5.00 --------------------------------------------------

F 1.0438 0.2659 0.1263 0.0845 0.0837 0.1716 

V' 1.0000 0.3237 0.1854 0.1215 0.0757 0.0000 
10.00 --------------------------------------------------

F 1.0125 0.1137 0.0427 0.0249 0.0235 0.0779 

V' 1.0000 0.1968 0.1065 0.0700 0.0466 0.0000 
20.00 --------------------------------------------------

F 1.0033 0.0403 0.0128 0.0067 0.0058 0.0000 

V' 1.0000 0.0903 0.0467 0.0309 0.0219 0.0000 
50.00 --------------------------------------------------

F 1.0005 0.0083 0.0023 0.0011 0.0008 0.0138 
---------------------------------------------------------

V' 1.0000 0.0474 0.0242 0.0160 0.0117 0.0000 
100.00 --------------------------------------------------

F 1.0001 0.0023 0.0006 0.0003 0.0002 0.0068 
---------------------------------------------------------
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Table 5.1---continued 
------------------------------------------------------------

l/ g 

-----------------------------------------------
0.0 0.2 0.4 0.6 0.8 1.0 

------------------------------------------------------------
V' 1.0000 0.7968 0.5965 0.3977 0.1993 0.0000 

0.05 --------------------------------------------------
F 20.5110 20.1560 19.9330 19.8370 19.8650 20.0200 

V' 1.0000 0.7936 0.5929 0.3953 0.1985 0.0000 
0.10 --------------------------------------------------

F 10.5110 10.1550 9.9357 9.8399 9.8632 10.0090 

V' 1.0000 0.7873 0.5861 0.3910 0.1971 0.0000 
0 • 2 0 - - - - - - - - - - - - - - - - - -·- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

F 5.5087 5.1496 4.9347 4.8431 4.8672 5.0114 

V ' 1 . 0 0 0 0 0 . 7 6 6 9 0 . 5 6 3 7 0 . 3 7 5 6 0 . ~1 914 0 . 0 0 0 0 
0.50 --------------------------------------------------

F 2.5458 2.1529 1.9357 1.8431 1.8588 1.9918 

V' 1.0000 0.7273 0.5203 0.3445 0.1780 0.0000 
1.00 --------------------------------------------------

. F 1.6203 1.1615 0.9357 0.8394 0.8426 0.9598 
2.0---------------------------------------------------------

V' 1.0000 0.6465 0.4379 0.2859 0.1510 0.0000 
2.00 --------------------------------------------------

F 1.2261 0.6456 0.4295 0.3457 0.3415 0.4358 

V' 1.0000 0.4714 0.2879 0.1850 0.1036 0.0000 
5.00 --------------------------------------------------

F 1.0520 0.2685 0.1281 0.0859 0.0829 0.1438 

V' 1.0000 0.3215 0.1823 0.1173 0.0703 0.0000 
10.00 --------------------------------------------------

F 1.0156 0.1142 0.0431 0.0255 0.0239 0.0627 

V' 1.0000 0.1959 0.1052 0.0683 0.0441 0.0000 
20.00 --------------------------------------------------

F 1.0043 0.0404 0.0129 0.0068 0.0060 0.0285 
---------------------------------------------------------

V' 1.0000 0.0901 0.0465 0.0306 0.0212 0.0000 
50.00 --------------------------------------------------

F 1.0007 0.0083 0.0023 0.0011 0.0009 0.0106 
---------------------------------------------------------

V' 1.0000 0.0474 0.0241 0.0159 0.0115 0.0000 
100.00 --------------------------------------------------

F 1.0002 0.0023 0.0006 0.0003 0.0002 0.0051 
---------------------------------------------------------
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Table 5.1---continued 
------------- ----------------------------------------------

I I g 

-----------------------------------------------
0.0 0.2 0.4 0.6 0.8 1.0 

------------------------------------------------------------
V' 1.0001 0.7964 0.5958 0.3969 0.1987 0.0000 

0.05 --------------------------------------------------
F 20.5610 20.1950 19.9540 19.8330 19.8280 19.9430 

---------------------------------------------------------
V' 1.0001 0.7924 0.5910 0.3934 0.1971 0.0000 

0.10 --------------------------------------------------
F 10.5850 10.2040 9.9570 9.8287 9.8145 9.9185 

---------------------------------------------------------
V' 1.0000 0.7850 0.5823 0.3867 0.1940 0.0000 

0.20 --------------------------------------------------
F 5.5776 5.1984 4.9602 4.8362 4.8161 4.9038 

V' 1.0000 0.7621 0.5557 0.3668 0.1847 0.0000 
0.50 --------------------------------------------------

F 2.6010 2.1933 1.9571 1.8390 1.8180 1.8936 

V' 1.0000 0.7202 0.5089 0.3318 0.1679 0.0000 
1.00 --------------------------------------------------

F 1.6645 1.1897 0.9502 0.8376 0.8148 0.8807 
3.0---------------------------------------------------------

V' 1.0000 0.6384 0.4254 0.2717 0.1389 0.0000 
2.00 --------------------------------------------------

F 1.2550 0.6604 0.4371 0.3463 0.3279 0.3813 

V' 1.0000 0.4652 0.2788 0.1742 0.0929 0.0000 
5.00 ------------------------------------------------ - -

F 1.0643 0.2720 0.1303 0.0872 0.0805 0.1162 

V' 1.0000 0.3179 0.1772 0.1110 0.0630 0.0000 
10.00 --------------------------------------------------

F 1.0208 0.1150 0.0438 0.0261 0.0240 0.0476 

V' 1.0000 0.1943 0.1031 0.0655 0.0402 0.0000 
20.00 --------------------------------------------------

F 1.0064 0.0406 0.0130 0.0071 0.0063 0.0205 

V' 1.0000 0.0897 · 0.0460 0.0299 0.0201 0.0000 
50.00 --------------------------------------------------

F 1.0014 0.0083 0.0023 0.0011 0.0009 0.0073 

V' 1.0000 0.0473 0.0239 0.0157 0.0111 0.0000 
100.00 --------------------------------------------------

F 1.0006 0.0023 0.0006 0.0003 0.0002 0.0035 
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Table 5.1---continued 
----------------------------------------~-------------------

l/g 

-----------------------------------------------
0.0 0.2 0.4 0.6 0.8 1.0 

------------------------------------------------------------
V' 1.0000 0.7960 0.5950 0.3961 0.1980 0.0000 

0.05 --------------------------------------------------
F 20.5890 20.2320 19.9810 19.8330 19.7860 19.8410 

---------------------------------------------------------
V' 1.0001 0.7914 0.5893 0.3913 0.1956 0.0000 

0.10 --------------------------------------------------
F 10.6380 10.2520 9.9847 9.8247 9.7660 9.8112 

V' 1.0000 0.7829 0.5786 0.3826 0.1909 0.0000 
0.20 ------------------ -------------------------------

F 5.6376 5.2468 4.9860 4.8299 4.7667 4.7969 

V' 1.0000 0.7570 0.5474 0.3576 0.1779 0.0000 
0.50 --------------------------------------------------

F 2.6590 2.2357 1.9785 1.8332 1.7750 1.7964 

V' 1.0000 0.7121 0.4962 0.3179 0.1574 0.0000 
1.00 --------------------------------------------------

F 1.7144 1.2210 0.9651 0.8336 0.7835 0.8022 
6.0---------------------------------------------------------

V' 1.0000 0.6281 0.4101 0.2549 0.1257 0.0000 
2.00 --------------------------------------------------

F 1.2913 0.6778 0.4452 0.3447 0.3104 0.3267 

V' 1.0000 0.4555 0.2654 0.1592 0.0796 0.0000 
5.00 --------------------------------------------------

F 1.0831 0.2773 0.1329 0.0876 0.0756 0.0884 

V' 1.0000 0.3112 0.1683 0.1005 0.0524 0.0000 
10.00 --------------------------------------------------

F 1.0301 0.1165 0.0447 0.0267 0.0231 0.0325 

V' 1.0000 0.1909 0.0986 0.0599 0.0335 0.0000 
20.00 --------------------------------------------------

F 1.0101 0.0409 0.0133 0.0074 0.0065 0.0126 

V' 1.0000 0.0888 0.0447 0.0282 0.0176 0.0000 
50.00 --------------------------------------------------

F 1.0023 0.0083 0.0024 0.0012 0.0010 0.0040 
---------------------------------------------------------

V' 1.0000 0.0470 0.0235 0.0152 0.0102 0.0000 
100.00 --------------------------------------------------

F 1.0009 0.0023 0.0006 0.0003 0.0002 0.0018 
---------------------------------------------------------
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Figure 5.24: Potential distribution along the line of minimum gap (external spheres) for 
r 1 = 1 cm. 
(a) r/r1=1 

(1) g/r1=0.l 
(b) r2/r1=2 
(2) g/r1=1 

(c) r/r1=3 
(3) g/r1=10 

(d) rzfr1=6 
(4) g/r1=100 
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Figure 5.25: Potential gradient distribution along the line of minimum gap distance (external 
spheres) for r 1 = 1cm. 

(a) r2/r1=1 (b) rzfr1=2 

(1) g/r1=0.l (2) g/r1=l 

(c) r/r1=3 
(3) g/r1=I0 

(d) r/r1=6 

(4) g/r1=I00 
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5.4.2 Concentric and Eccentric Internal Spheres 

The CAD package is applied to the systems shown in Fig. 5.23b and 5.23c which represent 

concentric and eccentric spheres, respectively. The inner sphere is held at high-voltage while the 

outer sphere is connected to low-voltage. The minimum gap distance is represented by g and I is 

defined as the distance from the high voltage electrode measured along the line of the minimum 

gap distance. s is defined as the distance between the centers of the spheres. Calculated values of 

the potential V' and the potential gradient F are given in Table 5.2 for a wide range of g/r
1 

and 

different ratios of r if r 1 • 

Fig. 5.26 represent the potential distribution along the line of the minimum gap distance for 

different values of the ratio r/r1 and with different values of the ratio glr
1
• It is obvious from 

these graphs that as the ratio glr1 increases for a fixed value of the ratio r/rl' the nonlinearity in 

the potential increases, while increasing the ratio r/r1 for a fixed value of glr1 decreases the 

nonlinearity in the potential distribution. Typical values of V' at llg=0.4 and r/r1 = 1.5 are 0.5799 

and 0.5001 for glr1 = 0.1 and 0.5, respectively. The computed analytical values published in 

reference 15 are 0.5797 and 0.5000, respectively. It is concluded that the results obtained using 

the numerical technique are matched very well with those obtained by the analytical expressions. 

The maximum error between the two sets of results is found to be 0.04% of the actual value at the 

point examined. 

Figs. 5.27 show the electric field distribution along the line of the minimum gap distance for 

different r/r1 and glr1 ratios. It is clear from these graphs that as the ratio glr1 increases, F 

decreases while increasing the ratio rzir1 for fixed value of glr1 decreases the field value slightly. 

Typical values of Fat llg=0.4 and rifr1 = 1.5 are 10.125 and 2.083 for glr1 equal to 0.1 and 0.5, 

respectively. The recorded values from reference 15 are 10.130 and 2.083, respectively. The 

maximum error between the numerical and the analytical values is 0.05% of the analytical value 

at the point examined. For 1/g=0.4 and glr1 = 0.1, the values of Fare 10.125, 10.097, 10.069, and 
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Table 5.2 : Potential and field distribution for internal spheres for r
1 
= 1 cm .. 

------------------------------------------------------------
if g 

-----------------------------------------------
0.0 0.2 0.4 0.6 0.8 1. 0 

------------------------------------------------------------
V' 1.0000 0.7931 0.5900 0.3904 0.1938 0.0000 

0.05 --------------------------------------------------
F 20.9040 20.4950 20.1280 19.8010 19.5120 19.2640 

---------------------------------------------------------
V' 1.0000 0.7860 0.5799 0.3808 0.1877 0.0000 

0.10 --------------------------------------------------
F 10.9130 10.4950 10.1250 9.7982 9.5127 9.2690 

l.5---------------------------------------------------------
V' 1.0000 0.7717 0.5596 0.3616 0.1756 0.0000 

0.20 --------------------------------------------------
F 5.9360 5.4941 5.1169 4.7923 4.5129 4.2775 

V' 1.0000 0.7273 0.5001 0.3078 0.1429 0.0000 
0.50 --------------------------------------------------

F 3.0005 2.4791 2.0831 1.7751 1.5307 1.3359 

V' 1.0001 0.7938 0.5912 0.3917 0.1948 0.0000 
0.05 --------------------------------------------------

F 20.8380 20.4370 20.0960 19.8100 19.5780 19.4000 

V' 1.0000 0.7871 0.5818 0.3829 0.1893 0.0000 
0.10 --------------------------------------------------

F 10.8590 10.4460 10.0970 9.8039 9.5634 9.3755 

V' 1.0000 0.7740 0.5635 0 . 3 659 0.1787 0.0000 
2.0 0.20 --------------------------------------------------

F 5.8735 5.4432 5.0912 4.8016 4.5649 4.3786 

V' 1.0000 0.7339 0.5103 0.3183 0.1500 0.0000 
0.50 --------------------------------------------------

F 2.9241 2.4260 2.0631 1.7911 1.5834 1.4243 

V' 1.0000 0.6667 0.4286 0.2500 0.1111 0.0000 
1.00 --------------------------------------------------

F 2.0006 1.3889 1.0203 0.7812 0.6173 0.5007 
------------------------------------------------------------

V' 1.0001 0.7943 0.5921 0.3928 0.1956 0.0000 
0.05 - ------------------------------------------------

F 20.7850 20.3890 20.0670 19.8130 19.6280 19.5100 
3.0---------------------------------------------------------

V' 1.0001 0.7882 0.5836 0.3850 0.1908 0.0000 
0.10 --------------------------------------------------

F 10.8050 10.3980 10.0690 9.8092 9.6134 9.4816 
-------· -------------------------------------------------
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Table 5.2---continued 
------------------------------------------------------------

l/g 

-----------------------------------------------
0.0 0.2 0.4 0.6 0.8 1.0 

------------------------------------------. -----------------
V' 1.0000 0.7763 0.5674 0.3701 0.1817 0.0000 

0.20 --------------------------------------------------
F 5.8125 5.3931 5.0653 4.8100 4.6162 4.4806 

3.0 V' 1.0000 0.7401 0.5202 0.3285 0.1570 0.0000 
0.50 --------------------------------------------------

F 2.8520 2.3753. 2.0424 1.8048 1.6342 1.5144 

V' 1.0000 0.6805 0.4484 0.2690 0.1232 0.0000 
1.00 --------------------------------------------------

F 1.9124 1.3396 1.0083 0.8013 0.6652 0.5733 

V' 1.0000 0.5714 0.3333 0.1818 0.0769 0.0000 
2.00 --------------------------------------------------

F 1.5005 0.7653 0.4629 0.3099 0.2219 0.1668 

V' 1.0001 0.7949 0.5930 0.3938 0.1964 0.0000 
0.05 --------------------------------------------------

F 20.7300 20.3410 20.0380 19.8180 19.6770 19.6170 

V' 1.0001 0.7892 0.5855 0.3870 0.1924 0.0000 
0.10 --------------------------------------------------

F 10.7520 10.3500 10.0410 9.8142 9.6629 9.5874 

V' 1.0000 0.7785 0.5711 0.3742 0.1848 0.0000 
0.20 --------------------------------------------------

F 5.7529 5.3438 5.0393 4.8177 4.6669 4.5834 

V' 1.0000 0.7461 0.5297 0.3385 0.1640 0.0000 
6.0 0.50 --------------------------------------------------

F 2.7839 2.3267 2.0214 1.8163 1.6831 1.6064 

V' 1.0000 0.6925 0.4662 0.2866 0.1350 0.0000 
1.00 --------------------------------------------------

F 1.8365 1.2956 0.9946 0.8162 0.7089 0.6479 

V' 1.0000 0.5967 0.3660 0.2110 0.0948 0.0000 
2.00 --------------------------------------------------

F 1.4054 0.7285 0.4600 0.3293 0.2586 0.2190 
---------------------------------------------------------

V' 1.0000 0.4000 0.2000 0.1000 0.0400 0.0000 
5.00 --------------------------------------------------

' F 1.2004 0.3000 0.1333 0.0750 0.0480 0.0334 
------------------------------------------------------------
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Figure 5 .26: Potential distribution along the line of minimum gap distance (internal spheres) for 
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10.041, for rzfr1 = 1.5, 2, 3 and 6, respectively. The maximum error between the two solutions is 

found to be 0.07% of the analytical value at the point examined. 

5.4.3 Concentric and Eccentric Internal Cylinders 

The CAD package is applied to the systems shown in Figs. 5.23b and 5.23c for concentric 

and eccentric cylinders, respectively. The parameters l, g and s are kept the same as for 

concentric and eccentric spheres. Computed values for the normalized potential V' and 

normalized potential gradient F are given in Table 5.3 for different values of the ratio glr1 and 

r/r1• 

Fig. 5 .28 shows the potential distribution along the line of the minimum gap distance for a 

wide range of g/r 1 and r zir 1• It is clear from these plots that as the ratio g/r 1 increases for a fixed 

value of the ratio rifrl' the nonlinearity in the potential distribution increases, while increasing the 

ratio r if r 1 for a fixed value of g/r 1 does not affect the distribution of the potential much. Typical 

values for V' at 1/g=0.4 and r2lr1 = 1.5 are 0.590 and 0.550 for g/r1 equals 0.1 and 0.5, 

respectively. The computed analytical values published previously [15] are 0.5899 and 0.550, 

respectively. The maximum difference between the analytical and numerical values is 0.02% of 

the analytical value. 

Fig. 5.29 also shows F for the same values of the ratio g/r1 and rzfr1• The effect of varying 

the ratio glr1 for a fixed value of rifr1 on the distribution of F is very strong. It decreases as g/r1 

increases. Typical values for Fat 1/g=0.4 and rzfr1 =1.5 are 10.061 and 2.054 for glr1 equals 0.1 

and 0.5, respectively, while the analytical values are 10.0676 and 2.0553. The maximum 

difference between the two solutions is 0.06% of the actual value. Varying rifr1 and keeping glr1 

fixed does not affect the distribution of F much. For 1/g=0.4 and g/r 1 =0.1, the values of F are 

10.061, 10.047, 10.033 and 10.019 while the corresponding analytical values are 10.067, 10.053, 

10.039 and 10.024 for rifr
1 

equals 1.5, 2, 3 and 6, respectively. The maximum difference between 

the two sets of results is found to be 0.06% of the actual value at the point examined. 
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Table 5.3 : Potential and field distribution for internal cylinders for r1 = 1 cm .. 

------------------------------------------------------------
l/ g 

-----------------------------------------------
0.0 0.2 0.4 0.6 0.8 1. 0 

------------------------------------------------------------
V' 1.0000 0.7967 0.5952 0.3954 0.1970 0.0000 

0.05 --------------------------------------------------
F 20.4330 20.2370 20.0620 19.9080 19.7740 19.6620 

---------------------------------------------------------
V' 1.0001 0.7932 0.5902 0.3906 0.1940 0.0000 

0.10 --------------------------------------------------
F 10.4460 10.2420' 10.0610 9.9017 9.7635 9.6480 

l.5---------------------------------------------------------
V' 1.0000 0.7861 0.5801 0.3810 0.1879 0.0000 

0.20 --------------------------------------------------
F 5.4551 5.2444 5.0607 4.8993 4.7588 4.6420 

---------------------------------------------------------
V' 1.0000 0.7649 0.5504 0.3530 0.1703 0.0000 

0.50 --------------------------------------------------
F 2.4688 2.2416 2.0545 1.8965 1.7614 1.6498 

V' 1.0001 0.7970 0.5957 0.3960 0.1975 0.0000 
0.05 --------------------------------------------------

F 20.4060 20.2120 20.0470 19.9090 19.7980 19.7150 

V' 1.0001 0.7938 0.5912 0.3917 0.1948 0.0000 
0.10 --------------------------------------------------

F 10.4190 10.2180 10.0470 9.9039 9.7886 9.7018 

V' 1.0000 0.7873 0.5821 0.3832 0.1895 0.0000 
2.0 0.20 --------------------------------------------------

F 5.4246 5.2183 5.0466 4.9032 4.7856 4.6961 

V' 1.0000 0.7685 0.5561 0.3591 0.1746 0.0000 
0.50 --------------------------------------------------

F 2.4298 2.2115 2.0411 1.9038 1.7917 1.7044 

V' 1.0000 0.7369 0.5146 0.3220 0.1521 0.0000 
1.00 --------------------------------------------------

F 1.4444 1.2021 1.0303 0.9016 · o.8014 0.7236 

------------------------------------------------------------
V' 1.0001 0.7973 0.5962 0.3695 0.1979 0.0000 

0.05 --------------------------------------------------
F 20.3780 20.1870 20.0320 19.9100 19.8220 19.7670 

3.0---------------------------------------------------------
V' 1.0001 0.7943 0.5921 0.3927 0.1956 0.0000 

0.10 --------------------------------------------------
F 10.3930 10.1940 10.0330 9.9062 9.8133 9.7548 

---------------------------------------------------------
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Table 5.3---continued 
------------------------------------------------------------

l/g 

0.0 0.2 0.4 0.6 0.8 1.0 
------------------------------------------------------------

V' 1.0000 0.7884 0.5841 0.3854 0.1911 0.0000 
0.20 --------------------------------------------------

F 5.3949 5.1929 5.0327 4.9068 4.8117 4.7494 
3.0---------------------------------------------------------

V' 1.0000 0.7718 0.5616 0.3650 0.1786 0.0000 
0.50 --------------------------------------------------

F 2.3933 2.1832 2.0279 1.9100 1.8204 1.7578 

V' 1.0000 0.7452 0.5273 0.3348 0.1606 0.0000 
1.00 ------------------ -------------------------------

F 1.3959 1.1693 1.0189 0.9122 0.8336 0.7766 

V' 1.0000 0.6937 0.4650 0.2823 0.1303 0.0000 
2.00 --------------------------------------------------

F 0.9114 0.6501 0.5057 0.4137 0.3501 0.3042 

V' 1.0000 0.7975 0.5967 0.3970 0.1983 0.0000 
0.05 --------------------------------------------------

F 20.3490 20.1630 20.0180 19.9120 19.8460 19.8190 

V' 1.0001 0.7948 0.5930 0.3938 0.1964 0.0000 
0.10 --------------------------------------------------

F 10.3670 10.1700 10.0190 9.9085 9.8377 9.8073 

V' 1.0000 0.7895 0.5859 0.3875 0.1927 0.0000 
0.20 --------------------------------------------------

F 5.3660 5.1681 5.0191 4.9101 4.8373 4.8024 

V' 1.0000 0.7749 0.5667 0.3705 0.1826 0.0000 
6.0 0.50 --------------------------------------------------

F 2.3592 2.1565 2.0150 1.9152 1.8476 1.8106 
---------------------------------------------------------

V' 1.0000 0.7525 0.5387 0.3465 0.1686 0.0000 
1.00 --------------------------------------------------

F 1.3539 1.1403 1.0074 0.9202 0.8625 0.8282 
---------------------------------------------------------

V' 1.0000 0.7129 0.4923 0.3083 0.1469 0.0000 
2.00 --------------------------------------------------

F 0.8495 0.6165 0.4978 0.4276 0.3828 0.3543 
---------------------------------------------------------

V' 1.0000 0.6131 0.3869 0.2263 0.1018 0.0000 
5.00 --------------------------------------------------

F 0.5588 0.2791 0.1860 0.1395 0.1116 0.0932 
------------------------------------------------------------
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Figure 5.28: Potential distribution along the line of minimum gap distance (internal cylinders) 
for r1 = 1 cm. 
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It is concluded that the potential and potential gradient values computed using the Charge 

Simulation Computer-Aided-Design package (CAD) are in good agreement with the values 

computed using the analytical formulas in reference 15 and that the errors in the Charge 

Simulation method are very small for those standard systems. 



Chapter VI 

OPTIMUM PARAMETER SELECTION IN THE CHARGE 

SIMULATION METHOD 

6.1 General 

The charge simulation technique is controlled by some modelling parameters which affect 

the accuracy of the solution of the problem to a great extent. Therefore, it is preferable that a 

study should be done on a simple geometry in order to examine the effect of the different 

controlling parameters on the accuracy of the simulation. 

This method of modelling electrostatic fields is applied to an electrode geometry in order to 

evaluate the effect of varying such parameters as the assignment factor, the total number of 

charges, the number of charges on the curved portion to the total number of charges of the 

geometry on the accuracy of the method. The effect of the discontinuity in the positions of the 

charges on the quality measures of the simulation is also examined. Detailed examination of the 

effect of the assignment factor and the total number of charges for uniform charge distribution on 

the accuracy of the charge simulation is described. A comparison between full modelling and the 

use of symmetry and between translational and rotational symmetry regarding the accuracy of the 

CSM are presented. Recommendations for the ranges of several parameters used in the charge 

simulation modelling are made. 
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6.2 Effect of Different Parameters on the Accuracy of the CSM 

A charged conductor at potential V above an infinite plane (ground surface) is shown in Fig. 

6.1. The conductor has an infinite vertical and horizontal planar regions, joined with a quarter 

circle transition of radius r (the system has translational symmetry). This system is chosen for 

study because it has minimal complexity which has both straight and curved portions; it is 

somewhat practical as a detailed model for the corner (edge) of an electrode and it does not have 

inherent symmetries which might influence the level of errors. AJtbougb a finite region of the 

conductor near the comer is modelled, the parameters governing the details of representation can 

be adjusted to examine the effects of the corner in isolation or in proximity to a ground plane, in 

addition to the effects of other modelling details on the process. Infinite line charges have been 

used for modelling the field distributions of the electrodes with translational symmetry. The 

distribution of the line charges are shown inside the conductor which is at the applied potential as 

shown in Fig. 6.2. For each charge modelling the charged conductor, an image charge of opposite 

polarity is symmetrically placed with respect to the ground surface as shown in Fig. 6.2. 

Table 6.1 shows the effect of the assignment factor (~), the total number of charges n and 

the ratio of the number of charges on the curved portion to the total number of the charges nc In 

on the accuracy of the charge simulation modelling. Keeping the total number of charges fixed at 

60 charges, nc In at 0.1 and varying the assignment factor from 0.7 up to 1.5, it is found that the 

assignment factor bas a great effect on the accuracy and the best value of the three tried is found 

to be 1.2. Increasing the number of the total charges from 60 to 120, keeping the assignment 

factor at 1.2 and nc / n at 0.1, it is found that both the percentage maximum potential error and the 

tangential field difference decrease. It should be mentioned here that the errors at the ends of the 

modelled region are excluded from these considered because these errors are high due to poor 

modelling near the edges. 

The effect of varying the assignment factor and the total number of charges on the accuracy 

of the CSM is examined for two cases where there is a discontinuity in the alignment of the 
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Figure 6.1: An electrode with translational symmetry above an infinite grounded plane. 
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Figure 6.2: The charge simulation model of the system of Fig. 6.1. 
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charges along the electrode as shown in Fig. 6.3, cases a and b, respectively. Toe minimum of the 

maxima of the potential error and the tangential field difference for case a is 0.039% and 0.0184, 

respectively and they are recorded at n = 120 charges and an assignment factor of 1.2. 

In order to evaluate the effect of varying the relative number of charges within the curved 

portion of the electrode on the accuracy of the simulation, the ratio nc / n is varied from 0.1 to 0.5 

in steps of 0.1 while the total number of charges is fixed at 120 charges and the assignment factor 

held at 1.2. Table 6.2 describes the effect of varying nc In on the potential error and the tangential 

field difference along the boundary of the whole electrode for cases c and d. It seems from Table 

6.2 that the best value of the ratio n c I n which gives the minima in the percentage potential errors 

and the tangential field differences is about O .1. 

Another factor which affects the accuracy of the method is the discontinuity in the positions 

of the charges. Fig. 6.3 shows four conditions for positioning the charges. The first case is to 

position the charges with a discontinuity between both the horizontal and curved parts, and the 

curved and the vertical parts (case a). Toe second case eliminates the discontinuity between the 

horizontal and curved parts and keeps the other one (case b). In case c, there is a discontinuity 

between the horizontal and curved parts only. In the last case ( case d), no discontinuity is found 

between the different positions (this case is called the continuous distribution). To study the effect 

of the different cases on the accuracy of the simulation, the assignment factor is kept fixed at the 

best value which is 1.2 and the total number of charges is also kept fixed at its highest value 

which is 120 charges. Also, the ratio nc In is kept constant at 0.1. 
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Figure 6.3: Different cases for positioning the charges along the electrode. 
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Table 6 .1: Effect of changing the different parameters on the accuracy of the CSM. 

------------------------------------------------------------

n 

0.7 0.1 

60 1.2 0.1 

1.5 0.1 

0.7 0.1 

90 1.2 0.1 

1.5 0.1 

0.7 0.1 

120 1.2 0.1 

1.5 0.1 

Double discontinuity in 
charge alignment 

0.325 

0.227 

0.684 

0.160 

0.063 

0.163 

0.088 

0.039 

0.050 

MTFD 

0.0335 

0.0352 

0.0345 

0.0226 

0.0243 

0.0241 

0.0179 

0.0184 

0.0184 

Single discontinuity in 
vertical charge alignment 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

%:M.PE 

0.208 

0.473 

0.973 

0.132 

0.061 

0.229 

0.080 

0.036 

0.071 

MTFD 

0.0305 

0.0343 

0.0340 

0.0208 

0.0239 

0.0239 

0.0166 

0.0182 

0.0183 

Table 6.2: Effect of varying the ratio nc In on the accuracy of the CSM. 

------------------------------------------------------------
Continuous charge 

alignment 

Single discontinuity in 
horizontal charge alignment 

------------------------------------------------------------
% :MPE MTFD % :M.PE MTFD 

------------------------------------------------------------
0.1 
0.2 
0.3 
0.4 
0.5 

0.045 
0.388 
0.991 
1. 929 
2.395 

0.0170 
0.0431 
0.1130 
0.1856 
0.1957 

0.071 
0.495 
0.828 
1.076 
1.677 

0.0230 
0.0484 
0.0827 
0.1083 
0.1475 

------------------------------------------------------------



99 

Table 6.3 shows the effect of the discontinuity in the positions of the charges on the accuracy 

of the CSM. It is obvious from the results that positioning the charges without any discontinuity 

in alignment reduces the maxima in the potential errors and the ·tangential field differences (case 

d). 

The potential error and tangential field difference distributions along the electrode surface 

for case bare shown in Figs. 6.4 and 6.5, respectively. The parameters are kept fixed at the best 

values. It seems from Figs. 6.4 and 6.5 that the maxima in the values of the errors occur near the 

transition. region of the horizontal and the curved parts. The errors along the rest of the electrode 

are very small. Fig. 6.6 shows the variation of the percentage maximum potential error on the 

ratio of the relative number of charges on the curved portion to the total number of charges nc In. 

The lowest of the absolute maximum potential error occurs when nc In equals 0.1. 

The distribution of the charge density (computed as the product of the electric field and the 

permittivity of the free space) along the boundary of the electrode is illustrated in Fig. 6. 7. It is 

clear that a higher density of charges are found to be concentrated on the horizontal part while a 

lower density is found to be on the vertical part of the electrode. 

Table 63: Effect of discontinuity in position of the charges on the accuracy of the CSM. 

Case No. %:MPE MTFD 

-----------------------------------------------------------
Case a 0.039 0.0185 

-----------------------------------------------------------
Case b 

Casec 

0.036 

0.071 

0.0182 

0.0230 
-----------------------------------------------------------

Cased 0.045 0.0170 
------------------------------------------------------------
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6.3 Parameter Selection for A Uniform Charge Distribution 

It is found from the above analysis that the continuous alignment distribution of the charges 

optimizes both the potential errors and the tangential field differences. Therefore, the effect of the 

assignment factor ~a and the charges per unit length n/L based on a uniform charge distribution 

on the accuracy of the Charge Simulation method is studied in detail for the system shown in Fig. 

6.1. 

Figure 6.8 shows the dependence of the maximum potential error recorded along the 

electrode at fixed values of the charges per unit length (n/L) on the assignment factor. The 

assignment factor is varied from 0.7 to 2.0 in a step of 0.1 and the results are presented for values 

of n/L of 6, 10, 14, 20 and 30. It is clear from the graph that as n/L increases, the maximum 

potential error decreases for the different values of the assignment factor. It is also clear that an 

increase in the number of charges per unit length beyond 20 does not have a significant influence 

on the accuracy of the simulation. 

Fig. 6.8 also shows that the assignment factor has a large effect on the accuracy of the 

method. It is noticed that an assignment factor of approximately 1.2 is found to be the best value 

for all values of the ratio n/L for this specific geometry. 

The dependence of the maximum tangential field difference recorded along the electrode on 

the assignment factor is shown in Fig. 6.9 with the ratio n/L as a parameter. The trend of the 

tangential field difference curves is the same as those of the potential error curves. It is also found 

that the best assignment factor for minimum tangential field differences is 1.2. 

The potential error distribution along the horizontal, curved and vertical parts of the 

electrode are shown in Appendix (F). The potential errors near the edges of the horizontal and 

vertical sections of the electrode are not included. These plots are for regions withdrawn from the 

edges by almost 33% of the section length and are plotted for n/L=lO and ~a =1.2. It can be seen 

that except near the transition region between the horizontal and curved parts of the electrode, the 

potential error seems to be very small and less than 0.01 %. The transition region between the 
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curved and the vertical parts has little effect on the errors, unlike the other transition, which does 

have a significant effect. 

The tangential field difference distributions along the horizontal, curved and vertical parts 

are also shown in Appendix (F). Also, except near the transition regions, the tangential field 

difference values are small and less than 0.01. It should be noted that the maximum values of 

both the potential errors and the tangential field differences along the electrode have been 

recorded near the horizontal and curved part transition region. 

The recommended values for the assignment factor pa and the charges per unit length n/L are 

1.2 and 10, respectively such that the maximum values of the potential errors and the tangential 

field differences are small at about 0.05% and 0.01, respectively. 

6.4 Effect of the Gap Spacing and the Corner radius on the Accuracy of the 

CSM 

The Charge Simulation method is applied to the system shown in Fig. 6.1 for different gap 

spacings with n/L=lO and Pa =1.2. The gap spacing is taken as a ratio of the radius of the curved 

part r. The radius r is kept fixed while G is varied. The maximum potential error and the 

tangential field difference are plotted as shown in Figs. 6.10 and 6.11, respectively as a function 

of the ratio G/r for values of G/r from 0.5 up to 10.0. It is found that increasing the gap spacing 

decreases both the maxima in the potential error and the tangential field difference appreciably. 

For example, increasing the G/r from 0.5 to 10.0 decreases the maximum potential error from 

0.038% to 0.0047% and the maximum tangential field difference from 0.0107 to 0.0013. 

Figs. 6.12 ·and 6.13 show the dependence of the maxima in the potential error and the 

tangential field difference, respectively on the radius of the curved portion r for two ratios of the 

gap spacing/comer radius (G/r). The chosen values of the ratio G/r are 0.5 and 10.0 which 

correspond to the values of G/r for the largest and smallest maxima in the errors for fixed rand 

variable G. It is clear from these graphs that as the radius r increases, the maxima in the potential 

error and the tangential field difference decrease for the different values of the ratio G/r. 
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6.5 Comparison Between Full Modelling and the Use of Symmetry 

The double sided electrode shown in Fig. 6.14 is modelled by using infinite line charges to 

allow the examination of the differences between full modelling and the use of symmetry. Since 

the arrangement is symmetrical about the z-axis, two charges of equal value can be positioned 

symmetrically about the axis of symmetry, and only one half of the system needs to be analyzed 

for the field. The potential coefficient P,1 is computed as the combined effect of both charges on 

the potential of the i-th contour point and thus the storage requirement is reduced appreciably. 

The comparison between the two systems is shown in Table 6.4. It is clear from this table that 

there is no difference between the two systems with respect to the optimum value of the ratio 

nc / n, the maximum potential error, and the maximum tangential field difference. The only 

difference between the two cases ( other than the storage requirements) is that the computation 

time for the double-sides electrode (full modelling) is a little higher than that in the one sided 

electrode (using the symmetry). 
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Figure 6.14: Double sided electrode above an infinite grounded plane. 

Table 6.4: Comparison of the full modelling and the use of symmetry regarding the accuracy of 
the CSM. 

_______ !~~~.:~: -________ Symmetry modelling ___________ _F~~l ~oj:1~~¥.. __ _ 

% Maximum potential 
error 

Maximum tangential field 
difference 

0.1 

0.06176 

0.023965 

0.1 

0.06177 

0.023966 
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6.6 Comparison Between Translational and Rotational Symmetry 

The CSM is applied to the system shown in Fig. 6.14 assuming that the electrode has 

translational symmetry and using infinite line charges for modelling in one case, and assuming 

that the electrode has rotational symmetry, using ring charges for modelling in the second case. 

Toe same number of charges and contour points are used in the two cases. Also, the assignment 

factor, the relative number of charges on the curved portion as a ratio to the total number of 

charges and the other parameters which affect the process are kept the same in the two cases. The 

comparison between the two cases (translational and rotational) regarding the dependence of the 

maxima in the potential error and the tangential field difference on the ratio R/r which is defined 

as the ratio of the radius of the electrode to the radius of the curved part is shown in Fig. 6.15 and 

6.16, respectively. The ratio R/r is varied from 1.0 which corresponds to a hemispherically 

capped electrode to 3.0 which corresponds to a busbar. 

It is clear from these figures that the potential error and the tangential field difference are 

higher for the rotationally symmetric case than for the case of translational symmetry for small 

values of the ratio R/r while there is no significant difference between both cases for large values 

of the ratio R/r. 

The maximum electric field is plotted along the axial gap line as a function of the ratio R/r 

for translational and rotational cases as shown in Fig. 6.17 for a gap distance of 0.5 cm. It can be 

seen from this graph that the values of the maximum electric field for rotational symmetry are 

higher than those for translational symmetry for small values of the ratio R/r. When the ratio R/r 

approaches 2.0 there is no difference in the maximum field values resulting from translational and 

rotational symmetry. Using infinite line charges is more advantageous from the computation time 

point of view. 
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Chapter VII 

APPLICATIONS TO ROTATIONALLY SYMMETRICAL SYSTEMS 

7. 1 Modelling Simple Electrode Geometries 

7.1.1 General 

The results of applying the package to several rotationally symmetric electrode shapes are 

presented to demonstrate the ease with which it can be used to model systems of different 

geometries and to illustrate some of its useful features [23]. 

7.1.2 The Test Geometries 

The package is applied to five models of electrodes, each representing a charged conductor 

at potential V
0 

above an infinite grounded plane. The five models are shown in Figure 7 .1 (a) 

through 7 .1 ( e ). All the conductors have rotational symmetry and therefore they are modelled by 

using ring charges. The parameters governing the details of representation can be adjusted to 

obtain the best modelling of the systems. For each charge modelling the charged conductor, an 

image charge of opposite polarity is symmetrically placed with respect to the ground surface. 

7.1.3 Results 

The potential distribution of the rod plane configuration is presented as a sample system for 

illustrative purposes. The program package is readily used to calculate the potential and the 

electric field distributions. It is also used tc find the potential error on different parts of the 

electrode. 

Fig. 7.2(a) shows the potential error along the hemispherical part of the electrode (part 1) 

and Fig. 7 .2(b) shows the potential error along the cylindrical part of the electrode (part 2). By 
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Figure 7.1: A sample of simple electrode geometries. 
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trial and error adjustment of the parameters affecting the details of representation, the potential 

error was made to be smaller than that obtained by Yializis et al. [3 3] and Iravani and Raghuveer 

[35] for the same dimensions of the electrode. The electrode is modelled by 10 ring charges for 

the hemispherical part and 30 ring charges to simulate the cylindrical rod. The ratio (G/R) of the 

gap distance to the radius of curvature is taken as 10 with R equal to 1 cm. The length of the 

cylindrical rod is G. 

Improvement of the accuracy in a certain region can often be achieved by placing a higher 

density of boundary points near that region. Figs. 7.2(c) and 7.2(d) show the tangential field 

difference along the hemispherical and the cylindrical parts of the electrode, respectively, and it is 

also found that these error values are much lower than those obtained in earlier work [35]. Fig. 

7 .3(a) shows the potential distribution along the axis of symmetry in the region between the 

ground plane and the tip of the electrode. The total electric field distribution along the axis is also 

shown in Fig. 7 .3(b ). Similar results can be produced for the tangential and normal electric field 

distributions. 

The package has been used to iteratively refine example models of electrode systems in 

order to minimize the errors such as the potential error and the tangential field error along the 

electrode boundaries and to maximize the quality of the solution. 

Curves such as those shown in Figures 7.2(a) through 7.2(d) were examined after each run. 

Because of such phenomena as the "edge effect" (an increase in error due to poor modelling at the 

extremities of boundary segments), there is evidently a place for human judgement in assessing 

results, since simple measures, such as maximum error magnitude, are not universally applicable 

to all regions. Furthermore, the manner in which several more sophisticated figures of merit 

should be combined is a matter of opinion which may vary with the system, sub-region or user. 

A two-dimensional equipotential field plot is shown in Fig. 7.4. 
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7.2 Modelling of High Voltage Shielding Apparatus 

7 .2.1 General 

The Computer-Aided-Design package is applied to two versions of a system used for the 

shielding of high voltage apparatus. The results presented here include measures of solution 

errors along portions of the electrode boundaries where maximum errors have been found to 

occur. More detailed graphical characterization of solution quality measures as well as of 

characteristics of the fields of the systems studied than have previously appeared in the literature 

are provided, including an equipotential field map in a planar region of interest. 

7.2.2 The Shielding Geometry 

Fig. 7 .5 shows an electrode arrangement used for the shielding of high voltage apparatus. 

The potential of the uppermost high voltage electrode is held at U=l.0 MV. and the potentials of 

the grading rings are fixed at 75, 50 and 25% of the potential U of the top electrode. All 

dimensions are in cm. 

7 .2.3 Areas of Concern 

The most important areas which are usually of concern are those which have maximum 

electric field intensities. These are expected to be near the tips of the top electrode and of the 

grading rings. For this reason more detailed information about the field in these areas is produced 

and examined. 

7.2.4 Refinement Of The Model 

7.2.4.1 The Number And Type Of Modelling Charges 

It is found that ring charges appear to be suitable for modelling both versions of the system. 

The number of charges for the system without the dielectric material is 80, and for the system 

with the dielectric cylinder, 240. The dielectric cylimler interface is modelled by 80 charges 

located on each side of it and the electrodes by 80 charges. 
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7.2.4.2 Adjusting The Charge Locations 

For the most effective application of the CSM the question of a suitable arrangement of the 

charges and contour points is of importance. The assignment factor is taken between 0.9 and 1.2 

along the different sections of the system boundaries. 

The accuracy of the calculation depends on the choice of the assignment factor (positioning 

the charges) and the density of the contour points. If there are abrupt transitions between different 

sections of the system, or a triple point, the accuracy of the solution will be noticeably affected by 

the charge placement in these areas. To improve the accuracy, any discontinuity in alignment of 

the charges adjacent to the transition regions should be avoided. In areas of high interest, the 

accuracy can usually be improved by an increase in the density of the nearby contour points and 

charges. 

7.2.5 Results 

The package is applied to the electrode arrangement shown in Fig. 7.5. The quality of the 

solution is evaluated by computing the potential error and the tangential field difference. The 

maximum potential error is found to be about 0.015% near the transition region on the top surface 

of the top electrode (point "A" in Fig. 7 .5). The maximum tangential field difference is found to 

be as small as 0.0001 near the same area. Figs. 7.6(a) and 7.6(b) show the potential error and the 

tangential field difference distribution along the horizontal part of the top electrode, respectively. 

The potential and the total electric field distributions are plotted along a vertical line extending 

from the ground electrode up to the tip of the top electrode (line-I) as shown in Figs. 7.7(a) and 

7.7(b), respectively. The maximum electric field is found to be about 5.57 kV/cm (practically the 

same as the value reported earlier (5.6 kV/cm) for the same dimensions (21]). Figs. 7.8(a) and 

7.8(b) show the potential and the total electric field distributions along a vertical line extending 

from the ground electrode and passing through the tips of the grading rings up to the bottom of 

the top electrode (line-2). An equipotential field map is plotted in a region above the first grading 

ring and is shown in Fig. 7.9. 
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The package is also applied to the same system with a dielectric cylinder as shown in Fig. 

7 .5 and the quality of the solution is evaluated by computing the various criteria mentioned 

above. Figs. 7 .10( a) and 7. lO(b) show the potential and tangential field discrepancies along the 

interface, respectively and the maxima in the recorded values are 0.8*10-3% and 0.3%. The 

potential distribution and the tangential field distribution along the interface for the case when the 

dielectric constant is taken as 6.0 are plotted in Figs. 7.ll(a) and 7.ll(b), respectively. The 

maximum tangential electric field is found to be 1.35 kV/cm and the value reported by Singer 

[21] was 1.36 kV/cm. Also an equipotential field map is plotted for the same region as that of the 

first version of the system and is shown in Fig. 7 .12. The variation of the maximum tangential 

field strength at the dielectric boundary with the dielectric constant Er as a parameter is found to 

be 1.65, 1.52 and 1.35 kV/cm for Er equal to 1.0, 2.2 and 6.0, respectively. 
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7.3 Calculation of Fields in A Sphere/Slab Arrangement 

7.3.1 General 

The sphere-sphere or sphere-plane electrode system has long been used for investigation of 

the electrical breakdown of solid dielectrics. A quantitive estimation of the electric field in the 

region in which the breakdown occurs is of importance to the interpretation of the experimental 

results. Flat slab specimens are often tested between a sphere and a plane. Sometimes one face of 

the slab is given a spherical recess, into which the electrode fits closely. When a slab of higher 

permittivity than the surrounding region is recessed, the highest electric stress in the medium 

surrounding the dielectric specimen may be kept much lower than for a plane slab so that there is 

less likelihood of a discharge originating in the gaseous/vacuum medium rather than in the 

material of the solid dielectric plate under test [10]. 

By considering two equal and opposite point charges, Kao [83] calculated the electric field 

for an infinite dielectric plate between two spherical electrodes. His solution is given as an 

infinite sequence of charges expressed in terms of applied voltage, radius of the electrodes, 

thickness of the dielectric plate, and permittivities of the plate and surrounding medium. The 

results presented by Kao were limited to ratios of plate thickness to electrode diameter between 0 

and 1, and ratios of permittivities £2/£1 of 1/4, 1 and 4. 

Binns and Randall [10] used the FDM in calculating the potential gradients for a dielectric 

slab placed between a sphere and a plane. The results presented by those authors were for a 

limited range of slab-thickness to sphere-radius ratios ( 1/2 and 1 ). No accuracy measures were 

provided with the results obtained using the FDM. 

Takuma and Kawamoto [45] used the CSM to describe the field intensification at the contact 

point in various arrangements where a rounded electrode contacts a solid dielectric at zero contact 

angle. One of these arrangements was the sphere-to-plane dielectric slab. Again, these authors did 

not present any solution quality measures for the system analyzed by the CSM. They performed 

calculations for the slab-thickness to sphere-radius in the range from 1 to 16. They also varied 
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the ratio of the permittivities of the dielectric slab and the surrounding medium to include values 

greater than unity. Although the electric field strength depends at least as much on the 

surrounding medium as on the solid dielectric plate itself, they did not examine the fields for 

permittivity ratios less than 1 (i.e., for cases when the slab permittivity is less than that of the 

surrounding medium). Also, no analysis and results were provided for a recessed dielectric slab 

using the CSM. 

In the work presented here, the potential distribution and the electric field in a system 

composed of a sphere and a dielectric slab (plane and recessed) has been calculated using the 

CAD package. The variation of the electric field on the surfaces of the sphere and the dielectric 

slab is studied over a wide range of slab- thickness/sphere-radius ratios. The ratio of the 

permittivities of the dielectric slab and the surrounding medium has been varied to study its effect 

on the electric field and potential distribution. For convenience in comparison to previously 

published results, in most of the calculations the distance from the sphere to the earthed plate has 

been made one half of the sphere radius. The present results are compared with those previously 

calculated in a more restricted range of slab-thickness/sphere-radius ratios using the Finite 

Difference method with very good agreement between the two sets of results being observed. 

Detailed graphical characterization of solution quality measures not presented elsewhere are 

provided. 

Conditions required in order to displace the location of the maximu..TJ1 electric field region 

away from the inter-electrode gap are presented for the first time. 

7.3.2 The System Geometry 

Fig. 7.13 shows the sphere electrode and the dielectric slab used in the present study. Fig. 

7.13(a) shows a spherical high voltage electrode separated from an earthed plate by a plane 

dielectric slab. The high voltage electrode has an applied voltage of 1 per unit. The radius of the 

sphere is R and is assumed fixed at 2 cm. The minimum distance between the sphere and the 

earthed plate (which is the same as the thickness of the plane slab) is G. The ratio G/R has been 
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made 1/2 for most of the calculations but is varied from 1/4 to 4 for the generation of some of the 

results. The ratio of the permittivities of the dielectric slab and the surrounding medium has been 

varied from 1/30 to 30 to study its effect on the electric field distribution. 

Fig. 7. l 3(b) represents a spherical electrode recessed into the dielectric slab. The ratio G/R 

is kept constant at the same value used for the unrecessed dielectric plane slab. The thickness of 

the dielectric slab is represented by D which is the sum of the gap distance G and the recess 

depth. The fields are calculated for different values of recess depth which is expressed as a ratio 

of the sphere radius R. Computed fields are presented for recess depths of R/4, 3R/8 and R/2, and 

for permittivity ratios from 1/4 to 4. 

7.3.3 Solution Quality Measures 

The Charge Simulation method is applied to the system shown in Fig.7 .13(a) for field 

calculations. Ring charges are used to model the high voltage spherical electrode and the 

dielectric slab since the system has rotational symmetry about the z-axis. The CAD package 

capability of allowing the user to change some parameters and keep the others fixed at specified 

values is used to find the numbe,r of charges (or contour points) which results in minimum values 

of the different potential and field errors and discrepancies. This has been done by assigning a 

certain number of charges for both the spherical electrode and the dielectric slab and by keeping 

the charges on the slab fixed and varying those modelling the electrode. Minimum values of 

overall potential errors (admittedly, a subjective judgement) are reached. The number of charges 

on the dielectric slab or on the electrode or both are varied until reasonable values of potential 

discrepancies are obtained without significantly affecting the accuracy of the errors on the 

spherical electrode. Using this process, the number of ring charges used to model the spherical 

electrode with the plane slab is found to be 90. Thirty of these charges are used to simulate the 

spherical electrode, and the other sixty to simulate the interface of the dielectric slab with thirty 

charges on each side. The radius of the portion of the dielectric slab which is modelled is chosen 

to be 5 times the radius of the sphere (5R). This corresponds to the same radius chosen by Binns 

and is used for purposes of comparison. 
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Figure 7.13: Geometries used for charge simulation calculations. 
(a) plane dielectric slab (b) recessed dielectric slab 
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The maximum potential error and tangential field difference along the electrode are found to 

be 0.38% and 0.062, respectively and they occur near the triple (contact) point of the sphere, the 

gas, and the plane dielectric slab. The maximum potential discrepancy, tangential field 

discrepancy, and normal field discrepancy along the interface of the dielectric are 0.68, 5.0, and 

8.6%, respectively and they also occur near the triple point of Fig. 7.13(a). 

The charge simulation technique is also applied to the system shown in Fig. 7 .13(b ). The 

number of ring charges used to model the spherical electrode and the dielectric slab interface to 

get minimum values of errors is found to depend on the permittivity ratios and the recess depth of 

the spherical electrode. It is found to be in the· range of 80 to 120 charges. Because the triple point 

in Fig. 7 .13(b) causes some difficulty in simulation and is a region of interest, more detailed 

graphical characterization of solution quality measures in that vicinity are presented in this work. 

Fig. 7 .14a shows the percentage potential error distribution along the lower part of the sphere 

(along the arc A-B). A typical value for the maximum percentage potential error is 0.1 % and it 

occurs near the triple point B. The maximum tangential field difference along the arc A-B is 0.1 

and it is also found to occur near the triple point B. The potential discrepancy along the interface 

of the dielectric slab is shown in Fig. 7.14b. It is apparent that the maximum potential 

discrepancy is about 0.2% near the end of the modelled portion of the infinite dielectric slab 

while along the rest of the interface it is less than 0.05%. Both the tangential field and the normal 

field discrepancies along the dielectric interface are plotted in Figs. 7.15a and 7.15b, respectively 

with maximum recorded values of 7.0 and 18%, respectively. 

7.3.4 Computation of Fields 

The potential <t> and the electric field E are computed and presented in a normalized format 

so that they can be readily used by other researchers. The symbols and notation of reference 10 

are retained for reader convenience in comparing both studies. The work presented here is viewed 

as complementary to that of reference 1 O in that the range of G/R is extended here by a factor of 4 

over that presented before (in addition to the fact that a different method is used in the 

calculation). 
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In the case of the systems shown in Fig. 7.13 where the spherical electrode is raised to a 

potential V = 1, the normalized potential <t>' and the normalized field components are defined as: 

cl>' = ..1 
V 

E E G 
E' = -" = -" - = E G 

n E V n 
av 

E E G 
E'=-t =-'-=EG 

t E V r 
av 

where E" and£, are the normal and tangential electric fields, respectively and E'n and£', are the 

normalized normal and tangential field components, respectively. E av is the average field in the 

gap and is given by E av = V /G. 

7 .3.5 Discussion of Results 

7.3.5.1 Plane Dielectric Slabs 

The ratio of the permittivities of the surrounding medium and the dielectric slab has been 

varied and results for the electric field distribution around the spherical electrode are presented 

for values of E/£1 4, 1, 1/4 and 1/30 in Fig. 7.16. In all cases the dielectric slab is in contact with 

both the sphere and the plane. The angle 0 is measured from the lowest point on the sphere and 

increases in the counter-clockwise direction. The field for E/£1 = 1 corresponds to the case where 

only an upper electrode is present above the grounded plane in a single dielectric medium. 

Typical values of the normal field for Ei£1 = 4, 1, 1/4 and 1/30 at 0 = 0 at the surface of the 

sphere are 8.75, 1.36, 0.29 and 0.035, respectively. The corresponding values of the normal 

electric field for the same permittivity ratios at G/R = 1 are 13.54, 1.77, 0.322 and 0.0378. These 

results are much higher than those obtained analytically by Kao and Harker [83] for G/R = 1 and 

EiE1 = 4. On the other hand, our results are in good agreement with those obtained numerically 

by Binns et al. [10] and Takuma et al. [45]. The normalized normal values taken from their 

figures are 13.8 [10] and 14.1 [45] at G/R = 1 and E/£1 = 4, and our value is 13.54. 
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Figure 7.16: Normal field distribution around the sphere for a plane slab for G/R= 1/2 and 
various permittivity ratios. 
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It is clear from Fig. 7.16 that for permittivity ratios ci/£1 equal to or greater than 1, the 

maximum electric field occurs at the contact point and that the field strength becomes higher and 

much steeper there with increasing £/£1• On the other hand, Fig. 7.16 shows that for permittivity 

ratios £/£1 less than 1 there can be a maximum in the electric field at a location other than at the 

contact point. This location is close to e = 90 °. 

Fig. 7 .17 shows the dependence of the normal field variation at fixed points on the sphere on 

the permittivity ratio. These fixed points correspond to selected angles e of Fig. 7 .13(a) (0=0° 

(axial point), 30°, 60° and 90°). 

Fig. 7 .18 shows the variation of the normalized tangential field along the surf ace of the plane 

dielectric slab for different permittivity ratios, out to a distance equal to 1.4R. Typical values of 

the maximum radial field along the dielectric surface are 0.696, 0.367, 0.265 and 0.21 for £i/£ 1 

equal to 4, 1, 1/4 and 1/30, respectively. Good agreement (generally within 1 % ) exists between 

these results and [10]. 

The variation of the normal electric field around the sphere for different gap distance to 

sphere radius ratios with £2/£1 equal to 1/4 is shown in Fig. 7.19. It is clear that as the ratio G/R 

increases at a constant value of E/£1 the normalized electric field strength increases everywhere. 

An increase in G/R from 1/4 to 4 corresponds to an increase in the maximum normal field from 

0.373 to 4.136. Fig. 7.20 presents the variation of the maximwn field on the sphere with the 

slab-thickness/sphere-radius ratio for different permittivity ratios. The maximum normal field 

appears to vary linearly with the ratio G/R when that ratio is greater than 1/2. It is clear from this 

figure that as the permittivity ratio increases at any value of G/R, the maximum field increases. 

Typically at G/R=2, the maximum field increases from 2.136 to 23.56 as the permittivity ratio 

£i/£1 increases from 1/4 to 4. 

Fig. 7.21 shows the variation of the potential along the interface of the dielectric slab for a 

limited width of the interface (out to 1.4R) for various gap ratios and ci/£1=4. 
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Table 7 .1 summarizes the effect of variation of the permittivity ratios and the 

slab-thickness/sphere-radius on the maximum electric field strength. It is clear from this table 

that as G/R increases the maximum electric field decreases at different values of permittivity ratio 

while the normalized maximum electric field increases. Table 7 .1 also shows the location of the 

maximum electric field for different G/R ratios and different permittivity ratios. 

The fine structure of the field resulting from a charge simulation model has small spatial 

variation in amplitude which are consistent with the spacing of the discrete charges in the model. 

Fig. 7.22 shows the electric field near a maximum lying close to the top of the spherical electrode. 

The fluctuations are clearly evident. The maximum electric field for this example occurs at 

0=172°. However, the estimated location of the maximum in the "smoothed" field (represented 

by the dashed curve) is at 0=180°. This manual inspection procedure was used to estimate the 

location of the field maxima for the data presented in Table 7 .1. 

It is evident that for f)£ 1 < 1, the maximum electric field occurs away from the axis of 

symmetry. 

Figure 7 .23 shows the variation in the angle at which the maximum field on the sphere is 

located. Curves are plotted as a function of gap separation with permittivity ratio as a parameter. 

The range of values for £,/£ 1 was chosen to cover conditions for which a transition toward the top 

of the sphere occurs with increasing G/R. For G/R somewhat greater than 1, the field maximum 

occurs away from the axis. 



139 
Table 7.1 : Maximum field (Emu) and normalized maximum field (£'max.) for different £2 / £ 1 and 

G/R. ratio. 

G/R. 

0.25 

0.5 

1.0 

1/30 
1/4 
1/3 
1/2 

1 
2 
3 
4 

30 

1/30 
1/4 
1/3 
1/2 

1 
2 
3 
4 

30 

1/30 
1/4 
1/3 
1/2 

1 
2 
3 
4 

30 

£max. 

0.563 
0.764 
0.876 
1.160 
2.350 
5.290 
9.010 

13.300 
317.000 

0.545 
0.614 
0.654 
0.748 
1. 360 
3.290 
5.650 
8.750 

302.000 

0.534 
0. 560 
0.574 
0.608 
0.885 
2.340 
4.290 
6.720 

272.000 

E' 
max. 

0.278 
0.373 
0.438 
0.580 
1.175 
2.645 
4.505 
6.650 

158.500 

0.545 
0.614 
0.654 
0.748 
1.360 
3. 290 
5.650 
8.750 

302.000 

1.058 
1.110 
1.148 
1. 216 
1.770 
4.680 
8.580 

13.440 
544.000 

113.0 
43.0 
32.0 
17.0 

0.0 
0.0 
0.0 
0.0 
0.0 

180.0 
69.0 
58.0 
40.0 

0.0 
0.0 
0.0 
0.0 
0.0 

180.0 
105.0 

90.0 
67.0 
0.0 
0.0 
0.0 
0.0 
0.0 

-----------------------------------------------------------
1/30 0.524 2.072 180.0 
1/4 0.537 2.136 180.0 
1/3 0.542 2.168 135.0 
1/2 0.553 2.211 105.0 

2.0 1 0.669 2.676 0.0 
2 1. 870 7.480 0.0 
3 3.560 14.240 0.0 
4 5.890 23.560 0.0 

30 256.000 1024.000 0.0 
-----------------------------------------------------------

1/30 0.511 4.040 180.0 
1/4 0.521 4.136 180.0 
1/3 0.524 4.192 180.0 
1/2 0.529 4.232 180.0 

4.0 1 0.576 4.608 0.0 
2 1. 660 13.280 0.0 
3 3.200 25.600 0.0 
4 5.360 42.880 0.0 

30 246.000 1968.000 0.0 
-----------------------------------------------------------
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Figure 7.23: Variation of the maximum field location on sphere with G/R ratio for different 
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7.3.5.2 Recessed Dielectric Slabs 

The CAD package is applied to the configuration shown in Fig. 7.13(b) for various recess 

depths and permittivity ratios. Figs. 7 .24 to 7 .26 show the normal field variation around the lower 

half of the sphere for various permittivity ratios with three ratios of recess depth to sphere radius. 

The three recess depths are R/4, 3R/8 and R/2. Good agreement has been found between the 

results presented here and those obtained by Binns et al. for key values as well as for the 

distribution of the electric field strength around the lower half of the sphere except at the triple 

point (point Bin Fig. 7.13(b)). Since the field at a triple point is usually singular (undefined) any 

comparison of the accuracy at that point is not meaningful. 

Figs. 7 .27 and 7.28 show the normal field distribution around the lower half of the high 

voltage spherical electrode for £i/£1 = 4 and 1/4 for a plane slab and for slabs of different 

thicknesses each recessed to accommodate a fixed electrode geometry, with G/R = 1/2. At the 

interface between the media, the gradient suffers a discontinuity. It is clear from Fig. 7.27 that the 

maximum (normal) field on the sphere is reduced when the dielectric slab is recessed for E/£1 

equal 4. It is also observed that as the depth of recess is increased the maximum normal field is 

decreased. 

Fig. 7 .28 indicates that for a permittivity ratio £2'£1 = 1/4, the maximum (normal) field on the 

sphere is increased when the dielectric slab is recessed. With increasing recess depth, the 

maximum field strength increases slowly. 



142 

6 

5 

4 
-= 
= -.... 
m 3 e .. 
= = 
-= = 2 en --m 
E .. 
= z 

1 

0 30 60 90 
e (deg .J 

Figure 7.24: Variation of normal field around lower half of sphere for various permittivity 
ratios with a recess depth R/4 and G/R=l/2. 
(a) £2 / f\=4, (b) £2 / £ 1=1, (c) £2 / £ 1=1/4 
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Figure 7.25: Variation of normal field around lower half of sphere for various permittivity 
ratios with a recess depth 3R/8 and G/R= 1/2. 
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Figure 7.26: Variation of normal field around lower half of sphere for various permittivity 
ratios with a recess depth R/2 and G/R= 1/2. 
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Figure 7.27: Variation of normal field around lower half of sphere with various recess depths 
· for £2 / £ 1=4 and G/R=l/2. 

(a) plane slab, (b) recess depth R/4, 
(c) recess depth 3R/8, (d) recess depth=R/2 
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Figure 7.28: Variation of normal field around lower half of sphere with various recess depths 
for £2 / £ 1=1/4 and G/R=l/2. 
(a) plane slab, (b) recess depth R/4, 
(c) recess depth 3R/8, (d) recess depth R/2 
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7.4 Triggering Electrode System With Rotational Symmetry 

7.4.1 Introduction 

The CAD package is applied successfully to a trigatron gap which has been used to form the 

first gap of an impulse generator. Figure 7 .29 shows an assembly of the trigatron gap. The high 

voltage electrode is a hemispherical capped electrode (or a sphere). The earthed electrode consists 

of a hemispherical capped electrode in which a hole is drilled out of which projects a metal rod. 

The annular gap between the rod and the surrounding hemisphere is very small compared to the 

gap between the main electrodes. The gap between the high voltage electrode and the low voltage 

electrode is termed the main gap, while the other is called the pilot gap. 

When a voltage is applied to the triggering rod the field is distorted in the main gap and the 

latter breaks down at a voltage appreciably lower than that required to cause its breakdown in the 

absence of the triggering electrode. For optimum operating characteristics to be obtained the 

trigger pulse should be positive with respect to the surrounding electrode [84]. 

The main object is to study the effect of changing the main gap distance and the pilot gap 

distance on the distribution of the potential and the electric field along the axial main gap line and 

to study the effect of these parameters on the maximum electric field intensity in the trigger gap. 

7.4.2 System Geometry and Modelling 

Figure 7 .29 shows the triggering gap geometry. The diameter of both the high voltage and 

the low voltage hemispherical electrodes D is 50 cm. The diameter of the triggering electrode d is 

0.6 cm. The main gap G is varied during the study from 1 to 25 cm while the pilot gap distance g 

has been varied from 0.2 to 1 cm in order to examine their effects on the potential and electric 

field distributions. The high voltage electrode is held at V11 = I V and the low voltage electrode at 

V, = 0. The triggering voltage is V, = 0.2 V. 

Since the system is rotationally symmetrical about the z-axis, ring charges are found to be 

suitable for modelling the spherical parts of the geometry and the cylindrical parts of the high and 



147 

low voltage electrodes. The cylindrical part of the triggering electrode is modelled by finite line 

charges. 

The first approach for modelling the system is done by modelling all sections of the 

geometry and the accuracy of the simulation is checked. The second approach is conducted by 

modelling only a part of the system. This part is represented by the dashed window in Fig. 7.29. It 

consists of the spherical part of the high voltage electrode and half of the spherical part of the low 

voltage electrode including the triggering electrode. The internal and external boundaries of the 

high and low voltage spherical electrodes are modelled in this approach. The accuracy is checked 

again and it is found that there is no significant difference in solution quality measures and in the 

field and potential values between the two approaches. 

For more simplicity, a third approach for modelling is conducted by considering the high 

voltage spherical electrode as a solid spherical part to reduce the number of simulating charges 

used for modelling and to use a reasonable assignment factor. Again, the internal and external 

boundaries of the low voltage spherical electrode are modelled for accurate simulation since this 

region is the most important region. Neglecting the simulation of the internal boundary of the low 

voltage spherical electrode affects the simulation and the resulting field values to some extent. 

The accuracy is checked for the third approach and it is found that there is no significant 

difference in the potential errors and even in the field values calculated along the axial main gap 

line and the minimum pilot gap line at fixed value of G and g except in the third decimal number 

of these values. 

It is found that simplifying the trigatron gap system for simulation as in the last approach 

without affecting the accuracy and the field values reduced the number of modelling charges and 

consequently the computation time. Figure 7 .30 shows the modelled part of the triggering system 

with both the contour points and the corresponding charge locations. The total number of ring 

and finite line charges used is 17 5. The internal and the external boundaries of the low voltage 

electrode are simulated by 130 ring charges, the high voltage electrode by 20 ring charges, the 
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hemispherical part of the triggering electrode by 5 ring charges and the cylindrical part of the 

triggering electrode by 20 finite line charges. 

The potential q> and the total electric field E are computed and presented in a normalized 

format. 

In the case of the system shown in Fig. 7 .29 where the high voltage electrode is raised to a 

potential Vh = 1 V and the low voltage electrode is raised to a potential v, = 0, the normalized 

potential q>' and the normalized total electric field E' are defined as: 

E' = EI E = E GI V = E G 
av h 

where E
0

v is the nominal field in the gap and is given by E
0

v = Vh I G. 

The distance along the axial main gap l is measured from the tip of the triggering electrode 

and is given in a normalized format as: 

l' = l I G 

where I' is the normalized gap dist~ce. 

7.4.3 Results 

The pilot gap distance g is kept constant at 0.5 cm and the main gap distance G has been 

varied from 1 to 25 cm. The potential errors and the tangential field differences along the 

different sections of the electrodes are checked after each run before computing the potential and 

field distributions to ensure that the errors are within acceptable limits. 

Figure 7 .31 shows the normalized potential distribution along the axial main gap line for 

different values of the main gap distance G. It is clear from this figure that for small values of G 

the distribution of the potential can be considered linear. When G increases the nonlinearity 

increases and the most significant effect of changing the gap distance G on the potential 

distribution appears near the trigger pilot gap. 

The distribution of the normalized total electric field along the main gap line with the main 

gap distance as a parameter is given in Fig. 7.32. It is clear from this figure that as the gap 
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Figure 7.29: Triggering system with rotational symmetry. 
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Figure 7.30: Distribution of contour points and charge locations in the triggering system. 
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distance increases the normalized total electric field near the tip of the triggering electrode 

strongly increases until at a certain distance from the triggering electrode tip, it decreases for a 

small distance, then increases again due to the effect of the grounded electrode and after that 

remains almost constant with a small increase near the high voltage electrode tip. 

The main gap distance G is kept constant at 10 cm and the effect of changing the pilot gap 

distance on the potential and electric field distributions is studied as g varies from 0.2 cm up to 1 

cm. 

There is no change in the potential distribution due to varying the pilot gap except near the 

tip of the triggering electrode where the effect of the surrounding low voltage electrode is 

pronounced as shown in Fig. 7.33. The effect of varying g on the electric field distribution is clear 

from Fig. 7 .34 where the field near the tip of the triggering electrode decreases by increasing the 

pilot gap. 

The electric field is computed along the different sections of the electrodes for each 

combination of the main gap distance G and the pilot gap distance g to search for the maximum 

value of the total electric field and the location of that maximum. It should be noted here that the 

maximum value of the total electric field does not necessarily occur on the main axial gap line or 

on the tip of the triggering electrode. The location of that maximum changes with both G and g, 

but always occurs on the hemispherical part of the triggering electrode. 

Tables 7 .2 and 7 .3 summarize the values of the maximum total electric field for different 

values of G and g. The tables also include the location of these maxima on the hemispherical part 

of the triggering electrode where the angle 0 is measured from the intersection of the cylindrical 

part and the hemispherical part of the triggering electrode. 
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Figure 7.31: Variation of the normalized potential along the axial main gap line for different 
values of the main gap distance G for g = 0.5 cm. 
(a) G=l cm. (b) G=5 cm. (c) G=lO cm. 
(d) G=l5 cm. (e) G=20 cm. (f) G=25 cm. 
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Figure 7.32: Variation of the normalized total electric field along the main gap line for different 
values of G for g = 0.5 cm. 
(a) G=l cm. (b) G=5 cm. (c) G=lO cm. 
(d) G=l5 cm. (e) G=20 cm. (f) G=25 cm. 
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Figure 7.33: Variation of the normalized potential along the main gap line with the pilot gap 
distance g as a parameter for G = 10 cm. 
(a) g=0.2 cm. (b) g=0.4 cm. (c) g=0.6 cm. (d) g=0.8 cm. (e) g=l.0 cm. 
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Figure 7.34: Variation of the normalized total electric field along the main gap line with the · 
pilot gap distance g as a parameter for G= 10 cm. 
(a) g=0.2 cm. (b) g=0.4 cm. (c) g=0.6 cm. (d) g=0.8 cm. (e) g=l.0 cm. 



. , . 
"'-......_ ~-~-~_;\,..~ ·-~· .;-~._'t"";. -~~· ·,,..~-'~- ..c.-:->-=.:.:=...,...,,.~.,...,.,,;--""~~;;;-.::::'.-..:~*-= ' - ••• ,-:~~:.""'"''"•<:.·~c:;,;,r·~~:;-,:,-.:---:-,·,,-G:":c":-::.:,..l""e- . . . , ~ .... ~. , -· - - ;r. '- -~ • 

155 

Table 7.2 : Normalized maximum field (£'max) and its location for different values of the main 

gap distance G. 

---------------------------------------------- -------------g (cm) G (cm) E' 
max 0 for E' max 

------------------------------------------------------------

0.5 

1 

5 

10 

15 

20 

25 

1.115 

3.740 

8.113 

12.561 

17.040 . 

21.544 

90 

10 

18 

21 

23 

23 
-------------------------------------------------------

Table 7.3 : Normalized maximum field (£'max) and its location for different values of the pilot gap 

distance g. 

G (cm) g (cm) E' 
max 0 for £'max 

0.2 13.984 5.8 

0.4 9.139 15.6 

10 0.6 7.370 20.5 

0.8 6.322 22.0 

1.0 5.573 22.1 
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7.5 Polymer Long Rod Insulators 

7.5.1 Introduction 

In recent years the rapidly increasing demand for electric power has resulted in a 

corresponding increase in high voltage levels and system reliability requirements. This situation 

imposes very stringent technical and economic requirements on the system as a whole. The 

modem high voltage components must be designed so as to minimize cost and maximize 

reliability. The insulation problem of high voltage transmission lines necessitates a thorough 

investigation for successful operation with minimum interruptions. 

Corona current associated with transmission at extra high voltage levels produces radio 

interference and audible noise that may reach levels higher than those desirable. The energy 

losses accompanying corona may become unacceptablly high. This intense interference can be 

avoided if an adequate insulation strength is provided to the high voltage transmission systems. 

The potential and electric field distribution is required not only to predict the corona starting 

voltages, but also to estimate the magnitude and possibly the frequency spectrum of radio 

interference produced by the corona discharges. It also enables us to determine the breakdown 

strength of the insulator material. 

Although polymeric insulators are still in a stage of development, their advantages are 

becoming more evident with increasing use in overhead transmission lines. A part from their 

many advantages that include light weight, ease of handling and lower installation cost, 

polymeric insulators exhibit unique properties with a smaller surf ace area and a longer leakage 

path than conventional ceramic insulators. Because of these two properties, polymeric insulators 

have superior contamination performance over ceramic insulators (85]. 

The work presented in this section is based on the use of the Charge Simulation based 

Computer-Aided Design package to calculate the potential and electric field distribution in and 

around a polymer long rod insulator string consisting of 22 sheds. Also a study on using grading 

rings for linearizing the potential distribution along the insulator string and for minimizing the 

electric field stresses is presented. 
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7.5.2 Grading of Insulator Strings 

Computer-aided design methods have become standard practice in various fields of 

engineering. The complexity of power system insulation design certainly demands such a 

sophisticated technique [86]. The engineer can be aided in the electrical design aspect of the 

problem by having access to a means of calculating the potential fields of complex geometries 

like those of the polymeric insulators including grading rings for normalizing the potential 

distribution. 

Insulators used on ac transmission and distribution lines attain lengths which are long 

enough so that the power frequency voltage distribution may become a design consideration [87]. 

The non-uniformity of the voltage distribution on suspension insulators, bus supports, equipment 

bushings or polymer insulators may be so severe that grading rings are required to reduce corona 

to tolerable levels. This non-uniformity is especially pronounced in long rod polymer insulators. 

Grading rings have been used for linearizing the potential distribution along a string of 

insulators. However, the effectiveness of such a scheme is limited by other considerations such as 

clearance, ring dimensions, string length, etc. [86]. 

On most polymer insulators, rings are necessary on both ends of the insulator for voltages of 

500 kV and above. For voltages between 230 and 500 kV, the need for grading rings depends on 

the radio noise level that can be tolerated. 

Grading rings when properly designed also control the potential gradient in the insulator. 

There is at least one recommendation that a ring be used on the energized end of the insulators for 

230 kV applications [88]. For voltages above 230 kV, most manufacturers supply grading rings to 

protect the insulator. 

Rings provide additional protection to the metal end fittings of composite insulators from 

damage by power arc flashovers. Test results show composite materials to be more resistant to 

damage from power arcs than porcelain or glass. The addition of a ring can thus fulfill part of the 

function of the -arcing horns [88]. 
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Another application of the grading rings is to inhibit dry band arcing activity near the metal 

end fittings. This should help prevent surf ace degradation of composite insulators in very wet 

locations [88]. 

7.5.3 Modelling of the Polymer Insulator 

The practical geometry of the polymer insulator string is shown in Figure 7.35. The upper 

conductor is usually connected to the cross arm end of the tower and therefore, it is assumed to be 

at the ground potential (zero potential). The lower conductor is at the high potential which is 

assumed here to be 1.0 V. In between is shown a polymeric insulator which consists of a vertical 

dielectric column and twenty two shed units connected together. The length of the vertical 

column is equal to the length of one unit. 

Figure 7 .36 shows the dimensions of the vertical column and one shed in detail. All 

dimensions are in mm. The distribution of the simulating charges in the insulator units and inside 

the low and high voltage electrodes is shown in Fig. 7.37. 

The number and distribution of the simulating charges are specified arbitrarily and the 

system of linear equations is solved for the necessary values of the charge magnitudes to satisfy 

the boundary conditions. This arbitrary distribution of the charges is varied from trial to trial 

during the simulation for better results and higher accuracies as the technique is sensitive to the 

location of the charges. 

The polymer insulator system is rotationally symmetrical about the z-axis if the presence of 

the line conductor and supporting tower is ignored. Ring charges were found to be suitable to 

model the electrodes and the insulator sheds. The following number of charges were found to be 

the best to model the various parts of the electrodes and the insulator string: 

• high voltage conductor: 15 

• 

vertical column of the dielectric: 15 (on each side) 

low voltage conductor: 15 
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Figure 7.35: 22-Shed polymer insulator string. 
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The first Wlit close to the high voltage conductor is modelled by 27 charges on each side and 

those charges are distributed along the different sections of this Wlit as: 

• horizontal interface of the shed: 15 

• half toroidal curved part of the shed: 3 

• sloped skirt of the shed: 6 

• vertical interface part of the shed: 3 

Each Wlit of the second and third units close to the high voltage conductor is modelled by 18 

charges on each side and those charges are distributed along the different sections of the shed as 

follows: 

• horizontal interface of the~ shed Wlit: 6 

• half toroidal curved part of the dielectric unit: 3 

• sloped skirt of the shed Wlit: 6 

• vertical interface part of the unit: 3 

The nwnber of charges used to model each unit of the other nineteen units is 8 charges (16 

charges for each unit considering those inside and outside the shed). Thus the total number of the 

charges used to model the electrodes and the entire insulator was found to be 490 considering 

those charges inside and outside the insulator sheds. This resulted in 490 linear equations that 

should be solved for the same number of unknown charges. 

Although the CAD package developed is flexible enough to accommodate several hundreds 

of charges, the large number of simultaneous equations places rather severe demands on the 

memory requirements and the computer processing time. Both the computer time and memory 

storage considerations present limitations on the number of charges used to model the system. 

Introducing the guard ring for linearizing the potential distribution along the insulator length 

increases the total number of charges used for modelling by 10. Thus the total number of charges 

becomes 500 charges. 
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As a preliminary analysis, the polymer insulator string which consists of a vertical dielectric 

column and 22 sheds is replaced by a vertical dielectric rod having the same dielectric constant 

and the same diameter as that of the vertical dielectric column of the insulator as shown in Fig. 

7.38. The diameters of the grounded and high voltage electrodes are kept the same. Toe gap 

between the high and low voltage electrodes which also constitutes the length of the insulator G 

is varied until it talces the same value as the polymer insulator (1725 mm). Toe 

gap/electrode-diameter ratio is varied to illustrate the nonuniformity in the potential distribution 

for long gaps including insulators. Ring charges were found to be suitable to model that system 

which also has rotational symmetry around the z-axis. 

7.5.4 Results 

7.5.4.1 Preliminary Results 

The CAD package is applied first to the system shown in Fig. 7 .38. The 

gap/conductor-diameter ratio G/D is varied over a wide range to illustrate its effect on the 

distribution of the potential and the total electric field along the axial gap line. The results for the 

potential distribution along the axis are presented in a normalized format in Fig. 7.39 for G/D 

equal to 0.5, 1.0, 5.0, 15.0, and 28.75. Toe value of G/D of 0.5 corresponds to almost uniform 

potential distribution where as the value of G/D of 28.75 (G=l 725 mm) corresponds to a very 

nonuniform potential distribution. It is clear from this graph that most of the potential drop is 

across the first 5 percent of the insulator length measured from the high voltage electrode for G/D 

= 28.75. For example, the voltage drop across the first 5 percent of the insulator length for G/D = 

28.75 is 71 %. 

The total electric field distribution along the axial gap line is presented in a normalized 

fonnat in Fig. 7.40 for the same values of G/D mentioned above. It can be seen from this· figure 

that as the gap distance increases the normalized total electric field increases and this increase in 

the field is more pronounced near the high voltage electrode and is associated with the 

nonunif ormity of the potential distribution there. 
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Figure 7.38: A cylindrical rod polymer insulator. 
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Figure 7.39: Potential distribution along the axial gap line of the rod insulator with G/D as a 
parameter for D=6.0 cm. 
(a) G/D=0.5 (b) G/D=l (c) G/D=5 (d) G/D=l5 (e) G/0=28.75 

30 

--e 

0.0 

a 

0.5 

Normalized Distance {1/ g) 

1.0 

Figure 7.40: Total electric field distribution along the axial gap line of the rod insulator with 
G/D as a parameter for D=6.0 cm. 

· (a) G/D=0.5 (b) G/D=l (c) G/D=5 (d) G/D=15 (e) G/0=28.75 
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7.5.4.2 Solution Quality Measures 

The CAD package is applied to the system shown in Fig. 7 .35 which consists of low and 

high voltage electrodes and a 22 shed polymer insulator. It is required to calculate the potential 

and the electric field distribution along the axial line of the system and along the different 

interfaces of the insulator sheds without and including the grading ring for linearizing the 

potential distribution. 

The object of this work also is to determine the size, the diameter and the height of the 

grading ring that gives the best uniformity of the withstand voltage distribution along the axial 

length of the insulator. The electric field stress is also evaluated for different values of the guard 

ring controlling parameters (size, diameter, and height). 

The potential error along the different sections of the high voltage electrode is examined and 

it is found that the maximum value of this error does not exceed 0.15%. Also, the maximum 

value of the potential difference along the different sections of the grounded electrode is found to 

be not exceeding 0.0004. 

The potential discrepancy distribution along the vertical dielectric column and the different 

sections of the first three sheds close to the high voltage electrode are presented. 

Figure 7 .41 shows the potential discrepancy along the initial vertical column section of the 

dielectric (length=75 mm) with a maximum value of 0.032% near point 'A'. Fig. 7.42(a) 

illustrates the potential discrepancy along that section which represents the horizontal interface of 

the first unit. A maximum value of 0.1 % is found to be near point 'B '. Fig. 7.42(b) presents the 

potential discrepancy along the curved periphery of the interfacial part of the first unit. The 

maximum discrepancy in the potential is about 0.22% close to point 'C'. The potential 

discrepancy along the sloped skirt of the first unit is shown in Fig. 7.42(c) with a maximum value 

of about 0.2% near point 'C'. Figure 7.42(d) illustrates the potential discrepancy along the vertical 

part of the first unit which represents the last part of this unit. The maximum discrepancy along 

that part is found to be about 0.015% near point 'E'. 
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Figure 7.41: Potential discrepancy along the vertical column of the polymer insulator. 
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The potential discrepancies along the different sections of the second unit, the horizontal~ 

curved periphery, sloped skirt, and the vertical parts are illustrated in Fig. 7.43(a-d) with 

maximum values of errors of about 0.1, 0.12, 0.08, and 0.05%, respectively. The locations for the 

maximum errors for the second unit are found to be the same locations as those for the 

corresponding sections of the first unit. 

Figure 7 .44(a-d) illustrates the potential discrepancies along the different sections of the 

third shed of the insulator. The maximum values of the percentage potential discrepancies along 

the horizontal, curved periphery, sloped skirt and the vertical parts for this unit are 0.4, 0.26, 0.18, 

and 0.07%, respectively. The percentage potential discrepancies along the different sections of 

the other sheds are much less than those values. 

The potential error distribution along the surface of the grading ring is examined. The 

maximum recorded value of that error is less than 0.02%. 

It is observed that the values of the tangential (or normal) electric field percentage 

discrepancies along the dielectric interfaces may be extremely high at those locations where the 

tangential (or normal) electric field components are very small or approach zero. 
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Figure 7.43: ·Potential discrepancy along the different sections of the second unit. 
(a) horizontal part (b) curved periphery part 
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Figure 7.44: Potential discrepancy along the different sections of the third unit. 
(a) horizontal part (b) curved periphery part 
(c) sloped part (d) vertical part 
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7.5.4.3 Potential and Field Distributions in and Around the Insulator 

A design procedure based on the Charge Simulation based CAD package, has been 

developed for the calculation of both the voltage distribution and the electric field along the axial 

length of the insulator. Figure 7.45 shows the grading ring where it is placed near the high voltage 

electrode. The connections between the guard ring and the high voltage electrode are not 

modelled (ignored to keep the rotational symmetry of the system). The mean radius of the 

grading ring is denoted by Rg, the cross section (tubing) radius by Ag, and the height of the ring 

from the high voltage electrode by Hg. 

In this work, the size, the radius, and the height of the grading ring are determined to achieve 

the best uniformity of the withstand potential distribution. 

GUARD RING 

HY CONDUCTOR 

Figure 7.45: Grading ring used with the polymer insulator. 
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Figure 7.46(a) shows the voltage distribution along the axial length of the insulator for 

different designs in a normalized format. Fig. 7.46(a), curve 1 shows the voltage distribution 

without any grading ring. It shows that the voltage distribution along the length of the insulator is 

highly non-uniform compared to the ideal case of a uniform distribution depicted in Fig. 7.46(a), 

curve 5. For example, at the location on the axis of the insulator corresponding to 5 % of the total 

length from the high voltage electrode the ideal uniform distribution yields 0.95 pu of the applied 

voltage (curve 5) while in practice 0.27 pu (curve 1) is obtained. Similarly at the location on the 

axial length which corresponds to 20% of the length measured from the high voltage electrode, 

the ideal voltage yields 0.8 pu while in the actual insulator it is 0.07. The high degree of 

non-uniformity of the voltage distribution is clearly undesirable. It should be noted that the linear 

voltage distribution (Fig. 7.46(a), curve 5) has the advantage of reducing the electrical stresses at 

the high voltage electrode and thus provides a better utilization of the insulator. 

The axial voltage distribution along the insulator is greatly affected by the different 

controlling parameters of the guard ring. The effect of varying the radius Rg of the guard ring on 

the voltage distribution is shown in Fig. 7.46(a), curve 2, 3, and 4 for three different radii of the 

ring varying from Rg=4 cm to Rg=20 cm for a fixed height Hg=4 cm and fixed cross section radius 

A =I cm. It is clear that at these values of H and A , increasing R beyond a certain limit (12.5 g g g g 

cm) has no great influence on the improvement on the potential distribution. 

The axial electric field distribution along the insulator is illustrated in Fig. 7 .46(b) for the 

same controlling parameters as in Fig. 7.46(a). It is seen that the electric field stress is greatly 

reduced by introducing the grading ring as seen from curves 2, 3, and 4 as compared to curve 1 in 

Fig. 7.46(b). 

The effect of varying the distance of the grading ring from the high voltage electrode Hg at a 

fixed ring radius Rg and fixed cross section radius Ag, say at Rg=12.5 cm and Ag=l cm is also 

shown in Fig. 7.47(a), curves 2, 3, and 4 for three different positions of the ring varying from 

H
8
=1 cm to Hg=12 cm. Generally, an increase in Hg improves the voltage distribution. However, 



I 

--"""'·~~~-.:n;,~".. .... ~~ .;..:...,.....,_ .... -.; __ ..W:.~--~_,. __ .~..:.;::_•...,,-:_ ... ~.:;~~:a~~~~..z!1-~z;:.4i£"::t~"::-!:t::li'~~=':_-';.~~~~.i£::.":7;;$:;~ ... ~;;:--,, .. -::- --·-·, • • ~ • :S.I: :_.#: ... · ;,< •• ~ • .,,. ,' ...,. __ .. i_ -:M.,,,. 

-ctS .... 
+> 
Q 
CL) 

+> 
0 

p.. 

1.0 -

] 0.5 -
N . .... -~ s 
i,.. 

0 
z 

0.0 

5 

0.0 0.5 

Normalized Distance (l/ g) 

( a) 

LO 

-ctS .... 
>< < 
~ 
Cl) 
N .... 
-; 8 
s 
~ 

0 4 z 

0 I 1,__,....-....---,-J 

0.0 O.l 0.2 0 .3 0 .9 1.0 

Normalized Distance (I/ g) 
{ b) 

172 

Figure 7.46: Variation of the potential and electric field along the axial line of the insulator with 
the radius of the guard ring Rg as a parameter for Hg= 4 cm and Ag= 1 cm. 
(a) potential (b) total electric field 
(1) without ring (2) Rg=4 cm. (3) Rg=l2.5 cm. (4) Rg=20 cm. (5) ideal 
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an upper limit is set on this improvement by the resulting voltage distribution causing some 

sections to be under stressed and others overstressed (Results for higher values of Hg are omitted 

for brevity). The axial electric field distribution along the insulator is also shown in Fig. 7.47(b), 

curves 2, 3, and 4 for the same values of R , A and H as in Fig. 7.47(a). It is clear that the field g g g 

stress is strongly affected by varying the height position of the ring. 

The effect of varying the cross section radius Ag of the grading ring on the potential 

distribution at a fixed value of R and H , say R =12.5 cm and H =12 cm is shown in Fig. 7.48(a) g g g g 

curves 2, 3, and 4 for three different values of Ag varying from Ag=l cm to Ag =4 cm. It is clear 

from these curves that the radius Ag has a great influence on the improvement of the potential 

distribution. However, limits are imposed on the higher values of the radius Ag for economical 

and weight considerations. Fig. 7.48(b) curves 2, 3, and 4 illustrate the axial electric field 

distribution for the same parameters as in Fig. 7.48(a). It can be seen from these curves that the 

electric stress is greatly reduced by increasing Ag. 

Finer examinations of the potential and field distributions along the axis of the insulator are 

carried out to obtain the best design values of the different controlling parameters of the grading 

ring. Fig. 7.49(a) curves 2, 3, and 4 show the potential distribution at Rg=l2.5 cm, Ag=4 cm for 

another three values of H varying from H =12 cm to H =16 cm. Also, the electric field g g g 

distribution at these values is illustrated in Fig. 7.49(b), curves 2, 3, and 4. 

Figure 7.50(a) curves 2, 3, and 4 show the potential distribution when Hg=l6 cm and Ag=4 

cm for three different values of R varying from R =12.5 cm to R =18.75 cm which correspond to g g g 

Rg=2 times the shed radius to 3 times the shed radius. The axial electric field distribution at these 

values is also shown in Fig. 7.50(b) curves 2, 3, and 4. 

It is found that the best distribution of the potential along the axial length of the insulator 

occured for R = 15 cm, A =4 cm, and H = 16 cm. g g g 
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Figure 7.47: Variation of the potential and electric field along the axial line of the insulator with 
the height of the guard ring Hg as a parameter for Rg = 12.5 cm and Ag= 1 cm. 
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(1) without ring (2) Hg=l cm. (3) Hg=8 cm. (4) Hg=12 cm. (5) ideal 
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Figure 7.49: Variation of the potential and electric field along the axial line of the insulator with 
the height of the guard ring Hg as a parameter for Rg = 12.5 cm and Ag= 4 cm. 
(a) potential (b) total electric field 
(1) without ring (2) Hg=12 cm. (3) Hg=15 cm. (4) Hg=16 cm. (5) ideal 
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The potential drop distribution along the polymer insulator units including the vertical 

dielectric column without and with the guard ring for R =15 cm, H =16 cm, and A =4 cm is g g g 

shown in Fig. 7.51 curves 1 and 2 respectively. It is clear from this graph that the grading ring 

decreases the potential drop across the dielectric rod and the units close to the high voltage 

electrode. 

The potential and total electric field distributions along the interfaces of the different units of 

the polymer insulator are computed without and with the grading ring. The controlling parameters 

were fixed at their best values, Rg=l5 cm, Hg=l6 cm, andAg=4 cm. The results presented here are 

for the vertical dielectric column, the first three units, a middle unit, and the last unit which is 

adjacent to the grounded electrode (results for other units are omitted for brevity). 

Figures 7 .52 to 7 .57 illustrate the potential distribution on the vertical column and the 

sections of the chosen 5 units of the polymer insulator. Curve 1 corresponds to the potential 

distribution without the guard ring and curve 2 to the potential distribution with the guard ring. 

The largest potential difference appears across the vertical column of the insulator as shown in 

Fig. 7 .52. The impressed voltage across this section is about 70% of the applied voltage without 

the grading ring. This drop is decreased to 14% after inserting the guard ring. 

The normalized total electric field along the vertical dielectric column and the chosen 5 units 

of the polymer insulator are also illustrated in Figs. 7.58 - 7.63 without the grading ring (curve 1) 

and with the grading ring (curve 2). It can be seen from these figures that the field stress is 

reduced especially along those units which are close to the high voltage electrode by using the 

grading ring. 
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It should be mentioned here that the number of charges used for modelling the polymer 

insulator is not sufficient to get very accurate results for the potential and field distribution. It is 

expected that acceptable simulation may be reached by using a high number of modelling charges 

which is estimated to be approximately 2500 based on required values for assignment factor, 

number of charges per unit length of boundary segment, and on minimizing discontinuities in 

modelling charge alignment on adjacent boundary segments. The computer time and memory 

storage requirements present limitations on the number of charges which can reasonably be used 

to model the system in addition to limitations expected from roundoff error accumulation. A total 

of 500 charges were used for modelling requiring 90 minutes of CPU time to complete the 

calculation. Since this level of modelling detail does not produce acceptable levels of all quality 

measures, the potential and electric field distribution along the axis of a one shed unit with the 

dielectric cylindrical column was studied using two different total numbers of simulating charges. 

One corresponding to a poor quality with a total number of modelling charges of 114 and the 

other to a high quality simulation with 170 modelling charges. It was found that the difference in 

potential and total electric field distributions between the two cases does not exceed 8 % on the 

axis or along the dielectric interface. This result gives us a measure of confidence in the values of 

the potential and electric field distributions in and around the polymer insulator using 500 charges 

for modelling. 
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Chapter VIII 

APPLICATION OF THE CAD PACKAGE TO 3-DIMENSIONAL HV 

SYSTEMS 

8. 1 Tilted Hemispherical Capped Electrode-Plane Arrangement 

8.1.1 Modelling Concepts 

In modelling 3-dimensional systems with non-axial symmetry, the arrangement of contour 

points and the corresponding charge locations will be different from the case in which the system 

has symmetry about a common axis. This concept will be illustrated by the application of the 

package to a tilted upper rod electrode near a grounded plane electrode as shown in Figure 8.l(a). 

If the upper rod electrode is in the vertical position ( 0=0\ it will have rotational symmetry 

about the z-axis and it can be modelled by distributing the contour points and the ring charge 

locations along one side of the boundary (the right side). When this rod is rotated by a certain 

angle 0, the rotational symmetry will disappear due to the presence of the grounded electrode. In 

this case the distribution of the contour points and the corresponding simulating charges should 

be modified in order to compensate for the lack of symmetry. The contour points can be located 

on the left side boundary and the right side boundary or they can be arranged on four sides of the 

electrode boundary. The corresponding charges are also arranged to be associated with two sides 

or four sides of the boundary. Fig. 8.1 (b) shows a cross section of the hemispherically capped rod 

when the charges are used to model both sides of the electrode. The two sets of charges are 

shifted from each other by a certain amount. Fig. 8.l(c) also shows a cross section of the 

hemispherically capped rod when the charges are used to model the four sides of the electrode. 

Whether two or four sides should be modelled depends on how much accuracy in the simulation 

is required. 
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Figure 8.1: A tilted upper rod electrode versus a grounded plane electrode. 
(a) the system geometry 
(b) rod cross section with two sets of charges 
( c) rod cross section with four sets of charges 
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The package is capable as described before of rotating and translating any section in the 

model in the three dimensional space and this capability is used in this model. For example, to 

rotate this electrode by 0=45°, the user has to translate the electrode first to the origin, rotate the 

electrode by -45° around the x-axis and finally translate it back to the centre of the hemispherical 

part. This operation may take only one minute of the user's time. 

The inclination angle 0 is varied from O 
O 

to 90 ° and the electrode is modelled using only one 

set of charges to model the right side of the boundary in one case and two sets of charges to 

model both sides in the other case, to see the _difference in errors in both cases. Fig. 8.2(a) shows 

a computer output for the distribution of contour points and charge locations after rotating the 

electrode by -45° and using only one set of charges, while Fig. 8.2(b) represents a computer 

output when modelling both sides of the electrode. 

8.1.2 Results 

The literature examined reveals no data regarding the normality of the electric field vector to 

the tilted rod electrode surface. This condition should also be satisfied if an accurate field solution 

is desired. For this reason all the results include graphs showing the tangential field difference 

along the electrode surface boundaries which should be as small as possible. Fig. 8.3(a) shows the 

distribution of the percentage potential error along the right boundary of the hemispherical part 

for different inclination angles 0 when using one set of charges to model the electrode. The 

tangential field difference distribution along the same part is shown in Fig. 8.3(b). It is clear from 

these graphs that both kinds of errors are within acceptable limits for this section. 

For the left side of the hemispherical part both the potential error and the tangential field 

difference are plotted as for the right part as shown in Fig. 8.4. The errors increase as the 

inclination angle increases. The maximum value of the potential error is 1.2 % and the maximum 

value of the tangential field difference is 0.012. 
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Fig. 8.5(a) and Fig. 8.5(b) represent the potential error and the tangential field difference 

distribution along the right section when using two sets of charges for modelling the right and the 

left sides of the electrode boundaries for different inclination angles. The maximum potential 

error and tangential field difference are 0.07% and 0.009 respectively at 8=90°. The same graphs 

are plotted for the left side section as shown in Figs. 8.6a and 8.6b and it is clear that the 

distribution of the potential and tangential field difference are different and much less than those 

obtained using only one set of charges. The maximum value of the potential error is 0.04% for 8 

= 90° in comparison with 1.2% in the first case. 

8.2 Hemispherical Capped Rod and An Infinite Plane Having Another Rod 

Another geometry which has several electrodes, each with a different axis of symmetry is 

considered in this section. This is a hemispherical capped electrode versus a plane with another 

hemispherical capped rod as shown in Fig. 8.7. The radii of both the electrodes are chosen as 0.01 

m and denoted by R. The height of the lower capped electrode His taken as 0.1 m. The effect of 

the gap distance ( distance between the grounded plane and the upper electrode) G on the results is 

examined for two values, 0.1 m and 1.0 m. The lower electrode is located D meters along the Y 

axis apart from the centre (0, 0, 0) on the plane. 

This system is modelled by using two sets of ring charges to model each electrode as 

discussed in the previous example. The upper electrode is held at 1.0 V and the lower electrode is 

held at O volts. 

Figure 8.8 shows the field distribution near the upper electrode tip for two different values of 

the ratio G/R and three different spacings between the lower and upper electrodes. When G = 1 

rn, the lower rod of H = 0.1 m does not affect the field near the upper rod tip. It is clear from the 

graph that as the spacing between the electrodes decreases for G=0.1 m, the maximum electric 

field on the tip of the upper electrode increases and the location of that maximum is displaced 

toward the right in the direction of the lower hemispherical capped electrode. 
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Figure 8. 7: Hemispherical capped electrode and infinite grounded plane having another similar 
rod embedded. 
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Figure 8.8: Electric field distribution around the hemispherical part of the upper rod for different 
values of D and G/R ratio. 
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8.3 Triggering Electrode System With Non-Axial Symmetry 

The CAD package is applied with great advantage to the calculation of more complicated 

three-dimensional fields without axial symmetry. The chosen system here for the field analysis is 

a rod-rod gap with a trigger electrode as shown in Fig. 8.9. The original axial symmetry of the 

field of the two rods disappears because of the presence of the trigger electrode. The discharge at 

low voltage between the main electrodes is induced by the small-trigger discharge between the 

trigger electrode and one of the main electrodes [89]. 

The radius of the trigger electrode is varied from 0.1 to 0.5 cm in order to study its effect on the 

maximum electric field. The potential errors and tangential field differences are plotted for the 

differenrsections of the trigger electrode on which the maximum errors have been found to occur. 

Figures 8.IO(a) and 8.lO(b) show the potential error and the tangential field difference along 

the upper hemispherical part of the trigger electrode (indicated by the heavy solid line segment) 

for a 0.2 cm radius of the trigger electrode. The maximum values of the errors are 0.07% and 

0.023 for the percentage potential error and the tangential field difference respectively. 

The potential error and the tangential field difference are also plotted for the upper 

cylindrical part of the trigger electrode (indicated by the heavy solid line segment) as shown in 

Fig. 8.11 with maximum values of 0.28% and 0.065 near the transition region of the 

hemispherical part and the cylindrical part. 

The potential error and the tangential field difference along the lower two parts of the 

triggering electrode are shown in Fig. 8.12 and Fig. 8.13. The maximum recorded values of both 

errors are 0.07% and 0.024 and 0.36% and 0.08 for the hemispherical part and the cylindrical part 

respectively. 

To check that the accuracy of the simulation is within acceptable limits, it is necessary to 

plot the errors along other sections which did not have boundary points specified. 
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Figure 8.9: Triggering electrode system with non-axial symmetry. 
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Figs. 8.14(a) and 8.14(b) represent the potential error and the tangential field difference 

along the upper hemispherical part after rotation by 90° (the heavy line segment). It is felt that the 

errors are within acceptable limits. The potential error and the tangential field difference are also 

plotted for the top cylindrical part after rotation by 90° as shown in Fig. 8.15 and the maximum 

values of the errors are 0.35% and 0.08 and they occur near the transition region. 

The electric field distribution around the spherical part of the trigger electrode where the 

maximum field is found to occur is shown in Fig. 8.16 for different trigger electrode voltages and 

constant applied voltages of 10 kV and O for the main electrodes. The undulating nature of the 

plots are due to the discrete nature of the simulating charges. It is clear from this figure that as 

we increase the triggering voltage the electric field increases everywhere along the surface of the 

electrode. It is also clear that for a 10 kV main gap voltage 10 kV is approximately required for 

the trigger electrode to initiate the breakdown assuming that the breakdown strength of the air is 

30 kV/cm. These results are taken for a 0.2 cm radius of the trigger electrode. 

Figure 8.17 shows the variation of the maximum electric field intensity on the spherical part 

of the trigger electrode with the trigger electrode voltage as a parameter for different radii of the 

trigger electrode and different applied voltages for the main electrode (the high voltage 

electrode). It can be seen from this figure that for a fixed applied voltage on the main electrode, 

the maximum field intensity increases with increasing triggering electrode voltage and decreasing 

radius. 

The effect of the different parameters on the maximum value of the electric field intensity is 

summarized in Table 8.1. It seems from this Table that the radius of the trigger electrode strongly 

affects the maximum value of the electric field intensity. It is clear that a thinner triggering 

electrode will initiate the breakdown at a lower voltage than that of a thicker electrode. The table 

also shows the approximate voltage required to be applied to the trigger electrode to cause 

breakdown for each combination of the applied voltage on the main electrode and the radius of 

the trigger electrode. 
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Table 8.1: Effect of different parameters on the maximum value of the electric field intensity. 

------------------------------------------------------------
R

1
/ R Applied voltage 

(kV) 
Maximum electric field 

(kV/cm) 
Approximate breakdown 

(kV) 

------------------------------------------------------------

0.1 

0.2 

0.5 

5 0 

10 0 

15 0 

5 0 

10 0 

15 0 

5 0 

10 0 

V, 

5 
10 
15 

5 
10 
15 

5 
10 
15 

5 
10 
15 

5 
10 
15 

5 
10 
15 

5 
10 
15 
20 

5 
10 
15 
20 

4. 27 1. 7 6 27. 62 
3.75 2.41 64.18 
3.24 3.06 100.80 

9.05 2.90 
8.54 3.52 
8.02 4.16 

13.84 4.07 
13.32 4.63 
12.81 5.27 

4.15 1.91 
3.47 2.78 
2.80 3.71 

8.96 3.00 
8.29 3.83 
7.62 4.67 

13.78 4.14 
13.11 4.90 
12.44 5.74 

3.84 2.31 
2.77 3.75 
1.71 5.23 
1.32 6.70 

8.75 3.27 
7.68 4.61 
6.61 6.03 
5.54 7.50 

18.95 
55.24 
91. 78 

10.92 
46.47 
82.86 

15.00 
34.78 
54.57 

10.44 
30.00 
49.76 

6.64 
25.35 
45.01 

7.07 
16.14 
25.27 
34.42 

5.51 
14.13 
23.17 
32.28 

5.33 

6.50 

7.67 

8.83 

10.00 

11.17 

17.67 

18.83 

------------------------------------------------------
15 0 

5 
10 
15 
20 

13.65 4.29 
12.59 5.58 
11.52 6.92 
10.45 8.30 

4.14 
12.45 
21. 20 
30.22 

20.00 

------------------------------------------------------------
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Chapter IX 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

9. 1 Conclusions 

1. An implementation of a Charge Simulation based CAD package for high voltage 

systems has been achieved. 

2. The application of the package to systems which contain single and two-dielectric 

regions was conducted without spending a significant amount of time defining the 

geometry for each specific system examined. 

3. The effect of different parameters controlling the charge simulation model has been 

studied and it was found that f~r best simulation the discontinuity in alignment of the 

simulating charges should be avoided. Also, the assignment factor and the number of 

modelling charges per unit length for best simulation has been found to be at 1.2 and 

10, respectively. 

4. The results obtained in modelling the sphere/slab arrangement using the CAD package 

agreed very well with those obtained previously using the Finite Difference method. 

5. In the sphere/slab arrangement it was found that the maximum electric field strength 

occurs at the contact point for values of £/£1 ~ 1 while it occurs away from the axis 

when ~/£1 < 1. It is also concluded that recessing the spherical electrode into the 

dielectric slab at £/£1 < 1 increases the maximum field strength. 

6. The effect of varying the ratio G/R over a wide range on the field distribution for a 

sphere in contact with a plane slab is examined and it is concluded that as the ratio G/R 

increases the field around the sphere increases. 
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7. It is found that the structure of the field resulting from a charge simulation model has 

small spatial variations in amplitude which are consistent with the spacing of the 

discrete charges in the model. A manual inspection procedure was suggested to estimate 

the location of the field maxima. 

8. For the rotationally symmetric triggering electrode system it is found that as the main 

gap distance G increases at fixed pilot gap distance g, the nonlinearity in the potential 

distribution increases and the most significant effect appears near the tip of the trigger 

pilot gap. It is also concluded that as G increases the normalized total electric field near 

the tip of the triggering electrode strongly increases. 

9. It is found that varying the pilot gap distance g with G constant does not change the 

potential distribution except near the tip of the triggering electrode where the effect of 

the surrounding low voltage electrode is pronounced. The electric field near the tip of 

the triggering electrode decreases with an increase in the pilot gap distance g. 

10. It is found that the maximum value of the total electric field does not necessarily occur 

on the main axial gap line or on the tip of the triggering electrode. The location of that 

maximum changes with both G and g, but always occurs on the hemispherical part of 

the triggering electrode. 

11. The potential and field distributions for a 22 - shed polymer insulator without and using 

a grading ring are calculated. The effects of the different parameters of the guard ring 

were investigated and it was found that the guard ring has a great effect on linearizing 

the potential distribution along the insulator. 

12. The solution for the field distribution in 3-dimensional systems with and without axial 

symmetry became more manageable using the CAD package. 

13. The field for a tilted upper rod electrode versus a plane electrode was analyzed using 

the capabilities of the package for rotating and translating the simulated charges. It is 

found that the simulation quality measures (both the percentage potential error and the 
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tangential field error) resulting from modelling the two boundaries of the electrode are 

much better than in the case of modelling one boundary of the electrode. 

14. The field for a hemispherical capped electrode versus grounded plane having another 

hemispherical capped rod was examined using the capabilities of the package for 

simulating systems of electrodes each having a separate axis of symmetry. 

15. The package was applied to a complicated three-dimensional triggering system without 

axial symmetry and a thorough analysis of field distributions were presented for the 

first time. 

16. More detailed graphical characterization of solution quality measures for the systems 

studied than have previously appeared in the literature have been presented. 

17. Toe improvements in modelling assessment and presentation of results allow more 

comprehensive examination of electric field features to be conducted with a modest 

investment of time and effort. They also allow users to have greater confidence in the 

validity of CSM models developed for their systems. 

9.2 Suggestions For Future Work 

1. Toe accuracy of the Charge Simulation method is in fact dependent on the location of 

charges and the boundary points and on the density of charges. Therefore, it is 

suggested to extend the package to include optimization techniques in single and two 

dielectric systems to simplify the method to the degree of least dependency on the 

factors mentioned above. 

2. Modification can be added to the package in order to include sinusoidal time-varying 

fields. 

3. It is recommended that the package should be extended to model systems which have a 

space charge associated with it. 
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4. For criteria related to, for example, minimizing the tangential electric field in a 

specified region, the shape of one of the interlaces defined for the model might be 

changed by the program package in such a way as to satisfy the criteria specified. This 

would be an invaluable tool for insulator shape design. 

5. A useful application of the package would be to an electric field sensor design. 

6. Some consideration can be given to modelling polymer insulators in a polluted 

environment by the Charge Simulation based CAD package. 

7. In grading the polymer insulator field distribution, only one guard ring was used near 

the high voltage conductor. The connections between the ring and the conductor were 

not modelled for simplicity. Thought can be given to using more than one guard ring 

and to modelling the connections between those rings and the conductors using the 

Charge Simulation method. 
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Appendix A 

EXPRESSIONS FOR POTENTIAL AND FIELD STRENGTH IN 

3-DIMENSIONAL SPACE 

z 

A. 1 Point Charge 

Q. ( x.,y.,z.) 
J J j j 

P. ( X • I y. , z . ) 
I I I I 

X 

1 Ln Q . 
p = -- J 

i 4 1t e Ir . - r. I 
0 j=l I } 

1 L
n Q . ( X . -X. ) 

E - J I J 
X - 4 7t € I .... -,, 13 

o .i=l ri - r i 

1 L
n Q. (y.-y. ) 

E=-- JI} 

y 4 7t € I .... _,, 13 
o .i=l ri - r i 

1 L
n Q. ( Z . -Z . ) 

E - J I J 
: - 4 7t e I .... - _,, 13 

o .i=I ri r i 
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A.2 Semiinfinite Line Charge 

X 

Consider an image charge of density -p for the semi-infinite line charge of density p with 

respect to the x-y plane (z = 0). Denote by (cosa., cos~, cosy) the direction cosines of I R 

where IR is a plane normal to the line charge at point (x
0

, y
0

, z). Then the potential 

coefficient P vat point P (x, y, z) is 

where 

h l = ( X - X ) COS 0. + ( y - y ) COS ~ + ( Z - Z ) COS y 
0 0 0 

h,, = ( X - X ) COS a. + ( y - y ) COS ~ + ( Z + Z ) COS y 
- 0 0 0 

-'1 2 2 2 l =(x-x) + (y-y) + (z-z) 
1 0 0 0 

-'1 2 " 2 12 =(x-x) + (y-y r + (z+z) 
0 0 0 

where £
0 

is the ·permittivity of vacuum. 



The x, y, and z components Fx, FY, and Fz of the field coefficient at the point Pare 

F = (. F I r 1 ) ( x - x - h 1 cos a. ) + ( F I r ) ( x - x - h cos a. ) 
x r 1 o r

2 
2 o 2 

where Fr,' Fr
2

, r 1, and r 2 are given by 

Fr = '1/ 4 1t €0 /1 ( /1 - hl ) 
I 

F = -r /41t£ l (l -h ) 
r

2 
2 o 2 2 2 

A.3 Finite Line Charge 

z 

X 

221 

Consider a finite line charge of density p and length d with both ends at (x1 , y1 , z1) and 

(x2 , y2 , z2). The potential coefficient P.., at the point P (x, y, z) due to this charge and its image 

charge -p with respect to the plane is 

1 { ( 11 + 12 + d) ( 111 + 122 - d) } 
P = -- log 

.., 4. 1t € o e ( 11 + / 2 - d ) ( 111 + 122 + d ) 

where 11, /2, / 11, /22 and d are given by 
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The x, y, and z components Fx, FY, and Fz of the field coefficient at the point Pare 

where T1 and T2 are given by 

T = 
1 1 

I 11 + 12 -d 11 + 12 + d 

T = 1 1 
2 111 + 122 - d 111 + 122 + d 
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A.4 Ring Charge 

z 

X 

Consider a ring charge Q of radius r
0 

on the plane IR (the directional cosines 

cosa ,cos~ ,cosy) with its center (x
0 

,y
0 

,z
0 

). The potential coefficient Pv of this charge Q and its 

image charge -Q due to the plane is 

where K(k) is the complete elliptic integral of the first kind; k1, k2, ql' and q2 are given by 

where h1 , h2 , r 1 , and r2 are given by 

h = ( X - X ) COS Ct + ( y - y ) COS ~ + ( Z - Z ) COS y 
1 0 0 0 

h = ( X - X ) COS Ct + ( y - y ) COS ~ + ( Z + Z ) COS y 
2 0 0 0 
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where 

2 2 2 2 
d = (x-x ) + (y-y ) + (z-z ) 

l O O 0 

? 2 " 2 d
2 
- = ( X - X

O 
) + ( y - y 

O 
f + ( Z + Z 

O 
) 

The x, y, and z components of the field coefficient at Pare given by 

F. = (F I r 1) (z-z -h1 cosy)+ (F / r 2) (=+z -h.., cosy)+ (F. - F ) cosy • r
1 

o r
2 

o _ •
1 

z
2 

where F , F , F. and F. are given by 
r 1 ,..1 • 1 -2 

., ., 
F. = - h, E(k,,) I 2 1t- £ q,, s,, -

·2 - - 0 - -

where E(k) is the complete elliptic integral of the second kind. 



Appendix B 

DEFINITIONS OF SYMBOLS USED IN CHAPTER IV 

The different symbols used in Figs. 4.1 and 4.2 and Tables (4.1), (4.2) and (4.3) are defined 

as: 

R 

L 

G 

Dstot 

Yi 

Zj 

Dp(ns) 

REX(ns) 

REY(ns) 

REZ(ns) 

Vns 

Kp(ns) 

radius of the hemispherical part of the hemispherical electrode or radius of the 

sphere. 

length of the cylindrical part of the hemispherical capped electrode or length of 

the dielectric slab. 

gap distance or thickness of the dielectric slab. 

number of total points defining the system 

total number of sections which define the system 

relative dielectric constant of the insulator 

defines the number of the section 

index for all points defining the geometry 

defines the x-coordinate of each point 

defines they-coordinate of each point 

defines the z-coordinate of each point 

number of points defining each section 

displacement of the x-axis of section number ns from the x-reference axis 

displacement of the y-axis of section number ns from they-reference axis 

displacement of the z-axis of section number ns from the z-reference axis 

specified potential of each section 

index defining the type of interface section (air/dielectric or interface) 
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Kz(ns) 

1's(ns) 

index defining the type of charges used in each section 

index defining the position of each section with respect to the different axis 

the assignment factor for each section 

number of boundary points used for each section 
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Appendix C 

TRANSFORMATIONS IN THE THREE-DIMENSIONAL SPACE 

C. 1 Translation 

In a three-dimensional homogeneous coordinate representation, a point is translated from 

position (x, y, z) to position (x', y', z') with the matrix operation (Fig. C.l) 

U:J = u I n [:J + mi (C-1) 

Parameters Tx , TY , T: , specifying translation distances from the coordinate axes, are assigned 

any real values. The matrix representation in Eq. (C-1) is implemented in the package in terms of 

its equivalent three eq~tions as 

x' = x + T 
X 

y' = y + T 
y 

z' = z + T: 

(C-2) 

An electrode is translated in three dimensions by transforming each point used to define the 

electrode. 

We obtain the inverse of the translation matrix in Eq. (C-1) by negating the translation 

distances T , T , and T_. 
X y 
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z 

• X,V,Z ( ' ' ') 

X y 

Figure C.l: Translating a point with translation vector (Tx, TY, T=). 

z z z 

! 

;....-----...y 

X X 

Figure C 2: Rotation of a point around the different axis 
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C.2 Rotation 

To specify a rotation transformation for an electrode, we must designate an axis of rotation 

(about which the electrode is to be rotated) and the amount of angular rotation. For 

two-dimensional applications, the axis of rotation is always perpendicular to the y-z plane. In 

three dimensions, an axis of rotation can have any spatial orientation. The easiest rotation axes to 

handle are those that are parallel to the coordinate axis. 

In the package, we adopt the convention that counterclockwise rotations about a coordinate 

axis are produced with positive rotation angles, if we are looking along the positive half of the 

axis toward the coordinate origin as shown in Fig. C.2. 

In coordinate form, the three-dimensional x-axis rotation equations are expressed as 

. [1 0 0 ] 
[ X' y' Z' ] = [ X y Z ] 0 COS 0 Sin 0 

0 -sin 0 cos 0 

(C-3) 

Parameter 0 specifies the rotation angle. This matrix form can be described in three equations as 

x' = X 

y, = y cos e - z sin e 

z' = y sin e + z cos e 

The transformation matrix for the y axis rotation is given by 

[ 

cos e o -sin e ] 
[ x' y' z' J = [ x y z J O 1 0 

sine O cos 0 

Which can be represented by three equations as 

X' = Z sin 8 + X COS 0 

y' = y 

z' = Z COS 8 - X Sin 0 

Also the transformation matrix for the z axis rotation is given by 

. [ cos e sin e o~ ] 
[ X' y' Z' ] = [ X y Z ] -sin 8 COS 0 

0 0 

(C-4) 

(C-5) 

(C-6) 

(C-7) 



Which can be represented by three equations as 

XI = X cos e - y sin e 

y' = X Sin 9 + y COS 9 

I z = z 
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(C-8) 

An inverse rotation matrix is formed by replacing the rotation angle 0 by -0. Negative 

values for rotation angles generate rotations in a clockwise direction. 

Electrodes can be rotated about any arbitrary selected axis by applying a composite 

transformation matrix whose components perform a sequence of translations and rotations about 

the coordinate axes. This composite matrix is formed from a combination of the translation 

matrix (Equation C-1) and transformations C-3, C-5, C-7. The correct sequence of 

transformations can be determined by transforming coordinate positions of the electrode so that 

the selected rotation axis is moved onto one of the coordinate axis. Then the electrode is rotated 

about that coordinate axis through the specified rotation angle. The last step is to apply inverse 

transformations that return the rotation axis to its original position. 

In the special case where the selected rotation axis is parallel to one of the coordinate axis, 

the desired rotation of the electrode is attained with the equivalent set of three transformations: 

1. Translate the electrode so that the rotation axis coincides with the parallel coordinate 

axis. 

2. Perform the specified rotation. 

3. Translate the electrode so that the rotation axis is moved back to its original position. 



Appendix D 

CHEBYSHEV DISTRIBUTION 

For the interval [a,b], the Chebyshev distribution of points are defined to be 

X = -- + -- COS -- 7t 
a + b a - b ( 2k - l ) 

1c 2 2 2n 

for k = 1, 2, . .. , n Figure D.1 shows the distribution of Chebyshev points for n = 10 on the 

interval [-1,1]. 

• • • • • • • • • • _, 
0 

Figure D .1: Distribution of Chebyshev points. 
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Appendix E 

CONSTRUCTION OF A CUBIC SPLINE SCHEME 

The construction of a cubic spline interpolatory scheme can be described as follows: 

On each subinterval [xi, xi+i] , a cubic spline S(x) has the form 

2 3 s. (x) = a . + b ( X - X . ) + C. ( X - X . ) + d . ( X - X. ) 
I I I I I I I I 

( i = 1 , 2 , ... , n-1) 

where the coefficients a ., b ., c ., , and d. are to be determined from the definition of cubic splines 
I I I I 

and interpolatory requirement. 

Continuity and interpolation requires that 

S.(x . 1) =f.1 = S. t(x . 1) 
I 1+ 1+ I+ 1+ 

Since cubic splines are twice diff erentable at the nodes xi+ 1, therefore 

S'. ( X . l ) = S' l ( X . l ) 
I I+ 1+ 1+ 

S". ( X . I ) = S". I ( X . l ) 
I I+ 1+ I+ 

The conditions S"i(a) = S"n_1(b) = 0 are customarily introduced, and a cubic spline is thereby 

determined. 
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Appendix F 

POTENTIAL AND TANGENTIAL FIELD ERRORS ALONG THE 

ELECTRODE SURFACE OF FIGURE 6.2. 

~ 
0 
~ 
~ 

r=iJ 
,-of 

~ -~ 
~ 

~ 
Q) 
~ 
0 

11c 
~ 

0.04 

0.00 

A 

0.5 1.0 

Distance (cm.) 

B 

1.5 

Figure F .1: Potential error distribution along the horizontal part of the electrode of Fig. 6.2. 
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Figure F.2: Potential error distribution along the curved part of the electrode of Fig. 6.2. 
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Figure F.3: Potential error distribution along the vertical part of the electrode of Fig. 6.2. 
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Figure F.4: Tangential field difference distribution along the horizontal part of the electrode of 
Fig. 6.2. 
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Figure F.5: Tangential field difference distribution along the curved part of the electrode of Fig. 
6.2. 
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Figure F.6: Tangential field difference distribution along the vertical part of the electrode of Fig. 
6.2. 
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