
Copyright

by

Yuk Wah Wong

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/5180858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Yuk Wah Wong

certifies that this is the approved version of the following dissertation:

Learning for Semantic Parsing

and Natural Language Generation

Using Statistical Machine Translation Techniques

Committee:

Raymond J. Mooney, Supervisor

Jason M. Baldridge

Inderjit S. Dhillon

Kevin Knight

Benjamin J. Kuipers

Learning for Semantic Parsing

and Natural Language Generation

Using Statistical Machine Translation Techniques

by

Yuk Wah Wong, B.Sc. (Hons); M.S.C.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2007

To my loving family.

Acknowledgments

It is often said that doing a Ph.D. is like being left in the middle of the ocean

and learning how to swim alone. But I am not alone. I am fortunate to have met

many wonderful people who have made my learning experience possible.

First of all, I would like to thank my advisor, Ray Mooney, for his guidance

throughout my graduate study. Knowledgeable and passionate about science, Ray

is the best mentor that I could ever hope for. I especially appreciate his patience

to let me grow as a researcher, and the freedom he gave me to explore new ideas.

I will definitely miss our weekly meetings, which have always been intellectually

stimulating.

I would also like to thank my thesis committee, Jason Baldridge, Inderjit

Dhillon, Kevin Knight, and Ben Kuipers, for their invaluable feedback on my work.

I am especially grateful to Kevin Knight for lending his expertise in machine trans-

lation and generation, providing detailed comments on my manuscripts, and for

taking the time to visit Austin for my defense.

As for my collaborators at UT, I would like to thank Rohit Kate and Ruifang

Ge for co-developing some of the resources on which this research is based, includ-

ing the ROBOCUP corpus. Greg Kuhlmann also deserves thanks for annotating the

ROBOCUP corpus, as do Amol Nayate, Nalini Belaramani, Tess Martin and Hollie

Baker for helping with the evaluation of my NLG systems.

I am very lucky to be surrounded by a group of highly motivated, energetic,

and intelligent colleagues at UT, including Sugato Basu, Prem Melville, Misha

v

Bilenko and Tuyen Huynh in the Machine Learning group, and Katrin Erk, Pas-

cal Denis and Alexis Palmer in the Computational Linguistics group. In particular,

I would like to thank my officemates, Razvan Bunescu and Lily Mihalkova, and Ja-

son Chaw from the Knowledge Systems group for being wonderful listeners during

my most difficult year.

I will cherish the friendships that I formed here. I am particularly grateful

to Peter Stone and Umberto Gabbi for keeping my passion for music alive.

My Ph.D. journey would not be possible without the unconditional support

of my family. I would not be where I am today without their guidance and trust.

For this I would like to express my deepest gratitude. Last but not least, I thank my

fiancée Tess Martin for her companionship. She has made my life complete.

The research described in this thesis was supported by the University of

Texas MCD Fellowship, Defense Advanced Research Proejcts Agency under grant

HR0011-04-1-0007, and a gift from Google Inc.

YUK WAH WONG

The University of Texas at Austin

August 2007

vi

Learning for Semantic Parsing

and Natural Language Generation

Using Statistical Machine Translation Techniques

Publication No.

Yuk Wah Wong, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Raymond J. Mooney

One of the main goals of natural language processing (NLP) is to build au-

tomated systems that can understand and generate human lanugages. This goal has

so far remained elusive. Existing hand-crafted systems can provide in-depth anal-

ysis of domain sub-languages, but are often notoriously fragile and costly to build.

Existing machine-learned systems are considerably more robust, but are limited to

relatively shallow NLP tasks.

In this thesis, we present novel statistical methods for robust natural lan-

guage understanding and generation. We focus on two important sub-tasks, seman-

tic parsing and tactical generation. The key idea is that both tasks can be treated as

the translation between natural languages and formal meaning representation lan-

guages, and therefore, can be performed using state-of-the-art statistical machine

translation techniques. Specifically, we use a technique called synchronous pars-

ing, which has been extensively used in syntax-based machine translation, as the

unifying framework for semantic parsing and tactical generation. The parsing and

vii

generation algorithms learn all of their linguistic knowledge from annotated cor-

pora, and can handle natural-language sentences that are conceptually complex.

A nice feature of our algorithms is that the semantic parsers and tactical gen-

erators share the same learned synchronous grammars. Moreover, charts are used as

the unifying language-processing architecture for efficient parsing and generation.

Therefore, the generators are said to be the inverse of the parsers, an elegant prop-

erty that has been widely advocated. Furthermore, we show that our parsers and

generators can handle formal meaning representation languages containing logical

variables, including predicate logic.

Our basic semantic parsing algorithm is called WASP. Most of the other

parsing and generation algorithms presented in this thesis are extensions of WASP

or its inverse. We demonstrate the effectiveness of our parsing and generation al-

gorithms by performing experiments in two real-world, restricted domains. Ex-

perimental results show that our algorithms are more robust and accurate than the

currently best systems that require similar supervision. Our work is also the first

attempt to use the same automatically-learned grammar for both parsing and gen-

eration. Unlike previous systems that require manually-constructed grammars and

lexicons, our systems require much less knowledge engineering and can be easily

ported to other languages and domains.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Semantic Parsing . 3

1.2 Natural Language Generation . 3

1.3 Thesis Contributions . 4

1.4 Thesis Outline . 6

Chapter 2. Background 9

2.1 Application Domains . 9

2.2 Semantic Parsing . 13

2.2.1 Syntax-Based Approaches 13

2.2.2 Semantic Grammars . 15

2.2.3 Other Approaches . 17

2.3 Natural Language Generation . 18

2.3.1 Chart Generation . 20

2.4 Synchronous Parsing . 22

2.4.1 Synchronous Context-Free Grammars 23

2.5 Statistical Machine Translation . 25

2.5.1 Word-Based Translation Models 26

2.5.2 Phrase-Based and Syntax-Based Translation Models 29

ix

Chapter 3. Semantic Parsing with Machine Translation 31

3.1 Motivation . 31

3.2 The WASP Algorithm . 33

3.2.1 Lexical Acquisition . 37

3.2.2 Maintaining Parse Tree Isomorphism 43

3.2.3 Phrasal Coherence . 45

3.2.4 Probabilistic Model . 47

3.3 Experiments . 50

3.3.1 Data Sets . 51

3.3.2 Methodology . 52

3.3.3 Results and Discussion . 54

3.4 Related Work . 61

3.5 Chapter Summary . 62

Chapter 4. Semantic Parsing with Logical Forms 63

4.1 Motivation . 63

4.2 The λ-WASP Algorithm . 65

4.2.1 The λ-SCFG Formalism . 65

4.2.2 Lexical Acquisition . 70

4.2.3 Probabilistic Model . 72

4.2.4 Promoting Parse Tree Isomorphism 75

4.2.5 Modeling Logical Languages 81

4.3 Experiments . 83

4.3.1 Data Sets and Methodology 83

4.3.2 Results and Discussion . 84

4.4 Chapter Summary . 89

Chapter 5. Natural Language Generation with Machine Translation 90

5.1 Motivation . 90

5.2 Generation with Statistical Machine Translation 92

5.2.1 Generation Using PHARAOH 93

5.2.2 WASP
−1: Generation by Inverting WASP 95

5.3 Improving the MT-based Generators 100

x

5.3.1 Improving the PHARAOH-based Generator 100

5.3.2 Improving the WASP
−1 Algorithm 101

5.4 Experiments . 103

5.4.1 Data Sets . 104

5.4.2 Automatic Evaluation . 104

5.4.3 Human Evaluation . 110

5.4.4 Multilingual Experiments 112

5.5 Chapter Summary . 113

Chapter 6. Natural Language Generation with Logical Forms 116

6.1 Motivation . 116

6.2 The λ-WASP
−1++ Algorithm . 117

6.2.1 Overview . 117

6.2.2 k-Best Decoding . 123

6.3 Experiments . 126

6.3.1 Data Sets and Methodology 126

6.3.2 Results and Discussion . 126

6.4 Chapter Summary . 128

Chapter 7. Future Work 132

7.1 Interlingual Machine Translation 132

7.2 Shallow Semantic Parsing . 135

7.3 Beyond Context-Free Grammars 137

7.4 Using Ontologies in Semantic Parsing 138

Chapter 8. Conclusions 140

Appendix 144

Appendix A. Grammars for Meaning Representation Languages 145

A.1 The GEOQUERY Logical Query Language 145

A.2 The GEOQUERY Functional Query Language 151

A.3 CLANG: The ROBOCUP Coach Language 157

xi

Bibliography 163

Vita 188

xii

List of Tables

3.1 Corpora used for evaluating WASP 52

3.2 Performance of semantic parsers on the English corpora 54

3.3 Performance of WASP on the multilingual GEOQUERY data set . . . 59

3.4 Performance of WASP with extra supervision 61

4.1 Corpora used for evaluating λ-WASP 84

4.2 Performance of λ-WASP on the GEOQUERY 880 data set 85

4.3 Performance of λ-WASP with different components removed 87

4.4 Performance of λ-WASP on the multilingual GEOQUERY data set . . 89

5.1 Automatic evaluation results for NL generators on the English corpora106

5.2 Average time needed for generating one test sentence 106

5.3 Human evaluation results for NL generators on the English corpora . 112

5.4 Performance of WASP
−1++ on the multilingual GEOQUERY data set 113

6.1 Performance of λ-WASP
−1++ on the GEOQUERY 880 data set . . . 127

6.2 Average time needed for generating one test sentence 127

6.3 Performance of λ-WASP
−1++ on multilingual GEOQUERY data . . . 128

7.1 Performance of MT systems on multilingual GEOQUERY data . . . 133

7.2 MT performance considering only examples covered by both systems133

xiii

List of Figures

1.1 The parsing and generation algorthms presented in this thesis 8

2.1 An augmented parse tree taken from Miller et al. (1994) 14

2.2 A semantic parse tree for the sentence in Figure 2.1 16

2.3 A word alignment taken from Brown et al. (1993b) 27

3.1 A meaning representation in CLANG and its English gloss 33

3.2 Partial parse trees for the string pair in Figure 3.1 33

3.3 Overview of the WASP semantic parsing algorithm 37

3.4 A word alignment between English words and CLANG symbols . . 39

3.5 A word alignment between English words and CLANG productions 41

3.6 The basic lexical acquisition algorithm of WASP 43

3.7 A case where the ACQUIRE-LEXICON procedure fails 44

3.8 A case where a bad link disrupts phrasal coherence 45

3.9 Learning curves for semantic parsers on the GEOQUERY 880 data set 56

3.10 Learning curves for semantic parsers on the ROBOCUP data set . . . 57

3.11 Learning curves for WASP on the multilingual GEOQUERY data set . 60

4.1 A Prolog logical form in GEOQUERY and its English gloss 64

4.2 An SCFG parse for the string pair in Figure 4.1 66

4.3 A λ-SCFG parse for the string pair in Figure 4.1 68

4.4 A Prolog logical form in GEOQUERY and its English gloss 70

4.5 A parse tree for the logical form in Figure 4.4 71

4.6 A word alignment based on Figures 4.4 and 4.5 72

4.7 A parse tree for the logical form in Figure 4.4 with λ-operators . . . 73

4.8 A word alignment based on Figures 4.4 and 4.7 74

4.9 An alternative sub-parse for the logical form in Figure 4.4 77

4.10 Typical errors made by λ-WASP with English interpretations 82

xiv

4.11 Learning curves for λ-WASP on the GEOQUERY 880 data set 86

4.12 Learning curves for λ-WASP on the multilingual GEOQUERY data set 88

5.1 Sample meaning representations and their English glosses 93

5.2 Generation using PHARAOH . 95

5.3 Overview of the WASP
−1 tactical generation algorithm 96

5.4 A word alignment between English and CLANG (cf. Figure 3.5) . . 98

5.5 Generation using PHARAOH++ . 101

5.6 Learning curves for NL generators on the GEOQUERY 880 data set . 107

5.7 Learning curves for NL generators on the ROBOCUP data set 108

5.8 Partial NL generator output in the ROBOCUP domain 109

5.9 Coverage of NL generators on the English corpora 111

5.10 Learning curves for WASP
−1++ on multilingual GEOQUERY data . . 114

6.1 A parse tree for the sample Prolog logical form 120

6.2 The basic decoding algorithm of λ-WASP
−1++ 123

6.3 Example illustrating efficient k-best decoding 125

6.4 Learning curves for λ-WASP
−1++ on the GEOQUERY 880 data set . 129

6.5 Coverage of λ-WASP
−1++ on the GEOQUERY 880 data set 130

6.6 Learning curves for λ-WASP
−1++ on multilingual GEOQUERY data 131

7.1 Output of interlingual MT from Spanish to English in GEOQUERY . 134

xv

Chapter 1

Introduction

An indicator of machine intelligence is the ability to converse in human

languages (Turing, 1950). One of the main goals of natural language processing

(NLP) as a sub-field of artificial intelligence is to build automated systems that can

understand and generate human languages. This goal has so far remained elusive.

Manually-constructed knowledge-based systems can understand and generate do-

main sub-languages, but are notoriously fragile and costly to build. Statistical meth-

ods are considerably more robust, but are limited to relatively shallow NLP tasks

such as part-of-speech tagging, syntactic parsing, and word sense disambiguation.

Robust, broad-coverage NLP systems that are capable of understanding and gener-

ating human languages are still beyond reach.

Recent advances in information retrieval seem to suggest that automated

systems can appear to be intelligent without any deep understanding of human lan-

guages. However, the success of Internet search engines critically depends on the

redundancy of natural language expressions in Web documents. For example, given

the following search query:

Why do radio stations’ names start with W?

Google returns a link to the following Web document that contains the relevant

information:1

1The search was performed in July 2007. URL of Google: http://www.google.com/

1

Answer “Why do us eastern radio station names start with W ex-

cept KDKA KYW and KQV and western station names start with K

except WIBW and WHO?”...

Note that this document contains an expression that is almost identical to the search

query. In contrast, when given rare queries such as:

Does Germany border China?

search engines such as Google would have difficulty finding Web documents that

contain the search query. This leads to poor search results:

The Break-up of Communism in East Germany and Eastern Europe. ...

Kuo does not, however, provide a comprehensive treatment of China’s...

To answer this query would require spatial reasoning, which is impossible unless

the query is correctly understood.

Similar arguments can be made for other NLP tasks such as machine trans-

lation, which is the translation between natural languages. Current statistical ma-

chine translation systems typically depend on the redundancy of translation pairs

in the training corpora. When given rare sentences such as Does Germany border

China?, machine translation systems would have difficulty composing good trans-

lations for them. Such reliance on redundancy may be reduced by using meaning

representations that are more compact than natural languages. This would require

the machine translators being able to understand the source language as well as

generate the target language.

In this thesis, we will present novel statistical methods for robust natural

language understanding and generation. We will focus on two important sub-tasks,

semantic parsing and tactical generation.

2

1.1 Semantic Parsing

Semantic parsing is the task of transforming natural-language sentences into

complete, formal, symbolic meaning representations (MR) suitable for automated

reasoning or further processing. It is an integral part of natural language inter-

faces to databases (Androutsopoulos et al., 1995). For example, in the GEOQUERY

database (Zelle and Mooney, 1996), a semantic parser is used to transform natu-

ral language queries into formal queries. Below is a sample English query, and its

corresponding Prolog logical form:

What is the smallest state by area?

answer(x1,smallest(x2,(state(x1),area(x1,x2))))

This Prolog logical form would be used to retrieve an answer to the English query

from the GEOQUERY database. Other potential uses of semantic parsing include

machine translation (Nyberg and Mitamura, 1992), document summarization (Mani,

2001), question answering (Friedland et al., 2004), command and control (Simmons

et al., 2003), and interfaces to advice-taking agents (Kuhlmann et al., 2004).

1.2 Natural Language Generation

Natural language generation is the task of constructing natural-language

sentences from computer-internal representations of information. It can be divided

into two sub-tasks: (1) strategic generation, which decides what meanings to ex-

press, and (2) tactical generation, which generates natural-language expressions for

those meanings. This thesis is focused on the latter task of tactical generation. One

of the earliest motivating applications for natural language generation is machine

translation (Yngve, 1962; Wilks, 1973). It is also an important component of dialog

3

systems (Oh and Rudnicky, 2000) and automatic summarizers (Mani, 2001). For

example, in the CMU Communicator travel planning system (Oh and Rudnicky,

2000), the input to the tactical generation component is a frame of attribute-value

pairs:

act QUERY

content DEPART-TIME

depart-city New York

The output of the tactical generator would be a natural language sentence that ex-

presses the meaning represented by the input frame:

What time would you like to leave New York?

1.3 Thesis Contributions

Much of the early research on semantic parsing and tactical generation was

focused on hand-crafted knowledge-based systems that require tedious amounts of

domain-specific knowledge engineering. As a result, these systems are often too

brittle for general use, and cannot be easily ported to other application domains. In

response to this, various machine learning approaches to semantic parsing and tacti-

cal generation have been proposed since the mid-1990’s. Regarding these machine

learning approaches, a few observations can be made:

1. Many of the statistical learning algorithms for semantic parsing are designed

for simple domains in which sentences can be represented by a single seman-

tic frame (e.g. Miller et al., 1996).

2. Other learning algorithms for semantic parsing that can handle complex sen-

tences are based on inductive logic programming or deterministic parsing,

4

which lack the robustness that characterizes statistical learning (e.g. Zelle

and Mooney, 1996).

3. While tactical generators enhanced with machine-learned components are

generally more robust than their non-machine-learned counterparts, most, if

not all, are still dependent on manually-constructed grammars and lexicons

that are very difficult to maintain (e.g. Carroll and Oepen, 2005).

In this thesis, we present a number of novel statistical learning algorithms for se-

mantic parsing and tactical generation. These algorithms automatically learn all of

their linguistic knowledge from annotated corpora, and can handle natural-language

sentences that are conceptually complex. The resulting parsers and generators are

more robust and accurate than the currently best methods requiring similar super-

vision, based on experiments in four natural languages and in two real-world, re-

stricted domains.

The key idea of this thesis is that both semantic parsing and tactical genera-

tion are treated as language translation tasks. In other words:

1. Semantic parsing can be defined as the translation from a natural language

(NL) into a formal meaning representation language (MRL).

2. Tactical generation can be defined as the translation from a formal MRL into

an NL.

Both tasks are performed using state-of-the-art statistical machine translation tech-

niques. Specifically, we use a technique called synchronous parsing. Originally

introduced by Aho and Ullman (1972) to model the translation between formal

languages, synchronous parsing has recently been used to model the translation be-

tween NLs (Yamada and Knight, 2001; Chiang, 2005). We show that synchronous

5

parsing can be used to model the translation between NLs and MRLs as well. More-

over, the resulting semantic parsers and tactical generators share the same learned

synchronous grammars, and charts are used as the unifying language-processing

architecture for efficient parsing and generation. Therefore, the generators are said

to be the inverse of the parsers, an elegant property that has been noted by a number

of researchers (e.g. Shieber, 1988).

In addition, we show that the synchronous parsing framework can handle

a variety of formal MRLs. We present two sets of semantic parsing and tactical

generation algorithms for different types of MRLs, one for MRLs that are variable-

free, one for MRLs that contain logical variables, such as predicate logic. Both sets

of algorithms are shown to be effective in their respective application domains.

1.4 Thesis Outline

Below is a summary of the remaining chapters of this thesis:

• In Chapter 2, we provide a brief overview of semantic parsing, natural lan-

guage generation, statistical machine translation, and synchronous parsing.

We also describe the application domains that will be considered in subse-

quent chapters.

• In Chapter 3, we describe how semantic parsing can be done using statistical

machine translation. We present a semantic parsing algorithm called WASP,

short for Word Alignment-based Semantic Parsing. This chapter is focused

on variable-free MRLs.

• In Chapter 4, we extend the WASP semantic parsing algorithm to handle target

MRLs with logical variables. The resulting algorithm is called λ-WASP.

6

• In Chapter 5, we describe how tactical generation can be done using statistical

machine translation. We present results on using a recent phrase-based statis-

tical machine translation system, PHARAOH (Koehn et al., 2003), for tactical

generation. We also present WASP
−1, which is the inverse of the WASP se-

mantic parser, and two hybrid systems, PHARAOH++ and WASP
−1++. Among

the four systems, WASP
−1++ is shown to be provide the best overall perfor-

mance. This chapter is focused on variable-free MRLs.

• In Chapter 6, we extend the WASP
−1++ tactical generation algorithm to han-

dle source MRLs with logical variables. The resulting algorithm is called

λ-WASP
−1++.

• In Chapter 7, we show some preliminary results for interlingual machine

translation, an approach to machine translation that integrates natural lan-

guage understanding and generation. We also discuss the prospect of natu-

ral language understanding and generation for unrestricted texts, and suggest

several possible future research directions toward this goal.

• In Chapter 8, we conclude this thesis.

Figure 1.1 summarizes the various algorithms presented in this thesis.

Some of the work presented in this thesis has been previously published.

Material presented in Chapters 3, 4 and 5 appeared in Wong and Mooney (2006),

Wong and Mooney (2007b) and Wong and Mooney (2007a), respectively.

7

Variable-free MRLs

MRLs with

logical variables

Semantic parsing
WASP

(Chapter 3)

λ-WASP

(Chapter 4)

Tactical generation

PHARAOH

WASP
−1

PHARAOH++

WASP
−1++

(Chapter 5)

λ-WASP
−1++

(Chapter 6)

Figure 1.1: The parsing and generation algorthms presented in this thesis

8

Chapter 2

Background

This thesis encompasses several areas of NLP: semantic parsing (or natu-

ral language understanding), natural language generation, and machine translation.

These areas have traditionally formed separate research communities, to some de-

gree isolated from each other. In this chapter, we provide a brief overview of these

three areas of research. We also provide background on synchronous parsing and

synchronous grammars, which we claim can form a unifying framework for these

NLP tasks.

2.1 Application Domains

First of all, we review the application domains that will be considered in

subsequent sections. Our main focus is on application domains that have been used

for evaluating semantic parsers. These domains will be re-used for evaluating tac-

tical generators (Section 5.2) and interlingual machine translation systems (Section

7.1).

Much work on learning for semantic parsing has been done in the context of

spoken language understanding (SLU) (Wang et al., 2005). Among the application

domains developed for benchmarking SLU systems, the ATIS (Air Travel Informa-

tion Services) domain is probably the most well-known (Price, 1990). The ATIS

corpus consists of spoken queries that were elicited by presenting human subjects

9

with various hypothetical travel planning scenarios to solve. The resulting spon-

taneous spoken queries were recorded as the subjects interacted with automated

dialog systems to solve the scenarios. The recorded speech was transcribed and

annotated with SQL queries and reference answers. Below is a sample transcribed

query with its SQL annotation:

Show me flights from Boston to New York.

SELECT filght_id FROM flight WHERE

from_airport = ’boston’

AND to_airport = ’new york’

The ATIS corpus exhibits a wide range of interesting phenomena often associated

with spontaneous speech, such as verbal deletion and flexible word order. However,

we will not focus on this domain in this thesis, because the SQL annotations tend to

be quite messy, and it takes a lot of human effort to transform the SQL annotations

into a usable form.1 Also most ATIS queries are in fact conceptually very simple,

and semantic parsing often amounts to slot filling of a single semantic frame (Kuhn

and De Mori, 1995; Popescu et al., 2004). We mention this domain because much

of the existing work described in Section 2.2 was developed for the ATIS domain.

In this thesis, we focus on the following two domains. The first one is

GEOQUERY. The aim of this domain is to develop an NL interface to a U.S. geog-

raphy database written in Prolog. This database was part of the Turbo Prolog 2.0

distribution (Borland International, 1988). The query language is basically first-

order Prolog logical forms, augmented with several meta-predicates for dealing

1None of the existing ATIS systems that we are aware of use SQL directly. Instead, they use inter-

mediate languages such as predicate logic (Zettlemoyer and Collins, 2007) which are then translated

into SQL using external tools.

10

with quantification (Zelle and Mooney, 1996). The GEOQUERY corpus consists

of written English, Spanish, Japanese and Turkish queries gathered from various

sources. All queries were annotated with Prolog logical forms. Below is a sample

English query and its Prolog annotation:

What states does the Ohio run through?

answer(x1,(state(x1),traverse(x2,x1),

equal(x2,riverid(ohio))))

Note that the logical variables x1 and x2 are used to denote entities. In this log-

ical form, state is a predicate that returns true if its argument (x1) denotes a

U.S. state, and traverse is a predicate that returns true if its first argument

(x2), which is a river, traverses its second argument (x1), which is usually a state.

The equal predicate returns true if its first argument (x2) denotes the Ohio river

(riverid(ohio)). Finally, the logical variable x1 denotes the answer (answer)

to the query. In this domain, queries typically show a deeply nested structure, which

makes the semantic parsing task rather challenging, e.g.:

What states border the states that the Ohio runs through?

What states border the state that borders the most states?

For semantic parsers that cannot deal with logical variables (e.g. Ge and Mooney,

2006; Kate and Mooney, 2006), a functional, variable-free query language (FUNQL)

has been developed for this domain (Kate et al., 2005). In FUNQL, each predicate

can be seen to have a set-theoretic interpretation. For example, in the FUNQL

equivalent of the Prolog logical form shown above:

answer(state(traverse_1(riverid(ohio))))

11

the term river(ohio) denotes a singleton set that consists of the Ohio river,

traverse_1 denotes the set of entities that some of the members of its argument

(which are rivers) run through2, and state denotes the subset of its argument

whose members are also U.S. states.

The second domain that we consider is ROBOCUP. ROBOCUP (http://

www.robocup.org/) is an international AI research initiative that uses robotic

soccer as its primary domain. In the ROBOCUP Coach Competition, teams of au-

tonomous agents compete on a simulated soccer field, receiving advice from a team

coach using a formal language called CLANG (Chen et al., 2003). Our specific aim

is to develop an NL interface for autonomous agents to understand NL advice. The

ROBOCUP corpus consists of formal CLANG advice mined from previous Coach

Competition game logs, annotated with English translations. Below is a piece of

CLANG advice and its English gloss:

((bowner our {4})

(do our {6} (pos (left (half our)))))

If our player 4 has the ball, then our player 6 should stay in the left

side of our half.

In CLANG, tactics are generally expressed in the form of if-then rules. Here the ex-

pression (bowner ...) represents the “ball owner” condition, and (do ...)

is a directive that is followed when the condition holds, i.e. player 6 should position

itself (pos) in the left side (left) of our half ((half our)).

Appendix A provides detailed specifications of all formal meaning represe-

nation languages (MRL) being considered: the GEOQUERY logical query language,

2On the other hand, traverse 2 is the inverse of traverse 1, i.e. it denotes the set of rivers

that run through some of the members of its argument (which are usually cities or U.S. states).

12

FUNQL, and CLANG.

2.2 Semantic Parsing

Semantic parsing is a research area with a long history. Many early seman-

tic parsers are NL interfaces to databases, including LUNAR (Woods et al., 1972),

CHAT-80 (Warren and Pereira, 1982), and TINA (Seneff, 1992). These NL inter-

faces are often hand-crafted for a particular database, and cannot be easily ported

to other domains. Over the last decade, various data-driven approaches to seman-

tic parsing have been proposed. These algorithms often produce semantic parsers

that are more robust and accurate, and tend to be less application-specific than their

hand-crafted counterparts. In this section, we provide a brief overview of these

learning approaches.

2.2.1 Syntax-Based Approaches

One of the earliest data-driven approaches to semantic parsing is based on

the idea of augmenting statistical syntactic parsers with semantic labels. Miller et al.

(1994) propose the hierarchical Hidden Understanding Model (HUM) in which

context-free grammar (CFG) rules are learned from an annotated corpus consist-

ing of augmented parse trees. Figure 2.1 shows a sample augmented parse tree in

the ATIS domain. Here the non-terminal symbols FLIGHT, STOP and CITY repre-

sent domain-specific concepts, while other non-terminal symbols such as NP (noun

phrase) and VP (verb phrase) are syntactic categories. Given an input sentence, a

parser based on a probabilistic recursive transition network is used to find the best

augmented parse tree. This tree is then converted into a non-recursive semantic

frame using a probabilistic semantic interpretation model (Miller et al., 1996).

13

SHOW/

S

SHOW/

S-HEAD

Show

–/

PRONOUN

me

FLIGHT/

NP

–/

DET

the

FLIGHT/

NP-HEAD

flights

–/

REL-CLAUSE

–/

COMP

that

STOP/

VP

STOP/

VP-HEAD

stop

STOP/

PP

STOP/

PREP

in

CITY/

PROPER-NN

Pittsburgh

Figure 2.1: An augmented parse tree taken from Miller et al. (1994)

Ge and Mooney (2005, 2006) present another algorithm using augmented

parse trees called SCISSOR. It is an improvement over HUM in three respects.

First, it is based on a state-of-the-art statistical lexicalized parser (Bikel, 2004).

Second, it handles meaning representations (MR) that are deeply nested, which

are typical in the GEOQUERY and ROBOCUP domains. Third, a discriminative re-

ranking model is used for incorporating non-local features. Again, training requires

fully-annotated augmented parse trees.

The main drawback of HUM and SCISSOR is that they require augmented

parse trees for training which are often very difficult to obtain. Zettlemoyer and

Collins (2005) address this problem by treating parse trees as hidden variables

14

which must be estimated using expectation-maximization (EM). Their method is

based on a combinatory categorial grammar (CCG) (Steedman, 2000). The key

idea is to first over-generate a CCG lexicon using a small set of language-specific

template rules. For example, consider the following template rule:

Input trigger: any binary predicate p

Output category: (S\NP)/NP : λx1.λx2.p(x2, x1)

Suppose we are given a training sentence, Utah borders Idaho, and its logical form,

borders(utah,idaho). The binary predicate borders would trigger the

above template rule, producing a lexical item for each word in the sentence:

Utah := (S\NP)/NP : λx1.λx2.borders(x2,x1)

borders := (S\NP)/NP : λx1.λx2.borders(x2,x1)

Idaho := (S\NP)/NP : λx1.λx2.borders(x2,x1)

Next, spurious lexical items such as Utah and Idaho are pruned away during the

parameter estimation phase, where log-linear parameters are learned. A later ver-

sion of this work (Zettlemoyer and Collins, 2007) uses a relaxed CCG for dealing

with flexible word order and other speech-related phenomena, as exemplified by the

ATIS domain. Note that both CCG-based algorithms require prior knowledge of the

NL syntax in the form of template rules for training.

2.2.2 Semantic Grammars

A common feature of syntax-based approaches is to generate full syntactic

parse trees together with semantic parses. This is often a more elaborate struc-

ture than needed. One way to simplify the output is to remove syntactic labels

from parse trees. This results in a semantic grammar (Allen, 1995), in which non-

terminal symbols correspond to domain-specific concepts as opposed to syntactic

categories. A sample semantic parse tree is shown in Figure 2.2.

15

SHOW

Show me FLIGHT

the flights that STOP

stop in CITY

Pittsburgh

Figure 2.2: A semantic parse tree for the sentence in Figure 2.1

Several algorithms for learning semantic grammars have been devised. Kate

et al. (2005) present a bottom-up learning algorithm called SILT. The key idea is

to re-use the non-terminal symbols provided by a domain-specific MRL grammar

(see Appendix A). Each production in the MRL grammar corresponds to a domain-

specific concept. Given a training set consisting of NL sentences and their correct

MRs, context-free parsing rules are learned for each concept, starting with rules

that appear in the leaves of a semantic parse (e.g. CITY → Pittsburgh), followed

by rules that appear one level higher (e.g. STOP → stop in CITY), and so on. The

result is a semantic grammar that covers the training set.

More recently, Kate and Mooney (2006) present an algorithm called KRISP

based on string kernels. Instead of learning individual context-free parsing rules for

each domain-specific concept, KRISP learns a support vector machine (SVM) clas-

sifier with string kernels (Lodhi et al., 2002). The kernel-based classifier essentially

assigns weights to all possible word subsequences up to a certain length, so that sub-

sequences correlated with the specific concept receive higher weights. The learned

model is thus equivalent to a weighted semantic grammar with many context-free

parsing rules. It is shown that KRISP is more robust than other semantic parsers in

the face of noisy input sentences.

16

In Chapters 3 and 4, we will introduce two semantic parsing algorithms,

WASP and λ-WASP, which learn semantic grammars from annotated corpora using

statistical machine translation techniques.

2.2.3 Other Approaches

Various other learning approaches have been proposed for semantic parsing.

Kuhn and De Mori (1995) introduce a system called CHANEL that translates NL

queries into SQL based on classifications given by learned decision trees. Each

decision tree decides whether to include a particular attribute or constraint in the

output SQL query. CHANEL has been deployed in the ATIS domain where queries

are often conceptually simple.

Zelle and Mooney (1996) present a system called CHILL which is based

on inductive logic programming (ILP). It learns a deterministic shift-reduce parser

from an annotated corpus given a bilingual lexicon, which can be either hand-

crafted or automatically acquired (Thompson and Mooney, 1999). COCKTAIL

(Tang and Mooney, 2001) is an extension of CHILL that shows better coverage

through the use of multiple clause constructors.

Papineni et al. (1997) and Macherey et al. (2001) are two semantic pars-

ing algorithms using machine translation. Both algorithms translate English ATIS

queries into formal queries as if the target language were a natural language. Pa-

pineni et al. (1997) is based on a discriminatively-trained, word-based translation

model (Section 2.5.1), while Macherey et al. (2001) is based on a phrase-based

translation model (Section 2.5.2). Unlike these algorithms, our WASP and λ-WASP

algorithms are based on syntax-based translation models (Section 2.5.2).

He and Young (2003, 2006) propose the Hidden Vector State (HVS) model,

which is an extension of the hidden Markov model (HMM) with stack-oriented state

17

vectors. It can capture the hierarchical structure of sentences, while being more

constrained than CFGs. It has been deployed in various SLU systems including

ATIS, and is shown to be quite robust to input noise.

Wang and Acero (2003) propose an extended HMM model for the ATIS do-

main, where a multiple-word segment is generated from each underyling Markov

state that corresponds to a domain-specific semantic slot. These segments corre-

spond to slot fillers such as dates and times, for which CFGs are written. Then a

learned HMM serves to glue together different slot fillers to form a complete se-

mantic interpretation.

Lastly, PRECISE (Popescu et al., 2003, 2004) is a knowledge-intensive ap-

proach to semantic parsing that does not involve any learning. It introduces the

notion of semantically tractable sentences, sentences that give rise to a unique se-

mantic interpretation given a hand-crafted lexicon and a set of semantic constraints.

Interestingly, Popescu et al. (2004) shows that over 90% of the context-independent

ATIS queries are semantically tractable, whereas only 80% of the GEOQUERY

queries are semantically tractable, which shows that GEOQUERY is indeed a more

challenging domain than ATIS.

Note that none of the above systems can be easily adapted for the inverse

task of tactical generation. In Chapters 5 and 6, we will show that the WASP and

λ-WASP semantic parsing algorithms (Chapters 3 and 4) can be readily inverted to

produce effective tactical generators.

2.3 Natural Language Generation

This section provides a brief summary of data-driven approaches to natu-

ral language generation (NLG). More specifically, we focus on tactical generation,

18

which is the generation of NL sentences from formal, symbolic MRs.

Early tactical generation systems, such as PENMAN (Bateman, 1990), SURGE

(Elhadad and Robin, 1996), and REALPRO (Lavoie and Rambow, 1997), typically

depend on large-scale knowledge bases that are built by hand. These systems are

often too fragile for general use due to knowledge gaps in the hand-built grammars

and lexicons.

To improve robustness, Knight and Hatzivassiloglou (1995) introduce a two-

level architecture in which a statistical n-gram language model is used to rank the

output of a knowledge-based generator. The reason for improved robustness is two-

fold: First, when dealing with new constructions, the knowledge-based system can

freely overgenerate, and let the language model make its selections. This simplifies

the construction of knowledge bases. Second, when faced with incomplete or un-

derspecified input (e.g. from semantic parsers), the language model can help fill in

the missing pieces based on fluency.

Many subsequent NLG systems follow the same overall architecture. For

example, NITROGEN (Langkilde and Knight, 1998) is an NLG system similar to

Knight and Hatzivassiloglou (1995), but with a more efficient knowledge-based

component that operates bottom-up rather than top-down. Again, a statistical n-

gram ranker is used to extract the best output sentence from a set of candidates.

HALOGEN (Langkilde-Geary, 2002) is a successor to NITROGEN, which includes

a knowledge base that provides better coverage of English syntax.

FERGUS (Bangalore et al., 2000) is an NLG system based on the XTAG

grammar (XTAG Research Group, 2001). Given an input dependency tree whose

nodes are unordered and are labeled only with lexemes, a statistical tree model is

used to assign the best elementary tree for each lexeme. Then a word lattice that

encodes all possible surface strings permitted by the elementary trees is formed.

19

A trigram language model trained on the Wall Street Journal (WSJ) corpus is then

used to rank the candidate strings.

AMALGAM (Corston-Oliver et al., 2002; Ringger et al., 2004) is an NLG

system for French and German in which the mapping from underspecified to fully-

specified dependency parses is mostly guided by learned decision tree classifiers.

These classifiers insert function words, determine verb positions, re-attach nodes

for raising and wh-movement, and so forth. These classifiers are trained on the out-

put of hand-crafted, broad-coverage parsers. Hand-built classifiers are used when-

ever there is insufficient training data. A statistical language model is then used to

determine the relative order of constituents in a dependency parse.

2.3.1 Chart Generation

The XTAG grammar used by FERGUS is a bidirectional (or reversible)

grammar that has been used for parsing as well (Schabes and Joshi, 1988). The

use of a single grammar for both parsing and generation has been widely advocated

for its elegance. Kay’s (1975) research into functional grammar is motivated by the

desire to “make it possible to generate and analyze sentences with the same gram-

mar”. Jacobs (1985) presents an early implementation of this idea. His PHRED

generator operates from the same declarative knowledge base used by PHRAN, a

sentence analyzer (Wilensky and Arens, 1980). Other early NLP systems share at

least part of the linguistic knowledge for parsing and generation (Steinacker and

Buchberger, 1983; Wahlster et al., 1983).

Shieber (1988) notes that not only a single grammar can be used for parsing

and generation, but also the same language-processing architecture can be used for

processing the grammar in both directions. He suggests that charts can be a natural

uniform architecture for efficient parsing and generation. This is in marked contrast

20

to previous systems (e.g. PHRAN and PHRED) where the parsing and generation al-

gorithms are often radically different. Kay (1996) further refines this idea, pointing

out that chart generation is similar to chart parsing with free word order, because in

logical forms, the relative order of predicates is immaterial.

These observations have led to the development of a number of chart gen-

erators. Carroll et al. (1999) introduce an efficient bottom-up chart generator for

head-driven phrase structure grammars (HPSG). Constructions such as intersective

modification (e.g. a tall young Polish athlete) are treated in a separate phase be-

cause chart generation can be exponential in these cases. Carroll and Oepen (2005)

further introduce a procedure to selectively unpack a derivation forest based on a

probabilistic model, which is a combination of a 4-gram language model and a

maximum-entropy model whose feature types correspond to sub-trees of deriva-

tions (Velldal and Oepen, 2005).

White and Baldridge (2003) present a chart generator adapted for use with

CCG. A major strength of the CCG generator is its ability to generate a wide range

of coordination phenomena efficiently, including argument cluster coordination. A

statisical n-gram language model is used to rank candidate surface strings (White,

2004).

Nakanishi et al. (2005) present a similar probabilistic chart generator based

on the Enju grammar, an English HPSG grammar extracted from the Penn Treebank

(Miyao et al., 2004). The probabilistic model is a log-linear model with a variety of

n-gram features and syntactic features.

Despite their use of statistical models, all of the above algorithms rely on

manually-constructed knowledge bases or grammars which are difficult to main-

tain. Moreover, they focus on the task of surface realization, i.e. linearizing and

21

inflecting words in a sentence, requiring extensive lexical information (e.g. lex-

emes) in the input logical forms. The mapping from predicates to lexemes is then

relegated to a separate sentence planning component. In Chapters 5 and 6, we will

introduce tactical generation algorithms that learn all of their linguistic knowledge

from annotated corpora, and show that surface realization and lexical selection can

be integrated in an elegant framework based on synchronous parsing.

2.4 Synchronous Parsing

In this section, we define the notion of synchronous parsing. Originally in-

troduced by Aho and Ullman (1969, 1972) to model the compilation of high-level

programming languages into machine code, it has recently been used in various

NLP tasks that involve language translation, such as machine translation (Wu, 1997;

Yamada and Knight, 2001; Chiang, 2005; Galley et al., 2006), textual entailment

(Wu, 2005), sentence compression (Galley and McKeown, 2007), question answer-

ing (Wang et al., 2007), and syntactic parsing for resource-poor languages (Chiang

et al., 2006). Shieber and Schabes (1990a,b) propose that synchronous parsing can

be used for semantic parsing and natural language generation as well.

Synchronous parsing differs from ordinary parsing in that a derivation yields

a pair of strings (or trees). To finitely specify a potentially infinite set of string pairs

(or tree pairs), we use a synchronous grammar. Many types of synchronous gram-

mars have been proposed for NLP, including synchronous context-free grammars

(Aho and Ullman, 1972), synchronous tree-adjoining grammars (Shieber and Sch-

abes, 1990b), synchronous tree-substitution grammars (Yamada and Knight, 2001),

and quasi-synchronous grammars (Smith and Eisner, 2006). In the next subsection,

we will illustrate synchronous parsing using synchronous context-free grammars

(SCFG).

22

2.4.1 Synchronous Context-Free Grammars

An SCFG is defined by a 5-tuple:

G = 〈N,Te,Tf ,L, S〉 (2.1)

where N is a finite set of non-terminal symbols, Te is a finite set of terminal sym-

bols for the input language, Tf is a finite set of terminal symbols for the output

language, L is a lexicon consisting of a finite set of production rules, and S ∈ N is

a distinguished start symbol. Each production rule in L takes the following form:

A→ 〈α, β〉 (2.2)

where A ∈ N, α ∈ (N ∪ Te)
+, and β ∈ (N ∪ Tf)

+. The non-terminal A is called

the left-hand side (LHS) of the production rule. The right-hand side (RHS) of the

production rule is a pair of strings, 〈α, β〉. For each non-terminal in α, here is an

associated, identical non-terminal in β. In other words, the non-terminals in α are

a permutation of the non-terminals in β. We use indices 1 , 2 , . . . to indicate the

association. For example, in the production rule A → 〈B 1 B 2 , B 2 B 1 〉, the first

B non-terminal in B 1 B 2 is associated with the second B non-terminal in B 2 B 1 .

Given an SCFG, G, we define a translation form as follows:

1. 〈S 1 , S 1 〉 is a translation form.

2. If 〈αA i β, α′A i β
′〉 is a translation form, and if A → 〈γ, γ′〉 is a production

rule in L, then 〈αγβ, α′γ′β′〉 is also a translation form. For this, we write:

〈αA i β, α′A i β
′〉 ⇒G 〈αγβ, α′γ′β′〉

The non-terminals A i are said to be rewritten by the production rule A →

〈γ, γ′〉.

23

A derivation under G is a sequence of translation forms:

〈S 1 , S 1 〉 ⇒G 〈α1, β1〉 ⇒G . . .⇒G 〈αk, βk〉

such that αk ∈ T
+
e and βk ∈ T

+
f . The string pair 〈αk, βk〉 is said to be the yield of

the derivation, and βk is said to be a translation of αk, and vice versa.

We further define the input grammar of G as the 4-tuple Ge = 〈N,Te,Le, S〉,

where Le = {A→ α|A→ 〈α, β〉 ∈ L}. Similarly, the output grammar of G is de-

fined as the 4-tuple Gf = 〈N,Tf ,Lf , S〉, where Lf = {A→ β|A→ 〈α, β〉 ∈ L}.

Both Ge and Gf are context-free grammars (CFG). We can then view synchronous

parsing as a process in which two CFG parse trees are generated simultaneously,

one based on the input grammar, and the other based on the output grammar. Fur-

thermore, the two parse trees are isomorphic, since there is a one-to-one mapping

between the non-terminal nodes in the two parse trees.

The language translation task can be formulated as follows: Given an input

string x, we find a derivation under Ge that is consistent with x (if any):

S ⇒Ge
α1 ⇒Ge

. . .⇒Ge
x

This derivation corresponds to the following derivation under G:

〈S 1 , S 1 〉 ⇒G 〈α1, β1〉 ⇒G . . .⇒G 〈x, y〉

The string y is then a translation of x.

24

As a concrete example, suppose that G is the following:

N = {S, NP, VP}

Te = {wo, shui guo, xi huan}

Tf = {I, fruits, like}

L = {S→ 〈 NP 1 VP 2 , NP 1 VP 2 〉,

NP→ 〈 wo , I 〉,

NP→ 〈 shui guo , fruits 〉,

VP→ 〈 xi huan NP 1 , like NP 1 〉}

S = S

Given an input string, wo xi huan shui guo, a derivation under G that is consistent

with the input string would be:

〈 S 1 , S 1 〉 ⇒G 〈 NP 1 VP 2 , NP 1 VP 2 〉

⇒G 〈 wo VP 1 , I VP 1 〉

⇒G 〈 wo xi huan NP 1 , I like NP 1 〉

⇒G 〈 wo xi huan shui guo , I like fruits 〉

Based on this derivation, a translation of wo xi huan shui guo would be I like fruits.

Synchronous grammars provide a natural way of capturing the hierarchical

structures of a sentence and its translation, as well as the correspondence between

their sub-parts. In Chapters 3–6, we will introduce algorithms for learning syn-

chronous grammars such as SCFGs for both semantic parsing and tactical genera-

tion.

2.5 Statistical Machine Translation

Another area of research that is relevant to our work is machine translation,

whose main goal is to translate one natural language into another. Machine trans-

25

lation (MT) is a particularly challenging task, because of the inherent ambiguity

of natural languages on both sides. It has inspired a large body of research. In

particular, the growing availability of parallel corpora, in which the same content

is available in multiple languages, has stimulated interest in statistical methods for

extracting linguistic knowledge from a large body of text. In this section, we review

the main components of a typical statistical MT system.

Without loss of generality, we define machine translation as the task of trans-

lating a foreign sentence, f , into an English sentence, e. Obviously, there are many

acceptable translations for a given f . In statistical MT, every English sentence is a

possible translation of f . Each English sentence e is assigned a probability Pr(e|f).

The task of translating a foreign sentence, f , is then to choose the English sentence,

e
⋆, for which Pr(e⋆|f) is the greatest. Traditionally, this task is divided into several

more manageable sub-tasks, e.g.:

e
⋆ = arg max

e

Pr(e|f) = arg max
e

Pr(e) Pr(f |e) (2.3)

In this noisy-channel framework, the translation task is to find an English transla-

tion, e⋆, such that (1) it is a well-formed English sentence, and (2) it explains f well.

Pr(e) is traditionally called a language model, and Pr(f |e) a translation model. The

language modeling problem is essentially the same as in automatic speech recogni-

tion, where n-gram models are commonly used (Stolcke, 2002; Brants et al., 2007).

On the other hand, translation models are unique to statistical MT, and will be the

main focus of the following subsections.

2.5.1 Word-Based Translation Models

Brown et al. (1993b) present a series of five translation models which later

became known as the IBM Models. These models are word-based because they

26

Le

programme

a

été

mis

en

applicationimplemented

been

has

program

the

And

Figure 2.3: A word alignment taken from Brown et al. (1993b)

model how individual words in e are translated into words in f . Such word-to-word

mappings are captured in a word alignment (Brown et al., 1990). Suppose that

e = eI
1 = 〈e1, . . . , eI〉, and f = fJ

1 = 〈f1, . . . , fJ〉. A word alignment, a, between

e and f is defined as:

a = 〈a1, . . . , aJ〉 where 0 ≤ aj ≤ I for all j = 1, . . . , J (2.4)

where aj is the position of the English word that the foreign word fj is linked to.

If aj = 0, then fj is not linked to any English word. Note that in the IBM Models,

word alignments are constrained to be 1-to-n, i.e. each foreign word is linked to at

most one English word. Figure 2.3 shows a sample word alignment for an English-

French sentence pair. In this word alignment, the French word le is linked to the

English word the, the French phrase mis en application as a whole is linked to the

English word implemented, and so on.

The translation model Pr(f |e) is then expressed as a sum of the probabilities

of word alignments a between e and f :

Pr(f |e) =
∑

a

Pr(f , a|e) (2.5)

27

The word alignments a are hidden variables which must be estimated using EM.

Hence Pr(f |e) is also called a hidden alignment model (or word alignment model).

The IBM Models mainly differ in terms of the formulation of Pr(f , a|e). In IBM

Models 1 and 2, this probability is formulated as:

Pr(f , a|e) = Pr(J |e)
J
∏

j=1

Pr(aj|j, I, J) Pr(fj|eaj
) (2.6)

The generative process for producing f from e is as follows: Given an English

sentence, e, choose a length J for f . Then for each foreign word position, j, choose

aj from 0, 1, . . . , I , and also fj based on the English word eaj
. Various simplifying

assumptions are made so that inference remains tractable. In particular, a zero-order

assumption is made such that the choice of aj is independent of aj−1
1 , e.g. all word

movements are independent.

The zero-order assumption of IBM Models 1 and 2 is unrealistic, as it does

not take collocations into account, such as mis en application. In the subsequent

IBM Models, this assumption is gradually relaxed, so that collocations can be better

modeled. Exact inference is no longer tractable, so approximate inference must be

used. Due to the complexity of these models, we will not discuss them in detail.

Word alignment models such as IBM Models 1–5 are widely used in work-

ing with parallel corpora. Among the applications are extracting parallel sentences

from comparable corpora (Munteanu et al., 2004), aligning dependency-tree frag-

ments (Ding et al., 2003), and extracting translation pairs for phrase-based and

syntax-based translation models (Och and Ney, 2004; Chiang, 2005). In Chap-

ters 3 and 4, we will show that word alignment models can be used for extracting

synchronous grammar rules for semantic parsing as well.

28

2.5.2 Phrase-Based and Syntax-Based Translation Models

A major problem with the IBM Models is their lack of linguistic content.

One approach to this problem is to introduce the concept of phrases in a phrase-

based translation model. A basic phrase-based model translates e into f in the

following steps: First, e is segmented into a number of sequences of consecutive

words (or phrases), ẽ1, . . . , ẽK . These phrases are then reordered and translated into

foreign phrases, f̃1, . . . , f̃K , which are joined together to form a foreign sentence, f .

Och et al. (1999) introduce an alignment template approach in which phrase pairs,

{〈ẽ, f̃〉}, are extracted from word alignments. The aligned phrase pairs are then

generalized to form alignment templates, based on word classes learned from the

training data. In Koehn et al. (2003), Tillmann (2003) and Venugopal et al. (2003),

phrase pairs are extracted from word alignments without generalization. In Marcu

and Wong (2002), phrase translations are learned as part of an EM algorithm in

which the joint probability Pr(e, f) is estimated.

Phrase-based translation models can be further generalized to handle hier-

archical phrasal structures. Such models are collectively known as syntax-based

translation models. Yamada and Knight (2001, 2002) present a tree-to-string trans-

lation model based on a synchronous tree-substitution grammar (Knight and Graehl,

2005). Galley et al. (2006) extends the tree-to-string model with multi-level syn-

tactic translation rules. Chiang (2005) presents a hierarchical phrase-based model

whose underlying formalism is an SCFG. Both Galley et al.’s (2006) and Chiang’s

(2005) systems are shown to outperform state-of-the-art phrase-based MT systems.

A common feature of syntax-based translation models is that they are all

based on synchronous grammars. Synchronous grammars are ideal formalisms for

formulating syntax-based translation models because they describe not only the

hierarchical structures of a sentence pair, but also the correspondence between their

29

sub-parts. In subsequent chapters, we will show that learning techniques developed

for syntax-based statistical MT can be brought to bear on tasks that involve formal

MRLs, such as semantic parsing and tactical generation.

30

Chapter 3

Semantic Parsing with Machine Translation

This chapter describes how semantic parsing can be done using statistical

machine translation (Wong and Mooney, 2006). Specifically, the parsing model

can be seen as a syntax-based translation model, and word alignments are used in

lexical acquisition. Our algorithm is called WASP, short for Word Alignment-based

Semantic Parsing. In this chapter, we focus on variable-free MRLs such as FUNQL

and CLANG (Section 2.1). A variation of WASP that handles logical forms will be

described in Chapter 4. The WASP algorithm will also form the basis of our tactical

generation algorithm, WASP
−1, and its variants (Chapters 5 and 6).

3.1 Motivation

As mentioned in Section 2.2, prior research on semantic parsing has mainly

focused on relatively simple domains such as ATIS (Section 2.1), where a typi-

cal sentence can be represented by a single semantic frame. Learning methods

have been devised that can handle MRs with a complex, nested structure as in the

GEOQUERY and ROBOCUP domains. However, some of these methods are based

on deterministic parsing (Zelle and Mooney, 1996; Tang and Mooney, 2001; Kate

et al., 2005), which lack the robustness that characterizes recent advances in statisti-

cal NLP. Other methods involve the use of fully-annotated semantically-augmented

parse trees (Ge and Mooney, 2005) or prior knowledge of the NL syntax (Bos,

2005; Zettlemoyer and Collins, 2005, 2007) in training, and hence require exten-

31

sive human expertise when porting to a new language or domain.

In this work, we treat semantic parsing as a language translation task. Sen-

tences are translated into formal MRs through synchronous parsing (Section 2.4),

which provides a natural way of capturing the hierarchical structures of NL sen-

tences and their MRL translations, as well as the correspondence between their

sub-parts. Originally developed as a theory of compilers in which syntax analysis

and code generation are combined into a single phase (Aho and Ullman, 1972),

synchronous parsing has seen a surge of interest recently in the machine translation

community as a way of formalizing syntax-based translation models (Wu, 1997;

Chiang, 2005). We argue that synchronous parsing can also be useful in translation

tasks that involve both natural and formal languages, and in semantic parsing in

particular.

In subsequent sections, we present a learning algorithm for semantic pars-

ing called WASP. The input to the learning algorithm is a set of training sen-

tences paired with their correct MRs. The output from the learning algorithm is

a sychronous context-free grammar (SCFG), together with parameters that define

a log-linear distribution over parses under the grammar. The learning algorithm

assumes that an unambiguous, context-free grammar (CFG) of the target MRL is

available, but it does not require any prior knowledge of the NL syntax or annotated

parse trees in the training data. Experiments show that WASP performs favorably in

terms of both accuracy and coverage compared to other methods requiring similar

supervision, and is considerably more robust than methods based on deterministic

parsing.

32

((bowner our {4}) (do our {6} (pos (left (half our)))))

If our player 4 has the ball, then our player 6 should stay in the left side of our half.

Figure 3.1: A meaning representation in CLANG and its English gloss

RULE

If CONDITION

TEAM

our

player UNUM

4

has the ball

...

(a) English

RULE

(CONDITION

(bowner TEAM

our

{ UNUM

4

})

...)

(b) CLANG

Figure 3.2: Partial parse trees for the string pair in Figure 3.1

3.2 The WASP Algorithm

To describe the WASP semantic parsing algorithm, it is best to start with

an example. Consider the task of translating the English sentence in Figure 3.1

into its CLANG representation in the ROBOCUP domain. To achieve this task, we

may first analyze the syntactic structure of the English sentence using a semantic

grammar (Section 2.2.2) , whose non-terminals are those in the CLANG grammar.

The meaning of the sentence is then obtained by combining the meanings of its sub-

parts based on the semantic parse. Figure 3.2(a) shows a possible semantic parse of

the sample sentence (the UNUM non-terminal in the parse tree stands for “uniform

number”). Figure 3.2(b) shows the corresponding CLANG parse tree from which

the MR is constructed.

This translation process can be formalized as synchronous parsing. A de-

tailed description of the synchronous parsing framework can be found in Section

33

2.4. Under this framework, a derivation yields two strings, one for the source NL,

and one for the target MRL. Given an input sentence, e, the task of semantic parsing

is to find a derivation that yields a string pair, 〈e, f〉, so that f is an MRL translation

of e. To finitely specify a potentially infinite set of string pairs, we use a weighted

SCFG, G, defined by a 6-tuple:

G = 〈N,Te,Tf ,L, S, λ〉 (3.1)

where N is a finite set of non-terminal symbols, Te is a finite set of NL terminal

symbols (words), Tf is a finite set of MRL terminal symbols, L is a lexicon which

consists of a finite set of rules1, S ∈ N is a distinguished start symbol, and λ is a set

of parameters that define a probability distribution over derivations under G. Each

rule in L takes the following form:

A→ 〈α, β〉 (3.2)

where A ∈ N, α ∈ (N ∪ Te)
+, and β ∈ (N ∪ Tf)

+. The LHS of the rule is a

non-terminal, A. The RHS of the rule is a pair of strings, 〈α, β〉, in which the non-

terminals in α are a permutation of the non-terminals in β. Below are some SCFG

rules that can be used to produce the parse trees in Figure 3.2:

RULE→ 〈 if CONDITION 1 , DIRECTIVE 2 . ,

(CONDITION 1 DIRECTIVE 2) 〉

CONDITION→ 〈 TEAM 1 player UNUM 2 has (1) ball ,

(bowner TEAM 1 {UNUM 2}) 〉

TEAM→ 〈 our , our 〉

UNUM→ 〈 4 , 4 〉

1Henceforth, we reserve the term rules for production rules of an SCFG, and the term productions

for production rules of an ordinary CFG.

34

Each SCFG rule A → 〈α, β〉 is a combination of a production of the NL semantic

grammar, A → α, and a production of the MRL grammar, A → β. We call the

string α an NL string, and the string β an MR string. Non-terminals in NL and MR

strings are indexed with 1 , 2 , . . . to show their association. All derivations start with

a pair of associated start symbols, 〈S 1 , S 1 〉. Each step of a derivation involves the

rewriting of a pair of associated non-terminals. Below is a derivation that yields the

sample English sentence and its CLANG representation in Figure 3.1:

〈 RULE 1 , RULE 1 〉

⇒ 〈 if CONDITION 1 , DIRECTIVE 2 . ,

(CONDITION 1 DIRECTIVE 2) 〉

⇒ 〈 if TEAM 1 player UNUM 2 has the ball , DIRECTIVE 3 . ,

((bowner TEAM 1 {UNUM 2}) DIRECTIVE 3) 〉

⇒ 〈 if our player UNUM 1 has the ball , DIRECTIVE 2 . ,

((bowner our {UNUM 1}) DIRECTIVE 2) 〉

⇒ 〈 if our player 4 has the ball , DIRECTIVE 1 . ,

((bowner our {4}) DIRECTIVE 1) 〉

⇒ ...

⇒ 〈 if our player 4 has the ball, then our player 6 should stay

in the left side of our half. ,

((bowner our {4})

(do our {6} (pos (left (half our))))) 〉

Here the CLANG representation is said to be a translation of the English sentence.

Given an NL sentence, e, there can be multiple derivations that yield e (and thus

multiple MRL translations of e). To discriminate the correct translation from the

incorrect ones, we use a probabilistic model, parameterized by λ, that takes a deriva-

tion, d, and returns its likelihood of being correct. The output translation, f
⋆, of a

35

sentence, e, is defined as:

f
⋆ = f

(

arg max
d∈D(G|e)

Prλ(d|e)

)

(3.3)

where f(d) is the MR string that a derivation d yields, and D(G|e) is the set of all

derivations of G that yield e. In other words, the output MRL translation is the yield

of the most probable derivation that yields the input NL sentence. This formulation

is chosen because f
⋆ can be efficiently computed using a dynamic-programming

algorithm (Viterbi, 1967).

Since N, Te, Tf and S are fixed given an NL and an MRL, we only need to

learn a lexicon, L, and a probabilistic model parameterized by λ. A lexicon defines

the set of derivations that are possible, so the induction of a probabilistic model

requires a lexicon in the first place. Therefore, the learning task can be divided into

the following two sub-tasks:

1. Acquire a lexicon, L, which implicitly defines the set of all possible deriva-

tions, D(G).

2. Learn a set of parameters, λ, that define a probability distribution over deriva-

tions in D(G).

Both sub-tasks require a training set, {〈ei, fi〉}, where each training example 〈ei, fi〉

is an NL sentence, ei, paired with its correct MR, fi. Lexical acquisition also re-

quires an unambiguous CFG of the MRL. Since there is no lexicon to begin with,

it is not possible to include correct derivations in the training data. Therefore, these

derivations are treated as hidden variables which must be estimated through EM-

type iterative training, and the learning task is not fully supervised. Figure 3.3 gives

an overview of the WASP semantic parsing algorithm.

36

Testing

Training

MRL grammar G′

Training set {〈ei, fi〉}

NL sentence e Output MRL translation f
⋆

Lexical acquisition

Parameter estimation

Semantic parsing

SCFG G

Weighted SCFG G

Figure 3.3: Overview of the WASP semantic parsing algorithm

In Sections 3.2.1–3.2.3, we will focus on lexical acquisition. We will de-

scribe the probabilistic model in Section 3.2.4.

3.2.1 Lexical Acquisition

A lexicon is a mapping from words to their meanings. In Section 2.5.1,

we showed that word alignments can be used for defining a mapping from words

to their meanings. In WASP, we use word alignments for lexical acquisition. The

basic idea is to train a statistical word alignment model on the training set, and then

find the most probable word alignments for each training example. A lexicon is

formed by extracting SCFG rules from these word alignments (Chiang, 2005).

Let us illustrate this algorithm using an example. Suppose that we are given

the string pair in Figure 3.1 as the training data. The word alignment model is to

37

find a word alignment for this string pair. A sample word alignment is shown in

Figure 3.4, where each CLANG symbol is treated as a word. This presents three

difficulties. First, not all MR symbols carry specific meanings. For example, in

CLANG, parentheses ((,)) and braces ({, }) are delimiters that are semantically

vacuous. Such symbols are not supposed to be aligned with any words, and inclu-

sion of these symbols in the training data is likely to confuse the word alignment

model. Second, not all concepts have an associated MR symbol. For example, in

CLANG, the mere appearance of a condition followed by a directive indicates an

if-then rule, and there is no CLANG predicate associated with the concept of an

if-then rule. Third, multiple concepts may be associated with the same MR symbol.

For example, the CLANG predicate pt is polysemous. Its meaning depends on the

types of arguments it is given. It specifies the xy-coordinates when its arguments

are two numbers (e.g. (pt 0 0)), the current position of the ball when its argu-

ment is the MR symbol ball (i.e. (pt ball)), or the current position of a player

when a team and a uniform number are given as arguments (e.g. (pt our 4)).

Judging from the pt symbol alone, the word alignment model would not be able to

identify its exact meaning.

A simple, principled way to avoid these difficulties is to represent an MR

using a sequence of MRL productions used to generate it. This sequence corre-

sponds to the top-down, left-most derivation of an MR. Each MRL production is

then treated as a word. Figure 3.5 shows a word alignment between the sample

sentence and the linearized parse of its CLANG representation. Here the second

production, CONDITION → (bowner TEAM {UNUM}), is the one that rewrites

the CONDITION non-terminal in the first production, RULE → (CONDITION DI-

RECTIVE), and so on. Treating MRL productions as words allows collocations

to be treated as a single lexical unit (e.g. the symbols (, pt, ball, followed by

38

(

(

(

bowner

our

{

4

}

)

(

do

our

{

6

}

pos

(

left

(

half

our

)

)

)

)

)

If

our

player

4

has

the

ball

our

player

should

6

,

stay

in

the

left

side

of

our

half

.

Figure 3.4: A word alignment between English words and CLANG symbols

39

)). A lexical unit can be discontiguous (e.g. (, pos, followed by a region, and

then the symbol)). It also allows the meaning of a polysemous MR symbol to be

disambiguated, where each possible meaning corresponds to a distinct MRL pro-

duction. In addition, it allows productions that are unlexicalized (e.g. RULE →

(CONDITION DIRECTIVE)) to be associated with some English words. Note that

for each MR there is a unique parse tree, since the MRL grammar is unambiguous.

Also note that the structure of a MR parse tree is preserved through linearization.

The structural aspect of an MR parse tree will play an important role in the subse-

quent extraction of SCFG rules.

Word alignments can be obtained using any off-the-shelf word alignment

model. In this work, we use the GIZA++ implementation (Och and Ney, 2003) of

IBM Model 5 (Brown et al., 1993b).

Assuming that each NL word is linked to at most one MRL production,

SCFG rules are extracted from a word alignment in a bottom-up manner. The pro-

cess starts with productions with no non-terminals on the RHS, e.g. TEAM→ our

and UNUM→ 4. For each of these productions, A→ β, an SCFG rule A→ 〈α, β〉

is extracted such that α consists of the words to which the production is linked. For

example, the following rules would be extracted from Figure 3.5:

TEAM→ 〈 our , our 〉

UNUM→ 〈 4 , 4 〉

UNUM→ 〈 6 , 6 〉

Next we consider productions with non-terminals on the RHS, i.e. predi-

cates with arguments. In this case, the NL string α consists of the words to which

the production is linked, as well as non-terminals showing where the arguments are

realized. For example, for the bowner predicate, the extracted rule would be:

40

If

our

player

4

has

the

ball

our

player

should

6

,

stay

in

the

left

side

of

our

half

.

RULE→ (CONDITION DIRECTIVE)

CONDITION→ (bowner TEAM {UNUM})

TEAM→ our

UNUM→ 4

DIRECTIVE→ (do TEAM {UNUM} ACTION)

TEAM→ our

UNUM→ 6

ACTION→ (pos REGION)

REGION→ (left REGION)

REGION→ (half TEAM)

TEAM→ our

Figure 3.5: A word alignment between English words and CLANG productions

41

CONDITION→ 〈 TEAM 1 player UNUM 2 has (1) ball ,

(bowner TEAM 1 {UNUM 2}) 〉

where (1) denotes a word gap of size 1, due to the unaligned word the that comes

between has and ball. Formally, a word gap of size g can be seen as a special

non-terminal that expands to at most g NL words, which allows for some flexibility

during pattern matching. Note the use of indices to indicate the association between

non-terminals in the extracted NL and MR strings.

Similarly, the following SCFG rules would be extracted from the same word

alignment:

REGION→ 〈 TEAM 1 half , (half TEAM 1) 〉

REGION→ 〈 left side of REGION 1 , (left REGION 1) 〉

ACTION→ 〈 stay in (1) REGION 1 , (pos REGION 1) 〉

DIRECTIVE→ 〈 TEAM 1 player UNUM 2 should ACTION 3 ,

(do TEAM 1 {UNUM 2} ACTION 3) 〉

RULE→ 〈 if CONDITION 1 (1) DIRECTIVE 2 (1) ,

(CONDITION 1 DIRECTIVE 2) 〉

Note the word gap (1) at the end of the NL string in the last rule, which is due to

the unaligned period in the sentence. This word gap is added because all words in

a sentence have to be consumed by a derivation.

Figure 3.6 shows the basic lexical acquisition algorithm of WASP. The

training set, T = {〈ei, fi〉}, is used to train the alignment model M , which is in

turn used to obtain the k-best word alignments for each training example (we use

k = 10). SCFG rules are extracted from each of these word alignments. It is done

in a bottom-up fashion, such that an MR predicate is processed only after its argu-

ments have all been processed. This order is enforced by the backward traversal of

a linearized MR parse. The lexicon, L then consists of all rules extracted from all

k-best word alignments for all training examples.

42

Input: a training set, T = {〈ei, fi〉}, and an unambiguous MRL grammar, G′.

ACQUIRE-LEXICON(T,G′)

1 L← ∅
2 for i← 1 to |T |
3 do f

′
i ← linearized parse of fi under G′

4 Train a word alignment model, M , using {〈ei, f
′
i〉} as the training set

5 for i← 1 to |T |
6 do a

⋆
1,...,k ← k-best word alignments for 〈ei, f

′
i〉 under M

7 for k′ ← 1 to k
8 do for j ← |f ′i | downto 1
9 do A← lhs(f ′

ij)
10 α← words to which f ′

ij and its arguments are linked in a
⋆
k′

11 β ← rhs(f ′
ij)

12 L← L ∪ {A→ 〈α, β〉}
13 Replace α with A in a

⋆
k′

14 return L

Figure 3.6: The basic lexical acquisition algorithm of WASP

3.2.2 Maintaining Parse Tree Isomorphism

There are two cases where the ACQUIRE-LEXICON procedure would not

extract any rules for a production p:

1. None of the descendants of p in the MR parse tree are linked to any words.

2. The NL string associated with p covers a word w linked to a production p′ that

is not a descendant of p in the MR parse tree. Rule extraction is forbidden in

this case because it would destroy the link between w and p′.

The first case arises when a concept is not realized in NL. For example, the concept

of “our team” is often assumed, because advice is given from the perspective of a

team coach. When we say the goalie should always stay in our goal area, we mean

43

TEAM→ our

our

left

penalty

area

REGION→ (penalty-area TEAM)

REGION→ (left REGION)

Figure 3.7: A case where the ACQUIRE-LEXICON procedure fails

our (our) goalie, not the other team’s (opp) goalie. Hence the concept of our

is often not realized. The second case arises when the NL and MR parse trees are

not isomorphic. Consider the word alignment between our left penalty area and

its CLANG representation in Figure 3.7. The extraction of the rule REGION → 〈

TEAM 1 (1) penalty area , (penalty-area TEAM 1) 〉 would destroy the link

between left and REGION→ (left REGION). A possible explanation for this is

that, syntactically, our modifies left penalty area (consider the coordination phrase

our left penalty area and right goal area, where our modifies both left penalty area

and right goal area). But conceptually, “left” modifies the concept of “our penalty

area” by referring to its left half. Note that the NL and MR parse trees must be

isomorphic under the SCFG formalism (Section 2.4.1).

The NL and MR parse trees can be made isomorphic by merging nodes in

the MR parse tree, combining several productions into one. For example, since no

rules can be extracted for the production REGION→ (penalty-area TEAM), it

is combined with its parent node to form REGION → (left (penalty-area

TEAM)), for which an NL string TEAM left penalty area is extracted. In general,

the merging process continues until a rule is extracted from the merged node. As-

suming the alignment is not empty, the process is guaranteed to end with a rule

extracted.

44

REGION→ (reg REGION REGION)

REGION→ (left REGION)

REGION→ (penalty-area TEAM)

TEAM→ our

REGION→ (right REGION)

REGION→ (midfield TEAM)

TEAM→ our

our

left

penalty

area

or

our

right

midfield

Figure 3.8: A case where a bad link disrupts phrasal coherence

3.2.3 Phrasal Coherence

The effectiveness of the lexical acquisition algorithm described so far crit-

ically depends on whether the word alignment model observes phrasal coherence.

This means words that are linked to a predicate and its arguments should stay close

together. Moreover, these words should form a hierarchical phrase structure that

is roughly isomorphic to the MR parse tree. Any major disruption of phrasal co-

herence would lead to excessive node merging (Section 3.2.2), which is a major

cause of overfitting. For example, in Figure 3.8, the word right is far from left

penalty area, yet it is linked to the left predicate (shown as a thick line). This

link crosses many other links in the word alignment, forcing many nodes in the

MR parse tree to merge (e.g. left with reg, midfield with right and then

with reg). The resulting SCFG rule, REGION → 〈 TEAM 1 left penalty area or

TEAM 2 right midfield , (reg (left (penalty-area TEAM 1)) (right

(midfield TEAM 2))) 〉, is very long and does not generalize well to other

cases of region union (reg).

Ideally, this problem can be solved using a word alignment model that

45

strictly observes phrasal coherence. However, this often requires rules that model

the reordering of tree nodes (i.e. synchronous grammars), which are exactly what

WASP is trying to learn. Our goal is to bootstrap the learning process by using

a simpler, word-based alignment model that produces a generally coherent align-

ment, and then remove links that could cause excessive node merging. This is done

before rule extraction takes place.

The link removal algorithm works as follows. Recall that rule extraction

from a word alignment, a, is forbidden where the NL string associated with a pro-

duction, p, covers a word linked to a production that is not a descendant of p in

the MR parse tree. We call such a word a violation of the isomorphism constraint.

For each production p in the MR parse tree, we count the number of violations that

would prevent a rule from being extracted for p. Then the total number of viola-

tions for all productions in the MR parse tree is obtained, denoted by v(a). A simple

greedy procedure for removing bad links is to repeatedly remove the link a ∈ a that

maximizes v(a) − v(a \ {a}) > 0, until v(a) cannot be further reduced. A link

stronger than a certain threshold (0.9) is never removed, so that merging of produc-

tions as in Figure 3.7 is still possible. The strength of a link w ↔ p is defined as

the translation probability, Pr(p|w), given by GIZA++, which is found to be highly

correlated with the validity of a link. To replenish the removed links, links from a

reverse alignment, ã (obtained by treating the source language as target, and vice

versa), are added to a, as long as a remains n-to-1, and v(a) is not increased.

The complete lexical acquisition algorithm is thus the following: Train a

word alignment model, M , and a reverse word alignment model, M̃ , using the

training set, T . Obtain the k-best alignments, a⋆
1,...,k, and the best reverse alignment,

ã
⋆, for each training example in T using M and M̃ . Remove bad links from each

a
⋆
k′ and replenish the removed links by adding links from ã

⋆. Then extract rules

46

from a
⋆
1,...,k as described in the ACQUIRE-LEXICON procedure (lines 7–13), while

merging nodes in the MR parse tree if necessary.

3.2.4 Probabilistic Model

Once a lexicon is acquired, the next task is to learn a probabilistic model

for parse disambiguation. We propose a log-linear model that defines a conditional

probability distribution over derivations given an input NL sentence. There has

been much work on using log-linear models for NLP tasks such as part-of-speech

tagging (Ratnaparkhi, 1996), syntactic parsing (Charniak, 2000; Clark and Curran,

2003), named entity recognition (Chieu and Ng, 2003), and machine translation

(Koehn et al., 2003). A primary advantage of log-linear models is their flexibility.

Features may interact with each other, allowing easy experimentation with different

feature sets. Similar to Riezler et al. (2002), we will train our log-linear model on

incomplete data, since derivations are not observed in the training data. It is the

yields of these derivations—NL sentences and their MRs—that we observe.

In our log-linear model, the conditional probability of a derivation, d, given

an input sentence, e, is defined as:

Prλ(d|e) =
1

Zλ(e)
exp

∑

i

λifi(d) (3.4)

where fi is a feature function (or feature for short) that returns a real value given a

derivation, and Zλ(e) is a normalizing factor such that the conditional probabilities

sum to one over all derivations that yield e. We use the following feature types:

• For each rule r ∈ L, there is a feature, fr, that returns the number of times r

is used in a derivation.

• For each word w ∈ Te, there is a feature, fw, that returns the number of times

w is generated from word gaps in a derivation.

47

• Generation of words not previously encountered during training is modeled

using an extra feature, f∗, that returns the total number of words generated

from word gaps in a derivation.

In WASP, since the output grammar of a learned SCFG is the target MRL grammar,

all MRL translations are well-formed to begin with. So the probabilistic model can

be relatively simple. The number of features that we use in our log-linear model is

quite modest (less than 3,000 in our experiments). A similar set of features is also

used by Zettlemoyer and Collins (2005).

The output MRL translation, f⋆, given a sentence, e, is the yield of the most

probable derivation that yields e (cf. Equation 3.3):

f
⋆ = f

(

arg max
d∈D(G|e)

exp
∑

i

λifi(d)

)

= f

(

arg max
d∈D(G|e)

∑

i

λifi(d)

)

(3.5)

where D(G|e) is the set of derivations under G that yield e. The output translation

can be easily computed using the Viterbi algorithm (Viterbi, 1967), with an Earley

chart (Earley, 1970; Stolcke, 1995) that keeps track of derivations that are consistent

with the input string. Decoding takes cubic time with respect to the sentence length.

The model parameters, λ, are estimated by maximizing the conditional log-

likelihood of the training set (Berger et al., 1996; Riezler et al., 2002):

λ⋆ = arg max
λ

∑

〈ej ,fj〉∈T

log Prλ(fj|ej) (3.6)

48

Expanding the conditional log-likelihood, we get:

L(λ) =
∑

〈ej ,fj〉∈T

log Prλ(fj|ej)

=
∑

〈ej ,fj〉∈T

log
∑

d∈D(G|ej ,fj)

Prλ(d|ej)

=
∑

〈ej ,fj〉∈T

log

∑

d∈D(G|ej ,fj)

exp
∑

i

λifi(d)

− log Zλ(ej)

=
∑

〈ej ,fj〉∈T

log

∑

d∈D(G|ej ,fj)

exp
∑

i

λifi(d)

− log

∑

d∈D(G|ej)

exp
∑

i

λifi(d)

where D(G|e, f) is the set of derivations under G that yield 〈e, f〉 (hence D(G|e, f) ⊆

D(G|e)). Differentiating L with respect to λi gives:

∂

∂λi

L(λ) =
∑

〈ej ,fj〉∈T

∑

d∈D(G|ej ,fj)

Prλ(d|ej, fj)fi(d)−
∑

d∈D(G|ej)

Prλ(d|ej)fi(d)

which is the difference between the expectations of fi(d) with respect to the dis-

tributions Prλ(d|ej, fj) and Prλ(d|ej). Locally optimal parameters λ⋆ can then be

found by using gradient-based methods such as gradient ascent, conjugate gradient,

and quasi-Newton methods. In our experiments, we use the L-BFGS algorithm (No-

cedal, 1980) to compute λ⋆. L-BFGS is a limited-memory quasi-Newton method

which implicitly approximates the Hessian matrix based on previous values of L

and L′. It has shown good convergence properties in various NLP-related optimiza-

tion tasks (Malouf, 2002).

Computation of L and L′ requires statistics that depend on D(G|ej, fj) and

D(G|ej). Since both sets can be extremely large, it is not feasible to enumerate

49

them. However, using a similar parsing chart used for decoding, it is possible to

obtain the required statistics using dynamic-programming techniques similar to the

Inside-Outside algorithm (Miyao and Tsujii, 2002). In particular, computation that

involves D(G|ej, fj) can be done by keeping track of MR translations inside chart

items, and allowing chart items to combine only when it results in a substring of fj .

A Gaussian prior (σ2 = 100) is used to regularize the log-linear model

(Chen and Rosenfeld, 1999). Unlike the fully-supervised case, the conditional log-

likelihood L is not concave with respect to λ, so the optimization algorithm is sen-

sitive to initial parameters. To assume as little as possible, λ is initialized to 0.

Following Zettlemoyer and Collins (2005), only rules that are used in the most

probable derivations for each training example are retained in the final lexicon. All

other rules are discarded. This heuristic is used to improve accuracy of the seman-

tic parser, assuming that rules used in the most probable derivations are the most

accurate.

In summary, the WASP learning algorithm is divided into two sub-tasks. The

first sub-task is to acquire a lexicon consisting of SCFG rules extracted from word

alignments between training sentences and their correct MRs. The second sub-task

is to estimate the parameters that define a log-linear distribution over parses under

the learned SCFG. The resulting weighted SCFG can then be used for parsing novel

sentences.

3.3 Experiments

This section describes the experiments that were performed to demonstrate

the effectiveness of the WASP semantic parsing algorithm.

50

3.3.1 Data Sets

We evaluated WASP in the GEOQUERY and ROBOCUP domains (Section

2.1). The GEOQUERY corpus consists of 880 English questions gathered from var-

ious sources. 250 of them were gathered from an undergraduate language class

(Zelle and Mooney, 1996). These questions were manually translated into a logical

query language based on Prolog (Appendix A.1). An additional 630 English ques-

tions were subsequently gathered from an undergraduate AI class, and from users

of a web interface to a CHILL (Zelle and Mooney, 1996) prototype trained on the

initial 250 data set (Tang and Mooney, 2001). These questions together with their

Prolog logical forms and the original 250 data set, form a larger 880-example data

set. Queries in the 250 data set were also translated into Spanish and Turkish, each

by a native speaker of the language, and into Japanese by an English native speaker

who had learned Japanese as a second language.

Since WASP can only handle variable-free MRLs, we wrote a small program

that translates Prolog logical forms into a functional query language (FUNQL) de-

veloped for the GEOQUERY domain (Appendix A.2).

For the ROBOCUP domain, the corpus consists of 300 pieces of coaching

advice encoded in CLANG (Appendix A.3), randomly selected from the log files

of the 2003 ROBOCUP Coach Competition. Each formal statement was manually

translated into English by one of four annotators (Kate et al., 2005). Basically,

CLANG statements are variable-free. The CLANG language does allow the use of

logical variables, but they have very limited use and rarely occur in the data.

Table 3.1 shows some statistics of the corpora used for evaluating WASP.

Note that sentences in the ROBOCUP data set are much longer than those in GEO-

QUERY on average.

51

GEOQUERY ROBOCUP

MRL FUNQL CLANG

non-terminals 13 12

productions 133 134

examples 250 880 300

NL English Spanish Japanese Turkish English English

Avg. sent. length 6.87 7.39 9.11 5.76 7.57 22.52

unique words 165 159 158 220 280 337

Table 3.1: Corpora used for evaluating WASP

3.3.2 Methodology

We performed standard 10-fold cross validation in our experiments. During

testing, we counted the number of sentences for which there was an output MRL

translation. Translation fails when there are constructs in a sentence that a learned

parser does not cover. We also counted the number of output MRL translations that

were correct. For GEOQUERY, a translation is correct if it retrieves the same answer

from the GEOQUERY database as the reference query. For ROBOCUP, a translation

is correct if it exactly matches the correct MR, up to reordering of arguments for

commutative predicates like and. These strict criteria were chosen because two

slightly different representations can have very different meanings (e.g. negation).

Based on these counts, we compute the precision, recall and F-measure of a learned

parser:

Precision =
No. of correct output translations

No. of output translations
(3.7)

Recall =
No. of correct output translations

No. of test sentences
(3.8)

F-measure =
2× Precision× Recall

Precision + Recall
(3.9)

52

For each domain, there is a minimal set of initial rules representing knowl-

edge needed for translating basic domain entities. These rules are always included

in a lexicon. For GEOQUERY, the initial rules are the following:

CITYNAME→ 〈e(c), c〉, for all city names c

e.g. for English: 〈 new york , ’new york’ 〉

for Japanese: 〈 nyuu yooku , ’new york’ 〉

RIVERNAME→ 〈e(r), r〉, for all river names r

STATENAME→ 〈e(s), s〉, for all state names s

Similar rules for lake names, mountain names, state name abbrevia-

tions, and other place names.

Here e(x) is an NL expression that corresponds to x. Since the GEOQUERY database

is in English, e(x) = x for English. For other languages, e(x) can be different. For

example, e(’new york’) is nyuu yooku in Japanese. A rule such as CITYNAME

→ 〈 nyuu yooku , ’new york’ 〉 provides domain knowledge that cannot be eas-

ily learned without analyzing the phonological features of a name. Such initial rules

can be easily constructed from a bilingual dictionary. Note that a name can be am-

biguous. For example, New York can be either a state or a city. A semantic parser

needs to disambiguate between these two cases based on surrounding context.

For ROBOCUP, the initial rules are the following:

UNUM→ 〈i, i〉, for all integers i = 1, . . . , 11

NUM→ 〈x, x〉, for all real numbers x

IDENT→ 〈s,"s"〉, for all possible CLANG identifiers s

The purpose of these initial rules is to provide a default translation for all unseen

numbers and identifiers.

53

GEOQUERY (880 data set) ROBOCUP

Prec. (%) Rec. (%) F (%) Prec. (%) Rec. (%) F (%)

WASP 87.2 74.8 80.5 88.9 61.9 73.0

COCKTAIL 89.9 79.4 84.3 - - -

SILT 89.0 54.1 67.3 83.9 50.7 63.2

KRISP 93.3 71.7 81.1 85.2 61.9 71.7

SCISSOR 95.5 77.2 85.4 90.0 80.7 85.1

ZC07 95.5 83.2 88.9 - - -

Table 3.2: Performance of semantic parsers on the English corpora

3.3.3 Results and Discussion

Table 3.2 shows the performance of WASP on the English corpora with full

training data, compared to five other algorithms:2

• COCKTAIL (Tang and Mooney, 2001), a shift-reduce parser based on induc-

tive logic proramming.

• SILT (Kate et al., 2005), a deterministic parser using tree-to-string transfor-

mation rules.

• KRISP (Kate and Mooney, 2006), an SVM-based parser using string kernels.

• SCISSOR (Ge and Mooney, 2006), a combined syntactic-semantic parser with

discriminative reranking.

• Zettlemoyer and Collins (2007) (abbreviated as ZC07), a probabilistic parser

based on relaxed CCG grammars.

2The results reported in Zettlemoyer and Collins (2007) for GEOQUERY are based on a single

split of data with 600 training examples. Our experiments using their split gave similar results.

54

The best-performing systems for each domain are shown in bold in Table 3.2.3

Figures 3.9 and 3.10 show the precision and recall learning curves.

Regarding these results, several points should be noted:

• Due to memory overflow, COCKTAIL cannot handle more than 160 training

examples in the ROBOCUP domain.

• No results have been reported for ZC07 in the ROBOCUP domain. In fact,

it is unclear how ZC07 can deal with discontiguous lexical items which fre-

quently appear in this domain (see Section 5.4.2 for further discussion of

discontiguous lexical items).

• Both COCKTAIL and ZC07 use Prolog logical forms as the target MRL for

GEOQUERY. In Section 4.3.2, we show that Prolog logical forms can be a

better MRL for this domain.

• A hand-built lexicon was supplied to COCKTAIL in the GEOQUERY domain.

For ROBOCUP, lexicons automatically acquired by WOLFIE (Thompson and

Mooney, 1999) were used instead.

• SCISSOR requires semantically-augmented parse trees for training (Section

2.2.1).

• ZC07 requires the following hand-written components: (1) language-specific

template rules (Section 2.2.1), and (2) lexical items for certain function words

such as wh-words and determiners.

3No statistical test was performed for two reasons. First, the experimental set-up in ZC07 was

different. Also for SCISSOR, neither per-trial statistics nor actual system output was available.

55

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

P
re

c
is

io
n

 (
%

)

Number of training examples

WASP
COCKTAIL

SILT
KRISP

SCISSOR
ZC07

(a) Precision

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

R
e

c
a

ll
(%

)

Number of training examples

WASP
COCKTAIL

SILT
KRISP

SCISSOR
ZC07

(b) Recall

Figure 3.9: Learning curves for semantic parsers on the GEOQUERY 880 data set

56

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

P
re

c
is

io
n

 (
%

)

Number of training examples

WASP
COCKTAIL

SILT
KRISP

SCISSOR

(a) Precision

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

R
e

c
a

ll
(%

)

Number of training examples

WASP
COCKTAIL

SILT
KRISP

SCISSOR

(b) Recall

Figure 3.10: Learning curves for semantic parsers on the ROBOCUP data set

57

Therefore, compared to WASP, SILT and KRISP, more prior knowledge was in-

corporated into COCKTAIL (in the GEOQUERY domain), SCISSOR and ZC07. The

experimental results show a clear advantage of such extra supervision, especially in

the ROBOCUP domain where sentences are long and data is scarce.

COCKTAIL has very low precision and recall in the ROBOCUP domain. The

difficulty apparently lies in the length of sentences being processed. COCKTAIL’s

deterministic shift-reduce framework processes a sentence only from the beginning

to the end. If it fails to parse the beginning of a sentence, then it will fail to parse

the rest of the sentence. In contrast, WASP’s chart parsing algorithm takes a holistic

view of a sentence and is very efficient.

WASP also outperforms SILT in terms of recall. In SILT, transformation

rules are learned for each MRL production individually, and the learned rules do

not necessarily cooperate to give a complete parse of a training sentence. In WASP,

an extracted SCFG always covers the entire training set.

WASP’s performance is competitive compared to KRISP. Moreover, as

shown in the learning curves, a WASP parser is consistently more precise than a

KRISP parser when trained on small data sets.

Overall, our experiments show that WASP performs competitively compared

to other methods requiring similar supervision, and is considerably more robust than

methods based on deterministic parsing (e.g. COCKTAIL).

A major advantage of WASP over methods such as SCISSOR and ZC07 is

that it does not require any prior knowledge of the NL syntax for training. There-

fore, porting WASP to another NL is relatively easy. We illustrate this by evaluating

WASP’s performance on the multilingual GEOQUERY 250 data set. The languages

being considered are English, Spanish, Japanese and Turkish. These languages

58

WASP

Prec. (%) Rec. (%) F (%)

English 95.42 70.00 80.76

Spanish 91.99 72.40 81.03

Japanese 91.98 74.40 82.86

Turkish 96.96 62.40 75.93

Table 3.3: Performance of WASP on the multilingual GEOQUERY data set

differ in terms of word order: Subject-Verb-Object (SVO) for English and Span-

ish, and Subject-Object-Verb (SOV) for Japanese and Turkish. They also differ in

terms of morphology: English and Spanish are inflected languages, while Japanese

and Turkish are agglutinative languages, where words are formed by joining many

morphemes together. Each combination of morphemes creates a different word, so

agglutinative languages tend to have a larger vocabulary. As shown in Table 3.3 and

Figure 3.11, WASP’s performance is consistent across all four languages, although

recall is lower for Turkish. The reason is that the Turkish corpus has a larger vocab-

ulary (Table 3.1), and the extracted rules tend to be less general. A possible solution

is to split words into morphemes and treat each morpheme as a separate token. This

has been done by hand for the Japanese corpus.

WASP has much room for improvement compared to methods like SCISSOR

and ZC07. The performance gap can be closed by using word alignments derived

from the augmented parse trees used for training SCISSOR, in place of the automatic

word alignments given by GIZA++ (Table 3.4). This form of extra supervision is

shown to improve the precision and recall of WASP slightly. However, we also

found that the choice of MRL plays an important role in semantic parsing. In par-

ticular, for the GEOQUERY domain, Prolog logical forms can be a more appropriate

MRL than FUNQL. In the next chapter, we will explore ways to extend WASP

59

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

P
re

c
is

io
n

 (
%

)

Number of training examples

English
Spanish

Japanese
Turkish

(a) Precision

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

R
e

c
a

ll
(%

)

Number of training examples

English
Spanish

Japanese
Turkish

(b) Recall

Figure 3.11: Learning curves for WASP on the multilingual GEOQUERY data set

60

GEOQUERY (880 data set) ROBOCUP

Prec. (%) Rec. (%) F (%) Prec. (%) Rec. (%) F (%)

WASP 87.2 74.8 80.5 88.9 61.9 73.0

+ hand-written

word alignments
93.6 74.1 82.7 94.6 65.0 76.8

SCISSOR 95.5 77.2 85.4 90.0 80.7 85.1

ZC07 95.5 83.2 88.9 - - -

Table 3.4: Performance of WASP with extra supervision

to handle Prolog logical forms. The resulting algorithm, λ-WASP, uses the same

amount of supervision as WASP, and is shown to perform comparably to ZC07, and

better than SCISSOR.

3.4 Related Work

The lexical acquisition algorithm of WASP can be seen as projecting syn-

tactic structures from the target MRL to the source ML via an automatically word-

aligned parallel corpus. Besides semantic parsing and syntax-based MT, the idea

of structural projection has also been used for inducing part-of-speech taggers and

noun phrase bracketers (Yarowsky and Ngai, 2001), and automating the annotation

of less-studied languages (Xia and Lewis, 2007; Moon and Baldridge, 2007).

The problem of phrasal coherence (Section 3.2.3) has recently caught the

attention of the statistical MT community (e.g. Fox, 2002). Several syntax-aware

word alignment models have been proposed: Cherry and Lin (2006) propose a dis-

criminative word alignment model using features derived from a synchronous gram-

mar. Training this model, however, requires a small set of hand-written word align-

ments. DeNero and Klein (2007) present a variant of the HMM alignment model

(Vogel et al., 1996) with a syntax-sensitive distortion probability distribution. Un-

61

like Cherry and Lin (2006), their method does not require hand-written word align-

ments for training. In May and Knight (2007), word alignments are made coherent

by re-aligning the training set with a learned syntax-based translation model. Both

DeNero and Klein’s (2007) and May and Knight’s (2007) methods can be used in

place of the algorithm described in Section 3.2.3 for better performance of WASP.

3.5 Chapter Summary

In this chapter, we formulated the semantic parsing problem as a language

translation task, where NL sentences are translated into formal MRs through syn-

chronous parsing. We described a learning algorithm for semantic parsing called

WASP. The input to the learning algorithm is a set of training sentences coupled

with their correct MRs, and an unambiguous CFG of the target MRL, which is as-

sumed to be variable-free. The output from the learning algorithm is an SCFG,

together with parameters that define a log-linear distribution over parses under this

grammar. Lexical acquisition is performed using off-the-shelf word alignment mod-

els. Since WASP does not require any prior knowledge of the NL syntax for training,

porting WASP to other NLs is relatively easy. Experiments showed that WASP’s per-

formance is consistent across different languages and domains, and is competitive

compared to the currently best methods requiring similar supervision.

62

Chapter 4

Semantic Parsing with Logical Forms

Formal semantic analysis of natural languages typically uses predicate logic

as the representation language. In this chapter, we extend the WASP semantic pars-

ing algorithm to handle logical forms (Wong and Mooney, 2007b). The resulting

algorithm, λ-WASP, is based on an extended version of SCFG in which logical

forms are generated using the lambda calculus. It is shown to be one of the best-

performing systems so far in the GEOQUERY domain.

4.1 Motivation

Traditionally, linguists have used predicate logic to represent meanings as-

sociated with NL expressions (Montague, 1970; Dowty et al., 1981). There are

many different kinds of predicate logic that deal with different linguistic phenom-

ena such as quantification, modality, underspecification, and discourse. A common

feature of these logical languages is the use of logical variables to denote entities.

For example, in Figure 4.1, the logical variables x1 and x2 are used to denote a state

and the area of a state, respectively.

In the last chapter, we showed that semantic parsing can be cast as a machine

translation task, where an SCFG is used to model the translation of an NL into a

formal MRL. But the use of SCFG for semantic parsing is limited to variable-free

MRLs, because SCFG does not have a principled mechanism for handling logical

63

answer(x1,smallest(x2,(state(x1),area(x1,x2))))

What is the smallest state by area?

Figure 4.1: A Prolog logical form in GEOQUERY and its English gloss

variables. This is unfortunate because most existing work on computational seman-

tics is based on predicate logic (Charniak and Wilks, 1976; Blackburn and Bos,

2005). For some domains, this problem can be avoided by transforming a logical

language into a variable-free, functional language such as FUNQL in GEOQUERY.

However, development of such a functional language is non-trivial, and as we will

see, logical forms can improve generalization for semantic analysis.

On the other hand, most existing methods for mapping NL expressions

to logical forms involve substantial hand-written components that are difficult to

maintain. For example, Crouch (2005) describes a semantic interpreter based on a

broad-coverage, hand-written lexical functional grammar (Riezler et al., 2002). The

English Resource Grammar (Copestake and Flickinger, 2000) is another human-

engineered, semantically-grounded grammar which has been used in transfer-based

spoken language translation. Other systems contain a hand-written rule-based com-

ponent that transforms syntactic derivations into semantic representations (Bayer

et al., 2004; Bos, 2005). Compared to these systems, the CCG-based parsers by

Zettlemoyer and Collins (2005, 2007) are much easier to maintain, but they still

rely on a small set of hand-written template rules for generating lexical entries,

which can create a knowledge-acquisition bottleneck.

In this chapter, we show that the synchronous parsing framework can be

used to translate NL sentences into logical forms. We extend the SCFG formalism

by adding variable-binding λ-operators to the MR strings. Complete logical forms

are then generated with the lambda calculus (Church, 1940), which is commonly

used to provide a compositional semantics for NLs (Montague, 1970; Steedman,

64

2000). We call the extended grammar formalism a λ-SCFG. We propose a learning

algorithm similar to WASP, which learns a λ-SCFG from a set of training sentences

paired with their correct logical forms, together with parameters that define a log-

linear distribution over parses under the λ-SCFG. We call the extended algorithm

λ-WASP. Experiments show that λ-WASP is currently one of the best-performing

semantic parsing algorithms in the GEOQUERY domain.

4.2 The λ-WASP Algorithm

This section describes the λ-WASP algorithm. We first define the λ-SCFG

formalism (Section 4.2.1). Then we introduce the basic learning algorithm of λ-

WASP (Sections 4.2.2 and 4.2.3). While reasonably effective, it can be further im-

proved through transformation of logical forms (Section 4.2.4) and language mod-

eling (Section 4.2.5).

4.2.1 The λ-SCFG Formalism

To see why it is problematic to use an SCFG to generate logical forms,

consider the formal query in Figure 4.1. The answer to this formal query, which

is the state with the smallest area, is denoted by x1. Accordingly, x1 occurs three

times in this logical form: the first time under the answer predicate, the second

time under state, and the third time under area. An SCFG would generate these

three instances of x1 in three separate steps (Figure 4.2). However, it is very difficult

to model their dependencies because of the context-free assumption of an SCFG.

What this grammar lacks is a principled mechanism for naming logical variables.

To make it possible to model the dependencies between logical variables,

we introduce variable-binding λ-operators to the SCFG formalism. We call the

65

QUERY

What is FORM

the smallest FORM

state

FORM

by area

(a) English

QUERY

answer(x1, FORM

smallest(x2,(FORM

state(x1)

, FORM

area(x1,x2)

))

)

(b) Prolog

Figure 4.2: An SCFG parse for the string pair in Figure 4.1

resulting grammar a λ-SCFG.

Recall that in an SCFG, each rule has the following form:

A→ 〈α, β〉 (4.1)

where A is a non-terminal, α is an NL string, and β is an MRL translation of α.

Both α and β are strings of terminal and non-terminal symbols. In a λ-SCFG, each

rule has the following form:

A→ 〈α, λx1 . . . λxk.β〉 (4.2)

where α is an NL string and β is an MRL translation of α. Unlike (4.1), β is a string

of terminals, non-terminals, and logical variables. The variable-binding operators

λ bind occurrences of the logical variables x1, . . . , xk in β, and make λx1 . . . λxk.β

a λ-function of arity k. When applied to a list of arguments, (xi1 , . . . , xik), the λ-

function gives βσ, where σ is a substitution, {x1/xi1 , . . . , xk/xik}, that replaces all

bound occurrences of xj in β with xij . For example, in the following expression:

(λx1.λx2.area(x1,x2))(x2, x3)

66

λx1.λx2.area(x1,x2) is a λ-function of arity 2 in which occurrences of x1 and

x2 are bound. When applied to (x2, x3), this λ-function gives area(x2,x3).

To avoid accidental binding of variables, if any of the arguments xij appear

in β as a free variable (i.e. not bound by any λ-operators), then those free variables

in β must be renamed before function application takes place. For example, in the

following λ-function:

λx1.(state(x1),next to(x1,x2),equal(x2,stateid(texas)))

x2 is a free variable. It must be renamed to something other than x2 so that this

λ-function can be applied to (x2).

Each non-terminal Aj in β is followed by a list of kj arguments (kj can be

0). During parsing, Aj must be rewritten by a λ-function of arity kj . As with an

SCFG, a derivation starts with a pair of associated start symbols, and it ends when

all non-terminals have been rewritten. For example, Figure 4.3 shows a possible λ-

SCFG parse of the string pair in Figure 4.1. The yield of the MR parse tree (Figure

4.3(b)) is the following expression:

answer(x1,

(λx1.smallest(x2,(

(λx1.state(x1))(x1),

(λx1.λx2.area(x1,x2))(x1, x2)

)))(x1)

)

Each λ-function in this expression is then applied to its corresponding arguments

in a bottom-up manner, resulting in an MR string free of λ-operators with logical

variables properly named. For example, given the above expression, we first ap-

ply λx1.state(x1) to (x1), and λx1.λx2.area(x1,x2) to (x1, x2). This results

67

QUERY

What is FORM

the smallest FORM

state

FORM

by area

(a) English

QUERY

answer(x1, FORM(x1)

λx1.smallest(x2,(FORM(x1)

λx1.state(x1)

, FORM(x1, x2)

λx1.λx2.area(x1,x2)

))

)

(b) Prolog

Figure 4.3: A λ-SCFG parse for the string pair in Figure 4.1

in two MR strings: state(x1) and area(x1,x2). These two strings combine

with λx1.smallest(...) to form a larger λ-function, which is then applied to

(x1). The resulting string, smallest(...), combines with answer(x1,...),

giving the logical form in Figure 4.1.

The following rules can be used to produce the parse trees in Figure 4.3:

QUERY→ 〈 what is FORM 1 , answer(x1,FORM 1 (x1)) 〉

FORM→ 〈 smallest FORM 1 FORM 2 ,

λx1.smallest(x2,(FORM 1 (x1),FORM 2 (x1, x2))) 〉

FORM→ 〈 state , λx1.state(x1) 〉

FORM→ 〈 by area , λx1.λx2.area(x1,x2) 〉

Note that non-terminals in the NL and MR strings in each rule are indexed with

1 , 2 , . . . to show their association. With the λ-operators, now we have a principled

mechanism for naming logical variables across a derivation.

As a side note, the first two rules listed above can be reformulated as fol-

lows:

QUERY→ 〈 what is FORM 1 , λp1.answer(x1,p1(x1)) 〉

FORM→ 〈 smallest FORM 1 FORM 2 ,

λp1.λp2.λx1.smallest(x2,(p1(x1),p2(x1, x2))) 〉

68

In other words, non-terminals in the MR strings can be seen as bound occurrences

of logical variables, pi, that abstract over λ-functions (Dowty et al., 1981, pp. 102–

103). The names of these logical variables correspond to the non-terminal indices

in the NL strings. This notation of higher-order abstraction has been widely used

in the linguistics literature (e.g. Steedman, 2000). However, in this thesis, we will

follow our synchronous grammar formulation of λ-SCFG. The reason is two-fold:

1. The synchronous grammar formulation makes explicit the similarity between

SCFGs and λ-SCFGs. For example, a λ-SCFG degenerates into an SCFG

if none of its rules contain any occurrences of logical variables. As we will

see, the lexical acquisition algorithms for SCFGs and λ-SCFGs are also very

similar.

2. Compared to logical variables, non-terminals can provide additional, domain-

specific type constraints.

We also note that a λ-SCFG can be seen as a generalized context-free gram-

mar (GCFG) (Pollard, 1984), a formalism used by Weir (1988) to characterize

mildly context-sensitive grammars. A GCFG is context-free in the sense that rewrit-

ing choices in a derivation are independent of the derivation history. It can be shown

that this is the case for a λ-SCFG.

The λ-SCFG formalism is also close to LINGOL (Pratt, 1973), a linguistically-

oriented programming language designed for NLP tasks such as machine translation

and semantic parsing. A LINGOL program can be seen as a synchronous grammar,

in which each grammar rule consists of an NL phrase coupled with an arbitrary

LISP S-expression (i.e. a small program). These S-expressions combine to produce

an analysis of a complete sentence. In the λ-SCFG formalism, such expressions are

restricted to be λ-functions which combine solely through function application.

69

answer(x1,count(x2,(state(x2),next to(x2,x3),

most(x3,x4,(state(x3),next to(x3,x4),state(x4)))),x1))

How many states border the state that borders the most states?

Figure 4.4: A Prolog logical form in GEOQUERY and its English gloss

4.2.2 Lexical Acquisition

Given a set of training sentences paired with their correct logical forms,

{〈ei, fi〉}, the first learning task of λ-WASP is to find a λ-SCFG, G, that covers

the training data. Like WASP, we construct G using rules extracted from word

alignments. We illustrate this using Figures 4.4–4.7. The parse tree in Figure 4.5

is obtained using an unambiguous CFG for Prolog logical forms.1 In this grammar,

each production corresponds to a formula. Also a conjunction operator (,) always

combines with its left conjunct to avoid ambiguity in the Prolog grammar. Figure

4.6 shows a sample word alignment from which λ-SCFG rules can be extracted

using the algorithm described in Sections 3.2.1–3.2.3.

However, this results in a λ-SCFG where logical variables are never bound.

Basically, λ-SCFG rules should be extracted from a word alignment based on an

MR parse tree where logical variables are explicitly bound by λ-operators (Figures

4.7 and 4.8).

The transformation from Figure 4.5 to Figure 4.7 is straightforward. It

can be done in a bottom-up manner, starting with MRL productions with no non-

terminals on the RHS, e.g. FORM → state(x4). For each production A → β,

a logical variable xi is bound whenever xi appears in β as well as outside the MR

sub-parse rooted at A. Such logical variables need to be bound because otherwise,

1Although we focus on Prolog logical forms, techniques developed in this chapter should be

applicable to many other logical languages.

70

QUERY

answer(x1, FORM

count(x2,(FORM

state(x2), FORM

next to(x2,x3), FORM

most(x3,x4,(FORM

state(x3), FORM

next to(x3,x4), FORM

state(x4)

))

),x1)

)

Figure 4.5: A parse tree for the logical form in Figure 4.4

they would be renamed during function application, and therefore, become invisible

to the rest of the logical form. Other logical variables need not be bound, e.g. those

that only appear in β but not outside. As we add λxi to β, we also add xi to the

argument list that follows A in the parent MRL production. For example, in Figure

4.5, the logical variable x4 in FORM→ state(x4) needs to be bound because x4

appears under the most and next_to predicates as well. It would also be added

to the argument list that follows FORM in the parent MRL production, resulting in

FORM → next_to(x3,x4),FORM(x4). This procedure continues upward until

the root of the MR parse tree is reached.

Once transformed parse trees are obtained for all logical forms in the train-

ing set, lexical acquisition proceeds as follows: Train a word alignment model, M ,

and a reverse word alignment model, M̃ , using the training set, {〈ei, f
′
i〉}, where f

′
i

71

How

many

states

the

state

that

the

most

?

states

borders

border

QUERY→ answer(x1,FORM)

FORM→ count(x2,(FORM),x1)

FORM→ state(x2),FORM

FORM→ next to(x2,x3),FORM

FORM→ most(x3,x4,(FORM))

FORM→ state(x3),FORM

FORM→ next to(x3,x4),FORM

FORM→ state(x4)

Figure 4.6: A word alignment based on Figures 4.4 and 4.5

are the transformed MR parse trees. During the training of M and M̃ , all lambda ab-

stractions and variable names in logical forms are ignored to reduce sparsity. Obtain

the k-best alignments, a
⋆
1,...,k, and the best reverse alignment, ã

⋆, for each training

example 〈ei, f
′
i〉 using M and M̃ . Remove bad links from each a

⋆
k′ and replenish

the removed links by adding links from ã
⋆ (Section 3.2.3). Then extract λ-SCFG

rules from a
⋆
1,...,k as described in the ACQUIRE-LEXICON procedure (Figure 3.6,

lines 7–13), while merging nodes in the MR parse tree if necessary (Section 3.2.2).

The extracted λ-functions can be normalized through renaming of logical variables,

using a procedure commonly known as α-conversion (Blackburn and Bos, 2005).

4.2.3 Probabilistic Model

Since a learned λ-SCFG can be ambiguous, a probabilistic model is needed

for parse disambiguation. In λ-WASP, we use the same log-linear model as WASP

72

QUERY

answer(x1, FORM(x1)

λx1.count(x2,(FORM(x2)

λx2.state(x2), FORM(x2)

λx2.next to(x2,x3), FORM(x3)

λx3.most(x3,x4,(FORM(x3, x4)

λx3.λx4.state(x3), FORM(x3, x4)

λx3.λx4.next to(x3,x4), FORM(x4)

λx4.state(x4)

))

),x1)

)

Figure 4.7: A parse tree for the logical form in Figure 4.4 with λ-operators

(Section 3.2.4). In summary, the log-linear model defines a conditional probability

distribution over derivations given an input NL sentence, e:

Prλ(d|e) =
1

Zλ(e)
exp

∑

i

λifi(d) (4.3)

The output logical form, f
⋆, is the yield of the most probable derivation consistent

with the input sentence, which can be computed in cubic time with respect to the

sentence length:

f
⋆ = f

(

arg max
d∈D(G|e)

exp
∑

i

λifi(d)

)

(4.4)

The following feature types are used in the log-linear model:

73

How

many

states

the

state

that

the

most

?

states

borders

border

QUERY→ answer(x1,FORM(x1))

FORM→ λx1.count(x2,(FORM(x2)),x1)

FORM→ λx2.state(x2),FORM(x2)

FORM→ λx2.next to(x2,x3),FORM(x3)

FORM→ λx3.most(x3,x4,(FORM(x3, x4)))

FORM→ λx3.λx4.state(x3),FORM(x3, x4)

FORM→ λx3.λx4.next to(x3,x4),FORM(x4)

FORM→ λx4.state(x4)

Figure 4.8: A word alignment based on Figures 4.4 and 4.7

• For each λ-SCFG rule r, there is a feature, fr, that returns the number of

times r is used in a derivation.

• For each NL word w, there is a feature, fw, that returns the number of times

w is generated from word gaps in a derivation.

• Generation of previously unseen words is modeled using an extra feature,

f∗, that returns the total number of words generated from word gaps in a

derivation.

Additional language-modeling features specific to λ-WASP will be introduced in

Section 4.2.5.

The model parameters, λ, are estimated by maximizing the conditional log-

74

likelihood of the training set.2 Details of the parameter estimation algorithm can be

found in Section 3.2.4.

4.2.4 Promoting Parse Tree Isomorphism

In the previous sections, we have described the λ-WASP algorithm in which

logical forms are produced using the lambda calculus. While reasonably effective,

it can be further improved in several ways. In this section, we focus on improving

lexical acquisition.

To see why the current lexical acquisition algorithm can be problematic,

consider the following λ-SCFG rules which would be extracted from the word

alignment in Figure 4.8:

FORM→ 〈 states , λx4.state(x4) 〉

FORM→ 〈 state (1) borders (1) most FORM 1 ,

λx3.most(x3,x4,(state(x3),next_to(x3,x4),

FORM 1 (x4))) 〉

FORM→ 〈 border (1) FORM 1 , λx2.next_to(x2,x3),FORM 1 (x3) 〉

FORM→ 〈 states FORM 1 , λx2.state(x2),FORM 1 (x2) 〉

FORM→ 〈 how many FORM 1 , λx1.count(x2,(FORM 1 (x2)),x1) 〉

QUERY→ 〈 FORM 1 (1) , answer(x1,FORM 1 (x1)) 〉

The second rule is based on the combination of three MRL productions. These pro-

ductions are combined because no rules can be extracted for the production FORM

→ λx3.λx4.next_to(...). This is because the shortest NL substring that cov-

ers the word borders and the argument string states, i.e. borders the most states,

contains the word most, which is linked to an MRL production (most) that is not

2While the use of the symbol λ for log-linear parameters coincides with the use of λ for variable-

binding operators, the meaning of λ should be clear from the context.

75

a descendent of FORM → λx3.λx4.next_to(...) in the MR parse tree. Rule

extraction is forbidden in this case because it would destroy the link between most

and most. Same for the production FORM→ λx3.λx4.state(...). These two

productions are combined with the production for the most predicate through node

merging (Section 3.2.2). Since excessive node merging can lead to rules that are too

specific, causing overfitting, it is desirable to have NL and MR parse trees that are

isomorphic, or close to isomorphic.

As mentioned in Section 3.4, several researchers have proposed syntax-

aware word alignment models to promote tree isomorphism. Here we use a dif-

ferent approach: change the shape of an MR parse tree so that the NL and MR

parse trees are maximally isomorphic. This is possible because the conjunction

operator (,) used in predicate logic is both associative (a,(b,c) = (a,b),c

= a,b,c) and commutative (a,b = b,a).3 Hence, conjuncts can be reordered

and regrouped without changing the meaning of a conjunction. Such conjunct re-

ordering and regrouping changes the shape of an MR parse tree. For example, rule

extraction would be possible if the MR sub-parse for the formula most(...) is

the one shown in Figure 4.9.

We present a method for regrouping conjuncts to promote isomorphism be-

tween NL and MR parse trees. It requires a word alignment as input. This regroup-

ing is done before λ-operators are added (Section 4.2.2). Given a conjunction, it

does the following:

Step 1. Identify the MRL productions that correspond to the conjuncts and the

predicate that takes the conjunction as an argument, and figure them as vertices in

an undirected graph, Γ. For example, in this MR parse tree:

3While our discussion focuses on the conjunction operator, it also applies to other operators that

are associative and commutative, e.g. disjunction.

76

FORM

λx3.most(x3,x4,(FORM(x3, x4)

λx3.λx4.next to(x3,x4), FORM(x3)

λx3.state(x3)

, FORM(x4)

λx4.state(x4)

))

Figure 4.9: An alternative sub-parse for the logical form in Figure 4.4

FORM

most(x3,x4,(FORM

state(x3), FORM

next to(x3,x4), FORM

state(x4)

))

the productions that correspond to the conjuncts are:

FORM→ state(x3)

FORM→ next_to(x3,x4)

FORM→ state(x4)

and the production that corresponds to the predicate that takes the conjunction as

an argument is:

FORM→ most(x3,x4,FORM)

Each of these productions, denoted by pi, is figured as a vertex in the undirected

graph Γ. For convenience, the production that corresponds to the predicate that

takes the conjunction as an argument has a special name, p0.

77

Step 2. Add an edge (pi, pj) to Γ if there exists a logical variable x that appears in

the RHS of both pi and pj . For example, Γ would look like this:

FORM→ state(x3)

FORM→ most(x3,x4,FORM)

FORM→ state(x4)

FORM→ next to(x3,x4)

Each edge in Γ indicates a possible edge in the rearranged MR parse tree. Intu-

itively, two concepts are closely related only if they involve the same logical vari-

ables, and closely-related concepts should be placed close together in the MR parse

tree. By keeping occurrences of a logical variable in close proximity in the MR

parse tree, we also avoid unnecessary variable bindings in the extracted rules.

Step 3. Let s(i, j) be the shortest NL substring that contains all the words that are

linked to pi and pj in the input word alignment. If i, j 6= 0 and s(i, j) contains a

word that is linked to p0, then remove the edge (pi, pj) from Γ. For example, Γ

would look like this given the word alignment in Figure 4.6:

FORM→ state(x3)

FORM→ most(x3,x4,FORM)

FORM→ state(x4)

FORM→ next to(x3,x4)

An edge is removed because the shortest NL substring that contains all the words

that are linked to FORM→ next_to(x3,x4) and FORM→ state(x4), i.e. bor-

ders the most states, contains the word most which is linked to the production

78

FORM → most(x3,x4,FORM). Since FORM → most(x3,x4,FORM) is go-

ing to be the root of the rearranged MR parse tree, an edge between FORM →

next_to(x3,x4) and FORM→ state(x4) would prevent a λ-SCFG rule from

being extracted for either the next_to or state production.

Step 4. To make sure that Γ is a connected graph, add an edge (p0, pi) to Γ if pi is

not already connected to p0 in Γ.

Step 5. Assign edge weights based on word distance. The weight of an edge (pi, pj)

is defined as the minimum distance between the words that are linked to pi and pj .

For example, the edge weights for Γ given the word alignment in Figure 4.6 would

be:

2

4 2

1

FORM→ most(x3,x4,FORM)

FORM→ state(x4)

FORM→ next to(x3,x4)FORM→ state(x3)

The weight of the edge between FORM → most(x3,x4,FORM) and FORM →

state(x3) is 4 because the words most and state are 4 words apart in the sentence.

The other edge weights are assigned in a similar way.

Step 6. Find a minimum spanning tree, T , for Γ. T exists because Γ is a connected

graph (see Step 4). T can be found using Kruskal’s algorithm (Cormen et al., 2001).

Conjuncts will be regrouped based on T . For example, for the weighted graph Γ

shown above, the minimum spanning tree would be:

79

2

2

1

FORM→ most(x3,x4,FORM)

FORM→ state(x4)

FORM→ next to(x3,x4)FORM→ state(x3)

Conjuncts would be regrouped such that there is an edge in the rearranged MR parse

tree between FORM → most(x3,x4,FORM) and FORM → next_to(x3,x4),

and so on. The choice of T reflects the intuition that words that occur close together

in a sentence tend to be semantically related.

Step 7. Finally, using p0 as the root, construct a new MR parse tree based on T .

Add conjunction operators to the productions as necessary.

In summary, conjuncts are regrouped such that concepts that are related are

placed close together in the MR parse tree (Steps 2, 5 and 6). Also the NL and MR

parse trees should be isomorphic if possible (Step 3). This procedure is repeated

for all conjunctions that appear in a logical form.

Lexical acquisition then proceeds as described in Section 4.2.2, using the

same word alignments used for conjunct regrouping. Figure 4.9 shows the rear-

ranged MR parse tree based on the minimum spanning tree shown above, with

λ-operators added. With this MR parse tree, the following λ-SCFG rules would be

extracted:

FORM→ 〈 states , λx4.state(x4) 〉

FORM→ 〈 state , λx3.state(x3) 〉

FORM→ 〈 FORM 1 (1) borders , λx3.λx4.next_to(x3,x4),FORM 1 (x3) 〉

FORM→ 〈 FORM 1 (1) most FORM 2 ,

λx3.most(x3,x4,(FORM 1 (x3, x4),FORM 2 (x4))) 〉

80

These rules are considerably shorter than those shown earlier in this section, and

therefore would generalize better.

Note that the conjunct regrouping procedure requires a good word alignment

to begin with, and this requires a reasonable ordering of conjuncts in the training

data, since the word alignment model (GIZA++) is sensitive to word order. This

immediately suggests an iterative algorithm in which a better grouping of conjuncts

leads to a better alignment model, which is used to guide further regrouping until

convergence. We did not pursue this direction, however, because in the restricted

domain we worked with, GIZA++ seemed to perform quite well without re-training.

4.2.5 Modeling Logical Languages

In this section, we propose two methods for modeling logical languages.

This is motivated by the fact that many of the errors made by the λ-WASP semantic

parser can be detected by inspecting the MRL translations alone. Figure 4.10 shows

some typical errors, which can be classified into two broad categories:

1. Type mismatch errors. For example, a state cannot possibly be a river (Figure

4.10(a)). Also it is awkward to talk about the population density of a state’s

highest point (Figure 4.10(b)).

2. Errors that do not involve type mismatch. For example, a query can be overly

trivial (Figure 4.10(c)), or involve aggregate functions on a known singleton

(Figure 4.10(d)).

The first type of errors can be fixed by type checking. Each m-place pred-

icate is associated with a list of m-tuples showing all valid combinations of entity

types that the m arguments can denote:

81

(a) answer(x1,largest(x2,(state(x1),major(x1),river(x1),

traverse(x1,x2))))

What is the entity that is a state and also a major river, that traverses some-

thing that is the largest?

(b) answer(x1,smallest(x2,(highest(x1,(place(x1),

loc(x1,x3),state(x3))),density(x1,x2))))

Among the highest points of all states, which one has the lowest population

density?

(c) answer(x1,equal(x1,stateid(alaska)))

Alaska?

(d) answer(x1,largest(x2,(largest(x1,(state(x1),

next to(x1,x3),state(x3))),population(x1,x2))))

Among the largest state that borders some other state, which is the one with

the largest population?

Figure 4.10: Typical errors made by λ-WASP with English interpretations

point(_): {(POINT)}

density(_,_): {(COUNTRY, NUM), (STATE, NUM), (CITY, NUM)}

These m-tuples of entity types are given as domain knowledge.4 The parser main-

tains a set of possible entity types for each logical variables introduced in a par-

tial derivation (except those that are no longer visible). If there is a logical vari-

able that cannot denote any type of entity (i.e. its set of entity types is empty),

then the partial derivation is considered invalid. For example, based on the tuples

shown above, point(x1) and density(x1,_) cannot be both true, because

{POINT} ∩ {COUNTRY, STATE, CITY} = ∅. The use of type checking is to exploit

4Note that the same entity type information is encoded in the non-terminal symbols in FUNQL

(Appendix A.2), so this is not additional domain knowledge compared to what is used in WASP.

82

the fact that people tend not to ask questions that obviously have no valid answers

(Grice, 1975). It is also similar to Schuler’s (2003) use of model-theoretic interpre-

tations to guide syntactic parsing.

Errors that do not involve type mismatch are handled by adding new features

to the log-linear model (Section 4.2.3). We only consider features that are based

on the MRL translations, and therefore, these features can be seen as an implicit

language model of the target MRL (Papineni et al., 1997). Of the many feature

types that we have tried, one feature type stands out as being the most effective,

namely the two-level rules in Collins and Koo (2005), which gives the number of

times a given rule is used to rewrite a non-terminal in a given parent rule. We use

only the MRL part of the rules. For example, a negative weight for the combination

of QUERY→ answer(x1,FORM(x1)) and FORM→ λx1.equal(x1,_) would

discourage any parse that yields Figure 4.10(c). The two-level-rules features, along

with the features described in Section 4.2.3, are used in the final version of λ-WASP.

4.3 Experiments

In this section, we describe our experiments on λ-WASP and analyze the

experimental results.

4.3.1 Data Sets and Methodology

We evaluated λ-WASP in the GEOQUERY domain, using the same data set

that we used for evaluating WASP (Section 3.3.1). We used the original Prolog

logical forms, and Table 4.1 shows the corpus statistics.

We performed standard 10-fold cross validation in our experiments, using

precision, recall and F-measure as the evaluation metrics (Equations 3.7–3.9). We

83

GEOQUERY

MRL Prolog

non-terminals 14

productions 50

examples 250 880

NL English Spanish Japanese Turkish English

Avg. sent. length 6.87 7.39 9.11 5.76 7.57

unique words 165 159 158 220 280

Table 4.1: Corpora used for evaluating λ-WASP

supplied the same set of initial rules to the learned semantic parsers as described in

Section 3.3.2. These initial rules represent knowledge needed for translating basic

domain entities, such as city names and river names.

4.3.2 Results and Discussion

Table 4.2 shows the performance of λ-WASP on the GEOQUERY 880 data

set with full training data, compared to WASP and three other algorithms:

• KRISP (Kate and Mooney, 2006), an SVM-based parser using string kernels.

• SCISSOR (Ge and Mooney, 2006), a combined syntactic-semantic parser with

discriminative reranking.

• Zettlemoyer and Collins (2007) (abbreviated as ZC07), a probabilistic parser

based on relaxed CCG grammars.

We restrict our comparison to these three algorithms because they were shown to

outperform WASP in the GEOQUERY domain in Section 3.3.3. Both λ-WASP and

ZC07 use Prolog logical forms as the target MRL. The other systems, WASP, KRISP

84

GEOQUERY (880 data set)

Prec. (%) Rec. (%) F (%)

λ-WASP 92.0 86.6 89.2

WASP 87.2 74.8 80.5

KRISP 93.3 71.7 81.1

SCISSOR 95.5 77.2 85.4

ZC07 95.5 83.2 88.9

Table 4.2: Performance of λ-WASP on the GEOQUERY 880 data set

and SCISSOR, use the functional query language FUNQL developed for the GEO-

QUERY domain (Appendix A.2). The best-performing systems are shown in bold

in Table 4.2.5 Figure 4.11 shows the precision and recall learning curves.

A few observations can be made. First, algorithms that use Prolog logical

forms as the target MRL generally show better recall than those using FUNQL. In

particular, λ-WASP has the best recall among all systems. The main reason is that

λ-WASP allows lexical items to be combined in ways not allowed by FUNQL or the

hand-written template rules in ZC07. For example, under FUNQL and ZC07, it is

impossible to combine the most predicate with its arguments as illustrated in Fig-

ure 4.9. Nor is it possible to combine the smallest predicate with its arguments

as illustrated in Figure 4.3(b). These examples show that λ-WASP is more flexible

and can handle a wider variety of logical forms than previous approaches. Despite

its slightly lower precision compared to KRISP, SCISSOR and ZC07, λ-WASP has

the best F-measure overall in the GEOQUERY domain.

To see the relative importance of each component of the λ-WASP algorithm,

we performed two ablation studies. First, we compared the performance of λ-WASP

5As with Table 3.2, no statistical test was performed.

85

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

P
re

c
is

io
n

 (
%

)

Number of training examples

lambda-WASP
WASP
KRISP

SCISSOR
ZC07

(a) Precision

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

R
e

c
a

ll
(%

)

Number of training examples

lambda-WASP
WASP
KRISP

SCISSOR
ZC07

(b) Recall

Figure 4.11: Learning curves for λ-WASP on the GEOQUERY 880 data set

86

GEO 880

(%) Prec. Rec.

λ-WASP 91.95 86.59

w/o conj. regrouping 90.73 83.07

GEO 880

(%) Prec. Rec.

λ-WASP 91.95 86.59

w/o two-level rules 88.46 84.32

and w/o type checking 65.45 63.18

Table 4.3: Performance of λ-WASP with different components removed

with and without conjunct regrouping (Section 4.2.4). Second, we compared the

performance of λ-WASP with and without language modeling for the target logical

language (Section 4.2.5). Table 4.3 shows the results on the GEOQUERY 880 data

set. Using paired t-tests to determine statistical significance, we found that con-

junct regrouping improves recall significantly (p < 0.01), and the use of two-level-

rules features in the probabilistic model improves precision and recall (p < 0.05).

Type checking also significantly improves precision and recall (p < 0.001). The

best-performing systems, as well as those systems whose performance shows no

significant difference, are shown in bold in Table 4.3.

A major advantage of λ-WASP over SCISSOR and ZC07 is that it does not

require any prior knowledge of the NL syntax. Hence it is straightforward to apply

λ-WASP to other NLs for which training data is available. Table 4.4 shows the

performance of λ-WASP on the multilingual GEOQUERY data set. It shows that λ-

WASP performed comparably for all four NLs being considered: English, Spanish,

Japanese and Turkish. It achieved the same level of precision as WASP (differences

are not statistically significant based on paired t-tests). For Spanish and Japanese,

λ-WASP has better recall and F-measure than WASP (p < 0.05). Figure 4.12 shows

the precision and recall learning curves for λ-WASP on the multilingual GEOQUERY

data set.

87

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

P
re

c
is

io
n

 (
%

)

Number of training examples

English
Spanish

Japanese
Turkish

(a) Precision

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

R
e

c
a

ll
(%

)

Number of training examples

English
Spanish

Japanese
Turkish

(b) Recall

Figure 4.12: Learning curves for λ-WASP on the multilingual GEOQUERY data set

88

λ-WASP WASP

Prec. (%) Rec. (%) F (%) Prec. (%) Rec. (%) F (%)

English 91.76 75.60 82.90 95.42 70.00 80.76

Spanish 92.48 80.00 85.79 91.99 72.40 81.03

Japanese 90.99 81.20 85.82 91.98 74.40 82.86

Turkish 90.36 68.80 78.12 96.96 62.40 75.93

Table 4.4: Performance of λ-WASP on the multilingual GEOQUERY data set

4.4 Chapter Summary

In this chapter, we described the λ-WASP semantic parsing algorithm, an

extended version of WASP which handles MRLs containing logical variables, such

as predicate logic. Underlying λ-WASP is the λ-SCFG formalism, which generates

logical forms using the lambda calculus. We described a learning algorithm similar

to WASP, whose output is a λ-SCFG, together with parameters that define a log-

linear distribution over parses. We further refined the learning algorithm through

transformation of logical forms and language modeling for target MRLs. Using

the same amount of supervision, λ-WASP significantly outperforms WASP, and is

currently one of the best semantic parsing algorithms in the GEOQUERY domain.

89

Chapter 5

Natural Language Generation with Machine

Translation

This chapter explores a different task from semantic parsing, namely natural

language generation. We focus on the sub-task of tactical generation, in which state-

ments written in a formal MRL are mapped into NL sentences (Wong and Mooney,

2007a). We show that an effective tactical generation system can be obtained by in-

verting the WASP semantic parsing algorithm (Chapter 3). Our approach allows the

same learned synchronous grammar to be used for both parsing and generation. In

this chapter, we consider variable-free MRLs such as FUNQL and CLANG (Section

2.1). Generation from logical forms will be discussed in Chapter 6.

5.1 Motivation

Traditionally, there are several NLP tasks that involve the generation of NL

sentences, e.g. natural language generation, machine translation, text summariza-

tion, and dialog systems. The goal of natural language generation (NLG) is to pro-

duce NL sentences from computer-internal representations of information. NLG

can be divided into two sub-tasks: (1) strategic generation, which decides what

meanings to express, and (2) tactical generation, which generates NL sentences

that express those meanings. This chapter is concerned with the latter task of tacti-

cal generation. In this work, we assume that statements written in a formal MRL,

produced by an external content planner, are given to a tactical generator as input.

90

As with NLG, the task of machine translation (MT) involves the generation

of NL sentences. NLG is mainly associated with MT in the context of interlingual

and transfer-based MT, where an NLG component is used to generate the target

language from abstract meaning representations (Wilks, 1973; Nyberg and Mita-

mura, 1992; Gao et al., 2006). Despite their similar goals, there has been little, if

any, research on exploiting recent MT methods for NLG. Specifically, it is easy to

use statistical MT to construct a tactical generator, given a corpus of NL sentences

coupled with their MRs. In this chapter, we present results on using a recent phrase-

based statistical MT system, PHARAOH (Koehn et al., 2003), for NLG. Although

moderately effective, the inability of PHARAOH to exploit the formal structure and

grammar of the MRL limits its accuracy. Unlike natural languages, MRLs typi-

cally have a simple, formal syntax to support effective automated processing and

inference. This MRL structure can also be used to improve language generation.

Tactical generation can also be seen as the inverse of semantic parsing. In

this chapter, we show how to invert the WASP semantic parsing algorithm to pro-

duce a more effective generation system. As shown in Chapter 3, WASP exploits the

formal syntax of the MRL by learning a translator based on an SCFG that maps an

NL sentence to an MR parse tree rather than to a flat MR string. In addition to ex-

ploiting the formal MRL grammar, our approach also allows the same learned gram-

mar to be used for both parsing and generation, an elegant property that has been

widely advocated (Section 2.3.1). We call our new generation algorithm WASP
−1.

While reasonably effective, both PHARAOH and WASP
−1 can be substan-

tially improved by borrowing ideas from each other. In subsequent sections, we

show how the idea of generating from MR parse trees rather than flat MRs, used

effectively in WASP
−1, can also be exploited in PHARAOH. A version of PHARAOH

that exploits this approach is experimentally shown to produce more accurate gen-

91

erators that are more competitive with WASP
−1’s. We also show how aspects of

PHARAOH’s phrase-based model can be used to improve WASP
−1, resulting in a

hybrid system whose performance is the best.

Overall, we show that effective tactical generation systems can be obtained

by exploiting statistical MT methods. This is achieved by treating tactical gener-

ation as a language translation task in which formal MRs are translated into NL

sentences. Furthermore, we show that tactical generation can be formalized as syn-

chronous parsing (Section 2.4), as is the case with semantic parsing and MT.

5.2 Generation with Statistical Machine Translation

In this section, we show how statistical MT methods can be used to con-

struct tactical generators. We first describe a tactical generation algorithm based on

PHARAOH, a phrase-based statistical MT system (Section 5.2.1). Then we intro-

duce WASP
−1 (Section 5.2.2), a tactical generation algorithm which is the inverse

of the WASP semantic parsing algorithm.

We consider source MRLs that are variable-free. We also assume that the

order in which MR symbols appear is relevant, i.e. the order can affect the meaning

of the MR. Note that the order in which MR symbols appear need not be the same

as the word order of the target NL, and therefore, the content planner need not know

about the target NL grammar (Shieber, 1993).

To ground our discussion, we consider two domains previously used to test

WASP’s semantic parsing ability, namely GEOQUERY and ROBOCUP (Section 2.1).

In the GEOQUERY domain, the task is to translate formal queries into NL queries.

Figure 5.1(a) shows a sample formal query and its English translation. In the

ROBOCUP domain, the task is to translate formal advice given to soccer-playing

92

answer(state(traverse 1(riverid(’ohio’))))

What states does the Ohio run through?

(a) A formal query written in FUNQL

((bowner our {4}) (do our {6} (pos (left (half our)))))

If our player 4 has the ball, then our player 6 should stay in the left side of our half.

(b) A piece of formal advice written in CLANG

Figure 5.1: Sample meaning representations and their English glosses

agents into English. Figure 5.1(b) shows a piece of sample advice and its English

translation. Such generation systems can be useful in the parse disambiguation

scenario: If a semantic parser finds its NL input ambiguous and produces multiple

alternative formal interpretations, the competing interpretations can be paraphrased

back into NL through a tactical generator, so that the user can pick a correct inter-

pretation based on the NL translations. The chosen interpretation can then be used

for further processing. It can also be used as a new training example to improve the

semantic parser.

5.2.1 Generation Using PHARAOH

We start with a generation system based on PHARAOH. PHARAOH (Koehn

et al., 2003) is a statistical MT system that uses phrases as basic translation units.

During decoding, the source sentence is segmented into a number of sequences of

consecutive words (or phrases). These phrases are then reordered and translated

into phrases in the target language, which are joined together to form the output

sentence. Compared to earlier word-based methods such as IBM Models (Section

2.5.1), phrase-based methods such as PHARAOH are much more effective in produc-

ing idiomatic translations, and are currently among the best-performing methods in

statistical MT (Koehn and Monz, 2006).

93

A main component of PHARAOH is a lexicon consisting of bilingual phrase

pairs. These phrase pairs are extracted from a training corpus of sentences coupled

with their translations. Using GIZA++, the best word alignments for each training

example are first obtained (Section 2.5.1). A lexicon is then formed by collecting

all phrase pairs that are consistent with these word alignments.

To discriminate good translations from bad ones, PHARAOH uses a log-

linear model that defines a conditional probability distribution over translations:

Prλ(e|f) ∝ Pr(e)λ1

I
∏

i=1

(

P (f̄i|ēi)
λ2P (ēi|f̄i)

λ3Pw(f̄i|ēi)
λ4Pw(ēi|f̄i)

λ5

d(i− 1, i)λ6 exp(−|ēi|)
λ7 exp(−1)λ8

)

(5.1)

where f is an input sentence, and e is a translation of f . Pr(e) is the language model.

ēi and f̄i are the phrases that comprise e and f . P (ē|f̄) and P (f̄ |ē) are the relative

frequencies of ē and f̄ , and Pw(ē|f̄) and Pw(f̄ |ē) are the lexical weights (Koehn

et al., 2003). The distortion model, d(i, j), gives the cost of phrase reordering

based on the distance between the i-th and j-th phrases. Both the word penalty,

exp(−|ē|), and the phrase penalty, exp(−1), allow some control over the output

translation length. The model parameters, λ, are trained using minimum error-rate

training (Och, 2003). The output translation, e⋆, given an input sentence, f , is:

e
⋆ = arg max

e

Prλ(e|f) (5.2)

This can be efficiently approximated through beam search.

To use PHARAOH for tactical generation, we simply treat the source MRL

as an NL, so that phrases in the MRL are sequences of consecutive MR symbols.

Figure 5.2 illustrates the generation process. Note that the grammaticality of MRs

is not an issue here, since they are given as input and are guaranteed to be gram-

matical.

94

(

state

(

traverse 1

(

riverid

answer

(

’

ohio

’

)

)

)

)

states

What

through

?

Ohio

the

run

does

Figure 5.2: Generation using PHARAOH

5.2.2 WASP
−1: Generation by Inverting WASP

Tactical generation can be seen as the inverse of semantic parsing. In this

section, we show how to invert the WASP semantic parsing algorithm to produce

WASP
−1, and use it for tactical generation.

Recall that in WASP, the semantic parsing problem is formulated as a lan-

guage translation task, where NL sentences are translated into formal MRs using

an SCFG. Since an SCFG is fully symmetric with respect to both generated strings,

it can also serve as the underlying formalism for generation. Figure 5.3 gives an

overview of the WASP
−1 algorithm. The shaded boxes show the components of the

algorithm that are different from WASP (cf. Figure 3.3). Since WASP and WASP
−1

95

Training

Testing

MRL grammar G′

Training set {〈ei, fi〉}

Lexical acquisition

SCFG G

MR string f Output NL translation e
⋆

Weighted SCFG G

Language model Pr(e)

Tactical generation

Parameter estimation

Figure 5.3: Overview of the WASP
−1 tactical generation algorithm

share the same grammar, the lexical acquisition component is the same for both

algorithms. However, as we will see shortly, the probabilistic model of WASP
−1 is

different from WASP, and as a result, WASP
−1 uses a slightly different decoder.

Given an input MR, f , WASP
−1 finds a sentence e that maximizes the condi-

tional probability Pr(e|f). It is difficult to directly model Pr(e|f), however, because

it has to assign probabilities to output sentences that are not grammatical. There is

no such requirement for semantic parsing with WASP, because the use of the MRL

grammar ensures the grammaticality of all MRL translations. For generation, it is

often hard to judge the grammaticality of an output sentence due to the inherent

complexity of natural languages.

This motivates the noisy-channel framework for WASP
−1, where Pr(e|f) is

96

divided into two smaller components that are easier to model:

e
⋆ = arg max

e

Pr(e|f) = arg max
e

Pr(e) Pr(f |e) (5.3)

In this framework, Pr(e) is the language model, and Pr(f |e) is the translation

model. The generation task is to find an output NL translation, e
⋆, such that (1)

it is a good sentence a priori, and (2) it preserves the meaning of the input MR. For

the language model, we use an n-gram model, which has been found very useful in

ranking candidate generated sentences (Knight and Hatzivassiloglou, 1995; Banga-

lore et al., 2000; Langkilde-Geary, 2002). For the translation model, we re-use the

log-linear model of WASP (Equation 3.4). Hence computing e
⋆ means maximizing

the following:

max
e

Pr(e) Pr(f |e)

≈ max
d∈D(G|f)

Pr(e(d)) Prλ(d|e(d))

= max
d∈D(G|f)

Pr(e(d)) · exp
∑

i λifi(d)

Zλ(e(d))
(5.4)

where D(G|f) is the set of all derivations that are consistent with f under an SCFG,

G, and e(d) is the output sentence that a derivation d yields. The second line is

due to the assumption that Pr(f |e) =
∑

d∈D(G|f) Pr(d|e) is approximated by the

Viterbi likelihood, maxd∈D(G|f) Pr(d|e).

Learning under the noisy-channel framework thus involves two steps. First,

a back-off n-gram language model with Good-Turing discounting and no lexical

classes1 is built from the training sentences using the SRILM toolkit (Stolcke, 2002).

We use n = 2 since higher values seemed to cause overfitting in our experiments.

Then a translation model is trained as described in Section 3.2.

1This is to ensure that the same language model is used in all systems that we tested.

97

If

our

player

4

has

the

ball

CONDITION→ (bowner TEAM {UNUM})

RULE→ (CONDITION DIRECTIVE)

TEAM→ our

UNUM→ 4

Figure 5.4: A word alignment between English and CLANG (cf. Figure 3.5)

Compared to most existing work on generation, WASP
−1 has the following

characteristics:

1. It does not require any lexical information in the input MR, so lexical selec-

tion is an integral part of the decoding algorithm.

2. A lexical item may consist of multiple words. Moreover, it can be discon-

tiguous.

The second characteristic is evident when we consider the following SCFG rule,

which can be extracted from the word alignment in Figure 3.5, which is reproduced

here in Figure 5.4 for convenience:

CONDITION→ 〈 TEAM 1 player UNUM 2 has (1) ball ,

(bowner TEAM 1 {UNUM 2}) 〉

In this SCFG rule, the NL string contains a sequence of non-consecutive words, as

in our player 4 has the ball. This lexical item is therefore discontiguous.

For decoding, we use an Earley chart generator that scans the input MR

from left to right. This is possible because it is assumed that the order in which

98

MR symbols appear is fixed, i.e. the order determines the meaning of the MR.2

Hence the chart generator is very similar to the chart parser in WASP, except for the

following:

1. To facilitate the computation of the language model, chart items now include

a list of (n − 1)-grams that encode the context in which output NL phrases

appear. The size of the list is 2N +2, where N is the number of non-terminals

to be rewritten in the partial derivation.

2. Words are generated from word gaps through special rules (g) → 〈α, ∅〉,

where the word gap, (g), of size g is treated as a non-terminal, and α is the

NL string that fills the gap (|α| ≤ g). The empty set symbol indicates that

the gap filler does not carry any meaning. There are similar constructs in

Carroll et al. (1999) for generating function words. Furthermore, to improve

efficiency, the WASP
−1 generator only considers gap fillers that have been

observed during training.

3. The normalizing factor in (5.4), Zλ(e(d)), is not a constant and varies across

NL translations, e(d). (Note that Zλ(e) is constant for semantic parsing be-

cause e is given as input.) This is unfortunate because the calculation of

Zλ(e(d)) is expensive, and is not easy to incorporate into the chart genera-

tion algorithm. Decoding is thus performed through the following approx-

imation: First, compute the k-best candidate NL translations based on the

unnormalized version of (5.4), Pr(e(d)) · exp
∑

i λifi(d). Then re-rank the

list by normalizing the scores using Zλ(e(d)), which is obtained by running

2See Chapter 6 where this assumption no longer holds.

99

the inside-outside algorithm on each NL translation. This results in a decod-

ing algorithm that takes cubic time with respect to the length of each of the k

candidate NL translations (k = 100 in our experiments).3

5.3 Improving the MT-based Generators

The MT-based generation algorithms, PHARAOH and WASP
−1, while rea-

sonably effective, can be substantially improved by borrowing ideas from each

other. This section describes the two resulting hybrid systems, PHARAOH++ (Sec-

tion 5.3.1) and WASP
−1++ (Section 5.3.2).

5.3.1 Improving the PHARAOH-based Generator

A major weakness of PHARAOH as an NLG system is its inability to exploit

the formal structure of the MRL. As with WASP
−1, the lexical acquisition algorithm

of PHARAOH is based on the output of a word alignment model such as GIZA++,

which performs poorly when applied directly to MRLs due to a large amount of

semantically vacuous MR symbols (see Section 3.2.1).

We can improve the PHARAOH-based generator by supplying linearized MR

parse trees as input rather than flat MR strings. As a result, the basic translation

units are sequences of consecutive MRL productions in a linearized MR parse tree

rather than sequences of consecutive symbols in an MR string. The same idea is

used in WASP
−1 to produce high-quality SCFG rules. We call the resulting hy-

3This k-best approximation can be avoided by choosing a formulation of Pr(e|f) other than the

noisy channel, e.g. Pr(e(d)) Prλ(d|f). The latter probability can be computed using a log-linear

model trained with an optimization criterion similar to Equation 3.6. Also Wu and Wong (1998)

point out that normalization of the translation model may not be necessary when there is a strong

language model. However, our experiments showed that normalization was necessary for WASP−1

to achieve good performance.

100

states

What

through

?

Ohio

the

run

does

RIVERNAME→ ’ohio’

RIVER→ riverid(RIVERNAME)

STATE→ traverse 1(RIVER)

STATE→ state(STATE)

QUERY→ answer(STATE)

Figure 5.5: Generation using PHARAOH++

brid NLG system PHARAOH++. Figure 5.5 illustrates the generation process of

PHARAOH++.

5.3.2 Improving the WASP
−1 Algorithm

There are several aspects of PHARAOH that can be used to improve WASP
−1.

First, the probabilistic model of WASP
−1 is less than ideal as it requires an extra re-

ranking step for normalization, which is expensive and prone to over-pruning. To

remedy this situation, we can borrow the log-linear model of PHARAOH, and define

the conditional probability of a derivation, d, given an input MR string, f , as:

Prλ(d|f) ∝ Pr(e(d))λ1

∏

d∈d

wλ(r(d)) (5.5)

where
∏

d∈d
wλ(r(d)) is the product of the weights of the SCFG rules used in a

derivation d. The weight wλ of an SCFG rule is in turn defined as:

wλ(A→ 〈α, β〉) = P (β|α)λ2P (α|β)λ3Pw(β|α)λ4Pw(α|β)λ5 exp(−|α|)λ6 (5.6)

101

where the relative frequencies, P , and lexical weights, Pw, are defined analogously

to Equation 5.1. The word penalty, exp(−|α|), offers a way to control the output

sentence length. The output NL translation, e
⋆, is then the sentence that the most

probable derivation consistent with f yields:

e
⋆ = e

(

arg max
d∈D(G|f)

Prλ(d|f)

)

(5.7)

An advantage of this formulation of e
⋆ is that its computation requires no normal-

ization and can be done exactly and efficiently. Also the model parameters λ are

trained such that the BLEU score of the training set is directly maximized (Och,

2003). BLEU is a standard evaluation metric in the MT literature for assessing

sentence fluency (Papineni et al., 2002).4 Compared to the maximum conditional

likelihood criterion used in WASP
−1, the maximum BLEU criterion is more strongly

correlated with translation quality.

Following the phrase extraction algorithm in PHARAOH, we eliminate word

gaps by incorporating unaligned words as part of the extracted NL strings. For

example, given the word alignment in Figure 5.4, the following SCFG rule would be

extracted instead of the one shown in Section 5.2.2, by incorporating the unaligned

word the into the NL string:

CONDITION→ 〈 TEAM 1 player UNUM 2 has the ball ,

(bowner TEAM 1 {UNUM 2}) 〉

The reason for eliminating word gaps is that while they are useful in dealing with

unknown phrases during semantic parsing, for generation, using known phrases is

generally preferred because it leads to better fluency. For a similar reason, we also

allow the extraction of SCFG rules that are combinations of shorter SCFG rules.

4See Section 5.4.2 for a more detailed description of BLEU.

102

In other words, the extracted rules are not restricted to the shortest ones that cover

the training set. This is because using known combinations of shorter phrases can

lead to better fluency. For example, given the word alignment in Figure 5.4, rules

would be extracted not only for individual MRL productions such as TEAM →

our and UNUM → 4, but also for combinations of productions such as CONDI-

TION → (bowner our {UNUM}) and RULE → ((bowner our {UNUM})

DIRECTIVE). In this work, we restrict the number of productions being combined

to be no more than 5.

The new hybrid system is called WASP
−1++. The main difference between

PHARAOH++ and WASP
−1++ is that while PHARAOH++ only allows contiguous

lexical items, WASP
−1++ also allows discontiguous lexical items. WASP

−1++ is

also similar to the syntax-based MT system of Chiang (2005), which is based on

an SCFG with PHARAOH’s probabilistic model. The main differece is that we use

the MRL grammar to constrain rule extraction, so that significantly fewer rules are

extracted, leading to a learned grammar with much less ambiguity.

5.4 Experiments

This section describes the experiments that were performed to evaluate the

four MT-based NLG systems that we introduced in this chapter, namely PHARAOH,

WASP
−1, PHARAOH++, and WASP

−1++. We first present results from the automatic

evauation (Section 5.4.2), followed by results from the human evaluation (Section

5.4.3). Then we show the experimental results on a multilingual data set (Section

5.4.4).

103

5.4.1 Data Sets

We evaluated the NLG systems in the GEOQUERY and ROBOCUP domains.

The experimental results are based on the same corpora that were used for evalu-

ating the WASP semantic parsing algorithm. In summary, the GEOQUERY corpus

consists of 880 formal queries written in the functional query language FUNQL,

along with their English translations. 250 of these queries were also annotated with

Spanish, Japanese, and Turkish translations. The average sentence length for the

880-example English data set is 7.57 words. The ROBOCUP corpus consists of 300

pieces of coaching advice written in CLANG, along with their English translations.

The average sentence length for the 300-example data set is 22.52 words. For the

detailed corpus statistics, please refer to Table 3.1.

For each domain, there is a minimal set of lexical items representing knowl-

edge needed for translating basic domain entities (Section 3.3.2). For GEOQUERY,

the domain entities are various place names. For ROBOCUP, the domain entities

are numbers and identifiers. Lexical items representing these domain entities are

supplied to the MT-based generators as follows. For the PHARAOH-based genera-

tors, these lexical items are appended to the training set as separate sentence pairs,

where each sentence pair corresponds to one domain entity. This method has been

widely used in the statistical MT community for incorporating bilingual dictionaries

as an additional knowledge source (Brown et al., 1993a; Och and Ney, 2000). For

the WASP-based generators, these lexical items come in the form of SCFG rules,

which are always included in the lexicon.

5.4.2 Automatic Evaluation

We performed 4 runs of standard 10-fold cross validation, and measured

the performance of the learned generators using the BLEU score (Papineni et al.,

104

2002) and the NIST score (Doddington, 2002). Both automatic evaluation metrics

approximate human assessment by comparing candidate translations with reference

translations. Specifically, the BLEU score is the geometric mean of the precision of

n-grams of various lengths, multiplied by a brevity penalty factor, BP, that penalizes

candidate translations shorter than the reference translations:

BLEU = BP · exp
N
∑

n=1

log pn

N
(5.8)

Here N = 4, and pn denotes the n-gram precision of candidate translations (i.e. the

proportion of n-grams that they share with the reference translations).5 The NIST

score is also based on n-gram co-occurrences, but it weighs more heavily those n-

grams that occur less frequently (and hence are more informative). Also it uses an

alternative brevity penalty factor, BP′, that minimizes the impact of small variations

in the length of candidate translations (but penalizes large variations more heavily):

NIST = BP′ ·
N
∑

n=1

p′n (5.9)

Here N = 5, and p′n denotes the weighted n-gram precision of candidate transla-

tions. BLEU and NIST are standard evaluation metrics in the MT literature (e.g. Koehn

and Monz, 2006; NIST, 2006). Both of them have recently been used for evaluat-

ing NL generators (Langkilde-Geary, 2002; Nakanishi et al., 2005; Belz and Reiter,

2006).

5Each candidate translation may correspond to multiple reference translations, in which case the

n-gram precision would increase. In the GEOQUERY corpus, some sentences are mapped to the same

formal queries, so it is possible to supply multiple reference translations for each test example. We

only used one reference translation per example, however, because n-to-1 mappings are relatively

few, and the NIST MT evaluation script which we used only allows a constant number of reference

translations for all test examples.

105

GEOQUERY 880 ROBOCUP

BLEU NIST BLEU NIST

PHARAOH 0.2070 3.1478 0.3247 5.0263

WASP
−1 0.4582 5.9900 0.4357 5.4486

PHARAOH++ 0.5354 6.3637 0.4336 5.9185

WASP
−1++ 0.5370 6.4808 0.6022 6.8976

Table 5.1: Automatic evaluation results for NL generators on the English corpora

GEOQUERY (880 data set) ROBOCUP

PHARAOH 0.1 s 0.7 s

WASP
−1 2.4 s 49.7 s

PHARAOH++ 0.03 s 0.1 s

WASP
−1++ 0.7 s 8.2 s

Table 5.2: Average time needed for generating one test sentence

Table 5.1 presents the automatic evaluation results. The best-performing

systems for each domain are shown in bold, where paired t-tests are used to deter-

mine statistical significance. Figures 5.6 and 5.7 show the BLEU and NIST learning

curves for PHARAOH++ and WASP
−1++ (based on a single run of 10-fold cross

validation).

A few observations can be made. First, WASP
−1 produced more accurate

NL generators than PHARAOH (p < 0.001). Second, PHARAOH++ significantly

outperformed PHARAOH (p < 0.001). Both observations show the importance of

exploiting the formal structure of the MRL. Third, WASP
−1++ significantly outper-

formed WASP
−1 (p < 0.001). Much of the gain came from PHARAOH’s probabilis-

tic model. Decoding was also much faster (Table 5.2), despite exact inference and

a larger grammar due to the extraction of longer SCFG rules.

Note that WASP
−1++ significantly outperformed PHARAOH++ with full train-

106

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600 700 800 900

B
L

E
U

 s
c
o

re

Number of training examples

PHARAOH++
WASP-inverse++

(a) BLEU score

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600 700 800 900

N
IS

T
 s

c
o

re

Number of training examples

PHARAOH++
WASP-inverse++

(b) NIST score

Figure 5.6: Learning curves for NL generators on the GEOQUERY 880 data set

107

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300

B
L

E
U

 s
c
o

re

Number of training examples

PHARAOH++
WASP-inverse++

(a) BLEU score

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300

N
IS

T
 s

c
o

re

Number of training examples

PHARAOH++
WASP-inverse++

(b) NIST score

Figure 5.7: Learning curves for NL generators on the ROBOCUP data set

108

Reference: If our player 2, 3, 7 or 5 has the ball and the ball is close to our goal

line ...

PHARAOH++: If player 3 has the ball is in 2 5 the ball is in the area near our goal

line ...

WASP
−1++: If players 2, 3, 7 and 5 has the ball and the ball is near our goal line

...

Figure 5.8: Partial NL generator output in the ROBOCUP domain

ing data in the ROBOCUP domain (p < 0.001). This is because WASP
−1++ allows

discontiguous lexical items whereas PHARAOH++ does not. Such lexical items are

commonly used in ROBOCUP for constructions like: players 2 , 3 , 7 and 5 (Figure

5.8); 26.96% of the lexical items that WASP
−1++ used during testing were discon-

tiguous. When faced with such cases, PHARAOH++ would consistently omit some

of the words (e.g. players 2 3 7 5), or not learn any phrases for those constructions

at all. As a result, given some input MRs, PHARAOH++ would fail to find fluent

NL translations that preserve their meanings (Figure 5.8). On the other hand, for

GEOQUERY, only 4.47% of the lexical items that WASP
−1++ used during testing

were discontiguous, so the advantage of WASP
−1++ over PHARAOH++ was not as

obvious (p < 0.01 for NIST, no significant difference for BLEU).

With limited training data, PHARAOH++ outperformed WASP
−1++ for both

GEOQUERY and ROBOCUP domains (Figures 5.6 and 5.7). The reason is two-

fold. First, PHARAOH++ learned simpler models than WASP
−1++ by restricting

all lexical items to be contiguous. Second, PHARAOH++ had better coverage than

WASP
−1++ given small training sets, i.e. more test examples received NL transla-

tions under PHARAOH++ than WASP
−1++ (Figure 5.9). This is because previously

unseen MR predicates, left untranslated, are included in the output of PHARAOH++,

ensuring 100% coverage. In contrast, WASP
−1 would fail to produce any NL trans-

lations if there is any previously unseen predicate in an input MR, leading to high

109

brevity penalty in the BLEU and NIST scores (especially for NIST). Note that al-

though PHARAOH++ always generates some output, its output sentences, laden with

MR symbols, are often unintelligible.

Our BLEU scores are not as high as those reported in Langkilde-Geary

(2002) and Nakanishi et al. (2005), which are around 0.7 to 0.9. However, their

work involves the re-generation of automatically parsed text, and the MRs that they

use, which are essentially dependency parses, contain extensive lexical information

of the target NL.

5.4.3 Human Evaluation

Automatic evaluation is only an imperfect substitute for human assessment.

While it has been found that BLEU and NIST correlate quite well with human judg-

ments in evaluating NLG systems (Belz and Reiter, 2006), it is best to support

these figures with human evaluation, which did on a small scale. We recruited 4

native speakers of English with no previous experience with the GEOQUERY and

ROBOCUP domains. Each subject was given the same 20 examples for each do-

main, randomly chosen from the test sets. For each example, the subjects were

asked to judge the output of PHARAOH++ and WASP
−1++ in terms of fluency and

adequacy. The fluency score shows how fluent a generated sentence is with no

reference to what meaning it is supposed to convey. The adequacy score shows

how well a generated sentence conveys the meaning of the reference sentence. The

subjects were presented with the reference sentences in order to evaluate adequacy.

They were also presented with the following definition of fluency and adequacy

scores, adapted from Koehn and Monz (2006):

110

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

T
e

s
t

e
x
a

m
p

le
s
 c

o
v
e

re
d

 (
%

)

Number of training examples

PHARAOH++
WASP-inverse++

(a) GEOQUERY 880

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300

T
e

s
t

e
x
a

m
p

le
s
 c

o
v
e

re
d

 (
%

)

Number of training examples

PHARAOH++
WASP-inverse++

(b) ROBOCUP

Figure 5.9: Coverage of NL generators on the English corpora

111

GEOQUERY 880 ROBOCUP

Fluency Adequacy Fluency Adequacy

PHARAOH++ 4.3 4.7 2.5 2.9

WASP
−1++ 4.1 4.7 3.6 4.0

Table 5.3: Human evaluation results for NL generators on the English corpora

Fluency score English proficiency

5 Flawless English

4 Good English

3 Non-native English

2 Disfluent English

1 Incomprehensible

Adequacy score Meaning conveyed

5 All meaning

4 Most meaning

3 Some meaning

2 Little meaning

1 No meaning

For each test example, we computed the average of the 4 human judges’ scores.

No score normalization was performed. Then we compared the two systems using

paired t-tests. Table 5.3 shows that WASP
−1++ consistently produced good English

sentences that preserved most of the meaning conveyed by the reference sentences.

It also produced better NL generators than PHARAOH++ in the ROBOCUP domain

(p < 0.01), which is consistent with the results of automatic evaluation.

5.4.4 Multilingual Experiments

Lastly, we describe our experiments on the multilingual GEOQUERY data

set. Table 5.4 presents the automatic evaluation results for WASP
−1++ in four target

NLs, namely English, Spanish, Japanese and Turkish, compared to PHARAOH++.

Figure 5.10 shows the BLEU and NIST learning curves for WASP
−1++ (based on

a single run of 10-fold cross validation). Similar to previous results on the larger

GEOQUERY data set, WASP
−1++ outperformed PHARAOH++ for some language-

metric pairs (p < 0.05), and otherwise performed comparably. Also consistent with

112

PHARAOH++ WASP
−1++

BLEU NIST BLEU NIST

English 0.5344 5.3289 0.6035 5.7133

Spanish 0.6042 5.6321 0.6175 5.7293

Japanese 0.6171 4.5357 0.6585 4.6648

Turkish 0.4562 4.2220 0.4824 4.3283

Table 5.4: Performance of WASP
−1++ on the multilingual GEOQUERY data set

previous results for semantic parsing (Sections 3.3.3 and 4.3.2), the performance

of the NLG systems was the lowest for Turkish, an agglutinative language with a

relatively large vocabulary. The NIST scores for Japanese were also relatively low,

although the BLEU scores were disproportionately high. A possible reason is that

function morphemes, which are made separate tokens in the Japanese corpus, are

given too much weight in the BLEU score.

5.5 Chapter Summary

In this chapter, we formulated the problem of tactical generation as a lan-

guage translation task, where formal MRs are translated into NL sentences using

statistical MT. We presented results on using a recent statistical MT system called

PHAROAH for tactical generation. We also showed that the WASP semantic parsing

algorithm can be inverted to produce a tactical generation system called WASP
−1.

This approach allows the same learned grammar to be used for both parsing and

generation. Also it allows the chart parser in WASP to be used for generation with

minimal modifications. While reasonably effective, both PHARAOH and WASP
−1

can be substantially improved by borrowing ideas from each other. Hence we pre-

sented two hybrid systems, PHARAOH++ and WASP
−1++. All four systems re-

quire source MRLs to be variable-free. We outlined a series of experiments that

113

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250

B
L

E
U

 s
c
o

re

Number of training examples

English
Spanish

Japanese
Turkish

(a) BLEU score

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250

N
IS

T
 s

c
o

re

Number of training examples

English
Spanish

Japanese
Turkish

(b) NIST score

Figure 5.10: Learning curves for WASP
−1++ on multilingual GEOQUERY data

114

demonstrate the effectiveness of these tactical generation systems, based on auto-

matic evaluation metrics and human assessment. The SCFG-based hybrid system

WASP
−1++, produced by inverting WASP and incorporating PHARAOH’s proba-

bilistic model, was shown to achieve the best overall results across different lan-

guages and application domains.

115

Chapter 6

Natural Language Generation with Logical Forms

This chapter completes the last piece of the WASP puzzle, introducing a tac-

tical generation algorithm that accepts input logical forms. The tactical generation

algorithm, λ-WASP
−1++, is a straightforward extension of WASP

−1++, in which

the underlying grammar is a λ-SCFG. This allows the same learned λ-SCFG to be

used for both parsing and generation.

6.1 Motivation

As mentioned in Chapter 4, linguists have traditionally used predicate logic

to represent meanings associated with NL expressions. Most existing NLG systems

are based on predicate logic (White, 2004; Carroll and Oepen, 2005; Nakanishi

et al., 2005). A prominent feature of predicate logic is its use of logical variables

to denote entities. In Chapter 4, we showed how logical variables can be generated

using a synchronous grammar, and how such a grammar can be learned from an

annotated corpus for semantic parsing. An interesting problem would be to use the

same learned grammar for NLG as well.

On the other hand, most, if not all, existing NLG systems that can han-

dle input logical forms involve substantial human-engineered components that are

difficult to maintain. For example, White (2004) describes a hybrid symbolic-

statistical realizer under the OpenCCG framework, in which CCG grammars are

116

hand-written. Carroll and Oepen (2005) describes a similar system using the En-

glish Resource Grammar (Copestake and Flickinger, 2000). Other NLG systems

that are machine-learned typically require input representations that contain exten-

sive lexical information of the target NL (Langkilde-Geary, 2002; Corston-Oliver

et al., 2002; Nakanishi et al., 2005; Soricut and Marcu, 2006).

In this chapter, we show that the WASP
−1++ generation algorithm (Sec-

tion 5.3.2) can be readily extended to support input logical forms.1 The resulting

algorithm, which we call λ-WASP
−1++, uses the same grammar as the λ-WASP se-

mantic parser (Section 4.2). It automatically learns all of its linguistic knowledge

from an annotated corpus consisting of NL sentences coupled with their correct

logical forms. Moreover, it does not require any lexical information in the input

representations, so lexical selection is an integral part of the decoding algorithm.

6.2 The λ-WASP
−1++ Algorithm

This section describes the λ-WASP
−1++ generation algorithm. We first give

an overview of the chart generation algorithm (Section 6.2.1). Then we discuss

k-best decoding for λ-WASP
−1++ (Section 6.2.2), which is needed for minimum

error-rate training of the probabilistic model.

6.2.1 Overview

The λ-WASP
−1++ generation algorithm is a straightforward extension of

WASP
−1++. Recall that in WASP

−1++, the problem of tactical generation is seen as

translating formal MRs into NL sentences using an SCFG. WASP
−1++ uses a log-

1Although the WASP
−1 algorithm (Section 5.2.2) can be modified in a similar way, we only

consider WASP
−1++ because of its better performance.

117

linear model for parse disambiguation (Equation 5.5). An Earley chart generator

that scans the input MR string from left to right is used for decoding, which is fine

because it is assumed that the order in which MR symbols appear determines the

meaning of the MR string.

In order to support input logical forms, we simply replace the underlying

SCFG grammar of WASP
−1++ with a λ-SCFG (Section 4.2.1). The probabilistic

model for generation remains unchanged. We call the resulting generation algo-

rithm λ-WASP
−1++. To learn a λ-WASP

−1++ generator, we use the lexical acquisi-

tion algorithm described in Sections 4.2.2 and 4.2.4, and the parameter estimation

algorithm described in Section 5.3.2.

However, there is a major difference between λ-WASP
−1++ and WASP

−1++.

While in WASP
−1++, it can be safely assumed that the order in which MR symbols

appear is significant, this assumption no longer holds in λ-WASP
−1. As mentioned

in Section 4.2.4, certain logical operators such as conjunction (,) are associative

and commutative. Hence, conjuncts can be reordered and regrouped without chang-

ing the meaning of a conjunction. In other words, the relative order of conjuncts

in a conjunction is irrelevant. For example, given the following two input logical

forms:

answer(x1,(river(x1),loc(x1,x2),

equal(x2,stateid(colorado))))

answer(x1,(river(x1),equal(x2,stateid(colorado)),

loc(x1,x2)))

(Name all the rivers in Colorado.)

the generated NL sentences should be identical, even though the relative order of

conjuncts loc(x1,x2) and equal(x2,stateid(colorado)) is different.

This requires a different chart generator than the one used in WASP
−1++.

118

In this section, we describe a decoding algorithm that can handle input log-

ical forms. As we will see in Section 6.2.2, this decoding algorithm is also used in

minimum error-rate training of λ-WASP
−1++. Suppose that we have an λ-SCFG,

G, which consists of the following rules:

r1: QUERY→ 〈 Name all the FORM 1 , answer(x1,(FORM 1 (x1))) 〉

r2: FORM→ 〈 rivers in FORM 1 ,

λx1.river(x1),loc(x1,x2),FORM 1 (x2) 〉

r3: FORM→ 〈 STATE 1 , λx1.equal(x1,STATE 1) 〉

r4: STATE→ 〈 STATENAME 1 , stateid(STATENAME 1) 〉

r5: STATENAME→ 〈 Colorado , colorado 〉

Given the following input logical form:

answer(x1,(river(x1),equal(x2,stateid(colorado)),

loc(x1,x2)))

the decoding task is to find a derivation under G that is consistent with this logi-

cal form. Such a derivation exists, but only if we consider partial derivations that

cover disjoint sets of input symbols. For example, the rule r2 matches river(x1)

and loc(x1,x2) in the logical form, but these two formulas are separated by an-

other formula equal(x2,stateid(colorado)). Since a partial derivation

may cover a disjoint set of input MR symbols, a chart item takes the form of a cov-

erage vector with a bit for each formula (or term) in the input logical form showing

whether the formula (or term) is covered by the chart item. The set of formulas

(and terms) in a logical form can be found using the MRL grammar. For example,

Figure 6.1 shows a parse tree for the logical form shown above. In this parse tree,

each production correpsonds to a formula (e.g. river(x1)) or a term that is not a

logical variable (e.g. colorado). The relative order of these formulas and terms

119

QUERY[1]

answer(x1,(FORM[2]

river(x1), FORM[3]

equal(x2, STATE[4]

stateid(STATENAME[5]

colorado

)

), FORM[6]

loc(x1,x2)

))

Figure 6.1: A parse tree for the sample Prolog logical form

are shown in bracketed indices, [1]–[6]. This ordering corresponds to the order of

a top-down, left-most derivation. Each chart item for the sample logical form thus

contains a coverage vector of 6 bits, a bit for each production in the parse tree. We

use [i, j, . . .] to denote a bit vector in which bits i, j, . . . are set. The decoding al-

gorithm starts with the creation of a set of initial chart items, which involves the

computation of coverage vectors for each rule in G:

(r1, [1], {x1/x1})

(r2, [2, 6], {x1/x1, x2/x2})

(r3, [3], {x1/x2})

(r4, [4], {})

(r5, [5], {})

Each chart item also contains a substitution, {x1/xi1 , . . . , xk/xik}, that shows the

renaming of logical variables necessary to transform the MR string of the rule into

the part of the input logical form that the chart item covers. For example, for the

120

rule r3, the substitution is {x1/x2}, because the logical variable x1 in the MR string

of r3 corresponds to x2 in the input logical form. Note that each rule in G can

give rise to multiple distinct chart items (or none at all). A chart item is said to be

inactive if all RHS non-terminals in the rule have been rewritten. Otherwise, a chart

item is said to be active. For example, all chart items shown above are active except

the last one, as there are no RHS non-terminals in r5.

Decoding proceeds by repeatedly combining chart items. An active item,

(ra, va, σa), may combine with an inactive item, (ri, vi, σi), if all of the following

conditions are met:

1. The inactive item completes the active item.

2. The coverage vectors va and vi are disjoint.

3. The substitution σi is compatible with σa.

To illustrate these conditions, consider the inactive item (r5, [5], {}). It can combine

with the active item (r4, [4], {}), because [5] occupies the argument position of [4]

(Condition 1), and [4] and [5] are disjoint (Condition 2). Condition 3 is also met

because σi is empty. The combination of these two items results in a new item,

(r4, [4–5], {}), where [4–5] is the union of [4] and [5], and {} is the union of σi

and σa. This new item is inactive because all RHS non-terminals in r4 have been

rewritten.

This new item can then combine with the active item (r3, [3], {x1/x2}), be-

cause [4–5] occupies the argument position of [3] (Condition 1), [3] and [4–5] are

disjoint (Condition 2), and σi is empty (Condition 3). This results in a new inactive

item, (r3, [3–5], {x1/x2}), where {x1/x2} is the union of σi and σa.

121

This new item can then combine with (r2, [2, 6], {x1/x1, x2/x2}): Condition

1 is met because [2, 6] and [3–5] together form a logical conjunction. Condition 2

is met because [2, 6] and [3–5] are disjoint. For Condition 3, note that the MR

string of r3, which is a λ-function, is used to rewrite the FORM non-terminal in

the MR string of r2. Upon function application, all bound occurrences of x1 in the

λ-function would be renamed to x2, and therefore, occurrences of x1 in σi should

be renamed to x2 as well. This results in a new substitution σ′
i = {x2/x2}, which is

compatible with σa = {x1/x1, x2/x2} because there is no xj such that xj/xj′ ∈ σ′
i,

xj/xj′′ ∈ σa, and xj′ 6= xj′′ . The combination of these two items thus gives rise to

a new inactive item, (r2, [2–6], {x1/x1, x2/x2}), where {x1/x1, x2/x2} is the union

of σ′
i and σa.

Lastly, this new item combines with (r1, [1], {x1/x1}). The resulting item

is (r1, [1–6], {x1/x1}).
2 Since all 6 bits of the coverage vector are set, this item is

a goal item, which corresponds to a complete derivation of the input logical form.

The NL string that this derivation yields is then a translation of this logical form.

Figure 6.2 shows the basic decoding algorithm of λ-WASP
−1++. Inactive

items are examined in ascending order of item size (i.e. number of true bits in

the coverage vector). COMBINE-ITEMS(c, c′) returns the item resulting from the

combination of c and c′. It returns null if c and c′ cannot combine. Each item

is associated with a probability as defined by the log-linear model (Equation 5.5).

UPDATE-CHART(C, c′′) adds c′′ to C if c′′ is not already in C, or replaces the item

in C with c′′ if c′′ has a higher probability. The output of this decoding algorithm is

the most probable derivation consistent with the input logical form. This algorithm

2The substitution {x1/x1} does not include any mapping from x2, because x2 is a free variable

in r2 and is no longer visible outside r2. Following Kay (1996), we keep track of all logical vari-

ables that have become invisible (e.g. x2). A partial derivation is filtered out if any of these logical

variables is accidentally bound.

122

Input: a logical form, f , a λ-SCFG, G, and an unambiguous MRL grammar, G′.

DECODE-λ-WASP
−1++(f , G,G′)

1 f
′ ← linearized parse of f under G′

2 C ← set of initial chart items based on f
′ and G

3 for i← 1 to |f ′| − 1
4 do for each inactive item c ∈ C of size i
5 do for each active item c′ ∈ C
6 do c′′ ← COMBINE-ITEMS(c, c′)
7 if c′′ is not null

8 then UPDATE-CHART(C, c′′)
9 return c ∈ C of size |f ′| with the highest probability

Figure 6.2: The basic decoding algorithm of λ-WASP
−1++

can take exponential time, since there can be 2|f
′| distinct coverage vectors for a

given logical form, f . This seems reasonable because most other generation algo-

rithms that accept input logical forms operate in exponential time as well (Moore,

2002; White, 2004; Carroll and Oepen, 2005). Moreover, generation can be sped up

considerably by pruning away low-probability inactive items before each iteration

of the outer for loop (i.e. before line 4). In our experiments, we retain only the top

100× |f ′| inactive items for each iteration.

6.2.2 k-Best Decoding

In λ-WASP
−1++, parameters of the probabilistic model are trained using

minimum error-rate training, such that the BLEU score of the training set is directly

maximized. Computation of BLEU requires actual generator output, and therefore,

it involves decoding. Moreover, optimization of the BLEU score requires the com-

putation of BLEU for multiple parameter settings. Och (2003) presents an efficient

method for optimizing BLEU using log-linear models. The basic idea is to approxi-

123

mate the BLEU score by performing k-best decoding for only a handful of parameter

settings.

In the previous section, we presented a 1-best decoding algorithm for λ-

WASP
−1++. A naı̈ve implementation of k-best decoding would compute the k-best

derivations for every chart item. However, this can be prohibitively slow given

that it already takes exponential time when k = 1. In this section, we describe

an efficient k-best decoding algorithm for λ-WASP
−1++. Originally developed by

Huang and Chiang (2005), this algorithm finds 100-best derivation lists almost as

fast as 1-best decoding.

To see why the naı̈ve implementation of k-best decoding is slow, consider

the case where two chart items, c and c′, combine to form a new chart item, c′′.

Finding the k-best derivations for c′′ involves the following steps:

1. Enumerate k2 derivations for c′′, based on the k-best derivations for c and c′′.

2. Sort these k2 derivations.

3. Select the first k derivations from the sorted list of k2 derivations.

This increases the time complexity of the decoder by a factor of O(k2 log k). How-

ever, since we are only interested in the top k derivations for c′′, the first two steps

can be eliminated if we assume that:

1. The k-best lists for c and c′ are sorted.

2. The function that computes the probability of a derivation is monotonic in

each of its sub-derivations.3

3The use of a language model makes this function only approximately monotonic, e.g. certain

combinations of common phrases can be highly unlikely. In this case, the k-best decoding algorithm

is only approximate.

124

1

3

5

7

1 4 7 10

2

4

5 1

3

5

7

1 4 7 10

2

4

5 1

3

5

7

1 4 7 10

2

4

5

6

77

6

8

Figure 6.3: Example illustrating efficient k-best decoding

Let c[i] be the i-th element in the k-best list for c. Given the assumptions above, it

is clear that c′′[1] is the combination of c[1] and c′[1]. Furthermore, c′′[2] is either

the combination of c[1] and c′[2], or the combination of c[2] and c′[1]. In general,

if we view all possible combinations as a grid of cells (see Figure 6.3, where the

numbers are negative log-probabilities), then the next cell to enumerate must be

adjacent to the previously enumerated cells, i.e. it must be one of the cells shaded

gray. Therefore, we need only consider O(k) cells, and can safely ignore the rest of

the grid.

From Figure 6.3, it is evident that to compute the k-best list for c′′, we do

not need the full k-best lists for c and c′. In general, since we are only interested in

the k-best list for the goal items, we do not need the full k-best list for every item

in the chart. As we go further down the derivation forest, the number of derivations

required for each item becomes less and less. Therefore, we can speed up the k-best

decoding algortihm considerably by computing k-best lists only when necessary.

Details of the lazy computation of k-best lists can be found in Huang and Chiang

(2005).

125

6.3 Experiments

In this section, we present experimental results that demonstrate the effec-

tiveness of the λ-WASP
−1++ generation algorithm.

6.3.1 Data Sets and Methodology

We evaluated λ-WASP
−1++ in the GEOQUERY domain. In the experiments,

we used the same GEOQUERY data set used to evaluate λ-WASP (Section 4.3.1).

Specifically, the original Prolog logical forms were used. Table 4.1 shows the cor-

pus statistics.

We only performed automatic evaluation, based on 4 runs of standard 10-

fold cross validation, using the BLEU and NIST scores as the evaluation metrics. We

did not perform human evaluation, since our human evaluation results in Section

5.4.3 indicate that the BLEU and NIST scores correlate well with human judgments

in evaluating NLG systems in this domain.

6.3.2 Results and Discussion

Table 6.1 shows the performance of λ-WASP
−1++ on the GEOQUERY 880

data set with full training data, compared to two other NLG systems:

• PHARAOH++ (Section 5.3.1), which uses statistical phrase-based MT.

• WASP
−1++ (Section 5.3.2), the inverse of the WASP semantic parser, with

PHARAOH’s probabilistic model.

Unlike λ-WASP
−1++, both PHARAOH++ and WASP

−1++ take functional queries

(written in FUNQL) as input. The best-performing systems based on paired t-tests

126

GEOQUERY (880 data set)

BLEU NIST

λ-WASP
−1++ 0.5320 6.4668

PHARAOH++ 0.5354 6.3637

WASP
−1++ 0.5370 6.4808

Table 6.1: Performance of λ-WASP
−1++ on the GEOQUERY 880 data set

GEOQUERY (880 data set)

λ-WASP
−1++ 2.9 s

PHARAOH++ 0.03 s

WASP
−1++ 0.7 s

Table 6.2: Average time needed for generating one test sentence

are shown in bold (p < 0.05). Figure 6.4 shows the learning curves (based on a

single run of 10-fold cross validation).

Table 6.1 shows that the performance of λ-WASP
−1++ is comparable to that

of PHARAOH++ and WASP
−1++, despite markedly different input representations.

Pruning also kept the running time to a reasonable level (Table 6.2), although the

decoding algorithm could take exponential time.

Figure 6.4 shows that λ-WASP
−1++ outperformed WASP

−1++ with limited

training data. This is because the lexical acquisition algorithm of λ-WASP
−1++

(i.e. that of λ-WASP) produces rules that generalize better (Section 4.2.4). Hence

coverage is significantly higher for λ-WASP
−1++, especially when the training set

is small (Figure 6.5), leading to steeper learning curves in terms of the BLEU and

NIST scores. However, WASP
−1++ quickly caught up in terms of coverage as more

training data was available. This is unlike the parsing case where WASP failed to

keep up with λ-WASP in terms of recall (Figure 4.11). This indicates that tactical

generation is an easier task than semantic parsing. While for tactical generation

127

PHARAOH++ WASP
−1++ λ-WASP

−1++

BLEU NIST BLEU NIST BLEU NIST

English 0.5344 5.3289 0.6035 5.7133 0.6121 5.8254

Spanish 0.6042 5.6321 0.6175 5.7293 0.6584 5.9390

Japanese 0.6171 4.5357 0.6585 4.6648 0.6857 4.8330

Turkish 0.4562 4.2220 0.4824 4.3283 0.4737 4.3553

Table 6.3: Performance of λ-WASP
−1++ on multilingual GEOQUERY data

it suffices to learn one mapping for each MR predicate to get complete coverage,

for semantic parsing one needs to learn a mapping for each NL phrase to achieve

perfect recall, which is much more difficult because of synonymy.

Besides, λ-WASP
−1++ outperformed PHARAOH++ when the training set

was small. This indicates that despite its lower coverage compared to PHARAOH++,

λ-WASP
−1++ produced NL translations that were consistently more accurate.

Table 6.3 and Figure 6.6 show the performance of λ-WASP
−1++ on the mul-

tilingual GEOQUERY data set. Similar to previous results on the larger GEOQUERY

data set, λ-WASP
−1++ outperformed PHARAOH++, and performed comparably to

WASP
−1++. Also consistent with previous observations (Section 5.4.4), the per-

formance of λ-WASP
−1++ is the lowest for Turkish, followed by Japanese. For

English and Spanish, the performance is comparable.

6.4 Chapter Summary

In this chapter, we described a tactical generation algorithm that translates

logical forms into NL sentences. This algorithm is called λ-WASP
−1++. It can be

seen as the inverse of the λ-WASP semantic parser, since both algorithms are based

on the same underlying λ-SCFG grammar. It also shares the same log-linear proba-

128

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600 700 800 900

B
L

E
U

 s
c
o

re

Number of training examples

lambda-WASP-inverse++
WASP-inverse++

PHARAOH++

(a) BLEU score

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600 700 800 900

N
IS

T
 s

c
o

re

Number of training examples

lambda-WASP-inverse++
WASP-inverse++

PHARAOH++

(b) NIST score

Figure 6.4: Learning curves for λ-WASP
−1++ on the GEOQUERY 880 data set

129

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

T
e

s
t

e
x
a

m
p

le
s
 c

o
v
e

re
d

 (
%

)

Number of training examples

lambda-WASP-inverse++
WASP-inverse++

PHARAOH++

Figure 6.5: Coverage of λ-WASP
−1++ on the GEOQUERY 880 data set

bilistic model with WASP
−1++, which is maximum-BLEU trained. We described a

chart generation algorithm that can handle input logical forms, and a fast k-best de-

coding algorithm for efficient maximum-BLEU training. Experiments showed that

λ-WASP
−1++ is competitive compared to other MT-based generators, especially

when training data is scarce.

130

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250

B
L

E
U

 s
c
o

re

Number of training examples

English
Spanish

Japanese
Turkish

(a) BLEU score

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250

N
IS

T
 s

c
o

re

Number of training examples

English
Spanish

Japanese
Turkish

(b) NIST score

Figure 6.6: Learning curves for λ-WASP
−1++ on multilingual GEOQUERY data

131

Chapter 7

Future Work

In this chapter, we discuss some future directions for the research presented

in this thesis.

7.1 Interlingual Machine Translation

As mentioned in Chapter 1, an application of semantic parsers and tactical

generators is interlingual MT. In interlingual MT, source texts are first converted

into a formal MRL that is language-independent, called an interlingua. From such

interlingual representations, target texts are then generated. A possible interlingua

in the GEOQUERY domain, for example, would be Prolog logical forms. An ad-

vantage of interlingual MT over direct MT is economy of effort in a multilingual

environment: While direct MT requires a separate system for each language pair,

interlingual MT only requires a parser and a generator for each language. Moreover,

for structurally dissimilar language pairs such as Turkish and English, interlingual

MT can achieve good results with a simpler system design (Hakkani et al., 1998).

Early knowledge-based, interlingual MT systems are effective in restricted domains

with limited vocabulary (Nyberg and Mitamura, 1992). It would be interesting to

see how statistical interlingual MT systems compare against state-of-the-art direct

MT systems (e.g. PHARAOH) in restricted domains such as GEOQUERY.

We evaluated a simple statistical interlingual MT system composed of λ-

132

λ-WASP/λ-WASP
−1++ PHARAOH

Cov. (%) BLEU NIST Cov. (%) BLEU NIST

Spanish-English 90.4 0.5415 5.1790 100.0 0.7496 6.6862

Japanese-English 90.0 0.5255 5.2691 100.0 0.5700 5.6039

Turkish-English 77.6 0.4431 3.8735 100.0 0.6490 6.1504

Table 7.1: Performance of MT systems on multilingual GEOQUERY data

λ-WASP/λ-WASP
−1++ PHARAOH

BLEU NIST BLEU NIST

Spanish-English 0.6215 5.8076 0.7836 6.6443

Japanese-English 0.5930 5.6748 0.6149 5.7997

Turkish-English 0.6218 5.6258 0.7503 6.4653

Table 7.2: MT performance considering only examples covered by both systems

WASP (Section 4.2) and λ-WASP
−1++ (Section 6.2). In this MT system, source

sentences are converted into Prolog logical forms using λ-WASP. Then, the Prolog

logical forms are translated into the target language using λ-WASP
−1++. For each

source sentence, only the best Prolog logical form is used. If the source sentence

cannot be converted into a complete Prolog logical form, then no output sentence

will be generated.

Table 7.1 shows the preliminary results on the multilingual GEOQUERY

data set using 10-fold cross validation, where the best-performing systems based

on paired t-tests are shown in bold. Besides the BLEU and NIST scores, the ta-

ble also shows the percentage of test examples covered by the MT systems. By

most measures, PHARAOH outperformed the interlingual MT system (p < 0.05

based on paired t-tests). A primary reason is that λ-WASP often could not analyze

source sentences completely, which led to low coverage. However, even ignoring

sentences that are not covered, the performance of the interlingual MT system is

133

Source: ¿Cuántas personas viven en Spokane, Washington?

Reference: How many people live in Spokane, Washington?

λ-WASP/λ-WASP
−1++: What is the population of Spokane, WA?

Figure 7.1: Output of interlingual MT from Spanish to English in GEOQUERY

still low (Table 7.2). There are two contributing factors to this. First, in the inter-

lingual MT system, the parsing and generation components are loosely coupled, so

error easily propagates. Second, the interlingua may fail to capture certain stylistic

preferences in the texts.

Some of these problems could be easily remedied. To improve coverage, we

could add rules to λ-WASP and λ-WASP
−1++ that glue partial derivations together

(Chiang, 2005), or add default rules for previously unseen words. To reduce error

propagation, we could have λ-WASP produce multiple analyses of a source sentence

to avoid committing to a particular analysis. λ-WASP
−1++ could then be used to

generate the best overall translation, or a translation that covers the most analyses

(Knight and Langkilde, 2000). To make sure that synonymous expressions do not

get penalized (e.g. Figure 7.1), we could elicit more reference translations for each

source sentence (Section 5.4.2), or perform human evaluation (Section 5.4.3).

A more fundamental problem is designing an appropriate interlingua for a

particular domain. An MRL that is adequate for querying databases may not be

adequate for interlingual MT. Moreover, while it is feasible to build an interlingual

MT system for specific domains such as medical triage (Gao et al., 2006), it is

much more difficult for broader domains such as newspaper texts (Knight et al.,

1995; Farwell et al., 2004). This is because to describe all important concepts in the

world requires a comprehensive ontology, but such knowledge resources are very

difficult to obtain. However, we still believe that translation involves understanding,

and interlingual MT is the right approach. As we mentioned in Chapter 1, the use

134

of concise interlingual representations can improve statistical MT. Likewise, the

ability to understand unrestricted texts will have wide implications in other research

areas such as question answering, information retrieval, document summarization,

and human-computer interaction. In subsequent sections, we will discuss some

possible research avenues that would allow progress toward broad-domain natural

language understanding and generation.

7.2 Shallow Semantic Parsing

Current research on broad-domain semantic analysis has mainly focused on

the following two sub-tasks: word sense disambiguation and semantic role labeling.

Word sense disambiguation (WSD) is to identify the correct meaning (or sense) of a

word in context (Lee and Ng, 2002). Semantic role labeling (SRL) is to identify the

semantic arguments of a given predicate in a sentence (Gildea and Jurafsky, 2002).

These two tasks are closely related. For example, consider the following sentence:

The robbers tied Peter to his chair.

To identify the predicate-argument structure of this sentence, we need to determine

the correct sense of the word tied, which is “to physically attach” in this case (as op-

posed to “making a mental connection”). Once the predicate is correctly identified,

we can identify its arguments (shown in brackets):

[AGENT The robbers] tied [ITEM Peter] [GOAL to his chair] .

Each argument takes a specific role. In this case, the robbers are the AGENT that

causes Peter (the ITEM) to be physically attached to his chair (the GOAL). These

roles can be predicate-specific. In other words, the sense of a word (e.g. tied) can

135

influence the roles associated with it. Conversely, the roles associated with a word

can influence its sense as well (Lapata and Brew, 1999). In this case, the fact that

a chair is a physical GOAL makes it more likely that tied means “to physically

attach”. These word senses and semantic roles are defined in ontologies such as

WordNet (Fellbaum, 1998), FrameNet (Fillmore et al., 2003), and Omega (Philpot

et al., 2005).

Traditionally, WSD and SRL have been treated as two separate tasks: WSD

is done without knowledge of the semantic roles associated with a word, and SRL is

done assuming that the predicate has been correctly identified (Gildea and Jurafsky,

2002), or assuming that the semantic roles are predicate-independent as in Prop-

Bank (Palmer et al., 2005). We argue that WSD and SRL should be more tightly

coupled. The need for joint inference is more evident when we consider more than

one predicate in a sentence:

[RECIPIENT Mary] got [THEME [REQUIREMENT the ingredients] needed [DEPENDENT

to make [FOOD ice-cream]]] .

In this sentence, the predicates and their arguments form a tree structure. However,

current SRL methods that consider one predicate at a time cannot capture such

interactions among predicates (Carreras and Màrquez, 2005; Erk and Padó, 2006).

There has been some preliminary work on combining WSD with SRL.

Thompson et al. (2003) present a generative model that performs joint WSD and

SRL for the main verb of a sentence. Erk (2005) reports some preliminary results

on using semantic argument information of a word to improve WSD.

In the future, we would like to explore semantic parsing in a broad-domain

setting. Specifically, we would like to combine WSD with SRL in a more tightly-

coupled process. The semantic parsing task is shallow in the sense that many im-

136

portant linguistic phenomena are ignored, such as quantification and tense. Also

words can be left unanalyzed if they do not correspond to any defined concepts in

an ontology. Note that in WASP, WSD and SRL are already integrated in the chart

parsing process. We believe that WASP could be adapted to handle unrestricted

texts, by treating nested predicate-argument structures as the target MRL.

The following semantically-annotated corpora could be used for broad-domain

shallow semantic parsing. Baker et al. (2007) have recently released a small English

corpus based on FrameNet, in which every sentence is annotated with the semantic

arguments for all predicates. For larger corpora, the OntoNotes project (Weischedel

et al., 2007) is an ongoing effort to produce an extended version of English, Chinese

and Arabic Propbanks annotated with word sense information for nouns and verbs,

linked to the Omega ontology, and coreference.

7.3 Beyond Context-Free Grammars

Another issue related to broad-domain semantic analysis is the prevalence

of long-distance dependencies in unrestricted texts.1 Long-distance dependencies

occur when semantic arguments are realized outside the maximal phrase headed by

the predicate. Examples include the following:

[The dog] which they had just bought ran away. (Relative clause)

[They] are hoping to secure state funding this year. (Subject control)

[This record] is hard to beat. (Tough-movement)

1Long-distance dependencies are not very common in the restricted domains we have worked

with. For example, λ-WASP outperforms Zettlemoyer and Collins (2007) in the GEOQUERY domain

(Section 4.3.2), although the latter can handle long-distance dependencies.

137

It is well known that CFGs cannot easily capture long-distance dependencies (Levy

and Manning, 2004). A number of sophisticated grammar formalisms that can

handle such dependencies have been developed, including combinatory catego-

rial grammars (CCG) and tree-adjoining grammars (TAG). CCGs and TAGs are

also said to be mildly context-sensitive, because they have strictly greater gener-

ative capacity than CFGs, yet remain polynomially parsable (Weir, 1988). Re-

cently, Clark and Curran (2004) released a highly efficient wide-coverage CCG

parser, which provides an attractive alternative to traditional statistical CFG parsers

(Collins, 1997; Charniak, 2000).

Existing work on semantic analysis using CCGs and TAGs mostly involves

hand-written components that are language-specific (Shieber and Schabes, 1990b;

Bos, 2005; Zettlemoyer and Collins, 2007). In the future, we would like to devise

learning algorithms similar to WASP that construct synchronous CCGs and TAGs

given training data in any language. Such synchronous grammars can be useful in

natural language generation and machine translation as well (Shieber and Schabes,

1990a; Shieber, 2007). Our goal is to extract synchronous grammars from parallel

corpora with limited or no syntactic annotations. For this, previous work on extract-

ing CCGs and TAGs from non-CCG or TAG-annotated corpora would be relevant

(Hockenmaier and Steedman, 2002; Chen et al., 2006).

7.4 Using Ontologies in Semantic Parsing

The research presented in this thesis illustrates the importance of domain

knowledge in semantic parsing and natural language generation. Specifically, in

all of the WASP-based systems, domain knowledge comes in the form of an MRL

grammar that defines a set of possible MRs in a particular domain. However, not

all information can be conveniently encoded in an MRL grammar, and for broad-

138

domain semantic analysis, knowledge bases such as FrameNet and Omega can be

very useful. An interesting question would be how to effectively use the knowledge

encoded in these ontologies in a statistical semantic parsing framework.

On the other hand, knowledge gleaned from texts can also be integrated

with existing ontologies, which can be useful for understanding further texts in the

same domain (Barker et al., 2007). In other words, natural language understanding

and knowledge acquisition can form a tightly-coupled cycle, where knowledge is

accumulated by reading a given corpus of unannotated texts. This would allow

knowledge acquisition on a truly large scale, and can lead to automated systems

that learn natural languages like humans, using basic prior knowledge to bootstrap

the learning process. To combine natural language understanding and knowledge

acquisition in a robust statistical framework is therefore a very interesting problem,

which we intend to pursue in the future.

139

Chapter 8

Conclusions

In this thesis, we focused on two sub-tasks of natural language understand-

ing and generation, namely semantic parsing and tactical generation. Semantic

parsing is the task of transforming natural-language sentences into formal symbolic

meaning representations (MR), and tactical generation is the inverse task of trans-

forming formal MRs into sentences. We presented a number of novel statistical

learning algorithms for semantic parsing and tactical generation. These algorithms

automatically learn all of their linguistic knowledge from annotated corpora, and

can handle sentences that are conceptually complex.

The key idea of this thesis is that since both semantic parsing and tacti-

cal generation are essentially language translation tasks between natural languages

(NL) and formal meaning representation languages (MRL), both can be tackled

using state-of-the-art statistical machine translation (MT) techniques. Specifically,

we introduced a learning algorithm for semantic parsing called WASP (Chapter 3),

based on a technique called synchronous parsing, which has been extensively used

in syntax-based statistical MT. The underlying grammar of WASP is a weighted

synchronous context-free grammar (SCFG) extracted from an automatically word-

aligned parallel corpus consisting of NL sentences and their correct MRs, with the

help of an unambiguous context-free grammar of the target MRL. The weights of

the SCFG define a log-linear distribution over its derivations. The WASP algo-

rithm is designed to handle variable-free MRLs, as exemplified by CLANG, the

140

ROBOCUP coach language (Section 2.1). We empirically evaluated the effective-

ness of WASP in two real-world domains, GEOQUERY and ROBOCUP, and in four

different NLs, namely English, Spanish, Japanese and Turkish. Experimental re-

sults showed that the performance of WASP is competitive compared to the cur-

rently best methods requiring similar supervision.

In Chapter 4, we extended the WASP semantic parsing algorithm to handle

MRLs such as predicate logic, on which most existing work on formal semantics

and computational semantics is based. The resulting algorithm, λ-WASP, uses an

extended version of SCFG called λ-SCFG, in which logical forms are generated

using the lambda calculus. We proposed a learning algorithm similar to WASP,

which learns a weighted λ-SCFG from a parallel corpus consisting of NL sentences

paired with their correct logical forms. We further refined the learning algorithm

through transformation of logical forms and language modeling for target MRLs.

Using the same amount of supervision, λ-WASP was shown to significantly out-

perform WASP, and is currently one of the best semantic parsing algorithms in the

GEOQUERY domain.

For tactical generation, we proposed several learning methods for variable-

free MRLs using statistical MT (Chapter 5). We presented results on using a re-

cent phrase-based statistical MT system called PHARAOH for tactical generation.

We also showed that the WASP semantic parsing algorithm can be inverted to pro-

duce a tactical generation system called WASP
−1. This approach allows the same

learned grammar to be used for both parsing and generation. Also it allows the chart

parser in WASP to be used for generation with minimal modifications. While rea-

sonably effective, both PHARAOH and WASP
−1 can be substantially improved by

borrowing ideas from each other. The resulting hybrid systems, PHARAOH++ and

WASP
−1++, were shown to be much more robust and accurate, based on automatic

141

and human evaluations in the GEOQUERY and ROBOCUP domains. In particular,

the SCFG-based hybrid system WASP
−1, produced by inverting WASP and incor-

porating PHARAOH’s probabilistic model, was shown to be the best overall among

the four proposed systems.

Lastly, we extended the WASP
−1++ tactical generation algorithm to handle

predicate logic (Chapter 6). The resulting algorithm, λ-WASP
−1++, shares the same

underlying λ-SCFG grammar with λ-WASP, and the same probabilistic model with

WASP
−1++. We presented a chart generation algorithm that can handle input logical

forms. Experiments showed that λ-WASP
−1++ is competitive compared to other

MT-based generators, especially when training data is scarce.

Overall, the research presented in this thesis has made significant contribu-

tions to natural language processing in the following two aspects. First, while the

use of a single grammar for both parsing and generation has long been advocated for

its elegance, and several implementations of this idea have already existed (Section

2.3.1), our work is the first attempt to use the same automatically-learned grammar

for both parsing and generation. Our WASP-based parsers and generators acquire all

of their linguistic knowledge from annotated corpora, unlike other existing systems

that require manually-constructed grammars and lexicons (e.g. Carroll and Oepen,

2005). Therefore, our WASP-based systems require much less tedious domain-

specific knowledge engineering, and can be easily ported to other languages and

application domains.

Second, while our MT-based parsers and generators have only been empir-

ically tested in restricted domains such as GEOQUERY, our work represents an im-

portant step toward broad-domain natural language understanding and generation.

There is no reason to believe that similar MT-based approaches cannot be used

for understanding and generating unrestricted texts, as statistical MT systems with

142

massive amounts of training data have already demonstrated the ability to translate

between a wide variety of languages. As argued in Chapter 7, there are three major

challenges to solve: (1) devising a suitable MRL for a broad array of applications,

such as question answering and interlingual MT, (2) acquiring a knowledge repos-

itory that captures all important concepts in the world, and (3) gathering enough

training data for effective statistical learning. Solving these problems will require

major breakthroughs in areas such as knowledge representation and reasoning, ma-

chine learning, natural language processing, and data mining. However, we expect

that statistical MT methods will still be relevant because the basic problem of map-

ping NL expressions to concepts will remain the same. We can see plenty there that

needs to be done, but at least we can see the road ahead.

143

Appendix

144

Appendix A

Grammars for Meaning Representation Languages

This appendix describes the grammars for all of the formal MRLs consid-

ered in this thesis, namely the GEOQUERY logical query language, the GEOQUERY

functional query language (FUNQL), and CLANG (Section 2.1). These formal

MRL grammars are used to train various semantic parsers and tactical generators,

including all WASP-based systems and the PHARAOH++ tactical generator (Section

5.3.1).

A.1 The GEOQUERY Logical Query Language

The GEOQUERY logical query language was devised by Zelle (1995, Sec.

7.3) for querying a U.S. geography database called GEOQUERY. Since the database

was written in Prolog, the query language is basically first-order Prolog logical

forms, augmented with several meta-predicates for dealing with quantification.

There are 14 different non-terminal symbols in this grammar, of which

QUERY is the start symbol. The following non-terminal symbols are for entities

referenced in the GEOQUERY database:

145

Entity types Non-terminals Sample productions

City names CITYNAME CITYNAME→ austin

Country names COUNTRYNAME COUNTRYNAME→ usa

Place names PLACENAME PLACENAME→ tahoe

(lakes, mountains, etc.)

River names RIVERNAME RIVERNAME→ mississippi

State abbreviations STATEABBREV STATEABBREV→ tx

State names STATENAME STATENAME→ texas

Numbers NUM NUM→ 0

The following non-terminals are used to disambiguate between entities that share

the same name (e.g. the state of Mississippi and the Mississippi river). Note the

corresponding Prolog functors (e.g. stateid and riverid):

Entity types Non-terminals Productions

Cities CITY CITY→ cityid(CITYNAME,STATEABBREV)

CITY→ cityid(CITYNAME,)

Countries COUNTRY COUNTRY→ countryid(COUNTRYNAME)

Places PLACE PLACE→ placeid(PLACENAME)

Rivers RIVER RIVER→ riverid(RIVERNAME)

States STATE STATE→ stateid(STATENAME)

The FORM non-terminal (short for “formula”) is for the following first-order predi-

cates, which provide most of the expressiveness of the GEOQUERY language. Note

that x1, x2, . . . are logical variables that denote entities:

Productions Meaning of predicates

FORM→ capital(x1) x1 is a capital (city).

FORM→ city(x1) x1 is a city.

FORM→ country(x1) x1 is a country.

FORM→ lake(x1) x1 is a lake.

FORM→ major(x1) x1 is major (as in a major city or a major river).

FORM→ mountain(x1) x1 is a mountain.

146

Productions Meaning of predicates

FORM→ place(x1) x1 is a place.

FORM→ river(x1) x1 is a river.

FORM→ state(x1) x1 is a state.

FORM→ area(x1,x2) The area of x1 is x2.

FORM→ capital(x1,x2) The capital of x1 is x2.

FORM→ density(x1,x2) The population density of x1 is x2.

FORM→ elevation(x1,x2) The elevation of x1 is x2.

FORM→ elevation(x1,NUM) The elevation of x1 is NUM.

FORM→ high point(x1,x2) The highest point of x1 is x2.

FORM→ higher(x1,x2) The elevation of x1 is greater than that of x2.

FORM→ len(x1,x2) The length of x1 is x2.

FORM→ loc(x1,x2) x1 is located in x2.

FORM→ longer(x1,x2) The length of x1 is greater than that of x2.

FORM→ low point(x1,x2) The lowest point of x1 is x2.

FORM→ lower(x1,x2) The elevation of x1 is less than that of x2.

FORM→ next to(x1,x2) x1 is adjacent to x2.

FORM→ population(x1,x2) The population of x1 is x2.

FORM→ size(x1,x2) The size of x1 is x2.

FORM→ traverse(x1,x2) x1 traverses x2.

The following m-tuples are used to constrain the combinations of entity types that

the arguments of a m-place predicate can denote. See Section 4.2.5 for how to use

these m-tuples for type checking:

Predicates Possible entity types for logical variables

capital(x1) (CITY), (PLACE)

city(x1) (CITY)

country(x1) (COUNTRY)

lake(x1) (PLACE), (LAKE)

major(x1) (CITY), (LAKE), (RIVER)

147

Predicates Possible entity types for logical variables

mountain(x1) (PLACE), (MOUNTAIN)

place(x1) (PLACE), (LAKE), (MOUNTAIN)

river(x1) (RIVER)

state(x1) (STATE)

area(x1,x2) (CITY, NUM), (COUNTRY, NUM), (STATE, NUM)

capital(x1,x2) (STATE, CITY)

density(x1,x2) (CITY, NUM), (COUNTRY, NUM), (STATE, NUM)

elevation(x1,x2) (PLACE, NUM), (MOUNTAIN, NUM)

elevation(x1,NUM) (PLACE), (MOUNTAIN)

high point(x1,x2) (COUNTRY, PLACE), (COUNTRY, MOUNTAIN),

(STATE, PLACE), (STATE, MOUNTAIN)

higher(x1,x2) (PLACE, PLACE), (PLACE, MOUNTAIN),

(MOUNTAIN, PLACE), (MOUNTAIN, MOUNTAIN)

len(x1,x2) (RIVER, NUM)

loc(x1,x2) (CITY, COUNTRY), (PLACE, COUNTRY),

(LAKE, COUNTRY), (MOUNTAIN, COUNTRY),

(RIVER, COUNTRY), (STATE, COUNTRY),

(CITY, STATE), (PLACE, STATE), (LAKE, STATE),

(MOUNTAIN, STATE), (RIVER, STATE), (PLACE, CITY)

longer(x1,x2) (RIVER, RIVER)

low point(x1,x2) (COUNTRY, PLACE), (COUNTRY, MOUNTAIN),

(STATE, PLACE), (STATE, MOUNTAIN)

lower(x1,x2) (PLACE, PLACE), (PLACE, MOUNTAIN),

(MOUNTAIN, PLACE), (MOUNTAIN, MOUNTAIN)

next to(x1,x2) (STATE, RIVER), (STATE, STATE)

population(x1,x2) (CITY, NUM), (COUNTRY, NUM), (STATE, NUM)

size(x1,x2) (CITY, NUM), (COUNTRY, NUM), (PLACE, NUM),

(LAKE, NUM), (MOUNTAIN, NUM), (RIVER, NUM),

(STATE, NUM)

148

Predicates Possible entity types for logical variables

traverse(x1,x2) (RIVER, CITY), (RIVER, COUNTRY), (RIVER, STATE)

In addition, the equal predicate is used to equate logical variables to ground terms,

e.g. equal(x1,cityid(austin,tx)):

Productions Possible entity types for logical variables

FORM→ equal(x1,CITY) (CITY)

FORM→ equal(x1,COUNTRY) (COUNTRY)

FORM→ equal(x1,PLACE) (PLACE), (LAKE), (MOUNTAIN)

FORM→ equal(x1,RIVER) (RIVER)

FORM→ equal(x1,STATE) (STATE)

Another important production is the conjunction operator (,), which is used to form

conjunctions of formulas:

FORM→ (FORM,FORM)

The not operator is used to form negations:

FORM→ not(FORM)

The FORM non-terminal is also for the following meta-predicates, which take con-

junctive goals as their arguments:

Productions Meaning of meta-predicates

FORM→ largest(x1,FORM) The goal denoted by FORM produces only

the solution maximizing the size of x1.

FORM→ smallest(x1,FORM) The goal denoted by FORM produces only

the solution minimizing the size of x1.

FORM→ highest(x1,FORM) Analogous to largest (with elevation).

FORM→ lowest(x1,FORM) Analogous to smallest (with elevation).

149

Productions Meaning of meta-predicates

FORM→ longest(x1,FORM) Analogous to largest (with length).

FORM→ shortest(x1,FORM) Analogous to smallest (with length).

FORM→ count(x1,FORM,x2) x2 is the number of bindings for x1 satisfying

the goal denoted by FORM.

FORM→ sum(x1,FORM,x2) x2 is the sum of all bindings for x1 satisfying

the goal denoted by FORM.

FORM→ most(x1,x2,FORM) The goal denoted by FORM produces only

the x1 maximizing the count of x2.

FORM→ fewest(x1,x2,FORM) The goal denoted by FORM produces only

the x1 minimizing the count of x2.

Below are the corresponding m-tuples of entity types for type checking:

Meta-predicates Possible entity types for logical variables

largest(x1,FORM) (CITY), (PLACE), (LAKE), (MOUNTAIN), (NUM),

(RIVER), (STATE)

smallest(x1,FORM) (CITY), (PLACE), (LAKE), (MOUNTAIN), (NUM),

(RIVER), (STATE)

highest(x1,FORM) (PLACE), (MOUNTAIN)

lowest(x1,FORM) (PLACE), (MOUNTAIN)

longest(x1,FORM) (RIVER)

shortest(x1,FORM) (RIVER)

count(x1,FORM,x2) (∗, NUM)

sum(x1,FORM,x2) (NUM, NUM)

most(x1,x2,FORM) (∗, ∗)

fewest(x1,x2,FORM) (∗, ∗)

In the above table, ∗ denotes any of these entity types: CITY, COUNTRY, PLACE,

LAKE, MOUNTAIN, NUM, RIVER, STATE.

Finally, the start symbol, QUERY, is reserved for the answermeta-predicate,

which serves as a wrapper for query goals (denoted by FORM):

150

QUERY→ answer(x1,FORM)

Here x1 is the logical variable whose binding is of interest (i.e. answers the question

posed). x1 can denote entities of any type (∗).

A.2 The GEOQUERY Functional Query Language

For semantic parsers and tactical generators that cannot handle logical vari-

ables (e.g. WASP, PHARAOH++, WASP
−1++), a variable-free, functional query lan-

guage called FUNQL has been devised for the GEOQUERY domain (Kate et al.,

2005). Below is a sample FUNQL query, together with its corresponding Prolog

logical form:

What are the cities in Texas?

FUNQL: answer(city(loc 2(stateid(texas))))

Prolog logical form: answer(x1,(city(x1),loc(x1,x2),

equal(x2,stateid(texas))))

In Section 2.1, we noted that FUNQL predicates can have a set-theoretic inter-

pretation. For example, the term stateid(texas) denotes a singleton set that

consists of the Texas state, and loc 2(stateid(texas)) denotes the set of

entities located in the Texas state, and so on. Here we present another interpre-

tation of FUNQL based on the lambda calculus. Under this interpretation, each

FUNQL predicate is a shorthand for a λ-function, which can be used to translate

FUNQL expressions into the GEOQUERY logical query language through function

application. For example, the FUNQL predicate stateid denotes the λ-function

λn.λx1.equal(x1,stateid(n)). Hence by function application, the FUNQL

term stateid(texas) is equivalent to the following logical form in the GEO-

QUERY logical query language:

151

λx1.equal(x1,stateid(texas))

Also since the FUNQL predicate loc 2 denotes λp.λx1.(loc(x1,x2),p(x2)),

the FUNQL term loc 2(stateid(texas)) is equivalent to:

λx1.loc(x1,x2),equal(x2,stateid(texas)))

There are 13 different non-terminal symbols in the FUNQL grammar. All of them

are from the GEOQUERY logical query language. Only the FORM non-terminal is

not used in FUNQL. QUERY is the start symbol in the FUNQL grammar.

Below are the FUNQL productions for named entities and numbers, which

are identical to those in the GEOQUERY logical query language:

Entity types Sample productions Corresponding λ-functions

City names CITYNAME→ austin austin

Country names COUNTRYNAME→ usa usa

Place names PLACENAME→ tahoe tahoe

River names RIVERNAME→ mississippi mississippi

State abbreviations STATEABBREV→ tx tx

State names STATENAME→ texas texas

Numbers NUM→ 0 0

The rest of the FUNQL productions are as follows:

Productions Corresponding λ-functions

CITY→ λn.λa.λx1.equal(x1,cityid(n,a))

cityid(CITYNAME,STATEABBREV)

CITY→ cityid(CITYNAME,) λn.λx1.equal(x1,cityid(n,))

COUNTRY→ λn.λx1.equal(x1,countryid(n))

countryid(COUNTRYNAME)

PLACE→ placeid(PLACENAME) λn.λx1.equal(x1,placeid(n))

RIVER→ riverid(RIVERNAME) λn.λx1.equal(x1,riverid(n))

STATE→ stateid(STATENAME) λn.λx1.equal(x1,stateid(n))

152

Productions Corresponding λ-functions

CITY→ capital(all) λx1.capital(x1)

CITY→ city(all) λx1.city(x1)

COUNTRY→ country(all) λx1.country(x1)

PLACE→ lake(all) λx1.lake(x1)

PLACE→ mountain(all) λx1.mountain(x1)

PLACE→ place(all) λx1.place(x1)

RIVER→ river(all) λx1.river(x1)

STATE→ state(all) λx1.state(x1)

CITY→ capital(CITY) λp.λx1.(capital(x1),p(x1))

CITY→ capital(PLACE) λp.λx1.(capital(x1),p(x1))

CITY→ city(CITY) λp.λx1.(city(x1),p(x1))

PLACE→ lake(PLACE) λp.λx1.(lake(x1),p(x1))

CITY→ major(CITY) λp.λx1.(major(x1),p(x1))

PLACE→ major(PLACE) λp.λx1.(major(x1),p(x1))

RIVER→ major(RIVER) λp.λx1.(major(x1),p(x1))

PLACE→ mountain(PLACE) λp.λx1.(mountain(x1),p(x1))

PLACE→ place(PLACE) λp.λx1.(place(x1),p(x1))

RIVER→ river(RIVER) λp.λx1.(river(x1),p(x1))

STATE→ state(STATE) λp.λx1.(state(x1),p(x1))

NUM→ area 1(CITY) λp.λx1.(area(x2,x1),p(x2))

NUM→ area 1(COUNTRY) λp.λx1.(area(x2,x1),p(x2))

NUM→ area 1(PLACE) λp.λx1.(area(x2,x1),p(x2))

NUM→ area 1(STATE) λp.λx1.(area(x2,x1),p(x2))

CITY→ capital 1(COUNTRY) λp.λx1.(capital(x2,x1),p(x2))

CITY→ capital 1(STATE) λp.λx1.(capital(x2,x1),p(x2))

STATE→ capital 2(CITY) λp.λx1.(capital(x1,x2),p(x2))

NUM→ density 1(CITY) λp.λx1.(density(x2,x1),p(x2))

NUM→ density 1(COUNTRY) λp.λx1.(density(x2,x1),p(x2))

NUM→ density 1(STATE) λp.λx1.(density(x2,x1),p(x2))

NUM→ elevation 1(PLACE) λp.λx1.(elevation(x2,x1),p(x2))

PLACE→ elevation 2(NUM) λn.λx1.elevation(x1,n)

153

Productions Corresponding λ-functions

PLACE→ high point 1(STATE) λp.λx1.(high point(x2,x1),p(x2))

STATE→ high point 2(PLACE) λp.λx1.(high point(x1,x2),p(x2))

PLACE→ higher 2(PLACE) λp.λx1.(higher(x1,x2),p(x2))

NUM→ len(RIVER) λp.λx1.(len(x2,x1),p(x2))

CITY→ loc 1(PLACE) λp.λx1.(loc(x2,x1),p(x2))

COUNTRY→ loc 1(CITY) λp.λx1.(loc(x2,x1),p(x2))

COUNTRY→ loc 1(PLACE) λp.λx1.(loc(x2,x1),p(x2))

COUNTRY→ loc 1(RIVER) λp.λx1.(loc(x2,x1),p(x2))

COUNTRY→ loc 1(STATE) λp.λx1.(loc(x2,x1),p(x2))

STATE→ loc 1(CITY) λp.λx1.(loc(x2,x1),p(x2))

STATE→ loc 1(PLACE) λp.λx1.(loc(x2,x1),p(x2))

STATE→ loc 1(RIVER) λp.λx1.(loc(x2,x1),p(x2))

CITY→ loc 2(COUNTRY) λp.λx1.(loc(x1,x2),p(x2))

CITY→ loc 2(STATE) λp.λx1.(loc(x1,x2),p(x2))

PLACE→ loc 2(CITY) λp.λx1.(loc(x1,x2),p(x2))

PLACE→ loc 2(STATE) λp.λx1.(loc(x1,x2),p(x2))

PLACE→ loc 2(COUNTRY) λp.λx1.(loc(x1,x2),p(x2))

RIVER→ loc 2(COUNTRY) λp.λx1.(loc(x1,x2),p(x2))

RIVER→ loc 2(STATE) λp.λx1.(loc(x1,x2),p(x2))

STATE→ loc 2(COUNTRY) λp.λx1.(loc(x1,x2),p(x2))

RIVER→ longer(RIVER) λp.λx1.(longer(x1,x2),p(x2))

PLACE→ lower 2(PLACE) λp.λx1.(lower(x1,x2),p(x2))

STATE→ next to 1(STATE) λp.λx1.(next to(x2,x1),p(x2))

STATE→ next to 2(STATE) λp.λx1.(next to(x1,x2),p(x2))

STATE→ next to 2(RIVER) λp.λx1.(next to(x1,x2),p(x2))

NUM→ population 1(CITY) λp.λx1.(population(x2,x1),p(x2))

NUM→ population 1(COUNTRY) λp.λx1.(population(x2,x1),p(x2))

NUM→ population 1(STATE) λp.λx1.(population(x2,x1),p(x2))

NUM→ size(CITY) λp.λx1.(size(x2,x1),p(x2))

NUM→ size(COUNTRY) λp.λx1.(size(x2,x1),p(x2))

NUM→ size(STATE) λp.λx1.(size(x2,x1),p(x2))

154

Productions Corresponding λ-functions

CITY→ traverse 1(RIVER) λp.λx1.(traverse(x2,x1),p(x2))

COUNTRY→ traverse 1(RIVER) λp.λx1.(traverse(x2,x1),p(x2))

STATE→ traverse 1(RIVER) λp.λx1.(traverse(x2,x1),p(x2))

RIVER→ traverse 2(CITY) λp.λx1.(traverse(x1,x2),p(x2))

RIVER→ traverse 2(COUNTRY) λp.λx1.(traverse(x1,x2),p(x2))

RIVER→ traverse 2(STATE) λp.λx1.(traverse(x1,x2),p(x2))

CITY→ largest(CITY) λp.λx1.largest(x1,p(x1))

PLACE→ largest(PLACE) λp.λx1.largest(x1,p(x1))

STATE→ largest(STATE) λp.λx1.largest(x1,p(x1))

STATE→ λp.λx1.largest(x2,

largest one(area 1(STATE)) (area(x1,x2),p(x1)))

CITY→ λp.λx1.largest(x2,

largest one(density 1(CITY)) (density(x1,x2),p(x1)))

STATE→ λp.λx1.largest(x2,

largest one(density 1(STATE)) (density(x1,x2),p(x1)))

CITY→ λp.λx1.largest(x2,

largest one(population 1(CITY)) (population(x1,x2),p(x1)))

STATE→ λp.λx1.largest(x2,

largest one(population 1(STATE)) (population(x1,x2),p(x1)))

CITY→ smallest(CITY) λp.λx1.smallest(x1,p(x1))

NUM→ smallest(NUM) λp.λx1.smallest(x1,p(x1))

PLACE→ smallest(PLACE) λp.λx1.smallest(x1,p(x1))

STATE→ smallest(STATE) λp.λx1.smallest(x1,p(x1))

STATE→ λp.λx1.smallest(x2,

smallest one(area 1(STATE)) (area(x1,x2),p(x1)))

STATE→ λp.λx1.smallest(x2,

smallest one(density 1(STATE)) (density(x1,x2),p(x1)))

CITY→ λp.λx1.smallest(x2,

smallest one(population 1(CITY)) (population(x1,x2),p(x1)))

STATE→ λp.λx1.smallest(x2,

smallest one(population 1(STATE)) (population(x1,x2),p(x1)))

155

Productions Corresponding λ-functions

PLACE→ highest(PLACE) λp.λx1.highest(x1,p(x1))

PLACE→ lowest(PLACE) λp.λx1.lowest(x1,p(x1))

RIVER→ longest(RIVER) λp.λx1.longest(x1,p(x1))

RIVER→ shortest(RIVER) λp.λx1.shortest(x1,p(x1))

NUM→ count(CITY) λp.λx1.count(x2,p(x2),x1)

NUM→ count(PLACE) λp.λx1.count(x2,p(x2),x1)

NUM→ count(RIVER) λp.λx1.count(x2,p(x2),x1)

NUM→ count(STATE) λp.λx1.count(x2,p(x2),x1)

NUM→ sum(NUM) λp.λx1.sum(x2,p(x2),x1)

CITY→ most(CITY) λp′.λx1.most(x1,x′,p′(x1)), where

p′ contains one and only one free variable, x′

PLACE→ most(PLACE) λp′.λx1.most(x1,x′,p′(x1))

RIVER→ most(RIVER) λp′.λx1.most(x1,x′,p′(x1))

STATE→ most(STATE) λp′.λx1.most(x1,x′,p′(x1))

CITY→ fewest(CITY) λp′.λx1.fewest(x1,x′,p′(x1))

PLACE→ fewest(PLACE) λp′.λx1.fewest(x1,x′,p′(x1))

RIVER→ fewest(RIVER) λp′.λx1.fewest(x1,x′,p′(x1))

STATE→ fewest(STATE) λp′.λx1.fewest(x1,x′,p′(x1))

CITY→ λp1.λp2.λx1.(p1(x1),p2(x1))

intersection(CITY,CITY)

PLACE→ λp1.λp2.λx1.(p1(x1),p2(x1))

intersection(PLACE,PLACE)

RIVER→ λp1.λp2.λx1.(p1(x1),p2(x1))

intersection(RIVER,RIVER)

STATE→ λp1.λp2.λx1.(p1(x1),p2(x1))

intersection(STATE,STATE)

CITY→ exclude(CITY,CITY) λp1.λp2.λx1.(p1(x1),not(p2(x1)))

PLACE→ exclude(PLACE,PLACE) λp1.λp2.λx1.(p1(x1),not(p2(x1)))

RIVER→ exclude(RIVER,RIVER) λp1.λp2.λx1.(p1(x1),not(p2(x1)))

STATE→ exclude(STATE,STATE) λp1.λp2.λx1.(p1(x1),not(p2(x1)))

156

Productions Corresponding λ-functions

QUERY→ answer(CITY) λp.answer(x1,p(x1))

QUERY→ answer(COUNTRY) λp.answer(x1,p(x1))

QUERY→ answer(NUM) λp.answer(x1,p(x1))

QUERY→ answer(PLACE) λp.answer(x1,p(x1))

QUERY→ answer(RIVER) λp.answer(x1,p(x1))

QUERY→ answer(STATE) λp.answer(x1,p(x1))

A.3 CLANG: The ROBOCUP Coach Language

In the ROBOCUP Coach Competition, teams compete to provide effective

instructions to advice-taking agents in the simulated soccer domain. Coaching in-

structions are provided in a formal coach language called CLANG (Chen et al.,

2003, Sec. 7.7).

The CLANG grammar described here basically follows the one described

in Chen et al. (2003). We have slightly modified CLANG to introduce a few con-

cepts that are not easily describable in the original CLANG language. These new

constructs are marked with asterisks (∗).

In CLANG, coaching instructions come in the form of if-then rules. Each

if-then rule consists of a condition and a directive:

RULE→ (CONDITION DIRECTIVE)

Possible conditions are:

Productions Meaning of predicates

CONDITION→ (true) Always true.

CONDITION→ (false) Always false.

157

Productions Meaning of predicates

CONDITION→ (ppos PLAYER At least UNUM1 and at most UNUM2 of

UNUM1 UNUM2 REGION) PLAYER is in REGION.

CONDITION→ (ppos-any PLAYER REGION)∗ Some of PLAYER is in REGION.

CONDITION→ (ppos-none our REGION)∗ None of our players is in REGION.

CONDITION→ (ppos-none opp REGION)∗ None of the opponents is in REGION.

CONDITION→ (bpos REGION) The ball is in REGION.

CONDITION→ (bowner PLAYER) PLAYER owns the ball.

CONDITION→ (playm bko) Specific play modes (Chen et al., 2003).

CONDITION→ (playm time over)

CONDITION→ (playm play on)

CONDITION→ (playm ko our)

CONDITION→ (playm ko opp)

CONDITION→ (playm ki our)

CONDITION→ (playm ki opp)

CONDITION→ (playm fk our)

CONDITION→ (playm fk opp)

CONDITION→ (playm ck our)

CONDITION→ (playm ck opp)

CONDITION→ (playm gk our)

CONDITION→ (playm gk opp)

CONDITION→ (playm gc our)

CONDITION→ (playm gc opp)

CONDITION→ (playm ag our)

CONDITION→ (playm ag opp)

CONDITION→ "IDENT" Condition named IDENT. See definec.

CONDITION→ (< NUM1 NUM2) NUM1 is smaller than NUM2. Both

NUM1 and NUM2 can be identifiers.

CONDITION→ (> NUM1 NUM2) NUM1 is greater than NUM2.

CONDITION→ (<= NUM1 NUM2) NUM1 is not greater than NUM2.

CONDITION→ (== NUM1 NUM2) NUM1 is equal to NUM2.

CONDITION→ (>= NUM1 NUM2) NUM1 is not smaller than NUM2.

158

Productions Meaning of predicates

CONDITION→ (!= NUM1 NUM2) NUM1 is not equal to NUM2.

CONDITION→ (and CONDITION1 CONDITION2) CONDITION1 and CONDITION2.

CONDITION→ (or CONDITION1 CONDITION2) CONDITION1 or CONDITION2.

CONDITION→ (not CONDITION) CONDITION is not true.

Directives are lists of actions for individual players to take:

Productions Meaning of predicates

DIRECTIVE→ (do PLAYER ACTION) PLAYER should take ACTION.

DIRECTIVE→ (dont PLAYER ACTION) PLAYER should avoid taking ACTION.

Possible actions are:

Productions Meaning of predicates

ACTION→ (pos REGION) Go to REGION.

ACTION→ (home REGION) Set default position to REGION.

ACTION→ (mark PLAYER) Mark PLAYER (usually opponents).

ACTION→ (markl REGION) Mark the passing lane from current ball position

to REGION.

ACTION→ (markl PLAYER) Mark the passing lane from current ball position

to position of PLAYER (usually opponents).

ACTION→ (oline REGION) Set offside-trap line to REGION.

ACTION→ (pass REGION) Pass the ball to REGION.

ACTION→ (pass PLAYER) Pass the ball to PLAYER.

ACTION→ (dribble REGION) Dribble the ball to REGION.

ACTION→ (clear REGION) Clear the ball to REGION.

ACTION→ (shoot) Shoot the ball.

ACTION→ (hold) Hold the ball.

ACTION→ (intercept) Intercept the ball.

ACTION→ (tackle PLAYER) Tackle PLAYER.

The following productions are for specifying players: (UNUM stands for “uniform

numbers”, i.e. 1 to 11)

159

Productions Meaning of predicates

PLAYER→ (player our {UNUM})∗∗ Our player UNUM.

PLAYER→ (player our Our players UNUM1 and UNUM2.

{UNUM1 UNUM2})
∗∗

PLAYER→ (player our Our players UNUM1, UNUM2 and

{UNUM1 UNUM2 UNUM3})
∗∗ UNUM3.

PLAYER→ (player our Our players UNUM1, UNUM2, UNUM3

{UNUM1 UNUM2 UNUM3 UNUM4})
∗∗ and UNUM4.

PLAYER→ (player opp {UNUM})∗∗ Opponent player UNUM.

PLAYER→ (player our {0})∗∗ Our team.

PLAYER→ (player opp {0})∗∗ Opponent’s team.

PLAYER→ (player-range our Our players UNUM1 to UNUM2.

UNUM1 UNUM2)
∗

PLAYER→ (player-range opp Opponent players UNUM1 to UNUM2.

UNUM1 UNUM2)
∗

PLAYER→ (player-except our Our team except player UNUM

{UNUM})∗

PLAYER→ (player-except opp Opponent’s team except player UNUM

{UNUM})∗

Productions marked with double asterisks (∗∗) are slight variations of existing con-

structs in the original CLANG grammar (e.g. as in (bowner our {4})). The new

player predicate is introduced for uniformity. To specify regions, we can use the

following productions:

Productions Meaning of predicates

REGION→ POINT A POINT.

REGION→ (rec POINT1 POINT2) A rectangle with opposite corners POINT1 and

POINT2.

REGION→ (tri POINT1 POINT2 A triangle with corners POINT1, POINT2 and

POINT3) POINT3.

160

Productions Meaning of predicates

REGION→ (arc POINT NUM1 A donut arc (Chen et al., 2003).

NUM2 NUM3 NUM4)

REGION→ (circle POINT NUM)∗ A circle of center POINT and radius NUM.

REGION→ (null) The empty region.

REGION→ (reg REGION1 REGION2) The union of REGION1 and REGION2.

REGION→ (reg-exclude REGION1 REGION1 excluding REGION2.

REGION2)
∗

REGION→ (field)∗ The field.

REGION→ (half TEAM)∗ The TEAM’s half of field. TEAM can be

either our or opp.

REGION→ (penalty-area TEAM)∗ The TEAM’s penalty area.

REGION→ (goal-area TEAM)∗ The TEAM’s goal area.

REGION→ (midfield)∗ The midfield.

REGION→ (midfield TEAM)∗ The TEAM’s midfield.

REGION→ (near-goal-line TEAM)∗ Near TEAM’s goal line.

REGION→ (from-goal-line TEAM NUM1 to NUM2 meters from TEAM’s goal

NUM1 NUM2)
∗ line.

REGION→ (left REGION)∗ The left half of REGION (from our team’s

perspective).

REGION→ (right REGION)∗ The right half of REGION.

REGION→ (left-quarter REGION)∗ The left quarter of REGION.

REGION→ (right-quarter REGION)∗ The right quarter of REGION.

REGION→ "IDENT" Region named IDENT. See definer.

To specify points, we can use the following productions:

Productions Meaning of predicates

POINT→ (pt NUM1 NUM2) The xy-coordinates (NUM1, NUM2).

POINT→ (pt ball) The current ball position.

POINT→ POINT1 + POINT2 Coordinate-wise addition.

POINT→ POINT1 - POINT2 Coordinate-wise subtraction.

POINT→ POINT1 * POINT2 Coordinate-wise multiplication.

161

Productions Meaning of predicates

POINT→ POINT1 / POINT2 Coordinate-wise division.

POINT→ (pt-with-ball-attraction POINT1 + ((pt ball) * POINT2).

POINT1 POINT2)
∗

POINT→ (front-of-goal TEAM)∗ Directly in front of TEAM’s goal.

POINT→ (from-goal TEAM NUM)∗ NUM meters in front of TEAM’s goal.

The following CLANG statements can be used to define names for conditions and

regions. These names (IDENT) can be used to simplify the definition of if-then

rules:

STATEMENT→ (definec "IDENT" CONDITION)

STATEMENT→ (definer "IDENT" REGION)

Note that an if-then rule is also a CLANG statement:

STATEMENT→ RULE

STATEMENT is the start symbol in the CLANG grammar.

162

Bibliography

Alfred V. Aho and Jeffrey D. Ullman (1969). Properties of syntax directed transla-

tions. Journal of Computer and System Sciences, 3(3):319–334.

Alfred V. Aho and Jeffrey D. Ullman (1972). The Theory of Parsing, Translation,

and Compiling. Prentice Hall, Englewood Cliffs, NJ.

James F. Allen (1995). Natural Language Understanding. Benjamin/Cummings,

Menlo Park, CA, 2nd ed.

Ion Androutsopoulos, Graeme D. Ritchie and Peter Thanisch (1995). Natural lan-

guage interfaces to databases: An introduction. Journal of Natural Language

Engineering, 1(1):29–81.

Collin Baker, Michael Ellsworth and Katrin Erk (2007). SemEval-2007 task 19:

Frame semantic structure extraction. In Proceedings of the Fourth International

Workshop on Semantic Evaluation (SemEval-2007), pp. 99–104. Prague, Czech

Republic.

Srinivas Bangalore, Owen Rambow and Steven Whittaker (2000). Evaluation met-

rics for generation. In Proceedings of the 1st International Conference on Natural

Language Generation (INLG-2000), pp. 1–8. Mitzpe Ramon, Israel.

Ken Barker, Bhalchandra Agashe, Shaw-Yi Chaw et al. (2007). Learning by read-

ing: A prototype system, performance baseline and lessons learned. In Proceed-

ings of the 22nd Conference on Artificial Intelligence (AAAI-2007), pp. 280–286.

Vancouver, Canada.

163

John Bateman (1990). Upper modeling: A level of semantics for natural language

processing. In Proceedings of the Fifth International Workshop on Natural Lan-

guage Generation, pp. 54–61. Dawson, PA.

Samuel Bayer, John Burger, Warren Greiff and Ben Wellner (2004). The MITRE

logical form generation system. In Proceedings of the Third International Work-

shop on the Evaluation of Systems for the Semantic Analysis of Text (Senseval-3).

Barcelona, Spain.

Anja Belz and Ehud Reiter (2006). Comparing automatic and human evaluation

of NLG systems. In Proceedings of the 11th Conference of the European Chap-

ter of the Association for Computational Linguistics (EACL-2006), pp. 313–320.

Trento, Italy.

Adam L. Berger, Stephen A. Della Pietra and Vincent J. Della Pietra (1996). A

maximum entropy approach to natural language processing. Computational Lin-

guistics, 22(1):39–71.

Daniel M. Bikel (2004). Intricacies of Collins’ parsing model. Computational

Linguistics, 30(4):479–511.

Patrick Blackburn and Johan Bos (2005). Representation and Inference for Natu-

ral Language: A First Course in Computational Semantics. CSLI Publications,

Stanford, CA.

Borland International (1988). Turbo Prolog 2.0 Reference Guide. Borland Interna-

tional, Scotts Valley, CA.

Johan Bos (2005). Towards wide-coverage semantic interpretation. In Proceedings

of the Sixth International Workshop on Computational Semantics (IWCS-2005).

Tilburg, The Netherlands.

164

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och and Jeffrey Dean (2007).

Large language models in machine translation. In Proceedings of the 2007 Joint

Conference on Empirical Methods in Natural Language Processing and Com-

putational Natural Language Learning (EMNLP-CoNLL-2007), pp. 858–867.

Prague, Czech Republic.

Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Fred-

erick Jelinek, John D. Lafferty, Robert L. Mercer and Paul S. Roossin (1990). A

statistical approach to machine translation. Computational Linguistics, 16(2):79–

85.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, Meredith J. Gold-

smith, Jan Hajic, Robert L. Mercer and Surya Mohanty (1993a). But dictionaries

are data too. In Proceedings of the ARPA Workshop on Human Language Tech-

nology, pp. 202–205. Princeton, NJ.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra and Robert L.

Mercer (1993b). The mathematics of statistical machine translation: Parameter

estimation. Computational Linguistics, 19(2):263–312.

Xavier Carreras and Luı́s Màrquez (2005). Introduction to the CoNLL-2005 shared

task: Semantic role labeling. In Proceedings of the Ninth Conference on Com-

putational Natural Language Learning (CoNLL-2005), pp. 152–164. Ann Arbor,

MI.

John Carroll, Ann Copestake, Dan Flickinger and Victor Poznański (1999). An

efficient chart generator for (semi-)lexicalist grammars. In Proceedings of the

7th European Workshop on Natural Language Generation (EWNLG-1999), pp.

86–95. Toulouse, France.

165

John Carroll and Stephan Oepen (2005). High efficiency realization for a wide-

coverage unification grammar. In Proceedings of the 2nd International Joint

Conference on Natural Language Processing (IJCNLP-2005), pp. 165–176. Jeju

Island, Korea.

Eugene Charniak (2000). A maximum-entropy-inspired parser. In Proceedings of

the Meeting of the North American Association for Computational Linguistics

(NAACL-2000), pp. 132–139.

Eugene Charniak and Yorick Wilks, eds. (1976). Computational Semantics. North-

Holland, Amsterdam.

John Chen, Srinivas Bangalore and K. Vijay-Shanker (2006). Automated extrac-

tion of tree-adjoining grammars from treebanks. Natural Language Engineering,

12(3):251–299.

Mao Chen, Ehsan Foroughi, Fredrik Heintz et al. (2003). Users manual: RoboCup

soccer server manual for soccer server version 7.07 and later. Available at http:

//sourceforge.net/projects/sserver/.

Stanley F. Chen and Ronald Rosenfeld (1999). A Gaussian prior for smoothing

maximum entropy model. Technical Report CMU-CS-99-108, School of Com-

puter Science, Carnegie Mellon University.

Colin Cherry and Dekang Lin (2006). Soft syntactic constraints for word alignment

through discriminative training. In Proceedings of the 21st International Confer-

ence on Computational Linguistics and 44th Annual Meeting of the Association

for Computational Linguistics (COLING-ACL-2006), pp. 105–112. Sydney, Aus-

tralia.

166

David Chiang (2005). A hierarchical phrase-based model for statistical machine

translation. In Proceedings of the 43nd Annual Meeting of the Association for

Computational Linguistics (ACL-2005), pp. 263–270. Ann Arbor, MI.

David Chiang, Mona Diab, Nizar Habash, Owen Rambow and Saflullah Shareef

(2006). Parsing Arabic dialects. In Proceedings of the 11th Conference of the

European Chapter of the Association for Computational Linguistics (EACL-06),

pp. 369–376. Trento, Italy.

Hai Leong Chieu and Hwee Tou Ng (2003). Named entity recognition with a max-

imum entropy approach. In Proceedings of the Seventh Conference on Com-

putational Natural Language Learning (CoNLL-2003), pp. 160–163. Edmonton,

Canada.

Alonzo Church (1940). A formulation of a simple theory of types. Journal of

Symbolic Logic, 5:56–68.

Stephen Clark and James R. Curran (2003). Log-linear models for wide-coverage

CCG parsing. In Proceedings of the 2003 Conference on Empirical Methods in

Natural Language Processing (EMNLP-03), pp. 97–105. Sapporo, Japan.

Stephen Clark and James R. Curran (2004). Parsing the WSJ using CCG and log-

linear models. In Proceedings of the 42nd Annual Meeting of the Association for

Computational Linguistics (ACL-2004), pp. 104–111. Barcelona, Spain.

Michael Collins and Terry Koo (2005). Discriminative reranking for natural lan-

guage parsing. Computational Linguistics, 31(1):25–69.

Michael J. Collins (1997). Three generative, lexicalised models for statistical pars-

ing. In Proceedings of the 35th Annual Meeting of the Association for Computa-

tional Linguistics (ACL-97), pp. 16–23.

167

Ann Copestake and Dan Flickinger (2000). An open-source grammar development

environment and broad-coverage English grammar using HPSG. In Proceedings

of the Second Conference on Language Resources and Evaluation (LREC-2000).

Athens, Greece.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein

(2001). Introduction to Algorithms. MIT Press, Cambridge, MA, 2nd ed.

Simon Corston-Oliver, Michael Gamon, Eric K. Ringger and Robert Moore (2002).

An overview of Amalgam: A machine-learned generation module. In Pro-

ceedings of the 2nd International Conference on Natural Language Generation

(INLG-2002), pp. 33–40. Harriman, NY.

Dick Crouch (2005). Packed rewriting for mapping semantics to KR. In Proceed-

ings of the Sixth International Workshop on Computational Semantics (IWCS-

2005). Tilburg, The Netherlands.

John DeNero and Dan Klein (2007). Tailoring word alignments to syntactic ma-

chine translation. In Proceedings of the 45th Annual Meeting of the Association

for Computational Linguistics (ACL-2007). Prague, Czech Republic.

Yuan Ding, Daniel Gildea and Martha Palmer (2003). An algorithm for word-level

alignment of parallel dependency trees. In Proceedings of the Ninth Machine

Translation Summit, pp. 95–101. New Orleans, LA.

George Doddington (2002). Automatic evaluation of machine translation quality

using n-gram co-occurrence statistics. In Proceedings of ARPA Workshop on

Human Language Technology, pp. 128–132. San Diego, CA.

David R. Dowty, Robert E. Wall and Stanley Peters (1981). Introduction to Mon-

tague Semantics. D. Reidel, Dordrecht, Holland.

168

Jay Earley (1970). An efficient context-free parsing algorithm. Communications of

the Association for Computing Machinery, 6(8):451–455.

Michael Elhadad and Jacques Robin (1996). An overview of SURGE: A reusable

comprehensive syntactic realization component. Tech. Rep. 96-03, Department

of Computer Science, Ben Gurion University, Beer Sheva, Israel.

Katrin Erk (2005). Frame assignment as word sense disambiguation. In Proceed-

ings of the Sixth International Workshop on Computational Semantics (IWCS-

2005). Tilburg, The Netherlands.

Katrin Erk and Sebastian Padó (2006). SHALMANESER—a toolchain for shallow

semantic parsing. In Proceedings of the Fifth International Conference on Lan-

guage Resources and Evaluation (LREC-2006). Genoa, Italy.

David Farwell, Stephen Helmreich, Bonnie J. Dorr, Nizar Habash, Florence Reeder,

Keith Miller, Lori Levin, Teruko Mitamura, Eduard Hovy, Owen Rambow and

Advaith Siddharthan (2004). Interlingual annotation of multilingual text corpora.

In Proceedings of the NAACL-2004 Workshop on Frontiers in Corpus Annotation,

pp. 55–62. Boston, MA.

Christiane D. Fellbaum (1998). WordNet: An Electronic Lexical Database. MIT

Press, Cambridge, MA.

Charles J. Fillmore, Christopher R. Johnson and Miriam R. L. Petruck (2003).

Background to FrameNet. International Journal of Lexicography, 16(3):235–

250.

Heidi J. Fox (2002). Phrasal cohesion and statistical machine translation. In Pro-

ceedings of the 2002 Conference on Empirical Methods in Natural Language

Processing (EMNLP-02), pp. 304–311. Philadelphia, PA.

169

Noah S. Friedland, Paul G. Allen, Gavin Matthews et al. (2004). Project Halo:

Towards a digital Aristotle. AI Magazine, 25(4):29–47.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei

Wang and Ignacio Thayer (2006). Scalable inference and training of context-rich

syntactic translation models. In Proceedings of the 21st International Confer-

ence on Computational Linguistics and 44th Annual Meeting of the Association

for Computational Linguistics (COLING-ACL-2006), pp. 961–968. Sydney, Aus-

tralia.

Michel Galley and Kathleen McKeown (2007). Lexicalized Markov grammars for

sentence compression. In Proceedings of North American Chapter of the As-

sociation for Computational Linguistics Annual Meeting and Human Language

Technology Conference (NAACL-HLT-2007), pp. 180–187. Rochester, NY.

Yuqing Gao, Bowen Zhou, Ruhi Sarikaya, Mohamed Afify, Hong-Kwang Kuo,

Wei-Zhong Zhu, Yonggang Deng, Charles Prosser, Wei Zhang and Laurent Be-

sacier (2006). IBM MASTOR system: Multilingual automatic speech-to-speech

translator. In Proceedings of the First International Workshop on Medical Speech

Translation, pp. 53–56. New York, NY.

Ruifang Ge and Raymond J. Mooney (2005). A statistical semantic parser that inte-

grates syntax and semantics. In Proceedings of the Ninth Conference on Compu-

tational Natural Language Learning (CoNLL-2005), pp. 9–16. Ann Arbor, MI.

Ruifang Ge and Raymond J. Mooney (2006). Discriminative reranking for semantic

parsing. In Proceedings of the 21st International Conference on Computational

Linguistics and 44th Annual Meeting of the Association for Computational Lin-

guistics (COLING-ACL-2006), Poster Sessions, pp. 263–270. Sydney, Australia.

170

Daniel Gildea and Daniel Jurafsky (2002). Automated labeling of semantic roles.

Computational Linguistics, 28(3):245–288.

H. Paul Grice (1975). Logic and conversation. In Peter Cole and Jerry Morgan,

eds., Syntax and Semantics 3: Speech Acts, pp. 41–58. Academic Press, New

York.

Dilek Zeynep Hakkani, Gökhan Tür, Kemal Oflazer, Teruko Mitamura and Eric H.

Nyberg (1998). An English-to-Turkish interlingual MT system. In Proceedings

of the Third Conference of the Association for Machine Translation in the Amer-

icas (AMTA-1998), pp. 83–94. Langhorne, PA.

Yulan He and Steve Young (2003). Hidden vector state model for hierarchical

semantic parsing. In Proceedings of the 2003 IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP-03), pp. 268–271. Hong

Kong.

Yulan He and Steve J. Young (2006). Spoken language understanding using the

hidden vector state model. Speech Communication, Special Issue on Spoken

Language Understanding for Conversational Systems, 48(3–4):262–275.

Julia Hockenmaier and Mark Steedman (2002). Acquiring compact lexicalized

grammars from a cleaner treebank. In Proceedings of the Third International

Conference on Language Resources and Evaluation (LREC-2002), vol. V, pp.

1974–1981. Las Palmas, Spain.

Liang Huang and David Chiang (2005). Better k-best parsing. In Proceedings of the

Ninth International Workshop on Parsing Technologies (IWPT-2005), pp. 53–64.

Vancouver, Canada.

171

Paul S. Jacobs (1985). PHRED: A generator for natural language interfaces. Com-

putational Linguistics, 11(4):219–242.

Rohit J. Kate and Raymond J. Mooney (2006). Using string-kernels for learning

semantic parsers. In Proceedings of the 21st International Conference on Com-

putational Linguistics and 44th Annual Meeting of the Association for Computa-

tional Linguistics (COLING-ACL-2006), pp. 913–920. Sydney, Australia.

Rohit J. Kate, Yuk Wah Wong and Raymond J. Mooney (2005). Learning to trans-

form natural to formal languages. In Proceedings of the Twentieth National Con-

ference on Artificial Intelligence (AAAI-2005), pp. 1062–1068. Pittsburgh, PA.

Martin Kay (1975). Syntactic processing and functional sentence perspective. In

Theoretical Issues in Natural Language Processing—Supplement to the Proceed-

ings, pp. 12–15. Cambridge, MA.

Martin Kay (1996). Chart generation. In Proceedings of the 34th Annual Meeting

of the Association for Computational Linguistics (ACL-96), pp. 200–204. San

Francisco, CA.

Kevin Knight, Ishwar Chander, Matthew Haines, Vasileios Hatzivassiloglou, Ed-

uard Hovy, Masayo Iida, Steve K. Luk, Richard Whitney and Kenji Yamada

(1995). Filling knowledge gaps in a broad-coverage machine translation system.

In Proceedings of the Fourteenth International Joint Conference on Artificial In-

telligence (IJCAI-95), pp. 1390–1397. Montréal, Canada.

Kevin Knight and Jonathan Graehl (2005). An overview of probabilistic tree trans-

ducers for natural language processing. In Proceedings of the Sixth Interna-

tional Conference on Intelligent Text Processing and Computational Linguistics

(CICLing-05), pp. 1–25. Mexico City, Mexico.

172

Kevin Knight and Vasileios Hatzivassiloglou (1995). Two-level, many-paths gen-

eration. In Proceedings of the 33rd Annual Meeting of the Association for Com-

putational Linguistics (ACL-95), pp. 252–260. Cambridge, MA.

Kevin Knight and Irene Langkilde (2000). Preserving ambiguities in generation via

automata intersection. In Proceedings of the Seventeenth National Conference

on Artificial Intelligence (AAAI-2000), pp. 697–702. Austin, TX.

Philipp Koehn and Christof Monz (2006). Manual and automatic evaluation of ma-

chine translation between European languages. In Proceedings on the Workshop

on Statistical Machine Translation, pp. 102–121. New York City, NY.

Philipp Koehn, Franz Josef Och and Daniel Marcu (2003). Statistical phrase-

based translation. In Proceedings of Human Language Technology Conference

and North American Association for Computational Linguistics Annual Meeting

(HLT-NAACL-2003). Edmonton, Canada.

Gregory Kuhlmann, Peter Stone, Raymond J. Mooney and Jude W. Shavlik (2004).

Guiding a reinforcement learner with natural language advice: Initial results in

RoboCup soccer. In Proceedings of the AAAI-04 Workshop on Supervisory Con-

trol of Learning and Adaptive Systems. San Jose, CA.

Roland Kuhn and Renato De Mori (1995). The application of semantic classifi-

cation trees to natural language understanding. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 17(5):449–460.

Irene Langkilde and Kevin Knight (1998). Generation that exploits corpus-based

statistical knowledge. In Proceedings of the 36th Annual Meeting of the Asso-

ciation for Computational Linguistics and COLING-98 (ACL-COLING-98), pp.

704–710. Montréal, Canada.

173

Irene Langkilde-Geary (2002). An empirical verification of coverage and correct-

ness for a general-purpose sentence generator. In Proceedings of the 2nd Inter-

national Conference on Natural Language Generation (INLG-2002), pp. 17–24.

Harriman, NY.

Maria Lapata and Chris Brew (1999). Using subcategorization to resolve verb class

ambiguity. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing and Very Large Corpora (EMNLP-VLC-99), pp. 266–274.

College Park, MD.

Benoit Lavoie and Owen Rambow (1997). A fast and portable realizer for text

generation systems. In Proceedings of the Fifth Conference on Applied Natural

Language Processing (ANLP-1997), pp. 265–268. Washington, DC.

Yoong Keok Lee and Hwee Tou Ng (2002). An empirical evaluation of knowledge

sources and learning algorithms for word sense disambiguation. In Proceedings

of the 2002 Conference on Empirical Methods in Natural Language Processing

(EMNLP-02), pp. 41–48. Philadelphia, PA.

Roger Levy and Christopher Manning (2004). Deep dependencies from context-

free statistical parsers: Correcting the surface dependency approximation. In

Proceedings of the 42nd Annual Meeting of the Association for Computational

Linguistics (ACL-2004), pp. 327–334. Barcelona, Spain.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini and Chris

Watkins (2002). Text classification using string kernels. Journal of Machine

Learning Research, 2:419–444.

Klaus Macherey, Franz Josef Och and Hermann Ney (2001). Natural language

understanding using statistical machine translation. In Proceedings of the 7th

174

European Conference on Speech Communication and Technology (EuroSpeech-

01), pp. 2205–2208. Aalborg, Denmark.

Robert Malouf (2002). A comparison of algorithms for maximum entropy parame-

ter estimation. In Proceedings of the Sixth Conference on Computational Natural

Language Learning (CoNLL-2002), pp. 49–55. Taipei, Taiwan.

Inderjeet Mani (2001). Automatic Summarization. John Benjamins, Amsterdam,

The Netherlands.

Daniel Marcu and William Wong (2002). A phrase-based, joint probability model

for statistical machine translation. In Proceedings of the 2002 Conference on

Empirical Methods in Natural Language Processing (EMNLP-02), pp. 133–139.

Philadelphia, PA.

Jonathan May and Kevin Knight (2007). Syntactic re-alignment models for ma-

chine translation. In Proceedings of the 2007 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language

Learning (EMNLP-CoNLL-2007). Prague, Czech Republic.

Scott Miller, Robert Bobrow, Robert Ingria and Richard Schwartz (1994). Hidden

understanding models of natural language. In Proceedings of the 32nd Annual

Meeting of the Association for Computational Linguistics (ACL-94), pp. 25–32.

Scott Miller, David Stallard, Robert Bobrow and Richard Schwartz (1996). A fully

statistical approach to natural language interfaces. In Proceedings of the 34th

Annual Meeting of the Association for Computational Linguistics (ACL-96), pp.

55–61. Santa Cruz, CA.

Yusuke Miyao, Takashi Ninomiya and Jun’ichi Tsujii (2004). Corpus-oriented

grammar development for acquiring a head-driven phrase structure grammar

175

from the Penn treebank. In Proceedings of the First International Joint Con-

ference on Natural Language Processing (IJCNLP-2004), pp. 684–693. Sanya

City, China.

Yusuke Miyao and Jun’ichi Tsujii (2002). Maximum entropy estimation for feature

forests. In Proceedings of the Human Language Technology Conference (HLT-

2002). San Diego, CA.

Richard Montague (1970). Universal grammar. Theoria, 36:373–398.

Taesun Moon and Jason Baldridge (2007). Part-of-speech tagging for middle En-

glish through alignment and projection of parallel diachronic texts. In Proceed-

ings of the 2007 Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning (EMNLP-CoNLL-

2007), pp. 390–399. Prague, Czech Republic.

Robert C. Moore (2002). A complete, efficient sentence-realization algorithm for

unification grammar. In Proceedings of the 2nd International Conference on

Natural Language Generation (INLG-2002), pp. 41–48. Harriman, NY.

Dragos Stefan Munteanu, Alexander Fraser and Daniel Marcu (2004). Improved

machine translation performance via parallel sentence extraction from compa-

rable corpora. In Proceedings of Human Language Technology Conference

and North American Association for Computational Linguistics Annual Meeting

(HLT-NAACL-2004), pp. 265–272. Boston, MA.

Hiroko Nakanishi, Yusuke Miyao and Jun’ichi Tsujii (2005). Probabilistic models

for disambiguation of an HPSG-based chart generator. In Proceedings of the

9th International Workshop on Parsing Technology (IWPT-2005), pp. 93–102.

Vancouver, Canada.

176

NIST (2006). NIST 2006 machine translaiton evaluation official results.

Available at http://www.nist.gov/speech/tests/mt/mt06eval

official results.html.

Jorge Nocedal (1980). Updating quasi-Newton matrices with limited storage. Math-

ematics of Computation, 35(151):773–782.

Eric H. Nyberg and Teruko Mitamura (1992). The KANT system: Fast, accu-

rate, high-quality translation in practical domains. In Proceedings of the Four-

teenth International Conference on Computational Linguistics (COLING-1992),

pp. 1069–1073. Nantes, France.

Franz J. Och, Christoph Tillmann and Hermann Ney (1999). Improved alignment

models for statistical machine translation. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing and Very Large Corpora

(EMNLP-VLC-99), pp. 20–28. University of Maryland.

Franz Josef Och (2003). Minimum error rate training in statistical machine transla-

tion. In Proceedings of the 41st Annual Meeting of the Association for Computa-

tional Linguistics (ACL-2003), pp. 160–167. Sapporo, Japan.

Franz Josef Och and Hermann Ney (2000). A comparison of alignment mod-

els for statistical machine translation. In Proceedings of the Eighteenth Inter-

national Conference on Computational Linguistics (COLING-2000), pp. 1086–

1090. Saarbrücken, Germany.

Franz Josef Och and Hermann Ney (2003). A systematic comparison of various

statistical alignment models. Computational Linguistics, 29(1):19–51.

Franz Josef Och and Hermann Ney (2004). The alignment template approach to

statistical machine translation. Computational Linguistics, 30(4):417–450.

177

Alice H. Oh and Alex Rudnicky (2000). Stochastic language generation for spo-

ken dialogue systems. In Proceedings of the ANLP-NAACL-2000 Workshop on

Coversational Systems, pp. 27–32. Seattle, WA.

Martha Palmer, Daniel Gildea and Paul Kingsbury (2005). The Proposition Bank:

An annotated corpus of semantic roles. Computational Linguistics, 31(1):71–

106.

Kishore Papineni, Salim Roukos, Todd Ward and Wei-Jing Zhu (2002). BLEU:

a method for automatic evaluation of machine translation. In Proceedings of

the 40th Annual Meeting of the Association for Computational Linguistics (ACL-

2002), pp. 311–318. Philadelphia, PA.

Kishore A. Papineni, Salim Roukos and R. Todd Ward (1997). Feature-based

language understanding. In Proceedings of the 5th European Conference

on Speech Communication and Technology (EuroSpeech-97), pp. 1435–1438.

Rhodes, Greece.

Andrew Philpot, Eduard Hovy and Patrick Pantel (2005). The Omega ontology. In

Proceedings of the IJCNLP-2005 Workshop on Ontologies and Lexical Resources

(OntoLex-2005). Jeju Island, South Korea.

Carl Pollard (1984). Generalized Phrase Structure Grammars. Ph.D. thesis, Stan-

ford University.

Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko and Alexander Yates

(2004). Modern natural language interfaces to databases: Composing statistical

parsing with semantic tractability. In Proceedings of the Twentieth International

Conference on Computational Linguistics (COLING-2004). Geneva, Switzer-

land.

178

Ana-Maria Popescu, Oren Etzioni and Henry Kautz (2003). Towards a theory of

natural language interfaces to databases. In Proceedings of the 2003 Interna-

tional Conference on Intelligent User Interfaces (IUI-2003), pp. 149–157. ACM,

Miami, FL.

Vaughan R. Pratt (1973). A linguistics oriented programming language. In Pro-

ceedings of the Third International Joint Conference on Artificial Intelligence

(IJCAI-73), pp. 372–382. Stanford, CA.

Patti J. Price (1990). Evaluation of spoken language systems: The ATIS domain. In

Proceedings of the Third DARPA Speech and Natural Language Workshop, pp.

91–95.

Adwait Ratnaparkhi (1996). A maximum entropy part of speech tagger. In Proceed-

ings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP-96), pp. 133–141. Philadelphia, PA.

Stefan Riezler, Tracy King, Ronald Kaplan, Richard Crouch, John Maxwell III and

Mark Johnson (2002). Parsing the Wall Street Journal using a lexical-functional

grammar and discriminative estimation techniques. In Proceedings of the 40th

Annual Meeting of the Association for Computational Linguistics (ACL-2002),

pp. 271–278. Philadelphia, PA.

Eric Ringger, Michael Gamon, Robert C. Moore, David Rojas, Martine Smets and

Simon Corston-Oliver (2004). Linguistically informed statistical models of con-

stituent structure for ordering in sentence realization. In Proceedings of the Twen-

tieth International Conference on Computational Linguistics (COLING-2004),

pp. 673–679. Geneva, Switzerland.

179

Yves Schabes and Aravind K. Joshi (1988). An Earley-type parsing algorithm for

tree adjoining grammars. In Proceedings of the 26th Annual Meeting of the As-

sociation for Computational Linguistics (ACL-88), pp. 258–269. Buffalo, NY.

William Schuler (2003). Using model-theoretic semantic interpretation to guide sta-

tistical parsing and word recognition in a spoken language interface. In Proceed-

ings of the 41st Annual Meeting of the Association for Computational Linguistics

(ACL-2003), pp. 529–536.

Stephanie Seneff (1992). TINA: A natural language system for spoken language

applications. Computational Linguistics, 18(1):61–86.

Stuart M. Shieber (1988). A uniform architecture for parsing and generation. In

Proceedings of the 12th International Conference on Computational Linguistics

(COLING-88), pp. 614–619. Budapest, Hungary.

Stuart M. Shieber (1993). The problem of logical-form equivalence. Computational

Linguistics, 19(1):179–190.

Stuart M. Shieber (2007). Probabilistic synchronous tree-adjoining grammars for

machine translation: The argument from bilingual dictionaries. In Proceedings of

the HLT-NAACL/AMTA Workshop on Syntax and Structure in Statistical Trans-

lation, pp. 88–95. Rochester, NY.

Stuart M. Shieber and Yves Schabes (1990a). Generation and synchronous tree-

adjoining grammars. In Proceedings of the Fifth International Workshop on Nat-

ural Language Generation, pp. 9–14. Dawson, PA.

Stuart M. Shieber and Yves Schabes (1990b). Synchronous tree-adjoining gram-

mars. In Proceedings of the Thirteenth International Conference on Computa-

tional Linguistics (COLING-1990), pp. 253–258. Helsinki, Finland.

180

Reid Simmons, Dani Goldberg, Adam Goode et al. (2003). GRACE: An au-

tonomous robot for the AAAI robot challenge. AI Magazine, 24(2):51–72.

David Smith and Jason Eisner (2006). Quasi-synchronous grammars: Alignment

by soft projection of syntactic dependencies. In Proceedings of the Workshop on

Statistical Machine Translation, pp. 23–30. New York, NY.

Radu Soricut and Daniel Marcu (2006). Stochastic language generation using

WIDL-expressions and its application in machine translation and summarization.

In Proceedings of the 21st International Conference on Computational Linguis-

tics and 44th Annual Meeting of the Association for Computational Linguistics

(COLING-ACL-2006), pp. 1105–1112. Sydney, Australia.

Mark Steedman (2000). The Syntactic Process. MIT Press, Cambridge, MA.

Ingeborg Steinacker and Ernst Buchberger (1983). Relating syntax and semantics:

The syntactico-semantic lexicon of the system VIE-LANG. In Proceedings of the

First Conference of the European Chapter of the Association for Computational

Linguistics (EACL-1983), pp. 96–100. Pisa, Italy.

Andreas Stolcke (1995). An efficient probabilistic context-free parsing algorithm

that computes prefix probabilities. Computational Linguistics, 21(2):165–201.

Andreas Stolcke (2002). SRILM—an extensible language modeling toolkit. In

Proceedings of the International Conference on Spoken Language Processing

(ICSLP-2002), pp. 901–904. Denver, CO.

Lappoon R. Tang and Raymond J. Mooney (2001). Using multiple clause construc-

tors in inductive logic programming for semantic parsing. In Proceedings of the

12th European Conference on Machine Learning (ECML-2001), pp. 466–477.

Freiburg, Germany.

181

Cynthia A. Thompson, Roger Levy and Christopher D. Manning (2003). A gener-

ative model for semantic role labeling. pp. 397–408. Cavtat-Dubrovnik, Croatia.

Cynthia A. Thompson and Raymond J. Mooney (1999). Automatic construction of

semantic lexicons for learning natural language interfaces. In Proceedings of the

Sixteenth National Conference on Artificial Intelligence (AAAI-99), pp. 487–493.

Orlando, FL.

Christoph Tillmann (2003). A projection extension algorithm for statistical machine

translation. In Proceedings of the 2003 Conference on Empirical Methods in

Natural Language Processing (EMNLP-03), pp. 1–8. Sapporo, Japan.

Alan M. Turing (1950). Computing machinery and intelligence. Mind, 59:433–460.

Erik Velldal and Stephan Oepen (2005). Maximum entropy models for realization

ranking. In Proceedings of the Tenth Machine Translation Summit (MT Summit

X). Phuket, Thailand.

Ashish Venugopal, Stephan Vogel and Alex Waibel (2003). Effective phrase transla-

tion extraction from alignment models. In Proceedings of the 41st Annual Meet-

ing of the Association for Computational Linguistics (ACL-2003), pp. 319–326.

Sapporo, Japan.

Andrew J. Viterbi (1967). Error bounds for convolutional codes and an asymptot-

ically optimum decoding algorithm. IEEE Transactions on Information Theory,

13(2):260–269.

Stephan Vogel, Hermann Ney and Christoph Tillmann (1996). HMM-based word

alignment in statistical translation. In Proceedings of the Sixteenth Interna-

tional Conference on Computational Linguistics (COLING-1996), pp. 836–841.

Copenhagen, Denmark.

182

Wolfgang Wahlster, Heinz Marburger, Anthony Jameson and Stephan Busemann

(1983). Overanswering yes-no questions: Extended responses in a natural lan-

guage interface to a vision system. In Proceedings of the Eighth International

Joint Conference on Artificial Intelligence (IJCAI-83), pp. 643–646. Karlsruhe,

West Germany.

Mengqiu Wang, Noah A. Smith and Teruko Mitamura (2007). What is the Jeopardy

model? a quasi-synchronous grammar for QA. In Proceedings of the 2007 Joint

Conference on Empirical Methods in Natural Language Processing and Compu-

tational Natural Language Learning (EMNLP-CoNLL-2007), pp. 22–32. Prague,

Czech Republic.

Ye-Yi Wang and Alex Acero (2003). Combination of CFG and n-gram modeling

in semantic grammar learning. In Proceedings of the 8th European Conference

on Speech Communication and Technology (EuroSpeech-2003), pp. 2809–2812.

Geneva, Switzerland.

Ye-Yi Wang, Li Deng and Alex Acero (2005). Spoken language understanding.

IEEE Signal Processing Magazine, 22(5):16–31.

David H. D. Warren and Fernando C. N. Pereira (1982). An efficient easily adapt-

able system for interpreting natural language queries. American Journal of Com-

putational Linguistics, 8(3-4):110–122.

David J. Weir (1988). Characterizing Mildly Context-Sensitive Grammar For-

malisms. Ph.D. thesis, University of Pennsylvania.

Ralph Weischedel, Sameer Pradhan, Lance Ramshaw et al. (2007). OntoNotes

version 1.0. Linguistic Data Consortium.

183

Michael White (2004). Reining in CCG chart realization. In Proceedings of the 3rd

International Conference on Natural Language Generation (INLG-2004). New

Forest, UK.

Michael White and Jason Baldridge (2003). Adapting chart realization to CCG.

In Proceedings of the 9th European Workshop on Natural Language Generation

(EWNLG-2003). Budapest, Hungary.

Robert W. Wilensky and Yigal Arens (1980). PHRAN—a knowledge-based ap-

proach to natural language analysis. Tech. Rep. UCB/ERL M80/34, Electronics

Research Laboratory, University of California at Berkeley.

Yorick Wilks (1973). An artificial intelligence approach to machine translation. In

Roger C. Schank and Kenneth M. Colby, eds., Computer Models of Thought and

Language, pp. 114–151. W. H. Freeman & Co., San Francisco, CA.

Yuk Wah Wong and Raymond J. Mooney (2006). Learning for semantic parsing

with statistical machine translation. In Proceedings of Human Language Tech-

nology Conference and North American Chapter of the Association for Computa-

tional Linguistics Annual Meeting (HLT-NAACL-2006), pp. 439–446. New York

City, NY.

Yuk Wah Wong and Raymond J. Mooney (2007a). Generation by inverting a seman-

tic parser that uses statistical machine translation. In Proceedings of North Amer-

ican Chapter of the Association for Computational Linguistics Annual Meeting

and Human Language Technology Conference (NAACL-HLT-2007), pp. 172–

179. Rochester, NY.

Yuk Wah Wong and Raymond J. Mooney (2007b). Learning synchronous grammars

for semantic parsing with lambda calculus. In Proceedings of the 45th Annual

184

Meeting of the Association for Computational Linguistics (ACL-2007), pp. 960–

967. Prague, Czech Republic.

William A. Woods, Ronald M. Kaplan and Bonnie Nash-Webber (1972). The lunar

sciences natural language information system: Final report. Tech. Rep. 2378,

Bolt, Beranek and Newman, Inc., Cambridge, MA.

Dekai Wu (1997). Stochastic inversion transduction grammars and bilingual parsing

of parallel corpora. Computational Linguistics, 23(3):377–403.

Dekai Wu (2005). Recognizing paraphrases and textual entailment using inver-

sion transduction grammars. In Proceedings of the ACL Workshop on Empirical

Modeling of Semantic Equivalence and Entailment, pp. 25–30. Ann Arbor, MI.

Dekai Wu and Hongsing Wong (1998). Machine translation with a stochastic gram-

matical channel. In Proceedings of the 36th Annual Meeting of the Association

for Computational Linguistics and COLING-98 (ACL-COLING-98), pp. 1408–

1415. Montréal, Canada.

Fei Xia and William Lewis (2007). Multilingual structural projection across inter-

linear text. In Proceedings of North American Chapter of the Association for

Computational Linguistics Annual Meeting and Human Language Technology

Conference (NAACL-HLT-2007), pp. 452–459. Rochester, NY.

XTAG Research Group (2001). A lexicalized tree adjoining grammar for English.

Tech. Rep. IRCS-01-03, IRCS, University of Pennsylvania.

Kenji Yamada and Kevin Knight (2001). A syntax-based statistical translation

model. In Proceedings of the 39th Annual Meeting of the Association for Com-

putational Linguistics (ACL-2001), pp. 523–530. Toulouse, France.

185

Kenji Yamada and Kevin Knight (2002). A decoder for syntax-based MT. In Pro-

ceedings of the 40th Annual Meeting of the Association for Computational Lin-

guistics (ACL-2002), pp. 303–310. Philadelphia, PA.

David Yarowsky and Grace Ngai (2001). Inducing multilingual POS taggers and

NP bracketers via robust projection across aligned corpora. In Proceedings of the

Second Meeting of the North American Chapter of the Association for Computa-

tional Linguistics (NAACL-2001), pp. 200–207. Pittsburgh, PA.

Victor Yngve (1962). Random generation of English sentences. In 1961 Interna-

tional Conference on Machine Translation of Languages and Applied Language

Analysis, pp. 66–80. Her Majesty’s Stationery Office, London, UK.

John M. Zelle (1995). Using Inductive Logic Programming to Automate the Con-

struction of Natural Language Parsers. Ph.D. thesis, Department of Computer

Sciences, University of Texas, Austin, TX. Also appears as Artificial Intelligence

Laboratory Technical Report AI 96-249.

John M. Zelle and Raymond J. Mooney (1996). Learning to parse database queries

using inductive logic programming. In Proceedings of the Thirteenth National

Conference on Artificial Intelligence (AAAI-96), pp. 1050–1055. Portland, OR.

Luke S. Zettlemoyer and Michael Collins (2005). Learning to map sentences to

logical form: Structured classification with probabilistic categorial grammars. In

Proceedings of 21th Conference on Uncertainty in Artificial Intelligence (UAI-

2005). Edinburgh, Scotland.

Luke S. Zettlemoyer and Michael Collins (2007). Online learning of relaxed

CCG grammars for parsing to logical form. In Proceedings of the 2007 Joint

186

Conference on Empirical Methods in Natural Language Processing and Com-

putational Natural Language Learning (EMNLP-CoNLL-2007), pp. 678–687.

Prague, Czech Republic.

187

Vita

Yuk Wah “John” Wong was born in Hong Kong in 1979. After finishing

high school in 1998, he went to study Computer Science and Information Systems

at the University of Hong Kong, where he obtained a Bachelor of Science degree

with first class honours in 2001. John is now pursuing his doctorate in Computer

Sciences at the University of Texas at Austin. His research interests include nat-

ural language understanding and generation, machine translation, and information

extraction. Recently, John has been honored with the Best Paper Award at the ACL-

2007 conference in Prague for his work on semantic parsing. He will be joining the

Google team in Pittsburgh after graduation.

Permanent address: Flat 1702, Kam Ling House, Kam Fung Court,

Ma On Shan, Hong Kong.

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of

Donald Knuth’s TEX Program.

188

