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Multi-core and multi-processor environments are increasingly used to

support a wide range of applications. These environments host multiple ser-

vices simultaneously. The set of processors configured to support a particular

service depends upon the associated workload; fluctuations in workload require

changes in processor allocation. In these systems, reallocating a processor from

one service to another tends to incur a nonnegligible overhead. Motivated by

these applications, this dissertation considers a class of scheduling problems

that we refer to as reconfiguration resource scheduling. The salient features of

this class are as follows: There are jobs of different categories, and resources

can be reconfigured to process jobs of a certain category, where a reconfigura-

tion incurs an overhead, in terms of cost or time.

In our initial investigation, we study the following subclass of the class

of reconfigurable resource scheduling problems. We are given a finite set of re-

sources, each of which has an associated category, and a sequence of requests,
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each of which is a set of unit jobs. Each job has an associated category, and

needs to be executed on a resource of the same category within a specified

delay bound of its arrival, or else it is dropped at a specified drop cost. At

any time, a resource can be reconfigured to a different category at a speci-

fied reconfiguration cost. The goal is to schedule the reconfigurations of the

resources, and the executions of the jobs, in a way that minimizes the total

cost.

We design efficient online algorithms with provably good performance

for two main problems in this subclass, one allowing category-specific drop

costs, which we refer to as reconfigurable resource scheduling with variable

drop costs, and the other allowing category-specific delay bounds, which we

refer to as reconfigurable resource scheduling with variable delay bounds.

Reconfigurable resource scheduling with variable drop costs is moti-

vated by certain applications in which some jobs are more important than

others. We solve this problem using a layered approach, where in each layer

we reduce to a scheduling problem defined over a more constrained set of pos-

sible inputs. In the first layer, we reduce to the special case in which all job

arrivals are batched. In the second layer, we reduce to the special case in which

the job arrival rate is limited. In the third layer, we reduce the rate-limited

problem to two cases: large reconfiguration cost, and small reconfiguration

cost. We use a traffic reshaping technique to smooth out the job arrivals, and

thereby reduce the case with large reconfiguration cost to the special case of

unit delay, and reduce the case with small reconfiguration cost to the spe-
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cial case of rate-limited unit delay. In the fourth layer, we reduce unit delay

with large reconfiguration cost to a caching problem which we refer to as file

caching with remote reads, and reduce rate-limited unit delay with small re-

configuration cost to a variant of disk paging problem which we refer to as

prefix paging. In the fifth layer, we solve the file caching with remote reads

problem by generalizing certain existing work in the area of file caching, and

we solve prefix paging using a kind of marking algorithm.

Reconfigurable resource scheduling with variable delay bounds is mo-

tivated by applications in which jobs are required to be processed within

category-specific delay guarantees. Once again, we use a layered approach.

The first two layers are analogous to the first two layers in our solution for

reconfigurable resource scheduling with variable drop costs, respectively, but

are more involved due to the variable delay bounds. In the third layer, we

solve the rate-limited problem using a novel combination of the EDF and

LRU scheduling principles.
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Chapter 1

Introduction

This dissertation addresses a class of scheduling problems referred to

as reconfigurable resource scheduling. Problems in this class arise in cer-

tain emerging network applications that involve dynamically allocating a large

number of shared resources to a variety of services. The primary goal of this

dissertation is to design online algorithms for problems in this class with prov-

ably good performance across a wide range of operating conditions. Such

algorithms are valuable in practice due to the wide range of operating condi-

tions that exist in various applications, the rapidly evolving nature of network

applications, and the inherent difficulty in modifying a scheduling algorithm

designed for one application to meet the needs of another.

1.1 Background and Motivation

Multi-core and multi-processor environments are increasingly used to

support a wide range of high-throughput applications, such as web services,

network applications, and database servers. These environments host multiple

services simultaneously (e.g., a router supporting various packet processing

services).
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To isolate — with respect to security and performance — services from

one another, these environments often configure processors to support only

one service at a time. The set of processors configured to support a partic-

ular service depends upon the associated workload; fluctuations in workload

require changes in processor allocation. For instance, a shared data center dy-

namically adjusts the allocation of processors to independent services as the

composition of the workload changes [9, 10]. Similarly, a multi-service router

based on multi-core network processors adjusts the allocation of processors to

different packet categories as the traffic load fluctuates [29, 30, 32]. In these

systems, reallocating a processor from one category to another tends to incur

a nonnegligible overhead. For instance, on Intel’s IXP2400 network proces-

sor, loading the instruction store of a processor core with the code for a new

category incurs a context switch time, which is much (two or three orders of

magnitude) greater than the time to process a packet [16]. In certain appli-

cations involving QoS guarantees, jobs are required to be processed within a

delay tolerance, where the delay tolerance is a function of the job category [17].

Motivated by the aforementioned applications, this dissertation consid-

ers a class of scheduling problems that we refer to as reconfiguration resource

scheduling. The salient features of this class are as follows: (1) there are jobs

of different categories; (2) resources can be reconfigured to process jobs of a

certain category, where a reconfiguration incurs an overhead, in terms of cost

or time.
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1.2 Contributions and Techniques

Most problems related to scheduling and resource allocation require

the algorithm to operate in an online manner, that is, to make irrevocable

decisions in response to each incoming request, with no knowledge of the future

request sequence. Our high level goal in this line of research is to provide

robust, self-tuning online algorithms that provide provably good performance

across a wide range of operating conditions. Such algorithms are valuable in

practice since reconfigurable resource scheduling problems can arise in different

scenarios and applications, and it is inherently difficult to modify a scheduling

algorithm designed for one application to meet the needs of another. We

adopt the framework of competitive analysis (see 2.1 for a detailed discussion

of competitive analysis), in which the performance of an online algorithm is

measured against that of an optimal offline algorithm, that is, an algorithm

that knows all the future requests.

As an initial exploration, we study a subclass of the class of recon-

figurable resource scheduling problems within the framework of competitive

analysis. The following is an informal description of the subclass; a formal

definition is given in Chapter 2.2. We are given a finite set of resources, each

of which has an associated category, and a sequence of requests, each of which

is a set of unit jobs. Each job has an associated category, and needs to be

executed on a resource of the same category within a specified delay bound

of its arrival, or else it is dropped at a specified drop cost. At any time, a

resource can be reconfigured to a different category at a specified reconfigu-
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ration cost. The goal is to schedule the reconfigurations of the resources, and

the executions of the jobs, in a way that minimizes the total cost.

In this dissertation, we solve two main problems in the aforementioned

subclass: (1) one with a fixed delay bound, a fixed reconfiguration cost,

and category-specific drop costs, which we refer to as reconfigurable resource

scheduling with variable drop costs ; (2) the other with category-specific delay

bounds, a fixed reconfiguration cost, and a fixed drop cost, which we refer to

as reconfigurable resource scheduling with variable delay bounds. We establish

formal results for the two problems in Chapters 3 and 4, respectively. (The

preliminary versions of these results appear in [23] and [24], respectively.) In

solving the two main problems, we consider some special cases and intermedi-

ate problems, some of which may be of independent interest. For example, file

caching with remote reads, discussed in Section 3.3, is a generalization of the

file caching problem studied by Irani [12] and Young [33], and a special case

of the k-server problem with excursions [19].

In the following, we highlight the main techniques that we use to solve

the above two reconfigurable resource scheduling problems.

1.2.1 A Layered Approach

In our initial investigation of reconfigurable resource scheduling prob-

lems, we would like to determine which problems in this class admit online

algorithms that are optimal up to constant factors. We find it convenient to

adopt a layered approach, where each successive layer reduces to a scheduling

4



problem defined over a more constrained set of possible inputs. The layered

approach enables us to attack a complicated problem by solving several simpler

ones, although the layered approach has a tendency to build up constant fac-

tors. The key ideas underlying some of the layers are useful in solving various

problems in the reconfigurable resource scheduling class. For example, in both

of our solutions to reconfigurable resource scheduling with variable drop costs

and reconfigurable resource scheduling with variable delay bounds, we have a

layer which reduces the main problem to a special case in which job arrivals

are batched, which simplifies the problem by reducing the unpredictability of

the request sequence.

1.2.2 Traffic Reshaping

One source of the difficulty in solving reconfigurable resource scheduling

problems is the potential burstiness in the traffic (i.e., job arrivals). It is

not uncommon that network applications use traffic regulating schemes, e.g.,

leaky bucket [31], to control the volume of the incoming traffic. In solving

reconfigurable resource scheduling with variable drop costs, we use a reshaping

scheme as a way to smooth out the job arrivals and eliminate the delay bound

parameter.

Our reshaping scheme maps each job to a unit time interval between its

arrival time and deadline, and requires each job to either to be executed at the

time to which it is mapped, or to be dropped. The mapping is computed in the

following local manner: We partition the sequence of requests into “frames”,
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where a frame is the sequence of requests corresponding to an integral multiple

of the specified delay bound, and map the jobs that appear in each frame

independently of those appearing in other frames.

1.2.3 Exploiting Connections to Paging Problems

A well-studied problem similar to reconfigurable resource scheduling

is the disk paging problem [28]. Disk paging considers a two-level memory

system: the slow memory that can store a set of fixed-size pages P , and the

fast memory that can store a subset of pages in P . Given a request for a page

p ∈ P , if page p is not in the fast memory (called a miss), the system must

load p into the fast memory. Given a request sequence, the goal is to minimize

the total number of misses. The pages of the fast memory in a paging problem

are analogous to the resources in a reconfigurable resource scheduling problem.

Loading a page of the fast memory is analogous to reconfiguring a resource

with a particular category.

The fundamental difference is that in disk paging, one request for a

page arrives at a time, whereas in reconfigurable resource scheduling, multi-

ple jobs, of one or more categories, can arrive at a time. Therefore, in the

context of reconfigurable resource scheduling, it may be necessary to configure

several resources to process jobs with the same category. There are two addi-

tional differences between a disk paging problem and a reconfigurable resource

scheduling problem considered in this dissertation. First, in a disk paging

problem, a request is required to be served immediately, whereas in a reconfig-
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urable resource scheduling problem considered in this dissertation, a request

does not need to be served immediately, but is requiring to be executed within

a specified delay bound to avoid any penalty. Second, in a disk paging prob-

lem, a requested page is required to be loaded into the fast memory, whereas

in a reconfigurable resource scheduling problem considered in this dissertation,

a request can be dropped by paying a penalty.

The file caching problem studied by Irani [12] and Young [33] is a gen-

eralization of the disk paging problem in which different files (the counterpart

of pages) may have different sizes and retrieval costs. We are able to reduce

reconfigurable resource scheduling with variable drop costs to a generalization

of the file caching problem, in which on a miss, we have an option to read the

file remotely instead of requiring it to be loaded into the cache. We refer to

this problem as file caching with remote reads.

Young proposes the Landlord algorithm to solve the file caching prob-

lem. The main idea of the Landlord algorithm is to maintain a real-valued

credit for each file in the cache, and to use the credit to indicate when a file

should be evicted from the cache. We solve file caching with remote reads by

modifying Landlord and its associated analysis. The main modification is that

we maintain a credit for each file (not only those in the cache), and we use

the credit to decide when to load a file into the cache and when to evict a file

from the cache.

7



1.2.4 Exploiting Connections to Scheduling Paradigms

Many scheduling problems are solved by traditional scheduling prin-

ciples such as EDF (Earliest Deadline First), LSF (Least Slack First), and

LRU (Least Recently Used). To attack reconfigurable resource scheduling

problems, it is natural to attempt to make use of these traditional scheduling

principles. In the context of reconfigurable resource scheduling with variable

delay bounds, it seems that algorithms based on one of the the above schedul-

ing principles suffers from either thrashing (excessive reconfiguration cost) or

underutilization (excessive drop cost), and therefore fails to provide a good

solution.

Though EDF alone or LRU alone seems insufficient to solve recon-

figurable resource scheduling with variable delay bounds, each maintains a

dynamic ordering that addresses a key aspect of the request sequence: EDF

addresses the urgency aspect, and LRU addresses the recency aspect. Mo-

tivated by this observation, we propose a novel and efficient combination of

EDF and LRU. The main idea is to keep two sets of categories configured,

one selected by the EDF principle, and one selected by the LRU principle.

We prove that this combination yields an online algorithm within a constant

factor of optimal. This result suggests that, for problems which cannot solved

by a single traditional scheduling principle, it is worthwhile to explore the

combination of two or more traditional scheduling principles.
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1.3 Related Work

In this section, we discuss other work in scheduling and power manage-

ment that is relevant to the class of reconfigurable resource scheduling prob-

lems studied in this dissertation. Additional work related to specific issues in

the context of reconfigurable resource scheduling with variable drop costs and

variable delay bounds is presented in the relevant technical chapters.

Scheduling. Brucker [5, Chapter 9] surveys a class of offline schedul-

ing problems in which each job belongs to a certain group, and between the

executions of any two jobs in different groups on the same machine, there is a

changeover time, during which the machine cannot process any job. Results

for single and multiple machine problems with changeover time are summa-

rized. For a variant with identical machines, equal sized groups, and equal

processing and changeover times, Brucker et al. [6] give a polynomial time

offline algorithm that decides whether there exists a schedule in which all jobs

are executed within a common delay bound.

In a recent position paper, Srinivasan et al. [30] discuss the schedul-

ing problems that arise in multi-core network processors, and consider the

application of existing multiprocessor scheduling algorithms in this domain.

Various challenges are pointed out, and some initial ideas towards addressing

these concerns are presented. Kokku [16] proposes a scheduling algorithm,

called Everest, for multi-core network processors. The parameters considered

are per-service delay bounds, per-service execution requirements, and a fixed

context switch time. The primary goal is to maximize the number of pack-
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ets processed within a service-specific delay tolerance. Everest is shown to

perform well in experiments.

Another related scheduling problem is “scheduling with rejection” [3,

26, 27]. In this problem, jobs can be rejected at a certain cost. The objective is

to minimize the sum of (1) the makespan of the schedule for the executed jobs,

and (2) the total cost of the rejected jobs. Constant competitive algorithms

are given for both nonpreemptive and preemptive versions of the problem.

Power Management. Two main schemes have been used to minimize

power usage in battery-operated embedded systems: sleep state and dynamic

speed scaling [13]. Power management with sleep state exploits the ability to

put a resource into sleep state when idle. In the sleep state, the resource con-

sumes less power, but a certain energy is required to transition the resource to

the active state, in which jobs can be processed on the resource. Such problems

can be viewed as problems in the framework of reconfigurable resource schedul-

ing in which it is possible to reconfigure a resource into a sleep state. For power

management problems in which each resource has multiple sleep states, Irani et

al. [14] give deterministic algorithms that consume at most twice the amount

of energy as the optimal offline algorithm. In their work, it is assumed that

the transitions between different states occur instantaneously. Ramanathan

et al. [25] perform an experimental study that discusses the tradeoff between

optimizing for latency and power in this context.

10



1.4 Outline of Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2,

we give a detailed discussion of the competitive analysis, and make formal de-

finitions of the reconfigurable resource scheduling problems considered in this

dissertation. In Chapter 3, we present our solution to reconfigurable resource

scheduling with variable drop costs. In Chapter 4, we present our solution

to reconfigurable resource scheduling with variable delay bounds. Finally we

make some concluding remarks in Chapter 5.

11



Chapter 2

Preliminaries

2.1 Competitive Analysis

In competitive analysis, we seek algorithms that achieve a good com-

petitive ratio [28], that is, the maximum ratio between the cost incurred by the

online algorithm and that incurred by an optimal offline algorithm, over all re-

quest sequences. (Informally, an online algorithm achieves a good competitive

ratio if for any request sequence, its performance is close to that of an optimal

offline algorithm. For a comprehensive introduction to online computation and

competitive analysis, see the textbook by Borodin and El-Yaniv [4].)

A drawback of competitive analysis is that its worst case mindset can

be overly pessimistic. For example, in their seminal paper on competitive

analysis [28], Sleator and Tarjan prove that the competitive ratio of any online

paging algorithm is k, where k is the number of pages in the cache. This is

an extremely negative result. However, Sleator and Tarjan observe that if the

offline algorithm is given only h pages, for some h ≤ k, then the competitive

ratio can be improved to k
k−h+1

, and that this optimal competitive ratio is

achieved by LRU as well as a number of other simple online paging algorithms.

For example, this result says that if the online algorithm is given a factor

12



of two advantage in the size of its cache, then it will achieve performance

within a factor of two of the optimal offline algorithm. This relaxed version

of competitive analysis, in which the online algorithm is given extra resources,

is later referred to as resource augmentation [15, 22], and can be viewed as a

method to compensate the online algorithm for its lack of future information.

We refer to an online algorithm that achieves a constant competitive ratio

when given a constant factor resource advantage as a resource competitive

algorithm.

2.2 Problem Definitions

Before we define the reconfigurable resource scheduling problems con-

sidered in this dissertation, we first make some preliminary definitions. We

define a request as a (possibly empty) set of unit jobs, where each job is char-

acterized by a non-black color, a nonnegative integer arrival time, a positive

integer delay bound, and a positive integer drop cost. The deadline of a job

is defined as the arrival time plus the delay bound. There is a finite set of

resources on which jobs are executed. For convenience, the resources are num-

bered from 0. At any time, each resource has an associated color. There is

a reconfiguration cost to reconfigure a resource, i.e., to change the color of a

resource.

The processing of a given request sequence σ proceeds in rounds num-

bered from 0 to |σ| − 1. At the beginning of round i, we have a set of pending

jobs, each of which has an arrival time smaller than i, and a deadline at least
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i + 1. Each round i consists of four phases: (1) in the first phase, the arrival

phase, request i is received; (2) in the second phase, the reconfiguration phase,

each resource can be reconfigured to a different color; (3) in the third phase,

the execution phase, each resource configured with color ℓ can execute at most

one pending job of color ℓ; (4) in the fourth phase, the drop phase, pending

jobs with deadline i + 1 are dropped.

For convenience, we view each resource has a sequence of slots, where

slot i corresponds to round i. We order the slots in increasing order of resource

indices, breaking ties by slot indices. We say a slot is free if no job is executed

in the slot, and occupied otherwise.

Before defining a schedule, we find it technically convenient to define a

pseudo-schedule. Throughout most of this dissertation, we use the notion of a

schedule instead of a pseudo-schedule. In Section 3.7, we find it useful to make

use of the notion of a pseudo-schedule. Given a request sequence σ, a pseudo-

schedule decides, for each job x in σ, whether to execute x or not, and if so, on

which resource and in which round. A coloring maps each resource to a color.

Given an initial coloring µ, the minimum-cost set of reconfigurations made

by a pseudo-schedule P can be deduced from µ and P . Therefore, at times,

we find it convenient to allow the reconfigurations to be specified implicitly;

at other times, for the purpose of analysis, we find it is more convenient to

explicitly specify the reconfigurations. We define the number of resources used

by a pseudo-schedule as the number of resources that are reconfigured at least

once. A pseudo-schedule is allowed to use an arbitrary number of resources.
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A schedule is a pseudo-schedule that respects a certain bound on the number

of resources.

Consider any request sequence σ and any pseudo-schedule P for σ. We

use DropCost(P ) to denote the drop cost incurred by P . Given an initial

coloring µ, we use ReconfigCost(P, µ) to denote the reconfiguration cost in-

curred by P . Given an initial coloring µ, we define Cost(P, µ) as the sum of

DropCost(P ) and ReconfigCost(P, µ). In this dissertation, if the initial col-

oring is not specified, we assume the default coloring in which all resources

are black. Note that the color of any job is not black. For the reconfigurable

resource scheduling problems addressed in this dissertation, the objective is to

devise a schedule S for σ such that Cost(S) is minimized.

For the reconfigurable resource scheduling problems considered in this

dissertation, the input is a pair (σ,m), where σ is a request sequence, and

m is a positive integer. Given an instance (σ,m), an algorithm produces a

schedule for σ. An algorithm is said to be offline if it knows all the requests in

advance, and it is said to be online if it makes irrecoverable decisions without

knowing the future requests. An algorithm A is b-feasible if for any instance

(σ,m), A produces a schedule that uses at most b·m resources. An algorithm is

feasible if it is 1-feasible. For any instance (σ,m) and any algorithm A, the cost

(resp., reconfiguration cost, drop cost) of A on (σ,m), denoted Cost(A, σ,m)

(resp., ReconfigCost(A, σ,m), DropCost(A, σ,m)), is defined as Cost(S) (resp.,

ReconfigCost(S), DropCost(S)), where S is the schedule produced by A on

(σ,m). An algorithm A is (a, b)-competitive if A is b-feasible and for any
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instance (σ,m), Cost(A, σ,m) is at most a · Cost(OPT , σ,m), where OPT is

an optimal feasible offline algorithm. An algorithm A is resource competitive

if A is (a, b)-competitive for some positive reals a and b.

The focus of this dissertation is to give resource competitive online

algorithms for some problems in the class of reconfigurable resource scheduling.

To refer to these problems in a convenient manner, we introduce the [reconfig |

drop | delay | batch] notation. The reconfig field describes the details of the

reconfiguration cost. In this dissertation, the possible values for this field

are: a fixed reconfiguration cost, denoted ∆; and per-color reconfiguration

costs, denoted ∆ℓ. (Throughout this dissertation, we follow the convention

that the symbol ℓ is used to denote a color. Hence, the symbol ∆ℓ indicates

that the reconfiguration cost depends on color ℓ.) The drop field describes

the details of the drop cost. In this dissertation, the possible values for this

field are: a unit drop cost, denoted 1; and per-color drop costs, denoted dℓ.

The delay field describes the details of the delay bound. In this dissertation,

the possible values for this field are: a unit delay bound, denoted 1, a fixed

delay bound, denoted D; and per-color delay bounds, denoted Dℓ. The batch

field constrains the arrival rounds of requests of color ℓ to occur at integral

multiples of the specified value. In this dissertation, the possible values for

this field are 1, D, and Dℓ. With this notation, the problem of reconfigurable

resource scheduling with variable drop costs is denoted [∆ | dℓ | D | 1]. The

problem of reconfigurable resource scheduling with variable delay bounds is

denoted [∆ | 1 | Dℓ | 1]. In this dissertation, we also use this notation to
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specify some intermediate problems that we consider in solving the above two

main problems.
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Chapter 3

Reconfigurable Resource Scheduling

with Variable Drop Costs

3.1 Introduction

This chapter presents our solution to reconfigurable resource schedul-

ing with variable drop costs, that is, [∆ | dℓ | D | 1]. We give a resource

competitive algorithm for this problem, where the competitive ratio that we

obtain does not depend on the various problem parameters, that is, D, ∆, and

the dℓ’s.

We solve this problem with a layered approach. First, we use batching

to reduce the main problem to the special case in which jobs arrive at integral

multiples of D, denoted [∆ | dℓ | D | D]. Second, we reduce the latter

problem to two cases: (1) ∆ < dℓ, for each color ℓ, and (2) ∆ ≥ dℓ, for

each color ℓ. We use a reshaping technique to reduce the two cases to two

intermediate reconfigurable resource scheduling problems in which D = 1,

denoted [∆ℓ | dℓ | 1 | 1], where ∆ℓ ≥ dℓ for each color ℓ, and rate-limited

[∆ | dℓ | 1 | 1], where ∆ < dℓ for each color ℓ, respectively. As the notation

suggests, for the case where D = 1, we actually solve a more general variation

that allows per-color reconfiguration costs ∆ℓ, as long as ∆ℓ ≥ dℓ for each
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color ℓ. Third, we use a serializing technique to reduce [∆ℓ | dℓ | 1 | 1], where

∆ℓ ≥ dℓ for each color ℓ, to a file caching problem that we refer to as file

caching with remote reads, and reduce rate-limited [∆ | dℓ | 1 | 1], where

∆ < dℓ for each color ℓ, to a variant of the disk paging problem which we refer

to as prefix paging. File caching with remote reads generalizes the file caching

problem studied by Irani [12] and Young [33], and we solve it by modifying

Young’s Landlord algorithm. We use a kind of marking algorithm to solve the

problem of prefix paging.

The intuition underlying each layer is as follows. The first layer reduces

the unpredictability of the request sequence. The second layer smooths out job

arrivals and eliminates the delay bound parameter. The third layer reduces

the job arrival rate.

Throughout this chapter, we make use of the following definitions. For

any nonnegative integer i, we define block (resp., half-block) i as the D (resp.,

D
2
) rounds starting with round i · D (resp., i · D

2
).

The remainder of this chapter is organized as follows. Section 3.2 dis-

cusses other work related to the specific issues addressed in this chapter. Sec-

tion 3.3 presents our solution to file caching with remote reads. Section 3.4

presents our solution to [∆ℓ | dℓ | 1 | 1], where ∆ℓ ≥ dℓ for each color ℓ. Sec-

tion 3.5 presents our solution to prefix paging. Section 3.6 presents our solution

to rate-limited [∆ | dℓ | 1 | 1], where ∆ < dℓ for each color ℓ. Sections 3.7 and

3.8 present our solution to rate-limited [∆ | dℓ | D | D]. Section 3.9 presents

our solution to [∆ | dℓ | D | D]. Section 3.10 presents our solution to the main
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problem [∆ | dℓ | D | 1].

3.2 Related Work

Paging and File Caching Problems. In Section 3.3, we define and

solve a file caching problem which we refer to as file caching with remote

reads, as a building block of our solution to reconfigurable resource scheduling

with variable drop costs. File caching with remote reads is a generalization of

the file caching work by Irani [12] and Young [33], which themselves can be

viewed as generalizations of the work in the classic disk paging problem studied

by Sleator and Tarjan [28]. Irani [12] proposes an counter-based randomized

online algorithm that is shown to be O(log2 k), where k is the ratio of the size

of the cache to the size of the smallest file; Young [33] proposes an algorithm,

called Landlord , that is shown to be n−m+1
m

, where n and m are sizes of online

and offline caches, respectively. The main idea of Landlord is to maintain

a credit for each file in the cache; on a miss, if the cache is full, “rent” is

charged to each file in the cache proportional to its size, and the files that

run out of credit are evicted. Cao and Irani [8] propose an algorithm called

GreedyDual-Size, which is similar to Landlord , and show that GreedyDual-

Size performs well in experiments. Our algorithm for file caching with remote

reads is obtained by modifying Landlord .

Some other work related to our file caching problem includes the k-

server problem with excursions and page migration problem. Manasse et

al. [19] consider the k-server problem with excursions, in which a request can
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be satisfied remotely by a server or it can be satisfied by moving any server to

the requested vertex. In page migration related problems, the requested page

can either be accessed remotely, or, it can be moved to the requesting proces-

sor. Some closely related work in this realm is k-page migration considered

by Bartal et al. [2], and constrained page migration considered by Albers and

Koga [1]. In k-page migration, the system maintains k copies of any page, and

the local memories have unlimited capacity. In the constrained page migration

problem, local memories have limited capacity. There are some similarities be-

tween the DLRU algorithm of Albers and Koga and our file caching algorithm

presented in Section 3.3. However, the DLRU algorithm does not provide a

solution to our file caching problem.

Traffic Shaping. A traffic regulator like leaky bucket [31] reduces the

burstiness in the network traffic. In our solution to reconfigurable resource

scheduling with variable drop costs, we use a reshaping technique to map each

job to a specific round, which can be viewed as a way to reduce the burstiness

in the request sequence.

3.3 File Caching with Remote Reads

In this section, we introduce a new caching problem, referred to as file

caching with remote reads, as a building block within the overall solution to

our main problem. This problem is similar to the file caching problem studied

by Irani [12] and Young [33]. The difference is that, on a miss, a remote read

can be issued to serve the request instead of writing the requested file to the
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cache. We modify the Landlord algorithm and its associated analysis given by

Young to solve our caching problem.

3.3.1 Problem Definition

We are given a universal set of files and a cache. Each file x is char-

acterized by a positive integer size, denoted by size(x ); a nonnegative read

cost, denoted by read(x ); a nonnegative write cost, denoted by write(x ). The

input is a pair (σ,m), where σ is sequence of requests, each of which is a file

(the file to be accessed), and m is an integer that indicates the bound on the

cache size. Initially, the cache is empty. To process a request x, an algorithm

can first perform an arbitrary long sequence of the following two actions: re-

moving files from the cache with no cost, and writing the requested file x into

the cache with cost write(x ), provided there is sufficient room. Then, if x is

in the cache, the algorithm incurs no further cost. Otherwise, the algorithm

performs a remote read, paying read(x ). The goal is to maintain the files in

the cache so as to minimize the total cost.

3.3.2 Algorithm LLL

We present a Landlord -like algorithm, denoted LLL, as follows. For

each file x, maintain a real value credit(x ) (whether x is in the cache or not).

Initially the credit of any file is zero. On a request x, augment credit(x ) in the

following way:

credit(x ) := min(credit(x ) + read(x ),write(x )).
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When credit(x ) reaches write(x ), if x is not in the cache, repeatedly run the

eviction procedure (to be described) until there is room for x in the cache, and

then add x to the cache.

The eviction procedure is as follows. Charge every file in the cache rent

until at least one file runs out of credit. More formally, for each file x in the

cache, decrease credit(x ) by δ · size(x ), where δ denotes the minimum credit

per unit size of any file in the cache. Evict from the cache any nonempty

subset of the files with zero credit.

3.3.3 Analysis of LLL

Before presenting the analysis, let us first introduce some definitions.

Consider an arbitrary instance (σ,m) of the file caching with remote reads

problem. We say that an algorithm for file caching with remote reads is fea-

sible if the algorithm respects the bound on the cache size. Let OFF denote

an arbitrary feasible offline algorithm. Let A and L denote the caches of OFF

and LLL, respectively. By the definition of a feasible algorithm, the size of

A is m. Let n (n > 2m) denote the size of L. Let Cost(OFF , σ,m) and

Cost(LLL, σ,m) denote the cost incurred by OFF and LLL on (σ,m), re-

spectively. Let ReadCost(OFF , σ,m) (resp., ReadCost(LLL, σ,m)) denote the

read cost incurred by OFF (resp., LLL) on (σ,m). Let WriteCost(OFF , σ,m)

(resp., WriteCost(LLL, σ,m)) denote the write cost incurred by OFF (resp.,

LLL) on (σ,m).
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We define a potential function

Φ = m
∑

x

credit(x ) + (n − m + 1)
∑

x∈A

(write(x ) − credit(x )).

Initially, because the credit of any file is zero, and both caches are empty, the

potential is zero. Because LLL maintains the invariant that 0 ≤ credit(x ) ≤

write(x ), the potential is always nonnegative.

To analyze the performance of LLL, we execute LLL alongside OFF .

As in [33], we process each successive request with OFF , and then with LLL.

We then observe the effect of each action on the potential.

Actions taken by OFF to serve a request x can be broken down into

a sequence of steps, with each step being one of the following: OFF evicts a

file from the cache; OFF writes x to the cache; OFF performs a remote read

for x. Actions taken by LLL to serve a request to file x can be broken down

into a sequence of steps, with each step being one of following: LLL augments

the credit of x; LLL charges rent; LLL evicts a file from the cache to make

room for x; LLL writes x to the cache; LLL performs a remote read for x.

Note that the credit augmentation is always performed and performed first in

serving any request.

For an arbitrary request x, the effect of each action taken to serve x on

the potential is given in Lemma 3.3.1 through Lemma 3.3.6.

Lemma 3.3.1. If OFF performs a remote read, or LLL writes a file into the

cache, or LLL performs a remote read, Φ does not change.
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Proof. Since the contents of A as well as credit(x ), for any file x, do not change,

Φ remains unchanged.

Lemma 3.3.2. If OFF writes a file x to the cache, Φ increases by at most

(n − m + 1) · write(x ).

Proof. The first summation does not change. The second summation increases

by at most write(x ) because 0 ≤ credit(x ) ≤ write(x ). Hence, Φ increases by

at most (n − m + 1) · write(x ).

Lemma 3.3.3. If LLL augments the credit of a file x that is not in A, Φ

increases by at most m · read(x ).

Proof. The first summation increases by at most read(x ). Since x /∈ A, the

second term does not change. Hence, Φ increases by at most m · read(x ).

Lemma 3.3.4. If OFF evicts a file from the cache, Φ does not increase.

Proof. The first summation does not change. The second summation does not

increase since write(x ) ≥ credit(x ). Hence, Φ does not increase.

Lemma 3.3.5. If LLL augments the credit of x that is in A, Φ decreases by

at least (n − 2m + 1) · s ≥ 0, where s ≤ read(x ). Also, if s < read(x ), LLL

does not perform a remote read in serving x.

Proof. By the way the credit is augmented on an access, the first summation

increases by s, where s ≤ read(x ). Also, if s < read(x ), after the credit

augmentation, credit(x ) reaches write(x ), and LLL subsequently writes x into
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the cache and does not perform a remote read in serving x. Since x ∈ A, the

second summation decreases by (n−m+1) · s. Hence, Φ decreases by at least

(n − 2m + 1) · s ≥ 0.

Lemma 3.3.6. If LLL charges rent to make room for a file x, Φ does not

increase.

Proof. The potential Φ decreases by δ times m·size(L)−(n−m+1)·size(L ∩ A),

where size(X ) denotes
∑

x∈X size(x ). Note that size(L) > n− size(x )+ 1 and

size(L ∩ A) ≤ m. Since size(x ) ≤ m , Φ decreases by at least m · (n − m +

1) − (n − m + 1) · m = 0. Hence, Φ does not increase.

Lemma 3.3.7. For any instance (σ,m) of file caching with remote reads, the

total increase of Φ is at most

m · ReadCost(OFF , σ,m) + (n − m + 1) · WriteCost(OFF , σ,m).

Proof. Consider the steps taken by OFF and LLL to serve a request x. By

Lemmas 3.3.1 through 3.3.6, Φ increases only in the following two cases. In the

first case, OFF writes x to the cache. By Lemma 3.3.2, Φ increases by at most

(n−m+1) ·write(x ). In this case, the write cost incurred by OFF in serving x

is at least write(x ). In the second case, LLL updates the credit of x that is not

in A. By Lemma 3.3.3, Φ increases by at most m·read(x ). In this case, the read

cost incurred by OFF in serving x is read(x ). In either case, the increase of Φ

in serving x is at most m·ReadCost(OFF , x)+(n−m+1)·WriteCost(OFF , x).

Summing up over all x, the lemma follows.
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Lemma 3.3.8. For any instance (σ,m) of file caching with remote reads, the

total negative change of Φ is at least

(n − 2m + 1) · (ReadCost(LLL, σ,m) − ReadCost(OFF , σ,m)).

Proof. We focus our attention on an arbitrary request x for which LLL per-

forms a remote read in serving x. Consider the steps taken by OFF and

LLL to serve x. As indicated earlier, credit augmentation is always per-

formed by LLL in serving any file. When LLL augments the credit of x,

if x is in A, then Φ decreases by (n − 2m + 1) · read(x ) by Lemma 3.3.5;

otherwise, OFF incurs a read cost of read(x ) in serving x. In either case,

(n − 2m + 1) · ReadCost(LLL, x,m) is at most the decrease of Φ in serving x

plus (n−2m+1) ·ReadCost(OFF , x,m), so the decrease of Φ in serving x is at

least (n− 2m + 1) · (ReadCost(LLL, x,m)−ReadCost(OFF , x,m)). Summing

up over all such files x’s, the lemma follows.

Lemma 3.3.9. For any instance (σ,m) of file caching with remote reads,

WriteCost(LLL, σ,m) ≤ ReadCost(LLL, σ,m).

Proof. For any file x, we define an epoch as follows. An epoch of x ends

the moment x is kicked out of the cache. A new epoch of x starts when the

previous epoch ends. Fix any file x and any epoch i of x. By algorithm LLL,

the credit of x at the beginning of epoch i is zero. In epoch i, before the

credit reaches write(x ), for each access on x, the credit increases by at most

read(x ), and algorithm LLL incurs a read cost of read(x ). When the credit
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reaches write(x ), algorithm LLL writes x into the cache, incurring a write cost

of write(x ). After that, the algorithm does not incur any cost until epoch i

ends. Hence, the write cost incurred by LLL during epoch i on x is at most

the relevant read cost. Summing up over all files x, and all epochs i of x, the

lemma follows.

Theorem 3.1. Algorithm LLL is 2(n−m+1)
n−2m+1

-competitive for file caching with

remote reads.

Proof. Consider an arbitrary instance (σ,m) of file caching with remote reads.

By Lemmas 3.3.7 and 3.3.8, and the fact that Φ is always nonnegative, we

have

(n − 2m + 1) · (ReadCost(LLL, σ,m) − ReadCost(OFF , σ,m))

≤ m · ReadCost(OFF , σ,m) + (n − m + 1) · WriteCost(OFF , σ,m).

Since n > 2m, we have

ReadCost(LLL, σ,m) ≤
n − m + 1

n − 2m + 1
· Cost(OFF , σ,m).

The theorem follows from the above inequality and Lemma 3.3.9.

3.4 Unit Delay

In this section we solve [∆ℓ | dℓ | 1 | 1], where ∆ℓ ≥ dℓ for all colors

ℓ. Recall that this problem is characterized by per-color configuration costs

∆ℓ, per-color drop costs dℓ, and a unit delay bound. As indicated earlier, our

28



solution to this problem uses a reduction to file caching with remote reads,

which is defined and solved in Section 3.3.

3.4.1 Algorithm Serialize

We first give some useful definitions. For an arbitrary request α for

[∆ℓ | dℓ | 1 | 1], we define serialized(α) as a request sequence β obtained as

follows. Each request in β is a file, and each file, denoted (ℓ, j), is characterized

by a color ℓ, a nonnegative integer index j, a read cost dℓ, and a write cost ∆ℓ.

Let rℓ denote the number of color ℓ jobs in α. Let X = ∪ℓ{(ℓ, j) | 0 ≤ j < rℓ}.

We obtain β by ordering the files in X arbitrarily. It is not hard to see that

serialized(α) is a request sequence for file caching with remote reads. For any

request sequence σ for [∆ℓ | dℓ | 1 | 1], we define serializedReqSeq(σ) as a

request sequence obtained from concatenating serialized(σi)’s, in increasing

order of i, where σi is request i of σ.

Given an instance (σ,m) of [∆ℓ | dℓ | 1 | 1], where ∆ℓ ≥ dℓ for all colors

ℓ, algorithm Serialize produces a schedule for σ in the following three stages.

In the first stage, we use algorithm LLL (defined in Section 3.3.2) to obtain

an n-resource schedule S ′ for σ′ = serializedReqSeq(σ), where n = O(m).

In the second stage, we construct an n-resource schedule S ′′ for σ′

as follows. For any nonnegative integer i, let S ′
i be the portion of S ′ for

σ′
i = serialized(σi). We obtain a schedule S ′′

i for σ′
i by delaying the writes in

S ′
i to the beginning of σ′

i+1. We define schedule S ′′ as the concatenation of the

S ′′
i ’s in increasing order of i. It is not hard to see that S ′′ is a schedule for σ′.

29



In the third stage, we construct an n-resource schedule S for σ as

follows. Consider any nonnegative integer i. Consider any resource k. Let

(ℓ, j) be the color of the file cached in location k right after S ′′ makes all the

writes at the beginning of σ′
i in S ′′. In the reconfiguration phase of round i,

we configure resource k with color ℓ. In the execution phase of round i, we

execute as many jobs as the current configuration allows.

3.4.2 Analysis of Serialize

Lemma 3.4.1. Consider an arbitrary instance (σ,m) of [∆ℓ | dℓ | 1 | 1],

where ∆ℓ ≥ dℓ for all colors ℓ. If there exists an m-resource schedule T for σ

with cost C, then there exists a schedule T ′ for serializedReqSeq(σ) with cost

at most 4C and cache size m.

Proof. For convenience of analysis, let σi be request i of σ, σ′
i = serialized(σi),

and σ′ = serializedReqSeq(σ). For any nonnegative integer i and any color

ℓ, let Yi,ℓ be the set of resources configured with color ℓ at the end of the

reconfiguration phase of round i in T . The proof proceeds in three phases.

First, for each nonnegative integer i, we construct an m-resource schedule T ′
i

for σ′
i, in increasing order of i. Second, we construct an m-resource schedule T ′

for σ′ by concatenating T ′
i ’s, in increasing order of i. Third, we bound the cost

of T ′. The second phase is straightforward. In the remainder of this proof, we

offer the details of the first and third phases.

In the first phase, we construct schedule T ′
i for σ′

i in the following two

stages. In the first stage, for each color ℓ, we label the resources in Yi,ℓ in
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round i as follows. If i = 0, we label the resources in Yi,ℓ from 0 to |Yi,ℓ| − 1

arbitrarily. If i > 0, we proceed in the following phases. For any resource k

in Yi,ℓ ∩ Yi−1,ℓ such that the label of resource k in round i − 1 is in the range

[0, |Yi,ℓ|), we let resource k inherit its label from round i − 1. We assign the

remaining labels in [0, |Yi,ℓ|) to the remaining resources in Yi,ℓ. In the second

stage, we construct T ′
i as follows. At the beginning of σ′

i, we configure the

cache in the following manner. For any nonnegative integer k, if the color of

resource k at the end of the reconfiguration phase of round i in T , call it ℓ, is

black, then location k is empty; otherwise, location k caches page (ℓ, j), where

j is the label assigned to resource k in round i. We maintain the above cache

configuration until the end of σ′
i.

In the third phase, we bound Cost(T ′) by showing the following two

claims: (1) the write cost incurred by T ′ is at most four times the reconfigura-

tion cost incurred by T ; and (2) the read cost incurred by T ′ equals the drop

cost incurred by T .

The proof of (1) proceeds in two stages. In the first stage, with each

reconfiguration from color ℓ to color ℓ′ in round i in T , we associate ∆ℓ + ∆ℓ′

units of credit. It is not hard to see that the total credit associated with the

reconfigurations in T is twice the reconfiguration cost of T .

In the second stage, we need to show that the write cost incurred by T ′

is at most twice the total credit. Since T ′ only reconfigures the cache at the

beginning of σ′
i’s, T ′ only incurs write cost at the beginning of σ′

i’s. Hence, it

is sufficient to show that, for any nonnegative integer i, the write cost incurred
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by T ′ at the beginning of σ′
i is at most twice the credit associated with the

reconfigurations made by T in round i, which we prove in the following three

paragraphs.

Consider any nonnegative integers i and k. Consider any write opera-

tion W in T ′ at the beginning of σ′
i at location k, because of a reconfiguration

operation R made by T on resource k in round i. It is easy to see that the

write cost incurred by W is at most the credit associated with R. It is not hard

to verify that, all write operations in T ′ at the beginning of σ′
0 corresponds to

a reconfiguration operation made by T in round 0.

Consider any nonnegative integer i > 0. Consider the write operations

made by T ′ because of the labeling of resources. Fix an arbitrary color ℓ. Let

pi,ℓ be the number of resources that change color from color ℓ or to color ℓ

in round i in T . Let qi,ℓ be the number of resources k such that resource k

is configured with color ℓ at the beginning and throughout round i in T , and

the label of resource k in round i is different from that in round i − 1. It is

easy to verify that the write cost incurred by T ′ at the beginning of σ′
i due

to the relabeling of resources is
∑

ℓ qi,ℓ · ∆ℓ. It is also easy to verify that the

total credit associated with the reconfigurations from or to color ℓ made by T

in round i is at least
∑

ℓ pi,ℓ · ∆ℓ.

Let Zi,ℓ be the set of resources that are configured with color ℓ and

that have a label at least |Yi+1,ℓ| in round i. By the way we assign labels to

resources in each round, qi,ℓ equals |Zi−1,ℓ|. It is straightforward to see that

|Zi−1,ℓ| is at most max(0, |Zi−1,ℓ| − |Zi,ℓ|), which in turn is at most pi,ℓ. Hence,
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qi,ℓ ≤ pi,ℓ. Therefore, the write cost incurred by T ′ at the beginning of σ′
i is

at most twice the total credit associated with reconfigurations made by T in

round i. Summing up over all nonnegative integers i’s, claim (1) follows.

The proof of (2) proceeds as follows. Consider any nonnegative integer

i and any color ℓ. Let ri,ℓ be the number of color ℓ jobs in σi. Let pi,ℓ

be the number of resources configured with color ℓ in T at the end of the

reconfiguration phase of round i. So in round i, T pays a drop cost of dℓ ·

max(ri,ℓ − pi,ℓ, 0) on the color ℓ jobs in σi. By the definition of σ′
i, the set of

color (ℓ, j) files, over all j, in σ′
i is {(ℓ, j) | 0 ≤ j < ri,ℓ}. From the way we

construct T ′, the set of color (ℓ, j) files, over all j, cached by T ′ at the beginning

of σ′
i, and kept in the cache until the end of σ′

i, is {(ℓ, j) | 0 ≤ j < pi,ℓ}. Hence,

T ′ pays a read cost of dℓ ·max(ri,ℓ − pi,ℓ, 0) on color (ℓ, j) files, over all j, in σ′
i.

Hence the read cost incurred by T ′ on color ℓ files in σ′
i is at most the drop

cost incurred by T ′ on the color ℓ jobs in σi. Summing up over all colors ℓ and

all nonnegative integers i, claim (2) follows.

Lemma 3.4.2. Consider any instance (σ,m) of [∆ℓ | dℓ | 1 | 1], where ∆ℓ ≥ dℓ

for all colors ℓ. Let σ′ = serializedReqSeq(σ). Let S ′ be the schedule produced

by algorithm LLL on (σ′,m), and S be the schedule produced by algorithm

Serialize on (σ,m). Then Cost(S) ≤ 2Cost(S ′).

Proof. Let σi be request i of σ. Let S ′′ be the schedule produced in the second

stage of algorithm Serialize on (σ,m). We bound Cost(S) in the following two

stages.
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In the first stage, we establish that Cost(S ′′) ≤ 2Cost(S ′) as follows.

We first bound the read cost of S ′′. Let S ′
i and S ′′

i be the portion of S ′ and

S ′′ for σi, respectively. Let X be the set of files that appear in σ′
i. By the

definition of σ′
i, each file in X is unique. Let Y be the subset of X that consists

of the files written into the cache in S ′
i, and Z = X \ Y . For each file (ℓ, j) in

Y , since each file is unique in X, S ′′
i incurs at most one read on (ℓ, j). Since

∆ℓ ≥ dℓ, for all colors ℓ, the read cost incurred by S ′′
i on the set of files in Y is

at most the write cost incurred by S ′
i on the set of files in Y . It is not hard to

see that the read cost incurred by S ′′
i on the set of files in Z equals the read

cost incurred by S ′
i on the set of files in Z. Hence, the read cost of S ′′

i is at

most the read cost of S ′
i. Summing up over all i, the read cost of S ′′ is at most

the read cost of S ′. Since S ′′ makes all the write operations made by S ′, the

write cost of S ′′ equals that of S ′.

In the second stage, we establish Cost(S) ≤ Cost(S ′′). Consider any

nonnegative integer i. We proceed in the following two steps. In the first

step, we show that the reconfiguration cost of Si is at most the write cost of

S ′′
i as follows. Consider any color ℓ. By the definition of Si, and the way we

construct S, a reconfiguration operation to color ℓ made by Si corresponds to

a write operation of a file (ℓ, j), for some j, made by S ′′
i . Since loading a cache

location with a file (ℓ, k) by evicting a file (ℓ, j), j 6= k, in S ′
i, incurs a write

cost ∆ℓ, the cost incurred by reconfigurations to color ℓ in Si is at most the

cost incurred by the writes of files (ℓ, j), over all j, in S ′′
i . Summing up over

all colors ℓ, the reconfiguration cost of Si is at most the write cost of S ′′
i .
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In the second step, we show that the drop cost of Si is at most the read

cost of S ′′
i . Consider any color ℓ. Let ri,ℓ be the number of color ℓ jobs in σi.

By the definition of σ′
i, the set of color (ℓ, j) files, over all j, appearing in σ′

i is

{(ℓ, j) | 0 ≤ j < ri,ℓ}. Let pi,ℓ be the number of color ℓ files cached by S ′′
i right

before the first request in σ′
i (i.e., the reconfigurations of the cache contents

in S ′
i at the beginning of σ′

i, if any, have been made). By the definition of S ′′
i

and the way that we construct S ′′, S ′′
i does not change the cache configuration

except at the beginning of σ′
i. So the read cost of S ′′

i on color (ℓ, j) files, over

all j, is at least dℓ · max(ri,ℓ − pi,ℓ, 0). By the definition of Si and the way we

construct S, the number of color ℓ resources at the end of the reconfiguration

phase of round i is also pi,ℓ, and Si executes as many jobs as the current

reconfiguration allows. Hence, the drop cost of Si on color (ℓ, j) jobs, over all

j, is dℓ · max(ri,ℓ − pi,ℓ, 0), which we have shown to be at most the read cost

of S ′′
i on color ℓ jobs. Summing up over all colors ℓ, the drop cost of Si is at

most the read cost of S ′′
i . Summing up over all i, the claim in the second stage

follows from the above two steps.

Theorem 3.2. Algorithm Serialize is resource competitive for [∆ℓ | dℓ | 1 | 1],

where ∆ℓ ≥ dℓ for all colors ℓ.

Proof. Consider any instance (σ,m) of [∆ℓ | dℓ | 1 | 1], where ∆ℓ ≥ dℓ for all

colors ℓ. Suppose there exists an m-resource offline schedule T for σ with cost

C. Let σ′ = serializedReqSeq(σ). By Lemma 3.4.1, there exists a schedule T ′

for σ′ with at most cost 4C and cache size m. By Theorem 3.1, algorithm LLL
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is resource competitive for file caching with remote reads. Hence the schedule

S ′ produced by LLL on (σ′,m) incurs a cost of O(C) with a cache size of O(m).

By Lemma 3.4.2, the schedule S produced by algorithm Serialize on (σ,m)

incurs a cost of O(C). By definition, S uses the same number of resources as

S ′. Hence, the lemma follows.

3.5 Prefix Paging

In this section, we define and solve a variant of the traditional disk

paging problem; we refer to this variant as prefix paging. The input to the

prefix paging problem is a pair (σ,m), where σ is a sequence of page requests,

and m is an integer that denotes the bound on the cache for any feasible al-

gorithm. Every page is identified by a pair (ℓ, j), where ℓ is a color and j is a

nonnegative integer index in the range 0 to m − 1. The sequence σ is parti-

tioned into contiguous segments of at most m requests each. The requests of

a segment involve distinct pages and are presented in lexicographically sorted

order. Within any given segment, the following prefix property holds: If there

is a request (ℓ, j) where j > 0, then there is also a request (ℓ, j− 1). The rules

for processing page requests are the same as in traditional disk paging.

3.5.1 Algorithm Mark

Given an arbitrary instance (σ,m) of the prefix paging problem, we

partition the request sequence σ into epochs as follows. If fewer than 2m

distinct pages are accessed in σ, then there is just one epoch. Otherwise, the
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first epoch is the shortest prefix p of σ such that the following two conditions

hold: (1) p corresponds to a whole number of segments; (2) p contains accesses

to at least 2m distinct pages. Having defined the first epoch, we define the rest

of the epochs by recursively partitioning the remaining suffix of the request.

Our online algorithm, denoted Mark , which uses a cache of size 3m, is a

kind of marking algorithm, similar in spirit to the class of marking algorithms

discussed, e.g., in [4, Section 3.5.1]. A mark bit is associated with each cache

location. Initially, all cache locations are unmarked. During an epoch, a cache

location that is read is marked, and remains marked until the beginning of

the next epoch, at which point it is unmarked. If the cache is full and we

suffer a miss, then an arbitrary page in an unmarked location is evicted. Note

that such an unmarked location is guaranteed to exist, since the definitions of

epoch and segment imply that, at all times, fewer than 3m cache locations are

marked.

3.5.2 Analysis of Mark

Lemma 3.5.1. After a page is accessed, it stays in the cache throughout the

remainder of the processing of the current epoch.

Proof. When a request for a page x is processed during a given epoch, the

cache location from which x is read becomes marked, and remains marked

until the end of the current epoch. Therefore, page x is not evicted before the

end of the current epoch.
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The following corollary is used in Section 3.6.

Corollary 3.5.1. Immediately after processing a given segment, the cache

contains all of the pages accessed during the segment.

Proof. This is immediate from Lemma 3.5.1, since each epoch consists of a

whole number of segments.

Lemma 3.5.2. Algorithm Mark is resource competitive for the prefix paging

problem.

Proof. By Lemma 3.5.1, during any epoch, algorithm Mark suffers at most

one miss per distinct page accessed. By the definitions of epoch and segment,

fewer than 3m distinct pages are accessed during an epoch. Thus algorithm

Mark suffers fewer than 3m misses during any epoch.

Call an epoch complete if it contains accesses to at least 2m distinct

pages, and incomplete otherwise. Note that at most one epoch is incomplete.

Since the feasible offline algorithm has a cache size of m, there are at least

2m − m = m misses in each complete epoch.

Combining the results of the preceding paragraphs, we conclude that

algorithm Mark is resource competitive on any instance with at least one com-

plete epoch. It remains to consider instances consisting of a single incomplete

epoch. Fix such an instance, and let k denote the number of distinct pages

accessed. As argued earlier, algorithm Mark suffers at most k misses. Further-
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more, any offline algorithm suffers at least k misses. So once again algorithm

Mark is resource competitive.

3.6 Rate-Limited Unit Delay

In this section, we consider a special case of [∆ | dℓ | 1 | 1], referred

to as rate-limited [∆ | dℓ | 1 | 1], where ∆ < dℓ for all colors ℓ, and for any

instance (σ,m) of the special case, at most m jobs arrive per round in σ. Our

algorithm for rate-limited [∆ | dℓ | 1 | 1], where ∆ < dℓ for all colors ℓ, is

invoked by algorithm Split in Section 3.7.2.

3.6.1 Algorithm RLSerialize

For an arbitrary request α for rate-limited [∆ | dℓ | 1 | 1], where ∆ < dℓ

for all colors ℓ, we define serialized(α) as in Section 3.4.1, except that we order

the files in X lexicographically. For any request sequence σ for rate-limited

[∆ | dℓ | 1 | 1], where ∆ < dℓ for all colors ℓ, we define serializedReqSeq(σ)

as in Section 3.4.1. It is not hard to see that serializedReqSeq(σ) is a request

sequence for prefix paging.

Given an instance (σ,m) of rate-limited [∆ | dℓ | 1 | 1], where ∆ < dℓ

for all colors ℓ, algorithm RLSerialize produces a schedule for σ in the following

two stages. In the first stage, we use algorithm Mark (defined in Section 3.5)

to obtain a 3m-resource schedule S ′ for σ′ = serializedReqSeq(σ).

In the second stage, we construct a 3m-resource schedule S for σ from

S ′ as follows. Consider an arbitrary nonnegative integer i. Let σi be request
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i of σ. Consider any resource k, where 0 ≤ k < 3m. Let (ℓ, j) be the page

cached at location k immediately after serving the last request in serialized(σi)

in S ′. In the reconfiguration phase of round i, we configure resource k with

color ℓ in S. In the execution phase of round i, we execute as many jobs in σi

as the current configuration allows.

3.6.2 Analysis of RLSerialize

We say that a schedule S is drop-free if S does not incur any drop cost.

Lemma 3.6.1. Consider any instance (σ,m) of rate-limited [∆ | dℓ | 1 |

1], where ∆ < dℓ for all colors ℓ. If there exists an m-resource schedule T

for σ, then there exists an m-resource drop-free schedule T ′ for σ such that

Cost(T ′) ≤ 2Cost(T ).

Proof. We construct T ′ from T round by round. Consider any round i. We

execute all the jobs that arrive in round i as follows: We execute the set of jobs

executed in T on the same resources as in T ; we also execute the set of jobs

that are dropped in T on the resources that are idle in T , that is, resources on

which no jobs are executed; note that there are always a sufficient number of

idle resources, since at most m jobs arrive and need to be executed in a round.

It is straightforward to see that T ′ is drop-free. By executing a color

ℓ job x dropped in T , T ′ reduces the drop cost by dℓ, and increases the re-

configuration cost by at most 2∆. Since ∆ < dℓ for all colors ℓ, Cost(T ′) ≤

2Cost(T ).
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We omit the proof of Lemma 3.6.2 since it is analogous to the proof of

Lemma 3.4.1, and is in fact simpler.

Lemma 3.6.2. Consider any instance (σ,m) of rate-limited [∆ | dℓ | 1 | 1],

where ∆ < dℓ for all colors ℓ. If there exists an m-resource drop-free schedule

T for σ with cost C, then there exists a schedule T ′ for serializedReqSeq(σ)

that makes at most 2C
∆

misses with cache size m.

Lemma 3.6.3. Consider any instance (σ,m) of rate-limited [∆ | dℓ | 1 | 1],

where ∆ < dℓ for all colors ℓ. Let σ′ = serializedReqSeq(σ). Let S ′ be the

3m-resource schedule produced by Mark on (σ′,m), and S be the 3m-resource

schedule produced by RLSerialize on (σ,m). Then Cost(S) is at most ∆ times

the number of misses incurred by S ′.

Proof. Since for any color ℓ, we replace color (ℓ, j) in S ′, for any nonnegative

integer j, with color ℓ in S, the reconfiguration cost incurred by S is at most

∆ times the number of misses incurred by S ′. It remains to show that S is

drop-free.

Consider an arbitrary round i and color ℓ. Let σi be request i of σ

and σ′
i = serialized(σi). Let Xi,ℓ denote the set of color (ℓ, j) pages, over all

j, in σ′
i. Let Yi,ℓ denote the set of color (ℓ, j) pages, over all j, in the cache

immediately after processing σ′
i in S ′. Let Zi,ℓ denote the set of resources

configured with color ℓ at the end of the reconfiguration phase of round i in

S. By the construction of S, |Zi,ℓ| = |Yi,ℓ|. By Corollary 3.5.1, pages in σ′
i are

cached immediately after processing σ′
i. Hence, Xi,ℓ ⊆ Yi,ℓ. By the definition
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of σ′
i, |Xi,ℓ| equals the number of color ℓ jobs in σi. Therefore, the number of

color ℓ jobs in σi is at most |Zi,ℓ|. Since in each round, we execute as many jobs

as the current reconfiguration allows in T ′, all color ℓ jobs in σi are executed

in S in round i. Summing up over all colors ℓ and all rounds i, the lemma

follows.

Theorem 3.3. Algorithm RLSerialize is resource competitive for rate-limited

[∆ | dℓ | 1 | 1], where ∆ < dℓ for all colors ℓ.

Proof. Consider any instance (σ,m) of rate-limited [∆ | dℓ | 1 | 1], where

∆ < dℓ for all colors ℓ. Suppose there exists an m-resource offline schedule

T for σ with cost C. By Lemma 3.6.1, there exists an m-resource drop-free

schedule for σ with cost at most 2C. By Lemma 3.6.2, there exists a schedule

for σ′ = serializedReqSeq(σ) with at most 4C
∆

misses and a cache size of m.

Let S ′ be the 3m-resource schedule produced by Mark on (σ′,m), and S be

the 3m-resource schedule produced by RLSerialize on (σ,m). Since σ is a

request sequence for prefix paging, by Lemma 3.5.2, S ′ incurs cost O(C
∆

). By

Lemma 3.6.3, schedule S incurs cost O(C). Hence, the theorem follows.

3.7 Rate-Limited Batched Arrivals

In this section we solve rate-limited [∆ | dℓ | D | D], which is charac-

terized by a fixed reconfiguration cost ∆, per-color drop costs dℓ, a fixed delay

bound D, batched arrivals (jobs arrive at integral multiples of D), and limited

arrival rate (at most D jobs of the same color arrive at each integral multiple
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of D).

In this section, we reduce rate-limited [∆ | dℓ | D | D] to two cases: (1)

∆ ≥ dℓ for all colors ℓ, and (2) ∆ < dℓ for all colors ℓ. We solve the former

case by a reduction to [∆ | dℓ | 1 | 1], which is addressed in Section 3.4. The

latter case is simpler. We solve the latter case by a reduction to a special case

of [∆ | dℓ | 1 | 1], referred to as rate-limited [∆ | dℓ | 1 | 1], which is defined

and solved in Section 3.6.

We refer to the portion of a request sequence that corresponds to a block

as a frame. The rest of the section is organized as follows. In Section 3.7.1, we

introduce some definitions. In Section 3.7.2, we present algorithm Split , the

algorithm that schedules an entire request sequence. An important subroutine

of algorithm Split is Reshape, which reshapes the entire request sequence by

invoking ReshapeFrame (defined in Section 3.8.6), the algorithm that reshapes

a frame. In Section 3.7.3, we show algorithm Split is resource competitive for

[∆ | dℓ | D | D]; our proof uses Lemmas 3.8.17 and 3.8.18 of Section 3.8.6.

3.7.1 Definitions

In this section, we make use of the notion of pseudo-schedule, which is

defined in Section 2.2. Consider an arbitrary instance (σ,m) of [∆ | dℓ | D |

D], and any pseudo-schedule P for σ. We define adjReqSeq(P ) as a request

sequence σ′ such that (1) the set of jobs appearing in σ′ is the same as that

appearing in σ, (2) the arrival time of each job x in σ′ is an arbitrary round

if x is dropped in P , and otherwise the round in which x is executed in P ,
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and (3) the delay bound of each job in σ′ is set to 1. In this dissertation, we

always let adjReqSeq take a pseudo-schedule that executes all jobs. We define

adjRlReqSeq(P ) in the same way as we define adjReqSeq(P ), except that the

set of jobs appearing in adjRlReqSeq(P ) is the set of jobs executed in the first

m resources in P . It is not hard to see that any schedule for adjReqSeq(P )

(resp., adjRlReqSeq(P )) is also a schedule for σ.

Given an initial coloring µ and a pseudo-schedule P , we use final(P, µ)

to denote the final coloring of P , that is, the coloring of P after the last

round. For any two colorings µ and ν, we define the distance between µ and

ν, denoted dist(µ, ν), as the number of resources that have distinct colors in

µ and ν. We define Cost(P, µ, ν) as Cost(P, µ) + ∆ · dist(final(P, µ), ν). The

preceding definitions turn out to be useful for analyzing pseudo-schedules and

schedules, obtained via concatenation.

3.7.2 Algorithms Reshape and Split

Given an arbitrary instance (σ,m) of [∆ | dℓ | D | D], algorithm

Reshape generates a pseudo-schedule for σ. It independently decides the

pseudo-schedule for each frame τ of σ by invoking ReshapeFrame(τ, µ0) (de-

fined in Section 3.8.6), where µ0 is the default coloring. The final pseudo-

schedule for σ is obtained by concatenating the pseudo-schedules for each

frame i of σ, in increasing order of i.

Algorithm Split is defined as follows. We first consider two special cases.

First we consider the special case in which each job appearing in σ has a drop
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cost at most ∆. In this case, algorithm Split proceeds in two stages. In the first

stage, we obtain a pseudo-schedule P by applying algorithm Reshape on σ. In

the second stage, we apply algorithm Serialize (defined in Section 3.4.1) on

adjReqSeq(P ) to obtain a schedule for adjReqSeq(P ), which is also a schedule

for σ.

Second we consider the special case in which each job appearing in σ

has a drop cost greater than ∆. Algorithm Split proceeds similarly as in the

first special case, except that we replace adjReqSeq(P ) with adjRlReqSeq(P ),

and algorithm Serialize with RLSerialize (defined in Section 3.6.1) in this case.

In the general case, we break each request in σ into two requests, one

consisting of the jobs with per-color drop costs at most ∆, and the other

consisting of the jobs with per-color drop costs greater than ∆. Let α (resp.,

β) denote the resulting sequence of requests involving the jobs with per-color

drop costs at most ∆ (resp., greater than ∆). We double the number of

resources, split the set of resources in half, and use the first half to execute the

jobs in α as in the first special case, and the second half to execute the jobs

in β as in the second special case.

3.7.3 Analysis of Split

Lemma 3.7.1. Consider an arbitrary instance (σ,m) of [∆ | dℓ | D | D]

and any coloring µ. If there exists an m-resource schedule S for σ, then

there exists an m-resource schedule S ′ for adjReqSeq(Reshape(σ)) such that

Cost(S ′) = O(Cost(S)).
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Proof. For any nonnegative integer i, let σi denote frame i of σ, and let Si

denote the portion of S associated with σi. Let µ0 be the default coloring. For

any integer i > 0, we define µi as final(Si, µi−1). It is not hard to see that

Cost(S) = Cost(S, µ0) =
∑

i Cost(Si, µi).

By Lemma 3.8.17, for each nonnegative integer i, there exists an m-

resource schedule S ′
i for adjReqSeq(ReshapeFrame(σi, µ0)) such that

Cost(S ′
i, µi, µi+1) = O(Cost(Si, µi)).

Let S ′ be the concatenation of the S ′
i’s, in increasing order of i. It is not hard

to verify that S ′ is a schedule for adjReqSeq(Reshape(σ)), and that Cost(S ′) =

Cost(S ′, µ0) ≤
∑

i Cost(S ′
i, µi, µi+1). Hence, Cost(S ′) = O(Cost(S)).

Lemma 3.7.2. Consider an arbitrary instance (σ,m) of [∆ | dℓ | D | D]

and any coloring µ. If ∆ < dℓ for all colors ℓ, and there exists an m-

resource schedule S for σ, then there exists an m-resource schedule S ′ for

adjReqSeq(Reshape(σ)) such that Cost(S ′) = O(Cost(S)).

Proof. Since ∆ < dℓ for all colors ℓ, it is not hard to see that for any frame τ

of σ, |LtColors(τ)| = 0. The remainder of the proof of this lemma is analogous

to the proof of Lemma 3.7.1. We simply replace adjReqSeq with adjRlReqSeq ,

and Lemma 3.8.17 with Lemma 3.8.18.

Lemma 3.7.3. If ∆ ≥ dℓ for all colors ℓ, then algorithm Split is resource

competitive for [∆ | dℓ | D | D].
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Proof. Consider an arbitrary instance (σ,m) for [∆ | dℓ | D | D], where ∆ ≥ dℓ

for all colors ℓ. Let σ′ = adjReqSeq(Reshape(σ)). Thus, by the definition of

algorithm Split , the schedule T = Split(σ) equals Serialize(σ′). Suppose there

exists an m-resource offline schedule S for σ with cost C. By Lemma 3.7.1,

there exists an m-resource schedule S ′ for σ′ with cost O(C). Since σ′ is a

request sequence for [∆ | dℓ | 1 | 1], and by Theorem 3.2, algorithm Serialize

is resource competitive for [∆ | dℓ | 1 | 1], T incurs cost O(C) with O(m)

resources. Hence, the lemma follows.

Lemma 3.7.4. If ∆ < dℓ for all colors ℓ, algorithm Split is resource compet-

itive for [∆ | dℓ | D | D].

Proof. The proof of this lemma is analogous to the proof of Lemma 3.7.3. We

simply replace ∆ ≥ dℓ with ∆ < dℓ, [∆ | dℓ | 1 | 1] with rate-limited [∆ | dℓ | 1 |

1] (see Section 3.6), algorithm Serialize with RLSerialize (see Section 3.6.1),

Lemma 3.7.1 with Lemma 3.7.2, and Theorem 3.2 with Theorem 3.3 in the

proof of Lemma 3.7.3.

Theorem 3.4. Algorithm Split is resource competitive for [∆ | dℓ | D | D].

Proof. Since algorithm Split reduces the general case to the two special cases

in Lemmas 3.7.3 and 3.7.4, and uses disjoint set of resources to handle each

special case, the theorem follows from Lemmas 3.7.3 and 3.7.4.
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3.8 Rate-Limited Batched Arrivals: Reshaping a Frame

The purpose of this section is to provide the definition of algorithm

ReshapeFrame, the algorithm that we use to reshape a frame, and to state and

prove Lemmas 3.8.17 and 3.8.18. Algorithm ReshapeFrame is invoked in Sec-

tion 3.7.2 to reshape and schedule an entire request sequence. Lemma 3.8.17

(resp., Lemma 3.8.18) is used in the proof of Lemma 3.7.1 (resp., Lemma 3.7.2)

in Section 3.7.3.

We use algorithm ReshapeFrame to generate an assignment that assigns

each job in a frame to a round, and to perform an offline to offline reduction.

The remainder of this section is organized as follows. In Section 3.8.1, we

give some preliminaries. In Sections 3.8.2 through 3.8.5, we introduce a set of

functions and their properties that are useful to define and analyze algorithm

ReshapeFrame. In Section 3.8.6, we define algorithm ReshapeFrame, and state

and prove Lemma 3.8.17. One of the main lemmas that we use to prove

Lemma 3.8.17, namely Lemma 3.8.16, bounds the cost of our offline to offline

reduction. We prove Lemma 3.8.16 by considering two cases depending on the

number of heavy colors in a frame. (The formal definition of a heavy color is

given in Section 3.8.1.) Sections 3.8.7 and 3.8.8 handle the cases where there

are many heavy colors and few heavy colors, respectively.

3.8.1 Preliminaries

Any pseudo-schedule (resp., schedule) mentioned in this section refers

to a pseudo-schedule (resp., schedule) for a frame. Throughout this section,

48



we use the integer m to denote the bound on the number of the resources that

can be used by a schedule. For any integer i, we use [i] to denote the sets of

integers 0 through i − 1. We define M as the set of resources [m].

For any set X of jobs, we use seq(X) to denote the sequence of jobs

obtained by sorting the jobs in X in descending order of drop costs, breaking

ties by color. For any sequence α of jobs, we use Set(α) to denote the set of

jobs appearing in α. For any set of jobs X (resp., sequence of jobs α), we

use Colors(X) (resp., Colors(α)) to denote the set of colors ℓ such that there

exists a job in X of color ℓ.

Consider any frame τ . We define Jobs(τ) as the set of jobs appearing

in τ . For any color ℓ, we define the load of ℓ, denoted load(τ, ℓ), as the

number of color ℓ jobs in Jobs(τ). We define the set of heavy colors, denoted

HvyColors(τ), as the set of colors ℓ such that load(τ, ℓ) ·dℓ ≥ ∆, and the set of

light colors, denoted LtColors(τ), as the set of colors not in HvyColors(τ). We

sort the colors in HvyColors(τ) in descending order of drop costs, breaking ties

by load. We use PrmyHvyColors(τ) to denote the first min(m, |HvyColors(τ)|)

colors in HvyColors(τ), and SecHvyColors(τ) to denote the set of remaining

colors in HvyColors(τ). We define PrmyHvyJobs(τ) (resp., SecHvyJobs(τ)) as

the set of jobs of the colors in PrmyHvyColors(τ) (resp., SecHvyColors(τ)).

Consider any pseudo-schedule P . For any color ℓ, we define ExeSet(P, ℓ)

(resp., DropSet(P, ℓ)) as the set of color ℓ jobs that are executed (resp.,

dropped) in pseudo-schedule P . We define ExeSet(P ) (resp., DropSet(P ))

as ∪ℓExeSet(P, ℓ) (resp., ∪ℓDropSet(P, ℓ)). We define exe(P, i) as the se-
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quence of the jobs that are executed on resource i in P . We define pre(P, i) as

the maximal monochromatic prefix of exe(P, i), and suf (P, i) as the suffix of

exe(P, i) obtained by removing pre(P, i) from exe(P, i). We define PreSet(P )

as ∪ℓSet(pre(S, i)).

We define Full(P ) (resp., Empty(P )) as the set of resources i such that

each slot in resource i is occupied (resp., free) in P . We define freeSlots(P, i) as

the sequence of slots in resource i that are free in P . For any pseudo-schedule

P , we define a permutation πP of the resources as follows. The resources i

are ordered in ascending order of |pre(P, i)|, breaking ties by the color of the

jobs in pre(P, i) if possible, and arbitrarily otherwise (i.e., when pre(P, i) is

the empty sequence, or when there are ties in color). We define suf (P ) as the

concatenation of the suf (P, πP (i))’s, over all i in [m], in increasing order of i.

We define freeSlots(P ) as the concatenation of the freeSlots(P, πP (i))’s, over

all i in [m], in increasing order of i.

Consider any frame τ , any pseudo-schedule P for τ , and any coloring

µ. For any color ℓ, we use Rscs(µ, ℓ) to denote the set of resources i in M such

that µ(i) = ℓ. For any color ℓ, we define Mono(P, µ, ℓ) as the set of resources

i such that µ(i) = ν(i) = ℓ, where ν = final(P, µ), and all the jobs executed

on resource i in P are color ℓ jobs. We define Mono(P, µ) as ∪ℓMono(P, µ, ℓ).

We define the resources used by P that are not in Mono(P, µ) as Multi(P, µ).

Consider any schedule S and any coloring µ. We define Mismatch(S, µ)

as the set of resources i in M such that |pre(S, i)| > 0 and the color of pre(S, i)

is different from µ(i).
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We define function extractedColoring as follows. It takes a schedule S

and a coloring µ, and returns a coloring ν constructed in the following manner:

for any resource i, if resource i is in Mono(S, µ, ℓ) for some color ℓ, then we

set ν(i) to ℓ; otherwise, we set ν(i) to black.

Fact 3.8.1. For any frame τ , any schedule S for τ , and any coloring µ,

Mono(S, µ, ℓ) = Rscs(ν, ℓ), where ν = extractedColoring(S, µ).

We define function trunc as follows. It takes a pseudo-schedule P and

returns a schedule in which resources [m] behave the same as in P .

Consider any schedule S. We say S is prefix-complete if for each re-

source i, |pre(S, i)| > 0. We say S is suffix-free if |suf (S)| = 0. We say

S is suffix-valuable if for each resource i, the total drop cost of the jobs in

suf (S, i) is at least ∆. We say S is light-free if for any color ℓ in LtColors(τ),

ExeSet(S, ℓ) = ∅.

Consider two schedules S and T . We say S and T are prefix-identical

if for each resource i, pre(S, i) = pre(T, i), and prefix-matched if there exists

a permutation π of the resources such that for each resource i, pre(S, i) =

pre(T, π(i)).

Definition 3.8.1 (Property Greedy-Packing). We say a pair (X,S), where

X is a set of jobs and S is a schedule, satisfies the Greedy-Packing property

if suf (S) is a prefix of seq(X) of length min(|seq(X)| , |freeSlots(S ′)|), and is

executed in the first s slots in freeSlots(S ′), where S ′ is a schedule obtained

by removing suf (S) from S.
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Consider any frame τ , any pseudo-schedule P for τ , and any color-

ing µ. We say a reconfiguration made by P is external if it is made in the

first round of the block corresponding to τ , and internal otherwise. We use

ExtReconfigCost(P, µ) to denote the cost incurred by the external reconfigu-

rations made by P if given the initial coloring µ. We use IntReconfigCost(P )

to denote the cost incurred by internal reconfigurations made by P . For

any schedule S, we define IntCost(S) as the sum of IntReconfigCost(S) and

DropCost(S).

Lemma 3.8.2. For any frame τ , any schedule S for τ , and any coloring µ,

Cost(S, µ) ≥ |X| · ∆, where X is the set of the colors ℓ in HvyColors(τ) such

that Mono(S, µ, ℓ) = ∅.

Proof. Consider any color ℓ in X. Since X ⊆ HvyColors(τ), by the definition

of HvyColors(τ), |load(τ, ℓ)| · dℓ ≥ ∆. If |DropSet(S, ℓ)| = load(τ, ℓ), then the

total drop cost of the jobs in DropSet(S, ℓ) is at least ∆. Otherwise, by the

definition of X, any color ℓ job executed in S is executed on a resource in

Multi(S, µ). Hence, in this case, there is at least one reconfiguration to color

ℓ in S. Summing up over all colors ℓ in X, the lemma follows.

3.8.2 Function prefixHvy

The function prefixHvy takes a frame τ , a subset X of Jobs(τ) such that

|Colors(X)| ≤ m, and a coloring µ as arguments, and generates a schedule for

τ . We implement prefixHvy by initializing a schedule S as a schedule for τ
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that drops all jobs in Jobs(τ), and then modify S as follows. First, we define

an injective f : Colors(X) to [m] that maximizes the number of colors ℓ in

Colors(X) such that µ(f(ℓ)) = ℓ. Second, for each color ℓ in Colors(X), we

assign the jobs in Xℓ to execute in the first |Xℓ| slots on resource f(ℓ) in S,

where Xℓ is set of color ℓ jobs in X. Finally, we return S.

Fact 3.8.3. Consider any frame τ , any coloring µ, and any subset X of

Jobs(τ) such that |Colors(X)| ≤ m. Let S = prefixHvy(τ,X, µ). Then the

following claims hold.

1. If |Colors(X)| = m, then schedule S is prefix-complete.

2. Schedule S is suffix-free.

3. |Mismatch(S, µ)| = kℓ, where kℓ is the number of colors ℓ in X such that

Rscs(µ, ℓ) = ∅.

Lemma 3.8.4. Consider any frame τ , any schedule S, and any coloring µ. Let

ν = extractedColoring(S, µ). Let T = prefixHvy(τ,PrmyHvyColors(τ), ν)).

Then Cost(S, µ) = ∆ · Ω(|Mismatch(T, ν)|).

Proof. Let X (resp., Y ) denote the set of colors ℓ in HvyColors(τ) (resp.,

PrmyHvyColors(τ)) such that Mono(S, µ, ℓ) = ∅. Let Z denote the set of

colors ℓ in PrmyHvyColors(τ) such that Rscs(ν, ℓ) = ∅. By (3) of Fact 3.8.3,

|Mismatch(T, ν)| = |Z|. By Fact 3.8.1, Z = Y . Since PrmyHvyColors(τ) ⊆

HvyColors(τ), Y ⊆ X. The lemma then follows from Lemma 3.8.2.
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3.8.3 Function pack

The function pack takes a schedule S, and a subset X of Jobs(τ), where

τ is the frame associated with S, as arguments, and generates a schedule for

τ . We implement pack by initializing a schedule S ′ to S, and then modifying

S ′ as follows. Let α = seq(X). We assign the prefix of α of length s =

min(|α| , |freeSlots(S)|) to the first s slots of freeSlots(S). Finally we return

schedule S ′.

Fact 3.8.5. Consider any schedule S for a frame τ , and a subset X of Jobs(τ).

Let T = pack(S,X).

1. If X = ∅, then T = S.

2. If S is prefix-complete and suffix-free, then (X,T ) and (Set(suf (T )), T )

each satisfy the Greedy-Packing property.

3. If S is prefix-complete, then schedules S and T are prefix-identical.

3.8.4 Function dropSuf

The function dropSuf takes a schedule S for a frame, and generates

another schedule for the same frame. We implement dropSuf by initializing

a schedule S ′ to S, and then modifying S ′ in the following manner: For each

resource i, if the total drop cost of the jobs in suf (S ′, i) is less than ∆, we drop

the jobs in suf (S ′, i) from resource i in S ′. Finally we return schedule S ′.
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Fact 3.8.6. Consider any schedule S. Let schedule T = dropSuf (S). Then

the following claims hold.

1. Schedule T is suffix-valuable.

2. If (Set(suf (S)), S) satisfies the Greedy-Packing property, then suf (T )

is a prefix of suf (S), and (Set(suf (T )), T ) satisfies the Greedy-Packing

property.

3. If T is suffix-free, then T = S.

4. Schedules S and T are prefix-identical.

5. IntCost(T ) ≤ IntCost(S).

Fact 3.8.7. Consider any pair of schedules (S, T ), and any two sets of jobs X

and Y such that X ⊆ Y . Let S ′ = dropSuf (S) and T ′ = dropSuf (T ). If (1)

S and T are prefix-matched, (2) (X,S) satisfies the Greedy-Packing property,

and (3) (Y, T ) satisfies Greedy-Packing, then the following claims hold.

1. |suf (S ′)| ≤ |suf (T ′)|, and the total drop cost of the jobs in suf (S ′) is at

most that of the jobs in suf (T ′).

2. DropCost(S ′) ≥ ∆ · (|hasSuf (T ′)| − |hasSuf (S ′)|).

3.8.5 Function prefixLight

The function prefixLight takes a schedule S for a frame, and a coloring

µ as arguments, and returns a pseudo-schedule for the same frame. We imple-

ment prefixLight by initializing P to S, and then modify P iteratively. Each
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iteration proceeds as follows. If DropSet(P ) = ∅, then we return P and termi-

nate the procedure. Otherwise, we proceed in the following stages. In the first

stage, we pick any color ℓ such that DropSet(P, ℓ) 6= ∅. In the second stage, if

there exists a resource i in Empty(P ) ∩ M such that in µ(i) = ℓ, we pick an

arbitrary such resource i; otherwise, we pick a resource i in Empty(P )\M with

the smallest index. In the third stage, we modify P by assigning all jobs in

DropSet(P, ℓ) to execute in the first |DropSet(P, ℓ)| slots in resource i. Finally

we return pseudo-schedule P .

Fact 3.8.8. Consider any schedule S for a frame and any coloring µ. Let

T = trunc(prefixLight(S, µ)). Then the following claims hold.

1. For each resource i, suf (T, i) = suf (S, i).

2. If S is prefix-complete, then T = S.

3. Mismatch(T, µ) = Mismatch(S, µ).

4. For each color ℓ such that DropSet(T, ℓ) 6= ∅, there does not exist resource

i in M \ Mismatch(T, µ) such that µ(i) = ℓ.

3.8.6 Algorithm ReshapeFrame

Algorithm ReshapeFrame takes a frame τ and a coloring µ as argu-

ments, and generates a pseudo-schedule for τ . Let X be the set of jobs

of the colors in PrmyHvyColors(τ), and Y be the set of jobs of colors in

SecHvyColors(τ). We implement ReshapeFrame in the following four phases.
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In the first phase, we set S1 = prefixHvy(τ,X, µ). Note that Colors(X) ≤ m.

In the second phase, we set S2 = pack(S1, Y ). In the third phase, we set

S3 = dropSuf (S2). In the fourth phase, we set P = prefixLight(S3, µ), and

then return P .

Fact 3.8.9. Consider any frame τ , and any two colorings µ and ν. Let

P = ReshapeFrame(τ, µ) and Q = ReshapeFrame(τ, ν). Then there exists

a function f : M ×N , where N is the set of resources used by P , such that for

each resource i in M , the sequence of jobs executed on resource i in Q equals

the sequence of jobs executed on resource f(i) in P .

Fact 3.8.10. Consider any frame τ , and any two colorings µ and ν. Let

P = ReshapeFrame(τ, µ) and Q = ReshapeFrame(τ, ν). If |LtColors(τ)| = 0,

then there exists a function f : M × M such that for each resource i in M ,

the sequence of jobs executed on resource i in Q equals the sequence of jobs

executed on resource f(i) in P .

Lemma 3.8.11. Consider any frame τ , and any two colorings µ and ν. Let

P = ReshapeFrame(τ, µ), Q = ReshapeFrame(τ, ν), and T = trunc(Q). Then

T is a schedule for adjReqSeq(P ).

Proof. By definition of adjReqSeq(P ), all jobs in adjReqSeq(P ) have delay

bound 1. Hence, we only need to show that, for each round j and each color

ℓ, the total number of color ℓ jobs executed in T is at most the total number

of color ℓ jobs arriving in round j in adjReqSeq(P ). The lemma then follows

from Fact 3.8.9.
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Lemma 3.8.12. Consider any frame τ , and any two colorings µ and ν. Let

P = ReshapeFrame(τ, µ), Q = ReshapeFrame(τ, ν), and T = trunc(Q). If

|LtColors(τ)| = 0, then T is a schedule for adjRlReqSeq(P ).

Proof. The proof of this lemma is analogous to the proof of Lemma 3.8.11.

We simply replace adjReqSeq(P ) with adjRlReqSeq(P ), and Fact 3.8.9 with

Fact 3.8.10.

Lemma 3.8.13. Consider any frame τ , any schedule S for τ , and any coloring

µ. Let T = trunc(ReshapeFrame(τ, ν)), where ν = extractedColoring(S, µ). If

|HvyColors(τ)| > m, then Cost(T, µ) = O(Cost(S, µ)).

Proof. See Section 3.8.7.

Lemma 3.8.14. Consider any frame τ , any schedule S for τ , and any coloring

µ. Let T = trunc(ReshapeFrame(τ, ν)), where ν = extractedColoring(S, µ). If

|HvyColors(τ)| ≤ m, then Cost(T, µ) = O(Cost(S, µ)).

Proof. See Section 3.8.8.

Lemma 3.8.15. For any frame τ , any two schedules S and T for τ , and any

coloring µ, dist(final(T, µ), final(S, µ)) · ∆ ≤ Cost(S, µ) + Cost(T, µ).

Proof. For any resource i in Mono(T, µ) ∩ Mono(S, µ), µ′(i) = µ′′(i), where

µ′ = final(T, µ) and µ′′(i) = final(S, µ). Hence, dist(final(T, µ), final(S, µ)) ≤

|Multi(T, µ) ∪ Multi(S, µ)|, and the lemma follows.
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Lemma 3.8.16. Consider any frame τ , any schedule S for τ , and any coloring

µ. Let ν = extractedColoring(S, µ), and T = trunc(ReshapeFrame(τ, ν)).

Then Cost(T, µ, final(S, µ)) = O(Cost(S, µ)).

Proof. The claim follows from Lemmas 3.8.13, 3.8.14, and 3.8.15.

Lemma 3.8.17. For any frame τ and any coloring µ′, if there exists an

m-resource schedule S for τ , then there exists an m-resource schedule T for

adjReqSeq(ReshapeFrame(τ, µ′)) such that for any coloring µ,

Cost(T, µ, final(S, µ)) = O(Cost(S, µ)).

Proof. Let ν = extractedColoring(S, µ) and T = trunc(ReshapeFrame(τ, ν)).

By Lemma 3.8.11, T is a schedule for adjReqSeq(ReshapeFrame(τ, µ′)). By

Lemma 3.8.16, Cost(T, µ, final(S, µ)) = O(Cost(S, µ)).

Lemma 3.8.18. For any frame τ and any coloring µ′, if |LtColors(τ)| = 0,

and if there exists an m-resource schedule S for τ , then there exists an m-

resource schedule T for adjRlReqSeq(ReshapeFrame(τ, µ′)) such that for any

coloring µ,

Cost(T, µ, final(S, µ)) = O(Cost(S, µ)).

Proof. The proof of this lemma is analogous to the proof of Lemma 3.8.17; we

obtain the proof of this lemma by replacing adjReqSeq with adjRlReqSeq , and

Lemma 3.8.11 with Lemma 3.8.12 in the proof of Lemma 3.8.17.
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3.8.7 Many Heavy Colors

The purpose of this section is to provide the proof of Lemma 3.8.13

(stated in Section 3.8.6). The organization of this section is as follows. Sec-

tion 3.8.7 gives some preliminaries. Sections 3.8.7.2 through 3.8.7.4 introduce

a set of functions that are useful to prove Lemma 3.8.13. Section 3.8.7.5 es-

tablishes a set of useful lemmas, and then obtains the proof of Lemma 3.8.13.

3.8.7.1 Preliminaries

This section provides some useful definitions, facts, and lemmas used

for the analysis. We say that a schedule S is prefix-multichromatic if, for

any two resources i and j such that i 6= j and |pre(S, i)|, |pre(S, j)| > 0,

the color of pre(S, i) is different from that of pre(S, j). We say that a sched-

ule S is prefix-primary-heavy if S is prefix-multichromatic, and PreSet(S) =

PrmyHvyJobs(τ), where τ is the frame associated with S. We say that a sched-

ule S is prefix-dominant if S is prefix-multichromatic, and PreSet(S) equals

the set of jobs of the min(|Colors(ExeSet(S))| ,m) colors in Colors(ExeSet(S))

with the highest drop costs.

Fact 3.8.19. For any frame τ and any two prefix-primary-heavy schedules S

and T for τ , S and T are prefix-matched.

Fact 3.8.20. For any frame τ , if |HvyColors(τ)| > m, then any prefix-

primary-heavy schedule S for τ is prefix-complete.

Lemma 3.8.21. Consider any frame τ and any schedule S for τ . Let k be the
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number of light colors ℓ such that ExeSet(S, ℓ) 6= ∅. If |HvyColors(τ)| > m,

then IntCost(S) ≥ ∆ · (|HvyColors(τ)| + k − m).

Proof. Suppose there are p, 0 ≤ p ≤ |HvyColors(τ)|, colors in HvyColors(τ)

such that ExeSet(S, ℓ) = ∅. By the definition of HvyColors(τ), DropCost(S) ≥

p · ∆. Let q = |HvyColors(τ)| − p. Thus, there are q + k colors ℓ such that

ExeSet(S, ℓ) 6= ∅. Hence, IntReconfigCost(S) ≥ (q + k − m) · ∆. Hence, the

lemma follows.

We define hasSuf (P ) as the set of resources i such that suf (P, i) 6= ∅.

Lemma 3.8.22. For any frame τ and any schedule S for τ , if (Set(suf (S)), S)

satisfies the Greedy-Packing property, then

IntReconfigCost(S) = ∆ · Θ(|Colors(suf (S))| + |hasSuf (S)|).

Proof. Since (Set(suf (S)), S) satisfies the Greedy-Packing property, an inter-

nal reconfiguration on a resource i in S is either a reconfiguration from pre(S, i)

to suf (S, i), or from a color ℓ to a distinct color ℓ′ in Colors(suf (S)). Hence

the lemma follows.

3.8.7.2 Function dropLights

The function dropLights takes a schedule S for a frame, and returns a

schedule the same frame. We implement dropLights by initializing a schedule

T to S, and then modifying T as follows. Let τ be the frame associated with

S. For any color ℓ in LtColors(τ), we drop color ℓ jobs from T . Finally we

return T .
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Lemma 3.8.23. Consider any frame τ and any schedule S for τ . Let T =

dropLights(S). If |HvyColors(τ)| > m, then for any coloring µ, Cost(T, µ) =

O(Cost(S, µ).

Proof. It is not hard to see that ReconfigCost(T, µ) ≤ ReconfigCost(S, µ).

Let k be the number of colors in LtColors(τ) such that ExeSet(T, ℓ) 6= ∅.

By the definition of LtColors(τ), load(ℓ) · dℓ < ∆. Hence, DropCost(T ) ≤

DropCost(S) + k · ∆. Since |HvyColors(τ)| > m, Lemma 3.8.21 implies that

IntCost(S) ≥ k · ∆. Hence, the lemma follows.

Fact 3.8.24. For any frame τ and any schedule S for τ , dropLights(S) is a

light-free schedule for τ .

3.8.7.3 Function canonicalize

Given a schedule S for a frame and a coloring µ, function canonicalize

returns a schedule for the same frame. In the following, we describe an imple-

mentation of function canonicalize. Let X be the subset of Colors(ExeSet(S))

that consists of the min(|Colors(ExeSet(S))| ,m) colors with the highest per-

color drop costs, breaking ties by load. Let Y be the set of jobs of the col-

ors in X. Let Z = ExeSet(S) \ Y . Let τ be the frame associated with S.

We define T ′ = prefixHvy(τ, Y, µ) (note that |Colors(Y )| = |X| ≤ m) and

T = pack(T ′, Z), and then return schedule T .

We define function canonicalize ′ (resp., canonicalize ′′) in the same way

as we define function canonicalize except that the set X in canonicalize ′
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(resp., canonicalize ′′) is the subset of Colors(ExeSet(S)) that consists of the

min(|Colors(ExeSet(S))| ,m) colors of the highest (resp., lowest) load, break-

ing ties arbitrarily.

Fact 3.8.25. Consider any frame τ , any schedule S for τ , and any coloring

µ. Let T = canonicalize(S, µ).

1. The set ExeSet(T ) equals ExeSet(S).

2. If S is light-free, then T is light-free.

3. The schedule T is prefix-dominant.

4. If S is light-free, then Set(suf (T )) ⊆ SecHvyJobs(τ).

5. The pair (Set(suf (T )), T ) satisfies the Greedy-Packing property.

6. If S is light-free and prefix-primary-heavy, then T is a prefix-primary-

heavy schedule for τ .

Lemma 3.8.26. Consider any frame τ , any schedule S for τ , and any coloring

µ. Let S ′ be any schedule for τ that executes the same set of jobs as S. Let

S ′′ = canonicalize ′(S, µ). Then |hasSuf (S ′′)| ≤ |hasSuf (S ′)|.

Proof. Let h′ = |hasSuf (S ′)| and h′′ = |hasSuf (S ′′)|. We prove the lemma by

contradiction. Suppose h′′ > h′. Let X ′ = hasSuf (S ′) and Y ′ = M \ X ′. Let

X ′′ be the set of resources πS′′

(0) through πS′′

(h′ − 1). (The permutation πS

is defined in Section 3.8.1.) Let Y ′′ = M \ X ′′.
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By the definition of canonicalize ′, since h′ < h′′, the total number of

jobs executed in X ′′ in S ′′ equals h′ · D, which is at least the total number

of jobs that can be executed in X ′ in S ′. By the definition of canonicalize ′,

since h′ < h′′, the total number of jobs executed in Y ′′ in S ′′ is greater than

the total load of the (m − h′′) colors in Colors(ExeSet(S)) with the largest

load, which is greater than the total number of jobs executed in Y ′ in S ′. This

indicates that the total number of jobs executed in S ′′ is greater than the total

number of jobs in S ′, contradiction. Hence, the assumption does not hold and

the lemma follows.

With a similar proof as that of Lemma 3.8.26, we obtain the following

lemma.

Lemma 3.8.27. Consider any frame τ , any schedule S for τ , and any col-

oring µ. Let S ′ = canonicalize(S, µ). Let S ′′ = canonicalize ′′(S, µ). Then

|hasSuf (S ′′)| ≥ |hasSuf (S ′)|.

Lemma 3.8.28. Consider any frame τ , and any schedule S for τ . Let µ be

any coloring. Let S ′ = canonicalize ′(S, µ), and S ′′ = canonicalize ′′(S, µ). If

|HvyColors(S)| = m + k for some integer k > 0, then

|hasSuf (S ′′)| − |hasSuf (S ′)| ≤ k.

Proof. Let h = |hasSuf (S ′)|. By the definition of canonicalize ′′, we only

need to show the the following claim: The total load of the k + h colors in

Colors(ExeSet(S)) of the smallest load, and the k colors in Colors(ExeSet(S))

of the largest load, is at most (k + h) ·D. By the definition of canonicalize ′, it

64



is not hard to see that the total load of the k + h colors in Colors(ExeSet(S))

with the smallest load is at most h ·D. Since for each color ℓ, at most D jobs

arrive in a frame, the total load of any k colors in Colors(ExeSet(S)) is at

most k · D. Hence, the lemma follows.

Lemma 3.8.29. Consider any frame τ , any schedule S for τ , and any coloring

µ. Let T = canonicalize(S, µ). If |HvyColors(τ)| > m, then IntCost(T ) =

O(IntCost(S)).

Proof. (1) of Fact 3.8.25 implies DropCost(T ) = DropCost(S). By (5) of

Fact 3.8.25 and Lemma 3.8.22, we have IntCost(T ) = ∆ ·Θ(|Colors(suf (S))|+

|hasSuf (S)|). By the definition of canonicalize, it is not hard to see that

|Colors(suf (S))| = max(|Colors(ExeSet(S))| − m, 0).

By Lemma 3.8.21, we have |Colors(suf (S))| ≤ IntCost(S). It remains to bound

|hasSuf (T )|.

Let k = |HvyColors(τ)| − m. Let S ′ = canonicalize ′(S, µ) and S ′′ =

canonicalize ′′(S, µ). By Lemma 3.8.26, we have |hasSuf (S ′)| ≤ |hasSuf (S)|.

By Lemma 3.8.27, |hasSuf (T )| ≤ |S ′′|. By Lemma 3.8.28, |hasSuf (S ′′)| ≤

|hasSuf (S ′)| + k. Hence, |hasSuf (T )| ≤ |hasSuf (S ′′)| ≤ |hasSuf (S ′)| + k ≤

|hasSuf (S)| + k. By Lemma 3.8.21, |hasSuf (T )| · ∆ = O(IntCost(S)).

3.8.7.4 Function matchPrefix

The function matchPrefix takes two schedules S and T for the same

frame, and returns a schedule. We implement matchPrefix by initializing S ′
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to S, and then modifying S ′ as follows. First, we define a permutation π of

the resources that maximizes the number of resources i such that the color of

pre(T, i) equals that of pre(S, π(i)). Second, for each resource i, we modify S ′

by executing all jobs in pre(T, i) in the first s = |pre(T, i)| slots on resource

π(i) in S ′. Finally, we return S ′.

Lemma 3.8.30. Consider any frame τ , any schedule S for τ , and any col-

oring µ. Let T be any prefix-primary-heavy schedule for τ , and Let S ′ =

matchPrefix (S, T ). If HvyColors(τ) > m, and S is light-free and prefix-

dominant, then the following claims hold.

1. Schedule S ′ is a prefix-primary-heavy schedule for τ .

2. Set(suf (S ′)) ⊆ SecHvyJobs(τ).

3. Schedule S ′ is light-free.

4. IntCost(S ′) = O(IntCost(S)).

Proof. Since S is prefix-dominant, for each color ℓ in PrmyHvyColors(τ) such

that ExeSet(S, ℓ) 6= ∅, there exists a resource i such that Set(pre(S, i)) =

ExeSet(S, ℓ).

From the above property of S, and the assumption that T is a prefix-

primary-heavy schedule for τ , the permutation π of the resources in the defin-

ition of matchPrefix (S, T ) satisfies the following condition: For each resource

i, if |pre(T, i)| > 0, then either (a) ExeSet(S, ℓ) = ∅, or (b) Set(pre(S, π(i))) =

ExeSet(S, ℓ) and |pre(S, π(i))| ≤ |pre(T, i)|, where ℓ is the color of pre(T, i).
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By the definition of function matchPrefix and the property of the per-

mutation π, it is not hard to see that S ′ is a schedule for τ . From the property

of the permutation and the assumption that S is light-free, (2) and (3) follow,

and DropCost(S ′) ≤ DropCost(S).

By the definition of function matchPrefix , for each resource i such that

|pre(T, i)| > 0, we have pre(S ′, π(i)) = pre(T, i). Since |HvyColors(τ)| > m

and T is a prefix-primary-heavy schedule, by Fact 3.8.20, T is prefix-complete.

Hence, S ′ and T are prefix-matched. Since S ′ is a schedule for τ , and T is a

prefix-primary-heavy schedule for τ , (1) follows.

It remains to bound IntReconfigCost(S ′). Consider any resource i. We

have argued above that |pre(T, i)| > 0. Let ℓ be the color of pre(T, i). We first

consider the case where ExeSet(S, ℓ) 6= ∅. By the aforementioned property of

the permutation π, the color of pre(S, π(i)) equals the color of pre(S, i), and the

number of internal reconfigurations of resource i in S ′ equals that associated

with resource π(i) in S. We then consider the case where ExeSet(S, ℓ) = ∅.

In this case, the number of internal reconfigurations of resource i in S ′ is at

most one greater than that associated with resource π(i) in S. Since T is

prefix-primary-heavy, ℓ ∈ HvyColors(τ). By definition of HvyColors(τ), the

total drop cost of the jobs in ExeSet(S, ℓ) is at least ∆. Summing over all

resources i, IntReconfigCost(S ′) ≤ IntReconfigCost(S)+DropCost(S). Hence,

(4) follows.
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3.8.7.5 Cost Analysis

Lemma 3.8.31. Consider any frame τ , any schedule S for τ , and any coloring

µ. Let T be any prefix-primary-heavy schedule. Let S1 = dropLights(S), S2 =

canonicalize(S1, µ), S3 = matchPrefix (S2, T ), S4 = canonicalize(S3, µ), and

S5 = dropSuf (S4). If |HvyColors(τ)| > m, then the following claims hold.

1. Schedules S4 and S5 are prefix-primary-heavy schedules for τ .

2. Set(suf (S4)) ⊆ SecHvyJobs(τ).

3. Each of the pairs (Set(suf (S4)), S4) and (Set(suf (S5)), S5) satisfies the

Greedy-Packing property.

4. IntCost(S5) = O(Cost(S, µ)).

Proof. For convenience of proof, we first establish a set of properties of each

of the schedules S1 through S5, and then establish the claims in the lemma

using the established properties.

We establish the following properties of S1: (a) S1 is light-free; (b)

Cost(S1, µ) = O(Cost(S, µ)). Property (a) of S1 follows from Fact 3.8.24.

Property (b) of S1 follows from Lemma 3.8.23.

We establish the following properties of S2: (a) S2 is light-free; (b)

S2 is prefix-dominant; (c) Set(suf (S2)) ⊆ SecHvyJobs(τ); (d) IntCost(S2) =

O(IntCost(S1)). Property (a) of S2 follows from property (a) of S1, and (2) of

Fact 3.8.25. Property (b) of S2 follows from (3) of Fact 3.8.25. Property (c)
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of S2 follows from property (a) of S1, and (4) of Fact 3.8.25. Property (d) of

S2 follows from Lemma 3.8.29 and the assumption that HvyColors(τ) > m.

We establish the following properties of S3: (a) S3 is a prefix-primary-

heavy schedule for τ ; (b) Set(suf (S3)) ⊆ SecHvyJobs(τ); (c) S3 is light-free;

(d) IntCost(S3) = O(IntCost(S2)). Properties (a) through (d) of S3 follows

from the fact that T is a prefix-primary-heavy schedule for τ , Properties (a)

and (b) of S2, and Lemma 3.8.30.

We establish the following properties of S4: (a) S4 is a prefix-primary-

heavy schedule for τ ; (b) Set(suf (S4)) ⊆ SecHvyJobs(τ); (c) (Set(suf (S4)), S4)

satisfies the Greedy-Packing property. (d) IntCost(S4) = O(IntCost(S3)).

Properties (a) through (c) of S4 follow from properties (a) and (c) of S3, and

Fact 3.8.25. Property (d) of S4 follows from Lemma 3.8.29 and the assumption

that HvyColors(τ) > m.

We establish the following properties of S5: (a) S5 is a prefix-primary-

heavy schedule for τ ; (b) IntCost(S5) ≤ IntCost(S4); (c) (Set(suf (S5)), S5)

satisfies the Greedy-Packing property. Property (a) of S5 follows from property

(a) of S4 and (4) of Fact 3.8.6. Property (b) of S5 follows from (5) of Fact 3.8.6.

Property (c) of S5 follows from property (c) of S4 and (2) of Fact 3.8.6.

Now we established the claims in the lemma. Claim (1) follows from

property (a) of S4 and property (b) of S5. Claim (2) follows from property

(b) of S4. Claim (3) follows from property (c) of S4 and property (c) of S5.

Claim (4) follows from property (b) of S1, property (d) of S2, property (d) of
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S3, property (d) of S4, and property (b) of S5.

Lemma 3.8.32. For any frame τ , let T1 = prefixHvy(τ,PrmyHvyJobs(τ), µ),

where µ is any coloring, T2 = pack(T1, SecHvyJobs(τ)), and T3 = dropSuf (T2).

If |HvyColors(τ)| > m, then the following claims hold.

1. Schedules T2 and T3 are prefix-primary-heavy schedules for τ .

2. Any pairs of the schedules T1 through T3 are prefix-identical.

3. The sequence suf (T3) is a prefix of SecHvyJobs(τ).

4. The pairs (SecHvyJobs(τ), T2), (Set(suf (T2)), T2), and (Set(suf (T3)), T3)

each satisfy the Greedy-Packing property.

5. Schedule T3 equals trunc(ReshapeFrame(τ, µ)).

Proof. We first establish some properties of each of the schedules T1 through

T3, and then establish the claims in the lemma using the established properties.

We establish the following properties of T1: (a) schedule T1 is a prefix-

primary-heavy schedule for τ ; (b) schedule T1 is prefix-complete; (c) schedule

T1 is suffix-free. Property (a) of T1 follows from the definition of function

prefixHvy . Property (b) of T1 follows from (1) of Fact 3.8.3, and the assumption

that |HvyColors(τ)| > m. Property (c) T1 follows from (2) of Fact 3.8.3.

We establish the following properties of T2: (a) schedule T2 is a prefix-

primary-heavy schedule for τ ; (b) schedules T2 and T1 are prefix-identical, and

T2 is prefix-complete; (c) the pairs (SecHvyJobs(τ), T2) and (Set(suf (T2)), T2)
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satisfy Property Greedy-Packing, respectively. Properties (a) and (b) of T2

follow from properties (a) and (b) of T1, and (3) of Fact 3.8.5. Property (c) of

T3 follows from properties (b) and (c) of S1, and (2) of Fact 3.8.5.

We establish the following properties of T3: (a) schedule T3 is a prefix-

primary-heavy schedule for τ ; (b) schedules T3 and T2 are prefix-identical,

and T3 is prefix-complete; (c) the pair (Set(suf (T3)), T3) satisfies the Greedy-

Packing property. (d) the sequence suf (T3) is a prefix of seq(SecHvyJobs(τ)).

Properties (a) and (b) of T3 follow from properties (a) and (b) of T2, and

(4) of Fact 3.8.6. Property (c) of T3 follows from property (c) of T2, and

(2) of Fact 3.8.6. From property (c) of T2 implies that suf (T2) is a prefix of

SecHvyJobs(τ). Property (d) of T3 then follows from (2) of Fact 3.8.6.

We now establish the claims in the lemma. Claim (1) follows from

property (a) of T2 and property (a) of T3. Claim (2) follows from property (b)

of T2 and property (b) of T3. Claim (3) is property (d) of T3. Claim (4) follows

from property (c) of T2 and property (c) of T3. Claim (5) follow from property

(b) of T3, Claim (2) of Fact 3.8.8, and the definition of ReshapeFrame.

Lemma 3.8.33. Consider any frame τ , any schedule S for τ , and any two

colorings µ and ν. Let T = trunc(ReshapeFrame(τ, ν)). If |HvyColors(τ)| >

m, then IntCost(T ) = O(Cost(S, µ)).

Proof. For convenience of proof, we first define a set of schedules as follows. Let

T1 = prefixHvy(τ,PrmyHvyJobs(τ), ν), T2 = pack(T1, SecHvyJobs(τ)), and

T3 = dropSuf (T2). Let S1 = dropLights(S), S2 = canonicalize(S1, µ), S3 =
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matchPrefix (S2, T2), S4 = canonicalize(S3, µ), and S5 = dropSuf (S4). Since

|HvyColors(τ)| > m, by (5) of Lemma 3.8.32, it is sufficient to show that

Cost(T3) = O(Cost(S, µ)).

We first bound DropCost(T3) as follows. By (1) of Lemma 3.8.31, (1) of

Lemma 3.8.32, and Fact 3.8.19, any pairs of schedules from S4, S5, T2, and T3

are prefix-matched. By (2) of Lemma 3.8.31, Set(suf (S4)) ⊆ SecHvyJobs(τ).

By (3) of Lemma 3.8.31, (Set(suf (S4)), S4) satisfies the Greedy-Packing prop-

erty. By (4) of Lemma 3.8.32, (SecHvyJobs(τ), T2) satisfies the Greedy-Packing

property. By (1) of Fact 3.8.7, |suf (S5)| ≤ |suf (T3)|, and the total drop cost

of the jobs in S5 is at most that of the jobs in T3. Since S5 and T3 are

prefix-matched, DropCost(T3) ≤ DropCost(S5). By (4) of Lemma 3.8.31,

DropCost(T3) = O(Cost(S, µ)).

We then bound IntReconfigCost(T3). By (4) of Lemma 3.8.32 and

Lemma 3.8.22, IntReconfigCost(T3) = ∆ ·Θ(|hasSuf (T3)|+ |Colors(suf (T3))|).

Thus, it is sufficient to bound hasSuf (T3) and |Colors(suf (T3))|, respectively.

By (2) of Fact 3.8.7, |hasSuf (T3)| ·∆ ≤ DropCost(S5)+ |hasSuf (S5)| ·∆. Since

|hasSuf (S5)| · ∆ ≤ IntReconfigCost(S5), |hasSuf (T3)| · ∆ ≤ IntCost(S5). By

(4) of Lemma 3.8.31, |hasSuf (T3)| · ∆ = O(Cost(S, µ)).

By (3) of Lemma 3.8.32, |Colors(suf (T3))| ≤ |SecHvyColors(τ)|. Since

|HvyColors(τ)| > m, |PrmyHvyColors(τ)| = m and |SecHvyColors(τ)| =

|HvyColors(τ)| − m. By Lemma 3.8.21, Cost(S, µ) = Ω(|SecHvyColors(τ)|).

Hence, |Colors(suf (T3))| · ∆ = O(Cost(S, µ)).
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Lemma 3.8.34. Consider any frame τ , any schedule S for τ , and any coloring

µ. Let T = trunc(ReshapeFrame(τ, ν)), where ν = extractedColoring(µ). If

|HvyColors(τ)| > m, then ExtReconfigCost(T, µ) = O(Cost(S, µ)).

Proof. By definition, ExtReconfigCost(T, µ) = |Mismatch(()T, µ)|. By the

definition of extractedColoring , Mismatch(T, µ) ⊆ Mismatch(T, ν). Let T1 =

prefixHvy(τ,PrmyHvyJobs(τ), ν), T2 = pack(T1, SecHvyJobs(τ)), and T3 =

dropSuf (T2). By (5) of Lemma 3.8.32, T3 = T . By (2) of Lemma 3.8.32, T1 and

T3 are prefix-identical. Hence, it is sufficient to show that Mismatch(T1, ν) =

O(Cost(S, µ)), which follows from Lemma 3.8.4. Hence, the lemma follows.

Lemma 3.8.13 follows from Lemmas 3.8.33 and 3.8.34.

3.8.8 Few Heavy Colors

The purpose of this section is to provide the proof of Lemma 3.8.14

(stated in Section 3.8.6). Before that, we give the following lemma.

Lemma 3.8.35. Consider any frame τ and any coloring µ. Let schedule

S = prefixHvy(τ,PrmyHvyColors(τ), µ) and T = trunc(prefixLight(S, µ)). If

|HvyColors(τ)| ≤ m, then schedule T equals trunc(ReshapeFrame(τ, µ)).

Proof. Let schedule S ′ = pack(S, SecHvyJobs(τ)), and S ′′ = dropSuf (S ′).

Since |HvyColors(τ)| ≤ m, SecHvyJobs(τ) = ∅. By (2) of Fact 3.8.3, S is

suffix-free. By (1) of Fact 3.8.5, S ′ = S. By (3) of Fact 3.8.6, S ′′ = S ′. The

lemma then follows from the definition of ReshapeFrame.
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Proof of Lemma 3.8.14. Let T1 = prefixHvy(τ,PrmyHvyColors(τ), ν), and

T2 = prefixLight(T1, ν). By Lemma 3.8.35, it is sufficient to show that

Cost(T2, µ) = O(Cost(S, µ)),

which we establish as follows.

We first consider ReconfigCost(T2, µ). By (2) of Fact 3.8.3 and (1)

of Fact 3.8.8, T2 is suffix-free. Hence, IntReconfigCost(T2) = 0. By de-

finition, ExtReconfigCost(T2, µ) = |Mismatch(T2, µ)|. By the definition of

extractedColoring , Mismatch(T2, µ) ⊆ Mismatch(T2, ν).

We then consider DropCost(T2). By the definition of prefixHvy , all

jobs in PrmyHvyColors(τ) are executed in T1. By the definition of func-

tion prefixLight , T2 does not drop any job executed in T1. Hence, all jobs in

PrmyHvyColors(τ) are executed in T2. Since HvyColors(τ) ≤ m, by defin-

ition, PrmyHvyColors(τ) = HvyColors(τ). Thus, for any color ℓ such that

DropSet(T2, ℓ) 6= ∅, ℓ is a light color. By (4) of Fact 3.8.8, DropCost(T2) ≤

DropCost(S) + ∆ · Mismatch(T2, ν).

By (3) of Fact 3.8.8, we have Mismatch(T2, ν) = Mismatch(T1, ν). By

Lemma 3.8.4, Mismatch(T1, ν) = O(Cost(S, µ)). Hence, ReconfigCost(T2, µ)

and DropCost(T2) are O(Cost(S, µ)), respectively.

3.9 Batched Arrivals

In this section we solve [∆ | dℓ | D | D], which is characterized by a

fixed reconfiguration cost ∆, per-color drop costs dℓ, a fixed delay bound D,

74



and batched arrivals (jobs arrive at integral multiples of D).

As mentioned in Section 3.1, [∆ | dℓ | D | D] is a building block to solve

our main problem [∆ | dℓ | D | 1]. To solve [∆ | dℓ | D | D], we use a reduction

to rate-limited [∆ | dℓ | D | D], which is solved in Section 3.7. Sections 3.9.1

and 3.9.2 give the reduction algorithm and analysis, respectively.

3.9.1 Algorithm Recolor

For any request r for [∆ | dℓ | D | D], we define recolored(r) as a

request obtained as follows. For any color ℓ, we rank color ℓ jobs in r in an

arbitrary order. For any color ℓ and color ℓ job x in r, we construct a job y

that is the same as x except that the color of y is given by the pair (ℓ, j), where

j =
⌊

rank (x)
D

⌋

, and rank(x) is the rank of x in r. The request recolored(r) is

the union of all such y’s that are constructed over all colors ℓ.

Consider any request sequence σ for [∆ | dℓ | D | D]. Let σi be request

i of σ, where 0 ≤ i < |σ|. We obtain a request sequence recoloredReqSeq(σ)

by concatenating recolored(σi)’s in increasing order of i. It is not hard to see

that recoloredReqSeq(σ) is a request sequence for rate-limited [∆ | dℓ | D | D].

Given any instance (σ,m) of [∆ | dℓ | D | D], algorithm Recolor pro-

ceeds as follows. First, we use algorithm Split on (σ′,m) to obtain a schedule

S ′ for σ′, where σ′ = recoloredReqSeq(σ). Second, from S ′ we construct a

schedule S by replacing color (ℓ, j) with color ℓ in S ′, for any color ℓ and any

nonnegative integer j. It is not hard to see that S is a schedule for σ.

75



3.9.2 Analysis of Recolor

In this section, we show that algorithm Recolor is resource competitive

for [∆ | dℓ | D | D]. Before that, we first establish some preliminary results.

Consider any request sequence σ for [∆ | dℓ | D | D] and any schedule S

for σ. Given an initial coloring µ, the coloring of the resources at the beginning

of block i is determined by S. As mentioned in Section 2.2, if the initial coloring

is not specified, we assume the default coloring in which resources are colored

black. Consider any block i. For any color ℓ, we define Mono(S, i, ℓ) as the set

of resources k such that (1) the color of resource k at the beginning of block i

is ℓ, and (2) all jobs executed on resource k in block i, if any, are color ℓ jobs.

We define Mono(S, i) as ∪ℓMono(S, i, ℓ). We define Multi(S, i) as the set of

resources not in Mono(S, i). We define Full(S, i) (resp., Empty(S, i)) as the

set of resources k such that each slot in resource k in block i is occupied (resp.

free) in S.

Lemma 3.9.1. For any request sequence σ for [∆ | dℓ | D | D], if there exists

an m-resource schedule S for σ with cost C, then there exists an m-resource

schedule for recoloredReqSeq(σ) with cost O(C).

Proof. We construct an m-resource schedule by initializing an m-resource

schedule T as schedule S and then modifying T in the following two phases.

In the first phase, we rearrange the job executions in T in increasing order of

block indices. For any block i, we rearrange the job executions in block i in

the following two stages. In the first stage, we rearrange the job executions in
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a way that jobs of the same color on the same resource in block i are executed

contiguously. In the second stage, we rearrange the job executions in an arbi-

trary order of colors. For any color ℓ, we proceed iteratively. Each iteration

proceeds as follows. Let Xℓ = Mono(T, i, ℓ) \ Full(T, i), and Yℓ be the set of

resources k in Multi(T, i) that executes at least one color ℓ job in block i in T .

If Xℓ = ∅, we terminate the processing of color ℓ jobs. Otherwise, we proceed

in the following steps. In the first step, we pick the resource k in Xℓ with the

smallest index. In the second step, if Yℓ 6= ∅, we pick any resource p in Yℓ;

otherwise if |Xℓ| > 1, we pick any resource p in Xℓ such that p 6= k; otherwise,

we terminate the processing of color ℓ. In the third step, let x be any color ℓ

job executed on resource p. We move x to execute in any free slot in resource

k.

In the second phase, we recolor the jobs executed in T in increasing

order of block indices. For any block i, we recolor the jobs executed in block i

in an arbitrary order of the colors. For any color ℓ, we proceed in the following

three stages. In the first stage, we label the color ℓ jobs executed on the

resources in Mono(T, i, ℓ) from 0 to |Mono(T, i, ℓ)| − 1. In the following we

describe a way to label the resources in Mono(T, i, ℓ); any job x executed on a

resource k in Mono(T, i, ℓ) is assigned the label that is assigned to resource k. If

i = 0, then we label the resources in Mono(T, i, ℓ) from 0 to |Mono(T, i, ℓ)|−1

arbitrarily. Otherwise, for any resource k in Mono(T, i, ℓ) ∩ Mono(T, i − 1, ℓ)

such that the label assigned to resource k in block i − 1 is in the range 0 to

|Mono(T, i, ℓ)| − 1, we let resource k inherit its label in block i − 1; we assign
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the remaining labels in the range 0 to |Mono(T, i, ℓ)|−1 to the other resources

in Mono(T, i, ℓ) arbitrarily. In the second stage, we label the color ℓ jobs

executed on the resources in Multi(T, i) as follows. We obtain a sequence αℓ

of color ℓ jobs by concatenating the sequence of color ℓ jobs on each resource

in Multi(T, i), in an arbitrary order of the resources. For any nonnegative

integer j such that 0 ≤ j <
⌈

|αℓ|
D

⌉

, let αℓ,j be the sequence of jobs that consists

of jobs j · D through min((j + 1) · D − 1, |αℓ|) of αℓ. We assign the label

|Mono(T, i, ℓ)| + j to each job in αℓ,j. In the third stage, we recolor the jobs

executed in block i based on the labels assigned in the first two stages. For

any color ℓ and any color ℓ job x, we recolor x as color (ℓ, j), where j is the

label we assign to x in block i.

Let T1 (resp., T2) be the schedule that we obtain at the end of the

first (resp., second) phase. We first show that T2 is a schedule for the request

sequence recoloredReqSeq(σ). Consider any block i. It is not hard to verify

the following claim: For any color ℓ, |Mono(T1, i, ℓ) \ Full(T1, i)| ≤ 1, and if

|Mono(T1, i, ℓ) \ Full(T1, i)| = 1, no color ℓ jobs are executed on the resources

in Multi(T1, i) in block i in T1. From the above claim, and the way that we

label and recolor jobs, the set of jobs executed in T2 in block i is a subset

of recolored(σi), where σi is request i of σ. Summing up over all i, T2 is a

schedule for recoloredReqSeq(σ).

We then bound DropCost(T2). Since we construct T2 by rearranging

and recoloring jobs, and the way that we recolor a job does not change the

drop cost of the job, DropCost(T2) = DropCost(S).
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Finally, we bound ReconfigCost(T2). It is not hard to see that the first

phase does not increase the reconfiguration cost, that is, ReconfigCost(T1) ≤

ReconfigCost(S). It remains to show that

ReconfigCost(T2) = O(ReconfigCost(T1)).

For the purpose of analysis, we assign credit as follows. Consider any block

i. For each resource k in Multi(T1, i), we assign ∆ units of “multichromatic”

credit to resource k, and for each color ℓ such that at least one color ℓ job is

executed on resource k in block i in T1, we assign ∆ units of “split” credit to

color ℓ. It is not hard to see that jobs of the same color on the same resource

in Multi(T1, i) in T1 are recolored to at most two different colors in T2. Hence,

the total credit assigned in block i is at most twice the reconfiguration cost

incurred by T1 in block i.

By the method used to recolor jobs, in block i, T2 incurs a reconfigu-

ration in the following three cases. The first case, T1 incurs a reconfiguration.

The second case occurs when i > 0. In this case, for each color ℓ and each

resource k in Mono(T1, i−1, ℓ)∩Mono(T1, i, ℓ) such that the labels assigned to

resource k in blocks i and i−1 are different, T2 incurs an extra reconfiguration

on resource k in the first round of block i. In the third case, for each color ℓ

and each resource k in Multi(T1, i) such that color ℓ jobs executed on resource

k in block i in T1 are recolored to two different colors in T2, T2 incurs an extra

reconfiguration on resource k.

By the method used to label and recolor jobs, the number of extra
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reconfigurations in the second case equals

∑

ℓ

(|Mono(T1, i − 1, ℓ)| − |Mono(T1, i, ℓ)|).

It is not hard to see that

|Mono(T1, i − 1, ℓ)| − |Mono(T1, i, ℓ)| ≤ |Mono(T1, i − 1, ℓ) ∩ Multi(T1, i)| .

Hence, in the second case, the number of extra reconfigurations is at most

|Multi(T1, i)|. By the method used to assign credit, the cost incurred by the ex-

tra reconfigurations in the second case is at most the multichromatic credit. By

the method used to assign credit, the cost incurred by extra reconfigurations in

the third case is at most the total split credit assigned in block i. Summing up

over all nonnegative integers i, ReconfigCost(T2) = O(ReconfigCost(T1)).

Lemma 3.9.2. Consider any instance (σ,m) for [∆ | 1 | Dℓ | Dℓ]. Let

σ′ = recoloredReqSeq(σ). Let S ′ be the schedule produced by Split on (σ′,m).

Let S be the schedule produced by Recolor on (σ,m). Then S ′ uses the same

number of resources as S and Cost(S) ≤ Cost(S ′).

Proof. By the definition of algorithm Recolor , the schedule S is obtained

from S ′ by replacing color (ℓ, j), for any nonnegative integer j, with color

ℓ. Hence, S ′ uses the same number of resources as S, and ReconfigCost(S) ≤

ReconfigCost(S ′). By the definition of recoloredReqSeq(σ), the number of color

ℓ jobs appearing in σ equals the total number of color (ℓ, j) jobs appearing in

σ′, over all nonnegative integers j. Hence, DropCost(S) = DropCost(S ′).
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Theorem 3.5. Algorithm Recolor is resource competitive for [∆ | dℓ | D | D].

Proof. Consider any instance (σ,m) of [∆ | dℓ | D | D]. Let T be the schedule

produced by an arbitrary feasible offline algorithm on (σ,m). By the definition

of a feasible algorithm, T uses m resources. Let C = Cost(T ) and σ′ =

recoloredReqSeq(σ). By Lemma 3.9.1, there exists an m-resource schedule T ′

for σ′ with cost O(C). Let S ′ be the schedule produced by algorithm Split for

(σ′,m). By Theorem 3.4, S ′ uses O(m) resources and incurs cost O(C). Let S

be the schedule produced by algorithm Recolor on (σ,m). The theorem then

follows from Lemma 3.9.2.

3.10 Main Problem

In this section, we solve our main problem, [∆ | dℓ | D | 1], which

is characterized by a fixed configuration cost ∆, per-color drop costs dℓ, a

fixed drop cost D, and nonbatched arrivals (jobs can arrive in any round). As

indicated earlier, our solution to this problem uses a reduction to [∆ | dℓ | D |

D], which is solved in Section 3.9.

3.10.1 Algorithm Batch

In this section, we define algorithm Batch, which solves [∆ | dℓ | D | 1].

Before presenting the algorithm, let us first give some definitions. Given an

arbitrary request sequence σ for [∆ | dℓ | D | 1], we define batchedReqSeq(σ)

as a request sequence obtained by moving the arrival of any job x in σ that

arrives in half-block i to the beginning of of half-block i + 1, and changing the
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delay bound of x to D
2
. Thus, batchedReqSeq(σ) can be viewed as a request

sequence for [∆ | dℓ |
D
2
| D

2
].

We define algorithm Batch as follows. First, given any instance (σ,m)

of [∆ | dℓ | D | 1], we construct an instance (σ′, 3m) of [∆ | dℓ | D
2

| D
2
],

where σ′ = batchedReqSeq(σ). Second, we run algorithm Recolor (defined in

Section 3.9.1) on (σ′, 3m) to obtain a schedule S ′ for σ′. Finally, we obtain

S for σ from S ′, where S is the same as S ′ except that the request sequence

associated with S is σ. Note that algorithm Batch is an online algorithm.

3.10.2 Analysis of Batch

In this section, we show that algorithm Batch is resource competitive

for [∆ | dℓ | D | 1]. Before doing so, we give some definitions and preliminary

results.

Consider any request sequence σ for [∆ | dℓ | D | 1], and any schedule

T for σ. For any color ℓ and any color ℓ job x that arrives in half-block i in

σ, we say that the execution of x in T is σ-early (resp., σ-punctual, σ-late) if

x is executed in half-block i (resp., half-block i + 1, half-block i + 2) in T .

Lemma 3.10.1. For any request sequence σ for [∆ | dℓ | D | 1], and any

schedule T for σ, if all job executions in T are σ-punctual, then T is also a

schedule for batchedReqSeq(σ).

Proof. The lemma follows immediately from the definitions of a σ-punctual

execution and batchedReqSeq(σ).
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Lemma 3.10.2. For any request sequence σ for [∆ | dℓ | D | 1], if there

exists an m-resource schedule T for σ with cost C, then there exists a 3m-

resource schedule T ′ for σ such that all job executions in T ′ are σ-punctual,

and Cost(T ′) = O(C).

Proof. We construct a 3m-resource schedule T ′ as follows. We use the first

(resp., second, third) m resources of T ′ to schedule only jobs whose executions

are σ-early (resp., σ-punctual, σ-late) in T , where each σ-early execution made

by T is postponed by D
2

rounds (resp., made in the same round, D
2

rounds

earlier).

From the way we construct T ′, it is not hard to see that the set of

jobs executed in T ′ is the same as that executed in T , and the reconfiguration

cost incurred by T ′ in the first (resp., second, third) m resources is at most

ReconfigCost(T ). Hence, Cost(T ′) = O(Cost(T )). It is straightforward to see

that each job execution in T becomes a σ-punctual execution in T ′. Hence,

the lemma follows.

Theorem 3.6. Algorithm Batch is resource competitive for [∆ | dℓ | D | 1].

Proof. Consider an arbitrary instance (σ,m) of [∆ | dℓ | D | 1]. Let T be a

schedule produced by any feasible offline algorithm on (σ,m). By the definition

of a feasible algorithm, T uses m resources. Let C = Cost(T ), and σ′ =

batchedReqSeq(σ). By Lemmas 3.10.1 and 3.10.2, there exists a 3m-resource

schedule T ′ for σ′ with cost O(C).
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Let S (resp., S ′) be the schedule produced by Batch (resp., Recolor)

on (σ,m) (resp., (σ′, 3m)). Since σ′ can be viewed as a request sequence for

[∆ | dℓ |
D
2
| D

2
], and by Theorem 3.5, algorithm Recolor is resource competitive

for [∆ | dℓ |
D
2
| D

2
], the schedule S ′ uses O(m) resources and incurs cost O(C).

By the definition of algorithm Batch, the schedule S is the same as S ′ except

that the associated request sequence is σ. Hence, the lemma follows.
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Chapter 4

Reconfigurable Resource Scheduling

with Variable Delay Bounds

4.1 Introduction

In this chapter, we present our solution to the problem of reconfigurable

resource scheduling with variable delay bounds, that is, [∆ | 1 | Dℓ | 1]. We

give a resource competitive algorithm for this problem, where the competitive

ratio that we obtain does not depend on the various problem parameters, that

is, ∆ and the Dℓ’s.

To appreciate some of the difficulties associated with variable delay

bounds, consider a scenario in which we are scheduling two categories of jobs

on a single resource: “background” jobs and “short-term” jobs. Background

jobs have deadlines far in the future, and short-term jobs have smaller delay

bounds and arrive intermittently. We need to decide whether to use idle cycles

to execute background jobs. If we allow background jobs to use idle cycles

whenever available, we may incur a large number of reconfigurations, or drop

a lot of short-term jobs; later on, we may regret incurring these costs if we

encounter a lengthy interval during which no short-term jobs arrive, and during

which all of the background jobs could have been executed using a single
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reconfiguration. On the other hand, if we do not allow background jobs to

use small chunks of idle cycles, and instead wait for a long idle interval, then

later on, we may regret doing so if we never encounter a long idle interval. In

summary, these two basic approaches lead to either thrashing (i.e., excessively

high reconfiguration cost) or underutilization (i.e., excessively high drop cost).

A natural way to try to overcome these difficulties is to consider al-

gorithms based on the Least Recently Used (LRU) principle. To pursue this

approach, we need to define an appropriate notion of an LRU timestamp in

the current setting. We have investigated various natural alternatives. (See

Section 4.3.3 for an example.) For all of these alternatives, we encounter the

following basic difficulty, even with resource augmentation: If we configure the

categories with the most recent LRU timestamps without considering whether

these categories have jobs to execute, then we are vulnerable to underutiliza-

tion; if we configure the categories with the most recent LRU timestamps and

with jobs to execute, then we are vulnerable to thrashing.

Another natural approach is to consider algorithms based on the Ear-

liest Deadline First (EDF) principle. As with LRU, there are different ways

that we can formulate a specific algorithm based on the EDF principle. (See

Section 4.3.2 for an example.) However, even with resource augmentation, all

EDF variants seem to suffer from thrashing, and therefore fail to yield a re-

source competitive solution. Furthermore, it is not hard to argue that similar

scheduling principles, such as Least Slack First, also suffer from thrashing.

Though EDF alone or LRU alone seems insufficient to solve our prob-
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lem, each maintains a dynamic ordering that addresses a key aspect of the

request sequence. EDF addresses the urgency aspect and tends to reduce the

drop cost. LRU addresses the recency aspect and tends to reduce the recon-

figuration cost. Moreover, each dynamic ordering is efficiently maintainable.

It is natural to ask whether we can efficiently combine these two orderings,

and thereby address both key aspects of the request sequence. In this disser-

tation, we answer this question in the affirmative. We propose a natural and

efficient combination of EDF and LRU. The main idea is to keep two sets of

categories configured: one set selected by the EDF principle, and the other

selected by the LRU principle. (See Section 4.3.4 for the formal definition

of this combination.) We prove that this combination yields a resource com-

petitive algorithm for reconfigurable resource scheduling with variable delay

bounds. The combining mechanism that we use to combine EDF and LRU is

general in nature, and can be used to combine multiple scheduling principles,

each of which maintains a dynamic ordering of the jobs. The present work

suggests that, for problems which cannot be solved by a single dynamic order-

ing, it is worthwhile to explore algorithms based on a combination of dynamic

orderings.

We use a layered approach to solve reconfigurable resource scheduling

with variable delay bounds. First, we use a batching subroutine to reduce

[∆ | 1 | Dℓ | 1] to the special case in which jobs of a given category arrive at

integral multiples of the category-specific delay bound; we refer to this problem

as [∆ | 1 | Dℓ | Dℓ]. Second, we reduce [∆ | 1 | Dℓ | Dℓ] to a rate-limited
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problem in which, for each color ℓ, at most Dℓ jobs of color ℓ arrive at each

integral multiple of Dℓ, denoted rate-limited [∆ | 1 | Dℓ | Dℓ]. Third, we

solve rate-limited [∆ | 1 | Dℓ | Dℓ] using the aforementioned combination of

EDF and LRU. The first two layers are analogous to the first two layers in our

solution to reconfigurable resource scheduling with variable drop costs, but are

more involved due to the variable delay bounds.

In this chapter, we make use of the following definitions. Consider any

delay bound p and any nonnegative integer i. We define the block (resp., half-

block) of delay bound p with index i, denoted block(p, i) (resp., halfBlock(p, i)),

as the p (resp., p

2
) rounds starting from round i · p (resp., i · p

2
).

The remainder of this chapter is organized as follows. Section 4.2 dis-

cusses related work. Section 4.3 presents our solution to rate-limited [∆ | 1 |

Dℓ | Dℓ]. Section 4.4 presents our solution to [∆ | 1 | Dℓ | Dℓ]. Section 4.5

presents our solution to [∆ | 1 | Dℓ | 1].

4.2 Related Work

The EDF scheduling algorithm is shown to be an optimal preemptive

uniprocessor scheduling algorithm for certain schedulability problems that do

not involve reconfiguration overhead [11, 18]. In this proposal, we discuss the

issues associated with applying EDF in the context of reconfigurable resource

scheduling with variable delay bounds, and propose a combination of EDF and

LRU to address these issues.
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Sleator and Tarjan [28] shows that LRU is constant competitive when

given a constant factor advantage in the cache size. O’Neil et al. [21] consider

a variation of LRU called LRU-k , which keeps track of the times of the last

k references to each page. Megiddo et al. [20] consider a self-tuning cache re-

placement policy called Adaptive Replacement Cache, which combines recency

and frequency aspects of the request sequence by maintaining two lists: one

list captures the recency aspect, and the other captures the frequency aspect.

Our combination of EDF and LRU integrates recency and urgency aspects by

keeping two sets of categories configured: one set captures the recency aspect

and the other captures the urgency aspect.

4.3 Rate-Limited Batched Arrivals

In this section, we solve rate-limited [∆ | 1 | Dℓ | Dℓ], where each

Dℓ is a power of 2. This problem is characterized by a fixed reconfiguration

cost ∆, a unit drop cost, per-color delay bounds Dℓ, batched arrivals (jobs

of color ℓ arrive at integral multiples of Dℓ), and rate-limited input (at most

Dℓ jobs of color ℓ arrive at each integral multiple of Dℓ). As mentioned in

Section 1, this problem is a key building block to solve our main problem,

namely [∆ | 1 | Dℓ | 1].

In this section, we introduce three online algorithms: EDF , ∆LRU , and

∆LRU-EDF . In Section 4.3.1, we first present the common aspects of the three

algorithms. For instance, due to the difference between the reconfiguration and

drop costs, we do not configure a color until it has enough job arrivals.
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Algorithm EDF is based on the EDF scheduling principle. The main

idea is that, among the colors with enough job arrivals, we configure the colors

with the earliest deadlines and with jobs to execute. Algorithm EDF addresses

the urgency aspect of the request sequence. However, since it favors colors

that have jobs to execute, EDF suffers from thrashing. See Section 4.3.2 for

a detailed discussion of EDF .

Algorithm ∆LRU is based on the LRU scheduling principle. The main

idea is that, among the colors with enough job arrivals, we configure the colors

with the most recent timestamps. (For the formal definition of the timestamp

of a color, see Section 4.3.3.) Algorithm ∆LRU addresses the recency aspect

of the request sequence. However, since it does not consider whether colors

have jobs to execute, ∆LRU suffers from underutilization. See Section 4.3.3

for a detailed discussion of ∆LRU .

Algorithm ∆LRU-EDF is a combination of EDF and ∆LRU . The

EDF component ensures that the resources are well utilized. The ∆LRU

component reduces thrashing by allowing colors with recent timestamps to

remain configured. See Section 4.3.4 for the formal definition of ∆LRU-EDF ,

and Section 4.3.5 for a proof that ∆LRU-EDF is resource competitive.

4.3.1 Common Aspects

We find it convenient to view the set of resources as a cache, where

resource k corresponds to cache location k. We view reconfiguring resource k

with color ℓ as caching color ℓ at location k. We use a counting scheme to
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ensure that only colors with a sufficient number of job arrivals can be brought

into the cache.

In the following, we formally present the common aspects of the three

algorithms. Given an instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ], we

allow an online algorithm to use n resources, where n ≥ m. Each color is

either eligible or ineligible. Only eligible colors can be brought into the cache.

For each color, we maintain a counter and a deadline. Initially, the cache is

empty, all colors are ineligible, and the counter and deadline associated with

each color are zero. In each round j, the actions performed in the four phases

are described as follows.

Arrival phase We receive a request. For any color ℓ, if j is an integral

multiple of Dℓ, we perform the following steps.

1. We increase the counter of ℓ by the number of color ℓ jobs received

in this phase.

2. If the counter of ℓ is at least ∆, we set ℓ to eligible and reset the

counter of ℓ.

3. We set the deadline of ℓ to j + Dℓ.

Reconfiguration phase We update the contents of the cache; the method

used depends on the algorithm, see Section 4.3.2 through Section 4.3.4.

Execution phase For each color ℓ, we execute one pending job of color ℓ on

each resource configured with color ℓ.
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Drop phase For any color ℓ, if j mod Dℓ is Dℓ − 1, we perform the following

steps.

1. We drop all pending jobs of color ℓ.

2. If color ℓ is eligible and not in the cache, we set color ℓ to ineligible.

4.3.2 Algorithm EDF

We say that a color ℓ is idle if there are no pending jobs of color ℓ,

and nonidle otherwise. We rank nonidle colors ahead of idle colors. The rank

of idle colors is arbitrary. We rank nonidle colors in ascending order of the

associated deadlines. Ties are broken in ascending order of the delay bounds.

Further ties are broken according to a fixed order of colors. We update the

cache as follows. If a nonidle eligible color ℓ in the top n positions of the

ranking is not in the cache, we bring ℓ into the cache, evicting the color with

the lowest rank if the cache is full.

Consider a color ℓ with a short delay bound that receives a small number

of jobs every Dℓ rounds. The priority of ℓ changes from high to low, and then

low to high, from time to time, which may lead to thrashing. We refer the

reader to Appendix A for an example establishing that EDF is not resource

competitive.

4.3.3 Algorithm ∆LRU

For each color ℓ, we maintain a timestamp as follows. Initially, the

timestamp of ℓ is zero. In the arrival phase of any round j, if the counter of ℓ
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is reset, we set the timestamp of ℓ to j immediately after the counter is reset.

In each reconfiguration phase, we cache the n eligible colors with the most

recent timestamps, breaking ties as in EDF.

Due to the difference between the reconfiguration and drop costs, we

require at least ∆ jobs of color ℓ to arrive in order to update the timestamp

of ℓ. Algorithm ∆LRU favors idle colors with recent timestamps over nonidle

colors that do not have recent timestamps, which may result in low utilization.

We refer the reader to Appendix B for an example establishing that ∆LRU is

not resource competitive.

4.3.4 Algorithm ∆LRU-EDF

In this section, we formally define algorithm ∆LRU-EDF . We give

∆LRU-EDF a factor of 8 resource advantage over an optimal feasible offline

algorithm, that is, we set n = 8m. We use the first half of the cache capacity

to keep distinct colors and the remaining half to replicate the cache contents

of the first half. We use the replication to give half of the resources a factor

of 2 speedup. Below we describe how the first half of the cache is managed.

Let X be the n
4

eligible colors with the most recent timestamps, where

ties are broken as in ∆LRU . We rank eligible colors not in X as in EDF . Let

Y be the set of nonidle eligible colors in the top n
4

positions of the ranking.

For any color ℓ that is in X ∪ Y but not in the cache, we bring ℓ into the

cache, replacing an arbitrary color ℓ′ that is in the cache but not in X ∪ Y , if

necessary. Since |X ∪ Y | ≤ n
2
, such a color ℓ′ is guaranteed to exist if the first
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half of the cache is full.

4.3.5 Analysis of ∆LRU-EDF

In this section, we show that ∆LRU-EDF is resource competitive for

rate-limited [∆ | 1 | Dℓ | Dℓ], where each Dℓ is a power of 2. Before we give the

details of our analysis, we offer a high level overview. The formal definitions

mentioned in the overview are provided later in this section.

The analysis is organized as follows. First, Lemmas 4.3.1 and 4.3.2

establish some properties of eligible and ineligible jobs and colors. Second,

Lemmas 4.3.3 through 4.3.6 argue that, on any instance such that each color

appearing in the request sequence has at least ∆ jobs, the cost incurred by

∆LRU-EDF is within a constant factor of that incurred by an optimal feasible

offline algorithm. For convenience of analysis, we partition the drop costs in-

curred by ∆LRU-EDF into “eligible” and “ineligible” drop costs. Lemma 4.3.3

bounds the eligible drop cost of ∆LRU-EDF . Our proof of Lemma 4.3.3 uses

the EDF properties of ∆LRU-EDF , and three intermediate algorithms: “par-

allel” EDF , denoted Par-EDF , “sequential” EDF , denoted Seq-EDF , and

“double-speed” Seq-EDF , denoted 2X-Seq-EDF .

To bound the other costs incurred by ∆LRU-EDF , for each color ℓ,

we partition the sequence of rounds into subsequences, denoted “ℓ-epochs”.

Lemma 4.3.4 gives an upper bound on the ineligible drop cost incurred by

∆LRU-EDF , in terms of the total number of ℓ-epochs, over all colors ℓ. The

proof of Lemma 4.3.4 is straightforward. For convenience of analysis, we label
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each eviction performed by ∆LRU-EDF as either an “LRU eviction” or an

“EDF eviction”. Lemma 4.3.5 bounds the total number of LRU evictions,

and is invoked in the proof of Lemma 4.3.7. The proof of Lemma 4.3.5 uses

the LRU properties of ∆LRU-EDF . For any problem instance such that each

color appearing in the request sequence has at least ∆ jobs, Lemma 4.3.6

lower bounds the total cost incurred by an optimal feasible offline algorithm,

in terms of the total number of ℓ-epochs, over all colors ℓ; Lemma 4.3.7 upper

bounds the reconfiguration cost incurred by ∆LRU-EDF , in terms of the cost

incurred by an optimal feasible offline algorithm, and the total number of ℓ-

epochs, over all colors ℓ. Our proofs of Lemmas 4.3.6 and 4.3.7 make use of

amortized analysis; our proof of Lemma 4.3.6 relies on the LRU properties of

∆LRU-EDF .

Third, Theorem 4.1 establishes that ∆LRU-EDF is resource competi-

tive by a reduction to a problem instance in which each color appearing in the

request sequence has at least ∆ jobs, and by using Lemmas 4.3.3 through 4.3.6.

Now we give the formal definitions used in our the analysis. Consider

any instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ]. We say that a job x of

color ℓ is ineligible (resp., eligible) if color ℓ is ineligible (resp., eligible) at the

end of the arrival phase in which x arrives. We define the ineligible (resp., eligi-

ble) drop cost of ∆LRU-EDF , denoted IneligibleDropCost(∆LRU-EDF , σ,m)

(resp., EligibleDropCost(∆LRU-EDF , σ,m)), as the drop cost incurred by

∆LRU-EDF on ineligible (resp., eligible) jobs in σ.

Lemma 4.3.1. For any eligible (resp., ineligible) job x of color ℓ, color ℓ is
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eligible (resp., ineligible) from the end of the arrival phase in which x arrives

until the deadline of job x is reached.

Proof. The lemma follows from the definition of an eligible job, and the way

we determine which colors are eligible.

Lemma 4.3.2. All ineligible jobs are dropped by ∆LRU-EDF.

Proof. From the definition of ∆LRU-EDF , it is not hard to see that only

eligible colors can be cached by ∆LRU-EDF . The corollary then follows from

Lemma 4.3.1 and the definition of an ineligible job.

For each color ℓ, we partition the sequence of rounds into ℓ-epochs as

follows. We define ℓ-epoch 0 to start with round 0 and end with the first

round in which ℓ becomes ineligible. For every i ≥ 1, ℓ-epoch i starts when

ℓ-epoch i − 1 ends, and ends with the first round following ℓ-epoch i − 1 in

which ℓ becomes ineligible. For convenience, we use the term epoch to refer to

an ℓ-epoch, for some ℓ. We use numEpochs(σ) to denote the total number of

epochs associated with σ.

Lemma 4.3.3. For any instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ],

EligibleDropCost(∆LRU-EDF , σ,m) ≤ DropCost(OFF , σ,m).

Proof. See Section 4.3.6.

Lemma 4.3.4. For any instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ],

IneligibleDropCost(∆LRU-EDF , σ,m) < numEpochs(σ) · ∆.
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Proof. Consider any color ℓ. Let h be any ℓ-epoch. Let C be the ineligible

drop cost incurred by ∆LRU-EDF on color ℓ jobs in h. It is sufficient to show

that C is less than ∆.

Let h′ be the longest prefix of h throughout which ℓ is ineligible. Let

C ′ be the drop cost incurred by ∆LRU-EDF on color ℓ jobs in h′. Since ℓ

does not become eligible in h′, the number of color ℓ jobs that arrive in h′ is

less than ∆. Hence, C ′ < ∆. By the definition of an epoch, once ℓ becomes

eligible in h, it remains eligible until h ends. By the definition of ineligible

jobs and ineligible drop cost, C = C ′. Therefore, C < ∆.

We find it useful to label each eviction by ∆LRU-EDF as either an

“LRU eviction” or an “EDF eviction”. We say that an LRU eviction occurs

whenever a color is evicted in a given round and that color was kept by the

LRU principle in the preceding round. All other evictions are EDF evictions.

For any algorithm A, let nEvictLRU (A, σ,m) be the number of LRU evictions

performed by A on (σ,m).

Lemma 4.3.5. For any instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ]

such that each Dℓ is a power of 2, and each color has at least ∆ job arrivals,

nEvictLRU (∆LRU-EDF , σ,m) · ∆ is O(Cost(OFF , σ,m)).

Proof. See Section 4.3.7.

Lemma 4.3.6. For any instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ] such

that each Dℓ is a power of 2, and each color appearing in σ has at least ∆ jobs,

Cost(OFF , σ,m) = Ω(numEpochs(σ) · ∆).
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Proof. See Section 4.3.7.

Lemma 4.3.7. For any instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ] such

that each Dℓ is a power of 2, and each color appearing in σ has at least ∆ jobs,

ReconfigCost(∆LRU-EDF , σ,m) ≤ O(Cost(OFF , σ,m) + numEpochs(σ) ·∆).

Proof. See Section 4.3.8.

Theorem 4.1. Algorithm ∆LRU-EDF is resource competitive for rate-limited

[∆ | 1 | Dℓ | Dℓ], where each Dℓ is a power of 2.

Proof. Let (σ,m) be an arbitrary instance of rate-limited [∆ | 1 | Dℓ | Dℓ]. We

say that a color ℓ is heavy (resp., light) if there are at least (resp., less than)

∆ jobs of color ℓ in σ. Any job of a heavy (resp., light) color is a heavy (resp.,

light) job. We break each request into two requests, one consisting of the light

jobs and the other consisting of the heavy jobs. Let α (resp., β) denote the

resulting sequence of requests involving heavy (resp., light) jobs.

Since there are less than ∆ jobs of any light color, OFF , as an opti-

mal feasible offline algorithm, drops all light jobs. Hence, Cost(OFF , σ,m)

equals Cost(OFF , α,m) plus the total number of light jobs. Since there

are are less than ∆ jobs of any light color, no light color ever becomes el-

igible. Thus, ∆LRU-EDF never caches a light color, and drops all light

jobs. Hence, Cost(∆LRU-EDF , σ,m) equals Cost(∆LRU-EDF , α,m) plus

the total number of light jobs. From Lemmas 4.3.3, 4.3.4, 4.3.6, and 4.3.7,
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Cost(∆LRU-EDF , α,m) = O(Cost(OFF , α,m)). Hence, the theorem fol-

lows.

4.3.6 Eligible Drop Cost of ∆LRU-EDF

The purpose of this section is to provide the proof of Lemma 4.3.3.

Before that, we first give some definitions and preliminary results.

We say that a schedule S is double-speed if the reconfiguration and exe-

cution phases are performed twice (resp., only once) in each round in schedule

S. We say that an algorithm A is double-speed if for any input, algorithm A

produces a double-speed schedule. We define a mini-round as an iteration of

the reconfiguration and execution phases in a round. By definition, there are

two mini-rounds in each round of a double-speed schedule. For a double-speed

schedule, each slot (defined in Section 2.2) corresponds to a mini-round. For

any mini-round, we define a column as the union of the slots that correspond to

the mini-round. We say a column is full if all slots in the column are occupied,

and nonfull otherwise.

Throughout this section, we find it useful to rank jobs as we rank colors

in EDF . We define the following three algorithms: Par-EDF , Seq-EDF , and

2X-Seq-EDF . Consider any instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ].

For each of these three algorithms, we allow m resources to be used. Algorithm

Par-EDF is defined as follows. In each reconfiguration phase, we reconfigure

the resources in such a way that we can execute m pending jobs with the best

ranks in the immediately following execution phase. Algorithm Seq-EDF is
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defined as follows. In each reconfiguration phase, we configure m nonidle colors

with the best ranks, where colors are ranked as in EDF . We use 2X-Seq-EDF

to denote double-speed Seq-EDF . Note that the three algorithms defined in

this paragraph do not require a color to be eligible in order to be configured

on the resources. We say that a request sequence σ is Par-EDF-friendly if

Par-EDF does not incur any drops on (σ,m).

Lemma 4.3.8. For any instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ],

DropCost(Par-EDF , σ,m) ≤ DropCost(OFF , σ,m).

Proof. We view m resources as one super resource which can execute m jobs

per round. The proof then follows from the optimality of the traditional EDF

algorithm.

Lemma 4.3.9. For any instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ] such

that σ is Par-EDF-friendly, algorithm 2X-Seq-EDF does not incur any drops

on (σ,m).

Proof. Let S denote the schedule produced by algorithm Par-EDF on (σ,m).

We prove this lemma by constructing a schedule that executes the same set of

jobs executed in S, and show that 2X-Seq-EDF produces such a schedule.

We initialize a schedule T as a double-speed schedule that does not

execute any jobs in σ, and then modify T by assigning the jobs in σ to execute

in T as follows. We assign the jobs in increasing order of delay bounds. For a

given delay bound p, we assign the jobs with delay bound p in increasing order
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of block (of delay bound p) indices. In any block of p, we assign the jobs with

delay bound p according to a fixed order of colors as in EDF . Consider any

delay bound p, any nonnegative integer i, and any color ℓ such that Dℓ = p.

Let Xℓ be set of color ℓ jobs that arrive in block(p, i). In the remainder of

this paragraph, we describe how we assign the jobs in Xℓ, which we do in

three steps. In the first step, we pick the first |Xℓ| nonfull columns. (We will

establish the existence of such columns in the next paragraph.) In the second

step, in each of the columns picked in the first step, we pick an arbitrary free

slot. In the third step, we assign the jobs in Xℓ in the |Xℓ| slots picked in

the second step. Since all delay bounds are powers of 2, it is not hard to see

that the schedule produced by 2X-Seq-EDF is among the schedules that can

be constructed using the above procedure.

It remains to show the following claim: There are at least |Xℓ| nonfull

columns before we arrange the jobs in Xℓ. Let X∗
ℓ be the set of jobs that arrive

in block(p, i) and have higher ranks than the jobs in Xℓ. From the way we

arrange jobs, and the fact that all delay bounds are powers of 2, only the jobs

in X∗
ℓ can be arranged in block(p, i) before we arrange the jobs in Xℓ. Since σ

is Par-EDF -friendly, and all delay bounds are powers of 2, all jobs in X∗
ℓ are

executed in S in block(p, i). Hence |X∗
ℓ | ≤ p · m. Since T is a double-speed

schedule, and Par-EDF is a single-speed algorithm, the number of slots in

block(p, i) in T is twice that in S. Hence, before we arrange the jobs in Xℓ in

T , the following condition holds: In schedule T , at least p·m slots in block(p, i)

are free. Hence, in schedule T , at least p columns in block(p, i) are nonfull.
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By the definition of rate-limited [∆ | 1 | Dℓ | Dℓ], |Xℓ| ≤ p. Hence, the claim

follows.

Lemma 4.3.10. For any instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ]

and any subsequence α of σ, if 2X-Seq-EDF executes (resp., drops) j jobs on

(α,m), then 2X-Seq-EDF executes (resp., drops) at least j jobs on (σ,m).

Proof. Let β be the set of jobs that appear in σ and not in α. We number

the jobs in β from zero in increasing order of arrival rounds, breaking ties

arbitrarily. We define γ0 = α. For 0 ≤ i < |β|, we define βi as job i in β and

γi+1 = γi ∪ {βi}. By definition, σ = γ|β|.

For any integer i such that 0 ≤ i < |β|, we use Si to denote the

schedule produced by algorithm 2X-Seq-EDF on (γi,m). In the following, we

prove the lemma by showing that, for any integer i such that 0 ≤ i < |β|,

|Xi| ≤ |Xi+1| and |Yi| ≤ |Yi+1|, where Xi (resp., Yi) is the set of jobs executed

(resp., dropped) in Si. We first consider the case where βi 6∈ Xi+1. In this

case, it is not hard to see that Xi+1 = Xi and Yi ⊆ Yi+1. We then consider

the case where βi ∈ Xi+1. Suppose βi is executed in column j in Si+1. Let

Xi,j be the set of jobs in Xi that are executed in column j in Si, and Zi,j be

set of slots used by Xi,j in Si. By the definition of 2X-Seq-EDF , if |Zi,j| < m,

then Xi,j ⊆ Xi+1,j; if |Zi,j| = m, then the job x with the lowest rank in

Xi,j is transferred to execute in the next column if the deadline of x has not

been reached in the next column, and dropped otherwise. Similar transfers

continue until either (1) the transferred job finds an empty slot in the next
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column, or (2) a job in the next column is dropped. Hence, either Xi ⊆ Xi+1

and Yi = Yi+1, or |Xi| = |Xi+1| and Yi ⊆ Yi+1. This completes the proof.

Lemma 4.3.11. For any instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ],

DropCost(2X-Seq-EDF , σ,m) ≤ DropCost(Par-EDF , σ,m).

Proof. If σ is Par-EDF -friendly, then the lemma follows immediately from

Lemma 4.3.9. Otherwise, we break σ into two subsequences α and β, where

α consists of the jobs executed by Par-EDF on (σ,m), and β consists of

the remaining jobs, that is, the jobs dropped by Par-EDF on (σ,m). By

Lemma 4.3.9, 2X-Seq-EDF executes all jobs in (α,m). By Lemma 4.3.10, the

number of jobs executed by 2X-Seq-EDF on (σ,m) is at least the number of

jobs executed by 2X-Seq-EDF on (α,m). Hence the lemma follows.

Lemma 4.3.12. For any instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ],

EligibleDropCost(∆LRU-EDF , σ,m) ≤ DropCost(2X-Seq-EDF , σ,m).

Proof. Let α be the subsequence of σ that consists of the eligible jobs in σ.

By Lemma 4.3.10, it is sufficient to show that

EligibleDropCost(∆LRU-EDF , σ,m) ≤ DropCost(2X-Seq-EDF , α,m),

which we argue as follows.

For convenience, we add a dummy round, denoted round −1, which

only contains a dummy drop phase. For −1 ≤ i < |σ|, let Xi (resp., Yi)

be the set of eligible pending jobs in ∆LRU-EDF (resp., 2X-Seq-EDF ) at
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the beginning of the drop phase in round i, and let X
′

i+1 (resp., X
′′

i+1) and

Y
′

i+1 (resp., Y
′′

i+1) be the set of eligible pending jobs in ∆LRU-EDF (resp.,

2X-Seq-EDF ) at the beginning and end of the arrival phase in round i + 1,

respectively. It is sufficient to show that for −1 ≤ i < |σ|, Xi ⊆ Yi, which we

prove below by induction.

It is obvious that X−1 = Y−1 = ∅. Hence X−1 ⊆ Y−1. We show in the

following that, Xi ⊆ Yi, for some −1 ≤ i < |σ| − 1, implies Xi+1 ⊆ Yi+1. Since

Xi ⊆ Yi, and in both algorithms, jobs that reach their deadlines are dropped

in drop phase i + 1, X
′

i+1 ⊆ Y
′

i+1. By this observation, and the fact that α

only consists of the eligible jobs in σ, we have X
′′

i+1 ⊆ Y
′′

i+1.

Let color ℓ be any color that is ever configured by 2X-Seq-EDF in

round i + 1. Since 2X-Seq-EDF is a double-speed schedule, at the end of

the arrival phase in round i + 1, color ℓ is among the 2m nonidle colors with

the best ranks, and 2X-Seq-EDF executes up to 2 jobs of color ℓ in round

i + 1. By Lemma 4.3.1, and the fact that α only consists of eligible jobs, in

the reconfiguration phase of round i + 1, color ℓ is eligible in ∆LRU-EDF .

In ∆LRU-EDF , unless color ℓ is idle (which indicates all color ℓ jobs have

been executed), color ℓ is also among the 2m nonidle eligible colors with the

best ranks. Since n = 8m, i.e., 2m = n
4
, by the definition of ∆LRU-EDF ,

∆LRU-EDF configures color ℓ in round i + 1 and executes 2 jobs of color

ℓ if there are at least 2, and all color ℓ jobs otherwise. By Lemma 4.3.2,

∆LRU-EDF only executes eligible jobs, that is, ∆LRU-EDF only executes

jobs from X
′′

i+1. Since X
′′

i+1 ⊆ Y
′′

i+1, we conclude that Xi+1 ⊆ Yi+1.
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Proof of Lemma 4.3.3. Immediate from Lemmas 4.3.8, 4.3.11, and 4.3.12.

4.3.7 Lower Bound on the Cost of OFF

The purpose of this section is to provide the proof of Lemmas 4.3.5

and 4.3.6. First give some definitions and preliminary results.

Let (σ,m) be any instance of rate-limited [∆ | 1 | Dℓ | Dℓ], where

each Dℓ is a power of 2. We find it convenient to partition the sequence of

rounds into super-epochs. Super-epoch 0 is the minimum sequence of rounds,

starting with round 0, during which the counters of at least 2m colors are

reset. For every positive integer i, super-epoch i is the minimum sequence of

rounds following super-epoch i − 1 during which the counters of at least 2m

colors are reset. Note that the last super-epoch may be incomplete.

We define a color ℓ as an i-active color if the counter of ℓ is reset in

super-epoch i, or in other words, the timestamp of ℓ is updated in super-

epoch i. For any i-active color ℓ, an ℓ-epoch that overlaps with super-epoch i

is referred to as an i-active epoch. We say that an epoch is regular if the epoch

is complete and does not overlap with any incomplete super-epoch. Any epoch

that is not regular is special.

For any color ℓ, we define a counter reset event of ℓ as the event that

the counter of ℓ is reset. To simplify the presentation of our credit assignment

rules (to be described later in this section), we attribute jobs to the counter

reset events as follows. For any job x of color ℓ that arrives in round j, x is

attributed to the counter reset event of ℓ that occurs in round k, where k is
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the smallest integer such that k ≥ j and the counter of ℓ is reset in round k.

Note that not all the jobs are necessarily attributed to a counter reset event.

The following lemma follows from the way that we update counters,

the definition of counter reset events, and the way that we attribute jobs to

the counter reset events.

Lemma 4.3.13. The number of jobs attributed to each counter reset event is

at least ∆.

We associate credit with the counter reset events as follows: (1) if color

ℓ is i-active and there is a reconfiguration from or to color ℓ incurred by OFF

in super-epoch i, we associate 4∆ units of credit with the first counter reset

event of color ℓ in super-epoch i; (2) for each reconfiguration from or to a color

ℓ incurred by OFF , we associate 4∆ units of credit with the next counter reset

event of color ℓ; (3) for any color ℓ job x dropped by OFF , we associate 4 units

of credit with the counter reset event to which x is attributed, if such an event

exists.

The following lemma follows from the way that we assign credit.

Lemma 4.3.14. The total credit associated with the counter reset events over

all colors is O(Cost(OFF , σ,m)).

Lemma 4.3.15. For any i-active color ℓ, either ℓ is cached throughout super-

epoch i by OFF, or there are at least 4∆ units of credit associated with the

first counter reset events of ℓ in super-epoch i.
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Proof. Since color ℓ is i-active, the time stamp of ℓ is updated in super-epoch

i, and hence super-epoch i is not empty. Let round j be the first round in

super-epoch i. Let u be the first counter reset event in super-epoch i. We

define integer k as follows. If there exists a counter reset event v prior to u, k

is the index of the round in which v occurs. Otherwise, k is 0. In either case,

k ≤ j.

Let V be the sequence of rounds lying strictly between rounds k and j.

We now prove the lemma as follows. If OFF evicts ℓ from the cache or loads ℓ

into the cache in super-epoch i, by credit assignment rule (1), u is associated

with 4∆ units of credit. If OFF keeps ℓ out of the cache throughout super-

epoch i, we consider the following cases.

• In the first case, the interval V is not empty and algorithm OFF evicts

ℓ out of the cache or loads ℓ into the cache in V . It is not hard to see

that u is the first counter reset event following any reconfiguration in V .

By credit assignment rule (2), u is associated with 4∆ units of credit.

• In the second case, the interval V is empty or algorithm OFF keeps ℓ

out of the cache in V . Let k′ be the round in which u occurs. In this

case, OFF keeps ℓ out of the cache from the end of round k until the

end of round k′. Since color ℓ jobs only arrive at an integral multiple

of Dℓ, all pending jobs of color ℓ are dropped in a round q such that q

mod Dℓ = Dℓ − 1. By the definition of ∆LRU-EDF , the timestamp of

color ℓ can only be updated at integral multiple of Dℓ. From the way
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that jobs are attributed to counter reset events, all jobs attributed to u

are dropped by OFF . By Lemma 4.3.13 and credit assignment rule (3),

u is associated with at least 4∆ units of credit.

Hence, either ℓ is cached throughout super-epoch i, or u, the first counter reset

event of ℓ in super-epoch i, is associated with at least 4∆ units of credit.

Lemma 4.3.16. For any color ℓ and any complete ℓ-epoch h, there exists a

round j in h such that in the arrival phase of round j, the timestamp of ℓ is

updated to j.

Proof. Since h is complete, ℓ becomes eligible in h. Let s be the (arrival) phase

in which ℓ becomes eligible. Let round j be the round that contains s. By the

way that we update the counters and timestamps, the counter of ℓ is reset in

s, and the timestamp of ℓ is updated in s to j.

Lemma 4.3.17. Consider any i-active color ℓ. Let j be the smallest integer

such that round j is in super-epoch i and the timestamp of ℓ is updated in

round j. Let round k be the last round in super-epoch i. If j < k, then color ℓ

is kept in the cache by ∆LRU-EDF from the end of the reconfiguration phase

of round j until the beginning of round k.

Proof. Let V be the prefix of super-epoch i that includes all the rounds in

super-epoch i except round k. Let X be the set of colors that update their

timestamps in V . Since j < k, ℓ ∈ X. By the definition of a super-epoch,

|X| < 2m. Since a color always updates the timestamp to the index of the
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current round, ℓ is among the 2m colors with the most recent timestamps

throughout the reconfiguration phase of round j until the beginning of round

k. Hence the lemma follows.

Lemma 4.3.18. For any nonnegative integer i, any i-active color is loaded

into the cache by the LRU principle within ∆LRU-EDF at most once in super-

epoch i.

Proof. It is straightforward to see that any color ℓ can only be loaded into the

cache by the LRU principle right after the timestamp of ℓ is updated. The

lemma then follows by Lemma 4.3.17.

Lemma 4.3.19. For any super-epoch i and any color ℓ, once super-epoch i

contains a complete ℓ-epoch h, super-epoch i ends.

Proof. We need to show that, as h ends, super-epoch i has ended. Let round k

be the last round of super-epoch i. By Lemma 4.3.16, there exists a round j in

h such that the timestamp of ℓ is updated to j. By Lemma 4.3.17, if j < k, ℓ

is kept in the cache since the end of the reconfiguration phase of round j until

the beginning of round k. Since an ℓ-epoch can only end when ℓ is ineligible,

and only colors out of the cache can be ineligible, epoch h ends with round k.

Hence, the lemma follows.

The next lemma follows immediately from Lemma 4.3.19.

Lemma 4.3.20. For any color ℓ and any nonnegative integer i, there are at

most two ℓ-epochs that overlap with super-epoch i.
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Lemma 4.3.21. For each color ℓ, there are at most two special ℓ-epochs.

Proof. By definition, a special epoch is either incomplete, or overlaps with an

incomplete super-epoch. The lemma then follows from Lemma 4.3.20 and the

fact that only the last ℓ-epoch and super-epoch can be incomplete.

Lemma 4.3.22. For any instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ],

where each Dℓ is a power of 2, and such that each color appearing in σ has at

least ∆ jobs, the cost incurred by OFF on any color is at least ∆.

Proof. Consider any color ℓ. If OFF ever configures color ℓ, OFF incurs a

cost of ∆. Otherwise, OFF drops all color ℓ jobs, incurring a cost of at least

∆ since there are at least ∆ color ℓ jobs in σ. In either case, OFF incurs at

least a cost of ∆ on color ℓ jobs.

Lemma 4.3.23. For any instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ],

where each Dℓ is a power of 2, and such that each color appearing in σ has at

least ∆ jobs, Cost(OFF , σ,m) is at least 1
2
∆ times the total number of special

epochs.

Proof. The lemma follows immediately from Lemmas 4.3.21 and 4.3.22.

Lemma 4.3.24. The total credit associated with the counter reset events is at

least 1
4
∆ times the total number of regular epochs.

Proof. Let X = {i | super-epoch i is complete}. Consider any i ∈ X. Let ki

be the number of i-active colors. Let k′
i be the number of i-active colors for
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which the first counter reset event in super-epoch i is associated with at least

4∆ units of credit. Let k′′
i be the number of i-active colors that are cached

throughout super-epoch i. By Lemma 4.3.15, ki ≤ k′
i + k′′

i . By the definition

of a super-epoch, ki ≥ 2m. Since k′′
i ≤ m, k′

i ≥
1
2
ki, or in other words,

ki ≤ 2k′
i. (4.3.1)

For any color ℓ, let qi,ℓ denote the number of i-active ℓ-epochs and qi be the

number of i-active epochs.

number of regular epochs ≤
∑

i∈X

qi

=
∑

i∈X

∑

ℓ

qi,ℓ

≤ 2
∑

i∈X

ki

≤ 4
∑

i∈X

k′
i.

(The first inequality follows from the definitions of i-active epochs and regular

epochs. The second equation is trivial. The third inequality follows from

the definitions of i-active colors, i-active epochs and Lemma 4.3.20. The last

inequality uses Equation (4.3.1).) By the definition of k′
i, the total credit is at

least 4∆
∑

i∈X k′
i. Hence the lemma follows.

Lemma 4.3.6 follows from Lemmas 4.3.14, 4.3.23, and 4.3.24.

Proof of Lemma 4.3.5. For any positive integer i, let ki be the number of

i-active colors in super-epoch i. We prove the lemma in two stages. In the

first stage, we show the following claim: In any super-epoch i, ki is at least
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the number of LRU evictions performed by ∆LRU-EDF . By definition, any

color that is not i-active does not update its timestamp in super-epoch i,

and hence cannot result in any LRU evictions. The claim then follows from

Lemma 4.3.18.

In the second stage, we show that
∑

i ki∆ is O(Cost(OFF , σ,m)).

Since only the last super-epoch can be incomplete, we consider the following

two cases. In the first case, there is only one super-epoch, and this super-

epoch is incomplete. In this case, Lemma 4.3.22 implies Cost(OFF , σ,m) =

Ω(k0∆). In the second case, there are at least two super-epochs. Let Z =

{i | super-epoch i is complete}. In this case,
∑

i ki = O(
∑

i∈Z ki). By

Lemma 4.3.14, it is sufficient to show that the total credit is Ω(
∑

i∈Z ki∆).

For any i ∈ Z, and any i-active color ℓ, Lemma 4.3.15 implies that there are

at least ki − m = Ω(ki) i-active colors such that each of these colors ℓ has at

least 4∆ units of credit associated with the first counter reset event of ℓ in

super-epoch i. Hence, the total credit is Ω(
∑

i∈Z ki∆).

4.3.8 Reconfiguration Cost of ∆LRU-EDF

The purpose of this section is to provide the proof of Lemma 4.3.7.

First we give some definitions and preliminary results.

In stating and proving Lemmas 4.3.25 through 4.3.29 below, we make

use of the following definitions. Fix an arbitrary color ℓ, any ℓ-epoch h, and

any two rounds i and j in h such that i < j and algorithm ∆LRU-EDF evicts

ℓ from the cache in the reconfiguration phase s of round i, and keeps ℓ out of
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the cache until the reconfiguration phase s′ of round j, in which ∆LRU-EDF

loads ℓ into the cache.

Lemma 4.3.25. Let V be the sequence of rounds that starts with the round

immediately following round i and ends with round j. The sequence V does

not contain a round k such that k is an integral multiple of Dℓ.

Proof. Let V ′ be the sequence of rounds that starts with round i and ends

with the round immediately preceding round j. It is sufficient to argue that

V ′ does not contain any round k′ such that k′ mod Dℓ = Dℓ−1. Suppose that

V ′ contains such a round k′. Then in the drop phase of round k′, all pending

jobs of color ℓ are dropped, and ℓ becomes ineligible, at which point epoch h

ends. This contradicts the fact that round j is also contained in h. Hence the

assumption does not hold and the lemma follows.

Corollary 4.3.1. The deadline and timestamp of color ℓ do not change in

phases s through s′.

Proof. The corollary follows from the fact that the timestamp and deadline of

ℓ can only increase in the arrival phase of a round k such that k is an integral

multiple of Dℓ and Lemma 4.3.25.

Lemma 4.3.26. Color ℓ is not selected by the LRU principle in phase s′.

Proof. Let X be the set of colors selected by the LRU principle in phase s.

Let ℓ′ be any color in X. Since color ℓ is evicted from the cache in phase s, we

have (1) |X| = n
4
, (2) ℓ /∈ X, and (3) ℓ′ precedes ℓ in the ordering maintained
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by the LRU principle in phase s. By Corollary 4.3.1, the timestamp of ℓ

does not change in phases s through s′. Since the timestamp of a color does

not decrease, ℓ′ precedes ℓ in the ordering maintained by the LRU principle

in phase s′. Since ℓ′ is any color in X, and |X| = n
4
, in phase s′, color ℓ

is not among the top n
4

positions of the ordering maintained by the LRU

principle.

Lemma 4.3.27. Color ℓ is nonidle in phases s through s′.

Proof. By Lemma 4.3.26, in phase s′, color ℓ is loaded into the cache by the

EDF principle, which indicates that ℓ is nonidle. By Lemma 4.3.25, no color

ℓ jobs arrive in phases s through s′. Hence, ℓ is nonidle in phases s through

s′.

Lemma 4.3.28. If we rank the colors in increasing order of deadlines with

ties broken as in EDF, then the ranks of the colors are consistent in all recon-

figuration phases.

Proof. Since job arrivals are batched, for any color ℓ′, the deadline of ℓ′ in-

creases by Dℓ′ in the arrival phase of each integral multiple of Dℓ′ . The lemma

then follows from the way that we break ties, and the fact that all delay bounds

are powers of 2.

Lemma 4.3.29. In round j, if loading color ℓ results in an EDF eviction,

then the evicted color ℓ′ is idle.
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Proof. Since i < j, j ≥ 1. Let X be the set of colors selected by the EDF

principle in the reconfiguration phase s′′ of round j − 1. By Lemma 4.3.27,

in phase s′′, ℓ′ precedes ℓ in increasing order of deadlines (with ties broken as

in EDF ). By Lemma 4.3.28, in phase s′, ℓ′ precedes ℓ in increasing order of

deadlines (with ties broken as in EDF ). By Lemma 4.3.26, ℓ is loaded into

the cache by the EDF principle in phase s′. Hence, ℓ is idle in phase s′.

Proof of Lemma 4.3.7. We associate 4∆ units of credit with each epoch: 2∆

units of “first-time” credit and 2∆ units of “end-of-epoch” credit. We also

associate 2∆ units of credit with each LRU eviction. Since there are at least

∆ jobs of each color, by Lemma 4.3.5, the total credit is O(Cost(OFF , σ,m)+

numEpochs(σ) · ∆). It is sufficient to show that the total reconfiguration cost

incurred by ∆LRU-EDF can be paid for by the credit.

Consider any color ℓ and any ℓ-epoch h. If ∆LRU-EDF does not load

ℓ into the cache in h, then it does not incur any reconfiguration cost in h.

Otherwise, let rounds i0 < · · · < ik be the rounds in h in which ∆LRU-EDF

loads ℓ into the cache. For every j such that 0 ≤ j ≤ k, let Rj be the

reconfiguration operation performed by ∆LRU-EDF to bring in ℓ in round ij.

Since each cached color is replicated in ∆LRU-EDF , the cost of operation Rj

is 2∆. We use the 2∆ units of “first-time” credit associated with h to pay for

operation R0. In the following, we show that the remaining Rj’s can also be

paid for.

Consider any integer j such that 0 < j ≤ k. It is not hard to see that,

when color ℓ is loaded into the cache in round ij, some color ℓ′ is evicted. If the
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eviction of color ℓ′ is an LRU eviction, operation Rj can be paid for by the 2∆

units of credit associated with the LRU eviction. If the eviction of color ℓ′ is an

EDF eviction, then Lemma 4.3.29 implies that color ℓ′ is evicted idle in round

ij. Since jobs of color ℓ′ arrive only at integral multiples of Dℓ′ , ℓ′ remains

idle until the next integral multiple of Dℓ′ , at which point ℓ′ becomes ineligible

and its current ℓ-epoch h′ ends. Hence, we can use the “end-of-epoch” credit

associated with h′ to pay for operation Rj. It is not difficult to argue that

each unit of credit is used at most once. This completes the proof.

4.4 Batched Arrivals

In this section, we solve [∆ | 1 | Dℓ | Dℓ], where each Dℓ is a power of

2. This problem is characterized by a fixed reconfiguration cost ∆, a unit drop

cost, per-color delay bounds Dℓ, and batched arrivals (jobs of color ℓ arrive at

integral multiples of Dℓ).

As mentioned in Section 1, [∆ | 1 | Dℓ | Dℓ] is a building block to solve

our main problem [∆ | 1 | Dℓ | 1]. To solve [∆ | 1 | Dℓ | Dℓ], we use a reduction

to rate-limited [∆ | 1 | Dℓ | Dℓ], which is solved in Section 4.3. Sections 4.4.1

and 4.4.2 give the reduction algorithm and analysis, respectively.

4.4.1 Algorithm VarRecolor

Consider an arbitrary request sequence σ for [∆ | 1 | Dℓ | Dℓ]. We

define recoloredReqSeq(σ) as a request sequence obtained as follows. Let σi be

request i of σ, where 0 ≤ i < |σ|. For any color ℓ, we rank color ℓ jobs in σi in
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an arbitrary order. For any color ℓ and color ℓ job x in σi, we construct a job y

that is the same as x except that the color of y is given by the pair (ℓ, j), where

j =
⌊

rank (x)
Dℓ

⌋

, and rank(x) is the rank of x in σi. Let σ′
i be the union of all

such y’s that are constructed over all colors ℓ. We obtain recoloredReqSeq(σ)

by concatenating the σ′
i’s in increasing order of i.

Given any instance (σ,m) of [∆ | 1 | Dℓ | Dℓ], where each Dℓ is a power

of 2, algorithm VarRecolor proceeds as follows. Let σ′ = recoloredReqSeq(σ).

First, we use algorithm ∆LRU-EDF on (σ′, 3m) to obtain an n-resource sched-

ule S ′ for σ′, where n = O(m). Second, from S ′ we construct an n-resource

schedule S for σ as follows. For any color ℓ, any integers j and k, whenever

S ′ configures color (ℓ, j) on resource k, S configures color ℓ on resource k;

whenever S ′ executes a job of color (ℓ, j) on resource k, S executes a job of

color ℓ on resource k. Note that VarRecolor is an online algorithm.

4.4.2 Analysis of VarRecolor

In this section, we show that algorithm VarRecolor is resource compet-

itive for [∆ | 1 | Dℓ | Dℓ], where each Dℓ is a power of 2. First we establish

some preliminary results.

Lemma 4.4.1. For any request sequence σ for [∆ | 1 | Dℓ | Dℓ], where each

Dℓ is a power of 2, if there exists an m-resource schedule T for σ with cost C,

then there exists a 3m-resource schedule T ′ for recoloredReqSeq(σ) with cost

O(C).

117



Proof. See Section 4.4.3.

Lemma 4.4.2. Consider any instance (σ,m) for [∆ | 1 | Dℓ | Dℓ], where

each Dℓ is a power of 2. Let σ′ = recoloredReqSeq(σ). Let S ′ be the sched-

ule produced by ∆LRU-EDF on (σ′, 3m). Let S be the schedule produced by

VarRecolor on (σ,m). Then Cost(S) ≤ Cost(S ′).

Proof. By the definition of algorithm VarRecolor , S is obtained from S ′ by

replacing color (ℓ, j), for any nonnegative integer j, with color ℓ. Hence,

ReconfigCost(S) ≤ ReconfigCost(S ′). By the definition of recoloredReqSeq(σ),

the number of color ℓ jobs appearing in σ equals the total number of color (ℓ, j)

jobs appearing in σ′, over all nonnegative integers j. Hence, DropCost(S) =

DropCost(S ′).

Theorem 4.2. Algorithm VarRecolor is resource competitive for [∆ | 1 | Dℓ |

Dℓ], where each Dℓ is a power of 2.

Proof. Consider any instance (σ,m) of [∆ | 1 | Dℓ | Dℓ]. Let T be the

schedule produced by an arbitrary feasible offline algorithm on (σ,m). By the

definition of a feasible algorithm, T uses m resources. Let C = Cost(T ) and

σ′ = recoloredReqSeq(σ). By Lemma 4.4.1, there exists a 3m-resource schedule

T ′ for σ′ with cost O(C). Let S ′ be the schedule produced by algorithm

∆LRU-EDF on (σ′, 3m). By Theorem 4.1, S ′ uses O(m) resources and incurs

cost O(C). Let S be the schedule generated by algorithm VarRecolor for

(σ,m). By Lemma 4.4.2, S uses O(m) resources and incurs cost O(C). Hence,

the theorem follows.
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4.4.3 Offline to Offline Reduction

The purpose of this section is to provide proof of Lemma 4.4.1. We

first give some definitions and preliminary results.

Consider any schedule S, any delay bound p, and any nonnegative

integer i. Given an initial coloring µ, the coloring of the resources at the

beginning of block(p, i) is determined by S. As we mention in Section 2, if

the initial coloring of S is not specified, we assume the default coloring in

which resources are colored black. For any color ℓ, we define Mono(S, p, i, ℓ)

as the set of resources k such that (1) the color of resource k at the beginning

of block(p, i) is ℓ, and (2) all jobs executed on resource k in block(p, i), if

any, are color ℓ jobs. We define Mono(S, p, i) as ∪ℓMono(S, p, i, ℓ). We define

Multi(S, p, i) as the set of resources not in Mono(S, p, i). We define Full(S, p, i)

(resp., Empty(S, p, i)) as the set of resources k such that each slot in resource

k in block(p, i) is occupied (resp., free) in S.

Let σ be any request sequence for [∆ | 1 | Dℓ | Dℓ], where each Dℓ is

a power of 2. Algorithm Aggregate takes an m-resource schedule S for σ and

generates a 3m-resource schedule. We initialize schedule T as a 3m-resource

schedule that drops all jobs in σ, and then modify T by assigning the jobs

executed in S to execute in T . To modify T , we proceed in passes. In each

pass we assign jobs with the next smallest delay bound p, block by block of

delay bound p, in increasing order of block indices. We refer to the pass in

which we assign the jobs with delay bound p as the level-p pass. For any

delay bound p and any nonnegative integer i, we assign jobs in block(p, i) in
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an arbitrary order of the colors with delay bound p.

For any delay bound p, any nonnegative integer i, and any color ℓ such

that Dℓ = p, we assign color ℓ jobs in block(p, i) in the following four phases.

In the first phase, we label and configure the resources in Mono(S, p, i, ℓ)

in T as follows. If i = 0, we label the resources in Mono(S, p, i, ℓ) from 0

to |Mono(S, p, i, ℓ)| − 1 arbitrarily. Otherwise, for any resource k in the set

Mono(S, p, i, ℓ)∩Mono(S, p, i−1, ℓ) such that the label assigned to resource k

in block(p, i− 1) is in the range [0, |Mono(S, p, i, ℓ)|), we let resource k inherit

its label in block(p, i − 1); we then assign the remaining labels in the range

[0, |Mono(S, p, i, ℓ)|) to the other resources in Mono(S, p, i, ℓ) arbitrarily. We

configure each resource k in Mono(S, p, i, ℓ) based on its current label as fol-

lows: In the reconfiguration phase of the first round of block(p, i), configure

resource k with color (ℓ, j), where j is the label assigned to resource k in

block(p, i).

In the second phase, we partition the set of color ℓ jobs executed in

block(p, i) in S into groups of size p. (One group may have size less than p.)

In the next two phases, we are going to assign color ℓ groups to execute in the

current schedule T .

The third phase proceed as follows. If Mono(S, p, i, ℓ)∩Empty(T, p, i) =

∅ or all color ℓ groups have been assigned, we terminate this phase. Otherwise,

we proceed in the following three stages. In the first stage, among the color ℓ

groups that have not been assigned, we pick a color ℓ group U of the largest

size, breaking ties arbitrarily. In the second stage, we pick an arbitrary resource
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k in Mono(S, p, i, ℓ) ∩ Empty(T, p, i). In the third stage, we recolor group U

as (ℓ, j), where j is the label we assign to resource k in block(p, i) in the first

phase, and then assign U to execute in the first |U | slots in resource k.

The fourth phase proceeds as follows. If all color ℓ groups have been

assigned, we terminate this phase. Otherwise, we proceed in the following five

stages. In the first stage, we initialize q as |Mono(S, p, i, ℓ)|. In the second

stage, we pick an unassigned color ℓ group U of the largest size, breaking ties

arbitrarily. In the third stage, we recolor U as (ℓ, q), and then increment q.

In the fourth stage, we pick a resource k such that k ∈ [m, 2m − 1] and there

are at least p free slots in block(p, i) in resources k and k + m. (We will show

such k exists in Lemma 4.4.5.) In the fifth stage, we assign U to execute in

the first |U | free slots in block(p, i) in resources k and k + m.

Lemma 4.4.3. For any request sequence σ for [∆ | 1 | Dℓ | Dℓ], where each

Dℓ is a power of 2, and any schedule S for σ, T = Aggregate(S) is a schedule

for σ′ = recoloredReqSeq(σ).

Proof. The lemma follows from the definition of recoloredReqSeq(σ), the way

that we partition the jobs executed in S into groups, and the way that we

recolor each group in algorithm Aggregate.

Lemma 4.4.4. Consider any request sequence σ for [∆ | 1 | Dℓ | Dℓ], where

each Dℓ is a power of 2, any schedule S for σ, any delay bound p, and the level-

p pass of Aggregate(S). For any nonnegative integer i, throughout the process
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in which we assign jobs in block(p, i) in the level-p pass, all jobs executed in

block(p, i) in the current schedule are executed in block(p, i) in S.

Proof. Consider any point in time in the process in which we assign jobs in

block(p, i) in the level-p pass. Let T be the current schedule. Since we proceed

in increasing order of delay bounds, all jobs executed in block(p, i) in T have

delay bounds at most p. From the way that we assign jobs, all jobs with delay

bounds exactly p executed in block(p, i) in T are executed in block(p, i) in S.

For each job x with delay bound q, q < p, that is executed in block(p, i) in T ,

if x is executed in block(q, j) in T , then x is executed in block(q, j) in S. Since

all delay bounds are power of 2, block(q, j) ⊂ block(p, i). Hence, the lemma

follows.

Lemma 4.4.5. For any request sequence σ for [∆ | 1 | Dℓ | Dℓ], where each

Dℓ is a power of 2, and any schedule S for σ, the set of jobs executed by

T = Aggregate(S) equals that executed by S.

Proof. It is sufficient to show that for any delay bound p and nonnegative

integer i, throughout the process in which we assign jobs in block(p, i) in the

level-p pass, there exists a resource k ∈ [m, 2m) such that there are at least p

free slots in the resources k and k + m.

By Lemma 4.4.4, throughout the process in which we assign jobs in

block(p, i) in the level-p pass, all jobs executed in [m, 3m) in block(p, i) in the

current schedule are executed in block(p, i) in S. Since there are 2m resources

with indices in the range [m, 3m), throughout the process in which we assign
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jobs in block(p, i) in the level-p pass, at least half the slots in the resources

[m, 3m) are free. Hence, the claim follows.

Lemma 4.4.6. Consider any request sequence σ for [∆ | 1 | Dℓ | Dℓ], where

each Dℓ is a power of 2, and any schedule S for σ. Let T = Aggregate(S).

For any delay bound p, any nonnegative integer i, and any color ℓ such that

Dℓ = p, the number of color (ℓ, j) jobs, over all nonnegative integers j, executed

on the resources [0,m) in block(p, i) in T is at least the number of color ℓ jobs

executed on Mono(S, p, i, ℓ) in block(p, i) in S.

Proof. From the way that we assign jobs, either Mono(S, p, i, ℓ) ⊆ Full(T, p, i)

or each color ℓ job executed in block(p, i) in S is recolored to color (ℓ, j), for

some j, and is executed on the resources in Mono(S, p, i, ℓ) in T . Hence, the

lemma follows.

Lemma 4.4.7. Consider any request sequence σ for [∆ | 1 | Dℓ | Dℓ], where

each Dℓ is a power of 2, and any schedule S for σ. Let T = Aggregate(S).

Then the cost incurred by the reconfigurations on the resources [m, 3m) in T

is O(Cost(S)).

Proof. For the purpose of our analysis, we assign credit in each pass, and

refer to the credit assigned in the level-p pass as level-p credit. Consider any

delay bound p, any nonnegative integer i, and each color ℓ such that Dℓ = p.

To each color ℓ group that is assigned to execute on the resources [m, 3m)

in block(p, i) in T , we assign 4∆ units of credit: ∆ units of “start” credit, ∆

units of “end” credit, and 2∆ units of “wrap-around” credit. By Lemma 4.4.6,
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the number of color (ℓ, j) jobs, over all nonnegative integers j, executed on

the resources [0,m) in block(p, i) in T is at least the number of color ℓ jobs

executed on Mono(S, p, i, ℓ) in block(p, i) in S. Since each color ℓ jobs executed

in block(p, i) in S is recolored as (ℓ, j) for some j, and executed in block(p, i)

in T , the number of color (ℓ, j) jobs, over all nonnegative integers j, executed

on the resources [m, 3m) in block(p, i) in T is at most the number of color

ℓ jobs executed on the resources in Multi(S, p, i) in block(p, i) in S. Hence,

the number of color ℓ groups assigned to execute on the resources [m, 3m)

in block(p, i) is bounded by the number of reconfigurations from or to color

ℓ in block(p, i) in S. Summing up over all colors ℓ such that Dℓ = p, and

all nonnegative integers i, the total level-p credit is within a constant factor

of the reconfigurations from or to colors ℓ such that Dℓ = p. Summing up

over all delay bounds p, the total credit is within a constant factor of the

reconfiguration cost of S.

It remains to show that the cost incurred by the reconfigurations on

the resources [m, 3m) in T is at most the total credit. Consider any group U

assigned to the resources [m, 3m). For convenience of presentation, we sort the

jobs in U in the same order as the order of slots to which they are assigned.

We use ∆ units of start credit assigned to U to pay for the reconfiguration

incurred by the execution of the first job in U , if any. We use ∆ units of

end credit assigned to U to pay for the reconfiguration incurred by the job

following the last job in U , if any. We use 2∆ units of wrap-around credit

assigned to U to pay for the reconfigurations incurred if U is wrapped around
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when the boundary of block(p, i,) is encountered when we assign the jobs in U .

Note that, if the jobs in U are not executed contiguously for any reason other

than wrap-around, U skips past the groups previously laid down, either in the

current pass or in the previous pass. From the way that we use the credit, the

reconfigurations incurred by skipping past groups are paid for by the credit

assigned to the groups being skipped past.

Lemma 4.4.8. Consider any request sequence σ for [∆ | 1 | Dℓ | Dℓ], where

each Dℓ is a power of 2, and any schedule S for σ. Let T = Aggregate(S).

Then the cost incurred by the reconfigurations on the resources [0,m) in T is

O(Cost(S)).

Proof. Consider any delay bound p and any nonnegative integer i. We assign

credit in block(p, i) in the level-p pass as follows. Consider any color ℓ such

that Dℓ = p. Since we assume that the initial coloring is the default col-

oring in which all resources are black, by definition, Mono(S, p, 0, ℓ) = ∅.

Hence, if Mono(S, p, i, ℓ) 6= ∅, then i > 0. Consider any resource k ∈

Mono(S, p, i, ℓ). We assign ∆ units of credit to resource k if one of the fol-

lowing conditions holds: (1) resource k ∈ Multi(S, p, i − 1), and (2) resource

k ∈ Mono(S, p, i − 1, ℓ), and the label of resource k in block(p, i) is different

from that in block(p, i − 1). From the way that we assign labels, the num-

ber of resources k in Mono(S, p, i, ℓ)∩Mono(S, p, i− 1, ℓ) such that the labels

assigned to resource k in block(p, i) is different from that in block(p, i − 1) is

bounded by |Mono(S, p, i − 1, ℓ)| − |Mono(S, p, i, ℓ)|, which in turn is at most
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|Mono(S, p, i − 1, ℓ) ∩ Multi(S, p, i)|. Hence, the level-p credit assigned to the

resources in Mono(S, p, i, ℓ) in block(p, i) is within a constant factor of the cost

incurred by the reconfigurations to color ℓ in block(p, i).

We define the level-p credit as the credit that we assign in the level-

p pass. We define a level-p reconfiguration as a reconfiguration to a color ℓ

such that Dℓ = p. We argue that each level-p reconfiguration in block(p, i)

in T can be paid for by the level-p credit assigned in block(p, i). From the

way that we assign jobs, level-p reconfigurations on the resources [0,m) in

block(p, i) in T are only made in the first round of block(p, i) on the resources

in ∪Dℓ=pMono(S, p, i, ℓ). Consider any color ℓ such that Dℓ = p. Consider any

resource k in Mono(S, p, i, ℓ). If i = 0, we have argued that Mono(S, p, i, ℓ) =

∅. Otherwise, let j and j′ denote the label that we assign to resource k in

block(p, i) and block(p, i − 1), respectively. There are three possible cases. In

the first case, resource k is in Mono(S, p, i−1, ℓ) and j = j′. In this case, there

is no level-p reconfiguration on resource k in block(p, i) in T . In the second

case, resource k is in Mono(S, p, i−1, ℓ) and j 6= j′. In the third case, resource

k is in Multi(S, p, i − 1). In the second and third cases, from the way that

we assign credit, resource k is assigned ∆ units of level-p credit in block(p, i),

which can pay for the reconfiguration on resource k in block(p, i). Note that,

by the definition of Mono(S, p, i, ℓ), the initial color of resource k in block(p, i)

is ℓ, which indicates that resource k is not in Mono(S, p, i−1, ℓ′), for any color

ℓ′ such that ℓ′ 6= ℓ. Summing up over all colors such that Dℓ = p, the cost

incurred by the level-p reconfigurations on the resources [0,m) in block(p, i) in
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T is at most the total level-p credit assigned in block(p, i).

Therefore, the cost incurred by the level-p reconfigurations on the re-

sources [0,m) in block(p, i) in T is within a constant factor of the cost incurred

by the reconfigurations to color ℓ in block(p, i) in S. Summing up over all non-

negative integers i and all delay bounds p, the lemma follows.

Lemma 4.4.1 follows from Lemmas 4.4.3, 4.4.5, 4.4.7, and 4.4.8.

4.5 Main Problem

In this section, we solve our main problem [∆ | 1 | Dℓ | 1], which is

characterized by a fixed reconfiguration cost ∆, a unit drop cost, per-color

delay bounds Dℓ, and nonbatched arrivals (requests can arrive at any round).

To simplify the presentation, we focus on the special case where each Dℓ

is a power of 2. This special case is solved by a reduction to [∆ | 1 | Dℓ | Dℓ],

which is solved in Section 4.4. For any color ℓ such that Dℓ is equal to 1, jobs

of color ℓ are already batched. For convenience, we focus on the case where Dℓ

is greater than 1, for all colors ℓ. Sections 4.5.1 and 4.5.2 give the algorithm

and analysis for the reduction, respectively. Section 4.5.3 comments on how

to extend our solution to arbitrary delay bounds, that is, to delay bounds that

are not necessarily powers of 2.
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4.5.1 Algorithm VarBatch

Let σ be an arbitrary request sequence for [∆ | 1 | Dℓ | 1]. We de-

fine batchedReqSeq(σ) as a request sequence obtained by moving the arrival

of any job x of color ℓ that arrives in halfBlock(Dℓ, i) in σ to the begin-

ning of halfBlock(Dℓ, i + 1), and changing the delay bound of x to Dℓ

2
. Thus,

batchedReqSeq(σ) can be viewed as a request sequence for [∆ | 1 | Dℓ

2
| Dℓ

2
].

Algorithm VarBatch proceeds as follows. First, given an arbitrary

instance (σ,m) of [∆ | 1 | Dℓ | 1], we construct an instance (σ′, 7m) of

[∆ | 1 | Dℓ

2
| Dℓ

2
], where σ′ = batchedReqSeq(σ). Second, we apply algo-

rithm VarRecolor (defined in Section 4.4.1) on (σ′, 7m) to obtain a schedule

S ′ for σ′. Finally, we obtain a schedule S for σ from S ′. The schedule S is the

same as S ′ except that the request sequence associated with S is σ. Note that

algorithm VarBatch is an online algorithm.

4.5.2 Analysis of VarBatch

In this section, we show that algorithm VarBatch is resource compet-

itive for [∆ | 1 | Dℓ | 1], where each Dℓ is a power of 2. First we give some

definitions and preliminary results.

Consider any request sequence σ for [∆ | 1 | Dℓ | 1], and any schedule

T for σ. For any color ℓ and any color ℓ job x that arrives in halfBlock(Dℓ, i) in

σ, we say that the execution of x in T is σ-early (resp., σ-punctual, σ-late) if x

is executed in halfBlock(Dℓ, i) (resp., halfBlock(Dℓ, i+1), halfBlock(Dℓ, i+2))

in T .
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Lemma 4.5.1. For any request sequence σ for [∆ | 1 | Dℓ | 1], and any

schedule T for σ, if all job executions in T are σ-punctual, then T is also a

schedule for batchedReqSeq(σ).

Proof. The lemma follows immediately from the definition of a σ-punctual

execution and the definition of batchedReqSeq(σ).

Lemma 4.5.2. For any request sequence σ for [∆ | 1 | Dℓ | 1], if there exists

an m-resource schedule T for σ such that all job executions in T are σ-early,

then there exists a 3m-resource schedule T ′ for σ such that all job executions

in T ′ are σ-punctual, and Cost(T ′) = O(Cost(T )).

Proof. The proof proceeds in two phases. In the first phase, we describe a

procedure that constructs a 3m-resource schedule T ′ in which all job executions

are σ-punctual. In the second phase, we show that Cost(T ′) = O(Cost(T )).

The first phase proceeds as follows. We start with a schedule that drops

all jobs that appear in σ, and then modify the schedule by assigning the jobs

executed in T to execute in the current schedule as follows. Consider any

integer k such that 0 ≤ k < m. Let Xk be the set of jobs that are executed on

resource k in T . We say that a job x in Xk is k-special if in schedule T , resource

k is configured with the color of x, call it ℓ, throughout halfBlock(Dℓ, i) and

halfBlock(Dℓ, i + 1), and x is executed on resource k in halfBlock(Dℓ, i). Any

job in Xk that is not k-special is said to be k-regular. We assign k-special

jobs to execute on resource 3k in the following manner: For any color ℓ and
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any k-special job x of color ℓ that is executed in round j in T , we assign x to

execute in round j + Dℓ

2
.

We assign k-regular jobs to execute on resources 3k + 1 and 3k + 2.

To avoid collisions (i.e., different jobs being executed on the same resource

and in the same round), we proceed in the following manner. We assign k-

regular jobs in increasing order of delay bounds. For any delay bound p and

any nonnegative integer i, let Vp,i,k be the set of k-regular jobs with delay

bound p that are executed in halfBlock(p, i) in T . For any color ℓ with delay

bound p, let Vp,i,k,ℓ be the color ℓ jobs in Vp,i,k. To assign the jobs in Vp,i,k,

we iteratively consider each color ℓ such that Dℓ = p, in an arbitrary order,

and assign the jobs in Vp,i,k,ℓ to the first |Vp,i,k,ℓ| free slots in halfBlock(p, i+1)

on resources 3k + 1 and 3k + 2. Let T ′ denote the schedule obtained by the

procedure described above. It is not hard to see that all job executions in T ′

are σ-punctual.

In the second phase, we show that Cost(T ′) = O(Cost(T )). Consider

any integer k, where 0 ≤ k < m. Let Ck be the reconfiguration cost incurred

on resource k in T . It is sufficient to show the following two claims: (1) all jobs

in Xk are executed in T ′. (2) the reconfiguration cost incurred by T ′ associated

with the jobs in Xk is O(Ck). Recall that Xk is the set of jobs executed on

resource k in T , and assigned to execute on resources 3k through 3k + 2.

To argue claim (1), it is sufficient to show that there are no collisions

as we assign the jobs in Xk. It is straightforward to argue that assigning the

k-special jobs does not incur any collisions. It remains to argue that assigning
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the k-regular jobs does not incur any collisions. Consider any delay bound p

and any nonnegative integer i, and the process in which we assign the jobs

in Vp,i,k (i.e., the set of k-regular jobs with delay bound p that are executed

on resource k in halfBlock(p, i) in T ) to execute in halfBlock(p, i + 1). Since

we assign jobs in increasing order of delay bounds, and all delay bounds are

powers of 2, all jobs assigned to execute in halfBlock(p, i + 1) before or during

this process are executed either in halfBlock(p, i+1) or in halfBlock(p, i) in T .

Hence, with two resources (i.e., resources 3k + 1 and 3k + 2), we do not incur

any collisions during this process.

In the remainder of this proof, we argue claim (2). It is straightforward

to show that the reconfiguration cost incurred by T ′ associated with the k-

special jobs is at most Ck. It remains to account for the reconfiguration cost

incurred by T ′ associated with the k-regular jobs. We refer to each Vp,i,k,ℓ, for

any delay bound p, any nonnegative integer i, and any color ℓ, as a k-group.

We assign credit as follows. Consider any reconfiguration operation R from

color ℓ to color ℓ′ on resource k in schedule T . Let p = Dℓ and q = Dℓ′ .

Suppose R occurs in halfBlock(p, i) and in halfBlock(q, j). We assign 4∆ units

of credit to each of the following k-groups: (a) Vq,j,k,ℓ′ , (b) Vp,i,k,ℓ, and (c) if

i > 0, Vp,i−1,k,ℓ. It is not hard to see that the total credit is O(Ck), and each

k-group is assigned at least 4∆ units of credit.

Consider any k-group U . For the purpose of our analysis, we sort the

jobs in U in the same order as the order of the slots to which they are assigned.

We use ∆ units of the credit assigned to U to pay for the reconfiguration
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incurred by the first job in U , if any. We use ∆ unit of the credit assigned to

U to pay for the reconfiguration incurred by the job following the last job in U ,

if any. We use 2∆ units of credit assigned to U to pay for the reconfigurations

incurred if U is wrapped around when the boundary of the relevant block is

encountered as we assign the jobs in U . Note that, if the jobs in U are not

executed contiguously for any reason other than wrap-around, U skips past

the k-groups previously laid down. From the way that we allocate the credit,

the reconfigurations incurred by skipping past groups are paid for by the credit

assigned to the groups being skipped past. Hence, all reconfigurations incurred

by T ′ associated with k-regular jobs can be paid for by the total credit.

We omit the the proof of the following lemma since it is analogous to

the proof of Lemma 4.5.2.

Lemma 4.5.3. For any request sequence σ for [∆ | 1 | Dℓ | 1], if there exists

an m-resource schedule T for σ such that all job executions in T are σ-late,

then there exists a 3m-resource schedule T ′ for σ such that all job executions

in T ′ are σ-punctual, and Cost(T ′) = O(Cost(T )).

Lemma 4.5.4. For any request sequence σ for [∆ | 1 | Dℓ | 1], if there exists

an m-resource schedule T for σ, then there exists a 7m-resource schedule T ′

for batchedReqSeq(σ) such that Cost(T ′) = O(Cost(T )).

Proof. We break each request in σ into three requests: one consisting of the

jobs for which the executions are σ-early in T , one consisting of the jobs for

which the executions are σ-punctual in T , and one consisting of the jobs for
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which the executions are σ-late in T . Let α (resp., β, γ) denote the resulting

request sequence involving the jobs for which the executions are σ-early (resp.,

σ-punctual, and σ-late) in T . We define Tearly (resp., Tpunct , Tlate) as the

schedule obtained by removing the jobs in β and γ (resp., α and γ, α and

β) from T . Let C = Cost(T ). It is not hard to see that Cost(Tearly) (resp.,

Cost(Tpunct), Cost(Tlate)) is at most O(C).

By Lemma 4.5.2, there exists a 3m-resource schedule T ′
early for α such

that all job executions in T ′
early are α-punctual and Cost(T ′

early) = O(C). By

Lemma 4.5.3, there exists a 3m-resource schedule T ′
late for γ such that all job

executions in T ′
late are γ-punctual and Cost(T ′

late) = O(C).

We construct a 7m-resource schedule T ′ as follows. On resources 0

through m−1, T ′ behaves the same as Tpunct . On resources m through 4m−1

resources, T ′ behaves the same as T ′
early . On resources 4m through 7m − 1,

T ′ behaves the same as T ′
late . It is not hard to see that T ′ is a schedule for σ,

all jobs in T ′ are σ-punctual, and Cost(T ′) = O(C). The lemma then follows

from Lemma 4.5.1.

Theorem 4.3. Algorithm VarBatch is resource competitive for [∆ | 1 | Dℓ | 1],

where each Dℓ is a power of 2.

Proof. Consider an arbitrary instance (σ,m) of [∆ | 1 | Dℓ | 1]. Let T be a

schedule produced by any feasible offline algorithm on (σ,m). By the definition

of a feasible algorithm, T uses m resources. Let C = Cost(T ), and σ′ =
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batchedReqSeq(σ). By Lemma 4.5.4, there exists a 7m-resource schedule T ′ for

σ′ with cost O(C).

Since σ′ can be viewed as a request sequence for [∆ | 1 | Dℓ

2
| Dℓ

2
],

Theorem 4.2 implies that the schedule S ′ produced by VarRecolor on (σ′, 7m)

uses O(m) resources and incurs cost O(C). By the definition of algorithm

VarBatch, the schedule S produced by VarBatch on (σ,m) is the same as S ′

except that the associated request sequence is σ. Hence, the lemma follows.

4.5.3 Extension to Arbitrary Delay Bounds

The extension of our solution to arbitrary delay bounds is straight-

forward. The basic idea is as follows: For any delay bound p such that

2j ≤ p < 2j+1, and any job x with delay bound p that arrives in halfBlock(2j, i),

we delay the arrival of x to the beginning of halfBlock(2j, i + 1), and change

the delay bound of x to 2j−1. The proof that the extended solution is resource

competitive is similar to the proof given in Section 4.5.2.
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Chapter 5

Concluding Remarks

In this dissertation, we initiate the study of the class of reconfigurable

resource scheduling problems within the framework of competitive analysis.

We study a subclass in this broad class, and provide resource competitive

online algorithms for two main problems in this subclass, namely, reconfig-

urable resource scheduling with variable drop costs, and reconfigurable re-

source scheduling with variable delay bounds. In solving both problems, we

adopt a layered approach where in each layer we reduce to a scheduling prob-

lem defined over a more constrained set of possible inputs, and thereby simplify

the problem.

In solving reconfigurable resource scheduling with variable drop costs,

we are able to reduce the main problem to a caching problem, which we refer

to as file caching with remote reads. This caching problem generalizes the

file caching problem, and is a special case of the k-server problem with ex-

cursions, and may be of independent interest. Our solution to reconfigurable

resource scheduling with variable delay bounds is based on a natural and novel

combination of the EDF and LRU principles.

In the subclass of reconfigurable resource scheduling problems consid-
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ered in this dissertation, there are variable problem dimensions: variable job

execution time, variable reconfiguration costs, variable drop costs, and variable

delay bounds. In each of the two main problems that we solve in this disser-

tation, we allow one of problem parameters to vary arbitrarily, and fix other

problem parameters. It is interesting to investigate the existence of resource

competitive online algorithms handling other combinations of the problem di-

mensions. In particular, it would be interesting to see that whether one can

extend our ∆LRU-EDF algorithm to solve more general variants.

Throughout this dissertation, we associate an explicit cost with the

reconfiguration of a resource. An alternative is to consider that the reconfigu-

ration incurs a context switch time during which the resource cannot process

any jobs. Problems of this sort have been studied in the offline setting [6, 7]

(see [5, Chapter 9] for a survey) and in experimental work [16, 17]. Yet, within

the framework of competitive analysis, such problems remain largely unex-

plored. It would be interesting to see whether some of the techniques used in

this dissertation can be applied to reconfigurable resource scheduling problems

that involve context switch time.
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Appendix A

Analysis of EDF

In this section, we show that EDF (defined in Section 4.3.2) is not con-

stant competitive, even if EDF is given an arbitrary constant factor resource

advantage, and an arbitrary constant replication factor r, that is, if each color

in the cache is replicated in r locations. Algorithm EDF is a specific algorithm

defined using the EDF principle. We expect that other algorithms based on

the EDF principle are also subject to similar lower bounds.

Consider an arbitrary instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ].

Let OFF denote an arbitrary feasible offline algorithm. We assume that n,

the number of resources that EDF can use, is equal to rsm, where r is the

replication factor, and s is an arbitrary positive constant. We assume (s+1)·m

colors as follows: m colors with delay bound 2j, m colors with delay bound

2k, m colors with delay bound 2k+1, . . ., and m colors with a delay bound

2k+s−1, where 2k > 2j > ∆. We refer to each color with delay bound 2j as

a short-term color, and we refer to each of the other colors as a long-term

color. The request sequence proceeds in 2k+s−1 rounds as follows. For each

short-term color, we receive ∆ jobs at each integral multiple of 2j, in rounds

0 through 2k−1 − 1. For each long-term color with a delay bound of 2k+i, for
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0 ≤ i < s, we receive 2k+i−1 jobs in round 0.

Consider rounds 0 through 2k−1

r
. Each long-term color always has jobs

to execute. Since 2j > ∆, each short-term color is brought into the cache and

then evicted 2k−1

2jr
times. Hence, the reconfiguration cost incurred by EDF is

Ω(2k−jm∆).

Suppose that OFF caches the short-term colors in rounds 0 through

2k−1−1, and caches the colors with delay bound 2k+i in rounds 2k+i−1 through

2k+i − 1, where 0 ≤ i < s. Algorithm OFF does not incur any drop cost and

incurs a reconfiguration cost of O(m∆). Hence the competitive ratio of EDF is

Ω(2k−j), which can be made arbitrarily large by setting j and k appropriately.
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Appendix B

Analysis of ∆LRU

In this section, we show that ∆LRU (defined in Section 4.3.3) is not

constant competitive, even if ∆LRU is given an arbitrary constant factor

resource advantage, and an arbitrary constant replication factor r, that is,

if each color in the cache is replicated in r locations. Algorithm ∆LRU is

a specific algorithm defined using the LRU principle. We expect that other

algorithms based on the LRU principle are also subject to similar lower bounds.

Consider an arbitrary instance (σ,m) of rate-limited [∆ | 1 | Dℓ | Dℓ].

Let OFF denote an arbitrary feasible offline algorithm. We assume that n,

the number of resources that ∆LRU can use, is equal to rsm, where r is the

replication factor, and s is an arbitrary positive constant. Consider sm colors

with delay bound 2j and m colors with delay bound 2k, where 2k > 2j > ∆.

We refer to each color with delay bound 2j as a short-term color, and we refer

to each color with delay bound 2k as a long-term color. The request sequence

proceeds in 2k rounds as follows. We receive ∆ jobs of each short-term color

at each integral multiple of 2j, and 2k jobs of each long-term color in round 0.

It is not hard to verify that, from the reconfiguration phase of round 2j,

the timestamp of any short-term color is more recent than that of any long-
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term color. Hence, in the reconfiguration phase of round 2j, ∆LRU caches all

short-term colors, and evicts all long-term colors. After round 2j, ∆LRU does

not change the configuration. Thus, the drop cost incurred by ∆LRU is at

least (2k − 2j)m. Since k > j, the cost incurred by ∆LRU is Ω(2km).

Suppose that OFF caches the long-term colors throughout. The re-

configuration cost incurred by OFF is m∆. The drop cost incurred by OFF

is 2k−jsm∆. Hence the total cost incurred by OFF is O(2k−jm∆). Thus,

the competitive ratio of ∆LRU is Ω( 2km
2k−jm∆

) = Ω(2j

∆
), which can be made

arbitrarily large by setting j and k appropriately.
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