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The effect of ion-neutral collisions on the propagation characteristics of electrostatic ion

cyclotron (EIC) waves in a partially ionized plasma is investigated. The dispersion rela-

tion of EIC waves is derived using a fluid model taking neutral dynamics into account.

The propagation properties of EIC modes, including the damping factor, are examined

for various ionization degrees and collision frequencies, which determine the momentum

transferred from ions to neutral particles. It is found that the motion of neutral particles

driven by plasma-neutral coupling leads to an increase in the effective ion mass, and conse-

quently, EIC waves can propagate even below the ion cyclotron frequency. In a hot neutral

gas, the gas-thermal mode can also propagate as well as the EIC mode. The possibility of

observing in the laboratory and the Earth’s ionosphere is discussed.
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I. INTRODUCTION

Partially ionized plasmas exhibit unique behaviors that are never observed in fully ionized

plasmas, and such specificity is sometimes observed as a great beauty, such as auroras. Many phe-

nomena involving neutral particles have also been observed in laboratory plasmas, such as neu-

tral depletion,1 vortex formation,2,3 axial neutral gas flow reversal,4 and oscillation/intermittent

phenomena.5–8 When the momentum transferred from the ions drives the neutral flow, the par-

tially ionized plasma should be treated as a multi-component fluid composed of an electrically

conducting fluid and a neutral fluid.

It is commonly assumed that neutral particles in plasmas are stationary because the flow veloc-

ity of the neutral gas is usually much smaller than that of the ions. This treatment is convenient

for simplifying the equations and reducing the number of quantities required to be measured ex-

perimentally. However, it should be noted that in weakly ionized plasmas, the momentum and

energy of neutral particles per unit volume can be comparable to those of plasma. Hence, it is es-

sential to appropriately handle neutral particles to understand the structure formation and transport

phenomena.

In partially ionized plasmas, collisions with neutral particles are an important factor in studying

the damping of waves and the growth rate of instabilities. When collisions are sufficiently frequent,

it is generally considered is that the damping rate increases with neutral density. The dynamical

behavior of neutral particles in wavefields, however, yields opposite results. The importance of

the neutral gas flow on the electrostatic modes was studied in the early days of plasma research by

Sessler, and the effect of collisional damping on ion and electron waves in an unmagnetized plasma

was discussed by taking into account the neutral-particle motion in a wavefield.9 Vranjes and

Poedts reported the remarkable features of ion acoustic (IA) waves in a partially ionized plasma,

i.e., the dynamical behavior of neutral particles reduces the damping rate compared with the case

of stationary neutrals.10 A recent experiment by Sharma et al. has verified this by showing that the

IA waves excited with a grid exciter can propagate farther at higher neutral gas pressure.11 These

previous studies demonstrate that the behavior of neutral particles needs to be treated correctly in

order to understand wave phenomena in partially ionized plasmas. On the other hand, the effect

of neutral particles on wave phenomena in magnetized plasmas has not been fully discussed.

Electrostatic ion cyclotron (EIC) waves identified by D’Angelo and Motley12 have been stud-

ied extensively.13–23 A general background and the history of research on EIC waves can be found
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in the appropriate literature24 and recent papers.25,26 The effect of collisions with neutrals on EIC

waves was investigated by Suszcynsky et al.27,28 They showed experimentally that EIC waves

could be excited even when the collision frequency and the ion cyclotron frequency are compa-

rable, demonstrating the existence of EIC waves in weakly ionized plasmas in the bottom of the

E region in the Earth’s ionosphere. However, previous studies have not addressed the role of

neutral-particle dynamics for the propagation of EIC waves in weakly ionized plasmas.

In this paper, we focus on EIC waves in weakly ionized plasmas. Keeping the physical situ-

ation as simple as possible without losing the physics of interest, we investigate the propagation

properties of EIC waves using a multi-component fluid model. In Sec. II, a dispersion relation of

EIC waves, which propagate nearly perpendicular to the background magnetic field, is derived for

a cold neutral gas. We show that the dynamical behavior of neutral particles in a wavefield reduces

the frequency of propagation modes as well as the damping factor. In Sec. III, we investigate

the effect of finite neutral gas temperature. The dispersion relation indicates that the EIC and gas

thermal modes can be simultaneously excited. Finally, we summarize the present study in Sec. IV.

II. DISPERSION RELATION OF EIC WAVES IN A PARTIALLY IONIZED PLASMA

The dispersion relation of EIC waves in a uniform magnetic field (B) is obtained from the

momentum balance equations for ions and neutral particles given by

Mni

(
∂ui

∂ t
+ui ·∇ui

)
=−kBTi∇ni + eni(−∇ϕ +ui ×B)−Mniνin(ui −un), (1)

Mnn

(
∂un

∂ t
+un ·un

)
=−kBTn∇nn −Mnnνni(un −ui), (2)

and the continuity equations by

∂ni

∂ t
+∇ · (niui) = 0,

∂nn

∂ t
+∇ · (nnun) = 0. (3)

The quantity M is the mass, n the density, u the flow velocity, T the temperature, e the elementary

charge, ϕ the electrostatic potential, and kB the Boltzmann constant. The subscripts i and n refer

to ions and neutrals, respectively. Ignoring the mass difference between ions and neutral parti-

cles, we have left out the subscript for M. For simplicity, each temperature is spatiotemporally

constant throughout the paper. The interaction between ions and neutrals is given by the friction

forces −Mniνin(ui −un) and −Mnnνni(un −ui), where νin is the collision frequency for ions with
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the neutrals and νni is the reverse. In the present study, we assume momentum conservation for

collisions and adopt the relationship niνin = nnνni.

We use the Boltzmann relation for electrons, ne = n0 exp[eϕ/(kBTe)], and a charge neutrality

limit condition to close the set of equations instead of the momentum balance equation for the

electrons and the Poisson equation. Here, the subscript e refers to electrons. The assumption is

reasonable when the following conditions are satisfied: 1) the frequency of interest is sufficiently

lower than the ion plasma frequency, 2) the electrons move along the magnetic field line indicating

the finite parallel wavenumber. In addition, the parallel wavenumber (k∥) should be much smaller

than the perpendicular wavenumber (k⊥), and the small-k∥ limit approximation is valid in the range

tan−1(k∥/k⊥)≫
√

m/M,29 where m is the electron mass. The derivation of the dispersion relation

taking the parallel wavenumber into account is shown in the Appendix.

For simplicity, we choose a rectangular-coordinate system and assume that the uniform mag-

netic field is in the z direction (B = Bez). It is assumed that each plasma parameter is uniform in

space and that there are no flows everywhere (ui0 = un0 = 0) in steady state. We also assume a

perturbation of exp[i(kx−ωt)] corresponding to a limit condition of k∥ → 0. By linearizing Eqs.

(1)-(3) and using the linearized Boltzmann relation n1/n0 = eϕ1/(kBTe), we obtain the following

equation

ω4+i2νin

(
1+

n0

nn0

)
ω3 −

[
ω2

ci + c2
s k2 +ν2

in

(
1+

n0

nn0

)2
]

ω2

−iνin

[
c2

s k2 +2(ω2
ci + c2

s k2)
n0

nn0

]
ω +ν2

in

[
c2

s k2 +(ω2
ci + c2

s k2)
n0

nn0

]
= 0, (4)

where ωci = eB/M is the ion cyclotron frequency and cs =
√

kB(Te +Ti)/M the ion sound velocity.

Equation (4), a fourth-degree algebraic equation in ω , gives the dispersion relation of an EIC

wave in a partially ionized plasma under the small parallel wavenumber limit condition. In a

collisionless plasma, Eq. (4) results in the well-known dispersion relation, ω2 = ω2
ci+c2

s k2.30 Two

non-dimensional parameters, i.e., ν̂ = νin/ωci and η = n0/nn0, can characterize the plasma-neutral

coupling on the wave propagation: the parameters reflect the strength of coupling between ion and

neutral fluids (plasma-neutral coupling). If the neutral particles are unperturbed, i.e., un1 = 0, the

dispersion relation is expressed by taking the limit η → 0. It is noted that there is no solution that

permits wave propagation in the region of ω < ωci in both the collisionless and stationary neutral

cases.

Figure 1 shows a dispersion curve of a collisional EIC wave at ν̂ = 4 and η = 10−1, where
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ρs = cs/ωci. To study the mode damping, we denote the complex frequency by ω = ωR + iωI and

evaluate the imaginary part in ω associated with the magnitude of mode damping (ωI < 0) as well

as the frequency ωR. In the high-frequency region (ω/ωci ≫ ν̂), the dispersion curve lies on the

collisionless curve (dotted line). The collision does not affect the propagation properties because

the momentum of the ions is barely transferred to the neutral particles within the wave period.

When the wave frequency approaches the collision frequency (ω/ωci ∼ ν̂), the collision effect

becomes important. As the wavenumber decreases, the damping factor defined by γ ≡ |ωI|/ωR

(ωI < 0) increases, and the mode finally disappears at kρs = 3.2 where the damping factor becomes

unity. It is worth noting that the propagation mode reappears for kρs < 1.9, in which the frequency

is lower than the ion cyclotron frequency. If the neutral particles are stationary in the wavefield,

there is no propagation mode in this region. In other words, the propagation modes in the frequency

of ω < ωci exist only by including the effect of neutral particle dynamics.

As seen in Fig. 1, in the small wavenumber region, the dispersion curve approaches ω∗
ci =

ωci/(1+η−1) asymptotically instead of ωci. The following estimation provides an intuitive un-

derstanding of this trend. First, we consider the limit k = 0 and neglect the pressure term in Eqs.

(1) and (2). By substituting Eq. (2) into Eq. (1), a momentum balance equation of the multi-

component fluid is obtained

∂u∗
1

∂ t
=

eB
M

(
1+

1
η

)−1

ui1 × ez = ω∗
ciui1 × ez, (5)

where u∗
1 = (n0ui1nn0un1)/(n0 +nn0) = (ui1 +un1/η)/(1+η). If the force acting on the ions per

unit time and per unit volume is the same as in the collisionless case, Eq. (5) indicates that the

mass of the fluid will be effectively heavier by M∗ = M(1+η−1).

In order to get a better understanding, we seek the phase relation between ions and neutrals.

From Eqs. (2) and (3), the relationship between the ion and neutral flow velocities is expressed as

un1 =
iην̂

(ω/ωci)+ iην̂
ui1. (6)

The ratio of the ion flow velocity with the neutral flow velocity is rewritten as ui1/un1 = Aexp(iχ).

When the damping factor is small enough, the phase and magnitude can be expressed, respectively,

as

χ = tan−1
(
− ωR

ηνin

)
, A ≃ ωR

ηνin

[
1+

(
ηνin

ωR

)2
] 1

2

. (7)

Equation (7) indicates that ions and neutrals move in-phase (χ ∼ 0) when the momentum of ions

is sufficiently transferred to the neutral particles within the wave period (ωR/(ηνin ≪ 1). For
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νin ∼ ωR and η = 10−1, the estimated velocity ratio is A ∼ 10. In weakly ionized plasmas, the

velocity of neutral particles perturbed by ions is not large, but the neutral particle dynamics has a

significant effect on the propagation of EIC waves.

The dispersion curves for the different sets of collision frequencies and density ratios are pre-

sented in Fig. (2). When the normalized collision frequency is less than unity, i.e., ν̂ < 1, the

neutral particles do not play an essential role in the dispersion properties because not enough mo-

mentum is transferred. The modification of the dispersion curve from the collisionless EIC waves

becomes apparent when the normalized collision frequency exceeds unity (ν̂ > 1). Under this con-

dition, the frequency approaches ω ≃ ω∗
ci asymptotically at low wavenumbers, and the intuitive

explanation regarding the multi-fluid behavior mentioned above gives a reasonable approximation

for the mode frequency. Moreover, the forbidden region of propagation modes vanishes for a

higher value of η .

Although the characteristics of the propagation mode can be determined by ν̂ and η , these are

not independent of each other, as both depend on the neutral density. Therefore, when demonstrat-

ing the propagation of the EIC wave in actual circumstances, one should be careful to ensure that

these quantities are a possible combination.

The interest here is whether the neutral flow effect on the EIC waves can be confirmed experi-

mentally in laboratory plasmas. Considering a typical laboratory plasma, we calculate Eq. (4) for a

low-temperature argon plasma with n0 = 1018 m−3, Te = 4 eV, and Ti = 0.1 eV in a magnetic field

of B = 0.01 T and take the cross-section of ion-neutral collisions in Ref.31. Figure 3 shows the fre-

quency for kρs = 1 as a function of ionization degree defined by Riz = n0/(nn0+n0) = η/(1+η);

the damping factor, γ = |ωI|/ωR, is also depicted. In the fully-ionized and collisionless case

(Riz = 1), the corresponding mode frequency is ω/ωci = 1.4.

In the region Riz > 3× 10−2, the mode frequency is almost the same as in the collisionless

case, and the damping factor increases with a decrease of the ionization degree. This feature of

collisional damping is identical to the conventional understanding, and hence, the dynamics of

neutral particles are not crucial in this region. The mode disappears in the region 4× 10−3 <

Riz < 3×10−2 because the damping factor is larger than unity. The propagation mode reappears

in Riz < 4× 10−3. It is worth pointing out that in this region, the damping rate decreases with

a decrease of Riz. Moreover, the mode frequency decreases with the ionization degree. These

features are attributed to the neutral particles moving together with the ions, resulting in a smaller

frictional force.
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Qualitatively, since the wavelength becomes longer as the magnetic field becomes weak, the

required device size perpendicular to the magnetic field increases. If the magnetic field is several

hundred gauss, the typical wavelength is on the order of 10−1 m or shorter. Such an environment

would be feasible in a typical low-temperature plasma device. In addition, early experiments on

EIC waves were carried out using plasmas with low ionization degrees (Riz > 3×10−4) but rela-

tively low collisionality (νin/ωci < 1).27 Therefore, to confirm the reduction of the mode frequency

and damping factor, it is necessary to use a more collisional plasma where sufficient momentum

transfer to the neutrals is ensured.

EIC waves have also been observed in the E and F regions of the Earth’s ionosphere. In the

lower altitude of the E region (altitude down to 120 km), the ion-neutral collision frequency is

comparable or several times higher than the ion cyclotron frequency, typically νin/ωci ∼ 3 at

∼ 110 km,32,33 and the typical ionization degree is Riz ∼ 10−6-10−5. Hence, we may be able to

observe EIC waves with a frequency below the ion cyclotron frequency. In the F region, since the

normalized collision frequency decreases and is less than unity (νin/ωci < 1), it could be difficult

to observe the effect of plasma-neutral coupling on EIC waves.

III. EFFECT OF FINITE NEUTRAL GAS TEMPERATURE ON WAVE

PROPAGATION

Let us now take a look at the effect of finite neutral gas temperature on the propagation of EIC

waves. By keeping the pressure term of neutral fluid in Eq. (2) and using Eq. (3), the relationship

between the ion and neutral flow velocities can be expressed as

unx =
iuix

fT

(
ω

ωci
+ iην̂

)−1

, uny = iuny

(
ω

ωci
+ iην̂

)−1

, (8)

where fT is defined by

fT = 1− τk2ρ2
s

ω(ω + iην̂)
, τ =

Tn

Te +Ti
. (9)

Substituting Eq. (8) into the linearized Eq. (1), we obtain a dispersion relation given by the

fifth-order algebraic equation

∑
j=0,1,··· ,5

a j

(
ω

ωci

) j

= 0, (10)
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and the coefficients a j can be written as

a5 = 1,

a4 = 2iν̂(1+η),

a3 =−
[
1+(1+ τ)K2ν̂2(1+η)2] ,

a2 =−iν̂
{

K2[1+ τ(2+η)]+2(1+K2)η
}
,

a1 = ην̂2 [(1+ τ)K2 +(1+K2)η
]
+ τK2(1+ ν̂2 +K2),

a0 = iτν̂
[
K2 +(1+K2)η

]
, (11)

where K = kρs. The dispersion relation contains two eigenmodes: one is the EIC mode, and

the other is the gas thermal (GT) mode10 given by fT = 0, in which the GT mode is excited by

coupling with acoustic waves in a neutral fluid.

The dispersion relations for two different values of τ are shown in Fig. 4, and the parameters

except τ are the same as those described in Fig. 1. It can be found that the GT mode, which obeys

a similar dispersion relation of the neutral sound wave (ω = kVtn; Vtn =
√

kBTn/M), propagates

in the higher wavenumber region. When the normalized neutral gas temperature is τ = 10−2 [Fig.

4(a)], it is easy to distinguish the EIC mode from the GT mode, in which the GT mode is non-

propagating for kρs < 1. The dispersion curve of EIC waves is identical to that in the cold neutral

case. In a typical laboratory plasma, the GT mode will essentially not affect a proof-of-principle

experiment of collisional EIC waves because the typical value of τ is on the order of 10−2 or less.

When the neutral gas temperature is relatively high, the frequencies of the EIC and GT modes

are comparable at higher wavenumbers, as shown in Fig. 4(b). In this situation, it is difficult

to identify each mode around kρs ∼ 1, and the modes show continuous dispersion characteristics

approaching EIC modes for the low wavenumber side and GT modes for the high wavenumber

side. Since the GT mode originates from an eigenmode of the neutral fluid, this result indicates

the possibility of EIC wave excitation by neutral sound waves as an energy source.

IV. CONCLUSIONS

We have derived the linear dispersion relation of EIC waves with a multi-component fluid

mode that takes the neutral dynamics into account. The EIC modes can propagate below the ion

cyclotron frequency by effectively increasing the ion mass. Furthermore, the damping factor of

EIC modes decreases compared with the stationary neutral case. The modification of EIC modes
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due to the dynamical behavior of neutral particles is observable in weakly ionized laboratory plas-

mas and the E region of the Earth’s ionosphere. In the hot neutral gas case, the GT modes can

propagate as well as the EIC modes, which indicates that sound waves in neutral fluids can excite

waves in plasmas and vice versa.

The neutral particle dynamics plays an essential role in electrostatic wave propagation. It has

been shown that the dispersion relation of EIC waves is modified by plasma-neutral coupling. In

order to deal with instability and heating issues, it is necessary to consider the neutral particle

dynamics as well as the inhomogeneity of plasma parameters and the kinetic effects. The present

work provides a fundamental understanding in terms of the propagation properties of collisional

EIC waves, which is essential for addressing the above issues. In partially ionized plasmas, it is

crucial to handle neutral particles appropriately.
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Appendix A: Dispersion relation of EIC waves for a finite parallel wavenumber

It is assumed that the perturbation is given by exp[i(k⊥x+ k∥z−ωt)], where k⊥ and k∥ are

the wavenumbers perpendicular and parallel to the magnetic field, respectively. The linearized

equations of momentum conservation can be written for ions as

(ω − iνin)ui = kc2
s

ni1

n0
+ iωui × ez + iνinun, (A1)

and for neutrals as (
ω + iνin

n0

nn0

)
ui = kV 2

tn
nn1

nn0
+ iνin

n0

nn0
ui, (A2)

where Vtn =
√

kBTn/M is the neutral thermal velocity. Also, the linearized continuity equations

can be expressed as
nj1

nj0
=

k⊥ujx + k∥ujz

ω
, j = i, n. (A3)

To avoid complicating the equation, we have used the normalized variables defined as follows:

Ω =
ω

ωic
, ν̂ =

νin

ωci
, Uj =

uj

cs
, K = kρs, η =

n0

nn0
, τ =

Tn

Te +Ti
, (A4)
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where n0,1 = ni0,1 and the quasi-neutrality limit assumption is used. After a few steps, we obtain

the dispersion relation as

Ω
[
(α + γ)

(
α + γ

f∥
fT

−1
)](

α + γ
f⊥
fT

)
− (α + γ)

(
α + γ

f⊥
fT

)
K2
⊥

−
[
(α + γ)

(
α + γ

f∥
fT

−1
)]

K2
∥ − (α + γ)γ

f×
fT

(
γ

β fT
−2

)
K2
× = 0, (A5)

where

α = Ω+ iν̂ , β = Ω+ iην̂ , γ =
ην̂2

β
,

and

fT = 1− τK2

Ωβ
, f⊥,∥ = 1−

τK2
⊥,∥

Ωβ
, f× =

τK2
×

Ωβ
, K×

√
K⊥K∥.

When K∥ is sufficiently smaller than K⊥, it is easy to check that neglecting the last two terms in

LHS of Eq. (A5) yields a good approximation. By taking a limit of K∥ → 0 and adopting a cold

neutral assumption, i.e., τ = 0, the dispersion relation can be rewritten as

Ω− α + γ
(α + γ)2 −1

K2
⊥ = 0, (A6)

and Eq. (A6) is identical to Eq. (4). If τ ̸= 0, Eq. (A5) is attributed to Eq. (10). Considering the

opposite limit, i.e., K⊥ → 0, for τ = 0, Eq. (A5) becomes

Ω3 + iν̂(1+η)Ω2 −K2
∥Ω+ iην̂K2

∥ = 0, (A7)

and this corresponds with Eq. (8) in Ref.10.
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FIG. 1. (color online) Typical dispersion relation of an EIC wave with the neutral flow effect (ν̂ = 4 and

η = 10−1). The real part (ωR) and imaginary part associated with mode damping (ωI) in ω are shown

by solid (blue) and dashed (red) lines, respectively. The dispersion relation of collisionless EIC waves is

depicted by the dotted line, and the dotted-dashed line indicates ω = ω∗
ci.
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FIG. 2. (color online) Dispersion relations of an EIC wave in several sets of ν̂ and η . ωR and |ωI| (ωI < 0)

are shown by the solid (blue) and dashed (red) lines, respectively. In each figure, the upper dotted line

indicates the dispersion relation of a collisionless EIC wave and the lower dotted-dashed line shows the

modified ion cyclotron frequency ω∗
ci = ωci(1+η−1).
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ionization degree, Riz

ω
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c
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 γ

FIG. 3. (color online) Frequency as a function of ionization degree in a partially ionized argon plasma with

n0 = 1018 m−3, Te = 4 eV, and Ti = 0.1 eV in a magnetic field of B = 0.01 T(solid line). The damping factor

is also shown (dashed line). There are no modes satisfying γ < 1 in the hatched (grey) region.
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(a) τ = 0.01 (b) τ = 0.1

EIC (collisionless)

ω = ωci

ωR

|ωI|

ω = kVtn

FIG. 4. (color online) Dispersion relations of collisional EIC wave with a finite neutral gas temperature

of (a) τ = 10−2 and (b) τ = 10−1. The collision frequency is ν̂ = 4 and the density ratio is η = 10−1.

Dispersion relations of the collisionless EIC mode (dashed) and neutral-acoustic mode (dotted, ω = kVtn)

are also depicted, and the solid horizontal line indicates ω = ω∗
ci.
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