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Abstract
A transition from an interchange mode to a non-resonant mode is found in the nonlinear
magnetohydrodynamic simulation for the partial collapse in a large helical device (LHD)
plasma with a net toroidal current. This transition can occur when the magnetic shear is weak
and the rotational transform is close to unity in the core region. In this transition, the mode
number of the dominant Fourier component is reduced. As a result of the nonlinear evolution,
the (m, n) = (1, 1) component can be dominant, where m and n are the poloidal and the
toroidal mode numbers, respectively. This transition is considered to be a candidate to explain
the observation in the LHD experiments with the net toroidal current that show partial
collapses are caused by the (1, 1) mode.

Keywords: magnetohydrodynamics (MHD), numerical simulation, non-resonant mode,
partial collapse, large helical device (LHD)

(Some figures may appear in colour only in the online journal)

1. Introduction

In the magnetic confinement systems of fusion plasmas such as
tokamaks, stellarators and heliotrons, it is crucial that the plas-
mas are stable against magnetohydrodynamic (MHD) instabil-
ities. Therefore, in the large helical device (LHD) [1], which is
the largest heliotron device, the stability performance is exten-
sively studied in the experiments. The heliotron configurations
have the great advantage that the confinement magnetic field
can be generated by the outer coil system without driving the
net toroidal current in the plasma. Because of this advantage,
the heliotron plasmas can generally avoid plasma disruption
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or significant transients in plasma stored energy by avoiding
beta limits and carefully avoiding net toroidal current scenar-
ios. In the LHD experiments, the average beta value of 5% was
achieved as the highest value [2].

On the other hand, it is also necessary in the development of
the fusion reactor to clarify the stability boundary and the vari-
ety of the stability property with respect to the various param-
eters in the magnetic configuration and the plasma condition.
For this purpose, the experiments with the net toroidal current
have also been conducted in the LHD experiments [3–6]. In
the experiments, the net toroidal current is driven by the neutral
beam injection so that the rotational transform is increased.
In this case, partial collapse phenomena are observed when the
current reaches a certain value. In the collapses, the electron
temperature decreases in the time scale of 100 ms. The pro-
file in the core region is flattened after the collapse, of which
the radius of the area is more than half of the plasma minor
radius. The axis beta is also decreased by about 60% [3]. Such
collapses are not observed in the cases without the net toroidal
current for the corresponding conditions.
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One of the specific features in such experiments is that the
collapses are always caused by the (m, n) = (1, 1) mode. The
profile of the electron temperature during the collapse shows
an asymmetric shape corresponding to the m = 1 mode. This
mode is considered to be the pressure driven mode, in partic-
ular, the interchange mode, because the equilibria are strongly
Mercier unstable. However, according to the theory of the stan-
dard interchange mode, the linear growth rate is larger for
higher mode numbers [7]. Therefore, it has been required to
explain why the partial collapses are caused by the (1, 1) mode
in LHD.

Recently, Sugiyama et al discussed the appearance of the
(1, 1) mode in the sawtooth crash in the DIII-D tokamak [8].
They examined the crash numerically by means of the M3D
code [9, 10] in the situation that the safety factor q, which is
the inverse of the rotational transform, is flat and close to unity
in the core region. They found that the quasi-interchange mode
[11] is destabilized, which causes the crash. This result means
that the (1, 1) component in the category of the interchange
modes can be dominant in such crashes. On the other hand,
in the LHD experiments, the profile of the rotational trans-
form is also considered to be raised up and to be made flat
due to the peaked beam current. This situation is similar to the
case of the destabilization of the quasi-interchange mode in
the DIII-D case. Thus, in this study, we employ the analogy
of this sawtooth simulation in the analysis of the problem for
the dominant (1, 1) mode appearance in the LHD partial col-
lapses. That is, we numerically study the nonlinear behavior
of the LHD plasma with such a rotational transform generated
by the net toroidal current by means of the three-dimensional
(3D) nonlinear MHD simulations. First, the nonlinear evolu-
tion of the interchange mode in the equilibrium without the net
toroidal current and a high shear is shown as a reference. Then,
the result for the equilibrium with the net toroidal current and
a low shear is discussed.

This paper is composed as follows. In section 2, the numer-
ical method utilized in this study is explained. The equilib-
ria examined here are also shown. In section 3, the example
of the typical interchange mode for the equilibrium without
the net toroidal current and with a high shear in the substan-
tially Mercier unstable case is described as the reference. In
section 4, the nonlinear evolution of the plasma behavior in the
case of the low shear by the net toroidal current is discussed.
The nonlinear transition to the (1, 1) non-resonant mode is
shown. The concluding remarks are given in section 5.

2. Numerical method and equilibrium

In the present numerical simulations, the HINT [12] and the
MIPS [13] codes are utilized for the equilibrium and the non-
linear dynamics calculations, respectively. In the HINT code,
the 3D equilibrium is obtained without any assumption for
the existence of the nested flux surfaces. The equilibrium
equations are solved through the iteration of two steps in the
cylindrical coordinates (R,φ, Z). In the first step, the pressure
P is obtained with the fixed magnetic field B by solving

B · ∇P = 0. (1)

In the second step, B is obtained with P fixed in the relaxation
process of the two equations,

∂v

∂t
= −∇P + J × B + ν̂∇2v,

∂B
∂t

= ∇× (v × B − η̂J) ,

(2)
where ν̂ and η̂ are artificial parameters for the convergence.

In the equilibrium calculation of this study, the vacuum
magnetic configuration of Rax = 3.6 m for the horizontal mag-
netic axis position and γc = 1.1739 for the helical coil pitch
parameter are employed. This configuration corresponds to
that in the experiment in reference [3]. The pressure pro-
file Peq is employed as Peq = P0

(
1 − 0.68ρ2 − 0.32ρ4

)
. Here

ρ denotes the square root of the normalized toroidal mag-
netic flux. In the present study, two equilibria are exam-
ined. One is the equilibrium without a net toroidal current at
β0 = 3.3% as the reference, where β0 denotes the axis beta
value. This beta value is chosen so that the feature of the
typical interchange mode should be emphasized. The other
is the equilibrium with a net toroidal current at β0 = 1.4%.
In this case, the profile of the current density is assumed as
Jeq = J0(1 − ρ2)4, and I/B = 29.6 kA T−1 is employed for the
total current.

Figures 1(a) and (b) show the puncture plots of the field
lines of the equilibria in the cases without and with the net
toroidal current. No magnetic islands are observed in these
plots, while the HINT code can calculate the equilibria involv-
ing the islands. Figure 1(c) shows the rotational transform and
the Mercier index DI [14] of these equilibria. The positive and
the negative values of DI mean Mercier unstable and stable sit-
uations against the ideal interchange mode, respectively. The
rotational transform has a monotonically increasing profile in
the equilibrium without the net current case at β0 = 3.3%.
On the other hand, in the case with the net toroidal current at
β0 = 1.4%, the magnetic shear is very weak in the core region
for ρ < 0.6. The value of the rotational transform is close to
unity in this region and has a minimum = 0.955 at ρ = 0.36.
The Mercier indices at the typical resonant surfaces concerned
in the later discussions are DI = 1.09 at = 2/3 for the equi-
librium without the net toroidal current and DI = 1.41 at = 1
for the equilibrium with the net toroidal current. These are sig-
nificantly large values which indicate that both of these equi-
libria should be unstable against the ideal interchange modes
resonant at these surfaces.

In the MIPS code, the full MHD equations,

∂ρm

∂t
= ∇ · (ρmv) + D∇2(ρm − ρmeq) (3)

ρm
∂v

∂t
= −ρmw × v − ρm∇

(
v2

2

)
−∇P + J × B

+
4
3
∇ [νρm (∇ · v)] −∇× [νρmw] ,

w = ∇× v (4)

∂P
∂t

= −∇ · (Pv) − (Γ− 1)P∇ · v +∇ ·
[
χ⊥∇(P − Peq)

+ (χ‖ − χ⊥)(b · ∇P)b
]

(5)

2
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Figure 1. Puncture plots of the field lines of the equilibria for
(a) β0 = 3.3% and I = 0 and (b) β0 = 1.4% and I/B = 29.6 kA,
and (c) profiles of Mercier index DI (solid lines) and rotational
transform (dashed lines) for the β0 = 3.3% and I = 0 equilibrium
(black lines) and β0 = 1.4% and I/B = 29.6 kAT−1 equilibrium
(red lines). The horizontal black dashed lines correspond to = 2/3
and 1.

∂B
∂t

= −∇× E, J =
1
μ0

∇× B (6)

E = −v × B + η(J − Jeq) (7)

are solved as an initial value problem for mass density ρm, fluid
velocity v, pressure P and magnetic field B. Here b denotes the
unit vector of B and the subscript ‘eq’ means the equilibrium
quantity.

As the numerical scheme, the 4th order finite difference
for the spatial discretization and the 4th order Runge–Kutta
scheme for the time evolution are employed. The Kawa-
mura–Kuwahara scheme [15] is also applied for the numerical
stability. In the nonlinear dynamics calculation, the equilib-
rium mass density is assumed to be constant and normalized

Figure 2. Time evolution of the kinetic energy for I = 0 and
β0 = 3.3%, (a) total kinetic energy Ek (black thick solid line) and
Fourier components of the kinetic energy Ekn (thin lines) in the
whole time region of 100 �t/τA � 1000 and (b) enlarged figure
only for Ekn in the time region of 800 �t/τA � 1000.

as 0.1 for the entire calculation space. The constant off-axis
value by 10% is added for the equilibrium pressure to avoid
the numerical divergence, which can occur due to the appear-
ance of the negative pressure originated from the convection
term in equation (5) in the small equilibrium pressure region.
This added pressure is small compared to the total equilibrium
pressure and does not change the equilibrium pressure gradi-
ent. Therefore, the effect on the present analysis is considered
to be small.

The dissipation parameters are chosen as η/μ0 =
4.0 × 10−9, ν = χ⊥ = 10−6 and D = 10−3 for the resis-
tivity, viscosity, perpendicular heat conductivity and density
diffusivity, respectively, where μ0 denotes the vacuum per-
meability. These parameters are normalized by vAR0, where
vA denotes the Alfvén velocity and R0 denotes the major
radius of the center of the simulation box. The chosen value
of χ⊥ corresponds to 22.5 m2 s−1 for the parameters of
reference [3], which is a little larger than the range of the
ion thermal diffusivity observed in the LHD experiments,
1 ∼ 10 m2 s−1. The viscosity is assumed to have a value
similar to χ⊥. Also, χ‖ = 103χ⊥ is utilized for the parallel
heat conductivity, which is limited by the CFL condition [16].
We employ the resistivity that is larger by almost one order
than the experimental value. However, this difference is not
considered to give significant effects because the ideal mode
is strongly unstable as shown in figure 1(c). A fairly large
D is introduced in order to keep the numerical stability with
respect to the density.

3
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Figure 3. (a) and (d) Profiles of the largest four Fourier components of the perturbed pressure absolute value, (b) and (e) pattern of the
perturbed pressure and the puncture plots of the field lines and (c) and ( f ) bird’s eye view of the total pressure at (a)–(c) t = 800τA and
(d)–( f ) t = 1000τA for I = 0 and β0 = 3.3%. Thick dashed line shows the profile of the equilibrium rotational transform in (a) and (d).

The MIPS calculation is performed in the region spec-
ified by 2.7 m � R � 4.6 m, −0.95 m � Z � 0.95 m and
0 � φ � 2π corresponding to the full torus. The 128 grids
for R and Z directions and 640 grids for φ direction are uti-
lized. In the present analysis, the effect of the mode rotation
is not taken into account, and therefore, the locked situation
is treated.

3. Dynamics of LHD plasma without net toroidal
current

First, the case without the net toroidal current (I = 0) with
β0 = 3.3% shown in figure 1 is examined as the reference.
Figure 2(a) shows the time evolution of the total kinetic energy
Ek which is given by

Ek =
1
2

∫
ρmv

2 dV. (8)

The Fourier component Ekn from n = 0 to n = 5 in the Boozer
coordinates [17] corresponding to the equilibrium is also plot-
ted, which is evaluated by

Ekn =
1
2

∫ ∑
i=R,φ,Z

{[(
√
ρmvi)

cos
n )]2 + [(

√
ρmvi)

sin
n )]2} dV. (9)

Here, the superscripts of ‘cos’ and ‘sin’ mean the cosine and
the sine parts of the Fourier coefficients, respectively, and the
subscript n denotes the toroidal mode number. The pertur-
bation grows linearly up to t ∼ 750τA and saturates nonlin-
early. Here τA denotes the Alfvén time. In this case, the n = 2
component is dominant in the linear phase.

Figure 3 shows the results of the time evolution for different
times, (a)–(c) for t = 800τA and (d)–( f ) for t = 1000τA. In
figures 3(a) and (d), the absolute value of (m, n) component of
the perturbed pressure defined as

|Pm,n| = [(Pcos
m,n)2 + (Psin

m,n)2]1/2 (10)

is plotted. As shown in figure 3(a), the (3, 2) component is
localized around the = 2/3 surface and has the Gaussian-like
shape at t = 800τA in the early nonlinear phase. The m = 3
structure is seen in the perturbed pressure in figure 3(b). The
magnetic surfaces are locally stochastic around the resonant
surface. Also, the total pressure is deformed triangularly due
to this perturbation as shown in figure 3(c). These features indi-
cate that this mode is a typical interchange mode resonant at
= 2/3 surface.

At t = 1000τA in the further nonlinear evolution, sev-
eral sideband components such as (5, 3), (4, 2) and (2, 1)
grow as well as (3, 2) through the nonlinear coupling
as shown in figure 3(d). Also as shown in figure 2(b),
Ekn’s with different toroidal number are comparable. The

4
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evolution of these components brings the complicated struc-
ture in the pressure perturbation and makes the field lines much
more stochastic in the core region as shown in figure 3(e).
Thus, the (3, 2) component is not dominant in the structure
at this time anymore. According to this perturbation feature,
the total pressure decays into the fine structure as shown in
figure 3( f ). Since the (1, 1) component is detected as the
dominant component during the partial collapse in the LHD
experiments, this dynamics evolution does not explain the
experiments.

4. Dynamics of LHD plasma with net toroidal
current

Next, the equilibrium with the net toroidal current
I/B = 29.6 kAT−1 at β0 = 1.4% shown in figure 1 is
examined. Figure 4 shows the time evolution of the kinetic
energy. As in the case without the net toroidal current, the
linear phase appears first and is followed by the nonlinear
saturation. In the linear phase, the n = 3 component has
the largest kinetic energy and the n = 2 component has the
second largest. However, the difference between them is small
and the lines are almost overlapped in figures 4(a) and (b).

At t = 520τA in the early nonlinear phase, the (3, 3) com-
ponent is dominant in the perturbed pressure as shown in
figure 5(a). The radial profile of the (3, 3) component is close
to the Gaussian type and localized around the = 1 surface
at ρ = 0.597. The (2, 2) component is the secondary dom-
inant component and has the similar feature. The magnetic
surfaces and the pressure structure are weakly deformed
triangularly combined with the m = 2 effect as shown in
figures 5(b) and (c). These features indicate that this mode is
also a typical interchange mode as in the case without the net
toroidal current.

However, at t = 600τA in the further nonlinear evolution,
the dominant component is changed to the (2, 2) compo-
nent from the (3, 3) component. The structure is localized
in the core region around ρ = 0.309 as shown in figure 5(d).
This region is apart from the resonant = 1 surface and has
a very low shear. Therefore, this mode is recognized as a
non-resonant mode. Because of the convection of the vor-
tices, the pressure and the magnetic surfaces are squeezed
in the core as shown in figure 5(e). This perturbation makes
the total pressure shape elongated around the axis as shown
in figure 5( f ).

Furthermore, at t = 900τA, the dominant component is fur-
ther changed to the (1, 1) component as shown in figure 5(g).
The mode structure is also localized around ρ = 0.368 in the
low shear core region, and therefore, the mode is still non-
resonant. Therefore, as a total, the transition from the (3, 3)
resonant interchange mode to the (1, 1) non-resonant mode
occurs. Due to the m = 1 effect, the negative pressure per-
turbation shown by the blue pattern tends to accumulate and
merge at one poloidal direction as shown in figure 5(h). As
a result, the bulk part of the pressure including magnetic
axis is shifted to the opposite side as shown in figure 5(i).
Also as shown in figure 4(c), this transition corresponds to
the situation that the n = 1 and n = 2 components becomes

Figure 4. Time evolution of the kinetic energy for I/B = 29.6
kAT−1 and β0 = 1.4%, (a) total kinetic energy Ek (black thick solid
line) and Fourier components of the kinetic energy Ekn (thin lines)
in the whole time region of 100 �t/τA � 1000, and the enlarged
figures only for Ekn in the time regions of (b) 400 �t/τA � 600 and
(c) 800 �t/τA � 1000.

dominant in the time evolution of the kinetic energy beyond
t = 850τA.

The origin of this (1, 1) component can be understood by
considering the relation of γn which is the growth rate of the
component with the toroidal mode number n. From figure 4(b),
γn=3 = 2.831 × 10−2 and γn=2 = 2.826 × 10−2 are obtained
at t = 500τA in the linear phase. The sum γn=3 + γn=2 =
5.657 × 10−2 shows a good agreement with the growth rate
γn=1 = 5.045 × 10−2. This relation is one of the evidences
that this n = 1 component growth is attributed to the mode
coupling of the n = 2 and n = 3 components, and is not the
growth of a new type of the mode different from the inter-
change mode. As shown in figure 5(a), which reflects the dom-
inant components at the end of the linear phase, the dominant
(m, n) components of the n = 1, n = 2 and n = 3 components

5
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Figure 5. (a), (d) and (g) Profiles of the largest four Fourier components of the perturbed pressure absolute value, (b), (e) and (h) pattern of
the perturbed pressure and the puncture plots of the field lines and (c), ( f ) and (i) bird’s eye view of the total pressure at (a)–(c) t = 520τA,
(d)–( f ) t = 600τA and (g)–(i) t = 900τA for I/B = 29.6 kAT−1 and β0 = 1.4%. Thick dashed line shows the profile of the equilibrium
rotational transform in (a), (d) and (g).

are the (1, 1), (2, 2) and (3, 3) components, respectively. There-
fore, we can consider that the (1, 1) component is generated
by the mode coupling of the (2, 2) and (3, 3) interchange
modes in the linear phase. Furthermore, in the nonlinear satu-
ration phase, the secondary linear growth of the n = 1 com-
ponent is not observed, which could be seen if a new type
of instability would be nonlinearly generated and would grow
linearly. Thus, the dominant (1, 1) component observed here
is the result of the nonlinear coupling of the (2, 2) and the
(3, 3) interchange modes. In other words, the (1, 1) component
is not another kind of non-resonant linear instability such as

internal kink mode, infernal mode or quasi-interchange mode.
The mode coupling of the (2, 2) and the (3, 3) components
also generates the (5, 5) component as shown in figures 4(b)
and 5(a) and (d). However, this component decays due to the
viscosity and the heat conductivity, because these dissipations
degrade the interchange mode with a higher mode number
more effectively [18].

Figure 6 shows the time variation of the peak value of
|Pm,n| for the (1, 1), (2, 2) and (3, 3) components. The mode
number of the dominant component is decreased from (3, 3)
to (1, 1) continuously. The reduction of the mode numbers

6
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Figure 6. Time evolution of the maximum value of |Pmn| for
(m, n) = (1, 1), (2, 2), and (3, 3) in the case of I/B = 29.6 kA T−1

and β0 = 1.4%.

in the nonlinear evolution is like an inverse cascade. This
resultant dominant mode number (1, 1) is observed in the
LHD experiments for the partial collapses [3]. Thus, the tran-
sition obtained in this study is considered to be one of the
candidates to explain the observation of the (1, 1) mode in
the experiments.

5. Concluding remarks

The dynamics of the LHD plasma with the net toroidal cur-
rent is studied by means of the 3D numerical MHD simula-
tions. A transition from the interchange mode resonant at the
= 1 surface to a non-resonant mode in the nonlinear evolu-

tion is found. This transition occurs in the equilibrium where
the shear is weak and the rotational transform is just below
unity in the core region. In the transition, the mode num-
ber of the dominant component in the pressure perturbation
is decreased in the nonlinear saturation phase. This nonlinear
decrease in the mode number is like an inverse cascade. In the
present analysis, the mode number of the dominant component
varies from (3, 3) to (1, 1). The profile of the perturbed pres-
sure shows that this mode is non-resonant, because the mode
is localized in the region with the low shear and apart from
the = 1 resonant surface. The total pressure profile shows
the structure corresponding to the dominant m = 1 compo-
nent after the transition. The dominant mode number (1, 1)
as a result of the transition is observed in the LHD exper-
iments for the partial collapses. Thus, the transition to the
(1, 1) component can be one of the candidates to explain the
(1, 1) mode appearance in the collapse phenomena observed in
the experiments.

On the contrary, such a transition does not occur in the equi-
librium without the net toroidal current and with the high shear
rotational transform. In this case, the standard interchange
mode linearly grows. And then, many side-band components
with comparable amplitude appear simultaneously in the non-
linear evolution. Such growth of many components makes the
shape of the total pressure complicated. This evolution is quite
different from that of the above transition to the non-resonant
mode. The difference between these equilibria indicates that
the low shear core region with the rotational transform close
to unity is necessary for the transition.

In the variation of the mode number, there exists the sim-
ilarity with the simulation of the quasi-interchange mode in
the sawtooth crash [8]. In the sawtooth case, both (1, 1) and
(2, 2) components have comparable magnitude in the begin-
ning of the event. As the mode grows, the (1, 1) component
becomes to behave dominantly, which indicates the smaller
mode number. The existence of the low shear region with the
rotational transform or the safety factor close to unity is com-
mon between the present and the sawtooth simulations. Thus,
this feature of the rotational transform is considered to be the
key issue for the variation like the inverse cascade beyond the
difference of the confinement configuration.On the other hand,
similar non-resonant phenomena are also observed in MAST
experiments [19]. In this case, long-lived saturated instabili-
ties appear for the plasma with a low shear safety factor just
above unity. Thus, it is an interesting points to discuss the sim-
ilarity and the difference in the excitation mechanism of these
non-resonant modes comprehensively.

In order to understand the more detailed mechanism of
the collapse phenomena, it is necessary to incorporate fur-
ther physics beyond the present framework in future. One
of the special features of the collapses observed in the LHD
experiments is that the mode rotation frequency decreases and
becomes zero just before the abrupt crash like a locked mode
[3–6]. In order to analyze this property, the interaction between
the plasma rotation and the instability [20] should be taken
into account. It is also reported that the slowing time of the
rotation frequency depends on the magnitude of the resonant
magnetic perturbation (RMP) [6]. Therefore, it is desirable
to include the RMP effect in the 3D equilibrium calculation
[21] as well. Furthermore, Sato et al [22], recently showed
that the effect of the kinetic ions has a stabilizing contribu-
tion to the pressure driven modes in the LHD plasma. Thus, it
is also attractive to examine this effect on the transition to the
non-resonant mode.

Acknowledgments

One of the authors (K.I.) thanks Professor S. Ohdachi and
Dr. Y. Narushima for their fruitful discussion. This work was
performed on ‘Plasma Simulator’ (NEC SX-Aurora TSUB-
ASA) of National Institute for Fusion Science (NIFS) with
the support and under the auspices of the NIFS Collab-
oration Research program (NIFS20KNST159) and on the
JFRS-1 supercomputer system at Computational Simula-
tion Centre of International Fusion Energy Research Centre
(IFERC-CSC) in Rokkasho Fusion Institute of National Insti-
tutes for Quantum and Radiological Science and Technology
(QST, Aomori, Japan). This work was partly supported by
KAKENHI (15K06651, 20K03909) by Japan Society for the
Promotion of Science (JSPS).

ORCID iDs

K. Ichiguchi https://orcid.org/0000-0002-7698-0223
Y. Suzuki https://orcid.org/0000-0001-7618-6305

7

https://orcid.org/0000-0002-7698-0223
https://orcid.org/0000-0002-7698-0223
https://orcid.org/0000-0001-7618-6305
https://orcid.org/0000-0001-7618-6305


Nucl. Fusion 61 (2021) 126056 K. Ichiguchi et al

Y. Todo https://orcid.org/0000-0001-9323-8285
K. Ida https://orcid.org/0000-0002-0585-4561
Y. Takemura https://orcid.org/0000-0003-3754-897X
M. Sato https://orcid.org/0000-0002-8921-961X
B.A. Carreras https://orcid.org/0000-0001-7921-4690

References

[1] Komori A. et al 2010 Goal and achievements of large helical
device project Fusion Sci. Technol. 58 1

[2] Yamada H. et al 2011 Overview of results from the large helical
device Nucl. Fusion 51 094021

[3] Sakakibara S. et al 2015 Characteristics of MHD instabil-
ities limiting the beta value in LHD Nucl. Fusion 55
083020

[4] Takemura Y. et al 2017 Experimental study on slowing-down
mechanism of locked-mode-like instability in LHD Plasma
Fusion Res. 12 1402028

[5] Takemura Y. et al 2019 Study of slowing down mechanism of
locked-mode-like instability in helical plasmas Nucl. Fusion
59 066036

[6] Takemura Y., Watanabe K.Y., Sakakibara S., Ohdachi S.,
Narushima Y., Ida K. and Yoshinuma M. 2021 External RMP
effect on locked-mode-like instability in helical plasmas
Nucl. Fusion 61 026011

[7] Johnson J.L., Greene J.M. and Coppi B. 1963 Effect of resistiv-
ity on hydromagnetic instabilities in multipolar systems Phys.
Fluids 6 1169

[8] Sugiyama L.E., Xu L.Q. and OkabayashI M. 2021 Quasi-
interchange modes and sawteeth 28th IAEA Fusion Energy
Conf. (10–15 May 2021) (https://conferences.iaea.org/
event/214) virtual event TH/P8-18

[9] Park W., Belova E.V., Fu G.Y., Tang X.Z., Strauss H.R. and
Sugiyama L.E. 1999 Plasma simulation studies using mul-
tilevel physics models Phys. Plasmas 6 1796

[10] Sugiyama L. and Park W. 2000 A nonlinear two-fluid model for
toroidal plasmas Phys. Plasmas 7 4664

[11] Waelbroeck F.L. and Hazeltine R.D. 1988 Stability of low-shear
tokamaks Phys. Fluids 31 1217

[12] Suzuki Y., Nakajima N., Watanabe K., Nakamura Y. and
Hayashi T. 2006 Development and application of HINT2 to
helical system plasmas Nucl. Fusion 46 L19

[13] Todo Y., Nakajima N., Sato M. and Miura H. 2010 Simulation
study of ballooning modes in the large helical device Plasma
Fusion Res. 5 S2062

[14] Glasser A.H., Greene J.M. and Johnson J.L. 1975 Resistive
instabilities in general toroidal plasma configurations Phys.
Fluids 18 875

[15] Kawamura T. and Kuwahara K. 1984 Computation of high
Reynolds number flow around a circular cylinder with surface
roughness AIAA Paper 84-0340

[16] Courant R., Friedrichs K. and Lewy H. 1967 On the partial dif-
ference equations of mathematical physics IBM J. Res. Dev.
11 215–34

[17] Boozer A.H. 1981 Plasma equilibrium with rational magnetic
surfaces Phys. Fluids 24 1999

[18] Carreras B.A., Garcia L. and Diamond P.H. 1987 Theory of
resistive pressure-gradient-driven turbulence Phys. Fluids 30
1388

[19] Chapman I.T., Hua M.-D., Pinches S.D., Akers R.J., Field A.R.,
Graves J.P., Hastie R.J. and Michael C.A. 2010 Saturated
ideal modes in advanced tokamak regimes in MAST Nucl.
Fusion 50 045007

[20] Ichiguchi K. et al 2016 Three-dimensional numerical analysis of
shear flow effects on MHD stability in LHD plasmas Plasma
Fusion Res. 11 2403035

[21] Ichiguchi K., Suzuki Y., Sato M., Todo Y., Nicolas T.,
Sakakibara S., Ohdachi S., Narushima Y. and Carreras B.A.
2015 Three-dimensional MHD analysis of heliotron plasma
with RMP Nucl. Fusion 55 073023

[22] Sato M. and Todo Y. 2020 Ion kinetic effects on linear pressure
driven magnetohydrodynamic instabilities in helical plasmas
J. Plasma Phys. 86 815860305

8

https://orcid.org/0000-0001-9323-8285
https://orcid.org/0000-0001-9323-8285
https://orcid.org/0000-0002-0585-4561
https://orcid.org/0000-0002-0585-4561
https://orcid.org/0000-0003-3754-897X
https://orcid.org/0000-0003-3754-897X
https://orcid.org/0000-0002-8921-961X
https://orcid.org/0000-0002-8921-961X
https://orcid.org/0000-0001-7921-4690
https://orcid.org/0000-0001-7921-4690
https://doi.org/10.13182/fst58-1
https://doi.org/10.13182/fst58-1
https://doi.org/10.1088/0029-5515/51/9/094021
https://doi.org/10.1088/0029-5515/51/9/094021
https://doi.org/10.1088/0029-5515/55/8/083020
https://doi.org/10.1088/0029-5515/55/8/083020
https://doi.org/10.1585/pfr.12.1402028
https://doi.org/10.1585/pfr.12.1402028
https://doi.org/10.1088/1741-4326/ab169f
https://doi.org/10.1088/1741-4326/ab169f
https://doi.org/10.1088/1741-4326/abc935
https://doi.org/10.1088/1741-4326/abc935
https://doi.org/10.1063/1.1706877
https://doi.org/10.1063/1.1706877
https://conferences.iaea.org/event/214
https://conferences.iaea.org/event/214
https://doi.org/10.1063/1.873437
https://doi.org/10.1063/1.873437
https://doi.org/10.1063/1.1308083
https://doi.org/10.1063/1.1308083
https://doi.org/10.1063/1.866750
https://doi.org/10.1063/1.866750
https://doi.org/10.1088/0029-5515/46/11/l01
https://doi.org/10.1088/0029-5515/46/11/l01
https://doi.org/10.1585/pfr.5.s2062
https://doi.org/10.1585/pfr.5.s2062
https://doi.org/10.1063/1.861224
https://doi.org/10.1063/1.861224
https://doi.org/10.1147/rd.112.0215
https://doi.org/10.1147/rd.112.0215
https://doi.org/10.1147/rd.112.0215
https://doi.org/10.1147/rd.112.0215
https://doi.org/10.1063/1.863297
https://doi.org/10.1063/1.863297
https://doi.org/10.1063/1.866518
https://doi.org/10.1063/1.866518
https://doi.org/10.1088/0029-5515/50/4/045007
https://doi.org/10.1088/0029-5515/50/4/045007
https://doi.org/10.1585/pfr.11.2403035
https://doi.org/10.1585/pfr.11.2403035
https://doi.org/10.1088/0029-5515/55/7/073023
https://doi.org/10.1088/0029-5515/55/7/073023
https://doi.org/10.1017/s0022377820000501
https://doi.org/10.1017/s0022377820000501

	Non-resonant global mode in LHD partial collapse with net toroidal current
	1.  Introduction
	2.  Numerical method and equilibrium
	3.  Dynamics of LHD plasma without net toroidal current
	4.  Dynamics of LHD plasma with net toroidal current
	5.  Concluding remarks
	Acknowledgments
	ORCID iDs
	References


