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The development of microdevices for applications related to bioanalysis is 

described. There are two types of microdevices involved in this study: DNA (or RNA) 

microarrays and bead-based microfluidic devices. First, a new method to fabricate DNA 

microarrays is developed: replication of DNA microarrays. It was shown that 

oligonucleotides immobilized on a glass master can hybridize with their biotin-modified 

complements, and then the complements can be transferred to a streptavidin-

functionalized replica surface. This results in replication of the master DNA array. 

Several innovative aspects of replication are discussed. First, the zip code approach 

allows fabrication of replica DNA arrays having any configuration using a single, 

universal master array. It is demonstrated that this approach can be used to replicate 

master arrays having three different sequences (spot feature sizes as small as 100 µm) 

and that master arrays can be used to prepare multiple replicas. Second, it is shown that a 

surface T4 DNA polymerase reaction improves the DNA microarray replication method 

by removing the requirement for using presynthesizd oligonucleotides. This in-situ, 

enzymatic synthesis approach is used to replicate DNA master arrays consisting of 2304 
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spots and arrays consisting of different oligonucleotide sequences. Importantly, multiple 

replica arrays prepared from a single master show consistent functionality to 

hybridization-based application. It is also shown that RNA microarrays can be fabricated 

utilizing a surface T4 DNA ligase reaction, which eliminates the requirement of modified 

RNA in conventional fabrication schemes. This aspect of the work shows that the 

replication approach may be broadly applicable to bioarray technologies. A different but 

related aspect of this project focuses on biosensors consisting of microfluidic devices 

packed with microbeads conjugated to DNA capture probes. The focus here is on 

understanding the parameters affecting the hybridization of DNA onto the probe-

conjugated microbeads under microfluidic flow conditions. These parameters include the 

surface concentration of the probe, the flow rate of the solution, and the concentration of 

the target. The simple microfluidic device packed with probe-conjugated microbeads 

exhibits efficient target capture resulting from the inherently high surface-area-to-volume 

ratio of the beads, optimized capture-probe surface density, and good mass-transfer 

characteristics. Furthermore, the bead-based microchip is integrated with a hydrogel 

preconcentrator enhancing the local concentration of DNA in a microchannel. The 

integration of the preconcentrator into the bead-based capture chip allows significantly 

lower limit of detection level (~10-fold enhancement in the sensitivity of the microbead-

based DNA detection).  
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Chapter 1:  Introduction 

1.1 MOTIVATION AND OBJECTIVES 

Miniaturized analytical systems have received much attention in chemistry 

primarily because of their unique advantages compared to traditional macro-scale 

analytical tools: short analysis times, small sample/reagent consumption, low waste 

production, portability, task integration and automation, disposability, and high-

throughput analysis.1-4 These benefits are especially useful for analysis of biological 

materials. For example, microarrays and microfluidic devices have demonstrated their 

potential for a number of bioanalysis applications. Specifically, DNA microarrays have 

revolutionized genetic analysis.5-7 Traditional tools used to study genomics, such as gel 

electrophoresis8 and high-performance liquid chromatography9 (HPLC) for single-

nucleotide polymorphism (SNP) detection, require tedious serial steps and result in low-

throughput analysis. The advent of DNA microarrays, a highly parallel analysis 

technique, has enabled researchers to assay thousands of genes simultaneously using a 

single microarray.10,11 In addition, highly integrated microfluidic devices (so called, lab-

on-a-chip systems) have demonstrated the potential to replace bulky equipment and 

trained technicians with a single chip-sized device.12,13  

Microdevices are fabricated using lithography, but this family of methods usually 

requires special clean room facilities and expensive lithographic tools, which add to the 

cost of the devices. For example, one of two existing approaches for fabricating DNA 

microarrays relies on sequential photolithographic and chemical coupling steps.14-18 The 

other approach uses direct delivery of pre-synthesized oligonucleotides, but even this 

method requires an expensive robotic microarrayer to spot the DNA solutions.5,19 
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Therefore, it would be desirable to develop a new cost-effective approach. This issue will 

be addressed in Chapters 3-6 of this dissertation. 

Miniaturized analytical devices often enable better performance, such as faster 

analysis time, because of their small size when compared to macro-scale devices. For 

instance, analyte molecules placed in a large volume will take more time to collide and to 

react with each other than if placed in a small and confined microchannel environment. 

Here, we assume the same number of analyte molecules in different volumes. The 

performance of microfluidic devices, however, depends on many other parameters. For 

example, the ability of surface-immobilized probes to capture analytes in microfluidic 

devices will depend on other factors like probe surface concentration, solution flow rate, 

and target concentration. Further study of these parameters is necessary for understanding 

and designing efficient microfluidic systems. Chapter 7 will address this issue.  

Miniaturized devices enable processing of very small volumes of analytes, which 

can be useful for analysis of small quantities of biological materials. However, analysis 

of small sample quantities in microchips requires high detection sensitivity. For example, 

the demand for sensitive chip-based DNA detection has encouraged many researchers to 

enhance the sensitivity of DNA detection in several ways. Various approaches, including 

polymerase chain reaction (PCR) chips for simultaneous DNA amplification and 

detection,20,21 electrokinetically controlled DNA chips,22,23 and mixing-assisted DNA 

chips,24-26 have been suggested for rapid and sensitive detection of DNA hybridization. 

However, amplification approaches without PCR steps on a chip, which would provide 

rapid and sensitive DNA detection with simpler chip design, have rarely been explored. 

Chapter 8 will address the sensitivity issue of bead-based microfluidic devices. 

My dissertation studies have focused on understanding and optimizing 

microarrays and microfluidic devices. First, a new method to fabricate microarrays, 
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which is efficient in terms of fabrication time and cost, is discussed in Chapters 3-6.27-29 

Specifically, I will show that a single master microarray can be replicated multiple times 

through mechanical transfer of oligonucleotides from the master surface to a replica 

surface. Indeed, the oligonucleotides for the replica can even be synthesized directly on 

the master surface using surface enzymatic reactions. In this microarray fabrication 

approach, the synthesis and transfer of oligonucleotides proceeds in parallel, which is 

more efficient than serial methods based on spotting. Second, I have studied bead-based 

microfluidic devices for DNA sequence analysis. These experiments focused on a simple 

microfluidic device packed with probe DNA conjugated to polymeric microbeads to 

examine the parameters affecting hybridization of target DNA under microfluidic flow 

conditions (Chapter 7).30 In some cases, these simple microfluidic chips incorporated a 

hydrogel-based preconcentrator to enhance the local concentration of DNA targets inside 

the microchannels, and thereby lower the limit of detection (Chapter 8).31  

 

1.2 MICROARRAYS 

Definition of Microarrays  A microarray is a solid substrate having thousands of 

specific probe spots on its surface. A mixture of labeled analytes, called the targets, is 

introduced and may specifically bind to molecular recognition agents, called the probes, 

on the microarray surface. The specific recognition events can be identified because of 

the fixed spatial positions of probes. The microarray platform provides a number of 

independent assays performed under essentially identical conditions, which enables 

researchers to investigate a large number of targets simultaneously using a single 

microarray. 

Microarrays can be classified depending on types of probes: nucleic acids 

(oligonucleotides or PCR products), proteins, and cells. DNA microarrays consist of 
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nucleic acids immobilized on supports. DNA microarray assays are based on 

hybridization of complementary sequences through Watson-Crick base pairing. The same 

general concepts used for DNA microarrays have been applied to protein microarrays 

consisting of antibodies (the probes) that recognize specific proteins. Protein microarrays 

are useful to directly investigate proteins that are translated from messenger RNA 

(mRNA). The applications of protein microarrays include high-throughput antibody 

screening32,33 and the study of protein-protein interactions or protein-small molecule 

interactions.34 In addition to nucleic acids and proteins, cells have also been immobilized 

onto substrates in a microarray format. Cell microarrays have advanced the study of cell-

surface interactions and extracellular matrix (ECM) compositions, the discovery of new 

materials for tissue engineering, and the screening of small molecules for drug 

discovery.35,36  

Although the different types of microarrays usually share many basic principles, 

physicochemical differences between probes lead to unique fabrication methods and 

assay practices.37 For example, it is more difficult to fabricate protein and cell 

microarrays compared to DNA microarrays. This is because fragile proteins might lose 

their function and binding ability during printing and immobilization on the substrate. In 

addition, most protein microarrays are fabricated from a small library of proteins 

compared to DNA microarrays. This is due to challenges in sample preparation 

(synthesis, isolation, and purification of the protein probes). For instance, proteins cannot 

be easily amplified by the PCR process used for nucleic acids. Furthermore, unlike DNA, 

it is difficult to find probe antibodies having strong specific interactions with target 

proteins. This dissertation focuses mainly on DNA arrays, but it is likely that the general 

principles can be extended to other types of microarrays. 
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Importance of DNA Microarrays  Progress in DNA microarray technology has 

enabled its use in various biological applications since it originated as a new technique 

for large-scale gene expression studies.5 Researchers have applied microarray technology 

not only for gene expression profiling, but also for SNP genotyping,38-40 resequencing,41-43 

pathogen detection,44,45 and high-throughput screening for drug discovery.46-48 The wide 

use of DNA microarrays is derived from the unique high-throughput analysis capability 

of microarrays. The parallel analysis capability comes from a spatially encoded array in 

which each probe spot is used to determine the amount of target in a biological sample. 

Because each assay at the numerous probe spots is carried out simultaneously on a single 

array surface, high-throughput analysis is typically highly reproducible and quantitative. 

In addition, the miniaturized array slides are fabricated in a standardized format (typically 

glass slides measuring 75 mm x 25 mm) and can be monitored using commercial laser 

scanners, both of which enhance automation. 

Conventional Methods for Fabrication of DNA Microarrays  Fabrication 

methods for DNA microarrays can be categorized mainly into two approaches: direct 

synthesis and delivery of pre-synthesized oligonucleotides.37,49-51 Each category can be 

subclassified depending on the specific features of each method. For example, Table 1.1 

classifies the techniques in each category as serial or parallel.  

Each technique has its strengths and weaknesses. Direct synthesis approaches 

synthesize oligonucleotides (probes) in-situ on substrates through repetitive synthesis 

cycles. Each synthesis cycle consists of two steps as shown in Figure 1.1: the 

deprotection step and the coupling step. The deprotection steps can be spatially directed 

onto individual probe spots using light (photodeprotection: parallel), microelectrodes 

(electrochemical deprotection: parallel), or jet dispensers of reagents (chemical 



 6 

 

 

 

 

Table 1.1 Microarray fabrication techniques. 

Direct synthesis  Delivery 

Parallel Serial  Parallel Serial 

Photolithographic 
mask Jet dispenser  Microstamping Pin-printing 

Digital micromirror    Nano-tips 

Electrode-directed 
synthesis    Jet-printing 
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Figure 1.1. Schematic illustration of a synthesis cycle in direct synthesis approaches. 
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deprotection: serial). The coupling steps are performed at all deprotected sites 

simultaneously.  

In the photolithographic technique14,15,52 (commercialized by Affymetrix Inc., 

Santa Clara, CA), a surface is initially coated with linker molecules bearing removable 

photo-protecting groups. The photodeprotection can then be spatially directed using 

photolithographic masks. The deprotected areas are coupled to building blocks (base 

units with a photoprotecting group) that are exposed to the whole surface. This synthesis 

cycle is repeated to build up different oligonucleotide sequences at different sites. Even 

though this method enables synthesis of 4l different sequences of length l in high-density 

array formats, it requires repetition of 4 x l synthesis cycles.49 In practice, the efficiency 

of the overall synthesis cycles, which is the product of the yields of each individual step, 

becomes low as the cycles repeat because of the limited yield of individual steps. 

Therefore, the low yield limits the practical maximum length of oligonucleotides (for 

example, 25mers for the Affymetrix GeneChip Arrays). In addition, failure of 

photodeprotection or coupling reactions at any stage results in oligonucleotide sequence 

errors. The flexibility of the photomask-based technique is also limited by the large 

number of masks needed for synthesis of different oligonucleotide sequences. That is, 

many new photomasks are required for each unique chip layout (probe sequence).  

 Digital micromirror-based techniques (commercialized by NimbleGen Systems 

Inc., Madison, WI) allow more flexible on-chip synthesis by directing photodeprotection 

steps using digitally controlled micromirrors.16-18 The function of the micromirror array is 

digitally programmable and replaces the static photomasks required in the 

photolithographic mask-based technique. Both the Affymetrix and NimbleGen 

approaches can achieve spot sizes down to 16 µm2 and arrays having up to 400,000 probe 

spots on a 1.6 cm2 area.16,49  
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 In addition to guiding deprotection steps with light, chemical deprotection 

reagents can be delivered using jet dispensers, which are similar to those used in ink-jet 

printers.53,54 The jet dispenser-based technique requires low volatility and high viscosity 

solvents having high surface tension to prevent evaporation and mixing of reagents at 

adjacent probe spots. In contrast to photolithographic or micromirror-based techniques, 

this method involves serial deprotection, and therefore it can be time consuming to 

fabricate high-density arrays. Another variant of the direct synthesis approach uses 

electrochemistry to facilitate in-situ synthesis of oligonucleotides (commercialized by 

CombiMatrix Corp., Mukilteo, WA).55 Programmable microelectrodes situated at the 

spots produce acid locally to electrochemically induce deprotection, thus initiating DNA 

synthesis. The electrode-directed synthesis, however, still remains in its early 

development stage and involves expensive microelectrode fabrication schemes.  

DNA microarrays can also be fabricated by delivering pre-synthesized 

oligonucleotides onto solid substrates. Compared to direct synthesis approaches, these 

methods have the advantage that the sequences of oligonucleotides delivered to the array 

are exactly those desired. The delivery of pre-synthesized oligonucleotides is performed 

either by contact or noncontact printing.  

Contact printing methods include pin-printing, nano-tip printing, and 

microstamping techniques while jet-printing techniques are classified as noncontact 

printing methods. The pin-printing technique utilizes solid pins to deposit small amounts 

of the probe solution, usually, 50 pL - 100 nL corresponding to spot sizes in the range of 

75 - 500 µm,49 by contacting the pins with the microarray substrates. The pin-printing 

arrayer has evolved into a robotic arm system having an array of pins, which moves the 

pins among different probe solutions, array substrates, and a washing station (Figure 1.2). 

The technique is widely used in small laboratories to generate customized arrays having a 
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Figure 1.2. Schematic illustration of a pin-printing microarrayer. 
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moderate density of spots, because it is reasonably robust and affordable. The nano-tip 

printing technique is similar to pin-printing in terms of solution dispensing, but it 

employs an atomic force microscopy (AFM) nano-tip to deliver probes to the array 

substrate (this method is also known as dip-pen lithography).56,57 When the AFM tip is 

brought into contact with the substrate, the probe solution flows from the tip to the 

substrate. The AFM tip can also be used to remove sections of a self-assembled 

monolayer (SAM) (in this case, molecules resisting biomolecule adsorption) on selected 

areas and simultaneously deposit another SAM of probe molecules. This method is 

known as AFM grafting.58,59 The nano-tip printing technique can achieve nanoscale spot 

sizes and more complex shapes. The contact printing methods have some quality issues 

related to spot morphology. For example, ring-shaped spots are commonly observed in 

the contact printing methods. These result from formation of spots having greater probe 

density at the edges of the spots than in the middle. This phenomenon is explained in 

terms of simple physics: evaporation of a solution causes outward flow of molecules to 

spot edges, and physical contact with solid pins results in surface damage.60,61 To avoid 

this problem, humidity control during probe immobilization must be maintained to 

prevent evaporation, and surface damage must be reduced. Noncontact, jet-printing 

techniques do not use pins or tips, but rather they employ piezoelectric or bubble jet 

nozzles.62,63 Surface damage is avoided in the jet-printing technique, because there is no 

physical contact between the dispenser and the surface. These printing approaches, i.e. 

contact pin/nano-tip printing and noncontact jet-printing, require serial printing steps 

which can be time consuming and cause accumulation of printing errors such as missing 

and contamination of spots during the repetitive printing steps. 

The microstamping method (also known as microcontact printing), along with 

other soft lithography techniques, was first developed by the Whitesides group.64,65 
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Microstamps are generally made from elastomeric materials, typically 

poly(dimethylsiloxane) (PDMS), which enables conformal contact to rough surfaces 

under an applied load. A probe sample is first adsorbed onto the patterned surface of a 

stamp and then transferred to a substrate through conformal contact. Unlike other 

delivery approaches, the microstamping technique is a parallel printing method that prints 

hundreds of spots in parallel, and thereby enables high-throughput microarray fabrication. 

However, there is no convenient means for loading many different probe solutions onto a 

stamp simultaneously, and this limits fabrication of high-density arrays composed of 

different probes. Note, however, that for small arrays microfluidic channels are 

sometimes used to pattern a stamp with different inks by introducing each sample 

solution into designated channels simultaneously.66 

 

1.3 MICROFLUIDIC DEVICES 

Definition of Microfluidic Devices  Microfluidic analytical devices have 

demonstrated their potential in analytical chemistry, especially for separations-based 

analysis,67,68 chemical and biochemical sensors,69 genomic and proteomic analysis,70,71 and 

chemical synthesis.72,73 Microfluidic devices can be characterized by their fluidic 

structures, which are fabricated on the micrometer scale. These systems provide a unique 

set of potential advantages. For example, devices based on microfluidic operation 

commonly result in low consumption of samples and reagents and hence low assay costs. 

Other benefits of microfluidic-based systems include high-throughput analysis by parallel 

processing of samples in multiple microfluidic channels and high levels of system 

integration and automation by integrating several analysis steps into a single system. 

Highly integrated microfluidic devices are also known as micro total analysis systems 

(µTAS) or labs-on-a chip.1 In addition, the efficient heat dissipation of microchannels 
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reduces the negative consequences of high electric fields, which provide fast separation 

times and high efficiencies per unit length of the separation channels in microfluidic 

devices based on electrophoresis. 

Microfluidic devices can be fabricated from various materials using different 

techniques. Glass or silicon substrates are commonly used because of their well-

understood chemical properties and the large number of available microfabrication 

methods, such as photolithography74,75 and reactive ion/plasma etching techniques,76 

developed by the microelectronic industry. Glass substrates are especially attractive 

because of their well-defined surface characteristics and good optical properties which 

are desirable for commonly used fluorescence detection methods. However, the 

fabrication processes involved are usually time consuming and require special processing 

facilities. Polymers are an appealing alternative to rigid inorganic materials, because of 

the vast range of mechanical and chemical properties they encompass and because of 

their low processing costs.77 The fluidic networks on polymer substrates can be fabricated 

using a variety of techniques including soft lithography, direct micromilling techniques, 

and laser ablation.78 

Figure 1.3 shows a typical procedure for fabrication of microfluidic devices using 

soft lithography.79-83. Once the mold master is fabricated using conventional lithographic 

techniques, a solution containing the PDMS prepolymer and curing agent is cast against 

the mold. After casting, the cross-linked PDMS is removed from the mold and contains 

the reverse-duplicate network of microfluidic features. Once the microfluidic network is 

formed, a cover substrate can be sealed to the fluidic PDMS substrate to enclose the 

channels. 

Importance of Microfluidic Devices  Microfluidic devices complement 

conventional two-dimensional (2-D) microarrays by providing the following benefits: 
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Figure 1.3. Schematic illustration of microfluidic device fabrication based on soft 

lithography. 
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faster hybridization (or other recognition processes), higher integration capability, and 

lower consumption of sample solution. Microfluidic devices can improve hybridization 

speeds because of the enhanced mass transport of targets and reduced diffusional 

distances by flowing target solution through a micro-scale hybridization chamber. The 

hybridization on 2-D array supports requires relatively long incubation times (usually 

several hours) to obtain probe saturation (thus, significant signals) because of slow 

diffusion-controlled kinetics. Target molecules in solution must diffuse to the arrayed 

probes on a surface and then move laterally to find their complements. For example, a 

DNA target molecule takes ~455 h to travel laterally across the array surface (1 cm2), 

assuming the diffusion coefficient of a single-strand DNA molecule (50 bases) is 6.1 x 

10-7 cm2/s.84 In addition, the local concentration of targets becomes depleted near the 

arrayed probes under static conditions. However, shorter incubation times can be 

achieved by flowing target solution in shallow microchannels. Forced flow of targets 

over arrayed probes on a surface provides enhanced mass transport of the targets because 

the transport does not depend only on diffusion. The use of shallow microfluidic channels 

also reduces the diffusional distances traveled by the target to reach the probes. The 

hybridization rate can be further improved by employing techniques such as 

hydrodynamic pumping,85,86 mixer-assisting,24,26 and electrokinetic pumping.22,23 Other 

benefits offered by microfluidic devices include high integration capability and reduced 

sample volumes. Highly integrated microfluidic devices (so called labs-on-a-chip) enable 

multiple processing steps for a bioanalytical process (for example cell lysis, PCR 

amplification, separation, and detection) to be performed in a single microchip. 

Microfluidic platforms also provide reduced sample consumption even compared with 

conventional microarrays, especially high-density arrays, which requires relatively large 

amounts of samples to completely cover the array area (~1.0 cm2) on the surface. 
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Bead-based Microfluidic Devices  Bead-based microfluidic devices have been 

suggested for efficient mixing and detection of target molecules in microchannels.30,87,88 It 

has been demonstrated that microbeads provide a simple and efficient way to mix sample 

solutions in microfluidic devices where mixing normally occurs only by diffusion. The 

diffusion-only induced mixing is due to microfluidic channels having low Reynolds 

numbers and hence a very low degree of convective mixing.87 The beads in microfluidic 

devices also provide a convenient platform for probe attachment.30,88 Bead surface areas 

are significantly larger than the interior surface area of a typical microfluidic channel, and 

this results in enhanced sensitivity for assays based on immobilized probes. It is also 

easier to modify and characterize the surface of beads (ex-situ) than the walls of a 

microfluidic device. Therefore, several applications using microbeads in microfluidic 

devices have been reported for sensitive detection of biomolecules.30,88-92  
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Chapter 2:  Experimental 

2.1 CHEMICALS 

All chemicals used in this work are described in the individual chapters. 

 

2.2 TECHNIQUES 

Microfabrication: Photolithography and Soft Lithography  Microfabrication 

in this work is based on photolithography and soft lithography.  Photolithography is used 

to fabricate photoresist-coated molds and hydrogel microplugs, while soft lithography is 

for fabrication of PDMS substrates.  

Photolithography has been the dominant technique for chip fabrication in the 

microelectronic industry. Photolithographic techniques, especially those based on 

projection photolithography, have enabled mass-production of microelectronic structures 

and ignited rapid growth of the microelectronic industry.75 In projection 

photolithography, the pattern of a photomask is transferred onto a thin film of photoresist 

spin-coated on a wafer via exposure to light. The patterned film of photoresist protects 

the wafer during subsequent etching steps, which lead to microstructures on the wafer 

surface. After etching the wafer, the photoresist film is removed. The attainable feature 

sizes by this technique are, in principle, only subject to optical diffraction limitations;74 

that is, the resolution of the technique is limited by the wavelength of the light source. 

Even the optical limitation has been overcome by advanced lithographic techniques such 

as extreme ultraviolet (EUV) lithography,93 e-beam lithography,94 and soft X-ray 

lithography.95 
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In this work, chrome-coated glass or photographic films are used as a photomask. 

For fabrication of molds for PDMS substrates, photoresist-coated glass slides were 

exposed to light through the photomask using a mask aligner (Q 4000-6, Quintel Corp., 

San Jose, CA). The photoresist exposed to light is then removed by immersing the slides 

in a developer solution, which results in a patterned photoresist-coated slide. The 

patterned slides are used to mold PDMS substrates having microstructure features in 

subsequent replica molding process. The PDMS monolith having microfluidic features is 

then bonded to a cover glass after being treated in an O2 plasma cleaner (PDC-32G, 

Harrick Scientific Ossining, NY). A photomask is also used to define the structure of the 

hydrogel microplugs in microchannels. The microplugs are photopolymerized inside the 

microfluidic devices.31,96,97 After filling the microchannel with a hydrogel precursor 

solution by capillary action, UV light (365 nm, 300 mW/cm2, EFOS Lite E3000, Ontario, 

Canada) is projected through a photomask attached at a side port of a microscope 

(Diaphot 300, Nikon) as shown in Figure 2.1.98 Unpolymerized precursor solution is 

removed by pumping buffer solution through side-channels in the microfluidic device. 

Further experimental details for fabrication of photoresist-coated molds and hydrogel 

microplugs are described in Chapters 7 and 8.  

Soft lithography complements photolithography in several ways. The procedure 

of soft lithography is rather simple; it can be carried out without expensive lithography 

equipment and still result in microstructure patterns as small as those provided by 

photolithography. Soft lithography includes a variety of techniques, including: contact 

printing, replica molding, microtransfer molding, injection molding, and embossing 

(imprinting).64,65 The replica molding technique allows duplication of complex structures 

present on the surface of a mold in a single curing step. Even fabrication of 

microstructures from a deformed PDMS mold has been reported, which allows 
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Figure 2.1. Schematic illustration of hydrogel photopolymerization. (Adapted from ref. 

#98) 
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generation of complex structures from simple structures on the PDMS mold.64 It also 

allows reliable replication of the complex structures multiple times using a single mold. 

Importantly, this simple replication procedure has been reported to yield replicates having 

a resolution of <10 nm.99 Typical procedures for replica molding are as follows. After 

preparing a mold having the desirable microstructures, prepolymer solution (UV or 

thermally curable) is poured onto the mold. The replica substrate is then peeled off after 

curing. The structures on the replica are complementary to those on the mold. The cured 

polymer replica has almost the same dimensions and topology as the mold. 

In this work, glass slides patterned photoresist films are used as the molds, and 

PDMS is used as the thermally curable prepolymer, respectively. Glass molds having 

microfluidic structures or drainage patterns are fabricated using photolithography as 

described above. The PDMS (Sylgard 184, Dow Corning, Midland, MI) solution is cured 

against the photoresist mold to yield PDMS monoliths having fluidic patterns and PDMS 

replica array substrates containing drainage patterns. Further experimental details for the 

fluidic PDMS monoliths and PDMS replica array substrates are described in the Chapters 

3-8. 

Bioconjugation: Streptavidin-immobilized PDMS Substrates and Probe 

DNA-conjugated Microbeads  The PDMS monolith having a specified drainage pattern 

is functionalized with streptavidin. The functionalization procedure involves two steps: 

silanization of PDMS with 3-mercaptopropyltrimethoxysilane (MPS) and immobilization 

of streptavidin onto the MPS-modified PDMS.27-29 For the silanization process, the 

PDMS monolith is sonicated for 5.0 min each in ethanol and water, followed by drying 

under a stream of N2. The surface of PDMS is then oxidized in an O2 plasma cleaner at 

medium power for 2.0 min. Within 30 s after the plasma treatment, the PDMS monolith 

is exposed to HCl vapor by holding it over the mouth of a bottle containing concentrated 
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HCl for 1.0 min. The PDMS monolith is immediately transferred to a plastic desiccator 

and placed over the top of a Petri dish containing ~ 2.0 mL of MPS with ~1.5 cm distance 

between the PDMS surface and liquid MPS. The desiccator is then connected to a 

vacuum line for 10 s. After disconnecting from the vacuum, the PDMS monolith remains 

in the sealed desiccator for 30 min for the vapor-phase silanization reaction to introduce 

thiol groups on the surface. After the PDMS monolith is removed from the desiccator, it 

is baked in an oven at 80 °C for 20 min.  

Streptavidin-maleimide conjugates (S9415, Sigma-Aldrich, 5.0 mg/mL in a pH 

7.2 sodium phosphate buffer containing 0.15 M NaCl) are then introduced onto the MPS-

modified PDMS surface allowing the reaction between the maleimide and thiol groups to 

proceed for > 2.0 h. The PDMS monolith is then rinsed with water and placed in an 

aqueous 1.5 mM 2-mercaptoethanol (M6250, Sigma-Aldrich) solution for 15 min to 

block any unreacted maleimide groups. After rinsing the PDMS monolith with water 

again, it is placed in a 3 mM N-ethylmaleimide (E3876, Sigma-Aldrich) solution in N,N-

dimethylformamide (D8654, Sigma-Aldrich) for 15 min to block unreacted thiol groups. 

Finally, the streptavidin-coated PDMS monolith is rinsed with water and dried under N2. 

Probe DNA-conjugated microbeads are prepared using the following procedure.30 

First, streptavidin-coated microbeads (ProActive Microspheres, Bangs Laboratories Inc., 

Fishers, IN) are rinsed in a phosphate buffer saline (PBS) solution containing 0.05% (v/v) 

Tween 20 (pH 7.4, 0.15 M NaCl, 4.0 mM KCl, 8.1 mM Na2HPO4, and 1.5 mM KH2PO4) 

and then centrifuged at 400 rpm for 3.0 min. Second, biotinylated single-strand (ss)DNA 

probe solution (5.0 µM) is introduced to the rinsed bead pellet. The amount of added 

ssDNA probes corresponds to a five-fold excess relative to the binding capacity of the 

microbeads. The DNA/bead solution is then incubated with gentle mixing for 30 min at 

25 ± 2 °C. After conjugation, the unbound biotinylated ssDNA probes are removed by 
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centrifugation. The probe-conjugated microbead pellet is rinsed with PBS buffer and 

centrifuged again. The probe-conjugated microbeads are re-suspended in TRIS-

acetate/EDTA (TAE) buffer (pH 8.0, 40 mM tris-acetate, 1.0 mM EDTA, and 0.5 M 

NaCl) and kept at 2.0 °C until needed.  More detailed procedures are described in 

Chapters 7 and 8. 

 Fabrication of Master DNA Microarrays  Oligonucleotides are spotted and 

immobilized on N-hydroxysuccinimide (NHS)-coated glass slides (CodeLink slides, 

Amersham Bioscience) or epoxy-modified glass slides (Nexterion® Slide E, SCHOTT 

North America Inc.) according to the instructions provided by the vendors. Specifically, 

oligonucleotides are spotted using three different tools: a micropipette (Pipettor 40000-

264, VWR), a manual microarrayer (Xenopore Corp., Hawthorne, NJ), and a robotic 

microarrayer (Omnigrid Microarrayer, San Carlos, CA, or a home-built microarrayer 

maintained at the Microarray Core Facility at The University of Texas at Austin). After 

spotting, the master slides are placed inside a sealed chamber in which the humidity is in 

equilibrium with a saturated NaCl solution for immobilization of the spotted 

oligonucleotides. Each immobilization process for different glass slides is described in 

detail in Chapters 3-6.  

Fluorescence Imaging  Fluorescence imaging involves absorption of light at 

specific wavelengths by an atom or molecule, followed by the emission of light at longer 

wavelengths. When the fluorescence molecule absorbs photon energy, electrons are 

excited to a higher energy level. As the electrons relax back to the ground-state, light at 

longer wavelengths is emitted because vibrational energy is lost during relaxation. 

Judiciously chosen fluorophores having well-defined excitation and emission spectra can 

provide useful information about molecules on a surface.  
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 Inverted fluorescence microscopes (Eclipse TE300 and TE2000, Nikon) and a 

microarray scanner (GenePix 4000B, Molecular Devices Corp., Sunnyvale, CA) were 

used in this work. Mercury lamps (X-CiteTM 120, Nikon) are attached to the microscopes 

and are used as the excitation light source. Fluorescence is separated from the excitation 

light by a dichroic mirror in the microscopes. Excitation light is reflected back into the 

objective lens while fluorescence is transmitted. Appropriate filters exclude or transmit 

selected wavelengths of light, and reduce background noise. Digital cameras (SenSys 

1401E for TE300 and Cascade® for TE2000, Photometrics Ltd., Tucson, AZ) based on a 

charge-coupled device (CCD) are connected to the ports of microscopes and used to 

image fluorescence. The microarray scanner uses dual solid-state lasers and a 

photomultiplier tube (PMT) as the light source and the detector, respectively. 
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Chapter 3:  Replication of DNA Microarrays from Zip Code Masters 

3.1 SYNOPSIS 

This report describes a mechanical method for efficient and accurate replication 

of DNA microarrays from a zip code master. The zip code master is a DNA array that 

defines the location of oligonucleotides consisting of two parts: a code sequence, which is 

complementary to one or more of the zip codes, and the functional sequence, which is 

terminated with biotin. Following hybridization of the zip code to the code sequence, a 

replica surface functionalized with streptavidin is brought into conformal contact with the 

surface of the master.  When the two surfaces are separated, the functional and code 

sequences are transferred to the replica and the zip code remains on the surface of the 

master. Using this approach it is possible to prepare replica arrays having any 

configuration from a single, universal master array. Here we demonstrate that this 

approach can be used to replicate master arrays having up to three different sequences, 

that feature sizes as small as 100 µm can be replicated, and that master arrays can be used 

to prepare multiple replicas. 

 

3.2 INTRODUCTION 

Here we report an efficient and accurate method for the replication of DNA 

microarrays. The general strategy is illustrated in Scheme 3.1. First, a zip code master is 

prepared by spotting different single-stranded oligonucleotides onto an appropriate 

surface. Each spot represents a different zip code that will direct the placement of a 

second oligonucleotide.100,101 Second, the zip code master is exposed to a solution 

containing biotin-functionalized oligonucleotides that consist of two parts: a code 
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Scheme 3.1 
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sequence and a functional sequence. Because each code sequence is designed to be 

complementary to just one specific zip code on the master, the biotin-functionalized 

oligonucleotides will be directed to their appropriate zip code locations on the master. 

Third, a replica surface modified with streptavidin is brought into conformal contact with 

the zip code master. This results in binding of the replica surface to the biotinylated 

DNA. Fourth, the replica is separated from the master by mechanical force. This results 

in transfer of the biotinylated oligonucleotide from the master to the replica. The replica 

is now ready to be used as a DNA array, and the zip code master can be rehybridized to 

generate additional replicas. 

Previously, we showed that oligonucleotides spotted onto a glass surface could 

hybridize to their biotin-functionalized complements, and then the complement could be 

transferred to a streptavidin-modified replica surface.27 A similar replication approach 

was recently reported by Stellacci and coworkers, who showed that dehybridization was 

facilitated by heating,102 and that DNA lines as thin as 50 nm could be replicated.103 Gaub 

and coworkers used a related principle to construct force sensors that could distinguish 

between strong and weak intermolecular interactions, but they were not concerned with 

pattern replication.104,105 In contrast to these earlier studies, the zip code approach 

provides a means for using a single master DNA array to prepare oligonucleotide 

replicates having any functional sequence positioned anywhere on the array. Importantly, 

this new approach will also make it possible to use a master DNA array to produce 

replicates of any other material (for example, proteins, carbohydrates, or inorganic 

nanoparticles) that can be labeled with a short oligonucleotide code. Thus, the important 

aspect of the present work is that it represents a major expansion of the scope of our 

original report. 
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DNA microarrays have been increasingly used in high-throughput analysis for a 

wide range of applications, including monitoring gene expression,106 drug screening 

based on drug-DNA interactions,107 and fundamental studies of genetic diseases and 

cancers.108,109 In-situ synthesis and ex-situ spotting are the two families of methods that 

have been used commercially to fabricate DNA microarrays.49,110 The best known in-situ 

method integrates photolithography and solid-state synthesis.110 Each synthesis cycle 

consists of protection, photo-deprotection, and addition of a nucleotide to directly grow 

oligonucleotides on a substrate. The growth of oligonucleotides is spatially defined by 

photolithographic masks, and the number of synthesis cycles required is proportional to 

the length of the oligonucleotides. This method has the advantages of small spot size (~8 

µm spot) and design flexibility,111 but the inefficiency of solid-state reactions limits the 

maximum oligonucleotide length to about 60 basepairs (bps)49,111 and leads to increased 

cost. The second general method for fabricating microarrays is ex-situ spotting of pre-

synthesized oligonucleotides.112 Spotting to a DNA chip surface can be implemented by 

either contact printing using rigid pins113 or by projection through microfabricated 

nozzles.114 Spotting does not impose length restrictions on the patterned 

oligonucleotides.115 However, the expense and time required to prepare an array is 

proportional to the dimensionality of the array and the size of the individual array 

elements, which are large (75 µm to 500 µm) compared to those prepared by in-situ 

methods.49 Moreover, as for any sequential process involving multiple repetitive steps, 

both in-situ synthesis and ex-situ spotting are subject to an accumulation of errors.49 

Other ex-situ methods for delivering pre-synthesized oligonucleotides include patterning 

using microfluidic channels,116 microcontact printing,117 and dip-pen 

nanolithography;118,119 however, all these methods involve manual loading of the 
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oligonucleotides and therefore, at least for now, are not well-suited for creating large-

scale, complex microarrays. 

 

3.3 EXPERIMENTAL 

Chemicals and Materials.  CodeLink slides (Amersham Bioscience, Piscataway, 

NJ), coated with a three-dimensional polymeric scaffold functionalized with N-

hydroxysuccinimide (NHS), were used to fabricate masters. The poly(dimethylsiloxane) 

(PDMS) replicas were prepared from liquid precursors (Sylgard Silicone Elastomer-184 

from Dow Corning, Midland, MI). 3-mercaptopropyltrimethoxysilane (97% from Alfa 

Aesar, Ward Hill, MA) and streptavidin-maleimide (from Sigma-Aldrich, St. Louis, MO) 

were used as received. All chemicals used to prepare buffers were purchased from 

Sigma-Aldrich: sodium phosphate monobasic (Sigma S0751), sodium phosphate dibasic 

(Sigma S0876), Trizma Base (Sigma T6791), Trizma HCl (Sigma T6666), ethanolamine 

(Sigma E9508), sodium dodecyl sulfate (SDS) (Sigma L4522), and 20x SSC (Sigma 

S6639). 

All the oligonucleotides were obtained from Integrated DNA Technologies 

(Coralville, IA). The sequences of the oligonucleotides are provided in Table 3.1. 

Fluorescence micrographs were captured using an inverted microscope (Eclipse TE300, 

Nikon) equipped with a CCD camera (Cascade, Photometrics, Tucson, AZ). The filter set 

(XC102: 475 nm excitation filter, 505 nm dichroic mirror, and 510 nm long-pass 

emission filter) was purchased from Omega Optical, Inc. (Brattleboro, VT). 

Fabrication of Master Arrays.  The master slides were fabricated using 

CodeLink slides according to the instructions provided by the vendor (Amersham 

Bioscience, Piscataway, NJ). 25 µM solutions of 5’-amine-modified oligonucleotides in 

50 mM pH 8.5 phosphate buffer were spotted onto a CodeLink slide using a pipette 
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Table 3.1 Sequences of zip codes, probes, and targets used in this studya 

Name Sequence 

Zip code 1 5’ AAC ATG CAA GGG CAA ATG 3’ 

Zip code 2 5’ GCT GAG GTC GAT GCT GAG 3’ 

Zip code 3 5’ GGT CCG ATT ACC GGT CCG 3’ 

1’A 5’ GGT GAT ATG GCT TGA TGT ACC ATT TGC CCT TGC ATG TT 3’ 

2’B 5’ GGT GAT ATC GCT TGA TGT ACC TCA GCA TCG ACC TCA GC 3’ 

3’C 5’ TGA TTT TCA GCA GGC CTT ATC GGA CCG GTA ATC GGA CC 3’ 

A’ 5’ GTA CAT CAA GCC ATA TCA CC 3’ 

B’ 5’ GTA CAT CAA GCG ATA TCA CC 3’ 

C’ 5’ ATA AGG CCT GCT GAA AAT CA 3’ 

 

a If a functional group, such as an amine or biotin, was attached to a DNA sequence, it 

was always attached at the 5' position. Fluorescein was attached at the 3' end for 1'A, 2'B, 

and 3'C or to the 5' end for A', B', and C'. All oligonucleotides incorporated a spacer. A 

C12 spacer was used for amine-functionalized DNA. A TEG spacer was used for biotin-

modified DNA.  The spacer used for fluorescein is known as Spacer 18. More detailed 

information about it, and the other spacers, can be obtained at the web site of Integrated 

DNA Technologies (http://www.idtdna.com/Home/Home.aspx). All oligonucleotides 

were purified by HPLC. 



 30 

(Pipettor 40000-264, VWR) or a microarrayer (Omnigrid Microarrayer, San Carlos, CA). 

After spotting, the CodeLink slide was placed inside a sealed chamber above a saturated 

NaCl solution and incubated at 22±2 °C for 15 to 20 h. Next, the slide was placed in a 

solution containing 50 mM ethanolamine and 0.1 M TRIS buffer (pH 9.0) at 50 °C for 30 

min to block residual reactive NHS groups. After rinsing with purified water twice, the 

slide was placed in a buffer containing 4x SSC and 0.1% SDS, which was pre-warmed at 

50 °C for 30 min. After rinsing with water again, the slide was dried under a stream of 

N2. 

Only about 50% of the masters prepared using the microarrayer could be 

replicated, but the masters spotted manually worked 100% of time. Apparently the 

contact spotting configuration used by the microarrayer causes some damage to the 

surface of CodeLink slides. Further investigation is underway to clarify this issue. Note, 

however, that when an array can be replicated, the replica is always 100% faithful to the 

master and can always be hybridized to the complement of the functional sequence. No 

false positive signals were ever observed. 

Fabrication of Streptavidin-functionalized PDMS.  Following our previously 

reported procedures,27 thiol groups were first introduced onto a PDMS surface by 

silanization with 3-mercaptopropyltrimethoxysilane (MPS) and then streptavidin was 

immobilized onto MPS-modified PDMS through the reaction between maleimide and 

thiol groups.   

Replication of DNA Microarrays. The master was exposed to a solution 

containing 10 µM oligonucleotide for at least 4 h, and then replication was achieved by 

contacting the hybridized master with a streptavidin-functionalized PDMS surface. In a 

typical replication process, 10 µl pH 7.2 buffer was used to wet the master surface, and 

then the streptavidin-functionalized PDMS was placed on top of the master with a 
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pressure of 1.4 N/cm2 at 22±2 oC. Although a pH 7.2 buffer solution was used to wet the 

master surface in all the experiments presented here, we later found that water (no buffer) 

worked just as well. After 10 min of contact, the PDMS replica was manually peeled off 

the master, rinsed, and blown dry. This experimental approach is based on methodology 

reported by Gaub and coworkers.104,105 

 

3.4 RESULTS AND DISCUSSION 

Replication of a Zip Code Master Having One Zip Code.  Figure 3.1 shows 

that multiple replicas can be prepared from a single zip code master. The master was 

prepared by applying a solution of amine-modified oligonucleotide (zip code 1, Table 

3.1) onto a CodeLink slide (see Experimental Section for details). Next, the master array 

was exposed to oligonucleotide 1'A (Table 3.1). The first 18 bases from the 3’ end of 

oligonucleotide 1'A are the exact complement of zip code 1, and 1'A is labeled with 

fluorescein at the 3’ end and biotin at 5’ end. Following hybridization, the master was 

thoroughly rinsed and the fluorescence micrograph shown in Figure 3.1a was obtained.  

Uniform fluorescence emission from the master surface confirms homogeneous 

hybridization of oligonucleotide 1’A to the zip code master. 

Figures 3.1b and 3.1c are fluorescence micrographs of the master and replica, 

respectively, following replication. Fluorescence intensity is clearly transferred from the 

surface of the master to the replica after contact. The checkerboard pattern results from 

drainage canals (20 µm on center, 10 µm wide, and 3 µm deep) present on the replica 

surface that direct buffer solution away from the contact area during replication. Control 

experiments showed that these canals were essential for successful DNA transfer. 

Specifically, if both the master and the PDMS were dry, then no transfer of DNA was 

observed. Additionally, no transfer was observed in the absence of drainage canals 
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Figure 3.1. Fluorescence micrographs demonstrating transfer of fluorescein-labeled 

DNA from a master slide to a PDMS replica surface.  (a) The master slide modified with 

zip code 1 (Table 3.1) and hybridized to fluorescein- and biotin-labeled oligonucleotides 

1’A whose code sequence is complementary to zip code 1. (b) The master slide after 

transfer. (c) The PDMS replica after transfer. (d) The second replica obtained after 

rehybridization of the master with oligonucleotide 1'A. (e) The third replica obtained 

after rehybridization of the master with oligonucleotide 1'A. (f) Fluorescence intensity 

profiles obtained along the dashed lines shown in frames (a)-(e). For clarity, profiles (c) 

and (d) are offset by 6000 and 3000 counts, respectively. The image integration time was 

30 s for all frames. The gray scale is 5000-25000 counts for (a) and (b), and 4500-6500 

counts for (c), (d), and (e). 
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regardless of whether buffer was present. We suspect that, in the absence of drainage 

canals, solvent trapped between the two surfaces prevent molecular contact between the 

biotin-functionalized oligonucleotides on the master and streptavidin present on replica. 

Figure 3.1f provides a quantitative representation of the data shown in Figures 3.1b and 

3.1c. After replication, the contrast between the light and dark areas on the master (~1300 

counts, Figure 3.1b) is very close to that of the replica (~1100 counts, Figure 3.1c), 

indicating that only a small fraction of the DNA is lost during transfer.  

Figures 3.1d and 3.1e show the second and the third replicas obtained from the 

same master after rehybridization with oligonucleotide 1'A labeled with fluorescein and 

biotin. The contrast between the light and dark areas for the three consecutive replicas is 

1100, 900, and 1200 counts, respectively, indicating good reproducibility and that there is 

no progressive loss of DNA from the master after formation of three replicas.  

The data presented thus far indicate that replication is a consequence of molecular 

contact and binding between the biotin groups present on the CodeLink slide and 

streptavidin on the PDMS replica surface. Because in the current experiment the binding 

force between biotin and streptavidin is stronger than between DNA base pairs,104,105 the 

DNA duplexes separate and the biotin-functionalized oligonucleotides transfer to the 

replica surface. For very long DNA duplexes, however, it is important to separate the two 

surfaces slowly to avoid breaking the biotin/streptavidin bond. That is, the force required 

to separate a DNA duplex is independent of its length if the separation rate is 

appropriately controlled.104,105  

For single-oligonucleotide replicas, the spot size is defined by the spacing of the 

canals on the replica surface.  For example, each replica spot shown in Figures 3.1c-3.1e 

is 10 x 10 µm, which is comparable to the smallest feature sizes obtained by in-situ 

synthesis (~8 µm),111 and much smaller than those obtained by ex-situ spotting (~75 
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µm).49 However, for replicas patterned with multiple DNA oligonucleotides, the 

important size parameter is defined by the dimensions of the master, not the replica. 

Stellacci and coworkers previously demonstrated masters and replicas having feature 

dimensions as small as 50 nm.103  

To demonstrate replication from a master array instead of from a homogeneous 

surface, a microarrayer was used to print a 3 x 3 array of nine, ~100 µm-diameter spots of 

zip code 1 (Table 3.1), and then the master array was copied onto a PDMS replica surface 

using the procedure discussed earlier for Figure 3.1. Figure 3.2a is a fluorescence 

micrograph obtained from the master after hybridization with fluorescein-labeled and 

biotin-functionalized DNA sequence 1’A (Table 3.1). The presence of fluorescence, 

which is absent prior to hybridization, confirms hybridization of the functional sequence. 

The fluorescence micrograph shown in Figure 3.2b was obtained from the PDMS replica 

surface after conformal contact of the two substrates. The 3 x 3 array observed on the 

replica (Figure 3.2b) exactly mirrors the master array (Figure 3.2a), except for the 

presence of the drainage canals. An optical image of the replica surface (Figure 3.2c) 

shows the drainage design of the replica. We have successfully replicated master arrays 

having up to 100 elements using this procedure, but they are not shown here because of 

the limited field of view of the CCD camera used in these experiments.  

Replication from a Master Having Multiple Zip Codes.  It is important to 

demonstrate that replication is successful for masters having multiple zip codes. To 

demonstrate this function, a 4 x 3 master array containing three different zip codes was 

prepared using a microarrayer. Each row is composed of four spots having a nominal 

diameter and edge-to-edge distance of ~100 µm. With reference to Table 3.1, the first, 

second, and third rows correspond to zip codes 1, 2, and 3, respectively. 
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Figure 3.2. Micrographs demonstrating replication of a 3 x 3 master array having just 

one DNA zip code. (a) A fluorescence micrograph obtained from a master array spotted 

with zip code 1 (Table 3.1) and subsequently hybridized to fluorescein- and biotin-

labeled oligonucleotides 1’A whose code sequence is the complement of zip code 1. (b) 

A fluorescence micrograph obtained from the PDMS surface after replication of the 

master. (c) An optical micrograph of the replica surface showing the drainage canals. The 

integration time for both (a) and (b) was 30 s. The gray scale is 2000-20000 counts for 

frame (a), and 2000-8000 counts for frame (b). In frame (b), all three spots in the right 

column are cut off, because they happen to intersect a major drainage canal as shown in 

the optical image, frame (c). 
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Hybridization was carried out for at least 4 h with 10 µM fluorescein-labeled and 

biotin-functionalized oligonucleotide 1’A (Table 3.1), which has a code sequence that 

only matches zip code 1, and afterwards fluorescence was observed only from the four 

spots in the first row (Figure 3.3a). This result clearly shows that the zip code master 

correctly directs the proper code sequence to the appropriate location on the master.100,101 

Following replication (Figure 3.3b), fluorescence is only observed from the top row of 

spots, corresponding to zip code 1. This confirms that only the correct functional 

sequence is transferred to the replica surface. 

Preparation and Functionality of Replica Microarrays Having Multiple 

Sequences.  Here, we set out to demonstrate that a master array having multiple zip 

codes could direct placement of multiple codes, that multiple code/functional sequences 

could be transferred to the replica, and that the replica functional sequences are active. 

The experiment demonstrating these three points was carried out as follows. First, a 4 x 3 

master array having three zip codes was prepared as described for Figure 3.3. A solution 

containing a mixture of three non-fluorescent, biotin-functionalized oligonucleotides 

(1’A, 2’B, and 3’C, Table 3.1; 10 µM each) was introduced onto the master surface for at 

least 4 h. The code sequence of each of the three oligonucleotides is complementary to 

exactly one of the zip codes present on the master surface. Thus, oligonucleotides 1'A, 

2'A, and 3'A are directed to zip codes 1, 2, and 3 respectively. Following replication, the 

replica array was exposed to a solution containing a mixture of three fluorescein-labeled 

targets (A’, B’, and C’, Table 3.1; 10 µM each) for at least 4 h. Each target was chosen to 

match the functional sequence of one of the three oligonucleotides present on the replica 

surface. The fluorescence image obtained from the replica clearly shows a 4 x 3 array 

(Figure 3.4). This experiment demonstrated that a replica array having multiple 

sequences can be prepared and used for hybridization-based applications. 



 37 

 

 

 

 

 

Figure 3.3. Fluorescence micrographs demonstrating accurate replication of a master 

having multiple zip codes. (a) A 4 x 3 master array having three zip codes (row 1, zip 

code 1; row 2, zip code 2; and row 3, zip code 3; Table 3.1) after hybridization with 

fluorescein- and biotin-labeled oligonucleotides 1’A whose code sequence is only 

complementary to zip code 1. (b) A PDMS replica of the master showing only one row of 

transferred oligonucleotides. The integration time for both (a) and (b) was 30 s. The gray 

scale is 5000-13000 counts for (a), and 5000-8000 counts for (b). 
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Figure 3.4. Fluorescence micrograph demonstrating the functionality of a replica. First, a 

4 x 3 master array having three zip codes (row 1, zip code 1; row 2, zip code 2; and row 

3, zip code 3; Table 3.1) was prepared and hybridized to a mixture of three non-

fluorescent, biotin-functionalized oligonucleotides: 1’A, 2’B, and 3’C (Table 3.1) whose 

code sequences are complementary to zip code 1, zip code 2, and zip code 3, 

respectively.  After replication, the resulting PDMS surfaces were exposed to a mixture 

of fluorescein-labeled targets A’, B’, and C’ that are complementary to the functional 

sequences of 1’A, 2’B, and 3’C, respectively. The integration time was 30 s, and the gray 

scale is 5000-8000 counts. 
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3.5 CONCLUSION 

In this work we demonstrated an efficient and accurate method for replication of 

DNA microarrays from a zip code master. For arrays containing multiple DNA 

sequences, the replica spots can be as small as 100 µm. Three consecutive replications 

from the same master were successfully achieved with no significant decrease of 

oligonucleotide density on the replica surface. Replication from a 4 x 3 master array 

having three zip codes proved to be accurate and there was no observable cross-

reactivity. Future experiments will focus on larger scale arrays, smaller spot sizes, and 

replication of more complex biological materials (proteins and viruses) and inorganic 

nanomaterials. 
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Chapter 4:  Transfer of Surface Polymerase Reaction Products to a 
Secondary Platform with Conservation of Spatial Registration 

4.1 SYNOPSIS 

Here, we describe a method for directly transferring very small amounts of 

reaction products from one surface to another. The approach is illustrated using a T4 

DNA polymerase reaction to extend primers hybridized to a surface-confined DNA 

template. Following the extension reaction, the resulting oligonucleotide is transferred to 

a product surface. The important results are that: (1) the spatial registration of the product 

is preserved after transfer; (2) the same reactant surface can be used to generate and 

transfer multiple iterations of products; (3) the reaction products are biologically active 

after transfer. 

 

4.2 INTRODUCTION 

In this chapter, we describe a method for directly transferring the product of a 

biological surface reaction from a primary reactant surface to a secondary product 

surface. Our approach, which is related to an array-replication method reported 

previously by us,27,28 Stellacci,102,103,120 and others121, is illustrated in Scheme 4.1. First, 

single-strand DNA (ssDNA) modified with a reactive amine group on the 5’ end is 

spotted onto an epoxy-modified glass surface (complete experimental details are provided 

in the Experimental). This results in immobilization of the DNA template onto the 

reactant surface. Second, biotinylated primer oligonucleotides are hybridized to the 

ssDNA template. Third, the primers are extended via a T4 polymerase reaction.122,123 

Fourth, a streptavidin-coated PDMS monolith is brought contact with the reactant 

surface.27,28 This results in binding of the reaction product (the extended DNA 
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Scheme 4.1 
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complement) to the PDMS product surface via biotin/streptavidin interaction. Finally, the 

reactant and product surfaces are mechanically separated from one-another, resulting in 

transfer of the product of the polymerase reaction to the PDMS surface. We show later 

that product surface is able to selectively bind its complementary DNA and that a single 

reactant surface can be used multiple times to generate isolated product. Importantly, 

spatial registration is maintained between the reactant and product surfaces. 

 

4.3 EXPERIMENTAL 

Chemicals, Materials, and Characterization  Glass slides coated with an epoxy 

monolayer (Nexterion® Slide E, SCHOTT North America, Inc., Elmsford, NY) were used 

to prepare the reaction surfaces. The poly(dimethylsiloxane) (PDMS) product surfaces 

were prepared from Sylgard 184 (Dow Corning, Midland, MI). 3-

mercaptopropyltrimethoxysilane (MPS) was purchased from Alfa Aesar (Ward Hill, 

MA). Streptavidin-maleimide conjugates (Sigma S9415) and other chemicals for buffers 

or blocking solutions were obtained from Sigma-Aldrich: 20x saline-sodium citrate 

(SSC) buffer (Sigma S6639), 10% sodium dodecyl sulfate (SDS) solution (Sigma 

L4522), sodium phosphate monobasic (Sigma S0751), sodium phosphate dibasic (Sigma 

S0876), Triton® X-100 (Sigma T8787), Trizma base (Sigma T6791), Trizma HCl (Sigma 

T6666), ethanolamine (Sigma E9508), 2-mercaptoethanol (Sigma M6250), and N-

ethylmaleimide (Sigma E3876). T4 DNA polymerase (EP0061), deoxyribonucleotide 

triphosphate (dNTP) mix (R0241), dNTP set (R0181), and nuclease-free water were used 

as received from Fermentas Inc. (Hanover, MD). Cy3 fluorescent dye-labeled 

deoxycytidine triphosphate (Cy3-dCTP) was obtained from Amersham Biosciences Corp. 

(Piscataway, NJ). 
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DNA oligonucleotides were obtained from Integrated DNA Technologies 

(Coralville, IA) and used without further purification after. The sequences and 

modifications are as follows: template (5’-5AmMC12-(iSp18)5-TAT AAC AAG ACC 

TTC CTC AAT CCG GTG CAG AAT CGC AT-3’), primer (5’-5BioTEG-ATG CGA 

TTC TGC ACC-3’), and probe (5’-56FAM-TAT AAC AAG ACC TTC CTC AAT CC-

3’). Here, 5AmMC12, (iSp18)5, 5BioTEG, and 56FAM correspond, respectively, to an 

amino modifier having a 12-carbon spacer on the 5’ end of the DNA, 18-carbon internal 

spacers repeated five times, a biotin modifier with a tetra-ethyleneglycol (TEG) spacer on 

the 5’end of the DNA, and a fluorescein dye attached to the 5’ end of DNA. This is the 

same notation used by the DNA supplier (Integrated DNA Technologies, Coralville, IA).  

A fluorescence microscope (Nikon TE2000, Nikon Co., Tokyo, Japan) equipped 

with filter sets (filter # 41001 for fluorescein and 31002 for Cy3, Chroma Technology 

Corp., Rockingham, VT), a mercury lamp (X-CiteTM 120, Nikon Co), and a CCD camera 

(Cascade®, Photometrics Ltd., Tucson, AZ) was used to acquire optical and fluorescence 

micrographs. Micrographs were processed using V++ Precision Digital Imaging software 

(Digital Optics, Auckland, New Zealand).  

Fabrication of Reaction Master Slides  Template oligonucleotides were 

immobilized on epoxy-modified glass slides (Nexterion® Slide E) according to the 

instructions provided by the vendor (SCHOTT North America, Inc.). Template solution 

(25 µM in 50 mM sodium phosphate buffer, pH 8.5) was pipetted onto the glass slide. 

Next the slide was placed into a chamber in which the humidity was controlled with 

saturated NaCl solution at 20 to 25 °C. After incubation, the slide was washed 

sequentially as follows at 20 to 25 °C to remove unbound templates and buffer 

substances: 1 x 5 min in 0.1% Triton® X-100 solution, 2 x 2 min in 1 mM HCl solution, 1 

x 10 min in 100 mM KCl solution, and 1 x 1 min in Milli-Q water (18 MΩ•cm, 
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Millipore, Bedford, MA). Next, the slide was placed in blocking solution (50 mM 

ethanolamine and 0.1 % SDS in 0.1 M TRIS buffer, pH 9.0) for 15 min at 50 °C. After 

washing with Milli-Q water for 1 min, the slide was blown dry by N2 stream to avoid 

water stains on the slide surface. 

Fabrication of Streptavidin-modified PDMS Monolith  The PDMS product 

surface was microfabricated with drainage canals and then functionalized with 

streptavidin as previously described.27,28 Briefly, the PDMS surface was modified with 

thiol groups by silanization with 3-mercaptopropyltrimethoxysilane (MPS). Then, 

streptavidin-maleimide conjugate solution was introduced onto the thiol-modified PDMS 

surface allowing the reaction between maleimide and thiol groups. The unreacted 

maleimide and thiol groups were blocked by incubating the functionalized PDMS into a 

1.5 mM 2-mercaptoethanol solution and a 3 mM N-ethylmaleimide solution, 

respectively. 

Surface Polymerase Reaction  The reactant surface (Scheme 4.1) immobilized 

with DNA templates was incubated with the primer solution (10 µM in 4x SSC buffer 

containing 0.1% SDS) in a sealed humidity chamber at 20 to 25 °C for 15 h to 20 h. After 

primer hybridization, the slide was washed sequentially as follows at 20 to 25 °C: 1 x 10 

min in 2x SSC buffer containing 0.2% SDS, 1 x 10 min in 2x SSC buffer, and 1 x 10 min 

in 0.2x SSC buffer, and then blown dry with N2. Next, the slide was exposed to a 

polymerase reaction mixture (20 µL) including T4 DNA polymerase (0.2 µL: 1 u), 5x 

reaction buffer (4 µL: 335 mM TRIS-HCl pH 8.8 at 25 °C, 33 mM MgCl2, 5 mM DTT, 

84 mM (NH4)2SO4), a 2 mM dNTP mixture (1 µL: 0.1 mM final concentration), and 

nuclease-free water (14.8 µL). Polymerase solutions incorporating Cy3-dCTP were 

prepared with T4 DNA polymerase (0.2 µL: 1 u), 5x reaction buffer (4 µL: 335 mM 

TRIS-HCl pH 8.8 at 25 °C, 33 mM MgCl2, 5 mM DTT, 84 mM (NH4)2SO4), a 2 mM 
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dNTP mixture without dCTP (1 µL: 0.1 mM final concentration), 1 mM Cy3-dCTP (2 

µL: 0.1 mM final concentration), and nuclease-free water (12.8 µL). The slide and the 

reaction mixture was incubated in an incubator (model # 1570, Sheldon Manufacturing 

Inc., Cornelius, OR) at 25 °C for 5 min. After incubation, the slide was sequentially 

rinsed with 2x SSC buffer containing 0.1% SDS and with 0.1x SSC buffer.  

Transfer of Polymerase Reaction Products  Product transfer was achieved 

using a slight variation of a previously reported procedure.27,28 Briefly, 4x SSC buffer (10 

µL) was dropped on the reaction master to wet the surface, and then streptavidin-

functionalized PDMS was brought into contact with the reaction surface. A pressure of 

1.4 N/cm2 was applied at 20 to 25 °C for 10 min. Next, the PDMS product surface was 

peeled off the glass reaction surface with constant separation speed (400 µm/s) using a 

linear actuator (CMA-25CC, Newport Corp., Irvine, CA), and then both surfaces were 

washed in buffer and blown dry. 

 

4.4 RESULTS AND DISCUSSION 

Figure 4.1 demonstrates ssDNA immobilization onto the reactant surface, primer 

annealing and extension, and product transfer. Specifically, Figure 4.1a is a fluorescence 

micrograph obtained after immobilizing the 38-base, ssDNA template onto an epoxy-

modified glass surface, annealing the primer to the template, and then extending the 

primer. In this case, the polymerase reaction mixture included dye-labeled deoxycytidine 

triphosphate (Cy3-dCTP), and therefore the extended primer is fluorescent (Scheme 4.1). 

Control experiments indicated that no fluorescence could be detected from the reactant 

surface after immobilization of the template and annealing of the primer, but before 

addition of Cy3-dCTP and primer extension (Figure 4.2a). Likewise, no fluorescence was 

observed when the primer-annealed reactant surface was exposed to all reactants 
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Figure 4.1. Fluorescence micrographs demonstrating extension of primers and transfer of 

the extended primers. (a) A fluorescence micrograph obtained from a reactant surface 

after a polymerase reaction incorporated Cy3-dCTP into the extended primers. (b) A 

fluorescence micrograph obtained from the reactant surface after transfer of the extended 

primers. (c) A fluorescence micrograph obtained from the product surface after transfer 

of the extended primers. (d) Fluorescence intensity profiles obtained along the dotted 

lines shown in (a)-(c). Integration time was 100 ms. Gray scales are 16000-42000 counts 

for (a) and (b), and 2500-15000 counts for (c). 
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Figure 4.2. Fluorescence micrographs. (a) A reactant surface modified with template 

oligonucleotides and hybridized to biotinylated primer oligonucleotides, but before 

primer extension and incorporation of Cy3-dCTP. (b) A reactant surface treated 

identically to that shown in Figure 4.1a, but in the absence of the T4 DNA polymerase. 

The integration time was 1000 ms for (a) and 100 ms for (b). The gray scale is 16000-

42000 counts for both micrographs. 
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(including Cy3-dCTP) except for the T4 DNA polymerase and then rinsed with buffer 

(Figure 4.2b). This indicates no detectable level of nonspecific adsorption of the dye. 

Parts b and c of Figure 4.1 are fluorescence micrographs of the reactant and product 

surface, respectively, after transfer of the extended primer. The dark regions on the 

reactant surface (Figure 4.1b) correspond to DNA incorporating Cy3-dCTP that was 

transferred to the product surface, and the light regions in Figure 4.1c correspond to the 

transferred DNA on the product surface. The checkerboard pattern results from drainage 

canals (20 µm on center, 10 µm wide, and 3 µm deep) on the product surface (Figure 

4.3). These canals are necessary for successful DNA transfer, because they provide a 

means for buffer solution trapped between the reactant and product surfaces to escape.27,28 

Figure 4.1d shows fluorescence intensity profiles obtained along the dotted lines in 

Figures 4.1a-4.1c. The average intensity difference between the bright and dark regions 

on the reactant surface ((6.8 ± 0.2) x 103 counts, Figure 4.1b) is very close to that on the 

product surface ((6.0 ± 0.4) x 103 counts, Figure 4.1c), indicating little net loss of 

extended primers during transfer.  

Figure 4.4 shows that multiple primer-extension reactions and transfers can be 

carried out using a single reactant surface. These experiments were executed using the 

approach shown in Figure 4.4e. After annealing the primers to the immobilized template 

DNA, the polymerase reaction was performed using an unlabeled mixture of 

deoxyribonucleotide triphosphates (dNTP). This results in a surface that is not 

fluorescent. Next, the extended and nonfluorescent primers were transferred to a product 

surface. Finally, fluorescently labeled probe DNA, complementary to only the extended 

sequence (not to the primer), was exposed to the product surface. This process was 

carried out three times using the same reactant surface, and fluorescence micrographs of 

the three resulting product surfaces are shown in Figures 4.4a-4.4c. Note that in the 
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Figure 4.3. Optical micrograph showing the drainage pattern on a PDMS product 

surface. 
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Figure 4.4. Fluorescence micrographs demonstrating multiple transfers of extended 

primers from a single reactant surface. (a) A fluorescence micrograph obtained from a 

product surface after primer extension, transfer of the extended primers, and 

hybridization of a fluorescent probe complementary to the extended primer (but not to the 

primer itself). (b) Same as (a), but after a second round of primer extension, transfer, and 

hybridization. (c) Same as (a), but after a third round of primer extension, transfer, and 

hybridization. (d) Fluorescence intensity profiles obtained along the dotted white lines 

shown in (a)-(c). (e) Scheme showing the experimental approach used to obtain the data 

in Frames (a)-(d). The star symbols represent the fluorescent dye. The integration time 

was 1000 ms. The gray scale is 2500-5500 counts for (a)-(c). The fluorophore attached to 

the probe oligonucleotide was FAM (fluorescein). 
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absence of the T4 polymerase, no fluorescence was detected on the product surface 

(Figure 4.5). There are three important conclusions that arise from this set of 

experiments. First, it demonstrates that multiple product transfers can be carried out using 

the same reactant surface. Figure 4.4d provides line scans corresponding to the three 

micrographs. These show that the average modulation in fluorescence is 1040 ± 110, 920 

± 50, and 1190 ± 190 for the first, second, and third transfers, respectively. A duplicate of 

this experiment was carried out using a different reactant surface, and in that case there 

was more variation between the first (1070 ± 90), second (1090 ± 110), and third (630 ± 

50) replicates (Figure 4.6). Second, when this experiment was carried out in the absence 

of internal spacers between the template oligonucleotide and the surface (18-carbon 

internal spacers repeated five time: iSp185, Integrated DNA Technologies, Coralville), no 

detectable hybridization of the fluorescently labeled complement was observed. This is 

likely a consequence of steric hindrance between the T4 polymerase and the glass 

surface, which results in incomplete primer extension. Third, Figure 4.4 clearly shows 

that the transferred reaction product is functional, because it hybridizes to its fluorescent 

complement. 

 

4.5 CONCLUSION 

There are two important conclusions resulting from this study. First, very small 

amounts of reaction products can be transferred from the reactant surface to the product 

surface. Here, we demonstrated transfer of ~10-14 moles of DNA oligonucleotides,83,124 but 

there is no technological barrier for reducing this to as few as ~10-19 moles.103 Second, the 

spatial relationship between reactant and product surfaces are preserved with micron-

scale resolution after transfer, and it seems likely that this could be reduced still further.103 

This approach is demonstrated for a DNA polymerase reaction, but it should be useful for 
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Figure 4.5. Fluorescence micrograph of a product surface obtained via transfer from a 

reactant surface similar to that shown in Figure 4.2b, but using an unlabeled mixture of 

dNTP not containing Cy3-dCTP, and subsequent exposure to the fluorescently labeled 

complement of the extended primer (but not to the primer itself). Note that this is a 

control experiment, and the experiment was carried out without exposure of the reactant 

surface to the T4 DNA polymerase. The integration time was 1000 ms, and the gray scale 

is 2500-5500 counts. 
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Figure 4.6. A duplicate experiment analogous to that shown in Figure 4.4. Fluorescence 

micrographs demonstrating multiple transfers of extended primers from a single reactant 

surface. (a) A fluorescence micrograph obtained from a product surface after primer 

extension, transfer of the extended primers, and hybridization of a fluorescent probe 

complementary to the extended primer (but not to the primer itself). (b) Same as (a), but 

after a second round of primer extension, transfer, and hybridization. (c) Same as (a), but 

after a third round of primer extension, transfer, and hybridization. (d) Fluorescence 

intensity profiles obtained along the dotted white lines shown in (a)-(c). The integration 

time was 1000 ms and the gray scale is 2500-5500 counts for (a)-(c). 
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other chemical and biological reactions too. Applications to high-throughput screening 

and separation of very small amounts of reaction products from a complex milieu are 

easily envisioned. 
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Chapter 5:  Replication of DNA Microarrays after Enzymatic Synthesis 
of DNA on Masters 

5.1 SYNOPSIS 

In this paper we describe a method for replication of DNA microarrays. The 

approach involves in-situ, enzymatic synthesis of a DNA complement array on a 

prefabricated master array, followed of the complement array to a second substrate. The 

new findings reported here include the following. First, a single master array having 

DNA spots as small as 200 µm can be used to prepare up to three replicas without a 

significant degree of change in the transfer efficiency. Second, DNA master arrays 

containing up to at least ~2300 spots (100 µm spot size) can be replicated. Third, arrays 

consisting of multiple different oligonucleotide sequences can be replicated. In all cases, 

the replicate arrays are able to bind complementary oligonucleotide sequences. 

 

5.2 INTRODUCTION 

We recently reported a method for parallel replication of DNA microarrays 

(Scheme 5.1).27-29 The approach consists of 5 steps. First, a master DNA array is prepared 

by covalent immobilization of amine-functionalized DNA templates on an epoxy-

modified glass substrate. Second, biotinylated primer oligonucleotides, consisting of a 

single sequence, are hybridized to the distal end of the template DNA. Third, the primers 

are extended using a T4 DNA polymerase enzyme. Fourth, a streptavidin-coated 

poly(dimethylsiloxane) (PDMS) monolith is brought into contact with the master. This 

results in binding of the extended, biotinylated primers to the PDMS surface. Fifth, the 

PDMS substrate is mechanically separated from the glass master array. This results in 
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transfer of the extended primers to the PDMS surface, and it leaves the original master 

array ready to prepare a second replicate array.   

In our first report of this method,29 we demonstrated that a single, large DNA spot 

could be replicated up to three times. Here, we expand upon the scope of this approach in 

three ways. First, we show that master DNA microarrays consisting of three unique DNA 

sequences (200 µm spot size) can be faithfully replicated. Second, master arrays 

containing up to ~2300 individual 100 µm DNA spots are replicated. Third, a single 

master having DNA spots as small as 200 µm is used to prepare three replicate arrays 

without a significant decrease in transfer efficiency. Importantly, these findings indicate 

that mechanical replication of DNA microarrays is robust and scaleable. 

Most existing methods for the fabrication of DNA microarrays fall into one of 

two categories: parallel light-directed synthesis and serial mechanical spotting of pre-

synthesized DNA oligonucleotides.49,51,125-127 The light-directed method combines either 

photolithography or micromirror128 technology with stepwise, in-situ solid-phase 

oligonucleotide synthesis. Light-directed synthesis can yield spot sizes as small as 25 µm, 

but the length of the resulting oligonucleotides is usually limited to 25 bases.127,129 DNA 

microarrays can be also produced by delivery of pre-synthesized oligonucleotides. 

Spotting is carried out using either a rigid pin to transfer solution to the array substrate or 

by projecting a liquid drop from a jet nozzle. This delivery method does not exert 

limitations on the length of the oligonucleotides, but it does require the use of 

presynthesized oligonucleotides and results in larger spot sizes (75~500 µm) compared to 

light-directed methods.49 Additionally, the serial spotting approach could be subject to an 

accumulation of errors such as contamination of spots, particularly for large-scale arrays. 

A few other microarray fabrication methods have been reported, but like ours, they are 

still in the development stage. These include scanning probe methods130-132 (dip-pen 
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nanolithography, nanografting, and meniscus force nanografting), and approaches based 

on microcontact printing.133  

In addition to the method shown in Scheme 5.1,29 our group27,28 and the Stellacci 

group102,103,120 have reported related methods for microarray replication. For example, we 

showed that presynthesized oligonucleotides could be used in place of in-situ, enzymatic 

synthesis.27 At about the same time, Stellacci and coworkers reported a similar replication 

approach, but they used heating rather than mechanical unzipping104,105 to separate the 

master and replicate oligonucleotides. They also showed that DNA features as small as 

50 nm could be transferred using this approach.103 Finally, we recently demonstrated the 

use of 'zip code' master arrays, which provide a means for replicating microarrays having 

different spot patterns using a single master array.28 

 

5.3 EXPERIMENTAL 

Chemicals and Materials.  Glass slides coated with an epoxy monolayer 

(Nexterion® Slide E, SCHOTT North America, Inc., Elmsford, NY) were used to 

fabricate master DNA microarrays. The poly(dimethylsiloxane) (PDMS) monoliths were 

prepared from Sylgard 184 (Dow Corning, Midland, MI). Streptavidin-maleimide 

conjugates (Sigma S9415), 3-mercaptopropyltrimethoxysilane (MPS) (Fluka 63800), and 

other chemicals for buffers or blocking solutions were obtained from Sigma-Aldrich: 20x 

saline-sodium citrate (SSC) buffer (Sigma S6639), 10% sodium dodecyl sulfate (SDS) 

solution (Sigma L4522), sodium phosphate monobasic (Sigma S0751), sodium phosphate 

dibasic (Sigma S0876), Triton® X-100 (Sigma T8787), Trizma base (Sigma T6791), 

Trizma HCl (Sigma T6666), ethanolamine (Sigma E9508), 2-mercaptoethanol (Sigma 

M6250), and N-ethylmaleimide (Sigma E3876). T4 DNA polymerase (EP0061) supplied 

with 5x reaction buffer (335 mM TRIS-HCl pH 8.8 at 25 °C, 33 mM MgCl2, 5 mM DTT, 
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84 mM (NH4)2SO4), deoxyribonucleotide triphosphate (dNTP) mix (R0241), dNTP set 

(R0181), and nuclease-free water were used as received from Fermentas Inc. (Hanover, 

MD). Cy3 fluorescent dye-labeled deoxycytidine triphosphate (Cy3-dCTP) was obtained 

from Amersham Biosciences Corp. (Piscataway, NJ). DNA oligonucleotides were 

obtained from Integrated DNA Technologies (Coralville, IA). The sequences and 

modifications are provided in Table 5.1.  

Characterization.  A fluorescence microscope (Nikon TE2000, Nikon Co., 

Tokyo, Japan) equipped with appropriate filter sets (filter #: 41001 for fluorescein, 31002 

for Cy3, and 41008 for Cy5, Chroma Technology Corp., Rockingham, VT), a mercury 

lamp (X-CiteTM 120, Nikon Co), and a CCD camera (Cascade®, Photometrics Ltd., 

Tucson, AZ) was used to acquire optical and fluorescence micrographs. Micrographs 

were processed using V++ Precision Digital Imaging software (Digital Optics, Auckland, 

New Zealand). Large density master arrays were scanned using a microarray scanner 

(GenePix 4000B, Molecular Devices Corp., Sunnyvale, CA). 

Fabrication of Master Arrays.  The master arrays were fabricated using epoxy-

modified glass slides (Nexterion® Slide E) as previously described,27-29 but with some 

modifications. Briefly, template oligonucleotide solutions (25 µM in 50 mM sodium 

phosphate buffer, pH 8.5) were spotted onto the glass slides using either a manual 

microarrayer (Xenopore Corp., Hawthorne, NJ) in a home-built humidity chamber, or a 

home-built robotic microarrayer. Next, the spotted slide was placed in a chamber in 

which the humidity was in equilibrium with a saturated NaCl solution at 20 to 25 °C. 

After incubation, the slide was washed to remove unbound templates and buffer 

substances using the following protocol (at 20 to 25 °C): 1 x 5 min in 0.1% Triton® X-

100 solution, 2 x 2 min in 1 mM HCl solution, 1 x 10 min in 100 mM KCl solution, and 1 

x 1 min in Milli-Q water (18 MΩ•cm, Millipore, Bedford, MA). Next, the slide was 
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Table 5.1 Sequences of templates, targets, and a primer in this studya. 

 
aHere, 5AmMC12, (iSp18)5, 5BioTEG, 56FAM, 5Cy3, and 5Cy5 correspond, 

respectively, to an amino modifier having a 12-carbon spacer on the 5’ end of the DNA, 

18-atom hexaethyleneglycol spacers repeated five times, a biotin modifier with a 

tetraethyleneglycol (TEG) spacer on the 5’ end of the DNA, a fluorescein dye attached to 

the 5’ end of the DNA, a Cy3 dye attached to the 5’ end of the DNA, and a Cy5 dye 

attached to the 5’ end of the DNA. This is the same notation used by the DNA supplier 

(Integrated DNA Technologies, Coralville, IA). 
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placed in a blocking solution (50 mM ethanolamine and 0.1 % SDS in 0.1 M TRIS 

buffer, pH 9.0) for 15 min at 50 °C. After washing with Milli-Q water for 1 min, the slide 

was blown dry by a N2 stream to avoid water stains on the slide surface.  

Fabrication of Streptavidin-modified PDMS Monoliths.  Nanoscale, conformal 

contact between the master and replica surfaces is required for transfer of the replicate 

DNA array (Scheme 5.1, step c). This requires the use of micron-scale canals to direct 

buffer solution away from the interface during contact. As previously described,27-29 these 

canals were introduced into the PDMS surface using a micromolding process,134 and then 

the entire PDMS surface was functionalized with streptavidin. The latter 

functionalization was carried out as follows. First, the microstructured PDMS surface 

was silanized with 3-mercaptopropyltrimethoxysilane (MPS). Second, a streptavidin-

maleimide conjugate was covalently linked to the PDMS surface via the resulting thiol 

groups. The unreacted maleimide and thiol groups were blocked by incubating the 

functionalized PDMS into a 1.5 mM 2-mercaptoethanol solution and a 3 mM N-

ethylmaleimide solution, respectively. 

Replication of Master Arrays.  The replication procedure used here was similar 

to that we reported earlier, but there were a few modifications.27-29 First, the master slide 

was exposed to a primer solution, which was then extended for 5 min in a polymerase 

solution at 25 °C. The polymerase reaction mixture contained T4 DNA polymerase (0.05 

u/µL) and a dNTP mixture (0.1 mM) in a polymerase reaction buffer (1x: 67 mM TRIS-

HCl (pH 8.8), 6.6 mM MgCl2, 1 mM DTT, 16.8 mM (NH4)2SO4). Polymerase solutions 

incorporating Cy3-dCTP were prepared the same way, except using a dNTP mixture with 

Cy3-dCTP (0.1 mM) unless specifically mentioned otherwise. For polymerase reactions 

on high-density master arrays, incubation chambers (CoverWellTM, Grace Bio-Labs, Inc., 

OR) were used for uniform spreading of the reaction mixture on the surface. Following 
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primer extension, 4x SSC buffer (10 µL) was dropped on the master to wet the surface, 

and then the streptavidin-functionalized PDMS monolith was brought into contact with 

the surface. A pressure of 1.4 N/cm2 was applied at 20 to 25 °C for 10 min. Next, the 

PDMS monolith was peeled off the master surface at constant separation speed (400 

µm/s) using a linear motion actuator (CMA-25CC, Newport Corp., Irvine, CA), and then 

both surfaces were washed in buffer and blown dry. 

 

5.4 RESULTS AND DISCUSSION 

Surface Polymerization and DNA Transfer.  Figure 5.1 demonstrates template-

driven DNA polymerization on a master and subsequent transfer onto PDMS surfaces. 

The experiment was conducted following the approach shown in Scheme 5.2a. Template 

I solution (Table 5.1) was spotted onto a glass master using a manual microarrayer. This 

resulted in formation of a ~200 µm-diameter Template I spot. After annealing, the 

biotinylated primers were extended using the polymerase reaction mixture including dye-

labeled deoxycytidine triphosphate (Cy3-dCTP). The extended primers were then 

transferred to a PDMS replica surface as previously reported.27-29 Figure 5.1a shows a 

fluorescence micrograph obtained from a single ~200 µm spot on the glass master after 

primer extension of Template I and subsequent washing. The extended primer is 

fluorescent, because Cy3-dCTP is incorporated into the extended primer. There was no 

detectable level of fluorescence when the primer-annealed glass surface was exposed to 

the reaction mixture in the absence of the T4 DNA polymerase and washed using the 

same protocol used for the surface shown in Figure 5.1a.29 Figures 5.1b and 5.1c are 

fluorescence micrographs of the glass master and PDMS replica, respectively, after 

transfer of the extended primers. The grid pattern visible on the PDMS surface (Figure 

5.1c) corresponds to microfabricated drainage canals (20 µm on center, 10 µm wide, and 
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Figure 5.1. Fluorescence micrographs demonstrating polymerization of DNA on a master 

and transfer of the polymerized DNA. (a) A fluorescence micrograph obtained from a 

master after a surface T4 DNA polymerase reaction incorporating Cy3-dCTP into the 

polymerized DNA. (b) A fluorescence micrograph obtained from the master after transfer 

of the polymerized DNA. (c) A fluorescence micrograph obtained from a replica after 

transfer of the polymerized DNA. (d) Same as (c), but after a second round of 

polymerization and transfer. (e) Same as (c), but after a third round of polymerization and 

transfer. (f) Fluorescence intensity profiles obtained along the dotted white lines shown in 

(c)-(e). Integration time was 500 ms. Gray scales are 2000-60000 counts for (a) and (b), 

and 1500-10000 counts for (c)-(e). 
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Scheme 5.2 
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3 µm deep), which are necessary to direct buffer solution away from the glass/PDMS 

interface during conformal contact.28,29 Optical micrographs of the images shown in 

Figures 5.1c–5.1e are provided in Figure 5.2. The drainage canals restrict contact 

between the glass and PDMS surfaces to multiple square areas (10 x 10 µm2) that reside 

between the canals. The dark areas within the spot on the master surface (Figure 5.1b) 

correspond to primer-extended DNA that incorporated Cy3-dCTP but was subsequently 

transferred to the PDMS surface.  

Figures 5.1d and 5.1e show additional PDMS replicas obtained after a second and 

a third round of primer annealing, extension, and mechanical transfer from the same 

master. The prominent dark area bisecting the second replica spot (Figure 5.1d) results 

from a wider canal that intersects the smaller ones and facilitates drainage during contact. 

Figure 5.1f shows fluorescence intensity profiles obtained along the white dotted lines in 

Figures 5.1c-5.1e. The average peak intensities on the profiles are 4200 ± 1100, 2200 ± 

800, and 3400 ± 700 for the first, second, and third replicas, respectively. We observed 

relatively low intensity especially on the left area of the second replica spot, which 

caused the rather large variation between the first and second replicas. An optical 

micrograph of the second replica shows some abnormal surface residue on the left part of 

the replica spot, which could cause the lower intensity (Figure 5.2b). However, the 

reasonable consistency in the intensities indicates the replication cycle can be repeated at 

least three times using a single master without significant degradation. In addition, the 

fluorescence intensity profile obtained from the glass master after transfer shows that 

~25% of the extended primers were transferred from the master to a replica surface 

(Figure 5.3).  

Replication of a Small Master Array Having One Template Sequence.  Thus 

far, our enzyme-based replication studies have resulted in transfer of a single spot. Here 
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Figure 5.2. Optical micrographs of PDMS replicas shown in Figures 5.1c-5.1e. (a) An 

optical micrograph of the replica shown in Figure 5.1c. (b) An optical micrograph of the 

replica shown in Figure 5.1d. (c) An optical micrograph of the replica shown in Figure 

5.1e. 



 67 

 

 

Figure 5.3. Fluorescence intensity profile obtained from a master spot (Figure 5.1b) after 

transfer of extended primers. 
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we show that a small array consisting of a single oligonucleotide sequence can also be 

transferred, and in the next section we include three different oligonucleotide sequences 

in a single array. 

In contrast to the approach used to obtain the results shown in Figure 5.1 (Scheme 

5.2a), the experiments corresponding to Figure 5.4 were performed as shown in Scheme 

5.2b. Specifically, the primer extension reaction was carried out using Template I in the 

absence of a labeled nucleotide (Cy3-dCTP), and consequently the resulting master 

surface is not fluorescent. However, after primer extension and transfer to the PDMS 

surface, the replica was exposed to fluorescently labeled DNA Target I (10 µM, Table 

5.1), which is complementary to the extended DNA sequence but not the primer. Figure 

5.4a is a fluorescence micrograph obtained from a replica surface obtained after the three 

steps outlined in Scheme 5.2b. The result clearly shows that six functional spots are 

transferred from the 3 x 2 master array to the replica. Control experiments showed that 

there is no detectable fluorescence on the replica surface if the T4 polymerase is omitted 

during the primer-extension step.29  

In addition to the fluorescently labeled spots, the wide drainage canals shown in 

Figure 5.4a also appear bright. Indeed, the canals also appear bright in the optical 

micrograph of the replica surface (Figure 5.4b). However, a series of control experiments 

confirmed that this is an optical effect unrelated to fluorescence (Figure 5.5). Figures 

5.4c-5.4h are higher magnification fluorescence micrographs of the six spots shown in 

Figure 5.4a. The replica spot shown in Figure 5.4d was cut off because of the wide 

drainage canal apparent in Figures 5.4a and 5.4b. The characteristic grid pattern, arising 

from the smaller canals, is also apparent at this magnification. 

Replication of a Master Array Having Multiple Template Sequences. 

Replication of a 3x2 master array having three unique templates was also carried out 
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Figure 5.4. Micrographs demonstrating replication of a 3x2 master array having one 

DNA template (Template I, Table 5.1). (a) A fluorescence micrograph obtained from a 

replica after polymerization of DNA, transfer of the polymerized DNA, and hybridization 

of a fluorescent Target I (Table 5.1) complementary to the extended sequence (but not to 

the primer itself). Integration time was 1000 ms. Gray scale is 2100-3200 counts. (b) An 

optical micrograph obtained from the replica showing a drainage canal pattern. (c)-(h) 

Fluorescence micrographs representing closer look of each replica spot shown in (a): (c) 

Top left replica spot. (d) Top middle replica spot. (e) Top right replica spot. (f) Bottom 

left replica spot. (g) Bottom middle replica spot. (h) Bottom right replica spot. Integration 

time was 1000 ms. Gray scale is 3000-13000 counts. 
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Figure 5.5. Fluorescence micrographs showing bright wide drainage canals. (a) A 

fluorescence micrograph obtained from a streptavidin-coated PDMS surface. (b) A 

fluorescence micrograph obtained from the streptavidin-coated PDMS after incubation 

with hybridization buffer (No fluorescently labeled Target I) and post-hybridization 

washing. (c) A fluorescence micrograph obtained from the streptavidin-coated PDMS 

after incubation with Target I in hybridization buffer and post-hybridization washing. 

Integration time was 1000 ms. Gray scale is 2100-3200 counts. 
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(Figure 5.6) using the approach shown in Scheme 5.2b. First, a 3x2 master array having 

three DNA templates (left column, Template I; middle column, Template II; right 

column, Template III) was fabricated. After polymerization of DNA and transfer of the 

polymerized DNA, the replica PDMS surface was exposed to a mixture of fluorescent 

targets (Target I, II, and III; 10 µM each, Table 5.1) complementary to each extended 

sequence (but not to the primer itself). Three fluorescence micrographs were obtained 

from the replica using different filter sets for each fluorescent target. Figure 5.6 shows the 

fluorescence micrographs. Each fluorescence micrograph shows only one type of 

synthesized DNA hybridized with each fluorescent target. This result clearly indicates 

that the DNA polymerization is performed correctly depending on the template 

sequences. The closer look at each replica spot shown in Figure 5.6 is also presented in 

Figure 5.7.  

Replication of a Large Density Master Array.  Replication of a large density 

master array was demonstrated using the approach shown in Scheme 5.2a. A master array 

having 2304 DNA spots (Template I, Table 5.1) was fabricated using a robotic 

microarrayer. After annealing of primers, a polymerase reaction mixture including dye-

labeled deoxycytidine triphosphate (Cy3-dCTP) was introduced onto the master slide. 

The polymerized DNA incorporating Cy3-dCTP was transferred onto a replica surface. 

Figure 5.8a shows a fluorescence micrograph obtained by scanning the entire master after 

the polymerase reaction and washing. All polymerized DNA spots incorporating Cy3-

dCTP showed homogeneous fluorescence, indicating a uniform polymerase reaction on 

the large density master. Figure 5.8b shows fluorescence micrographs of the entire master 

(left micrograph) and its part (right micrograph) after transfer of the polymerized DNA. 

The right micrograph shows a typical dark checkerboard pattern on each DNA spot, 
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Figure 5.6. Fluorescence micrographs demonstrating replication of a 3x2 master array 

having multiple DNA templates (Template I, II, and III; Table 5.1). (a) A fluorescence 

micrograph obtained from a replica using a filter for Target I labeled with FAM. (b) 

Same as (a), but using a filter for Target II labeled with Cy3. (c) Same as (a), but using a 

filter for Target III labeled with Cy5. Integration time was 1000 ms. Gray scales are 

2400-3800 counts for (a) and (b), and 1800-3200 counts for (c). 
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Figure 5.7. Fluorescence micrographs representing closer look of each replica spot 

shown in Figure 5.6. (a) Top left replica spot in Figure 5.6a. (b) Top middle replica spot 

in Figure 5.6b. (c) Top right replica spot in Figure 5.6c. (d) Bottom left replica spot in 

Figure 5.6a. (e) Bottom middle replica spot in Figure 5.6b. (f) Bottom right replica spot 

in Figure 5.6c. Integration time was 10000 ms. Gray scales are 3700-6000 counts for (a) 

and (d), 3000-30000 counts for (b) and (e), and 2000-8000 counts for (c) and (f). 
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Figure 5.8. Fluorescence micrographs demonstrating replication of a large density DNA 

microarray. Polymerase reaction mixture included T4 DNA polymerase (0.05 u/µL), a 

dNTP mixture without dCTP (0.1 mM), and a dCTP mixture (Cy3-dCTP: 10 µM, 

unlabeled dCTP: 90 µM) in a polymerase reaction buffer (1x: 67 mM Tris-HCl (pH 8.8), 

6.6 mM MgCl2, 1 mM DTT, 16.8 mM (NH4)2SO4). Micrographs of the entire master slide 

were obtained using a microarray scanner. (a) A fluorescence micrograph obtained by 

scanning the entire master after a surface T4 DNA polymerase reaction incorporating 

Cy3-dCTP into the polymerized DNA. (b) Fluorescence micrographs obtained from the 

master after transfer of the polymerized DNA. The right micrograph shows the closer 

look on a part of the entire master surface; Integration time was 1000 ms. Gray scale is 

2600-4000 counts. (c) A fluorescence micrograph obtained from a replica after transfer of 

the polymerized DNA. Integration time was 1000 ms. Gray scale is 2000-4500 counts. 
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indicating transfer of the polymerized DNA. Figure 5.8c is a fluorescence micrograph 

obtained from the replica corresponding to the right micrograph shown in Figure 5.8b. 

 

5.5 CONCLUSION 

In this work, we demonstrated a method for replication of DNA microarrays 

utilizing a surface polymerase reaction and mechanical transfer. Multiple replications (at 

least three times) from a single master array having DNA spots as small as 200 µm were 

successfully achieved with no significant degree of change in the transfer efficiency. 

Replication from a master array having three different sequences was performed 

accurately and there was no observable cross-hybridization on the replica. DNA master 

arrays consisting of ~2300 spots were also replicated. Further experiments will focus on 

improvement of transfer efficiency and replication of arrays having other biological 

materials (proteins, RNA oligonucleotides, and cells). 
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Chapter 6:  Mechanical Transfer of Ligated RNA Strands for 
Fabrication of RNA Microarrays 

6.1 SYNOPSIS 

Here, a method for fabrication of RNA microarrays is described. The fabrication 

involves enzymatic formation of RNA array components on a prefabricated master DNA 

array, followed by mechanical transfer of the RNA array components to another 

substrate. The RNA array components are formed by a T4 DNA ligase reaction joining 

unmodified single strand (ss)RNA to short ssDNA oligonucleotides on the master 

surface. Importantly, the fabricate cycle can be repeated multiple times using a single 

master array. Consecutive fabrication of RNA microarrays (18 times) from a single 

master is achieved without significant degradation of functionality of the resulting RNA 

arrays. RNA microarrays having three different RNA sequences are fabricated and show 

no observable cross-hybridization of DNA complements. 

 

6.2 INTRODUCTION 

In this paper we describe a simple means for parallel conversion of DNA master 

arrays into RNA replicate arrays. The approach is based on a surface enzymatic reaction 

followed by mechanical transfer. The RNA replicate microarrays consist of single-strand 

RNA (ssRNA) oligonucleotides (probe RNA) ligated to short ssDNA oligonucleotides 

(anchor DNA). The details of the approach are shown in Scheme 6.1. First, amine-

modified ssDNA templates are immobilized on an epoxy-modified glass slide. The distal 

ends of all the DNA templates are configured to be identical. Second, this master slide is 

exposed to single-sequence biotinylated anchor ssDNA, which hybridizes to the distal 

ends of the templates (the blue sequence in Scheme 6.1), and to the unmodified probe 
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Scheme 6.1 
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ssRNA, which is complementary to each ssDNA sequence comprising the master array. 

Third, the nick between the anchor ssDNA and the probe ssRNA is ligated using a T4 

DNA ligase.135-137 Next, a streptavidin-coated poly(dimethylsiloxane) (PDMS) monolith is 

brought into conformal contact with the master. This results in binding of the biotin 

anchor (now linked to the RNA probe) to the streptavidin-modified PDMS surface. When 

the PDMS monolith is mechanically separated from the master, the RNA array is 

transferred to the PDMS surface while the DNA templates remain on the master surface. 

This series of steps can be repeated many times without loss of fidelity, resulting in 

multiple RNA replicate arrays from a single master.  

Previously, we showed that an approach similar to that illustrated in Scheme 6.1 

could be used to replicate DNA microarrays.27,28 In one case, the replicate 

oligonucleotides were formed in-situ using a surface polymerase reaction.29 A related 

method, which relies on dehybridization by heating rather than by mechanical transfer, 

has been reported by Stellacci and coworkers.102,103,120 They have shown that DNA lines as 

thin as 50 nm could be replicated.103 Park and coworkers have recently used this method 

to replicate DNA arrays fabricated on nylon membranes.121 RNA microarrays are a 

powerful tool for the analysis of nucleic acids and proteins. For example, ultrasensitive 

detection of DNA oligonucleotides was reported using RNA microarrays in conjunction 

with the enzyme RNase H.138,139 The use of RNA aptamer microarrays also allowed 

simultaneous detection of multiple proteins140 and demonstrated the potential for 

diagnosis of cancers.141,142 RNA microarrays are normally fabricated by tethering 

modified RNA oligonucleotides on functionalized surfaces; for example, biotinylated 

RNA oligonucleotides on streptavidin-functionalized glass slides140,143,144 or thiol-

modified RNA oligonucleotides on maleimide-terminated gold surfaces.138,139 Recently, 

Corn and coworkers showed that it was possible to prepare RNA microarrays using 
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surface ligation chemistry.137,145,146 This approach made it possible to attach unmodified 

ssRNA to a DNA array, to convert the DNA array to an RNA array. They also showed 

the DNA array can be used for at least three ligation-hydrolysis cycles.137 

In this paper, we expand the scope of our mechanical-transfer approach for 

replicating DNA arrays by showing that a related series of steps can be used to prepare 

many RNA replica arrays from a single DNA master using unmodified RNA 

oligonucleotides. The key step is a surface ligase reaction, first reported by Corn and 

coworkers,137 required to link the anchor DNA to the RNA oligonucleotides. This step is 

carried out using a T4 DNA ligase. We show that the series of steps illustrated in Scheme 

6.1, which proceed under mild conditions, can be executed at least 18 times using a single 

DNA master array without loss of fidelity of the replicate RNA array. RNA microarrays 

consisting of 2500 spots and consisting of up to three different RNA sequences were 

prepared, and no evidence of cross-hybridization was detected. 

 

6.3 EXPERIMENTAL 

Chemicals.  Streptavidin-maleimide conjugates (Sigma S9415), 3-

mercaptopropyltrimethoxysilane (MPS) (Fluka 63800), and other chemicals for buffers or 

blocking solutions were obtained from Sigma-Aldrich: 20x saline-sodium citrate (SSC) 

buffer (Sigma S6639), 10% sodium dodecyl sulfate (SDS) solution (Sigma L4522), 

sodium phosphate monobasic (Sigma S0751), sodium phosphate dibasic (Sigma S0876), 

Triton® X-100 (Sigma T8787), Trizma base (Sigma T6791), Trizma HCl (Sigma T6666), 

ethanolamine (Sigma E9508), 2-mercaptoethanol (Sigma M6250), and N-ethylmaleimide 

(Sigma E3876). The poly(dimethylsiloxane) (PDMS) precursor solution (Sylgard 184) 

was ordered from Dow Corning Inc. (Midland, MI). T4 DNA ligase (M0202S) provided 

with 10x reaction buffer (500 mM TRIS-HCl, 100 mM MgCl2, 100 mM DTT, and 10 
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mM ATP; pH 7.5 at 25 °C) was used as received from New England BioLabs Inc. 

(Ipswich, MA). Nuclease-free water was obtained from Fermentas Inc. (Hanover, MD). 

DNA and RNA oligonucleotides were obtained from Integrated DNA Technologies Inc. 

(Coralville, IA) and Dharmacon Corp. (Lafayette, CO), respectively. The sequences and 

modifications are provided in Table 6.1.  

Instrumentation.  A fluorescence microscope (Nikon TE2000, Nikon Co., 

Tokyo, Japan) equipped with appropriate filter sets (filter #: 31002 for DY547 and Cy3, 

and 41008 for Cy5, Chroma Technology Corp., Rockingham, VT), a mercury lamp (X-

CiteTM 120, Nikon Co), and a CCD camera (Cascade®, Photometrics Ltd., Tucson, AZ) 

was used to acquire optical and fluorescence micrographs. Micrographs were processed 

using V++ Precision Digital Imaging software (Digital Optics, Auckland, New Zealand). 

High-density arrays were scanned using a microarray scanner (GenePix 4000B, 

Molecular Devices Corp., Sunnyvale, CA). 

Fabrication of Master DNA Arrays.  The master DNA arrays were fabricated 

using epoxy-modified glass slides (Nexterion® Slide E, SCHOTT North America Inc., 

Elmsford, NY) as previously described.27,28 Briefly, template DNA solutions (25 µM in 

50 mM sodium phosphate buffer, pH 8.5) were spotted onto the glass slides using either a 

micropipette or a home-built robotic microarrayer. Next, the spotted slide was incubated 

in a chamber in which the humidity was in equilibrium with a saturated NaCl solution at 

20 to 25 °C. After incubation, the slide was washed as following (at 20 to 25 °C): 1 x 5 

min in 0.1% Triton® X-100 solution, 2 x 2 min in 1 mM HCl solution, 1 x 10 min in 100 

mM KCl solution, and 1 x 1 min in Milli-Q water (18 MΩ•cm, Millipore, Bedford, MA). 

The slide was then placed in a blocking solution (50 mM ethanolamine and 0.1 % SDS in 

0.1 M TRIS buffer, pH 9.0) for 15 min at 50 °C. After washing with Milli-Q water for 1 

min, the slide was blown dry by a N2 stream and stored under dark and dry condition. 
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Table 6.1 Sequences of the nucleic acids used in this studya. 

 
aHere, 3AmM, DY547, 5Phos, 3BioTEG, 3Cy3Sp, and 3Cy5Sp correspond, respectively, 

to an amino modifier on the 3’ end of the DNA, a Cy3 alternate dye attached to the 5’ end 

of the RNA, phosphorylation on the 5’ end of the DNA, a biotin modifier with a 

tetraethyleneglycol (TEG) spacer on the 3’ end of the DNA, a Cy3 dye attached to the 3’ 

end of the DNA, and a Cy5 dye attached to the 3’ end of the DNA. This is the same 

notation used by the DNA supplier (Integrated DNA Technologies, Coralville, IA) and 

the RNA supplier (Dharmacon Inc., Lafayette, CO). 
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Fabrication of RNA Replica Arrays.  The RNA arrays were fabricated by 

simultaneously exposing the DNA master array to the anchor DNA oligonucleotide, the 

RNA probe, and the T4 DNA ligase for 1 h at 25 °C. Specifically, the ligase reaction 

mixture contained the anchor DNA strands (0.5 µM), the probe RNA strands (0.5 µM), 

and T4 DNA ligase (20 u/µL) in a ligase reaction buffer (1x: 50 mM TRIS-HCl, 10 mM 

MgCl2, 10 mM DTT, and 1 mM ATP; pH 7.5 at 25 °C). Incubation chambers 

(CoverWellTM, Grace Bio-Labs Inc., OR) were used to ensure uniform spreading of the 

reaction mixture on the surface. Following ligation, the master slide was rinsed with 

buffer solutions (at 20 to 25 °C): 2x SSC buffer containing 0.2 % SDS and 2x SSC 

buffer. The master slide was washed again as follows (at 20 to 25 °C): 10 min in 2x SSC 

buffer containing 0.2 % SDS, 10 min in 2x SSC buffer, and 10 min in 0.2x SSC buffer. 

Next, 4x SSC buffer (10 µL) was dropped on the master to wet the surface, and then a 

streptavidin-functionalized PDMS monolith was brought into contact with the surface. A 

pressure of 1.4 N/cm2 was applied at 20 to 25 °C for 10 min. Note that the streptavidin-

functionalized PDMS monolith was prepared as reported previously.27-29 Finally, the 

PDMS monolith was peeled off the master surface at a constant separation speed (400 

µm/s) using a linear motion actuator (CMA-25CC, Newport Corp., Irvine, CA), and then 

both surfaces were washed in buffer and blown dry. 

 

6.4 RESULTS AND DISCUSSION 

Surface Ligation and Transfer of Ligated RNA Strands.  The fluorescence 

micrographs shown in Figure 6.1 demonstrate the viability of the replication procedure 

shown in Scheme 6.1. The specific approach for this experiment is illustrated in Figure 

6.1e. Template DNA (DT I; Table 6.1) immobilized on the master slide was exposed to a 

ligase reaction mixture composed of biotinylated anchor DNA (DA; Table 6.1), 
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Figure 6.1. Fluorescence micrographs demonstrating ligation of RNA on a master and 

transfer of the ligated RNA. (a) A fluorescence micrograph obtained from a master after a 

surface T4 DNA ligase reaction joining fluorescently labeled probe RNA I (RP I with 

dye; Table 6.1) to the biotinylated anchor DNA (DA; Table 6.1). (b) A fluorescence 

micrograph obtained from the master after transfer of the ligated RNA (joined DA and 

RP). (c) A fluorescence micrograph obtained from a PDMS surface after transfer of the 

ligated RNA. (d) Fluorescence intensity profiles obtained along the dotted lines shown in 

(a)-(c). (e) Scheme showing the experimental approach used to obtain the data in (a)-(d). 

The star symbols represent the fluorescent dye. Integration time was 100 ms. Gray scales 

are 5000-25000 counts for (a) and (b), and 1500-5000 counts for (c). 
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fluorescently labeled probe RNA (dye-labeled RP I; Table 6.1), and T4 DNA ligase. This 

resulted in hybridization and ligation of the anchor DNA and probe RNA on the master 

surface. The ligated RNA/DNA conjugates were then transferred to a PDMS surface.27-29  

Figure 6.1a is a fluorescence micrograph obtained from the glass master after 

exposure to the ligase reaction mixture and subsequent washing. The fluorescence 

intensity in this micrograph indicates that the labeled probe RNA hybridized with the 

template DNA. There was no detectable level of fluorescence when the master DNA 

template was treated identically to the surface shown in Figure 6.1a, but using probe 

RNA II (dye-labeled RP II, Table 6.1) which is not complementary to template DNA I. 

Figure 6.1b and 6.1c are fluorescence micrographs obtained from the glass master and 

PDMS surface, respectively, after transfer of the ligated RNA strands. Drainage canals 

(20 µm on center, 10 µm wide, and 3 µm deep) were microfabricated on the PDMS 

surface as reported previously27-29 to direct buffer solution away from the glass/PDMS 

interface during conformal contact (Figure 6.2). The drainage canals restrict contact 

between the glass and PDMS surfaces to multiple square areas (10 x 10 µm2), which 

results in the grid pattern present on both surfaces. The light areas on the PDMS surface 

in Figure 6.1c correspond to transfer of fluorescently labeled probe RNA from the darker 

regions apparent in Figure 6.1b. Figure 6.1d shows fluorescence intensity profiles 

obtained along the dotted lines in Figures 6.1a-6.1c. Importantly, the average intensity 

difference between the bright and dark regions on the master surface (1540 ± 140 counts, 

Figure 6.1b) is close to the intensity difference measured from the PDMS surface (2010 ± 

60 counts, Figure 6.1c), suggesting no significant loss of ligated RNA strands during the 

transfer.  

It is important to demonstrate that the fluorescence shown in Figure 6.1c results 

from transfer of probe RNA strands ligated to the biotinylated anchor DNA rather than 
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Figure 6.2. An optical micrograph of the PDMS surface shown in Figure 6.1c. 
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from nonspecific adsorption of unligated RNA on the PDMS surface. Accordingly, we 

carried out the two key control experiments illustrated in Figures 6.3a and 6.3b. 

Specifically, fluorescence micrographs were obtained from PDMS surfaces treated 

identically to that shown in Figure 6.1c, but in the absence of 5’-phosphoryl group of the 

anchor DNA (Figure 6.3a, anchor DNA without PO4; Table 6.1) and the T4 DNA ligase 

(Figure 6.3b), respectively. In the absence of 5’-phosphoryl group of the anchor DNA or 

the T4 DNA ligase, the ligation of the anchor DNA to the probe RNA is not expected to 

proceed. Indeed, fluorescence micrographs obtained from the PDMS surfaces after these 

two control experiments were carried out indicated no detectable fluorescence from the 

PDMS surface after contact with the master. In Figure 6.3c, fluorescence intensity 

profiles from these two control experiments are compared to the profile of the replica 

surface shown in Figure 6.1c. On the basis of these results, we conclude that both the 5’-

phosphoryl group of the anchor DNA and the T4 DNA ligase are required to transfer 

RNA to the PDMS surface and that there is no detectable level of nonspecific adsorption 

of RNA on the PDMS. 

Multiple Transfers of Ligated RNA Strands from a Single Master.  Multiple 

transfers of ligated RNA strands from a single master to different replica surface were 

demonstrated using the approach shown in Figure 6.4g. In contrast to the experiments 

used to obtain the results shown in Figures 6.1 and 6.3, the surface ligase reaction here 

was carried out using unlabeled probe RNA (RP I; Table 6.1), and consequently the 

resulting master surface is not fluorescent. However, after transfer of the nonfluorescent 

and ligated RNA strands, the PDMS surface was exposed to fluorescently labeled target 

DNA (Target DNA I; Table 6.1) complementary to the probe RNA sequence but not to 

the anchor DNA. Figure 6.4a is a fluorescence micrograph obtained from a PDMS 

surface after the ligation, transfer, and hybridization steps. The presence of the bright 



 87 

 

 

Figure 6.3. Control experiments confirming ligation of probe RNA on a master and 

transfer to a PDMS surface. (a) Scheme of a control experiment: A fluorescence 

micrograph was obtained from a PDMS surface treated identically to that shown in 

Figure 6.1c, but in the absence of 5’-phosphoryl group of anchor DNA (Table 6.1). 

Integration time was 100 ms. (b) Scheme of a control experiment: A fluorescence 

micrograph was obtained from a PDMS surface treated identically to that shown in 

Figure 6.1c, but in the absence of the T4 DNA ligase. Integration time was 100 ms. (c) 

Fluorescence intensity profiles obtained along lines on the fluorescence micrographs 

described in (a) and (b). Fluorescence intensity profile along the dotted white line shown 

in Figure 6.1c is included for comparison (Top intensity profile). 
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Figure 6.4. Fluorescence micrographs demonstrating multiple fabrication of RNA arrays 

from a single master slide. (a) A fluorescence micrograph obtained from a PDMS surface 

after ligation, transfer of ligated RNA single strands (RP I; Table 6.1), and hybridization 

of a fluorescently labeled target DNA I (Table 6.1) complementary to the RNA sequence 

(but not to the sequence of anchor DNA). (b) Same as (a), but after a 2nd round of 

ligation, transfer, and hybridization. (c) Same as (a), but after a 3rd round of ligation, 

transfer, and hybridization. (d) Same as (a), but after a 17th round of ligation, transfer, and 

hybridization. (e) Same as (a), but after a 18th round of ligation, transfer, and 

hybridization. (f) Fluorescence intensity profiles obtained along the dotted white lines 

shown in (a)-(e). (g) Scheme showing the experimental approach used to obtain the data 

in (a)-(f). The star symbols represent the fluorescent dye. Integration time was 100 ms. 

Gray scale is 1800-5000 counts for (a)-(e). 
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spots indicates that the unlabeled RNA sequence transferred to the replica surface, and 

that the RNA is functional; that is, it is able to bind fluorescently labeled complementary 

DNA.  

Control experiments analogous to those described earlier indicate no detectable 

level of fluorescence on the PDMS surfaces in the absence of 5’-phosphoryl group of the 

anchor DNA or the T4 DNA ligase during the ligation step (Figure 6.5).  

This fabrication cycle, consisting of ligation, transfer, and hybridization with 

labeled, complementary DNA was repeated a total 18 times using the same master. 

Micrographs corresponding to the first, second, third, seventeenth, and eighteenth cycles 

are presented in Figures 6.4a-6.4e, respectively. As shown in the fluorescence line scans 

in Figure 6.4f, the contrasts in fluorescence between the light and dark areas on the 

surfaces of these replicas were 1860 ± 130, 2070 ± 180, 2310 ± 90, 2120 ± 180, and 2460 

± 530 counts, respectively. These data indicate that there is no significant or progressive 

degradation of the master up to the eighteenth round of replication. Note that the master 

slide was stable, and produced replicas indistinguishable from those shown in Figure 6.4, 

for more than 1 month when stored in dark and dry conditions.  

Fabrication of an RNA Microarray. Here, we show that it is possible to prepare 

large-scale RNA microarrays consisting of a single probe RNA sequence (RP I; Table 

6.1) using the hybridization, ligation, and transfer steps discussed in the context of Figure 

6.4. This was accomplished as follows. First, a master DNA array having 2500 spots (~70 

µm-diameter) of template DNA I (Table 6.1) was fabricated using a robotic microarrayer. 

The T4 DNA ligase reaction was performed on the master surface using unlabeled probe 

RNA (RP I; Table 6.1) as shown in Figure 6.4g. Finally, the ligated RNA strands were 

transferred to a PDMS surface. Figure 6.6 is a fluorescence micrograph obtained by 

scanning a part of the PDMS surface using a microarray scanner after hybridization of 
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Figure 6.5. Control experiments confirming ligation of probe RNA on a master and 

transfer to a PDMS surface. (a) Scheme of a control experiment: A fluorescence 

micrograph was obtained from a PDMS surface treated identically to that shown in 

Figure 6.4a, but in the absence of 5’-phosphoryl group of anchor DNA. Integration time 

was 100 ms. (b) Scheme of a control experiment: A fluorescence micrograph was 

obtained from a PDMS surface treated identically to that shown in Figure 6.4a, but in the 

absence of the T4 DNA ligase. Integration time was 100 ms. (c) Fluorescence intensity 

profiles obtained along lines on the fluorescence micrographs described in (a) and (b). 

Fluorescence intensity profile along the dotted white line shown in Figure 6.4a is 

included for comparison (Top intensity profile). 
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Figure 6.6. Fluorescence micrograph obtained from a RNA array (PDMS surface) which 

was fabricated using a master DNA array having multiple micro-scale spots, not a spot in 

macro-scale (one template sequence, DT I; Table 6.1). The micrograph was obtained from 

the PDMS surface after ligation, transfer of ligated RNA strands (RP I; Table 6.1), and 

hybridization of a fluorescently labeled target DNA I (Table 6.1) complementary to the 

RNA sequence (but not to the sequence of anchor DNA). 
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target DNA I (Table 6.1) and washing. The micrograph shows that all 121 RNA spots on 

the PDMS surface are active toward hybridization of labeled target DNA I. The pixelated 

appearance of the individual spots is a consequence of the drainage canals present on the 

PDMS surface.  

Fabrication of an RNA Microarray Comprised of Multiple Probe Sequences.  

RNA microarrays having multiple probe sequences were fabricated using the approach 

illustrated in Figure 6.4g. A master DNA array having three different template sequences 

(DT I, DT II, and DT III; Table 6.1) and a total of 1500 spots was fabricated using a robotic 

microarrayer. The three different DNA templates were spotted in consecutive rows as 

shown in Figure 6.7. After hybridization and ligation of a mixture of unlabeled RNA 

probes (RP I, RP II, and RP III; Table 6.1) on the master, the probe RNA strands were 

transferred to a PDMS replica surface. Finally, the PDMS surface was exposed to a 

mixture of fluorescently labeled DNA targets (Target DNA I and target DNA II; Table 

6.1) which are complementary to probe RNA I (RP I) and probe RNA II (RP II), 

respectively. Note that only two different target sequences were introduced on the PDMS 

surface. Figure 6.7 is a fluorescence micrograph obtained by scanning a part of the 

PDMS surface. It shows that the correct, labeled DNA complements hybridized to the 

appropriate probe RNA sequences. That is, Cy3-labeled DNA I hybridized with Rp I, 

Cy5-labeled DNA II hybridized with Rp II, and neither of the labeled DNA targets 

hybridized with Rp III. No cross-hybridization was observed. 

 

6.5 CONCLUSION 

In this report, we described a method for fabrication of RNA microarrays utilizing 

a surface ligase reaction and mechanical transfer. Eighteen replicas were prepared from a 

single master array with no detectable degradation of activity of the resulting replica 
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Figure 6.7. Fluorescence micrograph obtained by scanning a part of the PDMS surface 

after ligation, transfer, and hybridization, which demonstrates fabrication of RNA 

microarrays having multiple different probe sequences. First, a master array having three 

different template sequences (DT I, DT II, and DT III; Table 6.1) in consecutive rows was 

fabricated. After ligation and transfer, the PDMS surface was exposed to a mixture of 

fluorescently labeled DNA targets (Target DNA I and target II; Table 6.1) 

complementary to the sequence of each probe RNA (RP I and RP II; Table 6.1), 

respectively.  
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RNA array or the master DNA array. Finally, a master DNA array consisting of three 

different sequences was prepared and faithfully replicated as a functional RNA 

microarray with no observable cross-hybridization. This approach provides a robust 

means for fabricating RNA microarrays in parallel and with no requirement for RNA 

modification (for example, with biotin). Finally, this report expands the scope of this 

general approach for microarray fabrication from DNA to RNA. At present we are 

examining the possibility of using the same general strategy for preparing replicas of 

protein arrays. 
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Chapter 7:  Hybridization of DNA to Bead-immobilized Probes 
Confined within a Microfluidic Channel 

7.1 SYNOPSIS 

We report the factors influencing the capture of DNA by DNA-modified 

microbeads confined within a microfluidic channel. Quantitative correlation of target 

capture efficiency to probe surface concentration, solution flow rate, and target 

concentration are discussed. The results indicate that the microfluidic system exhibits a 

limit of detection of ~10-10 M (~10-16 mol) DNA and a selectivity factor of ~8 × 103. 

Typical hybridization times are on the order of minutes. 

 

7.2 INTRODUCTION 

Here, we report an investigation of parameters influencing the hybridization of 

DNA onto probe-conjugated microbeads confined within a microfluidic channel. The use 

of beads as supports for capture probes in microfluidic systems is advantageous for a 

number of reasons. First, the bead surface area is significantly larger than the interior 

surface area of a typical microfluidic channel, and this results in enhanced sensitivity and 

limit of detection for assays based on immobilized capture probes.87,147,148 Second, in 

addition to providing a platform for probe attachment, beads also effectively mix 

solutions in microfluidic systems.87 Third, it is easier to modify and characterize the 

surface of beads than the walls of a microfluidic device.149,150 Because of the importance 

of these three points, it makes sense to develop a better understanding of the conditions 

that lead to target capture on bead surfaces. Accordingly, we have studied capture 

efficiency in terms of target concentration, probe surface concentration, and flow rate 

within the microfluidic channel.  
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We previously reported on fluorescence-based methods for studying bio/chemical 

reactions on functionalized beads immobilized within microfluidic channels.87,88 For 

example, we demonstrated that multiple, sequential catalytic reactions could be carried 

out in this format by immobilizing catalytic enzymes on microbeads, placing the beads 

into microreactors, and then passing reactants through one or more of these reactors to 

yield products. The enzyme-modified beads mixed reactants and increased the effective 

surface area of the channel interior, both of which improved reaction velocities compared 

to open channels.87 We also demonstrated efficient DNA hybridization on DNA-

functionalized microbeads packed in a serial microchamber array. Hybridization, which 

was 90% complete within 1 min, was carried out by moving multiple DNA targets across 

the microbead array by electrophoresis.88 These types of experiments demonstrate the 

viability of this general approach for bead-based microfluidic assays, but until now we 

have not provided quantitative insight into the factors that control the efficiency of such 

devices.  

In addition to our own reports, a number of other groups have also been actively 

studying bead-based microanalytical systems. For example, DNA hybridization using 

paramagnetic beads modified with targets was demonstrated in a microfluidic array 

format.89 A capillary platform for DNA analysis was prepared by lining up individual 

beads, each modified with a different probe sequence, within a capillary having 

approximately the same inside diameter as the bead outer diameter.91,151 A chip-based 

sensor array composed of individually addressable microbeads and having point mutation 

selectivity has also been demonstrated.90 There are a number of other interesting studies 

of bead-based microfluidic biosensors.152-155  

In the present study, experimental factors controlling the hybridization of DNA 

onto probe-conjugated microbeads under microfluidic flow conditions is reported. 
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Specifically, streptavidin-coated microbeads were conjugated with biotinylated single-

strand (ss) DNA probes. The density of probe ssDNA on the microbeads (1.9 × 1012 

probes/cm2) was controlled to be within the range that leads to rapid 

hybridization.124,156,157 The probe-conjugated microbeads are sufficiently closely packed in 

the microfluidic channel that mass transfer from solution to the bead surface is 

significantly enhanced compared to the corresponding open channel. A limit of detection 

(LOD) of ~10-10 M ssDNA (~10-16 mol) was obtained. The hybridization time was on the 

order of a few minutes and the selectivity factor was greater than 8 × 103. Typically, ~2 

µL volume of solution was required for an analysis. We expect this simple microfluidic 

system to complement the use of planar DNA arrays,158-160 and to be particularly useful 

for applications requiring fast response and simplicity. 

 

7.3 EXPERIMENTAL 

Materials.  DNA oligonucleotides modified with biotin or fluorescein (probes or 

targets) were used as received from Integrated DNA Technologies (Coralville, IA). Tris-

acetate/EDTA (TAE) buffer (pH 8.0, 40 mM tris-acetate, 1.0 mM EDTA, and 0.5 M 

NaCl) and hybridization buffer (Perfecthyb Plus) solutions were obtained from the 

Sigma-Aldrich Co. (St. Louis, MO). The hybridization buffer solution was diluted by a 

factor of two with water prior to use. TAE buffer was used for rinsing bead beds after 

hybridization. Milli-Q water (18 MΩ·cm, Millipore, Bedford, MA) was used throughout. 

The sequences of 5’-biotin-modified probe and 5’-fluorescein-labeled targets are as 

follows:161 ssDNA probe, 5’ (Biotin-TEG) AGT TGA GGG GAC TTT CCC AGG C 3’; 

ssDNA complementary target, 5’ (6-FAM) GCC TGG GAA AGT CCC CTC AAC T 3’; 

ssDNA noncomplementary target, 5’ (6-FAM) CTA GAA TCG CTG ATT ACA GCT T 

3’. 
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 Fabrication of Microfluidic Devices.  Microfluidic devices were fabricated 

under clean room conditions, as previously described, but with some modification.88 

Briefly, positive photoresist (AZP4620, Clariant Co., Somervile, NJ) was spin-coated 

twice onto a glass substrate (Fisher Scientific, Pittsburgh, PA) at 1500 rpm for 2 min, 

followed by soft baking at 92 °C for 5 min on a hot plate. The photoresist-coated glass 

substrate was exposed to UV light for 2 min using a mask aligner (Q 4000-6, Quintel 

Corp., San Jose, CA) and a photographic film mask. The resulting image was then 

developed with 100% AZ421K solution (Clariant Co.) to yield a photoresist master. 

Next, the master was exposed to UV light again for 1 min through a slit-type, chrome-

coated soda lime glass mask (Nanofilm, Westlake Village, CA) having a slit width of 100 

µm. The master was developed again in a 75% AZ421K/25% water (v/v) solution for 1 

min, which resulted in formation of a weir structure on the master. The depth and width 

of the resulting microstructures were measured using a profilometer (Veeco Dektak 3, 

Veeco Instruments, Plainview, NY). 

PDMS (Sylgard 184, Dow Corning, Midland, MI) was molded against the 

photoresist master to yield the microfluidic device. The PDMS replica and a cover glass 

were then oxidized in a plasma cleaner/sterilizer (PDC-32G, Harrick Scientific Ossining, 

NY) at medium power for 25 s. Immediately after the plasma treatment, they were 

brought into conformal contact and permanently sealed together.79,81 

 Preparation and Characterization of Probe-conjugated Microbeads.  

Biotinylated ssDNA probe oligonucleotides were conjugated to SuperAvidin-coated 

microbeads (ProActive Microspheres, dia. 9.95 µm, Bangs Laboratories Inc., Fishers, IN) 

using the following procedure. First, 15 µL of stock microbeads (1.8 × 104 beads/µL) 

were rinsed in phosphate buffer saline (PBS) solution containing 0.05% (v/v) Tween 20 

(pH 7.4, 0.15 M NaCl, 4.0 mM KCl, 8.1 mM Na2HPO4, and 1.5 mM KH2PO4) and then 
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centrifuged at 4000 rpm for 3 min. Second, 4.0 µL of the biotinylated ssDNA probe 

solution (5.0 µM), which corresponds to a five-fold excess relative to the binding 

capacity of the microbeads, was added to the rinsed microbead pellet. This solution was 

gently mixed for 30 min at 25 ± 2°C. After conjugation, the mixture was centrifuged to 

remove unbound biotinylated ssDNA probes. The probe-conjugated microbead pellet was 

rinsed with PBS buffer solution and centrifuged again. The probe-conjugated microbeads 

were re-suspended in TAE buffer (5.4 × 102 beads/µL) and refrigerated (2 °C) until 

needed. 

To estimate the probe density on the microbeads, ssDNA probes, which were 

modified with fluorescein and biotin, at the 3’ and 5’ ends, respectively, were 

immobilized on microbeads by the previously described method except all rinsing 

solutions were collected during the conjugation process. An additional filtering step (0.22 

µm syringe filter, Millex-GV13, Sigma-Aldrich Co., St. Louis, MO) was performed with 

the rinsed microbeads to ensure collection of all unbound, ssDNA probes. The amount of 

unbound probe DNA was estimated by comparing the fluorescence from the retrieved 

probe solution to standards. The amount of immobilized probe DNA was calculated from 

the difference between the initially added DNA and the free DNA in solution. A 

fluorescence spectrometer (SLM-Aminco Spectrofluorometer, Jobin Yvon Inc., Edison, 

NJ) with excitation and emission wavelength of 494 nm and 518 nm, respectively, was 

used to measure the fluorescence intensity of solutions. 

DNA Hybridization.  Probe-conjugated microbeads were packed in the 

microfluidic chambers with a syringe pump (PHD 2000, Harvard Apparatus, Hollistion, 

MA), and then the microchambers were extensively rinsed with hybridization buffer for 

10 min. Hybridization experiments were performed by flowing fluorescein-labeled 

ssDNA over the beads at 25 ± 2°C, rinsing with TAE buffer, and then measuring the 
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resulting fluorescence. A fluorescence microscope (Nikon Eclipse TE 300, Nikon Co., 

Tokyo, Japan) equipped with band-pass filters, a 100 W mercury lamp and a CCD 

camera (Photometrics Ltd., Tucson, AZ) was used to acquire optical and fluorescence 

micrographs of the microchambers. Micrographs were obtained with a 4× or 10× 

objective lens (numerical apertures: 0.10 and 0.30, respectively). The integration times 

for the CCD camera were 1 or 700 ms for optical and fluorescence micrographs, 

respectively. Micrographs were processed using V++ Precision Digital Imaging software 

(Digital Optics, Auckland, New Zealand). Fluorescence intensities were measured in the 

center regions of the bead-packed microchambers (40 × 205 pixels). Background 

fluorescence intensities were acquired before flowing the target solution and subtracted 

from micrographs obtained after flowing the targets and rinsing the beads with buffer. 

For hybridization efficiency experiments, the subtracted intensity was normalized to the 

maximum hybridization intensity obtained after flowing a relatively concentrated target 

solution (1.0 µM) over the bead bed for 10 min at a flow rate of 1.00 µL/min and then 

rinsing for 10 min at a flow rate of 1.00 µL/min. The average and standard deviation 

were obtained using three independently prepared microfluidic devices. 

 

7.4 RESULTS AND DISCUSSION 

Microfluidic Devices.  As discussed in the Experimental Section, the 

microfluidic devices used in this study were fabricated using standard photolithographic 

techniques.79,81 Microbeads were introduced into the microchambers using pressure-

driven flow and retained there by the presence of weirs. Figure 7.1a is a schematic 

illustration of the cross section of a microchip and Figure 7.1b is a top-view optical 

micrograph of a microchamber packed with beads. The height of the microchannels was 

21 ± 2 µm. The height of weirs ranged from 5-8 µm, and depended on the UV exposure 
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Figure 7.1. (a) Schematic cross-section of the microchip design used for all experiments 

(not to scale). (b) Optical micrograph of a weir and the corresponding microchamber 

packed with 9.95 µm-diameter microbeads. 
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time, the concentration of resist developer, and the resist development time. To ensure 

reproducible packing of the microbeads, a fixed concentration of beads (5.4 × 102 

beads/µL) and solution flow rate (10.00 µL/min) were used. Microbead packing was 

completed in <30 s. Each microchamber typically contained about 2 × 103 microbeads,162 

which corresponds to a packing efficiency, defined as the total bead 

volume/microchamber volume, of about 0.8. This unusually high value probably arises 

because of a slight pressure-induced expansion of the PDMS microchamber.163 Consistent 

with this view, we observed microbeads (dia. 9.95 µm) packed up to 3 layers thick near 

the center region of the microchambers, even though the measured height (at zero 

pressure) was only sufficient to accommodate two beads.  

 Probe Density.  To determine the density of DNA on the microbead surface, the 

beads were exposed to an excess of biotinylated DNA labeled with fluorescein (see 

Experimental Section). After immobilization of a fraction of this excess, the remaining 

free DNA was retrieved and quantified by measuring the fluorescence of the resulting 

solution (Figure 7.2). The measured probe density was (1.0 ± 0.4) × 10-17 

moles/microbead or 1.9 × 1012 probes/cm2 of bead surface area. Considering the total 

number of streptavidin binding sites on the surface of the beads, this value corresponds to 

a DNA binding efficiency of 73%.164 

There is an optimal surface-probe density for maximum DNA hybridization 

efficiency.124,156,157 At surface densities higher than this optimal value, repulsive 

electrostatic interactions and steric hindrance between oligonucleotides reduce 

hybridization efficiency. The calculated maximum density of 22-mer duplex DNA lying 

flat on the surface of a microbead is 6.7 × 1012 molecules/cm2.156,165,166 This value is about 

three times larger than the measured probe DNA density of 1.9 × 1012 probes/cm2, 

suggesting that electrostatic and steric barriers to hybridization should be minimal on the 
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Figure 7.2. Calibration curve obtained using solution-phase (no microbeads) ssDNA 

probes modified with fluorescein and biotin. The excitation and emission wavelengths 

were 494 and 518 nm, respectively. Data were obtained using a fluorescence 

spectrometer (SLM-Aminco Spectrofluorometer, Jobin Yvon Inc., Edison, NJ). 
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microbead surface. This conclusion is consistent with previous reports;156,157 for example, 

it has been reported that rapid hybridization occurs on surfaces for probe densities < ∼3 × 

1012 molecules/cm2.157  

DNA Hybridization.  To confirm hybridization of DNA onto the probe-

conjugated microbeads, and to evaluate the extent of nonspecific adsorption, a 

microfluidic device having two independent microchambers was prepared. Probe-free 

microbeads were packed in one chamber and probe-conjugated microbeads were packed 

in the other (Figure 7.3a), and then a 1.0 µM solution of the fluorescein-labeled 

complement of the probe was simultaneously pumped into both microchambers. After 

rinsing with TAE buffer, significant fluorescence was only observed from the 

microchamber packed with the probe-conjugated microbeads (Figure 7.3b). Fluorescence 

intensity profiles for the region contained within the dashed white box in Figure 7.3b are 

shown in Figure 7.3c. The data indicate that after rinsing the extent of nonspecific 

binding of the target to the probe-free beads is below the detection limit of the 

measurement system. Similar experiments were carried out to ensure the absence of 

nonspecific adsorption on the PDMS and glass surfaces of the microfluidic device 

(Figure 7.4). The stability of the probe/target hybrid was investigated by measuring target 

fluorescence after rinsing the microbeads with buffer for 10-30 min. The results (Figure 

7.5) indicate no detectable change in the extent of hybridization within this time interval. 

Hybridization experiments were carried out in the bead-based microfluidic system 

using concentrations of fluorescently labeled targets ranging from 0.5 - 100.0 nM. 

Fluorescence intensities as a function of target concentration, obtained from the center 

region of the microchambers, are plotted in Figure 7.6a. The target solutions were flowed 

at 0.50 µL/min for 4 min and fluorescence intensities were measured after rinsing for 10 

min. Figure 7.6b is an optical micrograph showing the region of the microchamber used 
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Figure 7.3. (a) Optical micrograph of a two-chamber microfluidic device packed with 

probe-free microbeads (top chamber) and probe-conjugated microbeads (bottom 

chamber). (b) Fluorescence micrograph of the two microchambers after exposure to a 

fluorescently labeled DNA target. Experimental conditions: a 1.0 µM target solution was 

flowed for 10 min at a rate of 1.00 µL/min and then the microchannels were rinsed with 

buffer for 10 min at a flow rate of 1.00 µL/min. (c) Fluorescence intensity profiles 

obtained in the regions defined by the dashed white box in (b).  
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Figure 7.4. Fluorescence intensities of rectangular regions perpendicular to (a) a 

microchamber packed with the probe-free microbeads and (b) the long axis of an open 

(bead-free) microchannel. The 1.0 µM target DNA solution was flowed for 30 min. 

These intensities were compared to those obtained following rinsing with TAE buffer for 

5 or 30 min. After rinsing the fluorescence intensities were below the detection limit of 

the microscope, indicating no significant level of nonspecific adsorption on the probe-

free microbeads or the open channel surface. 
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Figure 7.5. Fluorescence intensities of hybridized dsDNA on probe-conjugated 

microbeads as a function of rinsing time. A 1.0 µM DNA target solution was flowed for 

10 min at 1.00 µL/min, and then the microchambers were rinsed with buffer at 1.00 

µL/min for the indicated times. 
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Figure 7.6. Hybridization of DNA onto probe-conjugated microbeads as a function of 

target-solution concentration. (a) Fluorescence intensities obtained in the center region of 

the microchambers (indicated by the dashed white box in (b)) as a function of target-

solution concentration. (b) Optical micrograph of a microchamber. (c) Fluorescence 

micrograph after flowing complementary DNA target solution (0.5 nM) and rinsing. (d) 

Fluorescence micrograph after flowing noncomplementary target solution (100.0 nM) 

and rinsing. The bright spots near the inlet were impurities observed in a corresponding 

optical micrograph. (e) Fluorescence micrograph after flowing only buffer solution. 

Experimental conditions: target solution was flowed from right to left for 4 min at a flow 

rate of 0.50 µL/min and then the microchannels were rinsed for 10 min at a flow rate of 

1.00 µL/min. 
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to obtain the fluorescence results. The data in Figure 7.6a were corrected by subtracting 

the fluorescence intensity from the center region of the microchamber prior to filling with 

the target solution. The limit of detection (LOD), defined as the concentration 

corresponding to a signal 3 standard deviations above the zero-concentration blank 

solution, was found to be ~10-10 M or ~10-16 mol of target based on the sample volume of 

~2.0 µL. Figures 7.6c and 7.6d demonstrate the selectivity of the assay. Figure 7.6c was 

obtained using a 0.5 nM complementary target DNA solution, and Figure 7.6d was 

obtained under identical conditions but using a 100.0 nM noncomplementary DNA target 

solution. Figure 7.6e represents a control experiment obtained using only buffer solution 

(zero concentration of DNA). The selectivity ratio, defined as the ratio of fluorescence 

intensities obtained using complementary and noncomplementary targets present at the 

same concentration (and with all other conditions identical), is > 7.9 × 103 at 100.0 nM. 

Despite the simplicity of the microfluidic architecture used for these experiments, the 

resulting performance specifications (LOD, analysis time, and specificity) are 

comparable to more complex methods such as electric field-assisted DNA 

hybridization,167 other bead-based DNA methods,89-91,151 and mixing-assisted DNA 

hybridization.168,169  

In addition to determining fluorescence intensities as a function of DNA 

concentration, we also examined hybridization efficiency as a function of the total moles 

of target exposed to the microbeads relative to the number of surface-immobilized probes 

(Figure 7.7). In this experiment, the target concentration and flow rate were fixed at 50.0 

nM and 0.25 µL/min, respectively, and the moles of target solution passed through the 

microchamber were controlled by varying the exposure time between 110 and 1100 s. As 

discussed in the Experimental Section, hybridization efficiency (Figure 7.7) is defined as 

the normalized fluorescence intensity for a particular experiment to the limiting 
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Figure 7.7. Hybridization efficiency as a function of the molar excess of target flowed 

over the bead bed at a fixed flow rate (0.25 µL/min). The molar excess is given in terms 

of the ratio of total moles of target DNA flowed per total moles of immobilized probe. 

The concentration of the target solution was 50.0 nM, and the amount of target DNA was 

controlled by varying the duration of the exposure. After exposure to the target, the 

microchannels were rinsed for 10 min at a flow rate of 1.00 µL/min. 
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fluorescence intensity obtained upon exposure of the probe-modified beads to a high 

concentration (1.0 µM) of target DNA for an extended period of time (10 min). The 

results indicate that hybridization efficiency reaches a maximum value of ~90% after 

exposure of the beads to a seven-fold molar excess of target. Another way of viewing this 

is that ~15% of the DNA in this sample is captured in ~13 min. This hybridization 

response can be understood in terms of the good mass transfer characteristics of the 

microfluidic channel, the high surface-area-to-volume ratio of the microbeads, and the 

capture-probe surface density. For example, the microbeads are packed very close 

together, thus decreasing the diffusive transport time of targets from the bulk to the probe 

surface.92 This is because the solution volume in the bead bed (0.45 nL) is about 3 times 

smaller than that of the open microchamber (1.5 nL).170 In addition, the high surface-area-

to-volume ratio of microbeads provides a higher probe surface area (6.2 × 105 µm2) 

compared to the open microchamber (0.71 × 105 µm2).171 

Figure 7.8 is a plot of hybridization efficiency as a function of flow rate for a 

fixed amount of target DNA passed through the probe-labeled bead bed. In these 

experiments the number of moles of target presented to the beads was three times that of 

the immobilized probes. The flow rate was varied from 0.10 to 1.00 µL/min, which 

corresponds to times ranging from 830 s to 83 s, respectively. After flowing the target 

solution at a specific rate, the microchamber was rinsed with TAE buffer for 20 min at 

the same flow rate. Even at the lowest flow rate (0.10 µL/min), rinsing for 20 min with 

buffer was sufficient to displace the solution of target DNA from the channel (Figure 

7.9). Figure 7.8 shows that hybridization efficiency increases as the flow rate decreases. 

This observation can be understood in terms of the increase in the flux of target onto the 

probe-conjugated microbeads at lower flow rates. This observation is consistent with 

others showing that the flux of analyte to an active surface is inversely proportional to 
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Figure 7.8. Hybridization efficiency as a function of flow rate for a fixed amount of 

target DNA. For all flow rates, the amount of target DNA represented a three-fold molar 

excess relative to the amount of immobilized probe DNA. The number of moles of target 

DNA was controlled by varying the flow time. After flowing the target solution (50.0 

nM), the microchannels were rinsed for 20 min with buffer. The solid line is the best 

nonlinear fit to the data using Origin software. 
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Figure 7.9. Fluorescence intensities of a rectangular region perpendicular to the long axis 

of an open (bead-free) microchannel before and after exposure to a DNA target solution 

(1.0 µM, flow rate = 0.10 µL/min, exposure time = 830 s), and after rinsing with buffer at 

0.10 µL/min for 20 min. After rinsing the fluorescence intensities were below the 

detection limit of the microscope, indicating complete removal of the bulk target solution 

without significant level of nonspecific adsorption on the open channel surface. 
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flow rate in fluidic channels.172,173 For example, theory and experiments indicate that flux 

is proportional to q-2/3 (q is the flow rate in units of m/s) under mass-transfer-limited 

reaction conditions and to q-1 under kinetically limited conditions.173 Consistent with 

these earlier findings, the best fit to the data in Figure 7.8 (solid line) is proportional to q-

2/3. 

 

7.5 CONCLUSION 

We have described a simple microfluidic device packed with microbeads 

conjugated to DNA capture probes and the parameters that affect its performance. These 

include target concentration, probe surface concentration, and flow rate. The inherently 

high surface-area-to-volume ratio of microbeads, coupled with their close proximity, 

leads to efficient target capture. Specifically, the microfluidic device has an LOD of ~10-

10 M (~10-16 mol) and a selectivity factor greater than 7.9 x 103. Analysis times are 

typically on the order of a few minutes. 

We recently reported a simple means for enhancing the local concentration of 

DNA in microfluidic systems by a factor of up to ~500 within 150 s.31 At present, we are 

integrating this preconcentrator into a bead-based capture chip similar to that described 

here. Through this and other improvements, we expect that bead-based microfluidic 

devices of this sort will ultimately have significantly lower LODs, faster analysis times, 

and parallel detection capabilities that may make them viable tools for gene expression 

studies, clinical diagnostics, and high-throughput drug screening. 
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Chapter 8:  Sensitive DNA Detection Based on Concentration of Target 
Strands and Subsequent Bead-based Capture in a Simple Microfluidic 

Device 

8.1 SYNOPSIS 

We report a novel approach for simple and sensitive DNA detection, which relies 

on the concentration of fluorescein-labeled target DNA strands and their subsequent 

capture in a microfluidic device. The device consists of probe-conjugated microbeads 

packed in front of a hydrogel microplug photopolymerized in a microchamber. The 

microbeads are conjugated with a probe that is complementary to a desired target. The 

target DNA strands are electrokinetically transported and concentrated at an interface 

between the highly cross-linked hydrogel microplug and buffer solution, and are captured 

by the probe-conjugated microbeads through DNA hybridization. The hydrogel 

microplug provides an analyte enrichment factor of ~20-fold within 120 s, resulting in 

~10-fold enhancement in the sensitivity of the microbead-based DNA detection. In 

addition, the microbead-based assay with hydrogels provides a rapid and simple target 

analysis in terms of short analysis time (as little as 3 min including a washing step) and a 

simple washing step, as well as easy regeneration of probe-conjugated microbeads for 

subsequent assays. This work is important because it enables sensitive detection of trace 

amounts of DNA as well as a rapid and simple DNA detection methodology within a 

simple microfluidic architecture. 

 

8.2 INTRODUCTION 

Here, we report a novel approach for simple and sensitive DNA detection, which 

relies on the concentration of fluorescein-labeled target DNA strands and their 
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subsequent capture in a microfluidic device. The device consists of probe-conjugated 

microbeads packed in front of a photopolymerized hydrogel. The microbeads are 

conjugated with a probe DNA that is complementary to a target DNA. The target DNA 

strands are electrokinetically transported and concentrated at an interface between the 

highly cross-linked hydrogel microplug and buffer solution, and are captured by the 

probe-conjugated microbeads through DNA hybridization (Scheme 8.1). The probe-

conjugated microbeads allow fast and sequence-specific capture of the targets.  

The study described here is an extension of our previous work in which we 

showed efficient DNA hybridization on probe-conjugated microbeads,30,174 and 

electrokinetic concentration of charged molecules using a hydrogel microplug within a 

microfluidic device.31 Previously, we introduced a microfluidic system with probe-

conjugated microbeads packed within microchannels for DNA hybridization applications. 

The microbeads were closely packed in a microchamber and narrow fluid paths between 

the packed microbeads were obtained. This resulted in decreasing the diffusion distance, 

thereby increasing the hybridization reaction rate. We also reported a novel strategy for 

the concentration of single-stranded DNA (ssDNA) in microfluidic systems using highly 

cross-linked nanoporous hydrogel microplugs. When applying an appropriately biased 

voltage across the hydrogel microplug, charged analyte molecules (ssDNA or 

fluorescein) move and concentrate at the hydrogel/solution interface. This is because the 

nanoporous hydrogel plug works as a physical barrier to the eletrophoretic transport of 

charged analytes resulting in size-based concentration.31,175 

With the ever-increasing interest in DNA analysis techniques for food safety,176 

clinical diagnosis,177,178 and detection of pathogens in the environment,179 there is a need 

for DNA assays which enable rapid and sensitive DNA detection. Usually, ultra-high 

sensitivity is required to directly detect the specific genomic sequences of infectious 
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agents. A fairly useful assay may be required to detect ssDNA targets to the order of 

104~105 molecules.180 Traditional methods for the detection of trace amounts of ssDNA 

require a pre-enrichment step (culture) and an in-vitro amplification step (polymerase 

chain reaction, PCR) before detection. The disadvantage of these methods is that they are 

laborious and time-consuming because of the complicated assay procedures. A practical, 

simple and sensitive amplification approach, which does not involve PCR steps on a chip, 

would be more desirable. 

The demand for more useful DNA assays has encouraged many researchers to 

enhance the sensitivity of DNA detection in several ways: the use of highly fluorescent 

bioconjugated nanoparticles,181 bio-bar-code-based DNA detection,182 signal 

amplification via engineered allosteric enzymes,183 and dendritic amplification of DNA 

analysis based on enzyme dendritic architectures or oligonucleotide-functionalized Au-

nanoparticles.184,185 Although PCR-like sensitivity was demonstrated, these approaches 

still require non-trivial synthetic manipulation and complicated assay procedures. Several 

researchers have also investigated chip-based DNA detection. Microfluidics-based chips 

enable processing of very small volumes of reagents in a rapid and controlled manner, 

which is especially useful for analyses in the life sciences. Various designs such as 

microbead-based devices,90,186 electrokinetically controlled DNA hybridization chips,22 

and PCR chips for simultaneous DNA amplification and detection20,21 have been used for 

rapid and sensitive detection of DNA hybridization. However, amplification approaches 

without PCR steps on a chip, which would provide rapid and sensitive DNA detection 

with simpler chip design, have not been exploited. 

Here, we compare microbead-based DNA detection assays with and without 

hydrogel microplugs. We demonstrate the enhancement of sensitivity of the microbead-

based assay with hydrogels (Scheme 8.1). The hydrogel microplug provides ~20-fold 
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enrichment of the ssDNA concentration within 120 s, resulting in ~10-fold enhancement 

in the sensitivity of the microbead-based DNA detection with hydrogels. In addition, we 

show that the assay provides rapid and simple target analysis in terms of short analysis 

time (as little as 3 min including a washing step) and a simple washing step, as well as 

easy regeneration of the probe-conjugated microbeads for subsequent assays. A DNA 

sequence unique to the pathogen Bacillus anthracis is used to demonstrate the clinical 

usefulness of the technique.187 

 

8.3 EXPERIMENTAL 

Materials.  DNA oligonucleotides modified with biotin or fluorescein were used 

as received from Integrated DNA Technologies (Coralville, IA). The hydrogel precursor 

solutions - 2-hydroxyethyl methacrylate (HEMA), ethylene glycol dimethacrylate 

(EGDM), and Irgacure 651 -, and buffer solutions - phosphate buffer saline (PBS) buffer 

(pH 7.4, 1.5 x 10-1 M NaCl, 4.0 mM KCl, 8.1 mM Na2HPO4, and 1.5 mM KH2PO4) and 

tris-acetate/EDTA (TAE) buffer (pH 8.3, 4.0 x 10 mM tris-acetate, 1.0 mM EDTA, 0.5 M 

NaCl) - were obtained from Sigma-Aldrich Co. (St. Louis, MO). 18 MΩ·cm Millipore 

Milli-Q (Bedford, MA) water was used throughout. The sequences of 5’-biotin-modified 

probe and 5’-fluorescein-labeled targets are as follows. 

Probe: 5’ (Biotin-TEG) TCA GGT TTA GTA CCA GAA CAT GCA G 3’ 

Complementary target: 5’ (6-FAM) CTG CAT GTT CTG GTA CTA AAC CTG A 3’ 

Noncomplementary target: 5’ (6-FAM) ACA TCG ACG TGT AGC TCG GCA TGA C 

3’ 

Fabrication of Microfluidic Chips.  Microfluidic chips were fabricated under 

clean room conditions as described below. Briefly, positive photoresist (AZP4620, 

Clariant Co., Somervile, NJ) was spin-coated onto a glass substrate (Fisher Scientific, 
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Pittsburgh, PA), followed by baking on hot plates. The design of the microchannels and 

weirs (Figure 8.1) was patterned onto the photoresist-coated glass master by exposing it 

to UV light (365 nm Hg I-line, 350 mW: current @ 5.4 A and voltage @ 67 V) through 

film photomasks followed by developing (AZ421K, Clariant Co.). The depth and width 

of the microstructures were measured using a profilometer (Veeeco Dektak 3, Veeco 

Instruments, Plainview, NY). The poly(dimethylsiloxane) (PDMS) precursor mixture 

(Sylgard 184, Dow Corning, Midland, MI) was molded on the fabricated photoresist-

coated master. The PDMS replica was bonded to a cover glass (24 mm x 24 mm, 

0.13~0.17 mm thick, VWR Scientific) after both were treated with an O2 plasma (PDC-

32G, Harrick Scientific, Ossining, NY) for 25 s.    

Preparation of Probe-conjugated Microbeads.  The conjugation of 

SuperAvidinTM coated microbeads (ProActive® Microspheres, diameter 9.95 µm, Bangs 

Lab., Fishers, IN) with the biotinylated ssDNA probes was performed as follows. 15.0 µL 

of stock microbeads (1.8 x 107 beads/mL) were washed in a PBS buffer solution with 

0.05% (v/v) Tween 20 and then centrifuged. 4.0 µL of the biotinylated ssDNA probes 

(5.0 µM), corresponding to a five times excess of the binding capacity of the microbeads, 

was added to the washed microbead pellets and the resulting suspension was mixed 

slowly for 30 min at 20 to 25 °C. After conjugation, the mixture was centrifuged to 

remove unbound biotinylated ssDNA probes. The probe-conjugated microbead pellets 

were rinsed with the PBS buffer, centrifuged, re-suspended in TAE buffer and finally 

stored in a refrigerator until use. 

Fabrication of Hydrogel Microplugs.  The hydrogel microplugs were fabricated 

using the following procedure. The main microchannel was filled with a hydrogel 

precursor solution (92 wt% HEMA, 5 wt% EGDM, and 3 wt% photoinitiator Irgacure 

651) by capillary action (Figure 8.1). A UV light (365 nm, 200 s, 300 mW/cm2, EFOS 
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Lite E3000, Ontario, Canada) was projected onto the microchamber region of the 

microchannel from the side port of a microscope (DIAPHOT 300, Nikon, Japan) through 

a 10x objective lens. Any unpolymerized precursor solution was removed by pumping 

the TAE buffer (pH 8.3) through the side-microchannels at a flow rate of 10.0 µL/min for 

>10 min using a syringe pump (Harvard Apparatus, Hollistion, MA). Before carrying out 

the experiments, the hydrogel microplug was conditioned by applying 100~200 V 

voltages for 8~10 min. This conditioning step allowed removal of any unpolymerized 

precursor solution within the microplug.  

Instrumentation.  A fluorescence microscope (Nikon Eclipse TE 300, Nikon 

Co., Tokyo, Japan) equipped with band-pass filters, a 100 W mercury lamp and a CCD 

camera (Photometrics Ltd., Tucson, AZ) was used to acquire optical and fluorescence 

images. The acquired images were processed using an image process software (V++ 

Precision Digital Imaging, Digital Optics, Auckland, New Zealand).  

Electric voltages were applied between two coil electrodes (90% Pt/10% Ir, 2.5 x 

10-1 mm in diameter and 5.0 x 10 mm in length) immersed in the source and waste 

reservoirs (Figure 8.1). The bias voltage (range 0~1067 V, Ultra Volt, Ronkonkoma, NY) 

was controlled with a time resolution of 100 ms using a computer equipped with custom 

software. 

 

8.4 RESULTS AND DISCUSSION 

Microfluidic Chips.  Two types of microfluidic chips – one with and one without 

a hydrogel microplug - were designed to compare the sensitivities of the microbead-based 

assays. The chips were fabricated with PDMS using standard photolithographic 

techniques, and sealed to glass substrates.81,188 Figure 8.1 shows the schematic layouts 

(not drawn to scale) and optical images of the chips; microchip A consists of a weir 
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Figure 8.1. Schematic layouts and optical micrographs of microchips. (A) Microchip A 

with a weir and a microchamber. (B) Microchip B with two weirs. 
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(70~80 µm wide and 100 µm long) to hold the microbeads in place, and a microchamber 

(190~200 µm wide and 400 µm long) to house the hydrogel microplug (Figure 8.1A). 

Microchip B has an additional weir to hold the microbeads inside the microchannel in 

place of the microchamber (Figure 8.1B). The depth of the weirs ranged from 4 to 6 µm, 

which enabled the microbeads (diameter 9.95 µm) to be held in place. The main 

microchannel is 90~100 µm wide and ends in two 3 mm diameter reservoirs (source and 

waster reservoirs). The three side-microchannels (SMCh) were used to introduce 

microbeads (SMCh B) or to wash out the hydrogel precursor solution (SMCh A and C). 

The optical micrographs in Figure 8.1A and 1B show probe-conjugated microbeads 

packed with and without the hydrogel microplug, respectively. 

Detection of Targets Using Bead-based Capture.  With probe-conjugated 

microbeads packed in microchip B, the complementary target solution (20 µL) was 

loaded in the source reservoir, while the waste reservoir was filled with the TAE buffer 

solution (pH 8.3). A voltage of 100 V (100 V, waste reservoir positive) was then applied 

along the main microchannel for 2 min (10~130 s) after an initial 10 s (0~10 s) at 0 V. 

This results in continuous electrokinetic transport of the target solution over the probe-

conjugated microbeads. Next, a reverse voltage of 40 V (-40 V, source reservoir positive) 

was applied for 30 s (130~160 s) to wash away bulk target solution and nonspecifically 

adsorbed targets that may be present. The reverse voltage is called the washing voltage. 

The experiment was repeated with noncomplementary target solution.  

Figure 8.2 shows the fluorescence intensity profiles observed from the probe-

conjugated microbeads (dotted box area in Figure 8.2D, ROI 40x65 pixels) next to the 

right-hand weir during the electrokinetically-controlled flow of targets. Background 

fluorescence signals were measured before loading the target solution and were 

subsequently subtracted from the overall fluorescence. Figure 8.2A shows that the 



 124 

 

 

Figure 8.2. Hybridization of targets onto probe-conjugated microbeads during 

electrokinetically-controlled flow of targets. (A) and (B) Fluorescence intensity profiles 

of probe-conjugated microbeads (ROI 40x65 pixels): 100 nM complementary and 

noncomplementary target solution, respectively. (C) Fluorescence intensity profiles on 

the probe-conjugated microbeads (ROI 40x65 pixels) with different washing voltages: 1 

µM noncomplementary target solution. (D) Optical micrograph showing Microchip B 

packed with probe-conjugated microbeads. 
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fluorescence signal increased during the application of 100 V when using complementary 

targets, while no increase in the intensity was observed with noncomplementary targets 

(Figure 8.2B). Only the bulk solution was found to give a fluorescence signal (3.2 ± 0.2 

cps) when the noncomplementary target solution was used (Figure 8.2B). This indicates 

that the probe-conjugated microbeads only captured the complementary targets. Note that 

the small fluorescence signal (2.7 ± 0.1 cps) observed in Figure 8.2A before applying 100 

V arises from targets reaching the bead bed during loading the target solution using a 

pipette. Figure 8.2A also shows only a small decrease (1.3 ± 0.2 cps) in intensity when 

applying the washing voltage (-40 V) to the hybridized beads, while noncomplementary 

targets were washed away completely under the same conditions. This result indicates 

that the captured complementary targets were retained on the probe-conjugated 

microbeads even after applying a washing voltage (-40 V), which was enough to remove 

all nonspecifically adsorbed noncomplementary targets. Even applying up to -150 V for 

200 s did not significantly remove the captured complementary targets (data not shown). 

This result suggests that the complementary targets were hybridized onto the probe-

conjugated microbeads and not just nonspecifically adsorbed. In addition, there is no 

detectable nonspecific binding of the noncomplementary targets on the probe-conjugated 

microbeads after washing at -40 V (signal-to-background ratio: ~1.0). Even at high 

concentration (1 µM), the nonspecific binding of noncomplementary targets was 

negligible (Figure 8.3B) compared to a much lower concentration (50 nM) of 

complementary targets (Figure 8.3A). To investigate the effect of the magnitude of 

washing voltages, different voltages were applied following the application of 100 V for 

2 min with the noncomplementary target solution at high concentration (1 µM). Figure 

8.2C shows that the noncomplementary targets were completely washed away at all 

washing voltages. Even -10 V was enough to remove the bulk target solution and the 
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Figure 8.3. Fluorescence micrographs of microchip B packed with probe-conjugated 

microbeads after the assay. (A) 50 nM complementary target solution. (B) 1 µM 

noncomplementary target solution. Applied voltage: 100 V for 2 min. Washing voltage: -

20 V for 30 s. Gray scale: 125~215. 
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nonspecifically adsorbed targets within 10 s. -20 V was chosen and used as a washing 

voltage in later experiments.  

Concentration Enrichment Using a Hydrogel Microplug.  The concentration 

of targets using a HEMA-based uncharged hydrogel microplug was demonstrated without 

probe-conjugated microbeads. A complementary target solution was loaded in the source 

reservoir and a voltage of 100 V was applied between the source reservoir (left, negative) 

and the waste reservoir (right, positive) for 2 min (10~130 s) after an initial 10 s at 0 V 

(0~10 s). This causes the target DNA strands to be electrokinetically transported from left 

to right and concentrated at the interface between the highly cross-linked hydrogel 

microplug and buffer solution. After applying 100 V for 2 min, the voltage was turned off 

(130~160 s), resulting in the slow diffusion of the concentrated targets back toward the 

source reservoir or SMCh B.  

A series of fluorescence micrographs obtained during the concentration of targets 

is shown in Figure 8.4. Figure 8.4A shows no concentration of the targets in front of the 

microplug initially (0~10 s). By applying 100 V for 2 min (10~130 s), targets were 

transported from left (source reservoir) to right (waste reservoir) along the main 

microchannel, and a growing fluorescence band originating from concentrated targets 

(concentration band in Figure 8.4B) was observed next to the hydrogel microplug. Figure 

8.4B also shows that some ssDNA moves into the hydrogel microplug. When the voltage 

was turned off (130~160 s), the concentrated target diffused back (diffusion band in 

Figure 8.4C) and slowly dissipated (Figure 8.4D). Some of the ssDNA trapped inside the 

microplug also went out from its right end (Figure 8.4C and 8.4D). We understand the 

observed concentration phenomenon in terms of an abrupt mobility change of the target 

at the boundary between the hydrogel and the buffer.31,175 The high cross-linking density 

and tortuous nature of the inhomogeneous nanoporous hydrogel decrease the effective 
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Figure 8.4. A series of fluorescence micrographs obtained during concentration of targets 

using a HEMA-based hydrogel microplug. Target solution: 1 µM. The concentration 

band represents a fluorescent band next to the hydrogel microplug. The diffusion band 

represents a fluorescent band next to the concentration band. Gray scale: 120~200. 
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diffusivity and hence the electrophoretic mobility of ssDNA within the hydrogel. 

Subsequent velocity difference between the electrophoretic migration in the 

microchannel and within the hydrogel results in concentration of ssDNA at the boundary 

between the hydrogel and the buffer.  

A similar experiment was designed to calculate an enrichment factor using the 

HEMA-based hydrogel microplug. The fluorescence intensity was measured in the 

diffusion-band region (Figure 8.5 inset, ROI 10x25 pixels). The specified area was 

chosen to calculate the enrichment factor over the diffusion band, which provides 

concentrated targets onto the probe-conjugated microbeads. The concentration 

enrichment step was followed with a 0 V step for 30 s and a washing step at -20 V for 30 

s. A higher concentration (5 µM) was used to enhance the signal-to-noise ratio and 

reduce the error in the calculation of the enrichment factor. A background fluorescence 

signal was measured before loading the target solution and was subsequently subtracted.  

Figure 8.5 shows the fluorescence intensity profile over the diffusion band area. After the 

concentration step (10~130 s), the targets diffused back to the source reservoir or to 

SMCh B, resulting in a sudden increase in the fluorescence intensity of the diffusion band 

area at 130 s. The fluorescence intensity then decreased during the following 30 s at 0 V 

and rapidly dropped to the background level after a washing voltage of -20 V was 

applied. The corresponding fluorescence micrographs are shown in Figure 8.6. The 

enrichment factor was calculated by comparing the average value of five initial intensities 

before the concentration, and the peak intensity value after the concentration. Each 

experiment was repeated 3 times to yield an average enrichment factor of 20 ± 3.1 -fold.  

Comparison of Sensitivity.  The sensitivities of the microbead-based assays with 

or without hydrogel microplugs were compared. The same programmed switching of 

voltages (without the initial 0 V for 10 s) used for determination of the enrichment factors 
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Figure 8.5. Fluorescence intensity profile over the diffusion band area obtained using a 

HEMA-based hydrogel microplug without probe-conjugated microbeads. Target solution: 

5 µM. The diffusion band area represents a rectangular area (ROI 10x25 pixels) indicated 

by a black solid line in the inset. 
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Figure 8.6. A series of fluorescence micrographs obtained during concentration of targets 

with a HEMA-based hydrogel microplug. Target solution: 5 µM. The concentration band 

represents a fluorescent band next to a hydrogel microplug. The diffusion band represents 

a fluorescent band next to the concentration band. Gray scale: 120~200. 



 132 

was used for these assays. After loading the target solution in the source reservoir, 100 V 

was applied between the two reservoirs for 2 min to enable concentration of the target. 

Zero V was then applied for 30 s followed by a washing voltage of -20 V for 30 s to 

remove bulk target solution and nonspecifically adsorbed target that might be present. 

Keeping the voltage at 0 V for 30 s after the concentration step allows the concentrated 

targets to remain in the vicinity of the probe-conjugated microbeads for a longer time 

compared to the washing step (-20 V) (data not shown).  

Figure 8.7 shows two fluorescence micrographs after the assays: micrographs of a 

microchip A (Figure 8.7A) and of a microchip B (Figure 8.7B). Clearly, the presence of 

the hydrogel plug resulted in a higher sensitivity for the microbead-based assay. Each 

experiment was repeated 3 times. The microfluidic devices having a hydrogel microplug 

showed 10 ± 0.4 times higher fluorescence signals at a concentration of 10 nM. This 

enhancement in sensitivity can be understood in terms of the enrichment factor achieved 

using a hydrogel microplug (~20-fold).  

When the same experiments were repeated at a lower concentration (2.5 nM), the 

sensitivity enhancement was not significant. Figure 8.8A shows a fluorescence 

micrograph of microchip B without a hydrogel microplug after the assay. We only 

observed a fluorescence signal upstream from the probe-conjugated microbead bed. This 

indicates that the capturing efficiency of the probe-conjugated microbeads is high enough 

to capture most of target flowed during the assay and there is no significant amount of 

target reaching downstream of the microbead bed. The reason for the high efficiency of 

hybridization onto the probe-conjugated microbeads is probably due to the narrow fluid 

paths between packed microbeads which confine the targets in close proximity to the 

probes.92 This would reduce the vertical diffusive transport distance and increase the 

number of target-probe collisions, thereby increasing the probability of hybridization. 
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Figure 8.7. Fluorescence micrographs after the assay (A) with and (B) without a HEMA-

based hydrogel microplug. Target solution: 10 nM. Gray scale: 125~215. The arrow 

indicates the initial flow direction of target ssDNA. 
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Figure 8.8. Fluorescence intensity along a microchannel packed with probe-conjugated 

microbeads. (A) Fluorescence micrograph after the assay. (B) Fluorescence intensity 

profile along the main microchannel. Target solution: 2.5 nM. Gray Scale: 125~215. The 

arrow indicates the initial flow direction of target ssDNA. 



 135 

This high efficiency was confirmed by the observation that no significant fluorescent 

signal could be detected downstream of the bed after the assay (Figure 8.8B). The high 

efficiency of hybridization resulted in fewer targets arriving downstream of the 

microbead bed for concentration, and therefore there was no significant enhancement of 

sensitivity with the lower concentration of target solutions. This limitation of the system 

could be overcome by reducing the number of microbeads packed in front of a hydrogel 

microplug or locating the microbead bed in some place other than right in front of the 

hydrogel plug.  

Another interesting phenomenon that we observed was that the hybridized targets 

were significantly denatured at -100 V in the presence of a hydrogel microplug while 

they were stable up to -150 V without a hydrogel (data not shown). This is probably due 

to the variation in the local field around the hydrogel microplug, resulting in different 

thermal (Joule heating), shear (electroosmosis), and electrical (electrophoresis) energies 

even with the application of the same electrical voltage.189 This suggests that probe-

conjugated microbeads could be used to investigate the local environment around the 

hydrogel microplug in a chip and ultimately as a tool for studying the concentration 

mechanism of the hydrogels. More importantly, the probe-conjugated microbeads were 

intact after the denaturation by application of the high washing voltage (-100 V), and 

could capture targets again (data not shown). This indicates that the probe-conjugated 

microbeads could be easily regenerated without the use of chemicals, which usually 

cause serious degradation of probe sites.174 Furthermore, this could be used for single-

nucleotide polymorphism (SNP) discrimination by simply applying appropriate washing 

voltages.189 

 

8.5 CONCLUSION 
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In this study, we have demonstrated a sensitivity enhancement for microbead-

based DNA detection using a hydrogel microplug in a microfluidic device. The hydrogel 

microplug provided ~10-fold enhancement in the sensitivity, which could be understood 

in terms of the enrichment factor (~20-fold) of the ssDNA concentration provided by the 

hydrogel. Higher sensitivity enhancement should be obtainable by optimizing the layout 

of the device: reducing the number of microbeads packed in front of the hydrogel 

microplug or relocating the bead bed. In addition, the probe-conjugated microbeads 

allowed rapid (few minutes) and sequence-specific capture of the targets. The 

electrokinetically controlled assay also provided the possibility of easy regeneration of 

probe sites on the microbeads as well as a simple washing procedure. Further, a complete 

understanding of the effect of hydrogel on the denaturation could be useful for SNP 

discrimination. 



 137 

Chapter 9:  Summary and Conclusion 

This dissertation described development of two types of microdevices used for 

bioanalysis. The microdevices are DNA (or RNA) microarrays and bead-based 

microfluidic devices. There are two main aspects of this study. First, new strategies to 

fabricate DNA microarrays were demonstrated. The replication approach utilizing zip 

code masters was accurate and efficient, which allowed fabrication of replica DNA arrays 

having any configuration from a single, universal master array (Chapter 3). The 

replication strategy was combined even with in-situ enzymatic synthesis of DNA 

(Chapter 4 and 5) and extended to fabricate replica arrays of other materials like RNA 

(Chapter 6). Second, sensitive DNA sensors were developed. A microfluidic device 

packed with probe-conjugated microbeads was suggested to study parameters affecting 

the hybridization of DNA onto the beads under microfluidic flow conditions (Chapter 7). 

Integration of a hydrogel preconcentrator into a bead-based microfluidic device was also 

demonstrated to improve the limit of detection for DNA in the bead-based microfluidic 

devices (Chapter 8). A more detailed discussion of findings is found below. 

Chapter 3 described an efficient and accurate method for production of DNA 

microarrays from a zip code master. The zip code approach provided a means to fabricate 

DNA arrays having any functional sequences just by using a single universal master 

modified with zip code oligonucleotides. Three consecutive replications from a single zip 

code master were achieved with no significant decrease of DNA density on the replicas. 

This approach was also used to replicate master arrays having three different zip codes 

(spot feature sizes as small as 100 µm) and the replica array showed no observable cross-

reactivity. It can be envisioned to apply this zip code approach further to produce replicas 
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of any other materials that can be modified with a short oligonucleotide code; for 

example, cells, proteins, viruses, carbohydrates, and inorganic nanoparticles. 

Chapter 4 and 5 demonstrated that DNA microarrays can be replicated even 

without using pre-synthesized DNA complements. Use of a T4 DNA polymerase reaction 

allowed in-situ synthesis of complementary oligonucleotides directly on master surfaces. 

Transfer of the synthesized DNA complements to a PDMS surface was demonstrated 

with micrometer-scale resolution. Importantly, spatial registration is preserved between 

the master and PDMS surface after transfer. Following the basic demonstration of the 

enzymatic synthesis approach, replication of 3 x 2 master arrays having different 

oligonucleotide sequences was achieved and the replicas were able to bind 

complementary oligonucleotides accurately. Even large-scale master arrays containing 

2300 spots were successfully replicated. These results indicate that the enzymatic 

synthesis approach is robust and scaleable. 

In Chapter 6, further extension of the replication strategy to other material (RNA) 

was demonstrated. RNA microarrays were fabricated by utilizing a surface T4 DNA 

ligase reaction. The RNA array components were formed by ligation of probe RNA 

strands to anchor DNA on a template DNA-immobilized master slide, and then directly 

transferred onto a PDMS surface. Multiple fabrications of RNA microarrays, more than 

15 times, from a single master were achieved without significant degradation of activity 

of the resulting replica RNA array or the master DNA array. RNA microarrays having 

different RNA sequences were fabricated accurately. The fabricated RNA microarrays 

were active to hybridization.  

Chapter 7 reported the study of hybridization of DNA onto probe-conjugated 

microbeads in a microfluidic device. The hybridization of DNA was described in terms of 

probe surface concentration, target concentration, and flow rate. The density of probes on 
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the microbeads (1.9 x 1012 probes/cm2) was within the range that leads to rapid 

hybridization of DNA. The simple bead-based microfluidic device leaded to efficient 

target capture: a limit of detection of ~10-10 M (~10-16 mol) and a selectivity factor greater 

than 7.9 x 103 within a few minutes (4 min), resulting from the inherently high surface-

area-to-volume ratio of beads, optimized probe surface density, and good mass-transfer 

characteristics. 

Finally, Chapter 8 described a bead-based microchip integrated with a hydrogel 

preconcentrator enhancing the local concentration of target DNA in a microchannel. The 

microfluidic device consisted of probe-conjugated microbeads packed in front of a 

photopolymerized hydrogel plug. Electrokinetically transported target DNA strands were 

concentrated in front of the hydrogel microplug, which resulted in enrichment factor of 

~20-fold within 2 min. The enrichment of target DNA near the bead bed allowed ~10-

fold enhancement in the sensitivity of the microbead-based DNA detection. 
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