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ABSTRACT

In this work, we take a close look at a general extension to the traditional AB/BA

crossover design that is commonly used in clinical trials to determine the effectiveness

of new candidate drugs. While the traditional crossover design requires each patient

in the study to be measured on both treatment A and treatment B, we consider the

possibility of additional measurements being available on each patient. This produces

designs such as the AABB/BBAA design which has been used in previous studies.

A general test statistic will be derived to test for treatment effects as well as its

corresponding power function to aid in sample size determination to aid statistical

planning. Lastly, we explore the theoretical power of our testing procedure and

compare it to simulated power studies to verify how well sample size determinations

will work in practice.
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1 INTRODUCTION

Crossover designs have been widely used in clinical trials to determine the ef-

fectiveness of a drug. The most common crossover design is the AB/BA crossover.

An AB/BA crossover design allows for each patient in the study to be given both

treatment under consideration for comparison. The treatments are treatment A and

treatment B. In many cases, treatment A is a proposed treatment of interest while

treatment B is a placebo with the goal of determining if a difference between the two

treatments exist.

Figure 1.1 illustrates the AB/BA crossover design. Patients are randomly assigned

to two sequences: the AB sequence or the BA sequence. In the AB sequence, patients

are administered treatment A first and a measurement is taken once the drug has

had time to take effect. After some time to allow the drug to leave the person’s

system referred to as the “wash-out” period, the patient then “crosses-over” and is

administered treatment B and a second measurement is recorded.

Figure 1.1: Crossover Design AB/BA [5]

A similar description holds for the patients in the BA sequence but the treatment

order is reversed. In the BA sequence, patients are administered treatment B first

and a measurement is taken once the drug has had time to take effect. After the

“wash-out” period, the patient then “crosses over” and is administered treatment A
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and a second measurement is recorded.

Taking measurements over time from the sequences are referred to as periods.

When a patient is taking their first treatment, that is referred to as the first period.

For example, if a patient is in the AB sequence, then they will receive treatment A

during the first period and treatment B during the second period. In contrast, if a

patient is in the BA sequence, then they will receive treatment B during the first

period and treatment A during the second period.

The main benefit of the crossover design is that each patient serves as their own

control effectively allowing for a paired analysis. If the outcomes for the pairs are

positively correlated, then the tests will be more statistically powerful than if a simple

randomized treatment/control study were used. However, the design also comes with

its own considerations and pitfalls. For example, when patients crossover, a certain

time must pass between the periods for the treatment to leave the patient’s system

before the next treatment is applied. If researchers rush into a second treatment

without allocating enough time for the “wash-out”, this is commonly referred to as

the carryover effect and can result in a biased result of the treatment effect when

performing a hypothesis test.

Cross-over designs have received numerous extensions in order to handle more

complicated research models and designs. The extensions include various combina-

tions of allowing for more than two treatment groups to be investigated, adding ad-

ditional sequences to better handle potential carryover effects, and adding additional

periods. Each extension has their own pros and cons. A less commonly discussed

extension of AB/BA crossover design is AABB/BBAA crossover. Figure 1.2 demon-

strates an example of an AABB/BBAA crossover study.

Following along with Figure 1.2, group 1 represents the AABB sequence where

patients are given ReVeRe.D first (treatment A) followed by Examiner (treatment B).

Group 2 represents the BBAA sequence where patients are given Examiner (treatment

2



Figure 1.2: Crossover Design AABB/BBAA [2]

B) first then followed by ReVeRe.D first (treatment A). The test days represent

the periods in which data is collected from the patients under their corresponding

treatment. This highlights they key difference of the extended design from the classic

AB/BA design. Under the AABB/BBAA design, multiple measurements are recorded

from the patients under each treatment. While it is not noted in Figure 1.2, it is

assumed that an appropriate wash out period is conducted between test day 2 and

test day 3 (periods 2 and 3). [2]

1.1 Hypothesis Tests in AB/BA Designs

First, we summarize the hypothesis test of the classic traditional AB/BA design.

The traditional cross over design has numerous ways to express the model and its

3



effects. Under the most common parameterization, the cross over design is simply

a Latin square design. For the purpose of this thesis, we will introduce the model

through a multivariate lens motivated by a discussion by Senn [8]. In summary, the

AB/BA design results in collecting data under four conditions which correspond to

what sequence, period, and treatment the sample were collected from. Figure 1.3

provides a cell means table, considering the sample averages of the four conditions

along with their expected values as discussed by Senn [8].

Figure 1.3: Cells Means and Expectations for an AB/BA Cross-over

The parameters defined for the expected values in Figure 1.3 are defined as follows.

The treatment effect is τA− τB, the period effect is π1− π2, and the carry-over effect

is λA−λB. The sample mean of the first period of sequence AB is denoted Ȳ11 whose

expectation is µ+ τA + π1. The sample mean of the second period of sequence AB is

denoted Ȳ12 with expectation µ + τB + π2 + λAB. Also, in the second sequence BA,

the sample mean of the first period is denoted Ȳ21 whose expectation is µ+ τB + π1.

The final sample mean, Ȳ22, is with respect to second period of sequence BA and has

expectation µ+ τA + π2 + λBA.

Since the four averages are random variables and are correlated since multiple

measurements are taken on each subject, we can use multivariate distribution theory

to organize all the information about the averages. The four averages can be written

as a random vector denoted below as:
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Ȳ =


Ȳ11

Ȳ12

Ȳ21

Ȳ22

 (1.1)

with expected value

E(Ȳ ) =


µ+ τA + π1

µ+ τB + π2 + λAB

µ+ τB + π1

µ+ τA + π2 + λBA

 . (1.2)

Following Senn’s notation, the variance-covariance matrix for the random vector,

Ȳ is expressed as

V ar(Ȳ ) = Σ =


σ2

n1
ρσ

2

n1
0 0

ρσ
2

n1

σ2

n1
0 0

0 0 σ2

n2
ρσ

2

n2

0 0 ρσ
2

n2

σ2

n2

 (1.3)

where σ2 is the variance, assumed constant for each observation across all four con-

ditions. The parameter ρ is the correlation between the subjects and only exists

between averages that are taken on the same subjects. The number of each subjects

in the first (AB) and second (BA) sequence are n1 and n2, respectively.

To perform a test on the treatment effect, τA− τB, there are two possible tests to

consider. These tests are constructed using specific contrasts, or linear combinations

of the cell means Ȳ . The first contrast is referred to as “par” and only uses sample

means that occur prior to the cross over. Let the contrast be a four by one row

vector defined by c′
par

= 1
2
(1, 0,−1, 0). The expected value of c′

par
Ȳ is E(c′

par
Ȳ ) =

c′
par
E(Ȳ ) = τA−τB, and is thus and unbiased estimator for the treatment effect. The

variance of c′
par
Ȳ can be obtained by computing c′

par
Σcpar which reduces to (1/n1 +

5



1/n2)σ
2. Assuming normality, the general test statistic can be constructed using the

traditional z-score: z =
c′
par

Ȳ −0√
c′
par

Σcpar

, under the null hypothesis of no treatment effect,

the null distribution of Z is N(0, 1).

The second contrasts is referred to as “cros” and utilizes all four sample averages.

Here the 4× 1 contrast vector is defined as c′
cros

= 1
2
(1,−1,−1, 1). The expect value

of c′
cros
Ȳ is E(c′

cros
Ȳ ) = c′

cros
E(Ȳ ) = (τA − τB)− (λAB−λBA)

2
. While on its face, the

contrast for cros does not look particularly helpful since it is not an unbiased estimator

for the treatment effect. However, if the researchers provide adequate amount of

time for the treatment to leave the patients system before crossing over, then it is

reasonable to assume that λAB−λBA = 0. If so, then the cros contrast is an unbiased

estimator for the treatment effect. The variance of c′
cros
Ȳ is computed similarly to

par and reduces to σ2(1−ρ)
2

(1/n1 + 1/n2). Assuming normality again, the general test

statistic can be constructed using the traditional z-score, z =
c′
cros

Ȳ −0√
c′
cros

Σccros
.

The advantages of using the test involving cross is clear as long as the study

ensures enough time for the drug to wash out. Comparing the variance for each of

the tests, the variance of ccrosȲ differs by a multiplication factor of 1− ρ. Since ρ is

the correlation between repeated measurements on the same patient, it is expected

that ρ will be positive, thus creating a smaller standard error which will produce more

liberal statistical results in terms of smaller probability values and tighter confidence

intervals for the treatment effect.

In practice, the parameters σ2 and ρ will not be known in advance and must be

estimated from data. Using consistent estimators for these parameters and plugging

them into Σ, denoted Σ̂, the test statistic is converted to a t-score: t = c′Ȳ −0√
c′Σ̂c

where

c is either the par or cros contrast. The estimates of σ2 and ρ are typically obtained

via restricted maximum likelihood (REML) obtained using a mixed model framework

[4]. For the simple AB/BA design, the mixed model can be defined as

yij = µj + γi + εi

6



where i is the ith patient in the study measured under the jth condition j = 1, 2, 3, 4.

The mean parameters µj are defined as they are in Figure 1.3. It should be noted

that for each patient, only 2 of the 4 levels of µj will be estimated due to the cross

over nature of the study. The γi’s are subject specific random variables that are

independent and assumed to be normally distributed with mean 0 and a subject

specific variance, σ2
sub. The errors, εi, are standard regression error terms that are

independent and normally distributed with mean 0 with variance σ2. Each εi are

assumed to be independent from the γi’s. Under the method of REML, estimates for

mean parameters as well as the variance terms can be obtained . Under this particular

model, the estimate of ρ is ρ̂ =
σ̂2
sub

σ̂2
sub+σ̂

2

1.2 Analysis example using a synthetic data set

In this section, an example of an analysis of an AB/BA cross-over design with a

simulated data set is introduced. To simulate the data, we first specified the param-

eters. The common mean value µ = 100. The treatment parameters were selected

such that the difference between treatment A and treatment B, is τA − τB = 10.

Similarly the period effect parameters were chosen such that π1 − π2 = 3. Assuming

there is no carry-over effect, λAB = λBA = 0. The sample sizes for the two sequences

AB and BA were both set to 10, n1 = n2 = 10. Lastly, we specified the variability

due to measurement error (σe = 7) and due to subject error (σsub = 7) so that the

correlation between subject is ρ = 7
7+7

= 0.5 and total variation is σ = σe+σsub = 14.

With the parameters initialized, the data from two patients, 1 from each sequence,

is simulated using a multivariate normal distribution with mean E(Ȳ ) as specified

in Equation (1.2) and Variance-Covarinace Matrix defined as in Equation (1.3) but

setting the sample sizes equal to 1 to reflect single observations rather than averages,

7



Σ =


σ2 ρσ2 0 0

ρσ2 σ2 0 0

0 0 σ2 ρσ2

0 0 ρσ2 σ2

 .

Upon simulating the observations, we formatted the data so that it could be

appropriately fitted by a linear model in the R statistical software. The first few rows

are depicted in Figure 1.4 for reference. There are five columns presented indicating

observation information such as the sequence (Seq: AB or BA), the period (Per: 1

or 2), subject id (1 to 20), treatment group (trt: treatment 1 or treat 2), and the

response values.

Figure 1.4: A Part of Simulated Data for Cross-over Design AB/BA

Figure 1.5 provides a plot of the full simulated data set. The x-axis presents the

8



treatments such as treat 1 or treatment 2. The y-axis presents the responses. The

green lines illustrate all the patients that are on sequence AB. On the other hand, the

red lines express all the patient on sequence BA. Each line represents each patient in

the experimental test design. We can see that there is a mild correlation between all

the pairs which perfectly fits since ρ is specified to be 0.5.

Figure 1.5: Graph of The AB/BA Cross-over Design

Upon fitting a linear mixed model to the data using the nlme package in R sta-

tistical software, the estimated cell means and their standard errors are presented in

Table 1.1.
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Table 1.1: Mean Result of the AB/BA Cross-over Design

Groups Mean Value Std. Error df

Group Y11 109.09266 1.041476 17

Group Y12 101.35146 1.041476 17

Group Y21 97.93285 1.041476 17

Group Y22 113.55337 1.041476 17

The estimated covariance matrix of Ȳ of the AB/BA cross-over design from the

simulated data is:

Σ̂ =


1.0847 0.702 0 0

0.702 1.0847 0 0

0 0 1.0847 0.702

0 0 0.702 1.087

 .

With the estimates Ȳ and Σ̂ obtained, we computed the t-statistic using the linear

contrasts of both par and cros. The estimated treatment effect using the par contrast

was 11.16 with a t-statistic equal to 7.577. The resulting two sided p-value is less

than 0.0001. The estimated treatment effect using cros is 11.681. The t-statistic is

equal to 18.876 and yielded a two sided p-value less then 0.0001. The t-statistics of

both cros and par contrast indicates that there is significant evidence of a possible

treatment effect. As we discussed in Section 1.1, t-ratios utilizing the cros contrast

will typically be larger than that of par contrast because of the smaller variance of

cros when positive correlation exists.

10



Table 1.2: Result of the Sample AB/BA Cross-over Design

Contrast Estimate SE df t-statistic p-value

Par 11.16 1.472 17 7.577 < 0.0001

Cros 11.681 0.619 17 18.876 < 0.0001

1.3 Investigating Extended Cross-Over Designs.

There are two main goals of this thesis. The first goal is to derive a general test

statistic for the extended cross-over design where the number of periods increases

by an even number as described earlier in this chapter. Upon doing so, we will

provide a closed form expression for the test statistic to gain insight to the relationship

between whether or not it would be better to increase the total sample sizes of a

study by either increasing the number of patients or the number of periods. It seems

reasonable to assume that increasing the number of patients would be more valuable

as each new subject recruited brings independent information to help estimate the

treatment effect. However, for some patient populations, it can be quite costly to

recruit patients yet quite easy to take additional measurements by increasing the

number of periods. Understanding how these design parameters impact study design

is of key importance. This knowledge will allow for better design choices under various

real world constraints.

The final goal is to perform simulation studies to determine if our general statistic

can be used to obtain reliable sample size determinations to achieve a specified sta-

tistical power. The simulations verifies that our theoretical results are indeed correct

and also investigate the validity of computing sample size determinations assuming

σ and ρ are known, when the actual study will be estimating the parameters from

data. If any discrepancies are found, these scenarios will be noted and alternative

recommendations will be made.
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2 Methods

In this chapter we will generalize the test for treatment effect for a general cross-

over design when additional periods are included in the study design. In the first

section, we will introduce mathematical notation to appropriately describe the general

framework for constructing the contrast. The next section will provide technical

details for a general test of the treatment effect. Lastly, we will introduce the notion

of statistical power, describe its usefulness in study design, and give insight how the

generalized test can impact study design decisions.

2.1 Introductory Notation

To extend the AB/BA crossover design to allow for multiple repeated measures,

we will use a different notation when describing the cell means of the cross over design

introduced in Chapter 1. Recall the Cell Means table, originally discussed in Chapter

1 provided in Figure 1.3. The subscripts on Ȳij indicate the average of the data

observed from the patients on the ith sequence and jth period.

Figure 2.1: Cells Means and Expectations for an AB/BA Cross-over

Following the notation of Chapter 1, the random vector of averages provided

in Equation (1.1) is organized such that the first sequence averages are listed first

12



followed by the averages from the second sequence. Rather than double scripting the

averages, we will simply index the averages from one to four with the understanding

that the first two averages correspond to the first sequence and in ascending order,

Ȳ =


Ȳ11

Ȳ12

Ȳ21

Ȳ22

 =


Ȳ1

Ȳ2

Ȳ3

Ȳ4

 .

Under this notation, we can generalize the cell means vector to accommodate

additional cases where the number of periods, l, increases by multiples of two. For

example, when l = 2, we have the standard AB/BA design. When l = 4, we have the

AABB/BBAA design and the vector of averages is written as

Ȳ =



Ȳ1

Ȳ2

Ȳ3

Ȳ4

Ȳ5

Ȳ6

Ȳ7

Ȳ8



.

We partitioned the vector into two smaller vectors to highlight the fact that the first

4 averages correspond to first sequence (AABB), while the remaining 4 correspond to

the second sequence (BBAA). In general, for a design with l periods, the cell mean

vector is written as

13



Ȳ =



Ȳ1

Ȳ2
...

Ȳl

Ȳl+1

Ȳl+2

...

Ȳ2l



.

The expected value and variance-covariance matrix for Ȳ can also be generalized.

For the expected value, the cell means can be expressed by adding column vectors of

parameters. Let µl be a column vector of length l containing the scalar µ for each

entry. Let τABl be a vector of treatment effects whose first l/2 entries are the τA

and the remaining entries are τB. τBAl is defined similarly but the first l/2 entries

are τB and the remaining entries are τA. The period effects can be expressed as

πl = (π1, π2, ..., πl). The carry over effects can be expressed λABl and λBAl, whose

first l/2 entries are all 0 and remaining entries are λAB and λBA respectively. With

this frame work, the expected value of Ȳ can be expressed as

E(Ȳ ) =

µl

µl

+

τABl

τBAl

+

πl

πl

+

λABl

λBAl

 . (2.1)

When setting l = 2, it is easily verified that the resulting expectations for the

four averages reduces to the AB/BA cell means provided by Senn [8] and reported

in Figure 1.3 and Equation (1.2). We recognize the notation in the general case is

somewhat cumbersome. The difficulty arises due to the cross over nature of the design

and the various effects due to treatment and carry-over depend on the period and the

sequence. Writing the effects using vectors of length l will prove useful in upcoming

sections.
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A generalization of the variance-covariance matrix can be expressed upon exami-

nation of the simple 2 period design. Recall that the variance-covariance matrix for

the AB/BA design is expressed as:

V ar(Ȳ ) = Σ =


σ2

n1
ρσ

2

n1
0 0

ρσ
2

n1

σ2

n1
0 0

0 0 σ2

n2
ρσ

2

n2

0 0 ρσ
2

n2

σ2

n2

 .

Upon examination, there are four 2 × 2 block matrices. The off diagonal blocks are

simply a matrix of 0’s and reflects the fact that the first 2 averages (Sequence AB)

are computed from patients that are independent from the last 2 averages (Sequence

BA). The diagonal blocks are essentially identical except for the fact that the sample

sizes, n1 and n2, could be different. When extending to additional periods, l, the four

blocks will expand with the same structure but will each have dimension l × l.

Let Vk be a k×k matrix whose diagonal elements are 1 and off diagonal elements

ρ, and denote 0k a k × k matrix of 0’s. The variance-covariance matrix for Ȳ for a

crossover design with l periods can be expressed as:

V ar(Ȳ ) = σ2

[ 1
n1
Vl 0l

0l
1
n2
Vl

]
. (2.2)

As with the expected value of Ȳ , setting l = 2 and distributing σ2, n1, and n2 back

into V2 yields the variance-covariance matrix for the AB/BA design.

2.1.1 Additional Notation and Discussion

In the next section we will provide a generalized version of the “cros” contrasts dis-

cussed in Chapter 1, and derive the mean and variance of the estimator for construct-

ing a test for the treatment effect. In doing so, we will utilize some additional vectors

and matrices.
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First for any even integer k, let 1k be a column vector of 1’s with length k and let

dk be a column vector of length k whose first k/2 elements are 1 and the remaining

k/2 elements are -1. Thus, dk can be written using two blocks,

d′
k = [1′

k/2−1′
k/2]. (2.3)

Additionally let, Wk be a k × k matrix with all entries equal to ρ. Note that Vk

can be partitioned into four k/2× k/2 blocks using itself and Wk.

Vk =

[
Vk/2 Wk/2

Wk/2 Vk/2

]
. (2.4)

2.2 A General Test for Treatment Effect

In this section we propose a contrast that generalizes the cros contrast of the

AB/BA design. We will show that this new contrast is an unbiased estimator for

a treatment effect if there is no drug carry over and will derive its variance. These

results can then be combined to derive a general test statistic in which p-values and

confidence intervals can be generated.

Recall that for AB/BA design the preferred contrasts for testing a treatment ef-

fect is the cros contrast, c′
cros

= 1
2
(1,−1,−1, 1). Here the two averages obtained

from observations receiving treatment A are contrasted against the two averages ob-

tained from observations receiving treatment B. When one considers the four period

design, l = 4 (AABB/BBAA), it seems reasonable to denote the cros contrast, as

c′
cros

= 1
4
(1, 1,−1,−1,−1,−1, 1, 1), again averaging across the estimates associated

with treatment A and contrasting it against averaging across the estimates from treat-

ment B. For the general case of any even period design, l, denote the general contrast

as:

c′ =
1

l

[
1′
l/2 −1′

l/2 −1′
l/2 1′

l/2

]
. (2.5)
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Note here that we’ve dropped the subscript as we will not be considering any

other contrasts throughout the rest of this manuscript. It turns out that this contrast

provides an unbiased estimator for the treatment effect if no carry over effect is

present. Because of this, a test statistic can be derived, similar to the AB/BA design,

as long as the variance of the estimator can be estimated. These results will be proven

in the following Theorem, but first we present a corollary.

Corollary 1. Let dk be a k by one vector (k is even) whose elements are defined by

Equation (2.3) and Vk is a k x k symmetric matrix as defined by Equation (2.4).

Then

d′
kVkdk = k(1− ρ).

Proof. Expanding d′
kVkdk into block matrix form using Equations (2.3) and (2.4),

we have:

d′
kVkdk =

[
1′
k/2 −1′

k/2

][
Vk/2 Wk/2

Wk/2 Vk/2

][
1′
k/2

−1′
k/2

]
.

After performing block matrix multiplication, we have:

d′
kVkdk = 1′

k/2Vk/21k/2 − 1′
k/2Wk/21k/2 − 1′

k/2Wk/21k/2 + 1′
k/2Vk/21k/2

= 2(1′
k/2Vk/21k/2 − 1′

k/2Wk/21k/2)

= 21′
k/2(Vk/2 −Wk/2)1k/2.

The matrix (Vk/2 −Wk/2) is sandwiched between two vectors of one’s, and

therefore simplifies to just the sum of the elements of (Vk/2 −Wk/2). Note that

(Vk/2 −Wk/2) = (1 − ρ)Ik/2. The sum of the elements in the matrix is simply

adding up (1 − ρ) k/2 times. After substitution of this simplification, we have the

result:

d′
kVkdk = 2(k/2)(1− ρ) = k(1− ρ).
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Theorem 2.1. Let Ȳ denote the estimated cell averages obtained from a general

crossover design with l even periods and let c′ be the linear contrast defined in Equa-

tion (2.5) . The mean and variance of c′Ȳ is:

E(c′Ȳ ) = (τA − τB)− λAB − λBA
2

.

V ar(c′Ȳ ) =
σ2(1− ρ)

l
(1/n1 + 1/n2).

Proof. We can express c′ as a block vector, c′ = 1
l
(d′

l,−d′
l). Since expectation is a

linear operator, we have:

E(c′Ȳ ) = c′E(Ȳ ) =
1

l
[d′

l−d
′
l]E(Ȳ ).

Recall earlier in the chapter, E(Ȳ ) is expressed as:

E(Ȳ ) =

µl

µl

+

τABl

τBAl

+

πl

πl

+

λABl

λBAl

 .
Therefore, the expectation can be reduced using block matrix multiplication:

c′E(Ȳ ) =
1

l
[d′

l−d
′
l]

(µl

µl

+

τABl

τBAl

+

πl

πl

+

λABl

λBAl

)

=
1

l

(
d′
lµl − d′

lµl + d′
lτABl − d′

lτBAl + d′
lπl − d′

lπl + d′
lλABl − d′

lλBAl

)
=

1

l

(
d′
lτABl − d′

lτBAl + d′
lλABl − d′

lλBAl

)
.

Recall that τABl is a vector of treatment effects whose first l/2 entries are τA

and the remaining entries are τB. τBAl is defined similarly but the first l/2 entries

are τB and the remaining entries are τA. The period effects can be expressed as

π′
l = (π1, π2, ..., πl). The carry over effects can be expressed λABl and λBAl, whose

first l/2 entries are all 0 and remaining entries are λAB and λBA respectively. The

multiplication of d′
l to each of the components simplifies to adding up the first l/2
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elements and subtracting it from the sum of the last l/2 elements. Applying the

multiplication to each component yields d′
lτABl = l

2
(τA−τB), −d′

lτBAl = l
2
(τA−τB),

d′
lλABl = − l

2
(λAB), and −d′

lλBAl = l
2
(λAB).

Replacing the scalar results for each component, we have the final result:

E(c′Ȳ ) =
1

l

[
l

2
(τA − τB) +

l

2
(τA − τB)− l

2
(λAB) +

l

2
(λBA)

]
= (τA − τB)− λAB − λBA

2
.

To prove the variance, we take a similar approach.

V ar(c′Ȳ ) = c′V ar(Ȳ )c

=
σ2

l2
[ d′

l −d′
l

]

[ 1
n1
Vl 0lxl

0lxl
1
n2
Vl

] dl

−dl


=
σ2

l2

[
d′
l(

1

n1

Vl)(dl) + d′
l(

1

n2

Vl)dl

]
=
σ2

l2

[
1

n1

d′
lVldl +

1

n2

d′
lVldl

]
.

Using Corollary 1, d′
lVldl = l(1− ρ), and the result follows.

V ar(c′Ȳ ) =
σ2

l2

[
1

n1

d′
lVldl +

1

n2

d′
lVldl

]
=
σ2

l2

[
1

n1

l(1− ρ) +
1

n2

l(1− ρ)

]
=
σ2

l
(1− ρ)

[
1

n1

+
1

n2

]
.

From the result of Theorem 2.1, the expected value of E(c′Ȳ ) is (τA − τB) −
λAB−λBA

2
. And the variance of V ar(c′Ȳ ) can be obtained by computing σ2

l
(1 − ρ)[

1
n1

+ 1
n2

]
. Assuming normality and no carry-over effect, a test statistic can be

constructed using the traditional z-score, Z = c′Ȳ −(τA−τB)√
σ2(1−ρ)

l
(1/n1+1/n2)

. Under the null
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hypothesis of no treatment effect: H0 : τA = τB , the null distribution of Z is N(0, 1).

In practice, the parameters σ2 and ρ are unknown and must be estimated from data.

Therefore, the test statistic is converted to a t-score: t = c′Ȳ −(τA−τB)√
σ̂2(1−ρ̂)

l
(1/n1+1/n2)

.

2.3 Study Design Implications

The result of the variance term, although simple, is not intuitive for the following

reason. Consider the following two designs with periods l = 2 and l = 4. When l = 2,

V ar(c′Ȳ ) = σ2

2
(1− ρ)

[
1
n1

+ 1
n2

]
.

For the 4 period (l = 4), the variance becomes σ2

4
(1− ρ)

[
1
n1

+ 1
n2

]
. However, we

can rewrite the 4 period variance in terms of the variance of a two period design as

follows:
σ2

2
(1− ρ)

1

2

[
1

n1

+
1

n2

]
=
σ2

2
(1− ρ)

[
1

2n1

+
1

2n2

]
The result above reflects that there is a relationship between the number of period

and sample size. By doubling the number of periods in the design from an AB/BA

design to an AABB/BBAA design, the efficiency of c′Ȳ for the AABB/BBAA de-

sign is equivalent to a standard AB/BA design with double the amount of patients,

suggesting that there is no difference between increasing patients versus increasing

periods. This goes against conventional thought as collecting measurements on the

same subject typically does not dampen the variance as rapidly as independent ob-

servations do. This result allows for researchers to reconsider their crossover design

based on the difficulty of collecting measurements on patients (periods) as well as the

difficulty of recruiting patients.

For example, suppose a researcher has determined that a sample size of 120 pa-

tients in each sequence is required to detect a practically meaningful treatment ef-

fect using a standard AB/BA design. However, the funding is such that recruit-

ing the sample size required is not feasible. Based on our results, conducting an
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AABB/BBAA design using just 60 patients or an AAABBB/BBBAAA using just 40

patients are all statistically equivalent with respect to the variance of the estimate

for treatment effect.

Determining sample sizes as discussed in the previous example typically is done

by examining the power of a hypothesis testing procedure. Statistical power is the

probability of rejecting the null hypothesis when the alternative hypothesis is in fact

true. That is, in the case of our scenario, the probability of detecting a true difference

in means between the two treatment groups.

For a one sided test assuming no carry-over, with alternative Ha : τA > τB and

significance level α = 0.05, the power obtained by a shift of τA − τB = ∆ can be

computed as:

β(∆) = P (Z > z1−α|τA − τB = ∆)

= P (
c′Ȳ√

σ2(1−ρ)
l

(1/n1 + 1/n2)
> z1−α|τA − τB = ∆)

= P

(
c′Ȳ −∆√

σ2(1−ρ)
l

(1/n1 + 1/n2)
+

∆√
σ2(1−ρ)

l
(1/n1 + 1/n2)

> z1−α|τA − τB = ∆

)

= P

(
Z > z1−α −

∆√
σ2(1−ρ)

l
(1/n1 + 1/n2)

|τA − τB = ∆

)
,

where z1−α is the normal quantile. The notation β(∆) is referred to as the power

function and is typically referred to as a function of the effect size, τA − τB = ∆

with the additional information such as the number of patients, σ2, and ρ known in

advance. Using the power function as presented and assuming one has a good idea

about what the number of patients, σ2, and ρ actually are, investigators can compute

the power of numerous scenarios, changing sample sizes and changing ∆ to determine

a good design with a high chance of detecting the difference sought.
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While the theoretical result allows for simple power calculations for planning new

experiments and determining appropriate sample sizes, it is important to study the

performance of the theoretical results by way of simulation since the theoretical power

is obtained assuming σ2 and ρ are known. It is important to verify that when per-

forming the t-test using estimates of σ2 and ρ, the statistical power of the test is

the same or very close to the theoretical power obtained using the power function

which assumes they are known. The statistical power of the t-test we define to be

as empirical power since we have to verify its performance on simulated data sets to

allow for σ2 and ρ to be estimated.

Additionally, while theoretically there is no difference in statistical power between

a design with 20 patients in each sequence with 2 periods versus 10 patients using

4 periods, the empirical power of the t-test procedures might differ due to how well

the estimators of σ2 and ρ are behaving. We suspect that adding periods will help

estimate ρ while adding sample sizes will help estimate σ2 better and this could intern

create a difference in the empirical power while theoretically there is no difference.

The next chapter investigates these concerns by way of simulation.
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3 Results and Final Remarks

As discussed at the end of Chapter 2, it is important to validate the performance

of our generalized test for treatment effect. While theoretical computations of power

are easily computed using the standard normal distribution, analysis in practice will

use the t-test version of the test because ρ and σ2 must be estimated from the data.

The power of the actual test may not be consistent with the theoretical power.

An additional goal of this study is to investigate if equivalent crossover designs are

consistent in terms of their power when applied in practice. We hypothesized that

designs that have more periods might behave differently compared to an equivalent

design that has more patients but less periods, since these parameters might have

an impact on how ρ and σ2 are estimated. To assess these two primary goals, we

performed Monte Carlo simulations under various scenarios to estimate power of the

t-test.

3.1 Simulation Design

For all of the simulations considered in this report, we varied the treatment effect

∆ = τA − τB from 0 to 1.2 by increments of 0.2, all period effects were set to 3

(π1 = π2 = ... = πl = 3), and no carry-over was assumed (λAB = λBA = 0). We also

set σ2 = 14. To address our first goal, we examined four scenarios:

1. ρ = 0.5, n1 = n2 = 20, l = 2, 4, 6

2. ρ = 0.5, n1 = n2 = 5, l = 2, 4, 6

3. ρ = 0.8, n1 = n2 = 5, l = 2, 4, 6

4. ρ = 0.2, n1 = n2 = 5, l = 2, 4, 6
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Under these 4 scenarios, we can explore low, moderate, and high theoretical power

and compare that to empirical estimates of power using the t-test derived from our

contrast. To address our second goal, we considered 6 additional scenarios (2 sets

of 3) whose contrasts to test for the treatment effect have the same variance and

therefore should have the same power. Scenarios 5 through 7 are listed below and are

equivalent in regards to the construction of their z-statistic.

5. ρ = 0.5, n1 = n2 = 5, l = 8

6. ρ = 0.5, n1 = n2 = 10, l = 4

7. ρ = 0.5, n1 = n2 = 20, l = 2

Similarly, scenarios 8 through 10 are equivalent to each other, are essentially the same

as scenarios 5, 6, and 7 except for the fact that the strength of ρ is increased to 0.8.

8. ρ = 0.8, n1 = n2 = 5, l = 8

9. ρ = 0.8, n1 = n2 = 10, l = 4

10. ρ = 0.8, n1 = n2 = 20, l = 2

To simulate one data set from a given scenario, we followed the procedure de-

scribed in Chapter 1 using the general mean and variance for Ȳ . Briefly, the data

from two patients, 1 from each sequence (AB and BA), is simulated using a mul-

tivariate normal distribution with mean E(Ȳ ) as specified in Equation (2.1) and

Variance-Covarinace Matrix defined as in Equation (2.2) and setting the sample sizes

equal to 1 to reflect single observations rather than averages. Additional random

draws are taken to increase the number of patients in each group. The data was then

formatted so that it could be fed into a general linear model framework inside of the

program R.
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To estimate the power of the contrast constructed through the t-test for a single

set of parameters, we performed a Monte Carlo simulation using the following pseudo

code:

1. For i in 1 : 5000

a. Create new data set based on the simulation parameters n1, n2, σ
2, ρ, l,

and τA − τB = ∆.

b. Fit a linear mixed model to estimate the 2l cell means, σ2, and ρ.

c. Perform the t-test and compute the p-value using our proposed general

contrast c′.

d. Record if the test is rejected and count it as 1 if rejected, 0 otherwise.

2. End Loop

3. Calculate the empirical power p̂ = #Rejections
5000

4. Simulation margin of error is computed as 1.96
√

p̂(1−p̂)
5000

3.2 Simulation Results

Figure 3.1 provides our first look at the performance of the t-test contrast com-

pared to the theoretical power of the test assuming ρ and σ2 are known. The x-axis

presents the value of ∆ = τA − τB. The y-axis presents the power of the test, except

for when ∆ = 0, where it can be interpreted as the type-I error rate. The empirical

method is illustrated by the dotted lines while the theoretical method is displayed

with solid lines. The different colors presents the different number of periods used in

the design. The blue, green, and black colors correspond to l = 2, 4, 6, respectively.

Upon examination of the figure, the power of the empirical method in all three designs
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stays within simulation error of the true theoretical power as indicated by the simu-

lation error bars plotted around the empirical estimates. As expected, while holding

the patient sample sizes fixed, increasing the periods increases the statistical power.

Figure 3.1: Theoretical and Empirical Power Curve for Scenario 1

Figure 3.2 provides some additional detail not recognized in the first scenario. In

scenario 2, the patient sample size is decreased to n1 = 5 and n2 = 5. When examining

the classic AB/BA design when the number of the period is 2, the empirical power at

the higher values of ∆, are slightly lower than the theoretical ones and are not within

simulation error. This suggests that if researchers are planning a traditional AB/BA

design with smaller sample sizes, an empirical estimate of power via simulation would

be more trustworthy than using the theoretical power. However, as the number of

the periods increases to 4 or to 6, and the empirical power and the theoretical power

become more consistent.

In scenario 3, figure 3.3 , we keep the sample sizes at n1 = 5 and n2 = 5, but we

increased ρ to 0.8. Similarly to scenario 2, when the number of the period is 2 and

for larger values of ∆, the empirical power is lower than that of the theoretical one.

In this case, however the discrepancy in the power seems to have gotten worse than
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Figure 3.2: Theoretical and Empirical Power Curve for Scenario 2

in scenario 2. For example, when ∆ = 1.2, the difference between the theoretical

and empirical power is only about 0.04 when ρ = 0.5, but the difference is closer to

0.9 when ρ = 0.8. Again, as the number of periods increases from 2, we see nice

agreement between theoretical and empirical power. As expected the power is much

higher in this scenario when comparing to scenario 2 as a larger ρ value will dampen

the variance estimate used in the contrast test statistic.

In scenario 4, we again kept the sample sizes at n1 = 5 and n2 = 5 but we

decreased ρ to 0.2. Figure 3.4 provides a similar behavior as the others. Again the

main discrepancy in power is observed when there are just two periods. However,

with a much smaller value for ρ, the discrepancy is less compared to when ρ was 0.5

and 0.8. As compared previously with scenario 2 and 3, when ∆ = 1.2, the observed

difference in power is only 0.025 for the t-test vs z-test.

Table 3.1 provides the power estimates for scenarios 5, scenario 6, and scenario

7. There are three main columns which include the scenario, patient sample size (of

each group), and true difference ∆. In the true difference ∆ column, there are seven
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Figure 3.3: Theoretical and Empirical Power Curve for Scenario 3

Figure 3.4: Theoretical and Empirical Power Curve for Scenario 4

smaller nested columns that present the different values of ∆, such as ∆ = 0.00,

∆ = 0.20, ∆ = 0.40, ∆ = 0.60, ∆ = 0.80, ∆ = 1.00, and ∆ = 1.20. The bold power

estimates within the table indicate that the empirical estimates of power falls within
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the simulation error of the theoretical power listed in the first row. While the results

are not unanimous, we believe this is strong evidence that a researcher can truly

consider alternate equivalent study designs without any fear of discrepancy when it

comes to the power of the test in practice.

Table 3.1: Power estimates for Scenario 5, Scenario 6, and Scenario 7 (ρ = 0.5)

Scenario Sample Size True Difference ∆

per group 0.00 0.20 0.40 0.60 0.80 1.00 1.20

Theoretical NA 0.050 0.096 0.166 0.264 0.385 0.518 0.649

5 (8 Periods) 5 0.049 0.096 0.162 0.261 0.382 0.519 0.643

6 (4 Periods) 10 0.050 0.100 0.166 0.256 0.370 0.500 0.640

7 (2 Periods) 20 0.048 0.106 0.162 0.254 0.375 0.505 0.630

Similarly to the set-up of Table 3.1, Table 3.2 provides the power estimate results

for the equivalent scenarios 8, 9, and 10. These scenarios are identical to 5,6, and

7 with the exception that ρ is set to 0.8. With the exception of one, all empirical

estimates fall within simulation error of the the theoretical result.

Table 3.2: Power estimates for Scenario 8, Scenario 9, and Scenario 10 (ρ = 0.8)

Scenario Sample Size True Difference ∆

per group 0.00 0.20 0.40 0.60 0.80 1.00 1.20

Theoretical NA 0.050 0.133 0.282 0.484 0.689 0.848 0.941

8 (8 Periods) 5 0.049 0.134 0.267 0.478 0.686 0.845 0.938

9 (4 Periods) 10 0.050 0.133 0.283 0.470 0.678 0.829 0.937

10 (2 Periods) 20 0.048 0.134 0.267 0.478 0.686 0.845 0.938
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3.3 Final Conclusions and Discussion

This thesis has provided a few key and interesting facts in regards to the AB/BA

design and its extensions by way of simply increasing the number of periods for

each sequence. In Chapter 2, we provided the necessary mathematical framework to

generalize traditional crossover test for treatment effect, and provided a simple and

compact result to construct a test by way of Theorem 2.1. This theorem highlights an

interesting, and somewhat non-intuitive, property of the general crossover design with

respect to the traditional AB/BA design. The result simply states that increasing

the number of periods in the design by a factor of m while decreasing the number of

patients they need to recruit by a factor of m indeed are equivalent in terms of the

construction of our general test statistic. This provides a very quick rule of thumb

for researchers who can determine sample sizes in the simple AB/BA design case and

if the sample sizes are too difficult to implement due to rarity of the population or

recruitment costs, the researcher can simply consider extending the number of periods

with fewer subjects without loss of statistical power. These results were verified in

our simulation studies in Table 3.1 and Table 3.2.

Based on our simulations, the theoretical power formula we provided in chapter

two can be used by researchers to determine adequate sample sizes in the future for

any design scenario considered in this report. The only situation that should give

pause is if the the number of periods is 2 and the sample size is low. We recommend

that when a theoretical result is suggesting less than 15 patients in each sequence,

that simulations such as the ones we conducted would give researchers a better sense

of what to expect and their design would be more accurately powered to meet their

needs. It might be helpful for additional simulations to be conducted to ensure that

no other issues with accuracy of power exist. We leave that as future work.
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