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Chapter 1

Introduction

Let k be an algebraically closed field of characteristic p ≥ 0. We fix
k as the ground field of our discussion in this dissertation. In 1996, Hisao
Yoshihara introduced the notion of Galois points in algebraic geometry. Let
C be an irreducible (possibly singular) plane (algebraic) curve over k. We
consider the projection

πP : C 99K P1;Q 7→ PQ

with the center P ∈ P2, where PQ represents the line passing through points
P , Q ∈ P2 if P ̸= Q. If the field extension k(C)/π∗

Pk(P1) of function fields
induced by πP is Galois, then P is called a Galois point for C (see [9, 41, 47]).
Assume that P is a Galois point. If P is a smooth point of C (resp. a singular
point of C, a point contained in C, a point not contained in C), then P is
called a smooth Galois point (resp. a non-smooth Galois point, an inner
Galois point, an outer Galois point), after [39, 40, 45]. The associated Galois
group

GP = Gal(k(C)/π∗
Pk(P1))

is called a Galois group at P .
In the theory of Galois points, plane curves with two or more Galois points

are important. In 2013, with the contribution of four researchers Yoshihara,
Kei Miura, Masaaki Homma, and Satoru Fukasawa, a complete classification
of smooth plane curves with two or more Galois points was obtained ([41,
47, 36, 6, 8, 7, 10, 15, 12]). A classification of plane curves with infinitely
many inner Galois points was obtained by Fukasawa and Takehiro Hasegawa
[21]. In the case of infinitely many outer Galois points, a classification was
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obtained by Fukasawa [11]. It is known that a plane curve with two or more
Galois points may have a very large automorphism group ([14]). The relation
between the set of rational points and the set of Galois points has been
pointed out ([36, 13, 16]). In [25], using the set of Galois points, Fukasawa,
Homma and Seon Jeong Kim constructed algebraic geometry codes.

In 2016, Fukasawa [17] presented a criterion for the existence of a bira-
tional embedding of a smooth projective curve into a projective plane with
two smooth Galois points. Let X be a (reduced, irreducible) smooth projec-
tive curve over k. Then the following theorem is Fukasawa’s criterion (for
smooth Galois points).

Theorem ([17], Theorem 1). Let G1, G2 be finite subgroups of Aut(X) and
let P1, P2 be different points of X. Then the three conditions

(a) X/G1
∼= P1, X/G2

∼= P1,

(b) G1 ∩G2 = {1}, and

(c) P1 +
∑

σ∈G1
σ(P2) = P2 +

∑
τ∈G2

τ(P1)

are satisfied, if and only if there exists a birational embedding φ : X → P2 of
degree |G1|+1 such that φ(P1) and φ(P2) are different smooth Galois points
for φ(X) and Gφ(Pi) = Gi for i = 1, 2.

This criterion completely describes the conditions for the existence of a plane
model with two smooth Galois points from the viewpoint of an automorphism
group and its action. Using this criterion, Fukasawa, Katsushi Waki, and
the author obtained new examples of plane curves with two smooth Galois
points (see [17, 22, 26]). Before this criterion was obtained, only seven types
of examples of plane curves with two smooth Galois points were known.

In this dissertation, we focus mainly on two generalizations of Fukasawa’s
criterion. These results are dealt with in Chapters 3 and 4. We also discuss
the related results for the Giulietti–Korchmáros curve in Chapter 5. First, we
recall the basic notation and facts about algebraic curves and their function
fields in Chapter 2. We start with a review of the correspondence between
the linear systems on a curve X and morphisms from X into projective
spaces. For a morphism between smooth projective curves, we also recall the
Riemann–Hurwitz formula and basic properties of a Galois covering. At the
end of Chapter 2, Fukasawa’s criteria are described. These results are used
to prove the main theorems.
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In Chapter 3, we generalize Fukasawa’s criteria by focusing on a quotient
curve of (a smooth model of) a plane curve with two Galois points. In
Fukasawa’s criteria, a finite set on which an automorphism group acts is
important. In [18], new examples of plane curves with two Galois points
were obtained using the set of rational points. In [22], the set of Weierstrass
points were used. However, in general, it is difficult to assume a suitable
finite set. On the other hand, some known examples of plane curves with
two Galois points are regarded as quotient curves X/H of curves X with a
finite subgroup H ⊂ Aut(X) such that X admits a birational embedding
with two Galois points. By focusing on such examples, the main theorem in
Chapter 3 is obtained.

Theorem 1.0.1. Let H, G1, G2 ⊂ Aut(X) be finite subgroups with H ◁ Gi

for i = 1, 2, and let P1, P2 ∈ X. Then the four conditions

(a’) X/G1
∼= P1, X/G2

∼= P1,

(b’) G1 ∩G2 = H,

(c’)
∑

h∈H h(P1) +
∑

σ∈G1
σ(P2) =

∑
h∈H h(P2) +

∑
τ∈G2

τ(P1), and

(d’) H · P1 ̸= H · P2, where H · Pi represents the orbit of Pi for i = 1, 2,

are satisfied, if and only if there exists a birational embedding φ : X/H → P2

of degree |G1/H|+ 1 such that φ(P1) and φ(P2) are different smooth Galois
points for φ(X/H) and Gφ(Pi)

= Gi for i = 1, 2.

Note that the image of the natural homomorphism Gi → Aut(X/H) is de-
noted by Gi for i = 1, 2 in Theorem 1.0.1. As an application of this theorem,
for the case whereX admits a plane model with two smooth Galois points, we
present sufficient conditions for the existence of a plane model of a quotient
curve X/H with two Galois points.

Corollary 1.0.2. Let G1, G2, H be finite subgroups of Aut(X), and let P1,
P2 be different points of X. Assume that the three conditions

(a) X/G1
∼= P1, X/G2

∼= P1,

(b) G1 ∩G2 = {1}, and

(c) P1 +
∑

σ∈G1
σ(P2) = P2 +

∑
τ∈G2

τ(P1)
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are satisfied. If the three conditions

(d) H ∩G1G2 = {1},

(e) HG1 = H ⋊G1, HG2 = H ⋊G2, and

(f) H · P1 ̸= H · P2

are satisfied, then there exists a birational embedding ψ : X/H → P2 of
degree |G1|+1 such that ψ(P1) and ψ(P2) are different smooth Galois points
for ψ(X/H) and Gψ(Pi)

∼= Gi for i = 1, 2.

Note that similar statements hold for outer Galois points. Owing to this gen-
eralization, we can construct new examples of plane curves with two Galois
points from known examples of plane curves with two Galois points. In fact,
we apply our criterion to some maximal curves. A smooth projective curve
defined over a finite field, for which the number of rational points attains
the Hasse–Weil upper bound, is called a maximal curve. We focus on the
Giulietti–Korchmáros curve [28] and the curves constructed by Skabelund
[42]. Using these maximal curves, we present new examples of plane curves
with two smooth Galois points.

In Chapter 4, we extend Fukasawa’s criterion to all cases with two (pos-
sibly non-smooth) Galois points. There have been some known examples of
plane curves with two or more non-smooth Galois points. For example, the
Ballico–Hefez curve ([13, Theorem 1]), some self-dual curves ([33, Theorem
17]), the (plane model of) Giulietti–Korchmáros curve ([23, Theorem 2]),
the (q3, q2)-Frobenius nonclassical curve ([2, Theorem 1]), and the Artin–
Schreier–Mumford curve (proof of [19, Theorem 1]) are such curves. How-
ever, these examples are not intended to actively focus on non-smooth Galois
points. Only few research studies have focused on non-smooth Galois points.
Takeshi Takahashi [45] studied plane quintic curves with a double point P
and determined defining equations when P is a Galois point. As far as the
author knows, this is the only study that focused on a non-smooth Galois
point so far. To study non-smooth Galois points systematically, it is good to
have a criterion for non-smooth Galois points. The following theorem is one
of the main theorems in Chapter 4.

Theorem 1.0.3. Let G1, G2 be finite subgroups of Aut(X) and let P1, P2 be
different points of X. Then there exists a birational embedding φ : X → P2

such that φ(P1), φ(P2) are different inner Galois points, that Gφ(Pi) = Gi for

8



i = 1, 2, and that L = φ(P1)φ(P2) is not a tangent line at φ(P1), if and only
if the following conditions are satisfied:

(a) X/G1
∼= P1, X/G2

∼= P1,

(b) G1 ∩G2 = {1}, and

(c) one of the following holds:

(c- i ) P1 ̸∈ G1 · P2, P2 ̸∈ G2 · P1, G1 · P2 ∩ G2 · P1 ̸= ∅, and |G1(P2)| =
|G2(P1)|.

(c-ii) G1 · P2 ∩G2 · P1 = ∅.
(c-iii) P1 ̸∈ G1 · P2, G1 · P2 ∩G2 · P1 ̸= ∅ and |G1(P2)| > |G2(P1)|.

Furthermore, for any φ as in the above, the following hold:

( i ) L is not a tangent line at φ(P2) with L∩φ(X) ⊋ {φ(P1), φ(P2)} if and
only if condition (c- i ) is satisfied.

(ii) L is not a tangent line at φ(P2) with L∩φ(X) = {φ(P1), φ(P2)} if and
only if condition (c-ii) is satisfied.

(iii) L is a tangent line at φ(P2) if and only if condition (c-iii) is satisfied.

For a birational embedding φ in Theorem 1.0.3, multiplicities and order
sequences at Galois points are also described in detail.

Theorem 1.0.4. Let φ be as in Theorem 1.0.3, and let Λ be the linear
system on X corresponding to the morphism φ. Let (0, αP , βP ) denote the
(Λ, P )-order sequence at a point P ∈ X. Then the following hold.

(1) The multiplicity mφ(P1) of φ(X) at φ(P1) is equal to

|G2(P1)| · |G2 · P1 \ (G1 · P2 ∩G2 · P1)|.

(2) The divisor
∑

P∈φ−1(φ(P1))
αPP is equal to∑

Q∈G2·P1\(G1·P2∩G2·P1)

|G2(P1)|Q.
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(3) The multiplicity mφ(P2) of φ(X) at φ(P2) is equal to

|G1(P2)|·|G1·P2\(G1·P2∩G2·P1)|+(|G1(P2)|−|G2(P1|)·|G1·P2∩G2·P1|.

(4) The divisor
∑

P∈φ−1(φ(P2))
αPP is equal to∑

R∈G1·P2\(G1·P2∩G2·P1)

|G1(P2)|R +
∑

S∈G1·P2∩G2·P1

(|G1(P2)| − |G2(P1)|)S.

(5) In the case (iii) of Theorem 1.0.3, the equality βP = |G1(P2)| holds at
each point P ∈ G1 · P2 ∩G2 · P1.

(6) The divisor φ∗L is equal to∑
Q∈G2·P1\(G1·P2∩G2·P1)

|G2(P1)|Q+
∑

R∈G1·P2

|G1(P2)|R.

To explain the usefulness of these theorems, we apply them to rational curves.
We present three examples of plane rational curves with two non-smooth
Galois points, and calculate the second or third order at each point contained
in the line passing through these two Galois points.

In Chapter 5, we determine the arrangement of all Galois lines for the
Giulietti–Korchmáros curve and the number of Galois points for a plane
model of this curve. These results are applied in Chapters 3 and 4. In more
detail, as a quotient curve of the Giulietti–Korchmáros curve, new examples
of plane curves with two smooth Galois points are obtained in Chapter 3. The
plane model of the Giulietti–Korchmáros curve is an example of a plane curve
with two or more non-smooth Galois points, as observed in Chapter 4. A line
ℓ ⊂ P3 is called a Galois line for a space curve C ⊂ P3 if the field extension
k(C)/π∗

ℓk(P1) induced by the projection πℓ : C 99K P1 with the center ℓ is
Galois. This notion was introduced by Yoshihara as a generalization of the
notion of Galois points (see [4, 48]).
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Chapter 2

Preliminaries

We recall some basic notation and facts about algebraic curves and their
function fields (see, for example, [43, 46]). At the end of this chapter, Fuka-
sawa’s criteria [17] are described. Let X be a (reduced, irreducible) smooth
projective curve over k, and let k(X) be its function field. The group of all k-
automorphisms of X (resp. k(X)) is denoted by Aut(X) (resp. Autk(k(X))).
Note that there exists a natural isomorphism

Aut(X) ∼= Autk(k(X));φ 7→ φ∗,

where φ∗ represents the pullback of φ. In this dissertation, we always identify
Aut(X) with Autk(k(X)) by this isomorphism. For projective space Pn over
k, we also identify Aut(Pn) with the projective linear group PGL(n+ 1, k).

2.1 Linear system

In this section, we recall the notion of linear systems on a curve. The
group of all divisors on X, that is, the free abelian group which is generated
by the points of X, is denoted by Div(X). Let D =

∑
nPP ∈ Div(X). For

a point P ∈ X, we write ordP (D) := nP . The degree of D is defined by

deg(D) =
∑

ordP (D).

The set
supp(D) = {P ∈ X | ordP (D) ̸= 0}

is called the support of D. If ordP (D) ≥ 0 at each point P ∈ X, we write
D ≥ 0. For any two divisors E, G ∈ Div(X), we write E ≥ G if E −G ≥ 0.
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For a point P ∈ X, the local ring of X at P is denoted by OP (X). A
generator of the unique maximal ideal of OP (X) is called a local parameter at
P . If tP is a local parameter at P , then each f ∈ k(X)× has a representation
of the form f = utnP for some n ∈ Z and u ∈ OP (X)×. We write ordP (f) := n
and call ordP (f) the order of f at P . We define the divisor

div(f) :=
∑

ordP (f)P.

We also define the divisors

(f)0 :=
∑

ordP (f)>0

ordP (f)P,

(f)∞ :=
∑

ordP (f)<0

−ordP (f)P.

Note that the equality
div(f) = (f)0 − (f)∞

of divisors holds. Two divisors E, G ∈ Div(X) are called linearly equivalent
if there exists f ∈ k(X)× such that E −G = div(f). We write E ∼ G if two
divisors E, G are linearly equivalent.

For a divisor D ∈ Div(X), we define the k-linear space

L(D) = {f ∈ k(X)× | D + div(f) ≥ 0} ∪ {0}

and we put ℓ(D) := dimk(L(D)). For two divisors E, G ∈ Div(X) such that
E ≥ G, L(E) ⊃ L(G) holds and we have

ℓ(E)− ℓ(G) ≤ deg(E)− deg(G).

If E ∼ G, then deg(D) = deg(E) and L(D) ∼= L(E).
The complete linear system |D| associated to D ∈ Div(X) is defined by

|D| = {E ∈ Div(X) | E ≥ 0, D ∼ E}.

Note that |D| is equal to

{D + div(f) | f ∈ L(D) \ {0}}.

Since, for f , g ∈ k(X)×, div(f) = div(g) if and only if there exists c ∈ k×

such that f = cg, there exists a bijection

|D| → P(L(D));D + div(f) 7→ [f ].
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A linear system Λ on X is a subset of some complete linear system |D| such
that

Λ = {D + div(f) | f ∈ V \ {0}},

where V is a k-linear subspace of L(D). The integers deg(Λ) := deg(D)
and dim(Λ) := dimk(V )− 1 are called the degree and (projective) dimension
of Λ respectively. A point P ∈ X is called the base point of Λ if P ∈∩
E∈Λ supp(E). A linear system is called base-point-free if there is no base

point.
Let φ : X → Pn be a morphism. Assume that φ is non-degenerate, that

is, φ(X) ̸⊂ H for each hyperplane H ⊂ Pn. For a hyperplane H ⊂ Pn, the
divisor on X induced by the intersection of φ(X) and H is denoted by φ∗H.
Then

Λφ = {φ∗H | H is a hyperplane contained in Pn}

is a base-point-free linear system. We consider

L = {Λ | Λ is a base-point-free linear system on X},

M = {[φ] | φ : X → Pn is a non-degenerate morphism for some 0 ≤ n ∈ Z},

where [φ] := {T ◦ φ | T ∈ Aut(Pn)} represents the projective equivalence
class of φ. Then there exists a bijection

M → L; [φ] 7→ Λφ.

2.2 The Riemann–Hurwitz formula

Let φ : X → Y be a surjective separable morphism of smooth projective
curves. We consider k(Y ) ⊂ k(X) by φ∗ : k(Y ) → k(X). The degree of φ is
defined by deg(φ) = [k(X) : k(Y )], where [k(X) : k(Y )] represents the degree
of k(X)/k(Y ). Let P be a point of X. We put Q = φ(P ). The ramification
index of P over Q is defined by

eP = eP (φ) = e(P |Q) := ordP (φ
∗(tQ)),

where tQ represents a local parameter at Q. The complementary module
over OQ(Y ) is defined by

CQ = {f ∈ k(X) | Trk(X)/k(Y )(f · OQ(Y )) ⊂ OQ(Y )},
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where OQ(Y ) is the integral closure of OQ(Y ) in k(X). The complementary

module CQ is generated by an element as a OQ(Y )-module. Let t be a

generator of CQ as a OQ(Y )-module. For a point P ′ ∈ φ−1(Q), the different
exponent of P ′ over Q is defined by

d(P ′|Q) = −ordP ′(t).

Note that d(P ′|Q) = 0 holds for all most all Q ∈ Y and P ′ ∈ φ−1(Q). In
general, d(P ′|Q) ≥ e(P ′|Q) − 1 holds, and the equality holds if and only if
e(P ′|Q) is not divisible by the characteristic p.

Theorem 2.2.1 (Riemann–Hurwitz formula). If φ : X → Y is a surjective
separable morphism of smooth projective curves, then

2gX − 2 = deg(φ) · (2gY − 2) +
∑
Q∈Y

∑
P∈φ−1(Q)

d(P |Q),

where gX (resp. gY ) is the genus of X (resp. Y ).

2.3 Galois covering

For a finite subgroup G ⊂ Aut(X) and a point P ∈ X, the stabilizer of
P in G (resp. the orbit of P under G) is denoted by G(P ) (resp. G ·P ). Let
φ : X → Y be a Galois covering, that is, φ is a surjective morphism of smooth
projective curves and the extension k(X)/φ∗k(Y ) is a Galois extension. Then
the following hold.

Theorem 2.3.1. Let G be the associated Galois group of φ.

(1) If P , Q ∈ X, φ(P ) = φ(Q), then there exists an element σ ∈ G such
that σ(P ) = Q. In particular, G · P = G ·Q.

(2) If P , Q ∈ X, φ(P ) = φ(Q), then eP (φ) = eQ(φ).

(3) If P ∈ X, then eP (φ) divides [k(X) : φ∗k(Y )].

(4) If P ∈ X, then the order |G(P )| is equal to eP (φ).
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2.4 Fukasawa’s criteria

In 2016, a criterion for the existence of a birational embedding with two
Galois points was presented by Fukasawa ([17]). We recall this criterion. For
a finite subgroup G ⊂ Aut(X), the quotient curve of X by G, that is, the
smooth projective curve corresponding to the fixed field of k(X) by G, is
denoted by X/G. A morphism φ : X → P2, which is birational onto φ(X),
is called a birational embedding of X to P2. The cardinality of a set S is
denoted by |S|.

Theorem 2.4.1 ([17], Theorem 1). Let G1, G2 be finite subgroups of Aut(X)
and let P1, P2 be different points of X. Then the three conditions

(a) X/G1
∼= P1, X/G2

∼= P1,

(b) G1 ∩G2 = {1}, and

(c) P1 +
∑

σ∈G1
σ(P2) = P2 +

∑
τ∈G2

τ(P1)

are satisfied, if and only if there exists a birational embedding φ : X → P2 of
degree |G1|+1 such that φ(P1) and φ(P2) are different smooth Galois points
for φ(X) and Gφ(Pi) = Gi for i = 1, 2.

Theorem 2.4.2 ([17], Theorem 1 and Remark 1). Let G1, G2 be finite sub-
groups of Aut(X) and let Q ∈ X. Then the three conditions

(a) X/G1
∼= P1, X/G2

∼= P1,

(b) G1 ∩G2 = {1}, and

(c)
∑

σ∈G1
σ(Q) =

∑
τ∈G2

τ(Q)

are satisfied, if and only if there exists a birational embedding φ : X → P2

of degree |G1| and different outer Galois points P1, P2 ∈ P2 \ φ(X) exist
for φ(X) such that GPi

= Gi for i = 1, 2 and points φ(Q), P1, and P2 are
collinear.
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Chapter 3

A birational embedding with
two Galois points for quotient
curves

Some known examples of plane curves with two Galois points are regarded
as quotient curves X/H of curves X with a subgroup H ⊂ Aut(X) such that
X admits a birational embedding with two Galois points. Typical examples
are quotient curves of the Hermitian curve ([22, 36]), and the Hermitian curve
as a Galois subcover of the Giulietti–Korchmáros curve ([18, 23]). Quotient
curves are important in the study of maximal curves with respect to the
Hasse–Weil bound (see, for example, [27, 28, 29, 30, 31]). Motivated by this
observation, the aim of this chapter is to present a criterion for the existence
of a plane model with two Galois points for quotient curves.

3.1 Main theorems

Let X be a (reduced, irreducible) smooth projective curve over k. For a
finite subgroupH of Aut(X) and a point Q ∈ X, the quotient map is denoted
by fH : X → X/H and the image fH(Q) is denoted by Q. Assume that H
is a normal subgroup of a subgroup G ⊂ Aut(X). Then it follows that for
each σ ∈ G, the pullback σ∗ : k(X) → k(X) satisfies σ∗(k(X)H) = k(X)H .
Therefore, there exists a natural homomorphism

G→ Aut(X/H);σ 7→ σ,
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where σ corresponds to the restriction σ∗ |k(X)H . The image is denoted by

G, which is isomorphic to G/H. The following two theorems are our main
results.

Theorem 3.1.1. Let H, G1, G2 ⊂ Aut(X) be finite subgroups with H ◁ Gi

for i = 1, 2, and let P1, P2 ∈ X. Then the four conditions

(a’) X/G1
∼= P1, X/G2

∼= P1,

(b’) G1 ∩G2 = H,

(c’)
∑

h∈H h(P1) +
∑

σ∈G1
σ(P2) =

∑
h∈H h(P2) +

∑
τ∈G2

τ(P1), and

(d’) H · P1 ̸= H · P2

are satisfied, if and only if there exists a birational embedding φ : X/H → P2

of degree |G1/H|+ 1 such that φ(P1) and φ(P2) are different smooth Galois
points for φ(X/H) and Gφ(Pi)

= Gi for i = 1, 2.

Theorem 3.1.2. Let H, G1, G2 ⊂ Aut(X) be finite subgroups with H ◁ Gi

for i = 1, 2, and let Q ∈ X. Then the three conditions

(a’) X/G1
∼= P1, X/G2

∼= P1,

(b’) G1 ∩G2 = H, and

(c’)
∑

σ∈G1
σ(Q) =

∑
τ∈G2

τ(Q)

are satisfied, if and only if there exists a birational embedding φ : X/H → P2

of degree |G1/H| and different outer Galois points P1, P2 ∈ P2 \ φ(X/H)
exist for φ(X/H) such that GPi

= Gi for i = 1, 2 and points φ(Q), P1, and
P2 are collinear.

As an application, for the case where X admits a birational embedding
with two Galois points, the following two results hold.

Corollary 3.1.3. Let G1, G2, H be finite subgroups of Aut(X), and let P1,
P2 be different points of X. Assume that the three conditions

(a) X/G1
∼= P1, X/G2

∼= P1,

(b) G1 ∩G2 = {1}, and
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(c) P1 +
∑

σ∈G1
σ(P2) = P2 +

∑
τ∈G2

τ(P1)

are satisfied. If the three conditions

(d) H ∩G1G2 = {1},

(e) HG1 = H ⋊G1, HG2 = H ⋊G2, and

(f) H · P1 ̸= H · P2

are satisfied, then there exists a birational embedding ψ : X/H → P2 of
degree |G1|+1 such that ψ(P1) and ψ(P2) are different smooth Galois points
for ψ(X/H) and Gψ(Pi)

∼= Gi for i = 1, 2.

Corollary 3.1.4. Let G1, G2, H be finite subgroups of Aut(X), and let
Q ∈ X. Assume that three conditions

(a) X/G1
∼= P1, X/G2

∼= P1,

(b) G1 ∩G2 = {1}, and

(c)
∑

σ∈G1
σ(Q) =

∑
τ∈G2

τ(Q)

are satisfied. If the two conditions

(d) H ∩G1G2 = {1}, and

(e) HG1 = H ⋊G1, HG2 = H ⋊G2

are satisfied, then there exists a birational embedding ψ : X/H → P2 of
degree |G1| and different outer Galois points P1, P2 ∈ P2 \ ψ(X/H) exist for
ψ(X/H) such that GPi

∼= Gi for i = 1, 2 and points ψ(Q), P1, and P2 are
collinear.

3.2 Proofs of the main theorems

Proof of Theorem 3.1.1. We consider the ‘only if’ part. Assume that con-
ditions (a’), (b’), (c’), and (d’) of Theorem 3.1.1 are satisfied. By condition
(d’), P1 ̸= P2. We would like to prove that conditions (a), (b), and (c) of
Theorem 2.4.1 are satisfied for the 4-tuple (G1, G2, P1, P2). Since

k(X/H)Gi = k(X)Gi ,
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by condition (a’), the fixed field k(X/H)Gi is rational. It follows from con-
dition (b’) that G1 ∩ G2 = {1}. Therefore, conditions (a) and (b) for the
4-tuple (G1, G2, P1, P2) are satisfied. Since∑

σ∈G1

σ(P2) =
∑

Hσ∈G1/H

∑
h∈H

hσ(P2),

it follows that

(fH)∗

(∑
σ∈G1

σ(P2)

)
=

∑
Hσ∈G1/H

|H| · σ(P2) = |H|
∑
σ∈G1

σ(P2),

where (fH)∗ : Div(X) → Div(X/H) is a homomorphism such that

(fH)∗

(∑
niPi

)
=
∑

nifH (Pi)

for any divisor
∑
niPi on X ([32, IV, Exercise 2.6]). On the other hand,

(fH)∗

(∑
h∈H

h(P1)

)
= |H|P1.

It follows from condition (c’) that

|H|

P1 +
∑
σ∈G1

σ(P2)

 = |H|

P2 +
∑
τ∈G2

τ(P1)

 .

Since |H| · D = 0 implies D = 0 for any divisor D, we are able to cut the
multiplier |H|. Condition (c) for the 4-tuple (G1, G2, P1, P2) is satisfied.

We consider the ‘if’ part. By Theorem 2.4.1, we have that conditions (a),
(b), and (c) of Theorem 2.4.1 are satisfied for the 4-tuple (G1, G2, P1, P2).

Since k(X)Gi = k(X/H)Gi , by condition (a), the fixed field k(X)Gi is rational.
Condition (a’) is satisfied. Since G1 ∩ G2 = {1}, condition (b’) is satisfied.
Since φ(P1) ̸= φ(P2), condition (d’) is satisfied. By condition (c),

P1 +
∑
σ∈G1

σ(P2) = P2 +
∑
τ∈G2

τ(P1).
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Since (fH)
∗(Q) =

∑
h∈H h(Q) for each Q ∈ X, where (fH)

∗ denotes the
pullback, by Theorem 2.3.1,

(fH)
∗

P1 +
∑
σ∈G1

σ(P2)

 = (fH)
∗(P1) +

∑
σ∈G1

(fH)
∗(σ(P2))

=
∑
h∈H

h(P1) +
∑

Hσ∈G1/H

∑
h∈H

hσ(P2)

=
∑
h∈H

h(P1) +
∑
σ∈G1

σ(P2).

Similarly,

(fH)
∗

P2 +
∑
τ∈G2

τ(P1)

 =
∑
h∈H

h(P2) +
∑
τ∈G2

τ(P1).

Condition (c’) is satisfied.

Proof of Theorem 3.1.2. We consider the ‘only if’ part. Assume that
conditions (a’), (b’), and (c’) of Theorem 3.1.2 are satisfied. We would like
to prove that conditions (a), (b), and (c) of Theorem 2.4.2 are satisfied for
the triple (G1, G2, Q). Since

k(X/H)Gi = k(X)Gi ,

by condition (a’), the fixed field k(X/H)Gi is rational. It follows from condi-
tion (b’) that G1∩G2 = {1}. Therefore, conditions (a) and (b) for the triple
(G1, G2, Q) are satisfied. Since∑

σ∈G1

σ(Q) =
∑

Hσ∈G1/H

∑
h∈H

hσ(Q),

it follows that

(fH)∗

(∑
σ∈G1

σ(Q)

)
=

∑
Hσ∈G1/H

|H| · σ(Q) = |H|
∑
σ∈G1

σ(Q).

It follows from condition (c’) that

|H|

∑
σ∈G1

σ(Q)

 = |H|

∑
τ∈G2

τ(Q)

 .
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Since |H| · D = 0 implies D = 0 for any divisor D, we are able to cut the
multiplier |H|. Condition (c) for the triple (G1, G2, Q) is satisfied.

We consider the ‘if’ part. By Theorem 2.4.2, we have that conditions (a),
(b), and (c) of Theorem 2.4.2 are satisfied for the triple (G1, G2, Q). Since

k(X)Gi = k(X/H)Gi , by condition (a), the fixed field k(X)Gi is rational.
Condition (a’) is satisfied. Since G1 ∩ G2 = {1}, condition (b’) is satisfied.
By condition (c), ∑

σ∈G1

σ(Q) =
∑
τ∈G2

τ(Q).

Since (fH)
∗(Q) =

∑
h∈H h(Q) for each Q ∈ X by Theorem 2.3.1,

(fH)
∗

∑
σ∈G1

σ(Q)

 =
∑
σ∈G1

(fH)
∗(σ(Q))

=
∑

Hσ∈G1/H

∑
h∈H

hσ(Q)

=
∑
σ∈G1

σ(Q).

Similarly,

(fH)
∗

∑
τ∈G2

τ(Q)

 =
∑
τ∈G2

τ(Q).

Condition (c’) is satisfied.

Proof of Corollary 3.1.3. By condition (d), H∩Gi = {1} for i = 1, 2. By
condition (e), HGi = H⋊Gi. Let Ĝi = H⋊Gi for i = 1, 2. Note that H◁Ĝi

for i = 1, 2. We would like to prove that conditions (a’), (b’), (c’), and (d’)
of Theorem 3.1.1 are satisfied for the 5-tuple (Ĝ1, Ĝ2, H, P1, P2). Condition

(f) is the same as condition (d’). Since k(X)Ĝi ⊂ k(X)Gi , by condition (a)
and Lüroth’s theorem, it follows that X/Ĝi

∼= P1. Condition (a’) is satisfied.
Let η ∈ Ĝ1 ∩ Ĝ2. Then there exist h1, h2 ∈ H, σ ∈ G1, and τ ∈ G2 such

that η = h1σ = h2τ . Then στ−1 = h−1
1 h2 ∈ H. By condition (d), στ 1 = 1

and hence, σ = τ ∈ G1 ∩G2. By condition (b), σ = τ = 1. This implies that
η ∈ H. It follows that Ĝ1 ∩ Ĝ2 = H. Condition (b’) is satisfied.

By condition (c), it follows that

P1 +
∑
σ∈G1

σ(P2) = P2 +
∑
τ∈G2

τ(P1).
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For each h ∈ H,

h(P1) +
∑
σ∈G1

hσ(P2) = h(P2) +
∑
τ∈G2

hτ(P1).

Therefore,∑
h∈H

h(P1) +
∑
h∈H

∑
σ∈G1

hσ(P2) =
∑
h∈H

h(P2) +
∑
h∈H

∑
τ∈G2

hτ(P1).

Since each element of Ĝ1 (resp. of Ĝ2) is represented uniquely as hσ (resp.
hτ) for some h ∈ H and σ ∈ G1 (resp. τ ∈ G2), condition (c’) is satisfied.

Proof of Corollary 3.1.4. Similarly to the proof of Corollary 3.1.3, we
prove that conditions (a’), (b’), and (c’) of Theorem 3.1.2 are satisfied for the
4-tuple (Ĝ1, Ĝ2, H,Q), where Ĝi = H ⋊Gi for i = 1, 2. The proof for condi-
tions (a’) and (b’) is the same as the proof of Corollary 3.1.3. By condition
(c), it follows that ∑

σ∈G1

σ(Q) =
∑
τ∈G2

τ(Q).

For each h ∈ H, ∑
σ∈G1

hσ(Q) =
∑
τ∈G2

hτ(Q).

Therefore, ∑
h∈H

∑
σ∈G1

hσ(Q) =
∑
h∈H

∑
τ∈G2

hτ(Q).

Since each element of Ĝ1 (resp. of Ĝ2) is represented uniquely as hσ (resp.
hτ) for some h ∈ H and σ ∈ G1 (resp. τ ∈ G2), condition (c’) is satisfied.

3.3 An application to cyclic subcovers of the

GK curve

In this section, we apply Corollary 3.1.3 to the Giulietti–Korchmáros
curve. Theorem 3.3.1 provide new examples of plane curves with two Galois
points (see the Table in [50]).
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Let p > 0 and let q be a power of p. We consider the Giulietti–Korchmáros
curve H̃ ⊂ P3, which is defined by

xq + x− yq+1 = 0 and y((xq + x)q−1 − 1)− zq
2−q+1 = 0

(see [28]). The group

G1 :=




1 bq 0 a
0 1 0 b
0 0 1 0
0 0 0 1


∣∣∣∣∣∣∣∣ a, b ∈ Fq2 , aq + a− bq+1 = 0

 ⊂ PGL(4, k)

of order q3 acts on H̃ (see [28, Lemma 7]). This group acts on the set

H̃ ∩ {Z = 0} = H̃(Fq2)

of all Fq2-rational points of H̃, and fixes a point P1 := (1 : 0 : 0 : 0) ∈ H̃. Let

ξ(x, y, z) =

(
1

x
,−y

x
,
z

x

)
.

Then ξ acts on H̃ ([28, Lemma 7])). This automorphism acts on H̃(Fq2), and
P2 := ξ(P1) = (0 : 0 : 0 : 1). Let G2 := ξG1ξ

−1, which fixes P2. According
to Theorem 5.1.2 in Chapter 5 (or [23, Theorem 2]), conditions (a), (b), and
(c) of Theorem 2.4.1 are satisfied for the 4-tuple (G1, G2, P1, P2).

It follows from [28, Equation (9)] that the cyclic group

Cq2−q+1 := {(x, y, z) 7→ (x, y, ζz) | ζq2−q+1 = 1}

acts on H̃. We prove the following.

Theorem 3.3.1. Let H be a subgroup of Cq2−q+1. Then there exists a bi-

rational embedding ψ : H̃/H → P2 of degree q3 + 1 with two smooth Galois
points.

Proof. Note that H fixes all points of H̃(Fq2) (= H̃ ∩ {Z = 0}). Therefore,
H ·P1 = {P1} ̸= {P2} = H ·P2. Since σ |H̃(Fq2 )

̸= τ |H̃(Fq2 )
for any σ ∈ G1\{1}

and τ ∈ G2 \ {1}, H ∩G1G2 = {1} follows. It is easily verified that HG1 =
H × G1. Since ξh = hξ for each element h ∈ H, HG2 = H × G2 follows.
Therefore, conditions (d), (e), and (f) of Corollary 3.1.3 are satisfied for the
5-tuple (G1, G2, P1, P2, H). By Corollary 3.1.3, the assertion follows.
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3.4 The curves constructed by Skabelund and

their quotient curves

In this section, we apply Corollary 3.1.3 to the curves constructed by
Skabelund. Theorems 3.4.1, 3.4.2, and 3.4.3 also provide new examples of
plane curves with two Galois points (see the Table in [50]).

We consider the cyclic cover S̃ of the Suzuki curve S, constructed by
Skabelund ([42]). Let p = 2, let q0 be a power of 2, and let q = 2q20. The

curve S̃ is the smooth model of the curve defined by

yq + y = xq0(xq + x) and xq + x = zq−2q0+1

in P3. Let P1 ∈ S̃ be the pole of x. It is known that the group

G1 :=




1 0 0 a
aq0 1 0 b
0 0 1 0
0 0 0 1


∣∣∣∣∣∣∣∣ a, b ∈ Fq

 ⊂ PGL(4, k)

of order q2 acts on S̃ (see [42, Lemma 3.3], [29, Section 2]). This group acts on

the set S̃(Fq) of all Fq-rational points of S̃, and fixes P1. Let α := y2
q0+x2q0+1,

β := xy2q0 + α2q0 and let

ξ(x, y, z) =

(
α

β
,
y

β
,
z

β

)
.

Then ξ acts on S̃ (see [42, Proofs of Lemma 3.3 and 3.4], [29, Section 2]).

This automorphism acts on S̃(Fq), and P2 := ξ(P1) = (0 : 0 : 0 : 1) (see [42,
Proofs of Lemma 3.3 and 3.4], [29, Section 2]). Let G2 := ξG1ξ

−1, which
fixes P2. Then we have the following.

Theorem 3.4.1. The curve S̃ admits a plane model of degree q2 + 1 with
two smooth Galois points.

Proof. We prove that conditions (a), (b), and (c) of Theorem 2.4.1 are
satisfied for the 4-tuple (G1, G2, P1, P2). It is not difficult to check that

k(S̃)G1 = k(z) and k(S̃)G2 = k(z/β). Since no nontrivial element of G1 fixes
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P2, G1 ∩ G2 = {1}. Conditions (a) and (b) are satisfied. Condition (c) is
satisfied, since

P1 +
∑
σ∈G1

σ(P2) =
∑

Q∈S̃(Fq)

Q = P2 +
∑
τ∈G2

τ(P1).

It follows from the shape of the second equation that the cyclic group

Cq−2q0+1 := {(x, y, z) 7→ (x, y, ζz) | ζq−2q0+1 = 1}

acts on S̃. Similarly to the proof of Theorem 3.3.1, the following holds.

Theorem 3.4.2. Let H be a subgroup of Cq−2q0+1. Then there exists a bi-

rational embedding ψ : S̃/H → P2 of degree q2 + 1 with two smooth Galois
points.

We consider the cyclic cover R̃ of the Ree curve R, constructed by Ska-
belund. Let p = 3, let q0 be a power of 3, and let q = 3q20. The curve R̃ is
the smooth model of the curve defined by

yq − y = xq0(xq − x), zq − z = x2q0(xq − x) and xq − x = tq−3q0+1.

Let P1 ∈ R̃ be the pole of x. It is known that the group

G1 :=




1 0 0 0 a
aq0 1 0 0 b
a2q0 −aq0 1 0 c
0 0 0 1 0
0 0 0 0 1


∣∣∣∣∣∣∣∣∣∣
a, b, c ∈ Fq

 ⊂ PGL(5, k)

of order q3 acts on R̃ (see [42, Lemma 4.2], [29, Section 2]). This group acts

on the set R̃(Fq) of all Fq-rational points of R̃, and fixes P1. There exists an

involution ξ of R̃ such that ξ acts on R̃(Fq) and P2 := ξ(P1) = (0 : 0 : 0 : 0 :
1) (see [42, Proofs of Lemma 4.2 and 4.3], [29, Section 2]). Let G2 := ξG1ξ

−1,
which fixes P2.

It follows from the shape of the third equation that the cyclic group

Cq−3q0+1 := {(x, y, z, t) 7→ (x, y, z, ζt) | ζq−3q0+1 = 1}

acts on R̃. Similarly to Theorem 3.4.1 and 3.4.2, the following holds.

Theorem 3.4.3. Let H be a subgroup of Cq−3q0+1. Then the curves R̃ and

R̃/H admit plane models of degree q3 + 1 with two smooth Galois points.
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3.5 Relations with the previous works

In this section, we discuss the relation between Corollaries 3.1.3, 3.1.4
and the previous works.

We can provide another proof of Theorems 1 and 2 in [22], by Corollaries
3.1.3, 3.1.4 and the analysis of the Hermitian curve H ⊂ P2 : xq + x = yq+1.
We recover Theorem 1(1) in [22] here. Precisely:

Theorem 3.5.1 ([22], Theorem 1(1)). Let a positive integer m divide q+1.
Then the smooth model of the curve ym = xq + x possesses a birational
embedding into P2 of degree q + 1 with two smooth Galois points.

Proof. Let P1 = (1 : 0 : 0) and P2 = (0 : 0 : 1) ∈ P2. Then P1 and P2 are
smooth Galois points for the Hermitian curve H ⊂ P2 ([36]). The associated
Galois groups at P1, P2 are represented by

G1 :=


 1 0 α

0 1 0
0 0 1

 ∣∣∣∣∣∣ αq + α = 0

 , G2 :=


 1 0 0

0 1 0
α 0 1

 ∣∣∣∣∣∣ αq + α = 0


respectively. Then conditions (a), (b), and (c) of Theorem 2.4.1 are satisfied
for the 4-tuple (G1, G2, P1, P2). Let sm = q + 1 and let Cs be a cyclic
group of order s generated by the automorphism (x, y) 7→ (x, ζy), where ζ
is a primitive s-th root of unity. Note that Cs fixes all points in the line
Y = 0. Therefore, Cs · P1 = {P1} ̸= {P2} = Cs · P2. It is easily verified
that Cs ∩ G1G2 = {1} and CsGi = Cs × Gi. Conditions (d), (e), and (f)
of Corollary 3.1.3 are satisfied. By Corollary 3.1.3, the quotient curve H/Cs
has a birational embedding of degree q + 1 with two smooth Galois points.
On the other hand, the quotient curve H/Cs has a plane model defined by
ym = xq + x.

A similar argument is applicable to the curve C ⊂ P2 defined by x3 +
y4 + 1 = 0, which has two smooth Galois points P1 = (1 : 0 : 0) and
P2 = (−1 : 0 : 1) on the line Y = 0 (under the assumption p ̸= 2, 3), by
taking H = ⟨η⟩ with η(x, y) = (x,−y) (see [37, 41, 47]). Here, the associated
Galois groups G1, G2 at P1, P2 are generated by matrices ω 0 0

0 1 0
0 0 1

 ,
 −ω

−ω+1
0 2

−ω+1

0 1 0
1

−ω+1
0 ω2

−ω+1


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respectively, where ω2 + ω + 1 = 0 (see [37, Lemma 1] for the explicit de-
scription of the generators). Then the quotient curve C/H is the elliptic
curve y2 + x3 + 1 = 0. It is well known that this curve is isomorphic to
the Fermat curve. (An elliptic curve E admitting a triple Galois covering
E → P1 is uniquely determined [32, IV, Corollary 4.7]. One proof is given in
[17, p.100].) Since the Galois group Gi at Pi fixes Pi, the group Gi := HGi

fixes Pi for i = 1, 2. Then the point Pi is a ramification point of index
ePi

= |Gi| = 3 for the covering C/H → (C/H)/Gi by Theorem 2.3.1. Let
ψ be the induced birational embedding, according to Corollary 3.1.3. Then
ψ(Pi) is a smooth Galois point for ψ(C/H) ⊂ P2. Since

ePi
+ 1 = Iψ(Pi)

(ψ(C/H), Tψ(Pi)
ψ(C/H))

for the projection from ψ(Pi), where Iψ(Pi)
(ψ(C/H), Tψ(Pi)

ψ(C/H)) is the
intersection multiplicity of ψ(C/H) and the tangent line Tψ(Pi)

ψ(C/H) of

ψ(C/H) at ψ(Pi), it follows that ψ(Pi) is a total inflection point. The fol-
lowing result is similar to [17, Theorem 3], but the proofs are different.

Theorem 3.5.2. Let p ̸= 2, 3. For the cubic Fermat curve, there exists a
plane model of degree four with two smooth Galois points such that they are
total inflection points.
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Chapter 4

A criterion for the existence of
a plane model with two inner
Galois points for algebraic
curves

In 2016, Fukasawa [17] presented a criterion for the existence of a bira-
tional embedding of a smooth projective curve into a projective plane with
two smooth Galois points and obtained new examples of plane curves with
two smooth Galois points by using this criterion. On the other hand, there
have been some known examples of plane curves with two or more non-
smooth Galois points. For example, the Ballico–Hefez curve ([13, Theorem
1]), some self-dual curves ([33, Theorem 17]), the (plane model of) Giulietti–
Korchmáros curve ([23, Theorem 2]), the (q3, q2)-Frobenius nonclassical curve
([2, Theorem 1]), and the Artin–Schreier–Mumford curve (proof of [19, The-
orem 1]) are such curves. However, these examples are not intended to focus
actively on non-smooth Galois points. Takahashi [45] studied plane quintic
curves with a double point P and determined defining equations when P is a
Galois point. As far as the author knows, This is the only study that focused
on a non-smooth Galois point so far. To study non-smooth Galois points
systematically, it is good to have a criterion for non-smooth Galois points.
In this chapter, we extend Fukasawa’s criterion [17, Theorem 1] to all cases
with two (possibly non-smooth) Galois points.
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4.1 Main theorems

Let X be a (reduced, irreducible) smooth projective curve over k. The
following are our main theorems.

Theorem 4.1.1. Let G1, G2 be finite subgroups of Aut(X) and let P1, P2 be
different points of X. Then there exists a birational embedding φ : X → P2

such that φ(P1), φ(P2) are different inner Galois points, that Gφ(Pi) = Gi for

i = 1, 2, and that L = φ(P1)φ(P2) is not a tangent line at φ(P1), if and only
if the following conditions are satisfied:

(a) X/G1
∼= P1, X/G2

∼= P1,

(b) G1 ∩G2 = {1}, and

(c) one of the following holds:

(c- i ) P1 ̸∈ G1 · P2, P2 ̸∈ G2 · P1, G1 · P2 ∩ G2 · P1 ̸= ∅, and |G1(P2)| =
|G2(P1)|.

(c-ii) G1 · P2 ∩G2 · P1 = ∅.
(c-iii) P1 ̸∈ G1 · P2, G1 · P2 ∩G2 · P1 ̸= ∅ and |G1(P2)| > |G2(P1)|.

Furthermore, for any φ as in the above, the following hold:

( i ) L is not a tangent line at φ(P2) with L∩φ(X) ⊋ {φ(P1), φ(P2)} if and
only if condition (c- i ) is satisfied.

(ii) L is not a tangent line at φ(P2) with L∩φ(X) = {φ(P1), φ(P2)} if and
only if condition (c-ii) is satisfied.

(iii) L is a tangent line at φ(P2) if and only if condition (c-iii) is satisfied.

Theorem 4.1.2. Let φ be as in Theorem 4.1.1, and let Λ be the linear
system on X corresponding to the morphism φ. Let (0, αP , βP ) denote the
(Λ, P )-order sequence at a point P ∈ X. Then the following hold.

(1) The multiplicity mφ(P1) of φ(X) at φ(P1) is equal to

|G2(P1)| · |G2 · P1 \ (G1 · P2 ∩G2 · P1)|.
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(2) The divisor
∑

P∈φ−1(φ(P1))
αPP is equal to∑

Q∈G2·P1\(G1·P2∩G2·P1)

|G2(P1)|Q.

(3) The multiplicity mφ(P2) of φ(X) at φ(P2) is equal to

|G1(P2)|·|G1·P2\(G1·P2∩G2·P1)|+(|G1(P2)|−|G2(P1|)·|G1·P2∩G2·P1|.

(4) The divisor
∑

P∈φ−1(φ(P2))
αPP is equal to∑

R∈G1·P2\(G1·P2∩G2·P1)

|G1(P2)|R +
∑

S∈G1·P2∩G2·P1

(|G1(P2)| − |G2(P1)|)S.

(5) In the case (iii) of Theorem 4.1.1, the equality βP = |G1(P2)| holds at
each point P ∈ G1 · P2 ∩G2 · P1.

(6) The divisor φ∗L is equal to∑
Q∈G2·P1\(G1·P2∩G2·P1)

|G2(P1)|Q+
∑

R∈G1·P2

|G1(P2)|R.

To explain the usefulness of Theorems 4.1.1 and 4.1.2, we apply these
theorems to rational curves.

Theorem 4.1.3. For the projective line P1, there exist the following bira-
tional embeddings φ : P1 → P2.

(1) p = 3, deg(φ(P1)) = 14 and there exist two non-smooth Galois points
φ(P1) and φ(P2) ∈ φ(P1) such that mφ(P1) = 4, mφ(P2) = 8, Gφ(P1)

∼=
D5, Gφ(P2)

∼= AGL(1,F3), and L = φ(P1)φ(P2) is not a tangent line at
φ(P1) and φ(P2). The second order is equal to 2 at each point contained
in supp(φ∗L).

(2) p ̸= 2, 5, deg(φ(P1)) = 16 and there exist two non-smooth Galois points
φ(P1) and φ(P2) ∈ φ(P1) such that mφ(P1) = 4, mφ(P2) = 11, Gφ(P1)

∼=
A4, Gφ(P2)

∼= Z/5Z, L = φ(P1)φ(P2) is not a tangent line at φ(P1),
and L is a tangent line at φ(P2). The second order is equal to 2 (resp.
1) at each point Q ∈ G1 · P2 \ {P2} (resp. Q ∈ G2 · P1), and the third
order is equal to 2 at P2.
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(3) p ̸= 2, 5, deg(φ(P1)) = 28 and there exist two non-smooth Galois points
φ(P1) and φ(P2) ∈ φ(P1) such that mφ(P1) = 4, mφ(P2) = 23, Gφ(P1)

∼=
S4, Gφ(P2)

∼= Z/5Z, L = φ(P1)φ(P2) is not a tangent line at φ(P1),
and L is a tangent line at φ(P2). The second order is equal to 4 (resp.
3, 1) at each point Q ∈ G1 · P2 \ {P2} (resp. at P2, at each point
Q ∈ G2 · P1 \ {P2}), and the third order is equal to 4 at P2.

4.2 Order sequence and the ramification in-

dex of the projection

Let φ : X → P2 be a birational embedding of X to P2. Assume that
φ(X) is not a line. We recall the notion of order sequences (see [35, Chapter
7]). Note that

Λ = {φ∗L | L is a line contained in P2}
is the linear system on X corresponding to the morphism φ. For a point
P ∈ X, we put

αP = min{ordP (φ∗L) | φ∗L ∈ Λ, P ∈ supp(φ∗L)}.

Then there exists a unique line L̃ such that βP = ordP (φ
∗L̃) > αP . We call

the line L̃ the osculating line at P , and we call the sequence (0, αP , βP ) the

(Λ, P )-order sequence at P . A line L̃ passing through φ(P ) is called a tangent

line at φ(P ) if L̃ is the osculating line at a point contained in φ−1(φ(P )). Note

that a line L̃ is a tangent line at φ(P ) if and only if mφ(P ) < Iφ(P )(φ(X), L̃),

where Iφ(P )(φ(X), L̃) is the intersection multiplicity of φ(X) and L̃ at φ(P ).
Next, We consider the projection πφ(P ), and we put

π̂φ(P ) = πφ(P ) ◦ φ : X → P1.

We recall some properties of a ramification index of π̂φ(P ). We put

φ−1(φ(P )) = {P1, . . . , Pn}.
Let (0, αPi

, βPi
) be the (Λ, Pi)-order sequence for i = 1, . . . , n. Then the

following proposition is well-known.

Proposition 4.2.1. Let Q ∈ X \ {P1, . . . , Pn}.
(1) The equality eQ(π̂φ(P )) = ordQ(φ

∗φ(P )φ(Q)) holds.

(2) The equality ePi
(π̂φ(P )) = βPi

− αPi
holds for i = 1, . . . , n.
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4.3 Proofs of Theorems 4.1.1 and 4.1.2

Let φ : X → P2 be a birational embedding. The following lemma shows
that Theorem 4.1.1 describes all cases with two inner Galois points.

Lemma 4.3.1. Let P1, P2 ∈ X, and assume that φ(P1), φ(P2) are differ-
ent inner Galois points. We put L = φ(P1)φ(P2). Then either mφ(P1) =
Iφ(P1)(φ(X), L) or mφ(P2) = Iφ(P2)(φ(X), L) holds.

Proof. We put

φ−1(φ(P1)) = {P11 = P1, P12, . . . , P1n1},

φ−1(φ(P2)) = {P21 = P2, P22, . . . , P2n2}.

Let (0, αPij
, βPij

) be the (Λ, Pij)-order sequence for i, j. Assume by contra-
diction that

mφ(P1) < Iφ(P1)(φ(X), L), mφ(P2) < Iφ(P2)(φ(X), L)

hold. By Theorem 2.3.1, the ramification index of π̂φ(P1) (resp. π̂φ(P2)) at each
point contained in φ−1(φ(P2)) (resp. φ

−1(φ(P1))) coincides with |Gφ(P1)(P2)|
(resp. |Gφ(P2)(P1)|). By Proposition 4.2.1 (1) and Theorem 2.3.1, |Gφ(P1)(P2)|
(resp. |Gφ(P2)(P1)|) coincides with ordP2j

(φ∗L) for each j (resp. ordP1i
(φ∗L)

for each i). Since L is a tangent line at φ(P1) (resp. φ(P2)), there exists i0
(resp. j0) such that

βP1i0
= ordP1i0

(φ∗L) (resp. βP2j0
= ordP2j0

(φ∗L)).

By Proposition 4.2.1 (2) and Theorem 2.3.1,

|Gφ(P1)(P2)| = βP1i0
− αP1i0

(resp. |Gφ(P2)(P1)| = βP2j0
− αP2j0

)

holds. Therefore, we have a contradiction as follows:

|Gφ(P2)(P1)| < |Gφ(P2)(P1)|+ αP2j0
= βP2j0

= ordP2j0
(φ∗L) = |Gφ(P1)(P2)|

< |Gφ(P1)(P2)|+ αP1i0
= βP1i0

= ordP1i0
(φ∗L) = |Gφ(P2)(P1)|.
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Proof of Theorem 4.1.1. We consider the ‘if’ part. Assume that condi-
tions (a), (b), and (c) in Theorem 4.1.1 are satisfied. Let f, g ∈ k(X) be the
generators of k(X)G1 , k(X)G2 such that

(f)∞ =
∑
σ∈G1

σ(P2), (g)∞ =
∑
τ∈G2

τ(P1),

which exist by condition (a), where (f)∞ (resp. (g)∞) is the pole divisor of
f (resp. g). We consider the morphism φ = (f : g : 1) : X → P2. First, we
show that the equality φ(P1) = (0 : 1 : 0) holds. We put ng = ordP1((g)∞).
Note that ng is equal to |G2(P1)|. Let tP1 be a local parameter at P1. Since
P1 ̸∈ G1 · P2 = supp((f)∞) by condition (c),

ordP1(t
ng

P1
f) = ng + ordP1(f) ≥ ng > 0

hold. Therefore, we have the equality φ(P1) = (0 : 1 : 0). We also show
that the equality φ(P2) = (1 : 0 : 0) holds. We put nf = ordP2((f)∞).
Note that nf is equal to |G1(P2)|. Let tP2 be a local parameter at P2. If
P2 ̸∈ G2 · P1 = supp((g)∞), we have

ordP2(t
nf

P2
g) = nf + ordP2(g) ≥ nf > 0.

If P2 ∈ G2 · P1, then condition (c-iii) is satisfied, and we have

ordP2(t
nf

P2
g) = nf + ordP2(g) = |G1(P2)| − |G2(P1)| > 0.

Therefore, the equality φ(P2) = (1 : 0 : 0) holds. By a method similar
to the proof of [17, Proposition 1], by condition (b), we can show that the
morphism φ is birational onto its image. The morphism (f : 1) (resp. (g : 1))
coincides with the projection from the point φ(P1) = (0 : 1 : 0) (resp.
φ(P2) = (1 : 0 : 0)). Therefore φ(P1), φ(P2) are different inner Galois points,
and Gφ(Pi) = Gi for i = 1, 2. We show that L = φ(P1)φ(P2) is not a tangent
line at φ(P1). Assume by contradiction that L is a tangent line at φ(P1).
Then there exists a point Q ∈ φ−1(φ(P1)) such that Q ∈ G1 · P2. Let Λ be
the linear system on X corresponding to the morphism φ, and let (0, αQ, βQ)
be the (Λ, Q)-order sequence at Q. Since L is the osculating line at Q, we
have

|G2(P1)| = ordQ(φ
∗L) = βQ

by Proposition 4.2.1 (1) and Theorem 2.3.1. On the other hand, by Propo-
sition 4.2.1 (2) and Theorem 2.3.1, the equality

|G1(P2)| = βQ − αQ
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holds. Therefore, we have G1 · P2 ∩ G2 · P1 ̸= ∅ and |G1(P2)| < |G2(P1)|.
This is a contradiction to condition (c). Therefore, L is not a tangent line at
φ(P1).

We consider the ‘only if’ part. Assume that there exists a birational
embedding φ : X → P2 such that φ(P1), φ(P2) are different inner Galois
points, Gφ(Pi) = Gi for i = 1, 2, and L = φ(P1)φ(P2) is not a tangent line at
φ(P1). Since

k(X)Gi = (π̂φ(Pi))
∗(k(P1)) ∼= k(P1)

for i = 1, 2, condition (a) is satisfied. By a method similar to the proof of
[17, Theorem 1], condition (b) is satisfied. Since L is not a tangent line at
φ(P1), we have P1 ̸∈ G1 · P2. We show condition (c) by dividing into the
following three cases ( I ), (II), and (III).

( I ) Assume that L is not a tangent line at φ(P2) and L ∩ φ(X) ⊋
{φ(P1), φ(P2)}. We show that condition (c- i ) is satisfied. Since L is not
a tangent line at φ(P2) and

(L ∩ φ(X)) \ {φ(P1), φ(P2)} ̸= ∅,

we have P2 ̸∈ G2 · P1 and G1 · P2 ∩G2 · P1 ̸= ∅. We take a point

Q ∈ φ−1((L ∩ φ(X)) \ {φ(P1), φ(P2)}).

By Proposition 4.2.1 (1) and Theorem 2.3.1, we have the equalities

|G1(P2)| = ordQ(φ
∗L) = |G2(P1)|.

Therefore, condition (c- i ) is satisfied.
(II) Assume that L is not a tangent line at φ(P2) and L ∩ φ(X) =

{φ(P1), φ(P2)}. Then G1 · P2 = φ−1(φ(P2)) and G2 · P1 = φ−1(φ(P1)) hold,
and we have G1 · P2 ∩G2 · P1 = ∅. Therefore, condition (c-ii) is satisfied.

(III) Assume that L is a tangent line at φ(P2). We show that condition
(c-iii) is satisfied. Since L is a tangent line at φ(P2), there exists a point
Q ∈ φ−1(φ(P2)) such that Q ∈ G2 · P1. Since G1 · P2 ⊃ φ−1(φ(P2)), we have
G1 · P2 ∩G2 · P1 ̸= ∅. Let Λ be the linear system on X corresponding to the
morphism φ, and let (0, αQ, βQ) be the (Λ, Q)-order sequence at Q. Since L
is the osculating line at Q, we have

|G1(P2)| = ordQ(φ
∗L) = βQ
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by Proposition 4.2.1 (1) and Theorem 2.3.1. On the other hand, by Propo-
sition 4.2.1 (2) and Theorem 2.3.1, the equality

|G2(P1)| = βQ − αQ

holds, and we have |G1(P2)| > |G2(P1)|. Therefore, condition (c-iii) is satis-
fied.

Finally, we show ( i ), (ii), and (iii) in Theorem 4.1.1. Let φ be as in
Theorem 4.1.1. Then condition (c- i ), (c-ii), or (c-iii) is satisfied. Since these
conditions are mutually exclusive, it is enough to show ‘only if’ part of ( i ),
(ii), and (iii) in Theorem 4.1.1. This task has been already done above.

Proof of Theorem 4.1.2. Let φ be as in Theorem 4.1.1, and let Λ be the
linear system on X corresponding to the morphism φ. We put

φ−1(φ(P1)) = {P11 = P1, P12, . . . , P1n1},

φ−1(φ(P2)) = {P21 = P2, P22, . . . , P2n2}.
Let (0, αPij

, βPij
) be the (Λ, Pij)-order sequence for i, j.

First, we show Theorem 4.1.2 (1) and (2). Since the linear system corre-
sponding to the morphism π̂φ(P1) is{

E −
n1∑
i=1

αP1i
P1i

∣∣∣∣∣ E ∈ Λ, E ≥
n1∑
i=1

αP1i
P1i

}
and π̂φ(P1) is a Galois covering, the following equalities of divisors hold:

φ∗L−
n1∑
i=1

αP1i
P1i = (π̂φ(P1))

∗([L]) =
∑
σ∈G1

σ(P2),

where [L] represents the divisor of the point [L] ∈ P1 corresponding to the
line L. By Proposition 4.2.1 (1) and Theorem 2.3.1, the equality |G2(P1)| =
ordP1i

(φ∗L) holds for all i. Since L is not a tangent line at φ(P1), the equality
αP1i

= |G2(P1)| holds for all i. It is not difficult to check that

(φ−1(φ(P1))) ∪ (G1 · P2) = supp(φ∗L) = (G2 · P1) ∪ (G1 · P2)

hold. Since the intersection of the two sets φ−1(φ(P1)) and G1 · P2 is the
empty set, we have

φ−1(φ(P1)) = ((φ−1(φ(P1))) ∪ (G1 · P2)) \ (G1 · P2)

= G2 · P1 \ (G1 · P2 ∩G2 · P1).
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Therefore, the equality

n1∑
i=1

αP1i
P1i =

∑
Q∈G2·P1\(G1·P2∩G2·P1)

|G2(P1)|Q

of divisors holds, and we have Theorem 4.1.2 (2). Since

mφ(P1) =

n1∑
i=1

αP1i
,

we have Theorem 4.1.2 (1).
Next, we show Theorem 4.1.2 (6). By the above, the equality

φ∗L =
∑

Q∈G2·P1\(G1·P2∩G2·P1)

|G2(P1)|Q+
∑
σ∈G1

σ(P2)

holds. Since ∑
σ∈G1

σ(P2) =
∑

R∈G1·P2

|G1(P2)|R,

we have Theorem 4.1.2 (6).
Finally, we show Theorem 4.1.2 (3), (4), and (5). Since∑
τ∈G2

τ(P1) =
∑

S∈G1·P2∩G2·P1

|G2(P1)|S +
∑

Q∈G2·P1\(G1·P2∩G2·P1)

|G2(P1)|Q,

the following equalities of divisors hold:∑
R∈G1·P2\(G1·P2∩G2·P1)

|G1(P2)|R

+
∑

S∈G1·P2∩G2·P1

(|G1(P2)| − |G2(P1)|)S +
∑
τ∈G2

τ(P1)

=

 ∑
R∈G1·P2\(G1·P2∩G2·P1)

|G1(P2)|R +
∑

S∈G1·P2∩G2·P1

|G1(P2)|S


+

∑
Q∈G2·P1\(G1·P2∩G2·P1)

|G2(P1)|Q

=
∑

Q∈G2·P1\(G1·P2∩G2·P1)

|G2(P1)|Q+
∑

R∈G1·P2

|G1(P2)|R

= φ∗L,
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where the last equality comes from Theorem 4.1.2 (6). Therefore, the equality

φ∗L−
∑
τ∈G2

τ(P1) =
∑

R∈G1·P2\(G1·P2∩G2·P1)

|G1(P2)|R

+
∑

S∈G1·P2∩G2·P1

(|G1(P2)| − |G2(P1)|)S

of divisors holds. On the other hand, since the linear system corresponding
to the morphism π̂φ(P2) is{

E −
n2∑
j=1

αP2j
P2j

∣∣∣∣∣ E ∈ Λ, E ≥
n2∑
j=1

αP2j
P2j

}

and π̂φ(P2) is a Galois covering, the following equalities of divisors hold:

φ∗L−
n2∑
j=1

αP2j
P2j = (π̂φ(P2))

∗([L]) =
∑
τ∈G2

τ(P1).

Therefore, the equalities

n2∑
j=1

αP2j
P2j = φ∗L−

∑
τ∈G2

τ(P1)

=
∑

R∈G1·P2\(G1·P2∩G2·P1)

|G1(P2)|R

+
∑

S∈G1·P2∩G2·P1

(|G1(P2)| − |G2(P1)|)S

of divisors hold, and we have Theorem 4.1.2 (4). Since

mφ(P2) =

n2∑
j=1

αP2j
,

we have Theorem 4.1.2 (3). Assume that the condition (c-iii) in Theorem
4.1.1 is satisfied. Then

0 < |G1(P2)| − |G2(P1)| < |G1(P2)|

hold. By Theorem 4.1.2 (6), the equality |G1(P2)| = ordP (φ
∗L) holds at each

point P ∈ G1 · P2. By Theorem 4.1.2 (4), the second (Λ, P )-order coincides
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with |G1(P2)| − |G2(P1)| at each point P ∈ G1 · P2 ∩G2 · P1. Therefore, the
third (Λ, P )-order coincides with |G1(P2)| at each point P ∈ G1 ·P2∩G2 ·P1,
and Theorem 4.1.2 (5) holds.

Remark 4.3.2. In [20], Fukasawa presented a criterion for the existence of
a birational embedding with a pair of Galois points consisting of a smooth
Galois point and an outer Galois point. By a method similar to the proof
of Theorems 4.1.1 and 4.1.2, we can extend the criterion to non-smooth
and outer Galois points. The necessary and sufficient conditions for the
existence of a birational embedding with inner and outer Galois points are
that X/Gi

∼= P1 for i = 1, 2, G1 ∩ G2 = {1}, and there exist η ∈ G2 and
P ∈ X such that

|G2(P )|
∑

Q∈(G2·P )−(G1·η(P ))

Q+ (|G2(P )| − |G1(η(P ))|)
∑

R∈G1·η(P )

R ≥ P.

4.4 Proof of Theorem 4.1.3

We apply Theorems 4.1.1 and 4.1.2 to rational curves. In this case, con-
dition (a) in Theorem 4.1.1 is always satisfied, by Lüroth’s theorem. We put
Q∞ = (1 : 0), Qa = (a : 1) ∈ P1 for any a ∈ k.

Proof of Theorem 4.1.3. Let p ̸= 2, 5, let i ∈ k be a root of the polyno-
mial T 2 + 1 ∈ k[T ], and let ξ be a primitive fifth root of unity.

(1) Let p = 3, and let P1 = Q0, P2 = Qξ. We consider two sets:

G1 =

⟨[
ξ 0
0 1

]⟩⟨[
0 1
1 0

]⟩
, G2 =

⟨[
1 1
0 1

]⟩⟨[
1 0
0 −1

]⟩
.

It is known that

G1 =

⟨[
ξ 0
0 1

]⟩
⋊
⟨[

0 1
1 0

]⟩
∼= D5,

where D5 is the dihedral group of degree 5 (see [5, Theorem C]). It is not
difficult to check that

G2 =

⟨[
1 1
0 1

]⟩
⋊
⟨[

1 0
0 −1

]⟩
∼= AGL(1,F3),
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where AGL(1, F3) is the general affine group of degree 1 over F3. By direct
computations, we have the equalities

G1 ∩G2 = {1},

G1 · P2 = {Q1, Qξ, Qξ2 , Qξ3 , Qξ4},

G2 · P1 = {Q−1, Q0, Q1},

G1 · P2 ∩G2 · P1 = {Q1},

G1(P2) =

{[
1 0
0 1

]
,

[
0 ξ2

1 0

]}
,

G2(P1) =

{[
1 0
0 1

]
,

[
−1 0
0 1

]}
.

Therefore, conditions (b) and (c- i ) in Theorem 4.1.1 are satisfied, and there
exists a birational embedding φ : P1 → P2 such that φ(P1), φ(P2) are dif-
ferent inner Galois points, Gφ(P1)

∼= D5, Gφ(P2)
∼= AGL(1,F3), and L =

φ(P1)φ(P2) is not a tangent line at φ(P1), φ(P2). By Theorem 4.1.2 (1), (3)
and (6), mφ(P1) = 4, mφ(P2) = 8 and deg(φ(P1)) = 14. By Theorem 4.1.2 (6),
the second order is equal to 2 at each point contained in supp(φ∗L).

(2) Let P1 = Qξ, P2 = Q1. We consider

G1 =

⟨[
1 0
0 −1

]
,

[
0 1
1 0

]⟩⟨[
1 i
1 −i

]⟩
, G2 =

⟨[
ξ 0
0 1

]⟩
.

Obviously, G2
∼= Z/5Z, and the following fact is known.

G1 =

⟨[
1 0
0 −1

]
,

[
0 1
1 0

]⟩
⋊
⟨[

1 i
1 −i

]⟩
∼= A4,

where A4 is the alternating group of degree 4 (see [5, Theorem C]). Since 5
and 12 are coprime, condition (b) in Theorem 4.1.1 is satisfied. By direct
computations, we have the following equalities:

G1 · P2 = {Q−i, Q−1, Q0, Q1, Qi, Q∞},

G2 · P1 = {Q1, Qξ, Qξ2 , Qξ3 , Qξ4},

G1 · P2 ∩G2 · P1 = {Q1 = P2},
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G1(P2) =

{[
1 0
0 1

]
,

[
0 1
1 0

]}
,

G2(P1) =

{[
1 0
0 1

]}
.

Therefore, condition (c-iii) in Theorem 4.1.1 is satisfied, and there exists a
birational embedding φ : P1 → P2 such that φ(P1), φ(P2) are different inner
Galois points, Gφ(P1)

∼= A4, Gφ(P2)
∼= Z/5Z, L = φ(P1)φ(P2) is not a tangent

line at φ(P1), and L is a tangent line at φ(P2). By Theorem 4.1.2 (1), (3)
and (6), mφ(P1) = 4, mφ(P2) = 11 and deg(φ(P1)) = 16. By Theorem 4.1.2
(2), (4), and (5), the second order is equal to 2 (resp. 1) at each point
Q ∈ G1 · P2 \ {P2} (resp. Q ∈ G2 · P1), and the third order is equal to 2 at
P2.

(3) Let P1 = Qξ, P2 = Q1. We consider two groups:

G1 =

⟨⟨[
1 0
0 −1

]
,

[
0 1
1 0

]⟩
⋊
⟨[

1 i
1 −i

]⟩
,

⟨[
i 0
0 1

]⟩⟩
,

G2 =

⟨[
ξ 0
0 1

]⟩
.

Obviously, G2
∼= Z/5Z, and the following fact is known:⟨[
1 0
0 −1

]
,

[
0 1
1 0

]⟩
⋊
⟨[

1 i
1 −i

]⟩
◁ G1

∼= S4,

where S4 is the symmetric group of degree 4 (see [5, Theorem C]). Since 5
and 24 are coprime, condition (b) in Theorem 4.1.1 is satisfied. By direct
computations, we have the following equalities:

G1 · P2 = {Q−i, Q−1, Q0, Q1, Qi, Q∞},

G2 · P1 = {Q1, Qξ, Qξ2 , Qξ3 , Qξ4},

G1 · P2 ∩G2 · P1 = {Q1 = P2},

G1(P2) =

{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
i 1
1 i

]
,

[
1 i
i 1

]}
,

G2(P1) =

{[
1 0
0 1

]}
.
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Therefore, condition (c-iii) in Theorem 4.1.1 is satisfied, and there exists a
birational embedding φ : P1 → P2 such that φ(P1), φ(P2) are different inner
Galois points, Gφ(P1)

∼= S4, Gφ(P2)
∼= Z/5Z, L = φ(P1)φ(P2) is not a tangent

line at φ(P1), and L is a tangent line at φ(P2). By Theorem 4.1.2 (1), (3)
and (6), mφ(P1) = 4, mφ(P2) = 23 and deg(φ(P1)) = 28. By Theorem 4.1.2
(2), (4), and (5) the second order is equal to 4 (resp. 3, 1) at each point
Q ∈ G1 · P2 \ {P2} (resp. at P2, at each point Q ∈ G2 · P1 \ {P2}), and the
third order is equal to 4 at P2.
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Chapter 5

Galois lines for the
Giulietti–Korchmáros curve

Let C ⊂ P3 be an irreducible (possibly singular) space curve over k. We
take a line ℓ ⊂ P3 and consider the projection

πℓ : C 99K P1;P 7→ ⟨ℓ, P ⟩

with the center ℓ, where ⟨ℓ, P ⟩ represents the hyperplane spanned by ℓ and
P . If the field extension k(C)/π∗

ℓk(P1) of function fields induced by πℓ is
Galois, then ℓ is called a Galois line for C. This notion was introduced
by Yoshihara (see [4, 48]). For a Galois line ℓ, the associated Galois group
Gal(k(C)/π∗

ℓ (P1)) is denoted by Gℓ. The degree of a Galois line ℓ is defined
as deg(πℓ) = [k(C) : π∗

ℓk(P1)]. The following problems are raised in [50].

(a) Find new examples of plane curves having many Galois points.

(b) Find Galois lines ℓ for C in two cases where ℓ ∩ C = ∅ and ℓ ∩ C ̸= ∅.

In Algebraic Geometry, the Hermitian curve

H : xq + x− yq+1 = 0

in P2 over a field of characteristic p > 0 has many interesting and important
properties, where q is a power of p. The following beautiful theorem presented
by Homma in the theory of Galois points represents one of them:

Theorem ([36]). For the Hermitian curve H, the set of all Galois points
coincides with the set of all Fq2-rational points of P2.
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In 2007, Giulietti and Korchmáros discovered the curve H̃ ⊂ P3 defined
by

xq + x− yq+1 = 0 and y((xq + x)q−1 − 1)− zq
2−q+1 = 0,

as the first example of maximal curve not covered by the Hermitian curve
([28]). This curve is called the Giulietti–Korchmáros (GK) curve. The full

automorphism group Aut(H̃) of H̃ was also determined in [28]. Recently,

Beelen and Montanucci described the Weierstrass semigroups on H̃ com-
pletely ([1]).

It would be good to obtain a result for Galois lines similar to the theorem
of Homma. In this chapter, we determine the arrangement of all Galois lines
in P3 for the GK curve H̃. As an application, the arrangement of all Galois
points for a plane model of the GK curve is also determined.

5.1 Main theorems

In Theorem 5.1.1, the arrangement of Galois lines for H̃ is described.

Theorem 5.1.1. The set of all Galois lines for H̃ coincides with the set of
all Fq2-lines ℓ with ℓ ∋ (0 : 0 : 1 : 0) or ℓ ⊂ {Z = 0}.

Giulietti and Korchmáros introduced a plane model

xq
3

+ x− (xq + x)q
2−q+1 − zq

3+1 = 0

([28, Theorem 4]). The projective closure (H̃)′ of this curve is the same

as the image πR(H̃) under the projection πR : P3 99K P2 from the point
R := (0 : 1 : 0 : 0). As an application of Theorem 5.1.1, we will describe the

arrangement of all Galois points for (H̃)′.

Theorem 5.1.2. The set of all Galois points for (H̃)′ coincides with the set

{(0 : 1 : 0)} ∪ ((H̃)′ ∩ {Z = 0}).

According to Theorem 5.1.2, the number δ((H̃)′) of Galois points con-

tained in (H̃)′ \ Sing((H̃)′) is equal to q + 1, where Sing((H̃)′) is the set of

all singular points of (H̃)′. This is a new family of plane curves C of degree
d such that δ(C) → ∞ as d→ ∞.
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5.2 Properties of the GK curve

We consider the Giulietti–Korchmáros curve H̃ ⊂ P3 over an algebraically
closed field k of characteristic p > 0. Let (X : Y : Z : W ) and (X : Z : W ) be
systems of homogeneous coordinates of P3 and of P2 respectively. An affine
open set of P3 defined by W ̸= 0 is denoted by UW , and

(x, y, z) =

(
X

W
,
Y

W
,
Z

W

)
is a system of affine coordinates of UW . For points P , Q ∈ P3 with P ̸= Q,
the line passing through P , Q is denoted by PQ.

Let H be the Hermitian curve given by Z = XqW + XW q − Y q+1 = 0,
and let H(Fq2) be the set of all Fq2-rational points on H. Note that

H(Fq2) = H̃ ∩ {Z = 0} = H̃(Fq2).

The following result is well known (see, for example, [36, Corollary 3.4]).

Proposition 5.2.1. Let ℓ be a line contained in P3. If ℓ ⊂ {Z = 0}, then
|ℓ ∩H(Fq2)| = 0, 1, or q + 1.

Note that the projection from R′ = (0 : 0 : 1 : 0) induces a cyclic covering

H̃ → H of degree q2 − q + 1 (see [28, p.234]). Using the property of this

covering, Giulietti and Korchmáros computed the genus of H̃.

Proposition 5.2.2 ([28], Theorem 2). The set of all ramification points of

the cyclic covering πR′ : H̃ → H coincides with H̃ ∩ {Z = 0}. Furthermore,

the genus of the Giulietti-Korchmáros curve H̃ is 1
2
(q3 + 1)(q2 − 2) + 1.

To determine the arrangement of Galois lines, the exact values of orders
of hyperplanes in P3 are important. Let i : H̃ → P3 be the inclusion. In the
following proposition, the second assertion is a result of Duursma [3], Beelen
and Montanucci [1].

Proposition 5.2.3 (see [1], p.13). Let P ∈ H̃ and let H ⊂ P3 be a hyperplane
with H ∋ P .

(1) If P ∈ H̃ ∩ {Z = 0}, then ordP (i
∗H) = 1, q2 − q + 1, or q3 + 1.

(2) If P ̸∈ H̃ ∩ {Z = 0}, then ordP (i
∗H) = 1, q, q3, or q3 + 1.
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Furthermore, we will need the following theorem of Giulietti and Ko-
rchmáros on the automorphism group of H̃.

Proposition 5.2.4 (A weak version of Theorem 7 in [28]). The full auto-

morphism group Aut(H̃) acts on H̃∩{Z = 0}, and the action of the subgroup

Aut(H̃) ∩ PGL(4, k) on this set is doubly transitive.

5.3 Galois lines with degree q3

Let P∞ := (1 : 0 : 0 : 0) ∈ H̃, and let ℓ∞ ⊂ P3 be the line defined by
Z = W = 0. Then P∞ ∈ ℓ∞, and ℓ∞ = RP∞. First, we show that ℓ∞ is a
Galois line. Note that the affine part H̃W of H̃ given by W ̸= 0 is the same
as the curve defined by

xq + x− yq+1 = yq
2 − y − zq

2−q+1 = 0.

The subgroup

G1 :=




1 bq 0 a
0 1 0 b
0 0 1 0
0 0 0 1


∣∣∣∣∣∣∣∣ a, b ∈ Fq2 , aq + a− bq+1 = 0

 ⊂ PGL(4, k)

of order q3 acts on H̃ ([28, p.238]). It is not difficult to check that k(H̃)G1 =

k(z). The extension k(H̃)/k(H̃)G1 coincides with the extension k(H̃)/k(z)
induced by the projection

πℓ∞ : P3 99K P1; (X : Y : Z : W ) 7→ (Z : W )

from ℓ∞. Therefore, ℓ∞ is a Galois line with ℓ∞ ∩ H̃ = {P∞}. Note that ℓ∞
coincides with the tangent line of the Hermitian curve

Z = XqW +XW q − Y q+1 = 0

at P∞. By Proposition 5.2.4, there exist q3 + 1 Galois lines for H̃.
We would like to show that the number of Galois lines with degree q3 is at

most q3+1. Assume that ℓ ⊂ P3 is a Galois line with degree q3. Note that the
Galois group Gℓ of order q

3 acts on the set H̃∩{Z = 0} of cardinality q3+1,
by Proposition 5.2.4. By a fact of group theory (see [44, Chapter 2, Section
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1 (1.3)]), there exists a point P ∈ H̃ ∩ {Z = 0} fixed by any element of Gℓ.
It follows from Theorem 2.3.1 (4) that the ramification index at P is equal
to q3 for the projection πℓ from ℓ. We can assume that P = P∞. Assume
by contradiction that P∞ ̸∈ ℓ. Then there exists a hyperplane H such that
ordP∞(i∗H) = q3, where i : H̃ → P3 is the inclusion. This is a contradiction
to Proposition 5.2.3. Therefore, P∞ ∈ ℓ. Since π−1

ℓ (πℓ(P∞)) = {P∞}, the
hyperplane W = 0 includes ℓ. Assume by contradiction that ℓ ̸⊂ {Z = 0}.
Then ℓ ∩ {Z = 0} = {P∞} and

|H̃ ∩ {Z = 0} ∩H| = 1 or q + 1

for each hyperplane H ⊃ ℓ, by Proposition 5.2.1. By Theorem 2.3.1 (1),
(3), and Proposition 5.2.4, there exists a ramification point different from
P∞ with index a power of p. This is a contradiction to Proposition 5.2.3.
Therefore, ℓ is defined by Z = W = 0. The proof of the assertion for Galois
lines with degree q3 in Theorem 5.1.1 is completed.

We consider Galois points in (H̃)′ \ Sing((H̃)′). Note that Galois lines

ℓ for H̃ passing through R correspond to Galois points P ∈ P2 for (H̃)′,

by ℓ 7→ πR(ℓ), since the projection πR : H̃ → (H̃)′ is birational. Since all
Galois lines with degree q3 are included in the plane {Z = 0}, all Galois

points with degree q3 on (H̃)′ are contained in the line {Z = 0} in P2. Note

that if a line ℓ with R ∈ ℓ ⊂ {Z = 0} intersects H̃ at q + 1 points, then

πR(ℓ) ∈ Sing((H̃)′). Considering Fq2-lines passing through R, it is inferred

that there exists exactly q + 1 Galois points on (H̃)′ with degree q3, which
points are (α : 0 : β) ∈ P2 with αqβ + αβq = 0. The assertion in Theorem
5.1.2 for Galois points with degree q3 follows.

5.4 Galois lines with degree q3 + 1

We consider Galois line ℓ ⊂ P3 with ℓ ∩ H̃ = ∅. Let R′ = (0 : 0 : 1 : 0)

and ℓ0 be the line defined by X = W = 0. Then ℓ0∩H̃ = ∅, and ℓ0 coincides
with the line passing through R′ and R = (0 : 1 : 0 : 0). The subgroup

G2 :=




1 0 0 0

0 ζq
2−q+1 0 0

0 0 ζ 0
0 0 0 1


∣∣∣∣∣∣∣∣ ζ ∈ k, ζq

3+1 = 1

 ⊂ PGL(4, k)

47



of order q3 + 1 acts on H̃. It is not difficult to check that k(H̃)G2 = k(x).

The extension k(H̃)/k(H̃)G2 coincides with the extension k(H̃)/k(x) induced
by the projection

πℓ0 : P3 99K P1; (X : Y : Z : W ) 7→ (X : W )

from ℓ0. Therefore, ℓ0 is a Galois line with ℓ0 ∩ H̃ = ∅.
By Proposition 5.2.4, for each Fq2-rational point Q ∈ {Z = 0}− H̃ ⊂ P3,

there exists a line ℓ ⊂ P3 with Q ∈ ℓ ̸⊂ {Z = 0} such that πℓ induces a
Galois extension of degree q3+1. Therefore, the number of Galois lines with
degree q3 + 1 is at least q4 + q2 + 1− (q3 + 1) = q4 − q3 + q2.

We consider the case where a Galois line ℓ is included in the plane Z = 0.
Note that the projection πℓ is not ramified at each point in H̃ ∩ {Z = 0}.
By Theorem 2.3.1 (3) and Proposition 5.2.3, the ramification index at all
ramification points for πℓ is equal to q

3+1. By the Riemann–Hurwitz formula,
the integer 2gH̃ − 2 + 2(q3 + 1) is divisible by q3. This is a contradiction to
Proposition 5.2.2 (this integer is equal to (q3+1)q2). Therefore, ℓ ̸⊂ {Z = 0}
holds for all Galois lines ℓ with ℓ ∩ H̃ = ∅.

Let ℓ ⊂ P3 be a line with ℓ∩{Z = 0} = {Q} ̸⊂ H̃ which induces a Galois
extension of degree q3 + 1. It follows from Proposition 5.2.1 that

|H̃ ∩ {Z = 0} ∩H| = 0, 1, or q + 1,

for each hyperplane H ⊃ ℓ. By Theorem 2.3.1 (1), (3), and Proposition 5.2.4,

πℓ is ramified at points in H̃ ∩ {Z = 0} with index q3 +1 or q2 − q+1. Note

that if the index at P ∈ H̃∩{Z = 0} is q3+1, then the line QP is Fq2-rational.
Considering lines in the plane Z = 0 passing through Q, there exist at least
two lines over Fq2 containing Q. Therefore, the point Q is an Fq2-rational
point. By Proposition 5.2.4, we can assume that Q = R = (0 : 1 : 0 : 0).

We would like to show the uniqueness of the Galois line ℓ ∋ R with
ℓ ∩ H̃ = ∅. We consider the projection πR : P3 99K P2. Since all points of
H̃∩{Z = 0} are ramification points for πℓ, all tangent lines at smooth points

in (H̃)′ ∩ {Z = 0} contain the point πR(ℓ). This implies that πR(ℓ) = (0 : 1 :
0). The uniqueness follows. This observation also implies that the number

of outer Galois points for (H̃)′ is exactly one.

Remark 5.4.1. The tangent line at each point of H̃∩{Z = 0} passes through
R′ = (0 : 0 : 1 : 0), by Proposition 5.2.2. Furthermore, R′ ∈ ℓ for all Galois
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lines ℓ with ℓ ∩ H̃ = ∅. Therefore, a Galois line ℓ with ℓ ∩ H̃ = ∅ coincides
with the line passing through R′ and an Fq2-rational point in the plane Z = 0

but not on H̃.

Remark 5.4.2. For each Galois line ℓ with ℓ ∩ H̃ = ∅, the Galois group Gℓ

includes the subgroup


1 0 0 0
0 1 0 0
0 0 η 0
0 0 0 1


∣∣∣∣∣∣∣∣ η ∈ k, ηq

2−q+1 = 1

 ⊂ PGL(4, k).

Therefore, Gℓ ∩Gℓ′ ̸= {1} for each two Galois lines ℓ and ℓ′ not intersecting

H̃. According to [17, Theorem 1], there exist no plane model of H̃ realizing
Gℓ and Gℓ′ as Galois groups at two outer Galois points.

5.5 Galois lines with degree at most q3 − 1

The tangent line at each point of H̃∩{Z = 0} is a Galois line. In fact, the
projection from the line Y = W = 0 induces the extension k(x, y, z)/k(y),
and y is fixed by automorphisms (x, y, z) 7→ (x+ α, y, ηz), where αq + α = 0
and ηq

2−q+1 = 1.

We show that any line ℓ ⊂ {Z = 0} such that ℓ∩ H̃ contains at least two
points is a Galois line. It follows from Proposition 5.2.1 that ℓ is Fq2-rational
and contains exactly q + 1 points of H̃. We consider the line Y = Z = 0.
Then the extension is k(x, y, z)/k(y/z). The automorphisms

σα : (x, y, z) 7→ (x+ α, y, z) and τ : (x, y, z) 7→ (ξq+1x, ξy, ξz)

act on H̃, where αq + α = 0 and ξ is a primitive (q − 1)-th root of unity,
and fix y/z. Note that the group generated by such automorphisms contains
q(q − 1) elements and fixes P∞. We consider the linear transformation φ on
P3 represented by

A =


1 0 0 ρq

0 1 0 0
0 0 −1 0
1 0 0 −ρ

 ,
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where ρq + ρ = 1 (see [31]). Then φ(H̃) is given by

xq+1 − 1 = yq+1 and y
xq

2 − x

xq+1 − 1
= zq

2−q+1.

The linear transformation ψ given by
β2 0 0 0
0 β 0 0
0 0 β 0
0 0 0 1

 ,
where β is a primitive (q + 1)-th root of unity, acts on φ(H̃). Since

φ∗
(y
z

)
= −y

z
and ψ∗

(y
z

)
=
y

z
,

µ∗ := (φ−1 ◦ ψ ◦ φ)∗ fixes y/z. Let G3 ⊂ Aut(H̃) be the group generated by
τ , µ, and all σα. Since β

2 ̸= 1, µ(P∞) = (β2ρ + ρq : 0 : 0 : β2 − 1) ̸= P∞. It

follows that G3 acts on H̃ ∩ {Y = Z = 0} transitively. Therefore, there exist

at least q(q−1) elements of G3 fixing P , for each point P ∈ H̃∩{Y = Z = 0}.
It follows that

|G3| ≥ q(q − 1)(q + 1)

and hence, the line Y = Z = 0 is a Galois line whose Galois group is equal
to G3. By Proposition 5.2.4, the claim follows. Furthermore, for each line ℓ
such that R = (0 : 1 : 0 : 0) ∈ ℓ ⊂ {Z = 0} and ℓ ∩ H̃ contains q + 1 points,

πR(ℓ) ∈ Sing((H̃)′) and this is also a Galois point.

Remark 5.5.1. The automorphism φ−1 ◦ ψ ◦ φ is represented by
β2ρ+ ρq 0 0 (β2 − 1)ρq+1

0 β 0 0
0 0 β 0

β2 − 1 0 0 β2ρq + ρ

 .
Assume that a line ℓ ⊂ P3 induces a Galois extension of degree d ≤ q3−1.

By Proposition 5.2.1 and the previous paragraph, we can assume that ℓ ̸⊂
{Z = 0}.
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We consider the case where ℓ ∩ {Z = 0} = {Q} ⊂ H̃. We can assume

that Q = P∞ and ℓ is not the tangent line at P∞. Note that πP∞(H̃) ⊂ P2 is
defined by

yq
2 − y = zq

2−q+1,

and the projection from each point of P2 is not birational onto P1 for this
curve. Since πℓ factors through the projection πP∞ , it follows that d > q. By
Proposition 5.2.1, for each hyperplane H ⊃ ℓ,

|(H̃ ∩ {Z = 0} ∩H) \ {P∞}| = 0 or q.

Then, by Theorem 2.3.1 (1), (2), and Proposition 5.2.4, there exists a rami-
fication point different from P∞ with index d/q. It follows from Proposition
5.2.3 that d = q(q2 − q + 1) or q. Therefore, d = q(q2 − q + 1). Let P1

and P2 ∈ H̃ ∩ {Z = 0} \ {P∞} with P∞P1 ̸= P∞P2. Then ℓ is given by the
intersection of planes spanned by P∞P1 and R′, P∞P2 and R′. This implies
that ℓ is the tangent line at P∞. This is a contradiction.

We consider the case where ℓ ∩ {Z = 0} = {Q} ̸⊂ H̃. By Theorem
2.3.1 (1), (2), Proposition 5.2.1, and Proposition 5.2.4, ramification indices

for each point of H̃ ∩ {Z = 0} are d or d/(q+1). It follows from Proposition
5.2.3 that d = q2− q+1 or d = q+1. Assume that d = q2− q+1 and q > 2.
Then, for each P ∈ H̃∩{Z = 0}, the line QP intersects H̃ at a unique point

P . Then πℓ ramified at each point P ∈ H̃ ∩ {Z = 0} and hence, the tangent
line at P intersects ℓ. If ℓ ̸∋ R′, then the tangent lines are included in the
plane spanned by ℓ and R′. This is a contradiction. Therefore, ℓ ∋ R′ and
ℓ = R′Q. Using Proposition 5.2.2, we can assume that Q is not Fq2-rational
and R′Q ∩ H̃ consists of q2 − q + 1 points. Then

d = (q3 + 1)− (q2 − q + 1) = q2 − q + 1.

This is a contradiction. Assume that q = 2 and d = q2 − q + 1 = 3. If there
exist two lines in {Z = 0} containing Q and q + 1 points of H̃, then Q is
Fq2-rational, since such lines are Fq2-rational. We can assume that Q = R.

Then πR(ℓ) ∈ Sing((H̃)′)\{Z = 0}. This is a contradiction. Therefore, there

exist points P1 and P2 ∈ H̃∩{Z = 0} with QP1 ̸= QP2 such that the tangent
lines at P1 and P2 intersect ℓ. If R′ ̸∈ ℓ, then P1 and P2 are included in the
plane spanned by ℓ and R′. This is a contradiction to that points Q, P1, and
P2 are not collinear in the plane {Z = 0}. Therefore, ℓ ∋ R′ and ℓ = R′Q.
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We can assume that Q is not Fq2-rational and R′Q∩ H̃ consists of q2 − q+1
points. Then

d = (q3 + 1)− (q2 − q + 1) = q2 − q + 1.

This is a contradiction.
Assume that d = q + 1. If q = 2, then

d = q + 1 = q2 − q + 1.

We can assume that q > 2. It follows from Proposition 5.2.3 that, for each
P ∈ H̃ ∩ {Z = 0}, the line QP contains exactly q + 1 points of H̃. This
implies that QP is Fq2-rational and hence, Q is Fq2-rational. We can assume

that Q = R. Then πR(ℓ) ∈ Sing((H̃)′) \ {Z = 0}. This is a contradiction.

52



Bibliography

[1] P. Beelen and M. Montanucci, Weierstrass semigroups on the Giulietti–
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