
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Information Systems Undergraduate Honors
Theses Information Systems

5-2022

Bitcoin, Blockchain Technology, and Cryptocurrencies Bitcoin, Blockchain Technology, and Cryptocurrencies

Jeffrey Dodson

Follow this and additional works at: https://scholarworks.uark.edu/isysuht

 Part of the Business Analytics Commons, Finance and Financial Management Commons, and the

Technology and Innovation Commons

Citation Citation
Dodson, J. (2022). Bitcoin, Blockchain Technology, and Cryptocurrencies. Information Systems
Undergraduate Honors Theses Retrieved from https://scholarworks.uark.edu/isysuht/14

This Thesis is brought to you for free and open access by the Information Systems at ScholarWorks@UARK. It has
been accepted for inclusion in Information Systems Undergraduate Honors Theses by an authorized administrator
of ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/isysuht
https://scholarworks.uark.edu/isysuht
https://scholarworks.uark.edu/isys
https://scholarworks.uark.edu/isysuht?utm_source=scholarworks.uark.edu%2Fisysuht%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1398?utm_source=scholarworks.uark.edu%2Fisysuht%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=scholarworks.uark.edu%2Fisysuht%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=scholarworks.uark.edu%2Fisysuht%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/isysuht/14?utm_source=scholarworks.uark.edu%2Fisysuht%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

Bitcoin, Blockchain Technology, and Cryptocurrencies

by

Jeffrey Dodson

Advisor: Professor Steve Nolan

An Honors Thesis in partial fulfillment of the requirements for the degree Bachelor of
Science in Business Administration in Information Systems.

Sam M. Walton College of Business

University of Arkansas
Fayetteville, Arkansas

May 14, 2022

2

Table of Contents

1. Introduction P. 3
2. Using Bitcoin the New Way P. 3
3. Summary Statistics P. 4
4. Using Bitcoin the Old Way P. 5
5. Bitcoin Core 22.0 P. 5
6. Mining P. 6
7. Conclusion P. 8
8. Works Cited P. 9
9. Appendix P. 10

3

Introduction

 The blockchain based cryptocurrency known as Bitcoin was theorized in a whitepaper
published October 28, 2008, by Satoshi Nakamoto (pseudonym) (Nakamoto, 2008). The paper,
titled, “Bitcoin: A Peer-to-Peer Electronic Cash System,” laid out a digital currency
creation/exchange structure that employs a decentralized ledger that would later run on the
author’s open-source application (Nakamoto, 2008). The main innovation of this technology is
found within the security benefits provided by the proof-of-work consensus mechanism that
requires solving a mathematic trap-door compression function to verify transactions/blocks
added to the blockchain. On January 3, 2009, the genesis block, a term for the first block in any
given blockchain, was created using Satoshi’s Bitcoin v0.1 software that actualized the concepts
in the Bitcoin whitepaper (Bitcoin Core, 2021).

Bitcoin is so well known because it was the first working implementation of
decentralized cryptocurrency (Nakamoto, 2008). It also holds the top spot on the list of
cryptocurrencies by market capitalization at $728,484,557,258 USD with a price of $38,279.11
USD per bitcoin (Blockchain.com, 2022). The first exchange of bitcoin for goods was 10,000
bitcoins for $41 worth of pizza establishing the initial exchange rate of 0.0041 USD per bitcoin
(DeCambre, 2021). With the current exchange rate of $38,279.11 USD per bitcoin, the 10,000
bitcoins used to buy two Papa John’s pizzas would be worth $382,791,100 USD today. Several
relevant charts surrounding bitcoin’s evolution to its current state can be found in appendix [C].
 This paper’s purpose is to explore the innerworkings behind Bitcoin’s functionality.
Bitcoin has transcended value beyond the bounds of its ledger as seen by trade volume on
cryptocurrency to fiat currency exchanges and use as payment for goods and services. It is also
clear that cryptocurrencies like Bitcoin have the potential to appreciate over time more than
traditional assets, fiat currencies, index funds, or individual stocks. As a growing number of
individuals seek to profit from acquiring cryptocurrencies and adopting blockchain technology,
there is an increased risk for buying into unproductive blockchain implementations or scams if
investors are not aware of certain cybersecurity fundamentals or understanding of how new coins
are created. This Bitcoin centered thesis will define essential blockchain terminology, provide
descriptions of cryptographic processes, and allow individuals to understand the
software/hardware components that are the defining features of Bitcoin’s evolving blockchain.

Using Bitcoin the New Way

In the early years of Bitcoin, its supply was in the hands of few. The owners of the
currency were likely to have acquired their Bitcoin from CPU mining. There was a list of
required actions a user would have to take if they wanted to acquire, request, send, or store
Bitcoin. All this prerequisite knowledge and software are no longer necessary as Bitcoin is sold
on several centralized exchanges. These exchanges also offer cryptocurrency wallets free to
users wanting to buy the various cryptocurrencies listed on exchanges. Users now-a-days can
easily buy, sell, send, and store cryptocurrency, but opt to use a third party to connect you to the
blockchain making use dependent on an intermediary. These large, centralized exchanges like
Coinbase have made cryptocurrency more user friendly, but at the cost of going against some of
the fundamental values that Bitcoin’s creator initially designed the decentralized currency for.

4

Summary Statistics

Listed in Table 1 below are some relevant statistics on the top 5 cryptocurrencies by
market capitalization. Bitcoin has a higher market capitalization than Ethereum, the second
runner up, by roughly a factor of two. While this sounds impressive, the current price is down
roughly 45% from its all-time high of $68,789.63 (Blockchain.com, 2022). Overall, it is easy to
see that cryptocurrencies are a rapidly growing and competitive trillion-dollar market. Another
insight from Table 1 is that two of the coins are priced at exactly $1 USD. These are stable coins
created to offset the price volatility of Bitcoin and other non-stable coins.

Table 1 (Blockchain.com, 2022)

 Bitcoin has an interesting property where the number of coins created in the form of
miner’s coinbase reward halves every 210,000 blocks (Open-Source Developer Group*, 2021).
This means that around the year 2140, there will be no more bitcoins added to the supply and a
total of 21,000,000 bitcoins (Open-Source Developer Group*, 2021). On top of that, the
difficulty to mine adjusts every 2016 blocks, or roughly every 2 weeks (Open-Source Developer
Group*, 2021). As time goes on, miners will earn more from fees than coinbase rewards as seen
in appendix [D].

Within Table 2 are several important measures to help understand Bitcoin. I will break
down these measures. Currently there are just over 19 million bitcoins in circulation which is
90.61% of all bitcoins that can ever exist based on current protocols (Blockchain.com, 2022). For
an in depth look at Bitcoin’s supply schedule, see appendix [D]. These bitcoins were at one point
rewarded to a Bitcoin miner in the process of adding blocks to the 734,448-block long
blockchain (Open-Source Developer Group*, 2021). These blocks contain transactions and
create a ledger recording who sent who bitcoins and when. Altogether, this list of transactions
amounts to 403.5 gigabytes. Each block is limited at 1 megabyte of data so transactions with
higher fees paid to miners will be added before those that offer a low fee to the miner
(Nakamoto, 2008). Confirmed in each block on average are 994 new transactions
(Blockchain.com, 2022). Unconfirmed transactions sit in a memory pool where miners compile
them into blocks and attempt to solve a proof-of-work requirement before other miners. Whoever
satisfies the proof-of-work mechanism first wins the coinbase reward for their computer’s work
in maintaining the ledgers’ accuracy and integrity. A miner wins this reward and creates a block
roughly every 600 seconds or 10 minutes. The unconfirmed transactions and newly added blocks
are pushed across a peer-to-peer network with over 15,000 individual nodes each running the

Rank Icon Name Price Market Cap Circulating Supply ATH

Bitcoin

Ethereum

Tether

BNB

USDC

1 $38,279.11 $728,484,557,258 19,027,781 BTC $68,789.63

2 $2,795.67 $337,418,935,736 120,605,744 ETH $4,891.70

Top 5 Cryptocurrencies by Market Capitalization (May 1, 2022)

5 $1.00 $49,273,953,504 49,274,562,120 USDC $2.35

4 $386.86 $63,170,415,254 163,276,975 BNB $690.93

3 $1.00 $83,166,955,578 83,152,877,108 USDT $1.22

5

Bitcoin Core 22.0 software (Bitnodes, 2022). For a better look into the live geo-distribution of
active nodes, see appendix [B].

Table 2 (Blockchain.com, 2022)

Using Bitcoin the Old Way

To understand cryptocurrency at level deeper than knowing how to buy/receive or send
bitcoins, it is extremely useful to have the Bitcoin Core node/wallet software installed as a
reference. However, I have provided several screenshots of the essential components of the user
interface in appendix [A]. Bitcoin Core 22.0 is the most current version of the software that
connects a user to the Bitcoin blockchain (Bitcoin Core, 2021). This software is free to download
from the Bitcoin developer’s website (Bitcoin Core, 2021). This software has several capabilities
that allow a person to interact with the Bitcoin blockchain. The primary use of the software is
sending and receiving blockchain data using a peer-to-peer network. The second functionality is
generating a cryptocurrency wallet that enables a user to send and receive bitcoin transactions.
These two functions are built on top of many sub-functions that are variable upon which version
of Bitcoin Core that a user is running.

Bitcoin Core 22.0

 Bitcoin software has upgraded in an iterative fashion from the version 0.1 software made
public in 2009. It has an open-source codebase meaning anyone can view or edit the code
running the program. The code is available on GitHub where the full list of 868 contributors and
their contributions to the codebase are kept track of (Bitcoin, 2022). The node/wallet software
program, known to some as the “Satoshi Client”, was initially named Bitcoin, then changed to
Bitcoin-Qt, and is currently called Bitcoin Core. For the full list of Bitcoin software version
releases, see appendix [F]. The C language code within the program is modified as per the
Bitcoin Improvement Proposal process which is often abbreviated as BIP (Bitcoin Core, 2021).
The full list of software versions and BIP’s for Bitcoin is in Appendix [H].
 As stated before, Bitcoin Core is used to connect with the blockchain and other nodes.
Table 3 below shows some important measures for how nodes connect with other nodes. All
nodes must have an internet connection and an internet protocol address to start with. They
connect to a hard coded domain name server to get known node IP addresses. From there, your
node will attempt to open 10 connections on transmission control protocol port 8333. To see
other examples of TCP Port connections, see appendix [E]. Of those connections, 2 are
connections to block relays and 8 are connections to full nodes. See appendix [A] (Peers Node
Window) to see these 10 connections. Block relays are nodes that only relay when a new block is
added to the blockchain. This helps full nodes know if their blockchain is up to date. With the
other 115 incoming connections, nodes can send each other remote process calls. These RPCs
are various commands that let nodes query necessary information from other nodes to stay up to

Measure Name Current Value
Current Bitcoin Supply 19,027,800
Number of Blocks 734,448
Avg Time Between Blocks (s) 509.0
Avg Time Between Blocks (m) 8.5
Avg Transactions per Block 994.0
Percent of Bitcoin Mined 90.61%
Bitcoin Blockchain Size (Gb) 403.5
Number of Nodes 15,184

Web Queries from Blockchain.com

6

date. The full list of RPCs available to nodes is in appendix [I]. It is important to note that most
nodes are still dependent on centralized internet service providers for connection.

Table 3 (Open-Source Developer Group*, 2021) (Baek, 2021)

 The Bitcoin Core software allows a user to set up a cryptocurrency wallet. This process is
one of the most vulnerable parts of cryptocurrency. When you create a wallet, you are creating a
private public key pair using the properties of an elliptic curve. The math behind this elliptic
curve is too complicated to cover in this paper, but I provide a mathematic process flow to
generating these key pairs in appendix [J]. The private key is a secret 64-character hexadecimal
string which is the encryption key or signing key for transactions (Raj, 2022). This is like a
secret passcode and if anyone steals it, then they will be able to send themselves all the user’s
bitcoins. A public key is a non-secret 64-character hexadecimal string and is a decryption key or
verification key (Raj, 2022). A user intentionally shares this so that other nodes can verify when
a transaction contains a valid signature. These key pairs can either be saved on a cold storage
wallet like an ordinary USB drive or saved in a hot storage wallet where a third party like
Coinbase.com stores a user’s balance, transactions, and encryption keys (Raj, 2022).

Mining

 Mining is the process of satisfying the proof-of-work consensus mechanism created in the
Nakamoto whitepaper. When a node is said to mine, they are running the Secure Hashing
Algorithm 256 (Raj, 2022). This algorithm takes advantage of the same elliptic curve properties
as private public key pair creation used for cryptocurrency wallets (Raj, 2022). Table 4 and 5
show some interesting statistics about the SHA 256 algorithm. This algorithm will take in inputs
and spit out a random seeming unique deterministic output that is 256 bits long as long as the
input is smaller than the finite field of the elliptic curve used in the SHA 256 algorithm or 2^64
bits (Raj, 2022). Table 4 measure 1 and 2 show the number of unique outputs to the hashing
function.

Table 4 (Open-Source Developer Group*, 2021) (Cryptopedia, 2021)

 Mining blocks and getting a reward known as a coinbase, currently 6.25 bitcoins plus
transaction fees included in the block mined, is done by brute-force guessing inputs into the SHA
256 algorithm (Raj, 2022). Table 4 above shows the probability of getting a correct guess per

Measure Name Current Value
TCP Port 8333
Number of Peers (Block Relays) 2
Number of Peers (Outgoing Full Nodes) 8
Number of Peers (Incoming Connections) 115
Max Time for Node to Receive Full New Block ~8 Seconds

Static Values from Most Recent Bitcoin Protocol

Measure Name Definition Value

2^256 Unique Combinations of Binary Output 0 or 1 115,792,089,237,316,000

16^64 Unique Combinations of Hexidecimal Output 0-9 or a-f 115,792,089,237,316,000

Typical Hashes per Second Range for CPU 1,000-20,000

Typical Hashes per Second Range for GPU 10,000,000-60,000,000

Typical Hashes per Second Range for ASIC 1,000,000,000,000-100,000,000,000,000

Current Network Hash Rate per Second 245,860,613,763,000,000,000

Blocks Between Difficulty Adjustments 2016 (Roughtly 2 Week Intervals)

Probability of Correct Hash (Guess) 0.000000000000000000001%

Hashing Measures

7

attempt is very low. Different computers can perform more guesses per second. The fastest ASIC
miners perform the algorithm up to 100 trillion times per second. Table 5 below shows a series
of inputs and outputs to the SHA 256 algorithm to explain what the goal of mining is. For binary
conversion tables, see appendix [G]. Each input produces a seemingly random but deterministic
output. Miners attempt to get an output that begins with a certain number of zeros. Currently the
difficulty requires miners to get an output of 19 leading zeros. The number of leading zeros
determines the difficulty of the network. All the miners in the network currently 220 million
terrahashes per second (Blockchain.com, 2022). A terrahash is a trillion hashes per second. So
that’s 2.2e+20 hashes per second. This difficulty is updated every 2016 added blocks so that
blocks are added at a rate of 1 every 10 minutes no matter how many miners are on the network
(Nakamoto, 2008).

Table 5 (ETH.BUILD, 2022)

 Miners brute-force their guess in what’s known as a nonce. Appendix [K] shows a miner
forming a block header with a successful hash output. The header has a version, Merkle root,
hash of the previous block, nonce, bits, time, and the output hash with the correct number of
leading zeros. The version is a number associated with BIP’s, the Merkle root is the hash at the
top of the Merkle tree for all the verified transactions in the block, the time is a timestamp value
for when the algorithm was attempted, and bits/nonce are values that a miner can change to
attempt to get the rest of the information in the header to input into the SHA 256 algorithm and
output a hash beginning with the required number of leading zeros.

Because of how rare a correct guess is, it is rare that more than one miner gets a correct
guess before getting the signal that another miner has guessed correctly before they did. But
when this happens, a fork is created. Nodes receive two correct solutions to the SHA 256
algorithm. The fork that has the longest blockchain always takes priority and will resolve within
the next few blocks added to the chain. Miners prove that they have done computational work by
solving the SHA 256 algorithm at a specified difficulty making it impossible to corrupt the
blockchain without more than 50% of the mining computing power (Raj, 2022). When a block is
added, the transactions are solidified, and a new block is ready to be filled with new transactions.
The difficult mining process is what’s known as a consensus mechanism for the Bitcoin
decentralized ledger and is the principal security behind Bitcoin’s blockchain. This is what
Satoshi called a proof-of-work chain (Nakamoto, 2008). See appendix [L] for a visual of a
blockchain.

Input Funtion Output Type Output Length

Input SHA 256 Hexadecimal 59a513a31d7ddca35e18069758d0e1eab4b9d0109c583419b622ec8b5cebffcb 64

Input1 SHA 256 Hexadecimal c9a28cb6bcf4f2b6d944579278e90bc0d001fdb88a32b874891de6c119b3a946 64

Input2 SHA 256 Hexadecimal 54f194e065e9bb36218955e86a2d3abbcad506b126b86c9381c6a91d6b9d58c7 64

SecretPassword SHA 256 Hexadecimal 2a8e9faf6b65c79233feaf2de6960888ce60987057effd87af94f81e6b76f8b8 64

0 SHA 256 Hexadecimal 5c56c2883435b38aeba0e69fb2e0e3db3b22448d3e17b903d774dd5650796f76 64

1 SHA 256 Hexadecimal 28902a23a194dee94141d1b70102accd85fc2c1ead0901ba0e41ade90d38a08e 64

2 SHA 256 Hexadecimal 729577af82250aaf9e44f70a72814cf56c16d430a878bf52fdaceeb7b4bd37f4 64

3 SHA 256 Hexadecimal 8491452381016cf80562ff489e492e00331de3553178c73c5169574000f1ed1c 64

39 SHA 256 Hexadecimal 03fd5ff1048668cd3cde4f3fb5bde1ff306d26a4630f420c78df1e504e24f3c7 64

990 SHA 256 Hexadecimal 0001e3a4583f4c6d81251e8d9901dbe0df74d7144300d7c03cab15eca04bd4bb 64

52,117 SHA 256 Hexadecimal 0000642411733cd63264d3bedc046a5364ff3c77d2b37ca298ad8f1b5a9f05ba 64

1,813,152 SHA 256 Hexadecimal 00000c94a85b5c06c9b06ace1ba7c7f759e795715f399c9c1b1b7f5d387a319f 64

19,745,650 SHA 256 Hexadecimal 000000cdccf49f13f5c3f14a2c12a56ae60e900c5e65bfe1cc24f038f0668a6c 64

243,989,801 SHA 256 Hexadecimal 0000000ce99e2a00633ca958a16e17f30085a54f04667a5492db49bcae15d190 64

856,192,328 SHA 256 Hexadecimal 0000000000000000e067a478024addfecdc93628978aa52d91fabd4292982a50 64

2E99F445C007A9158207CC30CEBAD2B3D26C45FDAB2EBDF50D261335FC00D92C SHA 256 Hexadecimal 000000000000000000095913f2dc133348dcbc4fcac513e66847fd4cee7149da 64

Secure Hashing Algorithm- Input to 256 Bit Output

8

Conclusion

 Bitcoin went from a fad to being worth more than the market cap of Facebook in just 13
short years. However, it failed to be what Satoshi Nakamoto wanted it to be. The creator of the
first cryptocurrency wanted to cut out intermediaries like central banks or credit card companies.
They wanted a cheap, peer-to-peer, decentralized ledger system to do daily transactions. With
transaction fees peaking at $60 to send a transaction, the cryptocurrency became more of a
speculative asset to buy and sell (Blockchain.com, 2022). Moreover, the fact that it is mainly
traded on centralized exchanges and mining pools dominate the mining process speaks to the
failure to cut out large intermediaries. However, bitcoin is a good store of value compared to
come coins because it has a finite supply. It is being adopted by many financial institutions and
businesses and has become ubiquitous among everyday investors. Bitcoin is in an evolutionary
state. Blockchains are complicated, ever-changing, versatile, disruptive, and have the potential to
change the long-term landscape of transaction validation and show that individuals can use
decentralized networks and open-source applications to take the place of the services
governments, businesses, and firms have historically provided and controlled.

9

Works Cited

Baek, S., Nam, H., Oh, Y., Tran, M., & Suk Kang, M. (2021). On the claims of weak block
synchronization in bitcoin. Retrieved May 1, 2022, from
https://eprint.iacr.org/2021/1282.pdf

Bitcoin. (2022). Bitcoin/Bitcoin: Bitcoin Core Integration/Staging tree. GitHub. Retrieved May
2, 2022, from https://github.com/bitcoin/bitcoin

Bitcoin Core. (2021, September 13). Retrieved May 1, 2022, from https://bitcoin.org/en/bitcoin-
core/

Bitnodes. (2022). Retrieved May 1, 2022, from https://bitnodes.io/

Blockchain Explorer API Charts & Statistics. Blockchain.com. (2022). Retrieved May 1, 2022,
from https://www.blockchain.com/api

Cryptocurrency address generator and validator (V1.1). (2021). Retrieved May 1, 2022, from
https://www.mobilefish.com/services/cryptocurrency/cryptocurrency.html

Cryptopedia. (2021, December 3). Crypto Mining Rigs & Bitcoin Mining Rigs explained.
Gemini. Retrieved May 2, 2022, from https://www.gemini.com/cryptopedia/crypto-
mining-rig-bitcoin-mining-calculator-asic-miner#section-asic-miners-take-over-bitcoin-btc

DeCambre, M. (2021, May 22). Bitcoin Pizza Day. MarketWatch. Retrieved May 2, 2022, from
https://www.marketwatch.com/story/bitcoin-pizza-day-laszlo-hanyecz-spent-3-8-billion-
on-pizzas-in-the-summer-of-2010-using-the-novel-crypto-11621714395

ETH.BUILD. (2022). Retrieved May 2, 2022, from https://sandbox.eth.build/

Nakamoto, S. (2008) Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf

Open-Source Developer Group*. (2021, September 13). Bitcoin Core Version (22.0). Retrieved
from https://bitcoin.org/en/releases/22.0/.

The link to the total list of 868 contributors to the codebase can be found at
https://github.com/bitcoin/bitcoin/graphs/contributors.

Raj, K. (2022). Foundations of blockchain. O'Reilly Online Learning. Retrieved May 2, 2022,
from https://www.oreilly.com/library/view/foundations-of-
blockchain/9781789139396/56c3bf8e-9dd2-4406-9a48-64c729163c59.xhtml

10

Appendix

[A] Bitcoin Core 22.0 UI

11

12

13

[B] Bitnodes.io Map

14

[C] Blockchain.com Graphs

15

16

17

18

[D] Bitcoin Supply Schedule

[E] Common Ports

 Date Block Height Reward (Bitcoin) Total Circulating Supply (Bitcoin) Percent Mined Total Unmined Supply (Bitcoin)
1/3/2009 0 50 0.0000 0.00000000% 20999999.9769
11/28/2012 210,000 25 10500000.0000 50.00000006% 10499999.9769
7/9/2016 420,000 12.5 15750000.0000 75.00000008% 5249999.9769

Current - 5/12/2020 630,000 6.25 18375000.0000 87.50000010% 2624999.9769
5/9/2024 840,000 3.125 19687500.0000 93.75000010% 1312499.9769
5/7/2028 1,050,000 1.5625 20343750.0000 96.87500011% 656249.9769
5/4/2032 1,260,000 0.78125 20671875.0000 98.43750011% 328124.9769
5/1/2036 1,470,000 0.390625 20835937.5000 99.21875011% 164062.4769
4/29/2040 1,680,000 0.1953125 20917968.7500 99.60937511% 82031.2269
4/26/2044 1,890,000 0.09765625 20958984.3750 99.80468761% 41015.6019
4/23/2048 2,100,000 0.04882812 20979492.1875 99.90234386% 20507.7894
4/21/2052 2,310,000 0.02441406 20989746.0927 99.95117198% 10253.8842
4/18/2056 2,520,000 0.01220703 20994873.0453 99.97558604% 5126.9316
4/15/2060 2,730,000 0.00610351 20997436.5216 99.98779307% 2563.4553
4/13/2064 2,940,000 0.00305175 20998718.2587 99.99389658% 1281.7182
4/10/2068 3,150,000 0.00152587 20999359.1262 99.99694833% 640.8507
4/7/2072 3,360,000 0.00076293 20999679.5589 99.99847420% 320.4180
4/5/2076 3,570,000 0.00038146 20999839.7742 99.99923713% 160.2027
4/2/2080 3,780,000 0.00019073 20999919.8808 99.99961859% 80.0961
3/30/2084 3,990,000 0.00009536 20999959.9341 99.99980932% 40.0428
3/28/2088 4,200,000 0.00004768 20999979.9597 99.99990468% 20.0172
3/25/2092 4,410,000 0.00002384 20999989.9725 99.99995236% 10.0044
3/22/2096 4,620,000 0.00001192 20999994.9789 99.99997620% 4.9980
3/21/2100 4,830,000 0.00000596 20999997.4821 99.99998812% 2.4948
3/18/2104 5,040,000 0.00000298 20999998.7337 99.99999408% 1.2432
3/15/2108 5,250,000 0.00000149 20999999.3595 99.99999706% 0.6174
3/13/2112 5,460,000 0.00000074 20999999.6724 99.99999855% 0.3045
3/10/2116 5,670,000 0.00000037 20999999.8278 99.99999929% 0.1491
3/7/2120 5,880,000 0.00000018 20999999.9055 99.99999966% 0.0714
3/5/2124 6,090,000 0.00000009 20999999.9433 99.99999984% 0.0336
3/2/2128 6,300,000 0.00000004 20999999.9622 99.99999993% 0.0147
2/28/2132 6,510,000 0.00000002 20999999.9706 99.99999997% 0.0063
2/26/2136 6,720,000 0.00000001 20999999.9748 99.99999999% 0.0021
2/23/2140 6,930,000 0 20999999.9769 100.00000000% 0.0000

Fu
tu
re

Pa
st

Bitcoin Supply Schedule

PORT NUMBER TRANSPORT PROTOCOL SERVICE NAME RFC
20, 21 TCP File Transfer Protocol (FTP) RFC 959
22 TCP and UDP Secure Shell (SSH) RFC 4250-4256
23 TCP Telnet RFC 854
25 TCP Simple Mail Transfer Protocol (SMTP) RFC 5321
53 TCP and UDP Domain Name Server (DNS) RFC 1034-1035
67, 68 UDP Dynamic Host Configuration Protocol (DHCP) RFC 2131
69 UDP Trivial File Transfer Protocol (TFTP) RFC 1350
80 TCP HyperText Transfer Protocol (HTTP) RFC 2616
110 TCP Post Office Protocol (POP3) RFC 1939
119 TCP Network News Transport Protocol (NNTP) RFC 8977
123 UDP Network Time Protocol (NTP) RFC 5905
135-139 TCP and UDP NetBIOS RFC 1001-1002
143 TCP and UDP Internet Message Access Protocol (IMAP4) RFC 3501
161, 162 TCP and UDP Simple Network Management Protocol (SNMP) RFC 1901-1908, 3411-3418
179 TCP Border Gateway Protocol (BGP) RFC 4271
389 TCP and UDP Lightweight Directory Access Protocol RFC 4510
443 TCP and UDP HTTP with Secure Sockets Layer (SSL) RFC 2818
500 UDP Internet Security Association and Key Management Protocol (ISAKMP) / Internet Key Exchange (IKE) RFC 2408 - 2409
636 TCP and UDP Lightweight Directory Access Protocol over TLS/SSL (LDAPS RFC 4513
989/990 TCP FTP over TLS/SSL RFC 4217

Common Ports/Services (https://ipwithease.com/common-tcp-ip-well-known-port-numbers/)

19

[F] Bitcoin Core Version History

Software Name & VersionRelease Date
Bitcoin Core 22.0 9/13/21
Bitcoin Core 0.21.1 5/1/21
Bitcoin Core 0.21.0 1/14/21
Bitcoin Core 0.20.1 8/1/20
Bitcoin Core 0.20.0 6/3/20
Bitcoin Core 0.19.1 3/9/20
Bitcoin Core 0.19.0.1 11/24/19
Bitcoin Core 0.18.1 8/9/19
Bitcoin Core 0.18.0 5/2/19
Bitcoin Core 0.17.1 12/25/18
Bitcoin Core 0.17.0.1 10/30/18
Bitcoin Core 0.17.0 10/3/18
Bitcoin Core 0.15.2 9/28/18
Bitcoin Core 0.16.3 9/18/18
Bitcoin Core 0.16.2 7/29/18
Bitcoin Core 0.16.1 6/15/18
Bitcoin Core 0.16.0 2/26/18
Bitcoin Core 0.15.1 11/11/17
Bitcoin Core 0.15.0.1 9/19/17
Bitcoin Core 0.15.0 9/14/17
Bitcoin Core 0.14.2 6/17/17
Bitcoin Core 0.14.1 4/22/17
Bitcoin Core 0.14.0 3/8/17
Bitcoin Core 0.13.2 1/3/17
Bitcoin Core 0.13.1 10/27/16
Bitcoin Core 0.13.0 8/23/16
Bitcoin Core 0.12.1 4/15/16
Bitcoin Core 0.12.0 2/23/16
Bitcoin Core 0.11.2 11/13/15
Bitcoin Core 0.11.1 10/15/15
Bitcoin Core 0.10.3 10/14/15
Bitcoin Core 0.11.0 7/12/15
Bitcoin Core 0.10.2 5/19/15
Bitcoin Core 0.10.1 4/27/15
Bitcoin Core 0.10.0 2/16/15
Bitcoin Core 0.9.3 9/27/14
Bitcoin Core 0.9.2.1 6/19/14
Bitcoin Core 0.9.2 6/16/14
Bitcoin Core 0.9.1 4/8/14
Bitcoin Core 0.9.0 3/19/14
Bitcoin-Qt 0.8.6 12/9/13
Bitcoin-Qt 0.8.5 9/13/13
Bitcoin-Qt 0.8.4 9/3/13
Bitcoin-Qt 0.8.3 6/25/13
Bitcoin-Qt 0.8.2 5/29/13
Bitcoin-Qt 0.8.1 3/18/13
Bitcoin-Qt 0.8.0 2/19/13
Bitcoin-Qt 0.7.2 12/14/12
Bitcoin-Qt 0.7.1 10/19/12
Bitcoin-Qt 0.7.0 9/17/12
Bitcoin-Qt 0.6.3 6/25/12
Bitcoin-Qt 0.6.2 5/8/12
Bitcoin-Qt 0.6.1 5/4/12
Bitcoin-Qt 0.6.0 3/30/12
Bitcoin-Qt 0.5.3.1 3/16/12
Bitcoin-Qt 0.5.3 3/14/12
Bitcoin-Qt 0.5.2 1/9/12
Bitcoin-Qt 0.5.1 12/15/11
Bitcoin-Qt 0.5.0 11/21/11
Bitcoin 0.4.0 9/23/11
Bitcoin 0.3.24 7/8/11
Bitcoin 0.3.23 6/14/11
Bitcoin 0.3.22 6/5/11
Bitcoin 0.3.21 4/27/11
Bitcoin 0.1 1/8/09

Bitcoin Software Version History

20

[G] Binary Conversion Tables

ASCII Binary
null 00000000
start of header 00000001
start of text 00000010
end of text 00000011
end of transmission 00000100
enquire 00000101
acknowledge 00000110
bell 00000111
backspace 00001000
horizontal tab 00001001
linefeed 00001010
vertical tab 00001011
form feed 00001100
carriage return 00001101
shift out 00001110
shift in 00001111
data link escape 00010000
device control 1/Xon 00010001
device control 2 00010010
device control 3/Xoff 00010011
device control 4 00010100
negative acknowledge 00010101
synchronous idle 00010110
end of transmission block 00010111
cancel 00011000
end of medium 00011001
end of file/ substitute 00011010
escape 00011011
file separator 00011100
group separator 00011101
record separator 00011110
unit separator 00011111
space 00100000
! 00100001
" 00100010
00100011
$ 00100100
% 00100101
& 00100110
' 00100111
(00101000
) 00101001
* 00101010
+ 00101011
, 00101100
- 00101101
. 00101110
/ 00101111
0 00110000
1 00110001
2 00110010
3 00110011
4 00110100
5 00110101
6 00110110
7 00110111
8 00111000
9 00111001
: 00111010
; 00111011
< 00111100
= 00111101
> 00111110
? 00111111
@ 01000000
A 01000001
B 01000010
C 01000011
D 01000100
E 01000101
F 01000110
G 01000111
H 01001000
I 01001001
J 01001010
K 01001011
L 01001100
M 01001101
N 01001110
O 01001111
P 01010000
Q 01010001
R 01010010
S 01010011
T 01010100
U 01010101
V 01010110
W 01010111
X 01011000
Y 01011001
Z 01011010
[01011011
\ 01011100
] 01011101
^ 01011110
_ 01011111
` 01100000
a 01100001
b 01100010
c 01100011
d 01100100
e 01100101
f 01100110
g 01100111
h 01101000
i 01101001
j 01101010
k 01101011
l 01101100
m 01101101
n 01101110
o 01101111
p 01110000
q 01110001
r 01110010
s 01110011
t 01110100
u 01110101
v 01110110
w 01110111
x 01111000
y 01111001
z 01111010
{ 01111011
| 01111100
} 01111101
~ 01111110
DEL 01111111

Binary to ASCII Conversion

Hexadecimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
a 1010
b 1011
c 1100
d 1101
e 1110
f 1111

Binary Hex Conversion

21

Input Funtion Output Type Output Length

000000000000000000095913f2dc133348dcbc4fcac513e66847fd4cee7149da Hex to Binary Binary

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000010 01011101 10110111 00111111 00110111 00100001 10111110

10011011 10001001 00110111 01000000 10101000 01111111 11111001 11010111

10000101 11110010 01100011 10100011 00010111 01011011 11000111 00111101

256

The Text "Binary" Represented in Binary Code-

010000100110100101101110011000010111001001111001
SHA 256 Binary

00101010 01011010 01000101 11111101 00100100 11110111 00110111 00001110

00100111 01111000 01010111 00010111 11000010 00010100 11000101 01100100

00011010 10110010 11111000 00110111 11010100 11000100 10010010 11111100

11001011 01001011 01011010 10111110 01111110 00001101 01011011 01000010

256

00101010 01011010 01000101 11111101 00100100 11110111 00110111 00001110

00100111 01111000 01010111 00010111 11000010 00010100 11000101 01100100

00011010 10110010 11111000 00110111 11010100 11000100 10010010 11111100

11001011 01001011 01011010 10111110 01111110 00001101 01011011 01000010

Binary to Hex Hexidecimal 2a5a45fd24f7370e27785717c214c5641ab2f837d4c492fccb4b5abe7e0d5b42 64

Secure Hashing Algorithm- Input to 256 Bit Output

22

[H] Bitcoin Improvement Proposals

Number Layer Title Owner(s) Type Status
1 BIP Purpose and Guidelines Amir Taaki Process Replaced
2 BIP process, revised Luke Dashjr Process Active
8 Version bits with lock-in by height Shaolin Fry, Luke Dashjr Informational Draft
9 Version bits with timeout and delay Pieter Wuille, Peter Todd, Greg Maxwell, Rusty RussellInformational Final

10 Applications Multi-Sig Transaction Distribution Alan Reiner Informational Withdrawn
11 Applications M-of-N Standard Transactions Gavin Andresen Standard Final
12 Consensus (soft fork) OP_EVAL Gavin Andresen Standard Withdrawn
13 Applications Address Format for pay-to-script-hash Gavin Andresen Standard Final
14 Peer Services Protocol Version and User Agent Amir Taaki, Patrick StratemanStandard Final
15 Applications Aliases Amir Taaki Standard Deferred
16 Consensus (soft fork) Pay to Script Hash Gavin Andresen Standard Final
17 Consensus (soft fork) OP_CHECKHASHVERIFY (CHV) Luke Dashjr Standard Withdrawn
18 Consensus (soft fork) hashScriptCheck Luke Dashjr Standard Proposed
19 Applications M-of-N Standard Transactions (Low SigOp) Luke Dashjr Standard Rejected
20 Applications URI Scheme Luke Dashjr Standard Replaced
21 Applications URI Scheme Nils Schneider, Matt CoralloStandard Final
22 API/RPC getblocktemplate - Fundamentals Luke Dashjr Standard Final
23 API/RPC getblocktemplate - Pooled Mining Luke Dashjr Standard Final
30 Consensus (soft fork) Duplicate transactions Pieter Wuille Standard Final
31 Peer Services Pong message Mike Hearn Standard Final
32 Applications Hierarchical Deterministic Wallets Pieter Wuille Informational Final
33 Peer Services Stratized Nodes Amir Taaki Standard Rejected
34 Consensus (soft fork) Block v2, Height in Coinbase Gavin Andresen Standard Final
35 Peer Services mempool message Jeff Garzik Standard Final
36 Peer Services Custom Services Stefan Thomas Standard Rejected
37 Peer Services Connection Bloom filtering Mike Hearn, Matt CoralloStandard Final
38 Applications Passphrase-protected private key Mike Caldwell, Aaron VoisineStandard Draft
39 Applications Mnemonic code for generating deterministic keys Marek Palatinus, Pavol Rusnak, Aaron Voisine, Sean BoweStandard Proposed
40 API/RPC Stratum wire protocol Marek Palatinus Standard BIP number allocated
41 API/RPC Stratum mining protocol Marek Palatinus Standard BIP number allocated
42 Consensus (soft fork) A finite monetary supply for Bitcoin Pieter Wuille Standard Final
43 Applications Purpose Field for Deterministic Wallets Marek Palatinus, Pavol RusnakInformational Final
44 Applications Multi-Account Hierarchy for Deterministic Wallets Marek Palatinus, Pavol RusnakStandard Proposed
45 Applications Structure for Deterministic P2SH Multisignature Wallets Manuel Araoz, Ryan X. Charles, Matias Alejo GarciaStandard Proposed
47 Applications Reusable Payment Codes for Hierarchical Deterministic Wallets Justus Ranvier Informational Draft
48 Applications Multi-Script Hierarchy for Multi-Sig Wallets Fontaine Standard Proposed
49 Applications Derivation scheme for P2WPKH-nested-in-P2SH based accounts Daniel Weigl Informational Final
50 March 2013 Chain Fork Post-Mortem Gavin Andresen Informational Final
52 Consensus (hard fork) Durable, Low Energy Bitcoin PoW Michael Dubrovsky, Bogdan PenkovskyStandard Draft
60 Peer Services Fixed Length "version" Message (Relay-Transactions Field) Amir Taaki Standard Draft
61 Peer Services Reject P2P message Gavin Andresen Standard Final
62 Consensus (soft fork) Dealing with malleability Pieter Wuille Standard Withdrawn
63 Applications Stealth Addresses Peter Todd Standard BIP number allocated
64 Peer Services getutxo message Mike Hearn Standard Obsolete
65 Consensus (soft fork) OP_CHECKLOCKTIMEVERIFY Peter Todd Standard Final
66 Consensus (soft fork) Strict DER signatures Pieter Wuille Standard Final
67 Applications Deterministic Pay-to-script-hash multi-signature addresses through public key sorting Thomas Kerin, Jean-Pierre Rupp, Ruben de VriesStandard Proposed
68 Consensus (soft fork) Relative lock-time using consensus-enforced sequence numbers Mark Friedenbach, BtcDrak, Nicolas Dorier, kinoshitajonaStandard Final
69 Applications Lexicographical Indexing of Transaction Inputs and Outputs Kristov Atlas Informational Proposed
70 Applications Payment Protocol Gavin Andresen, Mike HearnStandard Final
71 Applications Payment Protocol MIME types Gavin Andresen Standard Final
72 Applications bitcoin: uri extensions for Payment Protocol Gavin Andresen Standard Final
73 Applications Use "Accept" header for response type negotiation with Payment Request URLs Stephen Pair Standard Final
74 Applications Allow zero value OP_RETURN in Payment Protocol Toby Padilla Standard Rejected
75 Applications Out of Band Address Exchange using Payment Protocol Encryption Justin Newton, Matt David, Aaron Voisine, James MacWhyteStandard Final
78 Applications A Simple Payjoin Proposal Nicolas Dorier Standard Draft
79 Applications Bustapay :: a practical coinjoin protocol Ryan Havar Informational Replaced
80 Hierarchy for Non-Colored Voting Pool Deterministic Multisig Wallets Justus Ranvier, Jimmy SongInformational Deferred
81 Hierarchy for Colored Voting Pool Deterministic Multisig Wallets Justus Ranvier, Jimmy SongInformational Deferred
83 Applications Dynamic Hierarchical Deterministic Key Trees Eric Lombrozo Standard Rejected
84 Applications Derivation scheme for P2WPKH based accounts Pavol Rusnak Informational Draft
85 Applications Deterministic Entropy From BIP32 Keychains Ethan Kosakovsky Informational Draft
86 Applications Key Derivation for Single Key P2TR Outputs Andrew Chow Standard Draft
87 Applications Hierarchy for Deterministic Multisig Wallets Robert Spigler Standard Proposed
88 Applications Hierarchical Deterministic Path Templates Dmitry Petukhov Informational Proposed
90 Buried Deployments Suhas Daftuar Informational Final
91 Consensus (soft fork) Reduced threshold Segwit MASF James Hilliard Standard Final
98 Consensus (soft fork) Fast Merkle Trees Mark Friedenbach, Kalle Alm, BtcDrakStandard Draft
99 Motivation and deployment of consensus rule changes ([soft/hard]forks) Jorge Timón Informational Rejected

100 Consensus (hard fork) Dynamic maximum block size by miner vote Jeff Garzik, Tom Harding, Dagur Valberg JohannssonStandard Rejected
101 Consensus (hard fork) Increase maximum block size Gavin Andresen Standard Withdrawn
102 Consensus (hard fork) Block size increase to 2MB Jeff Garzik Standard Rejected
103 Consensus (hard fork) Block size following technological growth Pieter Wuille Standard Withdrawn
104 Consensus (hard fork) 'Block75' - Max block size like difficulty t.khan Standard Rejected
105 Consensus (hard fork) Consensus based block size retargeting algorithm BtcDrak Standard Rejected
106 Consensus (hard fork) Dynamically Controlled Bitcoin Block Size Max Cap Upal Chakraborty Standard Rejected
107 Consensus (hard fork) Dynamic limit on the block size Washington Y. Sanchez Standard Rejected
109 Consensus (hard fork) Two million byte size limit with sigop and sighash limits Gavin Andresen Standard Rejected
111 Peer Services NODE_BLOOM service bit Matt Corallo, Peter ToddStandard Proposed
112 Consensus (soft fork) CHECKSEQUENCEVERIFY BtcDrak, Mark Friedenbach, Eric LombrozoStandard Final
113 Consensus (soft fork) Median time-past as endpoint for lock-time calculations Thomas Kerin, Mark FriedenbachStandard Final
114 Consensus (soft fork) Merkelized Abstract Syntax Tree Johnson Lau Standard Rejected
115 Consensus (soft fork) Generic anti-replay protection using Script Luke Dashjr Standard Rejected
116 Consensus (soft fork) MERKLEBRANCHVERIFY Mark Friedenbach, Kalle Alm, BtcDrakStandard Draft
117 Consensus (soft fork) Tail Call Execution Semantics Mark Friedenbach, Kalle Alm, BtcDrakStandard Draft
118 Consensus (soft fork) SIGHASH_ANYPREVOUT for Taproot Scripts Christian Decker, Anthony TownsStandard Draft
119 Consensus (soft fork) CHECKTEMPLATEVERIFY Jeremy Rubin Standard Draft
120 Applications Proof of Payment Kalle Rosenbaum Standard Withdrawn
121 Applications Proof of Payment URI scheme Kalle Rosenbaum Standard Withdrawn
122 Applications URI scheme for Blockchain references / exploration Marco Pontello Standard Draft
123 BIP Classification Eric Lombrozo Process Active
124 Applications Hierarchical Deterministic Script Templates Eric Lombrozo, William SwansonInformational Rejected
125 Applications Opt-in Full Replace-by-Fee Signaling David A. Harding, Peter ToddStandard Proposed
126 Best Practices for Heterogeneous Input Script Transactions Kristov Atlas Informational Draft
127 Applications Simple Proof-of-Reserves Transactions Steven Roose Standard Draft
129 Applications Bitcoin Secure Multisig Setup (BSMS) Hugo Nguyen, Peter Gray, Marko Bencun, Aaron Chen, Rodolfo NovakStandard Proposed
130 Peer Services sendheaders message Suhas Daftuar Standard Proposed
131 Consensus (hard fork) "Coalescing Transaction" Specification (wildcard inputs) Chris Priest Standard Rejected
132 Committee-based BIP Acceptance Process Andy Chase Process Withdrawn
133 Peer Services feefilter message Alex Morcos Standard Draft
134 Consensus (hard fork) Flexible Transactions Tom Zander Standard Rejected
135 Generalized version bits voting Sancho Panza Informational Rejected
136 Applications Bech32 Encoded Tx Position References Велеслав, Jonas Schnelli, Daniel PapeInformational Draft
137 Applications Signatures of Messages using Private Keys Christopher Gilliard Standard Final
140 Consensus (soft fork) Normalized TXID Christian Decker Standard Rejected
141 Consensus (soft fork) Segregated Witness (Consensus layer) Eric Lombrozo, Johnson Lau, Pieter WuilleStandard Final
142 Applications Address Format for Segregated Witness Johnson Lau Standard Withdrawn
143 Consensus (soft fork) Transaction Signature Verification for Version 0 Witness Program Johnson Lau, Pieter WuilleStandard Final
144 Peer Services Segregated Witness (Peer Services) Eric Lombrozo, Pieter WuilleStandard Final
145 API/RPC getblocktemplate Updates for Segregated Witness Luke Dashjr Standard Final
146 Consensus (soft fork) Dealing with signature encoding malleability Johnson Lau, Pieter WuilleStandard Withdrawn
147 Consensus (soft fork) Dealing with dummy stack element malleability Johnson Lau Standard Final
148 Consensus (soft fork) Mandatory activation of segwit deployment Shaolin Fry Standard Final
149 Consensus (soft fork) Segregated Witness (second deployment) Shaolin Fry Standard Withdrawn
150 Peer Services Peer Authentication Jonas Schnelli Standard Draft
151 Peer Services Peer-to-Peer Communication Encryption Jonas Schnelli Standard Withdrawn
152 Peer Services Compact Block Relay Matt Corallo Standard Final
154 Peer Services Rate Limiting via peer specified challenges Karl-Johan Alm Standard Withdrawn
155 Peer Services addrv2 message Wladimir J. van der LaanStandard Draft
156 Peer Services Dandelion - Privacy Enhancing Routing Brad Denby, Andrew Miller, Giulia Fanti, Surya Bakshi, Shaileshh Bojja Venkatakrishnan, Pramod ViswanathStandard Rejected
157 Peer Services Client Side Block Filtering Olaoluwa Osuntokun, Alex Akselrod, Jim PosenStandard Draft
158 Peer Services Compact Block Filters for Light Clients Olaoluwa Osuntokun, Alex AkselrodStandard Draft
159 Peer Services NODE_NETWORK_LIMITED service bit Jonas Schnelli Standard Draft
171 Applications Currency/exchange rate information API Luke Dashjr Standard Rejected
173 Applications Base32 address format for native v0-16 witness outputs Pieter Wuille, Greg MaxwellInformational Final
174 Applications Partially Signed Bitcoin Transaction Format Andrew Chow Standard Final
175 Applications Pay to Contract Protocol Omar Shibli, Nicholas GregoryInformational Rejected
176 Bits Denomination Jimmy Song Informational Draft
178 Applications Version Extended WIF Karl-Johan Alm Standard Draft
179 Name for payment recipient identifiers Emil Engler, MarcoFalke, Luke DashjrInformational Draft
180 Peer Services Block size/weight fraud proof Luke Dashjr Standard Rejected
197 Applications Hashed Time-Locked Collateral Contract Matthew Black, Tony CaiStandard Draft
199 Applications Hashed Time-Locked Contract transactions Sean Bowe, Daira HopwoodStandard Draft
300 Consensus (soft fork) Hashrate Escrows (Consensus layer) Paul Sztorc, CryptAxe Standard Draft
301 Consensus (soft fork) Blind Merged Mining (Consensus layer) Paul Sztorc, CryptAxe Standard Draft
310 Applications Stratum protocol extensions Pavel Moravec, Jan ČapekInformational Draft
320 nVersion bits for general purpose use BtcDrak Standard Draft
322 Applications Generic Signed Message Format Karl-Johan Alm Standard Draft
325 Applications Signet Karl-Johan Alm, Anthony TownsStandard Proposed
330 Peer Services Transaction announcements reconciliation Gleb Naumenko, Pieter WuilleStandard Draft
338 Peer Services Disable transaction relay message Suhas Daftuar Standard Draft
339 Peer Services WTXID-based transaction relay Suhas Daftuar Standard Draft
340 Schnorr Signatures for secp256k1 Pieter Wuille, Jonas Nick, Tim RuffingStandard Draft
341 Consensus (soft fork) Taproot: SegWit version 1 spending rules Pieter Wuille, Jonas Nick, Anthony TownsStandard Draft
342 Consensus (soft fork) Validation of Taproot Scripts Pieter Wuille, Jonas Nick, Anthony TownsStandard Draft
343 Consensus (soft fork) Mandatory activation of taproot deployment Shinobius, Michael FolksonStandard Proposed
350 Applications Bech32m format for v1+ witness addresses Pieter Wuille Standard Draft
370 Applications PSBT Version 2 Andrew Chow Standard Draft
371 Applications Taproot Fields for PSBT Andrew Chow Standard Draft
380 Applications Output Script Descriptors General Operation Pieter Wuille, Andrew ChowInformational Draft
381 Applications Non-Segwit Output Script Descriptors Pieter Wuille, Andrew ChowInformational Draft
382 Applications Segwit Output Script Descriptors Pieter Wuille, Andrew ChowInformational Draft
383 Applications Multisig Output Script Descriptors Pieter Wuille, Andrew ChowInformational Draft
384 Applications combo() Output Script Descriptors Pieter Wuille, Andrew ChowInformational Draft
385 Applications raw() and addr() Output Script Descriptors Pieter Wuille, Andrew ChowInformational Draft
386 Applications tr() Output Script Descriptors Pieter Wuille, Andrew ChowInformational Draft

Bitcoin Improvement Proposal List (Bitcoin.org)

23

[I] Remote Process Calls

Remote Process Calls (Bitcoin Core)
Bitcoin Core Commands
== Blockchain ==
getbestblockhash
getblock "blockhash" (verbosity)
getblockchaininfo
getblockcount
getblockfilter "blockhash" ("filtertype")
getblockhash height
getblockheader "blockhash" (verbose)
getblockstats hash_or_height (stats)
getchaintips
getchaintxstats (nblocks "blockhash")
getdifficulty
getmempoolancestors "txid" (verbose)
getmempooldescendants "txid" (verbose)
getmempoolentry "txid"
getmempoolinfo
getrawmempool (verbose mempool_sequence)
gettxout "txid" n (include_mempool)
gettxoutproof ["txid",...] ("blockhash")
gettxoutsetinfo ("hash_type" hash_or_height use_index)
preciousblock "blockhash"
pruneblockchain height
savemempool
scantxoutset "action" ([scanobjects,...])
verifychain (checklevel nblocks)
verifytxoutproof "proof"

== Control ==
getmemoryinfo ("mode")
getrpcinfo
help ("command")
logging (["include_category",...] ["exclude_category",...])
stop
uptime

== Generating ==
generateblock "output" ["rawtx/txid",...]
generatetoaddress nblocks "address" (maxtries)
generatetodescriptor num_blocks "descriptor" (maxtries)

== Mining ==
getblocktemplate ("template_request")
getmininginfo
getnetworkhashps (nblocks height)
prioritisetransaction "txid" (dummy) fee_delta
submitblock "hexdata" ("dummy")
submitheader "hexdata"

== Network ==
addnode "node" "command"
clearbanned
disconnectnode ("address" nodeid)
getaddednodeinfo ("node")
getconnectioncount
getnettotals
getnetworkinfo
getnodeaddresses (count "network")
getpeerinfo
listbanned
ping
setban "subnet" "command" (bantime absolute)
setnetworkactive state

== Rawtransactions ==
analyzepsbt "psbt"
combinepsbt ["psbt",...]
combinerawtransaction ["hexstring",...]
converttopsbt "hexstring" (permitsigdata iswitness)
createpsbt [{"txid":"hex","vout":n,"sequence":n},...] [{"address":amount,...},{"data":"hex"},...] (locktime replaceable)
createrawtransaction [{"txid":"hex","vout":n,"sequence":n},...] [{"address":amount,...},{"data":"hex"},...] (locktime replaceable)
decodepsbt "psbt"
decoderawtransaction "hexstring" (iswitness)
decodescript "hexstring"
finalizepsbt "psbt" (extract)
fundrawtransaction "hexstring" (options iswitness)
getrawtransaction "txid" (verbose "blockhash")
joinpsbts ["psbt",...]
sendrawtransaction "hexstring" (maxfeerate)
signrawtransactionwithkey "hexstring" ["privatekey",...] ([{"txid":"hex","vout":n,"scriptPubKey":"hex","redeemScript":"hex","witnessScript":"hex","amount":amount},...] "sighashtype")
testmempoolaccept ["rawtx",...] (maxfeerate)
utxoupdatepsbt "psbt" (["",{"desc":"str","range":n or [n,n]},...])

== Signer ==
enumeratesigners

== Util ==
createmultisig nrequired ["key",...] ("address_type")
deriveaddresses "descriptor" (range)
estimatesmartfee conf_target ("estimate_mode")
getdescriptorinfo "descriptor"
getindexinfo ("index_name")
signmessagewithprivkey "privkey" "message"
validateaddress "address"
verifymessage "address" "signature" "message"

== Wallet ==
abandontransaction "txid"
abortrescan
addmultisigaddress nrequired ["key",...] ("label" "address_type")
backupwallet "destination"
bumpfee "txid" (options)
createwallet "wallet_name" (disable_private_keys blank "passphrase" avoid_reuse descriptors load_on_startup external_signer)
dumpprivkey "address"
dumpwallet "filename"
encryptwallet "passphrase"
getaddressesbylabel "label"
getaddressinfo "address"
getbalance ("dummy" minconf include_watchonly avoid_reuse)
getbalances
getnewaddress ("label" "address_type")
getrawchangeaddress ("address_type")
getreceivedbyaddress "address" (minconf)
getreceivedbylabel "label" (minconf)
gettransaction "txid" (include_watchonly verbose)
getunconfirmedbalance
getwalletinfo
importaddress "address" ("label" rescan p2sh)
importdescriptors "requests"
importmulti "requests" ("options")
importprivkey "privkey" ("label" rescan)
importprunedfunds "rawtransaction" "txoutproof"
importpubkey "pubkey" ("label" rescan)
importwallet "filename"
keypoolrefill (newsize)
listaddressgroupings
listdescriptors
listlabels ("purpose")
listlockunspent
listreceivedbyaddress (minconf include_empty include_watchonly "address_filter")
listreceivedbylabel (minconf include_empty include_watchonly)
listsinceblock ("blockhash" target_confirmations include_watchonly include_removed)
listtransactions ("label" count skip include_watchonly)
listunspent (minconf maxconf ["address",...] include_unsafe query_options)
listwalletdir
listwallets
loadwallet "filename" (load_on_startup)
lockunspent unlock ([{"txid":"hex","vout":n},...])
psbtbumpfee "txid" (options)
removeprunedfunds "txid"
rescanblockchain (start_height stop_height)
send [{"address":amount,...},{"data":"hex"},...] (conf_target "estimate_mode" fee_rate options)
sendmany "" {"address":amount,...} (minconf "comment" ["address",...] replaceable conf_target "estimate_mode" fee_rate verbose)
sendtoaddress "address" amount ("comment" "comment_to" subtractfeefromamount replaceable conf_target "estimate_mode" avoid_reuse fee_rate verbose)
sethdseed (newkeypool "seed")
setlabel "address" "label"
settxfee amount
setwalletflag "flag" (value)
signmessage "address" "message"
signrawtransactionwithwallet "hexstring" ([{"txid":"hex","vout":n,"scriptPubKey":"hex","redeemScript":"hex","witnessScript":"hex","amount":amount},...] "sighashtype")
unloadwallet ("wallet_name" load_on_startup)
upgradewallet (version)
walletcreatefundedpsbt ([{"txid":"hex","vout":n,"sequence":n},...]) [{"address":amount,...},{"data":"hex"},...] (locktime options bip32derivs)
walletdisplayaddress bitcoin address to display
walletlock
walletpassphrase "passphrase" timeout
walletpassphrasechange "oldpassphrase" "newpassphrase"
walletprocesspsbt "psbt" (sign "sighashtype" bip32derivs)

== Zmq ==
getzmqnotifications

24

[J] Elliptic Curve Cryptography Math

25

[K] Secure Hashing Algorithm 256 Example

[L] Proof-of-Work Chain

Raw Header Inputs (https://blockchain.info/block-index/506679) Converted Header Information for Message (W)
Version 2
Prev. Block 00000000000000000A2940884E0C3BC96510CAD11912A527E9D15DF42F0E1D67
Merkle Root 2E99F445C007A9158207CC30CEBAD2B3D26C45FDAB2EBDF50D261335FC00D92C
Time 12/16/14 18:05:40
Bits 404454260
Nonce 3225483075

Block Hash 000000000000000015A8D88216918C8DE090268A5E7F53FEEF72CD111F7F27FF

Digest 1 09A0D19192EF77C304FE447888F9EF5069D648465A19146FB770619714D08904
 A 09A0D191 = 6A09E667 + 9F96EB2A
 B 92EF77C3 = BB67AE85 + D787C93E
 C 04FE4478 = 3C6EF372 + C88F5106
 D 88F9EF50 = A54FF53A + E3A9FA16
 E 69D64846 = 510E527F + 18C7F5C7
 F 5A19146F = 9B05688C + BF13ABE3
 G B7706197 = 1F83D9AB + 97EC87EC
 H 14D08904 = 5BE0CD19 + B8EFBBEB

Digest 2 3EBB2D68D7007148B184E57BBA9697D76BC04141155C57F97E3B92C5FD6A46BD
 A 3EBB2D68 = 09A0D191 + 351A5BD7
 B D7007148 = 92EF77C3 + 4410F985
 C B184E57B = 04FE4478 + AC86A103
 D BA9697D7 = 88F9EF50 + 319CA887
 E 6BC04141 = 69D64846 + 01E9F8FB
 F 155C57F9 = 5A19146F + BB43438A
 G 7E3B92C5 = B7706197 + C6CB312E
 H FD6A46BD = 14D08904 + E899BDB9

Digest 3 FF277F1F11CD72EFFE537F5E8A2690E08D8C911682D8A8150000000000000000
 A FF277F1F = 6A09E667 + 951D98B8
 B 11CD72EF = BB67AE85 + 5665C46A
 C FE537F5E = 3C6EF372 + C1E48BEC
 D 8A2690E0 = A54FF53A + E4D69BA6
 E 8D8C9116 = 510E527F + 3C7E3E97
 F 82D8A815 = 9B05688C + E7D33F89
 G 00000000 = 1F83D9AB + E07C2655
 H 00000000 = 5BE0CD19 + A41F32E7

26

	Bitcoin, Blockchain Technology, and Cryptocurrencies
	Citation

	Microsoft Word - Honors Thesis 2022 Final Draft May 2.docx

