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Abstract² Network Intrusion Detection Systems (NIDS) are 
one layer of defense that can be used to protect a network from 
cyber-attacks. They monitor a network for any malicious activity 
and send alerts if suspicious traffic is detected. Two of the most 
common open-source NIDS are Snort and Suricata. Snort was first 
released in 1999 and became the industry standard. The one major 
drawback of Snort has been its single-threaded architecture. 
Because of this, Suricata was released in 2009 and uses a 
multithreaded architecture. Snort released Snort 3 last year with 
major improvements from earlier versions, including 
implementing a new multithreaded architecture like Suricata. 
This paper compares Suricata and the new and improved Snort 3 
based on their performance and alert behavior. Both NIDS were 
installed on the same system, configured with the default 
recommended configurations, used default rulesets, and evaluated 
the same malicious traffic. In this analysis, both NIDS performed 
very similar in their resource utilization, but when analyzing the 
malicious traffic, Suricata detected more attacks than Snort 3 
using their standard rulesets. 

Keywords²NIDS, Snort, Suricata, performance, rules, 
comparison 

I. INTRODUCTION 
Intrusion detection systems are a piece of software that sit on 

the network and monitor the traffic for anything that is deemed 
malicious. There are many different variations of intrusion 
detection systems. True intrusion detection systems only 
monitor the traffic and send alerts if any traffic is found to be 
illegitimate. An IDS can be configured to block or suspend 
traffic that triggers an alert, and these are called intrusion 
prevention systems. Within IDSs, there are network intrusion 
detection systems (NIDS) and host-based intrusion detection 
systems (HIDS). Host-based IDSs monitor a device or devices 
on the network while network intrusion detection systems 
monitor traffic on a whole network. There are also two types of 
IDSs: anomaly-based and signature-based. Anomaly-based 
IDSs compare traffic to a baseline of trusted traffic and alert if 
new traffic deviates from the baseline. Signature-based IDSs 
compare traffic to a set of signatures or rules that define 
suspicious activity on a network and alert if any pattern of traffic 
matches a signature. In this paper, we specifically deal with 
signature-based network intrusion detection systems, namely 
Snort and Suricata. When NIDS are placed at strategic points on 
the network, they can monitor all traffic that comes in and out of 

the network for any malicious activity. This traffic is analyzed 
and compared to the list of rules, and when a piece of traffic 
matches an attack pattern, it is logged, and an alert is sent.  

Rules are one of the most important aspects of a signature-
based IDSs. The rules define what traffic is valid and what is 
invalid. They are what the traffic is compared to when it is 
analyzed for suspicious activity. Rules also specify the action to 
be taken once any unusual activity is detected, such as alert, log, 
or pass. There are several organizations that put out their own 
rulesets created by security researchers and community 
members who analyze attacks and what traffic they generate, 
and then create rules that detect this traffic. Custom rules can 
also be created by users to detect specific things in their own 
environment. Rules are meant to be combined, interchanged, 
and tuned to allow for the best detection in each specific 
environment and to reduce the number of false positives. 

There are several metrics that can be used to evaluate 
intrusion detection systems. Antonatos et al. offers attack 
detection rate, false positives, and capacity to test performance 
[1]. Research from Mell suggests coverage, probability of false 
alarm, probability of detection, attack resistance, ability to 
handle high bandwidth traffic, and capacity to test accuracy [2]. 
In work from Albin [3], they evaluated performance by 
measuring CPU utilization, memory use, and network use. In 
this paper, the metrics that will be used are CPU and memory 
utilization, as well as the number of alerts generated during an 
attack. 

Snort is one of the most popular and widely used open-
source NIDS. It was originally created by Martin Roesch in 1999 
as a lightweight intrusion detection system [4] and has grown to 
a very powerful IDS with many features. It can be used as a 
packet sniffer, a packet logger, or a complete IDS or IPS. Snort 
was developed using a single threaded architecture and has 
stayed that way despite the trends in multicore processors, until 
recently. The Snort team released Snort 3 in 2021 which 
implements a multithreaded architecture among several other 
upgrades and improvements. According to Snort, it has 
enhanced performance, faster processing, and improved 
scalability [5]. Snort 3 was rewritten in C++, making it more 
modular, introduces threading and shared memory to allow for 
scaling and multiple packet processing, offers more than 200 
plugins for more customization, and the rule syntax has been 



updated for easier comprehension and is more concise to 
decrease the amount of rules and allow them to run faster [5]. 

Suricata is another leading open-source NIDS released by 
the Open Information Security Foundation in 2010. It was 
primarily started in response to the growing use of multicores in 
computers and to make up for what Snort was missing. It shares 
many features with Snort and boasts extra features including 
automatic protocol detection, file extraction, logging HTTP 
requests, DNS queries, and TLS certificates, and has a 
multithreaded engine [6]. It implements Lua scripting to detect 
things rules cannot as well as advanced outputs to allow for easy 
integration with many logging tools. 

This paper details a comparison of Snort 3 and Suricata 
IDSs, observing their alerting behavior when examining the 
same malicious traffic and using the rulesets specifically 
designed for their systems, as well as examining their 
performance when analyzing captured traffic stored in a pcap 
file. The next section discusses related work to comparing Snort 
and Suricata.  Section III looks at the architectures of Snort 3 
and Suricata. Section IV compares the rules and rule syntax that 
Snort and Suricata use. The evaluation of the IDSs is done in 
Section V and the conclusions are presented in Section VI. 

II. RELATED WORK 
 There have been numerous studies conducted that compare 
Snort and Suricata against a large array of metrics. Most of the 
work has been done with Snort 2, as Snort 3 was only released 
last year, although a few recent studies have been done 
evaluating Snort 3. Most of the research is done comparing the 
two NIDS in specific environments, such as high-speed 
networks, limited resource environments, or environments with 
several cores and excess resources to examine their 
performance, looking at resource utilization and packet 
processing speeds. Other studies compare the accuracy of 
detecting attacks, false positive rates, and other metrics that deal 
with the differences in the rulesets provided for Snort and 
Suricata. Some papers combine both the performance and 
detection aspects. This paper is similar in that regard, examining 
the alerting behavior of the IDSs with their respective rulesets, 
while at the same time measuring their performance and 
resource utilization, as well as continuing the necessary research 
on Snort 3, as it is a newer product. 

 One of the earlier works that looks at both Snort and Suricata 
LV�³$�&RPSDUDWLYH�$QDO\VLV�RI�WKH�6QRUW�DQG�6XULFDWD�,QWUXVLRQ�
'HWHFWLRQ� 6\VWHPV´�E\� (XJHQH�$OELQ�� SXEOLVKHG� LQ� ���� [3]. 
Suricata was released the previous year and was still in its early 
stages. He ran three experiments to measure performance and 
accuracy in a busy network environment. The first experiment 
tested the live performance of both NIDS, measuring resource 
utilization. The second experiment tested Suricata on a 
supercomputer to measure processing speed. The last 
experiment tested the accuracy of both NIDS when evaluating 
malicious traffic. The experiments showed that Suricata was 
more resource intensive than Snort, had the ability to be 
configured and scaled for boosted performance with multiple 
cores, and that tuning of rulesets to avoid false positives and 
false negatives is necessary. It was concluded that Snort was still 
a strong and capable NIDS, but Suricata could handle higher 
volumes of traffic and as network throughput continued to 

increase, Suricata could scale to match it. Work done by Day 
and Burns in 2011 [7] LV�VLPLODU�$OELQ¶V��but tested the accuracy 
of both NIDS under stress, measured capacity, coverage, false 
positive and false negative rates. The results indicated that 
Suricata requires more overhead than Snort but when multiple 
cores are available, it is more accurate. Research conducted by 
White et al. in 2013 [8] expands on the work done by Day and 
Burns and scaled the resources available to the NIDS as well as 
varied the configurations, rulesets, and workloads. The results 
showed that Suricata outperformed Snort throughout all tests 
and used less resources than Snort. 

 0RUH�UHFHQW�ZRUNV� LQFOXGH�³(YDOXDWLQJ�1HWZRUN�,QWUXVLRQ�
Detection Systems for High-6SHHG�1HWZRUNV´�E\�+X�HW� DO. in 
2017 [9]��³&RPSDULQJ� WKH�3HUIRUPDQFH�RI� ,QWUXVLRQ�'HWHFWLRQ�
6\VWHPV��6QRUW�DQG�6XULFDWD´�E\�%randon Murphy in 2019 [10], 
DQG�³'\QDPLFDO�DQDO\VLV�RI�GLYHUVLW\�LQ�UXOH-based open source 
QHWZRUN�LQWUXVLRQ�GHWHFWLRQ�V\VWHPV´�E\�$VDG�DQG�*DVKL�LQ����� 
[11]. Hu et al. examined Snort, Suricata, and Bro, another 
popular open-source IDS. They investigate resource usage, 
packet processing speeds, and packet drop rate of the NIDS 
when in a high-speed network and compare performance with 
different configurations and traffic volumes. They conclude 
Suricata performs better because of its multithreaded 
architecture, but Snort and Bro could be configured to achieve 
improved performance. In the dissertation by Brandon Murphy 
[10], a thorough study is done to measure the accuracy, 
efficiency, and resiliency of Snort and Suricata. Suricata was 
shown to be more accurate, but Snort used less memory, and 
there was no statistically significant difference in the dropped 
packets by Snort and Suricata. Lastly, in the work done by Asad 
and Gashi [11], Snort and Suricata were compared by their 
configurational and functional diversity. To compare the 
configurational diversity, the rulesets and Blacklisted IP 
Address lists were investigated. To compare the functional 
diversity, the alerting behavior of the NIDS was studied when 
analyzing network traffic. It was concluded that there is 
significant diversity in both the rulesets and Blacklisted IP 
Address lists which led to significant differences in alerting 
behavior. 

III. IDS ARCHITECTURES 
Snort was originally built to best suit the computers and 

networks of its time. It started as a lightweight packet sniffer, 
running on single core computers, and handled the much smaller 
network traffic when it was released. It had a single threaded 
startup and a single packet thread per process. It used up more 
memory, using memory to store duplicate information for each 
process. Now that multi-core computers are the new norm and 
H[WHQVLYH� UHVHDUFK�KDV�EHHQ�GRQH� WR�VKRZ�6XULFDWD¶V�VXSHULRU�
performance due to its multithreaded architecture, Snort decided 
to rewrite its engine in C++ from C to support multithreading as 
well as a host of new features and improved old features that led 
to better and faster performance. It has a multithreaded startup 
for faster initialization, supports multiple packet threads, 
reduces memory usage by sharing information with each 
process, allowing for more memory for packets, supports more 
than 200 plugins, boosts the data acquisition and pcap readback 
speeds, allows for more configuration of certain features, has a 
more simplified default configuration requiring less tuning, and 
enhances rule writing [5].  



The old architecture was more linear and not as optimized as 
the new Snort 3 [5]. First, traffic is acquired from a live network 
or pcap file. The packets are then sent through packet decoder 
routines that identify the packet structure for link level protocols 
as well as ports. Packets are then sent through a set of 
preprocessors. Each preprocessor checks to see what kind of 
packets it has collected and what their behavior is. Then, the 
packets are sent through the detection engine, where it checks 
each packet against the rules and is then logged and dealt with 
EDVHG� RQ� ZKDW� DFWLRQ� WKH� UXOH� VSHFLILHG�� 6QRUW� �¶V� SDFNHW�
processing was redesigned to be more flexible using an event 
driven approach [5], and a diagram of this is shown in Fig. 1. It 
was optimized to produce data when needed instead of every 
time to reduce normalizations, which presents the packet data in 
a standard format. Instead of using preprocessors and iterating 
over a list to test each one, it uses what they call inspectors. 
Inspectors create inspector events that can supply data to other 
inspectors. This data is not published, just the access to the data 
so that the data only needs to be normalized once on the first 
access, resulting in just-in-time processing. These inspection 
events along with a variety of plug-in inspectors (represented by 
the other in the diagram) allow for a much more flexible and 
efficient packet processing system.   

Fig. 1.  6QRUW��¶V�3DFNHW�3URFHVVLQJ�$UFKLWHFWXUH 

Suricata was partly created in response to the need for a 
multithreaded IDS. It borrows a lot of functionality from Snort, 
and is similar in several aspects, but also implemented some 
functionality Snort was missing. It can function as a NIDS, 
NIPS, network security monitor, and pcap logger [6]. It has a 
scalable flow engine, a TCP stream engine, and an IP Defrag 
engine. It can parse protocol at the link layer and application 
layer and has a stateful HTTP parser that logs transactions and 
can extract files. Its detection engine is very powerful, highly 
configurable, and able to be tuned to exact needs.  

 One of the most important features is its multithreading 
capabilities. It has fully configurable threading and is able to run 
anywhere from a single thread to dozens. It also has optional 
CPU affinity settings where Suricata designates threads to a set 
CPU or across however many CPUs the system has. Suricata has 
four thread-modules for processing packets [12] which is shown 
in Fig. 2. First is the packet acquisition module that collects 
packets from the network or from a pcap file. Next is the decode 
and stream application layer module. It decodes the packets 
based on their protocols and ports, performs stream-tracking 
where it checks that a correct network connection is made, 
reconstructs the original stream of packets, and finally inspects 
the application layer. Then, the detection module, which can 
have several detection threads running simultaneously, 
compares the traffic to the rules. Finally, action is taken based 
on what the rules specified, and events will be logged. The 
process is very similar to Snort but has its own unique qualities. 

Fig. 2. 6XULFDWD¶V Multithreaded Detection Architecture 

IV. IDS RULES 
Rules are an integral part for signature-based IDSs to 

function. They add the advantage of zero-day detection, unlike 
signatures, which are written after an attack has already 
happened. When writing rules, the focus is on detecting a 
vulnerability, not an exploit or a unique piece of data [5]. The 
syntax of these rules, the number of rules, and the way they are 
SDUVHG�FDQ�DIIHFW�DQ�,'6¶V�SHUIRUPDQFH��6QRUW���KDV�LPSURYHG�
rule parsing as well as similar rule syntax to Snort 2, but with 
improvements to make them easier to write and understand. 
6XULFDWD¶V�UXOH�V\QWD[�LV�WKH�VDPH as Snorts but offers different 
functionality. Both will be discussed below. 

Snort 2 rules have a rule header and rule options [5]. The 
header is made up of the action to be taken, the protocol or type 
of traffic, such as TCP, UDP, ICMP, or IP, the source IP address, 
the source port, a direction operator indicating which way the 
traffic is flowing, the destination IP address and the destination 
port. After the header is the rule options, which add power and 
flexibility to rules. There are general rule options as well as 
detection options. General rule options include message, to 
include what the rule is detecting, flow, to help filter rules that 
only apply to certain directions of traffic, reference, to include 
references for the rule, class type, which tells what the effect of 
the detected attack is, and signature ID, which helps to identify 
rules. The detection options are content, which tells rules what 
to look for in the packet payload, PCRE, which allows rules to 
be written in PCRE to aid in more complex matching, and byte 
test to check for a number of bytes. While this syntax worked 
well, it was somewhat inconsistent and was able to be improved 
in Snort 3 [5]. In the new syntax, the elements protocol, 
networks, ports, and direction operators are now optional, 
allowing for shorter and less redundant rules, whereas before, 
these elements were required. A new protocol keyword http was 
added in Snort 3 which allows for better HTTP detection, 
whereas in Snort 2, HTTP detection was defined in the content 
option and required more detail. Snort 3 also adds new sticky 
and dynamic buffer selectors which helps reduce redundancy in 
rules. Also, the file keyword was added as an option after the 
rule action which helps reduce the number of rules written to 
detect the same traffic over different protocols and directions. 
Lastly, rule metadata is now true metadata in Snort 3, not 
affecting detection.  



Snort also improved its use of shared object (SO) rules. 
These are written in the Shared Object rule language, which is 
similar to C, and must be compiled in order to use them. These 
rules allow for detection not possible with the Snort rule 
language. They can be configured to detect more conditions than 
regular rules. These rules also allow for the obfuscation of exact 
detection in the normal rule language [5]. 

Suricata rules also have an action that determines what to do 
when a rule matches, a rule header that defines the protocol, IP 
addresses, ports, and direction of traffic, and rule options that 
define more specific things in the rule. Suricata adds a few extra 
action keywords, as well as several application layer or layer 
seven protocol key words that Snort does not support [12]. There 
are several other nuances in configuration that differ between 
Snort and Suricata in terms of rules and rule writing but they are 
technical and beyond the scope of this discussion. Suricata was 
written in a way that the Snort rulesets were supported but 
required some tuning to fix some of the rules that use different 
keywords and other minor differences. Now that Snort 3 has a 
newer rule syntax, Snort 3 rules are not compatible in Suricata. 

V. EVALUATION 
This section details all aspects of the experimental setup and 

design. The goal of this experiment was to evaluate the 
performance of two multithreaded intrusion detection systems 
and their alerting behavior when analyzing the same malicious 
traffic against their respective rulesets. To measure 
performance, CPU utilization and memory utilization statistics 
were collected, and to investigate the alerting behavior, extra 
logging was configured for each IDS.   

A. Experimental Setup 

The environment used was a virtual machine running 
Ubuntu 18.04.6 LTS as the operating system. The virtual 
machine used 4 cores and had 4 GB of RAM and 50 GB of disk 
space.  Both Suricata and Snort were installed on the virtual 
machine and were tested individually. Suricata version 6.0.4 
was used and is the latest stable release. Snort version 3.1.6.0 
was used for the experiment, but smaller updates took place 
during the course of the experiment, and the latest version is 
3.1.21.0. In order to maintain continuity of the experiment, 
Snort was not updated to the most recent release. PulledPork is 
the rule management tool used for Snort. It downloads the latest 
UXOH� ILOHV� IURP� 6QRUW¶V�ZHEVLWH��:KHQ� 6QRUW� ��ZDV� UHOHDVHG��
PulledPork was also rewritten from Perl to Python 3 and is 
called PulledPork3. Both tools were installed on the system and 
tested, but PulledPork3 is ultimately what was used as the rule 
management tool because of its improved features and better 
compatibility with Snort 3. Version 3.0.0.4 of PulledPork3 was 
XVHG��6XULFDWD¶V�UXOH�PDQDJHPHQW�WRRO�LV�6XULFDWD-Update [13]. 
Starting from version 4 of Suricata, it comes bundled with 
Suricata, so it did not have to be installed separately. It was used 
to manage the Suricata rulesets. Command line tools htop and 
nmon were used to measure CPU and memory utilization. 

Two different ruOHVHWV�ZHUH�XVHG�LQ�WKH�H[SHULPHQW��6QRUW¶V�
Talos LightSPD registered ruleset and Emerging Threats ET 
Open ruleset for Suricata. Talos is a group of network security 
experts who work to maintain and write rules for Snort. Snort 

offers 3 different rulesets: the community ruleset, a registered 
user ruleset, and a subscription ruleset. The community ruleset 
is provided by the vast community of Snort users, and they are 
free to use by anyone. It is updated daily and a subset of the 
subscription ruleset. The registered ruleset is 30 days behind the 
subscriber ruleset. You must register an account with Snort to 
use this ruleset. The subscriber ruleset is the most up to date and 
comprehensive ruleset and is paid for by a subscription. This 
ruleset is developed, tested, and approved by the Talos team, 
and is specifically written for Snort. Emerging Threats is a 
division of Proofpoint and put out the Emerging Threats 
Rulesets [14]. They offer the ET Open and ET Pro rulesets. The 
ET Open ruleset is free and maintained by members of the 
security community. The ET Pro ruleset is maintained by the 
Emerging Threats research team. These rules are generally 
written to work best with Suricata but can also be used in Snort 
2. They are not supported in Snort 3 as of now. A breakdown 
of the rulesets and number of rules used in testing is shown in 
Table I. 

TABLE I.  RULESET DETAILS 

Rulesets Number of Rules 
Talos LightSPD 20,359 

ET Open 24,956 

 
The malicious traffic that is analyzed in this experiment 

comes from the work of White et al. [8]. They posted the pcap 
files of captured runs of Pytbull traffic used in their experiment. 
Pytbull is an open-source framework used to test IDSs. There 
are two different traces used in this experiment. One is of a 
single denial of service attack, and the other is a combined trace 
of all 8 tests that were run in Pytbull. The eight tests were client-
side download attacks, basic ruleset testing, non-RFC compliant 
packets, fragmented payloads, multiple failed logins, evasion 
techniques, shell codes, and the before mentioned DoS attack. 
The pcap files were read directly by the NIDS during testing. 

In this experiment, both Snort and Suricata were installed on 
the same virtual machine running Ubuntu using the 
recommended base configurations. To facilitate collecting alert 
behavior, some extra logging was enabled on both systems. 
Using PulledPork3 and Suricata-Update, the Snort and Suricata 
rulesets were updated to the most current version. Then, the 
command line tools nmon and htop were started to observe the 
resource utilization for each run. Snort was then run, passing it 
the configuration file and the first pcap file of the DoS attack. 
The resource utilization data and the number of alerts generated 
was collected and recorded, and the log files were examined to 
investigate what was alerted on. Snort was reset and the data 
collection tools were reset as well. Then Snort was run again, 
using the same command, but passing it the larger pcap file of 
the 8 Pytbull tests. The data was again collected and recorded 
and the log files were investigated. Next, Suricata was run, 
passing it the configuration file and the first pcap file of the DoS 
attack. The resource utilization data and alerts generated was 
collected and recorded, and the log files were studied. The tools 
were reset and Suricata was run on the second trace of the 8 
Pytbull tests. The data was collected and log files inspected. This 
concluded the experiment. 



B. Results 
The following section presents the results of resource 

utilization and alert behavior from the testing of Snort and 
Suricata and an analysis of these results. 

Suricata and Snort performed very similar when tested in 
terms of their resource utilization. Both used roughly 25% of the 
CPU throughout all tests. Each NIDS used only one core at 
100%, resulting in an average CPU utilization of 25% because 
the system has 4 cores. This was an interesting result as each 
IDS supports multithreading and was configured to use this 
functionality and should have distributed more among the other 
cores. Suricata showed to be slightly more memory intensive. In 
6QRUW¶V� ILUVW� WHVW�RQ� WKH�VPDOOHU�SFDS�ILOH�RI�WKH�'R6�DWWDFN�� LW�
used 4% of RAM and in the second test it used 5%. In previous 
VWXGLHV� RI� 6QRUW� ��� 6QRUW¶V� PHPRU\� XVH� ZDV� DOVR� ORZHU� WKDQ�
Suricata, showing Snort 3 maintains the small overhead it takes 
in packet processing, even enhancing it in the new architecture. 
Suricata used approximately 7.5% of RAM in both tests, which 
is interesting considering the second pcap trace with 8 tests is 
significantly larger than the first trace with only the DoS attack. 
6XULFDWD¶V� XVH�RI�PRUH�PHPRU\� LV� FRQVLVWHQW�ZLWK� ILQGLQJV� LQ�
SUHYLRXV� UHVHDUFK�� VKRZLQJ� WKDW� 6XULFDWD¶V� PXOWLWKUHDded 
architecture is less efficient in memory utilization than Snort 3. 
Fig. 3 shows the memory and CPU usage from the first test and 
Fig. 4 shows the results for the second test. 

 
Fig. 3. Snort and Suricata CPU and memory usage by percentage in Test 1 

 

Fig. 4. Snort and Suricata CPU and memory usage by percentage in Test 2 

The two NIDS performed very differently in their alerting 
behavior. Suricata alerted nearly 2 times more when analyzing 
the first trace and 3.5 times more when analyzing the second 

trace. When analyzing the first trace, Snort alerted 1,211 times 
WR� 6XULFDWD¶V� ������ WLPHV�� )RU� WKH� VHFRQG� WUDFH�� 6QRUW� DOHUWHG�
2,944 times and Suricata alerted 10,441 times. Fig. 5 and Fig. 6 
show the number of alerts for Snort and Suricata for both tests. 
Suricata had almost 4,600 more rules enabled than Snort when 
inspecting the traffic which could have led to it alerting and 
detecting more suspicious traffic. Another possible reason for 
this difference is because the rulesets put out by Talos and 
Emerging Threats have many differences between the two. In a 
study done by Asad and Gashi [11], Snort and Suricata rules 
were compared based on the content rule option field, and only 
1% of rules resulted in a match. Lastly, the ET Open ruleset, 
which was used in Suricata, is mostly created from members of 
the security community and the Talos LightSPD ruleset used in 
Snort 3 is created and maintained by dedicated Talos 
researchers, which could be a cause of the large discrepancy in 
rules and alerting behavior. 

 
Fig. 5. Snort and Suricata alerts in Test 1 

 

Fig. 6. Snort and Suricata alerts in Test 2 

C. Issues 
A few issues were encountered during the experiment 

process. First, there was a problem when trying to install 
Suricata onto the system. The installation guide from the 
Suricata documentation was followed, but when installing the 
packages, an error was received when it was configuring 
libhyperscan4 that said the CPU lacked support for the 
Supplemental Streaming SIMD Extensions 3 (SSSE3) 
instruction set that was required to execute programs linked 
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against hyperscan. An option was given to install the package 
and when no was selected, the installation completed, but 
Suricata would not start. Suricata was then deleted, and 
different commands were used to install the packages, and this 
time yes was selected to go ahead and install the package. It 
completed the install and started working as normal. Also, the 
initial goal of this paper was to compare the NIDS against the 
same rulesets, similar to the previous work for a more accurate 
comparison. When it was discovered that Snort 3 had changed 
the rule syntax, the ET Open ruleset did not support Snort 3, 
and that the Snort 3 rulesets did not work in Suricata, the goal 
was shifted. Instead of measuring just performance, it was 
decided to also examine the alerting behavior of both NIDS 
with their respective rulesets specifically tailored for each 
system. 

VI. CONCLUSION 
In this paper, Suricata and Snort 3, two popular open-source 

network intrusion detection systems were compared based on 
their performance and alerting behavior. Snort has been the 
industry standard, despite only being single threaded and 
performing weaker in modern environments compared to 
Suricata, which is multithreaded and highly scalable. Snort 3 is 
a complete rewrite of the old engine to support multithreading 
and several new features to compete with Suricata. Both 
multithreaded NIDS are tested on the same system and inspect 
the same malicious traffic. The NIDS are configured using the 
default recommended settings and use the most recent rulesets 
designed specifically for each system. The results show that the 
systems are very similar in CPU utilization��VKRZLQJ�6QRUW��¶V�
multithreading is up to par, but in memory usage, Suricata is 
more memory intensive than Snort. Regarding alerting 
behavior, Suricata detected more attacks and alerted 2 times and 
3.5 times more than Snort 3 in our tests. The rules were not 
tuned, and false positive rates were not measured, but this 
exemplifies the vast differences in the ET Open and Talos 
LightSPD rulesets that are designed for Suricata and Snort 
respectively as well as the differences in the detection engines 
of the two NIDS. Previous work has been done comparing 
Snort 2 and Suricata, but as Snort 3 was publicly released in 
early 2021, there have been few studies researching it, and more 
work is needed to fully examine the new NIDS with its 
improved features and better performance. 
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