
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2022

Comparative Study of Snort 3 and Suricata Intrusion Detection Comparative Study of Snort 3 and Suricata Intrusion Detection

Systems Systems

Cole Hoover

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

 Part of the Computer and Systems Architecture Commons, Digital Communications and Networking

Commons, Information Security Commons, Software Engineering Commons, and the Systems

Architecture Commons

Citation Citation
Hoover, C. (2022). Comparative Study of Snort 3 and Suricata Intrusion Detection Systems. Computer
Science and Computer Engineering Undergraduate Honors Theses Retrieved from
https://scholarworks.uark.edu/csceuht/105

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact scholar@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.uark.edu%2Fcsceuht%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fcsceuht%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fcsceuht%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fcsceuht%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.uark.edu%2Fcsceuht%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.uark.edu%2Fcsceuht%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.uark.edu%2Fcsceuht%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/105?utm_source=scholarworks.uark.edu%2Fcsceuht%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

Comparative Study of Snort 3 and Suricata Intrusion Detection Systems

An Undergraduate Honors College Thesis

in the

Department of Computer Science and Computer Engineering
College of Engineering
University of Arkansas

Fayetteville, AR
April, 2022

by

Cole Hoover

Comparative Study of Snort 3 and Suricata Intrusion
Detection Systems

Cole Hoover
Department of Computer Science and Computer Engineering

University of Arkansas
Fayetteville, AR 72701, USA

cdhoover@uark.edu

Dale R. Thompson
Department of Computer Science and Computer Engineering

 University of Arkansas
Fayetteville, AR 72701, USA

drt@uark.edu

Abstract² Network Intrusion Detection Systems (NIDS) are
one layer of defense that can be used to protect a network from
cyber-attacks. They monitor a network for any malicious activity
and send alerts if suspicious traffic is detected. Two of the most
common open-source NIDS are Snort and Suricata. Snort was first
released in 1999 and became the industry standard. The one major
drawback of Snort has been its single-threaded architecture.
Because of this, Suricata was released in 2009 and uses a
multithreaded architecture. Snort released Snort 3 last year with
major improvements from earlier versions, including
implementing a new multithreaded architecture like Suricata.
This paper compares Suricata and the new and improved Snort 3
based on their performance and alert behavior. Both NIDS were
installed on the same system, configured with the default
recommended configurations, used default rulesets, and evaluated
the same malicious traffic. In this analysis, both NIDS performed
very similar in their resource utilization, but when analyzing the
malicious traffic, Suricata detected more attacks than Snort 3
using their standard rulesets.

Keywords²NIDS, Snort, Suricata, performance, rules,
comparison

I. INTRODUCTION
Intrusion detection systems are a piece of software that sit on

the network and monitor the traffic for anything that is deemed
malicious. There are many different variations of intrusion
detection systems. True intrusion detection systems only
monitor the traffic and send alerts if any traffic is found to be
illegitimate. An IDS can be configured to block or suspend
traffic that triggers an alert, and these are called intrusion
prevention systems. Within IDSs, there are network intrusion
detection systems (NIDS) and host-based intrusion detection
systems (HIDS). Host-based IDSs monitor a device or devices
on the network while network intrusion detection systems
monitor traffic on a whole network. There are also two types of
IDSs: anomaly-based and signature-based. Anomaly-based
IDSs compare traffic to a baseline of trusted traffic and alert if
new traffic deviates from the baseline. Signature-based IDSs
compare traffic to a set of signatures or rules that define
suspicious activity on a network and alert if any pattern of traffic
matches a signature. In this paper, we specifically deal with
signature-based network intrusion detection systems, namely
Snort and Suricata. When NIDS are placed at strategic points on
the network, they can monitor all traffic that comes in and out of

the network for any malicious activity. This traffic is analyzed
and compared to the list of rules, and when a piece of traffic
matches an attack pattern, it is logged, and an alert is sent.

Rules are one of the most important aspects of a signature-
based IDSs. The rules define what traffic is valid and what is
invalid. They are what the traffic is compared to when it is
analyzed for suspicious activity. Rules also specify the action to
be taken once any unusual activity is detected, such as alert, log,
or pass. There are several organizations that put out their own
rulesets created by security researchers and community
members who analyze attacks and what traffic they generate,
and then create rules that detect this traffic. Custom rules can
also be created by users to detect specific things in their own
environment. Rules are meant to be combined, interchanged,
and tuned to allow for the best detection in each specific
environment and to reduce the number of false positives.

There are several metrics that can be used to evaluate
intrusion detection systems. Antonatos et al. offers attack
detection rate, false positives, and capacity to test performance
[1]. Research from Mell suggests coverage, probability of false
alarm, probability of detection, attack resistance, ability to
handle high bandwidth traffic, and capacity to test accuracy [2].
In work from Albin [3], they evaluated performance by
measuring CPU utilization, memory use, and network use. In
this paper, the metrics that will be used are CPU and memory
utilization, as well as the number of alerts generated during an
attack.

Snort is one of the most popular and widely used open-
source NIDS. It was originally created by Martin Roesch in 1999
as a lightweight intrusion detection system [4] and has grown to
a very powerful IDS with many features. It can be used as a
packet sniffer, a packet logger, or a complete IDS or IPS. Snort
was developed using a single threaded architecture and has
stayed that way despite the trends in multicore processors, until
recently. The Snort team released Snort 3 in 2021 which
implements a multithreaded architecture among several other
upgrades and improvements. According to Snort, it has
enhanced performance, faster processing, and improved
scalability [5]. Snort 3 was rewritten in C++, making it more
modular, introduces threading and shared memory to allow for
scaling and multiple packet processing, offers more than 200
plugins for more customization, and the rule syntax has been

updated for easier comprehension and is more concise to
decrease the amount of rules and allow them to run faster [5].

Suricata is another leading open-source NIDS released by
the Open Information Security Foundation in 2010. It was
primarily started in response to the growing use of multicores in
computers and to make up for what Snort was missing. It shares
many features with Snort and boasts extra features including
automatic protocol detection, file extraction, logging HTTP
requests, DNS queries, and TLS certificates, and has a
multithreaded engine [6]. It implements Lua scripting to detect
things rules cannot as well as advanced outputs to allow for easy
integration with many logging tools.

This paper details a comparison of Snort 3 and Suricata
IDSs, observing their alerting behavior when examining the
same malicious traffic and using the rulesets specifically
designed for their systems, as well as examining their
performance when analyzing captured traffic stored in a pcap
file. The next section discusses related work to comparing Snort
and Suricata. Section III looks at the architectures of Snort 3
and Suricata. Section IV compares the rules and rule syntax that
Snort and Suricata use. The evaluation of the IDSs is done in
Section V and the conclusions are presented in Section VI.

II. RELATED WORK
 There have been numerous studies conducted that compare
Snort and Suricata against a large array of metrics. Most of the
work has been done with Snort 2, as Snort 3 was only released
last year, although a few recent studies have been done
evaluating Snort 3. Most of the research is done comparing the
two NIDS in specific environments, such as high-speed
networks, limited resource environments, or environments with
several cores and excess resources to examine their
performance, looking at resource utilization and packet
processing speeds. Other studies compare the accuracy of
detecting attacks, false positive rates, and other metrics that deal
with the differences in the rulesets provided for Snort and
Suricata. Some papers combine both the performance and
detection aspects. This paper is similar in that regard, examining
the alerting behavior of the IDSs with their respective rulesets,
while at the same time measuring their performance and
resource utilization, as well as continuing the necessary research
on Snort 3, as it is a newer product.

 One of the earlier works that looks at both Snort and Suricata
LV�³$�&RPSDUDWLYH�$QDO\VLV�RI�WKH�6QRUW�DQG�6XULFDWD�,QWUXVLRQ�
'HWHFWLRQ� 6\VWHPV´�E\� (XJHQH�$OELQ�� SXEOLVKHG� LQ� ���� [3].
Suricata was released the previous year and was still in its early
stages. He ran three experiments to measure performance and
accuracy in a busy network environment. The first experiment
tested the live performance of both NIDS, measuring resource
utilization. The second experiment tested Suricata on a
supercomputer to measure processing speed. The last
experiment tested the accuracy of both NIDS when evaluating
malicious traffic. The experiments showed that Suricata was
more resource intensive than Snort, had the ability to be
configured and scaled for boosted performance with multiple
cores, and that tuning of rulesets to avoid false positives and
false negatives is necessary. It was concluded that Snort was still
a strong and capable NIDS, but Suricata could handle higher
volumes of traffic and as network throughput continued to

increase, Suricata could scale to match it. Work done by Day
and Burns in 2011 [7] LV�VLPLODU�$OELQ¶V��but tested the accuracy
of both NIDS under stress, measured capacity, coverage, false
positive and false negative rates. The results indicated that
Suricata requires more overhead than Snort but when multiple
cores are available, it is more accurate. Research conducted by
White et al. in 2013 [8] expands on the work done by Day and
Burns and scaled the resources available to the NIDS as well as
varied the configurations, rulesets, and workloads. The results
showed that Suricata outperformed Snort throughout all tests
and used less resources than Snort.

 0RUH�UHFHQW�ZRUNV� LQFOXGH�³(YDOXDWLQJ�1HWZRUN�,QWUXVLRQ�
Detection Systems for High-6SHHG�1HWZRUNV´�E\�+X�HW� DO. in
2017 [9]��³&RPSDULQJ� WKH�3HUIRUPDQFH�RI� ,QWUXVLRQ�'HWHFWLRQ�
6\VWHPV��6QRUW�DQG�6XULFDWD´�E\�%randon Murphy in 2019 [10],
DQG�³'\QDPLFDO�DQDO\VLV�RI�GLYHUVLW\�LQ�UXOH-based open source
QHWZRUN�LQWUXVLRQ�GHWHFWLRQ�V\VWHPV´�E\�$VDG�DQG�*DVKL�LQ�����
[11]. Hu et al. examined Snort, Suricata, and Bro, another
popular open-source IDS. They investigate resource usage,
packet processing speeds, and packet drop rate of the NIDS
when in a high-speed network and compare performance with
different configurations and traffic volumes. They conclude
Suricata performs better because of its multithreaded
architecture, but Snort and Bro could be configured to achieve
improved performance. In the dissertation by Brandon Murphy
[10], a thorough study is done to measure the accuracy,
efficiency, and resiliency of Snort and Suricata. Suricata was
shown to be more accurate, but Snort used less memory, and
there was no statistically significant difference in the dropped
packets by Snort and Suricata. Lastly, in the work done by Asad
and Gashi [11], Snort and Suricata were compared by their
configurational and functional diversity. To compare the
configurational diversity, the rulesets and Blacklisted IP
Address lists were investigated. To compare the functional
diversity, the alerting behavior of the NIDS was studied when
analyzing network traffic. It was concluded that there is
significant diversity in both the rulesets and Blacklisted IP
Address lists which led to significant differences in alerting
behavior.

III. IDS ARCHITECTURES
Snort was originally built to best suit the computers and

networks of its time. It started as a lightweight packet sniffer,
running on single core computers, and handled the much smaller
network traffic when it was released. It had a single threaded
startup and a single packet thread per process. It used up more
memory, using memory to store duplicate information for each
process. Now that multi-core computers are the new norm and
H[WHQVLYH� UHVHDUFK�KDV�EHHQ�GRQH� WR�VKRZ�6XULFDWD¶V�VXSHULRU�
performance due to its multithreaded architecture, Snort decided
to rewrite its engine in C++ from C to support multithreading as
well as a host of new features and improved old features that led
to better and faster performance. It has a multithreaded startup
for faster initialization, supports multiple packet threads,
reduces memory usage by sharing information with each
process, allowing for more memory for packets, supports more
than 200 plugins, boosts the data acquisition and pcap readback
speeds, allows for more configuration of certain features, has a
more simplified default configuration requiring less tuning, and
enhances rule writing [5].

The old architecture was more linear and not as optimized as
the new Snort 3 [5]. First, traffic is acquired from a live network
or pcap file. The packets are then sent through packet decoder
routines that identify the packet structure for link level protocols
as well as ports. Packets are then sent through a set of
preprocessors. Each preprocessor checks to see what kind of
packets it has collected and what their behavior is. Then, the
packets are sent through the detection engine, where it checks
each packet against the rules and is then logged and dealt with
EDVHG� RQ� ZKDW� DFWLRQ� WKH� UXOH� VSHFLILHG�� 6QRUW� �¶V� SDFNHW�
processing was redesigned to be more flexible using an event
driven approach [5], and a diagram of this is shown in Fig. 1. It
was optimized to produce data when needed instead of every
time to reduce normalizations, which presents the packet data in
a standard format. Instead of using preprocessors and iterating
over a list to test each one, it uses what they call inspectors.
Inspectors create inspector events that can supply data to other
inspectors. This data is not published, just the access to the data
so that the data only needs to be normalized once on the first
access, resulting in just-in-time processing. These inspection
events along with a variety of plug-in inspectors (represented by
the other in the diagram) allow for a much more flexible and
efficient packet processing system.

Fig. 1. 6QRUW��¶V�3DFNHW�3URFHVVLQJ�$UFKLWHFWXUH

Suricata was partly created in response to the need for a
multithreaded IDS. It borrows a lot of functionality from Snort,
and is similar in several aspects, but also implemented some
functionality Snort was missing. It can function as a NIDS,
NIPS, network security monitor, and pcap logger [6]. It has a
scalable flow engine, a TCP stream engine, and an IP Defrag
engine. It can parse protocol at the link layer and application
layer and has a stateful HTTP parser that logs transactions and
can extract files. Its detection engine is very powerful, highly
configurable, and able to be tuned to exact needs.

 One of the most important features is its multithreading
capabilities. It has fully configurable threading and is able to run
anywhere from a single thread to dozens. It also has optional
CPU affinity settings where Suricata designates threads to a set
CPU or across however many CPUs the system has. Suricata has
four thread-modules for processing packets [12] which is shown
in Fig. 2. First is the packet acquisition module that collects
packets from the network or from a pcap file. Next is the decode
and stream application layer module. It decodes the packets
based on their protocols and ports, performs stream-tracking
where it checks that a correct network connection is made,
reconstructs the original stream of packets, and finally inspects
the application layer. Then, the detection module, which can
have several detection threads running simultaneously,
compares the traffic to the rules. Finally, action is taken based
on what the rules specified, and events will be logged. The
process is very similar to Snort but has its own unique qualities.

Fig. 2. 6XULFDWD¶V Multithreaded Detection Architecture

IV. IDS RULES
Rules are an integral part for signature-based IDSs to

function. They add the advantage of zero-day detection, unlike
signatures, which are written after an attack has already
happened. When writing rules, the focus is on detecting a
vulnerability, not an exploit or a unique piece of data [5]. The
syntax of these rules, the number of rules, and the way they are
SDUVHG�FDQ�DIIHFW�DQ�,'6¶V�SHUIRUPDQFH��6QRUW���KDV�LPSURYHG�
rule parsing as well as similar rule syntax to Snort 2, but with
improvements to make them easier to write and understand.
6XULFDWD¶V�UXOH�V\QWD[�LV�WKH�VDPH as Snorts but offers different
functionality. Both will be discussed below.

Snort 2 rules have a rule header and rule options [5]. The
header is made up of the action to be taken, the protocol or type
of traffic, such as TCP, UDP, ICMP, or IP, the source IP address,
the source port, a direction operator indicating which way the
traffic is flowing, the destination IP address and the destination
port. After the header is the rule options, which add power and
flexibility to rules. There are general rule options as well as
detection options. General rule options include message, to
include what the rule is detecting, flow, to help filter rules that
only apply to certain directions of traffic, reference, to include
references for the rule, class type, which tells what the effect of
the detected attack is, and signature ID, which helps to identify
rules. The detection options are content, which tells rules what
to look for in the packet payload, PCRE, which allows rules to
be written in PCRE to aid in more complex matching, and byte
test to check for a number of bytes. While this syntax worked
well, it was somewhat inconsistent and was able to be improved
in Snort 3 [5]. In the new syntax, the elements protocol,
networks, ports, and direction operators are now optional,
allowing for shorter and less redundant rules, whereas before,
these elements were required. A new protocol keyword http was
added in Snort 3 which allows for better HTTP detection,
whereas in Snort 2, HTTP detection was defined in the content
option and required more detail. Snort 3 also adds new sticky
and dynamic buffer selectors which helps reduce redundancy in
rules. Also, the file keyword was added as an option after the
rule action which helps reduce the number of rules written to
detect the same traffic over different protocols and directions.
Lastly, rule metadata is now true metadata in Snort 3, not
affecting detection.

Snort also improved its use of shared object (SO) rules.
These are written in the Shared Object rule language, which is
similar to C, and must be compiled in order to use them. These
rules allow for detection not possible with the Snort rule
language. They can be configured to detect more conditions than
regular rules. These rules also allow for the obfuscation of exact
detection in the normal rule language [5].

Suricata rules also have an action that determines what to do
when a rule matches, a rule header that defines the protocol, IP
addresses, ports, and direction of traffic, and rule options that
define more specific things in the rule. Suricata adds a few extra
action keywords, as well as several application layer or layer
seven protocol key words that Snort does not support [12]. There
are several other nuances in configuration that differ between
Snort and Suricata in terms of rules and rule writing but they are
technical and beyond the scope of this discussion. Suricata was
written in a way that the Snort rulesets were supported but
required some tuning to fix some of the rules that use different
keywords and other minor differences. Now that Snort 3 has a
newer rule syntax, Snort 3 rules are not compatible in Suricata.

V. EVALUATION
This section details all aspects of the experimental setup and

design. The goal of this experiment was to evaluate the
performance of two multithreaded intrusion detection systems
and their alerting behavior when analyzing the same malicious
traffic against their respective rulesets. To measure
performance, CPU utilization and memory utilization statistics
were collected, and to investigate the alerting behavior, extra
logging was configured for each IDS.

A. Experimental Setup

The environment used was a virtual machine running
Ubuntu 18.04.6 LTS as the operating system. The virtual
machine used 4 cores and had 4 GB of RAM and 50 GB of disk
space. Both Suricata and Snort were installed on the virtual
machine and were tested individually. Suricata version 6.0.4
was used and is the latest stable release. Snort version 3.1.6.0
was used for the experiment, but smaller updates took place
during the course of the experiment, and the latest version is
3.1.21.0. In order to maintain continuity of the experiment,
Snort was not updated to the most recent release. PulledPork is
the rule management tool used for Snort. It downloads the latest
UXOH� ILOHV� IURP� 6QRUW¶V�ZHEVLWH��:KHQ� 6QRUW� ��ZDV� UHOHDVHG��
PulledPork was also rewritten from Perl to Python 3 and is
called PulledPork3. Both tools were installed on the system and
tested, but PulledPork3 is ultimately what was used as the rule
management tool because of its improved features and better
compatibility with Snort 3. Version 3.0.0.4 of PulledPork3 was
XVHG��6XULFDWD¶V�UXOH�PDQDJHPHQW�WRRO�LV�6XULFDWD-Update [13].
Starting from version 4 of Suricata, it comes bundled with
Suricata, so it did not have to be installed separately. It was used
to manage the Suricata rulesets. Command line tools htop and
nmon were used to measure CPU and memory utilization.

Two different ruOHVHWV�ZHUH�XVHG�LQ�WKH�H[SHULPHQW��6QRUW¶V�
Talos LightSPD registered ruleset and Emerging Threats ET
Open ruleset for Suricata. Talos is a group of network security
experts who work to maintain and write rules for Snort. Snort

offers 3 different rulesets: the community ruleset, a registered
user ruleset, and a subscription ruleset. The community ruleset
is provided by the vast community of Snort users, and they are
free to use by anyone. It is updated daily and a subset of the
subscription ruleset. The registered ruleset is 30 days behind the
subscriber ruleset. You must register an account with Snort to
use this ruleset. The subscriber ruleset is the most up to date and
comprehensive ruleset and is paid for by a subscription. This
ruleset is developed, tested, and approved by the Talos team,
and is specifically written for Snort. Emerging Threats is a
division of Proofpoint and put out the Emerging Threats
Rulesets [14]. They offer the ET Open and ET Pro rulesets. The
ET Open ruleset is free and maintained by members of the
security community. The ET Pro ruleset is maintained by the
Emerging Threats research team. These rules are generally
written to work best with Suricata but can also be used in Snort
2. They are not supported in Snort 3 as of now. A breakdown
of the rulesets and number of rules used in testing is shown in
Table I.

TABLE I. RULESET DETAILS

Rulesets Number of Rules
Talos LightSPD 20,359

ET Open 24,956

The malicious traffic that is analyzed in this experiment

comes from the work of White et al. [8]. They posted the pcap
files of captured runs of Pytbull traffic used in their experiment.
Pytbull is an open-source framework used to test IDSs. There
are two different traces used in this experiment. One is of a
single denial of service attack, and the other is a combined trace
of all 8 tests that were run in Pytbull. The eight tests were client-
side download attacks, basic ruleset testing, non-RFC compliant
packets, fragmented payloads, multiple failed logins, evasion
techniques, shell codes, and the before mentioned DoS attack.
The pcap files were read directly by the NIDS during testing.

In this experiment, both Snort and Suricata were installed on
the same virtual machine running Ubuntu using the
recommended base configurations. To facilitate collecting alert
behavior, some extra logging was enabled on both systems.
Using PulledPork3 and Suricata-Update, the Snort and Suricata
rulesets were updated to the most current version. Then, the
command line tools nmon and htop were started to observe the
resource utilization for each run. Snort was then run, passing it
the configuration file and the first pcap file of the DoS attack.
The resource utilization data and the number of alerts generated
was collected and recorded, and the log files were examined to
investigate what was alerted on. Snort was reset and the data
collection tools were reset as well. Then Snort was run again,
using the same command, but passing it the larger pcap file of
the 8 Pytbull tests. The data was again collected and recorded
and the log files were investigated. Next, Suricata was run,
passing it the configuration file and the first pcap file of the DoS
attack. The resource utilization data and alerts generated was
collected and recorded, and the log files were studied. The tools
were reset and Suricata was run on the second trace of the 8
Pytbull tests. The data was collected and log files inspected. This
concluded the experiment.

B. Results
The following section presents the results of resource

utilization and alert behavior from the testing of Snort and
Suricata and an analysis of these results.

Suricata and Snort performed very similar when tested in
terms of their resource utilization. Both used roughly 25% of the
CPU throughout all tests. Each NIDS used only one core at
100%, resulting in an average CPU utilization of 25% because
the system has 4 cores. This was an interesting result as each
IDS supports multithreading and was configured to use this
functionality and should have distributed more among the other
cores. Suricata showed to be slightly more memory intensive. In
6QRUW¶V� ILUVW� WHVW�RQ� WKH�VPDOOHU�SFDS�ILOH�RI�WKH�'R6�DWWDFN�� LW�
used 4% of RAM and in the second test it used 5%. In previous
VWXGLHV� RI� 6QRUW� ��� 6QRUW¶V� PHPRU\� XVH� ZDV� DOVR� ORZHU� WKDQ�
Suricata, showing Snort 3 maintains the small overhead it takes
in packet processing, even enhancing it in the new architecture.
Suricata used approximately 7.5% of RAM in both tests, which
is interesting considering the second pcap trace with 8 tests is
significantly larger than the first trace with only the DoS attack.
6XULFDWD¶V� XVH�RI�PRUH�PHPRU\� LV� FRQVLVWHQW�ZLWK� ILQGLQJV� LQ�
SUHYLRXV� UHVHDUFK�� VKRZLQJ� WKDW� 6XULFDWD¶V� PXOWLWKUHDded
architecture is less efficient in memory utilization than Snort 3.
Fig. 3 shows the memory and CPU usage from the first test and
Fig. 4 shows the results for the second test.

Fig. 3. Snort and Suricata CPU and memory usage by percentage in Test 1

Fig. 4. Snort and Suricata CPU and memory usage by percentage in Test 2

The two NIDS performed very differently in their alerting
behavior. Suricata alerted nearly 2 times more when analyzing
the first trace and 3.5 times more when analyzing the second

trace. When analyzing the first trace, Snort alerted 1,211 times
WR� 6XULFDWD¶V� ������ WLPHV��)RU� WKH� VHFRQG� WUDFH�� 6QRUW� DOHUWHG�
2,944 times and Suricata alerted 10,441 times. Fig. 5 and Fig. 6
show the number of alerts for Snort and Suricata for both tests.
Suricata had almost 4,600 more rules enabled than Snort when
inspecting the traffic which could have led to it alerting and
detecting more suspicious traffic. Another possible reason for
this difference is because the rulesets put out by Talos and
Emerging Threats have many differences between the two. In a
study done by Asad and Gashi [11], Snort and Suricata rules
were compared based on the content rule option field, and only
1% of rules resulted in a match. Lastly, the ET Open ruleset,
which was used in Suricata, is mostly created from members of
the security community and the Talos LightSPD ruleset used in
Snort 3 is created and maintained by dedicated Talos
researchers, which could be a cause of the large discrepancy in
rules and alerting behavior.

Fig. 5. Snort and Suricata alerts in Test 1

Fig. 6. Snort and Suricata alerts in Test 2

C. Issues
A few issues were encountered during the experiment

process. First, there was a problem when trying to install
Suricata onto the system. The installation guide from the
Suricata documentation was followed, but when installing the
packages, an error was received when it was configuring
libhyperscan4 that said the CPU lacked support for the
Supplemental Streaming SIMD Extensions 3 (SSSE3)
instruction set that was required to execute programs linked

0
5

10
15
20
25
30

Snort Suricata

CPU and Memory Usage Test 1

CPU Memory

0
5

10
15
20
25
30

Snort Suricata

CPU and Memory Usage Test 2

CPU Memory

0

500

1000

1500

2000

2500

Snort Suricata

Alerts Generated Test 1

0

2000

4000

6000

8000

10000

12000

Snort Suricata

Alerts Generated Test 2

against hyperscan. An option was given to install the package
and when no was selected, the installation completed, but
Suricata would not start. Suricata was then deleted, and
different commands were used to install the packages, and this
time yes was selected to go ahead and install the package. It
completed the install and started working as normal. Also, the
initial goal of this paper was to compare the NIDS against the
same rulesets, similar to the previous work for a more accurate
comparison. When it was discovered that Snort 3 had changed
the rule syntax, the ET Open ruleset did not support Snort 3,
and that the Snort 3 rulesets did not work in Suricata, the goal
was shifted. Instead of measuring just performance, it was
decided to also examine the alerting behavior of both NIDS
with their respective rulesets specifically tailored for each
system.

VI. CONCLUSION
In this paper, Suricata and Snort 3, two popular open-source

network intrusion detection systems were compared based on
their performance and alerting behavior. Snort has been the
industry standard, despite only being single threaded and
performing weaker in modern environments compared to
Suricata, which is multithreaded and highly scalable. Snort 3 is
a complete rewrite of the old engine to support multithreading
and several new features to compete with Suricata. Both
multithreaded NIDS are tested on the same system and inspect
the same malicious traffic. The NIDS are configured using the
default recommended settings and use the most recent rulesets
designed specifically for each system. The results show that the
systems are very similar in CPU utilization��VKRZLQJ�6QRUW��¶V�
multithreading is up to par, but in memory usage, Suricata is
more memory intensive than Snort. Regarding alerting
behavior, Suricata detected more attacks and alerted 2 times and
3.5 times more than Snort 3 in our tests. The rules were not
tuned, and false positive rates were not measured, but this
exemplifies the vast differences in the ET Open and Talos
LightSPD rulesets that are designed for Suricata and Snort
respectively as well as the differences in the detection engines
of the two NIDS. Previous work has been done comparing
Snort 2 and Suricata, but as Snort 3 was publicly released in
early 2021, there have been few studies researching it, and more
work is needed to fully examine the new NIDS with its
improved features and better performance.

REFERENCES
[1] 6��$QWRQDWRV��.��$QDJQRVWDNLV��DQG�(��0DUNDWRV��³*HQHUDWLQJ�5HDOLVWLF�

:RUNORDGV� IRU� 1HWZRUN� ,QWUXVLRQ� 'HWHFWLRQ� 6\VWHPV�´� LQ� 4th ACM
Workshop on Software and Performance, Jan. 2004, vol. 29, no. 1, pp.
207±215, Accessed: Mar. 14, 2022. [Online]. Available:
https://dl.acm.org/doi/pdf/10.1145/974044.974078.

[2] 3��0HOO��9��+X��5��/LSSPDQQ��-��+DLQHV��DQG�0��=LVVPDQ��³$Q�2YHUYLHZ�
RI�,VVXHV� LQ�7HVWLQJ�,QWUXVLRQ�'HWHFWLRQ�6\VWHPV�´�1DWLRQDO�,QVWLWXWH�RI�
Standards and Techonology, Gaithersburg, MD, Jul. 2003. Accessed:
Mar. 14, 2022. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7007.pdf.

[3] (��$OELQ��³$�&RPSDUDWLYH�$QDO\VLV�RI�WKH�6QRUW�DQG�6XULFDWD�,QWUXVLRQ-
'HWHFWLRQ�6\VWHPV�´�0DVWHU¶V�7KHVLV��1DYDO�3RVWJUDGXDWH�6FKRRO�������

[4] 0��5RHVFK��³6QRUW� - Lightweight Intrusion DetHFWLRQ�IRU�1HWZRUNV�´� LQ�
3URFHHGLQJV� RI� /,6$� ¶���� ��WK� 6\VWHPV� $GPLQLVWUDWLRQ� &RQIHUHQFH,
Seattle, WA, Nov. 1999, pp. 229±238, Accessed: Nov. 16, 2022. [Online].
Available:
https://www.usenix.org/legacy/event/lisa99/full_papers/roesch/roesch.pd
f.

[5] 6QRUW�� ³6QRUW� - 1HWZRUN� ,QWUXVLRQ� 'HWHFWLRQ� 	� 3UHYHQWLRQ� 6\VWHP�´�
Snort.org, 2019. https://www.snort.org/.

[6] ³+RPH�´�Suricata. https://suricata.io/.
[7] '��'D\� DQG�%��%XUQV�� ³$�3HUIRUPDQFH�$QDO\VLV� RI�6QRUW� DQG�6XULFDWD�

1HWZRUN� ,QWUXVLRQ�'HWHFWLRQ� DQG� 3UHYHQWLRQ� (QJLQHV�´� LQ� ICDS 2011,
Gosier, Guadeloupe, France, Feb. 2011, pp. 187±192, Accessed: Oct. 21,
2021. [Online].

[8] J. White, T��)LW]VLPPRQV�� DQG� -��0DWWKHZV�� ³4XDQWLWDWLYH�$QDO\VLV� RI�
,QWUXVLRQ�'HWHFWLRQ�6\VWHPV��6QRUW�DQG�6XULFDWD�´�LQ�Cyber Sensing 2013,
Baltimore, MD, May 2013, vol. 8757, Accessed: Oct. 13, 2021. [Online].
Available:
https://people.clarkson.edu/~jmatthew/publications/SPIE_SnortSuricata
_2013.pdf.

[9] Q. Hu, M. R. Asghar and N. Brownlee, "Evaluating network intrusion
detection systems for high-speed networks," 2017 27th International
Telecommunication Networks and Applications Conference (ITNAC),
2017, pp. 1-6, doi: 10.1109/ATNAC.2017.8215374

[10] %��0XUSK\��³&RPSDULQJ�WKH�3HUIRUPDQFH�RI�,QWUXVLRQ�'HWHFWLRQ�6\VWHPV��
6QRUW� DQG� 6XULFDWD�´� 'octoral Dissertation, Colorado Technical
University, 2019.

[11] +��$VDG�DQG�,��*DVKL��³'\QDPLFDO�DQDO\VLV�RI�GLYHUVLW\�LQ�UXOH-based open
sourFH� QHWZRUN� LQWUXVLRQ� GHWHFWLRQ� V\VWHPV�´� Empirical Software
Engineering, vol. 27, no. 4, Oct. 2021, doi: 10.1007/s10664-021-10046-
w.

[12] ³6XULFDWD� 8VHU� *XLGH� ² 6XULFDWD� ������ GRFXPHQWDWLRQ�´�
suricata.readthedocs.io. https://suricata.readthedocs.io/en/suricata-
6.0.4/index.html (accessed Nov. 01, 2021).

[13] ³VXULFDWD-update - A Suricata Rule Update Tool ² suricata-update
�����GHY�� GRFXPHQWDWLRQ�´� suricata-update.readthedocs.io.
https://suricata-update.readthedocs.io/en/latest/ (accessed Nov. 01,
2021).

[14] P. Schroeder, ³(PHUJLQJ�7KUHDWV�)$4�´�Emergingthreats.net, Nov. 11,
2018. https://doc.emergingthreats.net/bin/view/Main/EmergingFAQ
(accessed Mar. 10, 2022).

https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7007.pdf
https://www.usenix.org/legacy/event/lisa99/full_papers/roesch/roesch.pdf
https://www.usenix.org/legacy/event/lisa99/full_papers/roesch/roesch.pdf

	Comparative Study of Snort 3 and Suricata Intrusion Detection Systems
	Citation

	I. Introduction
	II. Related Work
	III. IDS Architectures
	IV. IDS Rules
	V. Evaluation
	A. Experimental Setup
	The environment used was a virtual machine running Ubuntu 18.04.6 LTS as the operating system. The virtual machine used 4 cores and had 4 GB of RAM and 50 GB of disk space. Both Suricata and Snort were installed on the virtual machine and were tested...
	B. Results
	C. Issues

	VI. Conclusion
	References

