
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2022

A Study of Software Development Methodologies A Study of Software Development Methodologies

Kendra Risener

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

 Part of the Engineering Education Commons, Graphics and Human Computer Interfaces Commons,

Programming Languages and Compilers Commons, and the Software Engineering Commons

Citation Citation
Risener, K. (2022). A Study of Software Development Methodologies. Computer Science and Computer
Engineering Undergraduate Honors Theses Retrieved from https://scholarworks.uark.edu/csceuht/103

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact scholar@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1191?utm_source=scholarworks.uark.edu%2Fcsceuht%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.uark.edu%2Fcsceuht%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.uark.edu%2Fcsceuht%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.uark.edu%2Fcsceuht%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/103?utm_source=scholarworks.uark.edu%2Fcsceuht%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

A Study of Software Development Methodologies

An Undergraduate Honors College Thesis
in the

Department of Computer Science and Computer Engineering
College of Engineering
University of Arkansas

Fayetteville, AR

by

Kendra E. Risener
kerisene@uark.edu

April, 2022
University of Arkansas

mailto:kerisene@uark.edu

Abstract

Software development methodologies are often overlooked by software engineers as as-

pects of development that are handled by project managers alone. However, if every

member of the team better understood the development methodology being used, it

increases the likelihood that the method is properly implemented and ultimately used

to complete the project more efficiently. Thus, this paper seeks to explore six com-

mon methodologies: the Waterfall Model, the Spiral Model, Agile, Scrum, Kanban,

and Extreme Programming. These are discussed in two main sections in the paper. In

the first section, the frameworks are isolated and viewed by themselves. The histories,

unique features, and professional opinions regarding the methodologies are explored. In

the second section, the methodologies are compared to one another, particularly within

the context of ideal development environments and methodology advantages and dis-

advantages. It becomes apparent that the Waterfall and Spiral models are immensely

different from the Agile, Scrum, Kanban, and Extreme Programming methodologies.

This is because the Waterfall Model and the Spiral Model are both software develop-

ment life cycle models, which indicates that there is a specific flow and set of rules to

follow when it comes to development. The other methodologies, however, embrace the

idea of flexibility. The process of creating software often changes. For example, a client

could deliver new requirements for the software after development has already begun.

Thus, the Agile-based methods do not attempt to create a rigid step-by-step develop-

ment plan. Rather, they incorporate the idea of embracing change, empowering teams

to accept that their development plan will have to change often. This paper further

explores these considerations with the intention of promoting an interest in learning

about the best ways to go about planning and developing software.

1

Contents

1 Introduction 1
1.1 Background . 1
1.2 Content . 1

2 Development Methodologies 3
2.1 Waterfall Model . 3
2.2 Spiral Model . 7
2.3 Agile . 10
2.4 Scrum . 13
2.5 Kanban . 16
2.6 Extreme Programming . 21

3 Methodology Comparison 26
3.1 Ideal Development Environment . 26
3.2 Advantages and Disadvantages . 27

4 Conclusion 30

5 Glossary 32
5.1 Terminology . 32

6 References 36

1 Introduction

1.1 Background

Many software engineers tend to think about only the lower-level implemen-

tation of a project, which entails the actual process of developing software and, more

generally, coding, but in a world with increasingly complex projects, engineers need

to understand how to create software in an efficient manner. This requires thinking

at a higher level about how designing and developing a system in a particular manner

can be either conducive or harmful to efficient engineering practices. One of the ways

software developers can develop software at a consistent pace that reduces time and

money spent is by following popular, well-defined software development methodologies.

Software development methodologies are a combination of both practices and values.

The practices will help guide the developers on what they need to accomplish and when

they need to accomplish it. The values serve as a simple ethical code that software

engineers should follow. Due to this, understanding the main software development

methodologies is an important endeavor. There are many articles and research papers

done on various software methodologies. This paper will be a study of the general sen-

timents and ideas expressed in these resources in order to promote the research and

consideration of development methodologies as a regular practice.

1.2 Content

This paper will discuss the general features of six popular development method-

ologies. This will include information that would guide an individual to both properly

understand and follow a methodology, such as the specific practices, team roles, meet-

ings, and values that accompany each method. In addition, to give more background

into the methodologies, the general history will also be explored. Each methodology

also has its own unique features and practices. These special features will be studied as

well. While much of what will be mentioned in this paper is idealistic and theoretical, an

effort to consider how methodologies actually work in the real world of software develop-

ment will be made through discussing the general opinions industry professionals have

regarding a particular methodology. Upon considering these varying opinions, one may

1

find that a development methodology may not be as efficient as it theoretically should

be, as different methodologies may thrive used in conjunction with different projects

and environments.

In addition to analyzing the methodologies on an individual basis in the be-

ginning of the paper, comparisons between the methods will be made. For example, the

main development environments that suit each framework will be compared and con-

trasted. The advantages and disadvantages of the methodologies will also be discussed.

The development methodologies that will be discussed in-depth are the Water-

fall Model, the Spiral Model, Agile, Scrum, Kanban, and Extreme Programming meth-

ods. Although the previously mentioned methods are often debated as to whether some

of them can fully be considered methodologies, within the scope of this paper they will

be referred to as both frameworks and methodologies. Frameworks are generally seen as

light-weight methodologies, but there is much disagreement in the project management

world about how and when to differentiate between frameworks and methodologies, and

if this differentiation even matters or if it is merely semantics. Thus, for these reasons,

the Waterfall Model, the Spiral Model, Agile, Scrum, Kanban, and Extreme Program-

ming will all be considered both frameworks and methodologies in order to make reading

this paper more straightforward.

Throughout the content of the thesis, there may be italicized text. It will

appear as follows: example italicized text. Italicized text indicates that a word or group

of words is a key term. Key terms will be explained in the glossary section towards the

end of the paper. This will be done to prevent confusion.

2

2 Development Methodologies

This study will focus on exploring six software development methodologies:

the Waterfall Model, Spiral Model, Agile, Scrum, Kanban, and Extreme Programming.

These methodologies are considered to be some of the most well-known in the field of

software engineering. In order to fully understand what following each of these frame-

works entails, various aspects will be considered. Specifically, a general explanation

of each methodology, the history behind it, its unique features, and general developer

opinions of the methodology will all be discussed.

2.1 Waterfall Model

WHAT IS THE WATERFALL MODEL?

The Waterfall Model is a software development life cycle (SDLC) model. An

SDLC model is a general software development framework or methodology which fol-

lows a specific set of steps in a specific order. For example, in this methodology, the

development process is divided into different phases, and a developer can only proceed

to the next phase when the current phase is complete. The phases do not overlap, mak-

ing development flow sequentially. Due to this, the Waterfall Model is referred to as

a linear-sequential life cycle model. Progress moves downward in the Waterfall Model,

evoking the feeling of a waterfall. The water in a waterfall does not go back up; it

plummets down toward the earth. The Waterfall Model is similar in that once the cycle

starts, the developer has to continue until reaching the end; one cannot go back or flow

upwards to return to previous phases. The only way one can go back to a previous

phase is by starting the development cycle over again.

There are slight variations of the Waterfall Model’s phases. However, the

general consensus is that there are six phases. The first phase is Requirement Analysis.

During this phase, the requirements of the project are discussed with the client. All

requirements are analyzed in order to determine if there are any vague or inconsistent

requirements. These issues are then discussed with the client, who agrees upon a solution

with the development team. Once the requirements are finalized, the requirements for

the system are noted in a software requirement specification (SRS) document. This

3

formal documentation serves as an agreement between the team and the client, outlining

the official specifications of the project.

The second phase is System Design. The development team utilizes the SRS

document and analyzes it to create a design that fulfills all of the client’s requirements.

This phase involves designing the software and specifying the hardware used to develop

the system.

The third phase is Implementation. The software that follows the design for-

mulated in the previous phase is created at this time.

Once the Implementation phase is complete, the fourth phase begins, which is

Testing. There are various tests that can be performed on the newly-created software.

Some of the common tests for software include unit testing, integration testing, and

acceptance testing. Unit tests are done for each block of code with unique functionality

in the system. Integration tests combines the individual functionalities and tests the

system as a whole. Acceptance testing is done by the client. During this process, the

client performs the final tests and decides to accept or reject the software. If the software

is rejected, the team will have to restart the Waterfall Model at the first phase and make

changes to the software requirements.

The fifth phase is Deployment. The software product is released into the real

world according to the client’s release requirements. For example, the software could

be released for the client’s company to use only, or it could be released on the internet,

under the name of the client’s company.

The sixth and final phase is Maintenance. After deploying the software, there

are potential changes that will need to be made. Once the updates are complete, the

new software is then released once more. There are different types of maintenance that

can be done on the software. The three main types of maintenance are corrective main-

tenance, perfective maintenance, and adaptive maintenance. Corrective maintenance is

done to correct issues that were not discovered during testing. Perfective maintenance

is maintenance that enhances the existing functionalities of the product. Adaptive

maintenance occurs if the software needs to be moved to a new environment.

4

Figure 2.1.1: The phases of the Waterfall Model

HISTORY

The Waterfall Model, in modern times, was first formally defined by Winston

Royce in 1970. Royce, a computer scientist working in the software engineering in-

dustry, was privy to the different development styles of complex systems. He wrote a

paper called “Managing the Development of Large Software Systems.” In this paper, he

outlined the Waterfall Model, but he did not endorse following it. He said in this very

paper that “I believe in this concept, but the implementation above is risky and invites

failure” [35]. Despite his disapproval, the article gained traction for the Waterfall Model

because of how simple Royce made the methodology sound.

SPECIAL FEATURES

The Waterfall Model is known for its simplicity. One does not need a certifi-

cation or high level of mastery in order to implement this methodology. This is due to

the fact one only has to follow the six phases in order to correctly apply the Waterfall

Method. There are not any underlying principles or attitudes such as communication,

5

respect, or adaptability that need to be implemented like these are in the other method-

ologies that will be discussed. Thus, the Waterfall Model is not really a philosophy or

general mindset for creating software; it is simply a set of steps a team must follow.

Because of this rigidity, the Waterfall Model does not garner the same excitement and

attention as the Agile-based methods.

GENERAL PROFESSIONAL OPINIONS

The Waterfall Model serves as a basis for many other software development

life cycle models. However, after consulting different resources, the consensus appears

to be that the Waterfall Model is flawed. The Waterfall Model does not work well for

long, complex projects. This is because there is little room for adjustments. When the

development teams need to go back and fix an aspect of the software, the Waterfall

Model has to be either completed until the end of the sixth phase or has to be restarted

entirely. This is unrealistic; a client could change the software requirements in the

middle of a project, or it could be discovered that the original software design is not

very efficient. There are many such scenarios in which the software development process

would require change. The Waterfall Model does not handle the reality of an ever-

changing world of technology. Another unrealistic aspect of the Waterfall Model is the

idea that the phases cannot overlap with one another. The overlapping of phases can

potentially reduce the time of development and the overall cost of the project. Working

on different phases at once simply should not be prohibited in the real world. Despite

the previously mentioned disadvantages of following the Waterfall Model, there are

advantages to using this development method as well. One of the biggest appeals of the

Waterfall Model is its simplicity. Many development methodologies today have many

different ceremonies, philosophies, and practices that have to be followed in order for a

development team to be implementing the methodology as it was intended. However,

with the Waterfall Model, one only has to follow the six basic development phases

of Requirement Analysis, System Design, Implementation, Testing, Deployment, and

Maintenance. In addition, the Waterfall Model focuses on having well-documented

requirements, as evidenced during the Requirement Analysis phase when an official

software requirement specification document is completed. When a software system

6

has documented requirements, it is easier for the developers to see the overall goal of

their project and understand what is needed of them in the design and implementation

processes.

2.2 Spiral Model

WHAT IS THE SPIRAL MODEL?

Similar to the Waterfall Model, the Spiral Model is a software development

life cycle (SDLC) model. The spiral shape is a way to visualize the way development

should occur under this methodology; it should loop until the end of the project when

all of the client’s requirements are addressed. There are four main phases in the Spiral

Model.

The first phase is Planning. This is where communication with the customer

occurs to ensure that the requirements are understood by the development team. The

development team will then take this requirement information and create a general

development plan that addresses basic concerns such as the technologies that should be

used, the delegation of tasks, and budgetary and time guidelines.

In the second phase, Risk Analysis and Mitigation, the developers work to-

gether to discuss the potential risks associated with this project. They also develop

possible solutions to these risks. By the end of this phase, a prototype is created. The

prototype serves as a basic model for the finalized software. By creating a prototype

that can be shown to the customer, the development team is further mitigating risks

and can gain either approval or disapproval from the client for the current design.

The third phase is Development. During this phase, actual software is pro-

duced. The software engineers will take the feedback they received from the prototype

and create software that fulfills the customer’s requirements.

Lastly, the fourth phase is Review and Evaluation. The team will test the

software they created. After the software has been tested and generally approved by

the team, the customer reviews the resulting product. The customer’s feedback from

this phase is used to determine the Planning and Risk Analysis and Mitigation phases

of the next round. However, if the customer indicates during this fourth phase that the

product is completed to their standards, then the development cycle is complete.

7

Figure 2.2.1: The development cycle of the Spiral Model [36]

HISTORY

The creation of the Spiral Model is relatively easy to trace compared to the

other methodologies that were developed more naturally in either the software engineer-

ing or manufacturing fields. It was developed by Barry W. Boehm, a well-accomplished

software engineer, in 1988 in his published article entitled “A Spiral Model of Soft-

ware Development and Enhancement”. He created the Spiral Model as a solution to

the drawbacks of the Waterfall Model, which does not always consider project risks or

changing requirements until close to the completion of the project. He proposed the

Spiral Model as an efficient risk-driven approach to software development. After Boehm

developed the Spiral Model, he conducted research on its efficacy. He created software

productivity system software, and he found that the metrics recorded by the software

indicated that projects that used the Spiral Model increased efficiency. In his research

paper, Boehm claims, “All of the projects fully using the system have increased their

productivity at least 50 percent; indeed, most have doubled their productivity (when

8

compared with cost-estimation model predictions of their productivity using traditional

methods)” [7]. The methods Boehm is referring to in this quotation are the Water-

fall Model and code-and-fix model, which is simply coding and fixing any mistakes that

may arise later. Boehm’s knowledge of software development methodologies comes from

his extensive experience in the software engineering field. He went on to serve as the

U.S. Department of Defense Director of the DARPA Information Science and Technol-

ogy Office from 1989 to 1992. He also worked as Director of the DDRE Software and

Computer Technology Office. He currently holds a distinguished professorship at the

University of Southern California, where he also serves as the Director of the Center for

Software Engineering.

SPECIAL FEATURES

The Spiral Model is unique because it emphasizes the importance of prototyp-

ing. This ensures that the client is able to give feedback on the general implementation

of the project before the team has to entirely finish a product in which the client might

be displeased. The prototypes made when a team follows the Spiral Model mean that

there is opportunity for frequent feedback from the client. Communicating often with

the client will greatly reduce the chance that a product in its final stages will need

drastic changes. The Spiral Model also places high importance on handling risks. This

means that the development team will have to really consider the possible risks and

how to manage those risks before they even start developing software. This is differ-

ent from other popular development methodologies because most processes only deal

with risks as they occur–not before they occur. Overall, this can reduce the number of

catastrophic mistakes that can arise during development. Another special feature of the

Spiral Model is that it has only four phases. This makes it easier to both comprehend

and implement correctly.

GENERAL PROFESSIONAL OPINIONS

The Spiral Model is similar to other software development models in the sense

that there are clear advantages and disadvantages. According to most software devel-

opers, one key advantage is the presence of risk analysis. This can prevent major issues

9

in the development phase. In addition, there is also rapid prototyping. This can serve

as a great guide for the software team and the client alike; they are able to see what

they would and would not like to see in the final product. Another advantage is that

software is produced early in the life cycle of the Spiral Model. This means that there

is faster feedback from clients, and software architecture can be changed more easily.

Furthermore, another common advantage mentioned by developers is that there is a

vast amount of project monitoring. Many developers like to jump in and start cod-

ing straight away. However, the Spiral Model has software engineers take a step back

and really consider potential risks in different approaches and analyze different software

architectures that could be utilized.

Despite the strong advantages of the Spiral Model, there are considerable weak-

nesses that many developers and project managers have found in this SDLC. For ex-

ample, the Spiral Model can be an expensive methodology to follow. This is because

prototypes and deliverables have to be made often for the client. This takes additional

time, and it also takes time away from actually developing the product the client wants

to see. Another disadvantage of the Spiral Model is that the development team has to

be knowledgeable enough to recognize and fix risks beforehand. If the team is working

with a new technology, they may not be aware of potential risks and rush into the

project in spite of the protective measures the Spiral Model takes against risks.

2.3 Agile

WHAT IS AGILE?

Agile was developed to enable software engineering teams to regularly deliver

high-quality executables within budget and on time. Agile is comprised of various de-

velopment methods that have emerged through the years. It is a broad development

methodology; it serves as the basis for many popular, more specific methodologies like

Scrum, Extreme Programming, and Kanban, which will be discussed later in this paper.

Agile is more of a mindset. It doesn’t give hard and fast rules about how one should

develop software. Despite this, there are a few general suggestions that the official Agile

documentation outlines [14]. In an Agile environment, there should be small, spread-out

investments instead of large investments in the beginning of development. In addition,

10

project managers should direct their software engineers to focus on projects and tasks

that promote the reputation and revenue of the company; this ultimately means that

focusing on client satisfaction is highly important. Also, in an Agile environment, there

should be more communication between software team members and business team

members. This ensures that the client is truly getting what they want, and it also cre-

ates a more dynamic environment that limits the number of problems caused by a lack

of communication. The Agile methodology also instructs those in charge to place trust

in staff to work and complete high-quality software. Lastly, one of the most important

tenets of Agile development is being able to adapt. Agile embraces the changing world

of technology; thus, Agile methods promote more flexibility. Agile wants both software

and people that are able to adapt to changes in technology, the company, and the world.

Figure 2.3.1: Main Principles behind Agile [37]

HISTORY

Agile-like principles certainly existed before 2001, but they had never really

been written down or impacted the software world as much as when the Agile Man-

ifesto was released in that year [14]. The Agile Manifesto gave individuals a specific

set of principles and values to follow in order to improve their final products. This

Agile documentation came about in 2001 when leaders in various software development

methodologies such as Scrum and Extreme Programming held a conference to discuss

a way to combat documentation-heavy development processes. Wanting to speed up

the development process and empower programmers to mainly be programming instead

11

of writing reports, they created the Agile Manifesto. In the Agile Manifesto, 12 main

principles are listed. They are as follows: (1) The highest priority is being able to

satisfy the customer through early and continuous software deliverables, (2) be able

to change, (3) deliver working software frequently, (4) business people and developers

need to work together, (5) trust motivated individuals to get the project done, and give

them the tools that they need to succeed, (6) the best way to communicate is with a

face-to-face conversation, (7) working software is the best way to measure progress on a

project, (8) Agile is about sustainable development; software engineers should maintain

a steady pace of development, (9) constantly be aware of good design in the project;

this enhances Agile development and makes development easier later on, (10) simplicity

is crucial, (11) the best designs and architectures arise from self-managing teams, and

lastly (12) teams should meet regularly to discuss how they can become more effective

[14].

SPECIAL FEATURES

Agile is, at its core, a philosophy and a mindset. Because of this, Agile has

shaped many popular development methodologies into what they are today. In addi-

tion, Agile is somewhat vague. This allows developers and project managers to take

what they want from Agile principles and implement it however they see fit.

GENERAL PROFESSIONAL OPINIONS

Dave Thomas was one of the experts who created the Agile Manifesto. He

makes the bold claim that “Agile is dead” [16]. He believes that Agile has been taken

over by corporations and made into a more complicated process than it needs to be.

However, he still strongly believes that Agile is an important idea and is worth having;

it just needs to be reclaimed.

Agile, as Thomas intended it, is a simple framework for how to get work done.

Work can be broken up into “what to do” and “how to do it” categories. For the “what

to do category”, you must first determine where you are in the development process.

From there, make small moves toward completing your goal. Adapt your knowledge or

way of thinking as a result of what you have learned in the project. Do not continue

12

doing the same things you’ve always done once you’ve learned better. Thomas suggests

that you repeat this process for as long as you are a software engineer. Thomas also has

suggestions for the “how to do it” category. When you have the opportunity to make

different choices that will result in roughly the same outcome, choose the development

option that will result in making future changes easier. This is akin to smart coding;

you add comments in your code so that you have a better idea of what you are doing

later; you write clean code. It may take more time to do these things, but it actually

saves you more time and effort in the future.

2.4 Scrum

WHAT IS SCRUM?

Scrum is an iterative and incremental development framework. Much like

Agile, Scrum is focused on flexibility with development. However, unlike Agile, Scrum

has more definitions and specific development ideas. For example, the Scrum framework

outlines the roles employees should have in a Scrum environment. The Scrum team is

a small group of people. It usually consists of a Scrum master, one product owner,

and multiple developers. In the team, Scrum masters are essentially team leads that

have special training in Scrum. They take their knowledge of Scrum and teach it

to the rest of the team to make development more efficient. They are in charge of

monitoring the efficiency of the team regularly. Some Scrum Masters might have some

sort of certification. The Scrum.org organization itself offers three different levels of

certification: Professional Scrum Master Level I (PSMI), Profressional Scrum Master

Level II (PSMII), and Professional Scrum Master Level III (PSMIII). With the PSMI

certification, individuals show a “fundamental level of Scrum mastery.” For PSMII, there

is an “advanced level of Scrum mastery.” For PSMIII, the certificate holder has exhibited

a “distinguished level of Scrum mastery” [18]. Another role on the Scrum team is the

product owner. The product owner manages the product backlog. The Product Backlog

is essentially the list of sprints, or short-development bursts, with specific goals. This

backlog keeps track of all of the sprints and their goals for the current project. In order

to effectively manage the product backlog, the product owner makes sure that everyone

understands the requirement for the upcoming sprints. They also deal with making sure

13

that the product goal gets successfully completed within the Scrum framework.

Scrum is an adaptive framework, but there is a typical Scrum Cycle. First, a

product owner takes the complex goals and requirements of a project and puts them

into a product backlog. Second, the Scrum team decides together what work from the

backlog can be done during one increment. Third, the team takes this decided upon

work and turns it into an “Increment of value” [17]. This is an increment of development

in which the developers are closer to producing the final product. Fourth, the Scrum

team and stakeholders review the results. The feedback from the current sprint will be

used to adjust the approach to the next sprint. These four steps are repeated until the

project is completed.

Scrum is related to Agile in the sense that Scrum applies all of the main prin-

ciples and goals of Agile. Agile has broad, guiding principles, while Scrum has outlined

specific roles in a Scrum Team, whereas Agile leaves the team assignments up to each

specific team applying Agile methods themselves. Some of the key elements of Scrum

are inspection, transparency, and adaptation. The key Scrum values are commitment,

focus, openness, respect, and courage. These elements and values are ultimately very

similar to those of 12 key values of Agile.

14

Figure 2.4.1: The Typical Scrum Sprint [38]

HISTORY

Scrum was developed in the early 1990s. However, the first Scrum Guide

was released in 2010, and additional versions of this guide have been released since

then [42]. They all generally hold the same information: definition of Scrum, Scrum

Values, Scrum Theory, Scrum Team, Scrum Events, and general definitions of common

terms used to describe the Scrum methodology. The Scrum methodology was originally

developed for software development, but other fields have been using both Scrum and

other Agile-based methods, as these methodologies focus on flexibility and efficiency.

Although the first Scrum Guide was released in 2010, the first public paper

about the Scrum framework was published in 1995 by Ken Schwaber. The paper, which

is entitled “SCRUM Development Process”, was created because of the uncertainty of

the software development process [43]. Schwaber was also frustrated with working in

the typical corporate environment at that time. Thus, Schwaber developed Scrum. He

researched and worked on it for around five years, and his main goal was to develop

a software development methodology that would give small teams more control and

mitigate the number of unsuccessful projects due to being out of funds or out of time.

SPECIAL FEATURES

15

Scrum is a lightweight methodology, but there are more “rules” in Scrum than

Agile. For example, it gives guidelines for how to go about improving communication:

have daily meetings called Daily Scrums. This will help the team get a general idea of

where everyone is at in the development process on a daily basis. Scrum also makes

recommendations for how to go about improving project efficiency: dividing up work

into sprints. There area additional special features, particularly in the form of either

Scrum events and roles.

GENERAL PROFESSIONAL OPINIONS

Although Scrum is a popular development framework, there are still com-

plaints. Steven Lowe, a Product Technology Manager at Google, voices these common

complaints. According to him, Scrum focuses too much on project planning and meet-

ings [25]. This emphasis on planning can slow down the software development process,

which is the opposite of what following a methodology is supposed to do. When a

group of developers implement a project management methodology, the main goals are

that the quality of work will increase and the time it takes to complete a project will

decrease. Lowe also claims that companies often impose Scrum on their employees. He

believes that imposing Scrum on individual development teams is anti-Agile. Teams

should be able to make their own decisions regarding what will work best for their

current projects and according to the team members’ expertise. Furthermore, Lowe

believes that companies have ruined Scrum in an attempt to become “Agile”. He states

that companies do not really want to invest the proper time and money into making the

full transition to Scrum; they simply want the benefits of Scrum and Agile development

quickly. This often leads to cutting corners and implementing practices that are not

actually endorsed under the Scrum framework.

2.5 Kanban

WHAT IS KANBAN?

Kanban is another Agile-based development methodology: it embraces change.

Similar to the other project management methodologies, Kanban’s main goal is to reduce

the time it takes to complete a project. The main principles of the Kanban framework

16

can be summarized into three main points. First, one must understand what work they

are doing currently. Second, a computing professional should strive to make evolutionary

changes throughout the development process. Lastly, if following the Kanban method,

workers should be empowered to be leaders in some capacity. These principles guide

the common practices of Kanban.

One of the main practices is visualization. This helps a worker understand

what they are doing and what they need to do. The Kanban methodology utilizes a

kanban board to visualize all of the tasks that need to be done in order to complete a

project. The kanban board is separated by columns. There is usually a column for new

user stories, what needs to be done for the sprint, tasks that are currently in progress,

tasks that are being tested, and completed user stories.

Another common practice of the Kanban methodology is to limit the amount

of work in progress. This means making sure that the development team is focusing on

one aspect of the project at a time. In the Kanban methodology, this is a key practice,

as it can increase the quality of output and create cohesion in the team unit.

An additional practice of the Kanban methodology is managing the work flow.

Managing the flow is determining how often certain people should be working and on

what; it also means determining when a certain deliverable should be finished. Teams

themselves manage the flow according to what will best help complete the project on

time and on budget.

Furthermore, under Kanban, development policies are explicit. Policies should

be well-defined. This means that what needs to be done for a project should be readily

understood by everyone on the team. It also means that the development process as

a whole should be well understood as well. This means that developers should work

within the work in progress limits and general development practices that were defined

by the team in the past.

It is also a common practice to implement feedback loops. Feedback loops are

used in Kanban for the team to take time and see what is and is not working so far and

make changes accordingly.

In addition, Kanban focuses on improving and evolving software engineering

practices incrementally; this means that there are less barriers for any one company to

17

start implementing Kanban. A company can start out with what they are currently

doing and making small changes along the way to make their process more Agile. That

makes it more obtainable for companies to start following the Kanban methodology

sooner.

Jobs in Kanban are kept primarily the same as before. Kanban focuses on

taking the existing development method of your team and evolving it as you work on a

project. This means that you use the roles currently on your team. If you have a team

lead, keep them. If you have a project manager, keep them. Kanban is about adapting

your current development plan incrementally to make it Agile.

In the Kanban framework, there is one single flow for the whole project. How-

ever, there are different times in which feedback loops should ideally be conducted under

this methodology. These feedback loops can occur during the Kanban Meeting, Replen-

ishment Meeting, or Risk Review. The Kanban Meeting is simply a daily standup

meeting. Developers can discuss in general terms what they have been working on and

their current successes or difficulties. The Replenishment Meeting happens on a weekly

basis. The team talks about what they have completed and what they will work on

next. This is essentially sprint planning, but this planning process for Kanban is less

formal. Furthermore, the Risk Review is a monthly meeting in which developers and

the team as a whole talk about potential risks or issues with the software itself or the

delivery method of the software.

18

Figure 2.5.1: Example Kanban Board [39]

HISTORY

In the Japanese language, ”kan” means sign, and ”ban” means board. A

kanban was a shop sign that communicated what was sold in a clear and concise manner.

This became the basis for the Kanban development methodology; it focuses on visual

boards called kanban boards that clearly indicates to everyone in the team what has

been done and what needs to be done for the project.

Kanban was first used as a production method in Toyota factories in the 1950s.

Kanban became more popular in the software development industry after the publica-

tion of “The Agile Manifesto” in 2001. Kanban, for the software engineering field,

was developed on Agile principles. Kanban boards were first used under the Scrum

methodology, but Kanban eventually became its own method. This was because Kan-

ban, which was even more dynamic and flexible than Scrum, helped development teams

with aspects of Scrum development that were not efficient. Some of the aspects Kanban

improved were ensuring a constant flow of work and shortening the time from getting

customer requirements to having a deliverable ready for the customer. Thus, Kanban

19

was seen as a solution to the shortcomings of Scrum.

Similar to other development methodologies, Kanban started gaining more

attention after important literature was published. One of these articles was “Kanban

vs. Scrum - a practical guide” by Henrik Kniberg [29]. It explored the principles of

Kanban, and it was where many developers first learned about the Kanban methodology.

As Kanban grew in popularity from 2010 and beyond, the modern Kanban

method was adopted by industries outside of software development. When more com-

panies and industries started to adopt this method, a book called “Essential Kanban

Condensed” was published in 2016 by Andy Carmichael and David Anderson [44]. It

outlined the goals and principles of Kanban, making it into the development methodol-

ogy that we know today. These principles made Kanban into a fully-fledged methodol-

ogy that software developers are following. Without the principles, Kanban is simply a

fancy to-do list.

SPECIAL FEATURES

One of Kanban’s most unique features is the emphasis on visualization. Through

the use of Kanban boards, developers can see what tasks are listed concisely under each

category. Kanban is also easy to start implementing. With Scrum, for example, you

would have to restructure your team itself to follow the principles of Scrum. However,

the Kanban methodology allows everyone to keep their current roles and make incre-

mental changes to the current process to make it more Agile. In addition, Kanban is

highly flexible. This flexibility is akin to what is found in the Agile framework, but

Kanban offers more concrete ideas for implementing the methodology, such as using a

Kanban board to track what needs to be done. Furthermore, Kanban offers the unique

idea of limiting work. Kanban focuses on limiting work to a specific feature of a project

to ensure rapid development of a particular function and greater team cohesion overall.

GENERAL PROFESSIONAL OPINIONS

Kovair, a software company in Silicon Valley, endorsed an article on their

blog that discusses both the advantages and disadvantages of the Kanban methodology.

This piece was written by Micael Gorman, a professional academic writer who focuses on

20

writing about technology and project management. He writes that one of the advantages

of Kanban is the ease of use [30]. You don’t have to receive any sort of certification

to begin implementing Kanban correctly. In addition, Kanban is highly flexible. This

is key for large projects that are likely going to change over time. Another important

advantage of the Kanban framework is its high level of collaboration. With the kanban

board, the team can see what needs to be done and see what other people are doing. This

promotes collaboration as team members feel like they know what everyone is working

on and are able to see how it relates to their task and overall project completion. There

are, however, two main disadvantages of the Kanban methodology. The first being that

there is a lack of focus. Developers can get distracted because Kanban is so flexible

and much more laid back compared to development methodologies like Scrum, in which

there is a specific amount of time for each sprint already determined at the start of

the sprint. Similarly, there is also a lack of timing. Kanban does not set up specific

deadlines as a key part of its methodology. This means it is up to the team to decide

when to complete a task or a deliverable for the project.

2.6 Extreme Programming

WHAT IS EXTREME PROGRAMMING?

Extreme Programming, commonly referred to as XP, is an Agile software de-

velopment framework. It is considered the most specific Agile framework. It specifically

outlines what practices you should be following in order to be accurately abiding by the

XP framework. XP also details the values one should have if following the framework,

with the first value being communication. Communication is important, but some forms

of communication are better than others. According to the XP framework, the best type

of communication is face-to-face with a whiteboard nearby for visualizing problems. An-

other value is simplicity. To apply this value, you should keep the design of the system

as simple as possible. You should also avoid waste, and only do absolutely necessary

things during development. Thus, you should only think about the project requirements

that you know about; do not worry about potential requirements that could arise in

the future. The third key value is feedback. Under Extreme Programming, constant

feedback is important. It helps teams realize what they are doing right and what they

21

are doing wrong. The fourth is somewhat unconventional; it is courage. We typically

do not associate programming with courage, but XP places much importance on it. In

the XP framework, having courage is accepting and acting on difficult feedback. You

also need to have courage to tell your team what you think is going poorly in the de-

velopment process. The last value is respect. This is fairly simple: respect everyone on

your team, and acknowledge that respect produces better communication.

There are numerous official practices that one must follow in order to accu-

rately be applying the XP methodology. First, if possible, team members should sit near

each other. Face-to-face communication is important while working on a project, and

sitting physically nearby makes it easier to communicate often. If you are following XP,

you must also enforce pair programming. Pair programming is software development by

two people at the same machine. Another practice is the use of stories. Stories describe

what the final product should be able to do in terms of what various users want. Those

who claim to be following XP should also adhere to a weekly development cycle, and the

team can pick a day to meet each week and reflect on progress. Interestingly enough,

the XP methodology wants to take into consideration slack. Teams should account for

some low priority tasks or stories in development cycles that can be dropped in favor of

completing more important tasks. Continuous integration is another key practice. This

means that code is merged often and is always tested right away when it is added to a

larger portion of code. XP also promotes the practice of test-driven development. The

normal basic development path is developing the code, writing tests, running tests, and

repeating the process. The test-first programming flow is first writing failing automated

tests, running the failing tests, developing code that passes the tests, running the tests,

and repeating the process. XP also is in favor of incremental design. This means that

certain features should be developed at a specific time; the whole project should not be

worked on all at once.

XP specifies job roles that people in the organization should have. The official

roles under the Extreme Programming framework are as follows: customer, developer,

tracker, and coach. The customer makes business decisions regarding the project. The

developers realize the stories and work on the project. The tracker is an optional role.

This person would keep track of metrics or information that tracks progress, successes,

22

and areas for improvements. This role is akin to the traditional job of a project man-

ager. The coach role is usually someone who is part of other development teams in the

company. It is someone who has used XP before and can act as a mentor when it comes

to XP practices.

Figure 2.6.1: Main Principles behind XP [40]

Figure 2.6.2: XP’s Feedback Loop [41]

HISTORY

23

Kent Black can be seen as the original thinker behind Extreme Programming.

Black was working for Daimler-Chrysler, an automotive manufacturing group, when he

came up with the basic tenets of XP: improve communication, simplicity is best; ev-

eryone needs feedback, and you need to have courage. Much like the other Agile-based

methods, XP focuses on being able to adapt to constant change. XP takes the typi-

cally simple, ideal practices of software development and pushes it to an extreme. For

example, XP requires code reviews, pair programming, unit testing, and even has the

customer test the functionality themselves.

SPECIAL FEATURES

XP gives detailed instructions on how to apply its principles. It guides de-

velopers on where to sit, how to communicate, when to test, when to meet as a team,

and how to program. This is different from the general Agile framework, as Agile is

fairly open to interpretation. As long as you embrace change and are adaptive, you are

technically following Agile. However, to follow XP, you need to follow the principles as

well as the actual practices of pair programming, like doing a weekly review and sitting

by your team members. XP also places emphasis on getting continuous feedback from

the customer and testing. Testing is important. Under the XP framework, even the

customer tests the product. The flow of programming under XP is unique as well. It

follows a test-first programming pattern, where one would write a failing automated

test, run that failing test, develop code that passes the test, re-run the test, and repeat

that process. This test-driven development makes XP very focused on the outcome of

the project as a whole, as you want to be able to address issues and pass the tests as

quickly as possible.

GENERAL PROFESSIONAL OPINIONS

There are of course benefits and detriments to XP. The pros are that there

is faster development, open communication, and enhanced teamwork. There are also

strong cons. It is difficult to follow XP when the client is not located near the devel-

opment team, as one of the principles is that communication is best when done face to

face. There is also a lack of documentation because of constant changes and stress due

24

to tight deadlines, which is why it is important to include slack.

Many resources also talk about the intense customer involvement required in

XP as a potential issue. It is unrealistic and burdensome to have a customer involved

in every single development change made. There could also be an issue with communi-

cation. Technical individuals and business workers usually speak a different language,

and these workers have jobs outside of communicating with one another. Furthermore,

an on-site customer is expensive, and the customer may not have time to meet with

the development team that often. The customer often has other projects or different

responsibilities.

25

3 Methodology Comparison

After considering the general features and aspects of the six methodologies

in the previous section, this next section will explore the more in-depth study of the

similarities and differences between the methodologies. This section’s scope includes a

discussion of the different development environments in which each methodology ideally

thrives. A development environment can be comprised of various aspects, but in this

context, a development environment will particularly cover the types of projects being

worked on and the types of team members working on the project. In addition, this

section will discuss the general advantages and disadvantages of each framework.

3.1 Ideal Development Environment

Certain projects or development environments are better suited for specific

development methodologies. All Agile-based methods, such as Extreme Programming,

Kanban, Scrum, and Agile itself, thrive in projects that are expected to be complex

and long-lasting. They also are well-suited for changing environments and projects.

These Agile methods address change and flexibility; thus, working on a project that

will change is perfectly suited for these methodologies.

Surprisingly, there are similarities found between Extreme Programming and

the Spiral Model. Although the Spiral Model is a software development life cycle,

it focuses on addressing potential project risks and minimizing those risks. Extreme

Programming also focuses on project risks, especially those projects that may have

issues with the team utilizing foreign technologies. Thus, both XP and the Spiral

Model are good for addressing projects that have high-cost risks associated with them.

In addition to being ideal for projects that are changing, two frameworks are

similar in the way that they promote the development and delivery of executables.

These methodologies are the Kanban method and the Spiral Model. With the Spiral

Model, deliverables are often in the form of prototypes. In the Spiral Model, during

every round of development, a new prototype is finished and shown to the respective

clients and stakeholders. Kanban also focuses on completing deliverables, as Kanban

champions the idea of limiting work in progress. This means that teams can hone in

26

on a specific functionality at a time, which indicates that there are more small-scale

deliverables ready in less time.

The main differences in the ideal project for different methodologies are primar-

ily found in the differences between the Agile-based methods and the Waterfall Model.

The Waterfall Model is best for short projects that are not considered as complex. This

Waterfall method is also good when the requirements are clear, well-documented, and

unlikely to change. The Waterfall Model can also be used on a team that does not

have experience utilizing Agile methods, as learning how to implement the more com-

plex Agile-based frameworks takes practice and dedication. If you have to learn Agile

methods, there is also considerable time taken away from development. Agile-based

methods, however, are the champions of long and complex projects that are often sub-

ject to change. This is because the flow of work each Agile method promotes usually

involves some time to meet with the development team and adjust the development

plan. Through meeting frequently to adjust the development plan and acknowledging

beforehand that change is imminent, these Agile methodologies are the best in industries

and projects with changing requirements.

3.2 Advantages and Disadvantages

Each project management methodology comes with its own set of advantages

and disadvantages. For example, Agile’s main advantage is that it does not attempt to

predict the future. It accepts change and uncertainty, and this gives way to flexibility.

There is also less work in the beginning phases, as there is a lack of formal documentation

that is required under the Agile methodology. This also means that the team can start

working on the project faster. However, even a framework as popular as Agile has

its downsides. There is generally a lack of understanding when one reads the official

Agile literature. What does it actually mean to be Agile? It is very vague, and it

is essentially just a set of principles that one should use to guide their development

process. Due to this, many companies do not implement Agile correctly. They simply

want to reap the benefits, but they do not want to make the investments in time, effort,

and money to actually be an Agile corporation. This is mainly due to the fact that

Agile requires extreme flexibility and familiarity with uncertainty, and most businesses

27

are uncomfortable with a lack of deadlines and documentation.

Unlike Agile, Scrum provides a fairly clear plan for teams to follow. The roles,

such as Scrum master, product owner, and developer, are well defined. Reviewing and

planning also takes place often under the Scrum methodology, which makes it easier to

mitigate design problems earlier in the development process. Having the specific roles

and planning processes to follow are often seen as one of Scrum’s advantages in the

software engineering environment. But there are of course disadvantages to following

such a rigid plan. Scrum focuses so much on project planning and meetings that it

could potentially slow down development if not done properly. Scrum is also considered

to be more complex than Agile, with the specific roles, meetings, and sprints.

While Scrum is known for its complexity, Kanban is actually known for its ease

of use. With Kanban, everyone can keep the same job titles and general responsibilities.

Kanban also has a unique advantage in that it uses a kanban board; this promotes

collaboration, as the whole team can see what others are working on or have already

completed. In addition, the kanban board itself involves a simple, visually-appealing

format that is often liked by developers because they are uncomplicated to implement

and easy to comprehend. Kanban’s ease of use, however, means that there is a lack

of focus in this development. This is because Kanban is a very flexible methodology,

which means that there ideally should not be any set times for sprint completion. There

should only be guidelines and ideals for completion dates.

Extreme Programming’s main strength lies in its development speed. Extreme

Programming (XP) champions the practice of test-driven development. By following

test-driven development, projects can ideally be expected to be completed at a faster

speed than if linear development was used. This is because writing tests first can help

reveal problems in the software more quickly than code without test cases, and it also

gives developers the ability to test isolated pieces of code. Furthermore, another ad-

vantage of following XP is the emphasis it places on open communication. XP makes

it clear that communication should happen frequently during the development process.

Although communication is crucial to any software development project, this commu-

nication could potentially be seen as one of XP’s downsides. XP promotes face-to-face

communication, and with more developers working remotely, that may be difficult for

28

teams to entirely follow. In addition, XP is intensely involved with the customer, and

this is ideal to some extent, but the customer and stakeholders often have other projects

or different responsibilities to attend to as well. This means that they often cannot meet

with the development team as much as the XP framework suggests to do.

Now considering the SDLCs, which are entirely different from the Agile-based

methods, we can see that they have their own challenges and advantages as well. For

the Waterfall Model in particular, this methodology is very simplistic. There are six

simple steps that one must follow. This structured process is easy to follow and places

an emphasis on creating documentation. Because the Waterfall Model is so simplistic,

there are many missing components to this methodology. For example, there is no

feedback step or path in this model. This means that there is not any formal time for

developers to reach out to stakeholders to get feedback. In addition, there is a strict

policy of not overlapping phases. This can be unrealistic in the field, where functions

often have to be worked on at the same time to promote efficient development. Another

main disadvantage of following the Waterfall Model is the lack of acknowledgement of

the uncertainty and change that are found within software development. The Agile

methods embrace change, making them more flexible, while one has to theoretically run

through the entirety of the Waterfall Method again in order to address change.

The Spiral Model is often seen as a more advanced, upgraded version of the

Waterfall Model. This is perhaps because they are both SDLCs. The Spiral Model

places emphasis on risk analysis; this is a major benefit, as this can help prevent major

issues in the development process. Another key benefit of adhering to the Spiral Model

is that prototypes are made often. These prototypes can be used to ascertain how well

the current project progress is coming along, and these prototypes also enable teams to

get feedback from stakeholders. However, the number of prototypes that are created as

a result of following the Spiral Model make this an expensive methodology. In addition,

the time spent planning and doing risk analyses could be considered excessive and take

away time from programming.

29

4 Conclusion

The focus of this paper is on the Waterfall Model, Spiral Model, Agile, Scrum,

Kanban, and Extreme Programming methodologies. These methods were discussed in

a general manner in order to promote better understanding of what the formal docu-

mentation says about how to follow these development frameworks. The same aspects

of each methodology were also discussed. For example, the general practices, roles, and

values are considered in the first part of the paper. The history, professional opinions,

and unique features are also considered. The methodologies are also compared to one

another in another section of the thesis, particularly the best environments and the

advantages and disadvantages relative to other methods.

Within the paper, it was determined that one of the key features championed

by Agile and the similar methodologies of Scrum, Kanban, and Extreme Programming is

flexibility. Software engineering projects are often bound to change. There are elements

of development that cannot be controlled. If we acknowledge that change is going

to happen unexpectedly, it can relieve stress and promote incorporating slack into a

project’s general development plan. Because of embracing change, Agile-based methods

are more likely to be used for larger, more complex projects. Still, the Spiral Model and

the Waterfall Model have their place within the world of software development. They

are more ideal for shorter-term projects in which the requirements are well-defined

and unlikely to change. However, it should be mentioned that much of the research

in this paper is more theoretical in nature, considering that much of the benefits of

following a method arises from following it exactly as it is formally documented; all

the team roles, meetings, and development processes must be exactly the same on

paper as they are in real life. This is entirely unrealistic. People can unintentionally

implement an un-Agile practice when they still say the are prescribing to Agile as a

whole. Thus, we cannot expect software engineers and project managers to always

follow their prescribed methodologies exactly. Because of this, there was an attempt

to include more real-life problems and experiences by including varying professional

opinions of each methodology. These professionals take into consideration how each

methodology is actually implemented within an organization, not how a methodology

30

should ideally be implemented.

The research in this paper was presented with the hope of fostering a general

understanding of common software engineering methodologies. If software engineering

methodologies are better understood, development could be made much more efficient.

This saves companies time and money, and it also saves developers from immense frus-

tration. Additionally, if software engineers focused more on how they should go about

developing their software, they may feel a greater sense of agency over their own projects

and feel as if they have a clearer path as to what needs to be developed at a particular

time. Therefore, by focusing on general aspects of various development frameworks,

this paper strives to foster more interest in development methodologies. If implemented

properly, these methods can be of great importance in the software engineering world,

as mentioned, potentially saving two important resources: time and money. If im-

plemented incorrectly, software methodologies can actually make one’s work flow more

confusing and more inefficient. Thus, researching different methodologies is a worthwhile

endeavor, as it can hold the difference between a successful project and an unsuccessful

project.

With additional time, the scope of this study could be extended to create

practical software that could help individuals who are unsure of which development

methodology they should be using. This software could take the form of a well-designed

survey in which software engineers could input information about their organization,

team, project, and personal opinions. Different answers will have different point values

associated with them. At the conclusion of the survey, the points will be totaled, and

they will fall within a particular range. The range will correlate to an ideal software

development methodology for the information given by the user. The result will then

be presented to the survey taker, who can consider using that methodology for their

project’s development.

31

5 Glossary

These terms are found throughout the paper in italicized text. When relevant,

the vocabulary is explained in the paper, but there are occasions when they are not.

Thus, this glossary will ease any uncertainty about the definition of a term within the

context of the thesis.

5.1 Terminology

Definition 5.2.1. Acceptance testing is a form of testing done by a client. The

client will decide either to accept or reject the software based on how the developers

dealt with the the requirements given to them.

Definition 5.2.2. Adaptive maintenance is a type of maintenance done to preex-

isting software when it needs to be moved to a new platform or host environment.

Definition 5.2.3. The term Agile-based methods refers to the methods that are

similar to Agile. This ultimately means that these methods are flexible and adaptive in

nature.

Definition 5.2.4. In Extreme Programming, the coach role is someone who has ex-

perience working with the Extreme Programming methodology. The coach can guide a

team new to Extreme Programming to ensure that they are implementing it properly

and experiencing its full benefits.

Definition 5.2.5. Continuous integration is a type of integration in which every

individual’s code is merged with the larger code base of the software project through

an automated, regularly-scheduled process.

Definition 5.2.6. Corrective maintenance is a form of maintenance done on re-

leased software. This maintenance occurs when errors that were found in the software

after it went live need to be corrected. After corrective maintenance is performed on

the software, the software is released once more.

Definition 5.2.7. Deliverables are various updates, goods, or services that can be

“delivered” to the customer. Some examples of deliverables are reports, documents, or

working pieces of software.

Definition 5.2.8. The term developers refers to the individuals who work on creat-

32

ing, updating, and maintaining the software in a project.

Definition 5.2.9. There are different types of documentation in the software en-

gineering field. Documentation catalogues the ideas and progress associated with a

project. Different methodologies require varying levels of documentation, which can

take the form of reports or informal notes.

Definition 5.2.10. Executables are pieces of working software that are delivered to

the client to get approval.

Definition 5.2.11. In Kanban, feedback loops encompass the idea that feedback

will be given continuously throughout a project, and the feedback that is given will be

acted upon in some manner.

Definition 5.2.12. Incremental development is the process of building off of the

work done in previous tasks.

Definition 5.2.13. Integration testing is a type of key software testing in which

individual parts are combined to test the functionality of the entire project.

Definition 5.2.14. Iterative development is a type of development in which the larger

pool of work is split into smaller parts to be completed separately.

Definition 5.2.15. A kanban board is the main feature of the Kanban methodol-

ogy. A kanban board is used to visualize the different phases of a task or story. These

items may potentially be in the columns that represent the work being new, in progress,

tested, or complete.

Definition 5.2.16. Kanban offers the idea of limiting work. A team may focus on

specific functionalities or features of a software at a time instead of completing the entire

project at once.

Definition 5.2.17. A linear-sequential life cycle model is a form of development

that follows a particular, direct path of development consistently every time the model

is used.

Definition 5.2.18. Pair programming is a practice endorsed by Extreme Program-

ming. Pair programming is when two engineers develop software together at the same

time on one machine.

Definition 5.2.19. Perfective maintenance is a form of maintenance done to live

software in an effort to enhance existing features of the software.

33

Definition 5.2.20. A product backlog is a concept found in Scrum. A backlog is a

essentially a list of work that the team needs to complete.

Definition 5.2.21. In Scrum, a product owner is the person who manages the prod-

uct backlog. This person additionally manages the team’s progress as well. Thus, the

product owner is akin to a project manager.

Definition 5.2.22. A prototype is a model or portion of software before it is in its

finalized form.

Definition 5.2.23. A retrospective is a meeting held at the end of a project or period

of time to reflect what was successful and unsuccessful in the development process.

Definition 5.2.24. Risks are any stumbling block that can cause a project’s develop-

ment to take too long or cost too much.

Definition 5.2.25. In Scrum, a Scrum master is a person who works closely with the

development team. They serve as a team leader, guide the development of a project,

and provide resources to the developers.

Definition 5.2.26. Self-managing teams are teams that have the power to deter-

mine who completes what task and what software development methodology to follow

without the interference of an external member of the organization or company.

Definition 5.2.27. A single flow is one development pace that is kept consistent

throughout a determined period of time.

Definition 5.2.28. Slack is the idea that lower-priority features could be worked at

a later date. They would ideally be completed by a certain time, but this completion

is not required. This relieves pressure from the software engineers if the higher-priority

items take longer than expected to develop.

Definition 5.2.29. A software development life cycle model (SDLC) is a general

development model in which the steps for work working on software are well-defined and

occur in a particular order.

Definition 5.2.30. A software requirement specification (SRS) document is

formal documentation that outlines the expected functionalities of a software that is

to be completed for a client. If an SRS document is needed for a project, it usually

happens that the client will have to agree on the information outlined in the document

before development proceeds.

34

Definition 5.2.31. Sprints are a predetermined length of time in which outlined de-

velopment tasks are to be completed.

Definition 5.2.32. Stakeholders are all individuals who have an interest or claim in

the success of a project that is being developed.

Definition 5.2.33. Stories are development features or tasks.

Definition 5.2.34. A system refers to software developed in a project that works

together.

Definition 5.2.35. Test-driven development is a process in which failing tests are

written first before any functionality is developed. After the tests have been created,

code is written to pass the tests.

Definition 5.2.36. In Extreme Programming, a tracker is an optional team role. A

tracker would keep track of a team’s progress and provide them with metrics that show

the efficiency of their development. A tracker is similar to a traditional project manager.

Definition 5.2.37. Unit testing is testing done on a specific, small portion of the

code to test stand-alone functionality.

35

6 References

[1] SDLC - Waterfall Model. (n.d.). Retrieved from https://www.tutorialspoint.

com/sdlc/sdlc_waterfall_model.htm.

[2] GeeksforGeeks. (2021, October 21). Software Engineering: Classical Waterfall
Model. GeeksforGeeks. Retrieved from
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/.

[3] Hughey, D. (2009). Comparing Traditional Systems Analysis and Design with
Agile Methodologies. The Traditional Waterfall Approach. Retrieved from https:

//www.umsl.edu/~hugheyd/is6840/waterfall.html.

[4] SDLC - Overview. tutorialspoint. (n.d.). Retrieved from https://www.tutorialspoint.

com/sdlc/sdlc_overview.htm.

[5] GeeksforGeeks. (2020, May 10). Advantages and Disadvantages of using Spiral
Model. GeeksforGeeks. Retrieved from
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-using-spiral-model/.

[6] IEEE. (n.d.). Barry Boehm. IEEE Computer Society. Retrieved from https:

//www.computer.org/profiles/barry-boehm/.

[7] B. W. Boehm, “A Spiral Model of Software Development and Enhancement,” in
Computer, vol. 21, no. 5, pp. 61-72, May 1988, doi: 10.1109/2.59.

[8] Gershick, Z. Z. (1994, January 17). Barry Boehm Named TRW Professor in Software
Engineering. USC News. Retrieved from
https://news.usc.edu/7503/BARRY-BOEHM-NAMED-TRW-PROFESSOR-IN-SOFTWARE-ENGINEERING/.

[9] Cooke, J. L. (2016). Agile - An Executive Guide: Real results from IT budgets.
It Governance Pub.

[10] Agile Alliance. (n.d.). Agile 101. Agile Alliance. Retrieved from https://www.

agilealliance.org/agile101/.

[11] Visual Paradigm. (n.d.). Agile Development: Iterative and Incremental. Visual
Paradigm. Retrieved from
https://www.visual-paradigm.com/scrum/agile-development-iterative-and-incremental/.

[12] Highsmith, J. (2001). History: The Agile Manifesto. Agile Manifesto. Retrieved
from https://agilemanifesto.org/history.html.

[13] Rigby, D., Sutherland, J., Takeuchi, H. (2016, April 20). The Secret History of
Agile Innovation. Harvard Business Review. Retrieved from https://hbr.org/2016/

04/the-secret-history-of-agile-innovation.

[14] Agile Manifesto. (2001). Principles Behind the Agile Manifesto. Agile Manifesto.
Retrieved from https://agilemanifesto.org/principles.html.

[15] Haworth, S. (2021, January 15). Agile Vs Waterfall: When To Use How To

36

https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://www.umsl.edu/~hugheyd/is6840/waterfall.html
https://www.umsl.edu/~hugheyd/is6840/waterfall.html
https://www.tutorialspoint.com/sdlc/sdlc_overview.htm
https://www.tutorialspoint.com/sdlc/sdlc_overview.htm
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-using-spiral-model/
https://www.computer.org/profiles/barry-boehm/
https://www.computer.org/profiles/barry-boehm/
https://news.usc.edu/7503/BARRY-BOEHM-NAMED-TRW-PROFESSOR-IN-SOFTWARE-ENGINEERING/
https://www.agilealliance.org/agile101/
https://www.agilealliance.org/agile101/
https://www.visual-paradigm.com/scrum/agile-development-iterative-and-incremental/
https://agilemanifesto.org/history.html
https://hbr.org/2016/04/the-secret-history-of-agile-innovation
https://hbr.org/2016/04/the-secret-history-of-agile-innovation
https://agilemanifesto.org/principles.html

Implement Hybrids. The Digital Project Manager. Retrieved from
https://thedigitalprojectmanager.com/agile-vs-waterfall/#2-which-methodology-use.

[16] GOTO Conferences. (2015, July 14). Agile is Dead • Pragmatic Dave Thomas
• GOTO 2015 [Video]. YouTube. Retrieved from https://www.youtube.com/watch?

v=a-BOSpxYJ9M.

[17] Scrum.org. (n.d.). What is Scrum? Scrum.org. Retrieved from https://www.

scrum.org/resources/what-is-scrum.

[18] Scrum.org. (n.d.). What is a Scrum Master? Scrum.org. Retrieved from https:

//www.scrum.org/resources/what-is-a-scrum-master.

[19] Scrum.org. (n.d.). What is a Product Owner? Scrum.org. Retrieved from
https://www.scrum.org/resources/what-is-a-product-owner.

[20] Scrum.org. (n.d.). What is a Product Backlog? Scrum.org. Retrieved from
https://www.scrum.org/resources/what-is-a-product-backlog.

[21] Scrum Guides. (n.d.). The 2020 Scrum Guide. Scrum Guide — Scrum Guides.
Retrieved from https://scrumguides.org/scrum-guide.html.

[22] Lobellova, V. (2020, January 22). The History of Scrum: How, when and why.
ScrumDesk, Meaningfully Agile. Retrieved from
https://www.scrumdesk.com/the-history-of-scrum-how-when-and-why/.

[23] Wood, M. (2013). Why You’re Confusing Frameworks with Methodologies. Project
Management. Retrieved from https://www.projectmanagement.com/articles/278600/

why-you-re-confusing-frameworks-with-methodologies.

[24] Srivastava, A., Bhardwaj, S., Saraswat, S. (2017). Scrum model for Agile method-
ology. 2017 International Conference on Computing, Communication and Automation
(ICCCA). https://doi.org/10.1109/ccaa.2017.8229928

[25] Lowe, S. A. (2019, June 26). Why Scrum sucks. TechBeacon. Retrieved 2021,
from https://techbeacon.com/app-dev-testing/why-scrum-sucks.

[26] Agile Alliance. (2021, March 4). What is Kanban? Agile Alliance. Retrieved
2021, from
https://www.agilealliance.org/glossary/kanban/#q=~(infinite~false~filters-\

protect\@normalcr\relax(postType~(~’page~’post~’aa_book~’aa_event_session~’

aa_experience_report~’aa_glossary~’aa_research_paper~’aa_video)~tags~(~’

kanban))~searchTerm~’~sort~false~sortDirection~’asc~page~1).

[27] Rehkopf, M. (n.d.). Kanban vs Scrum. Atlassian. Retrieved from https://www.

atlassian.com/agile/kanban/kanban-vs-scrum.

[28] Kukhnavets, P. (2021, September 28). What is Kanban Board: Tasks, Workflows,
Processes. Hygger.io. Retrieved from https://hygger.io/guides/agile/kanban/

kanban-boards/.

37

https://thedigitalprojectmanager.com/agile-vs-waterfall/#2-which-methodology-use
https://www.youtube.com/watch?v=a-BOSpxYJ9M
https://www.youtube.com/watch?v=a-BOSpxYJ9M
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-a-scrum-master
https://www.scrum.org/resources/what-is-a-scrum-master
https://www.scrum.org/resources/what-is-a-product-owner
https://www.scrum.org/resources/what-is-a-product-backlog
https://scrumguides.org/scrum-guide.html
https://www.scrumdesk.com/the-history-of-scrum-how-when-and-why/
https://www.projectmanagement.com/articles/278600/why-you-re-confusing-frameworks-with-methodologies
https://www.projectmanagement.com/articles/278600/why-you-re-confusing-frameworks-with-methodologies
https://doi.org/10.1109/ccaa.2017.8229928
https://techbeacon.com/app-dev-testing/why-scrum-sucks
https://www.agilealliance.org/glossary/kanban/#q=~(infinite~false~filters-\protect \@normalcr \relax (postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'kanban))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/kanban/#q=~(infinite~false~filters-\protect \@normalcr \relax (postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'kanban))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/kanban/#q=~(infinite~false~filters-\protect \@normalcr \relax (postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'kanban))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/kanban/#q=~(infinite~false~filters-\protect \@normalcr \relax (postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'kanban))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.atlassian.com/agile/kanban/kanban-vs-scrum
https://www.atlassian.com/agile/kanban/kanban-vs-scrum
https://hygger.io/guides/agile/kanban/kanban-boards/
https://hygger.io/guides/agile/kanban/kanban-boards/

[29] Kanban Tool. (2021, November 8). History of Kanban. Kanban Tool. Retrieved
from https://kanbantool.com/kanban-guide/kanban-history.

[30] Gorman, M. (2020, December 22). Scrum VS Kanban: Weighing Their Pros and
Cons. Kovair Blog. Retrieved from
https://www.kovair.com/blog/scrum-vs-kanban-pros-and-cons/.

[31] Agile Alliance. (2021, March 10). What is Extreme Programming (XP)? Agile Al-
liance. Retrieved from https://www.agilealliance.org/glossary/xp/#q=~(infinite\

protect\@normalcr\relax~false~filters~(postType~(~’post~’aa_book~’aa_event_

session~’aa_experience_report~’aa_glossary~’aa_research_paper~’aa_video)

~tags~(~’xp))~searchTerm~’~sort~false~sortDirection~’asc~page~1).

[32] Hutagalung, W. (2006). Extreme Programming. Retrieved 2021, from https:

//www.umsl.edu/~sauterv/analysis/f06Papers/Hutagalung/.

[33] Buencamino, P. (2013). Extreme Programming. Retrieved 2021, from https://

www.umsl.edu/~sauterv/analysis/Fall2013Papers/Buencamino/Extreme%20Programming/

ExtremeProgramming.html.

[34] Panayotova, E. (2018, December 24). What Are the Pros and Cons of Extreme Pro-
gramming (XP)? Simple Programmer. Retrieved 2021, from https://simpleprogrammer.

com/pros-cons-extreme-programming-xp/.

[35] Royce, W. (1970). Managing the Development of Large Software Systems. Retreived
2021, from http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf.

[36] Image Courtesy of GeeksforGeeks, from https://www.geeksforgeeks.org/advantages-and\

-disadvantages-of-using-spiral-model/.

[37] Image Courtesy of Project Management, from https://project-management.com/

agile-manifesto/.

[38] Image Courtesy of Wrike, from https://www.wrike.com/scrum-guide/scrum-sprints/.

[39] Image Courtesy of Wikipedia, from https://en.wikipedia.org/wiki/Kanban_

(development).

[40] Image Courtesy of agility.im, from https://agility.im/frequent-agile-question/

what-is-extreme-programming/.

[41] Image Courtesy of digite, from https://www.digite.com/agile/extreme-programming-xp/.

[42] Scrum Alliance. (2010). Scrum Guide. Retrieved 2021, from https://res.

cloudinary.com/mitchlacey/image/upload/v1589750495/Scrum_Guide_v1_Scrum_Alliance_

qe0y2w.pdf

[43] Schwaber, K. (1995). SCRUM Development Process. Retrieved 2021, from http:

//www.jeffsutherland.org/oopsla/schwapub.pdf.

[44] Anderson, D., Carmichael, A. (2016). Essential Kanban Condensed. Retrieved

38

https://kanbantool.com/kanban-guide/kanban-history
https://www.kovair.com/blog/scrum-vs-kanban-pros-and-cons/
https://www.agilealliance.org/glossary/xp/#q=~(infinite\protect \@normalcr \relax ~false~filters~(postType~(~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'xp))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/xp/#q=~(infinite\protect \@normalcr \relax ~false~filters~(postType~(~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'xp))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/xp/#q=~(infinite\protect \@normalcr \relax ~false~filters~(postType~(~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'xp))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/xp/#q=~(infinite\protect \@normalcr \relax ~false~filters~(postType~(~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'xp))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.umsl.edu/~sauterv/analysis/f06Papers/Hutagalung/
https://www.umsl.edu/~sauterv/analysis/f06Papers/Hutagalung/
https://www.umsl.edu/~sauterv/analysis/Fall2013Papers/Buencamino/Extreme%20Programming/ExtremeProgramming.html
https://www.umsl.edu/~sauterv/analysis/Fall2013Papers/Buencamino/Extreme%20Programming/ExtremeProgramming.html
https://www.umsl.edu/~sauterv/analysis/Fall2013Papers/Buencamino/Extreme%20Programming/ExtremeProgramming.html
https://simpleprogrammer.com/pros-cons-extreme-programming-xp/
https://simpleprogrammer.com/pros-cons-extreme-programming-xp/
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
https://www.geeksforgeeks.org/advantages-and\-disadvantages-of-using-spiral-model/
https://www.geeksforgeeks.org/advantages-and\-disadvantages-of-using-spiral-model/
https://project-management.com/agile-manifesto/
https://project-management.com/agile-manifesto/
https://www.wrike.com/scrum-guide/scrum-sprints/
https://en.wikipedia.org/wiki/Kanban_(development)
https://en.wikipedia.org/wiki/Kanban_(development)
https://agility.im/frequent-agile-question/what-is-extreme-programming/
https://agility.im/frequent-agile-question/what-is-extreme-programming/
https://www.digite.com/agile/extreme-programming-xp/
https://res.cloudinary.com/mitchlacey/image/upload/v1589750495/Scrum_Guide_v1_Scrum_Alliance_qe0y2w.pdf
https://res.cloudinary.com/mitchlacey/image/upload/v1589750495/Scrum_Guide_v1_Scrum_Alliance_qe0y2w.pdf
https://res.cloudinary.com/mitchlacey/image/upload/v1589750495/Scrum_Guide_v1_Scrum_Alliance_qe0y2w.pdf
http://www.jeffsutherland.org/oopsla/schwapub.pdf
http://www.jeffsutherland.org/oopsla/schwapub.pdf

2021, from https://dl.acm.org/doi/10.5555/3052276.

39

https://dl.acm.org/doi/10.5555/3052276

	A Study of Software Development Methodologies
	Citation

	Introduction
	Background
	Content

	Development Methodologies
	Waterfall Model
	Spiral Model
	Agile
	Scrum
	Kanban
	Extreme Programming

	Methodology Comparison
	Ideal Development Environment
	Advantages and Disadvantages

	Conclusion
	Glossary
	Terminology

	References

