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Introduction 

 One of the most lethal aspects of cancer is its ability to migrate from a primary 

tumor site to almost any other location in the body through the bloodstream or lymphatic 

system in a process called metastasis. A study done by Fidler in 2003 showed about 

90% of fatal cancers metastasize, underscoring the importance of early metastatic-

potential detection within tumors1. Understanding the environmental factors and 

signaling molecules that lead to metastasis could provide an answer as to what causes 

the metabolic shift within the tumor that enables it to metastasize. One of the main 

contributors responsible for this metabolic shift to a more aggressive, metastatic state is 

a transcription factor known as hypoxia-inducible factor (HIF-1), a protein highly 

influenced by the presence of reactive oxygen species (ROS). 

Reactive Oxygen Species 

 During respiration, oxygen serves to take up electrons exiting the electron 

transport chain and form water. During this reduction of oxygen gas into water, many of 

the partial intermediates are kept within Complex IV2. However, occasionally an electron 

may leak from another location along the electron transport chain, causing oxygen gas 

to spontaneously reduce to superoxide. Superoxide is a precursor to many ROS, 

including hydrogen peroxide and hydroxyl radical3,4. These highly oxidative chemicals 

can be damaging to nearly any molecular structure. ROS can exit the mitochondria into 

the cytosol via voltage-dependent anion channels 2,5. If ROS penetrate the nucleus of 

the cell, DNA may be damaged, leading to mutations. To prevent this from happening, 

cells have ROS scavenging mechanisms using enzymes, such as catalase, reduced 

glutathione, and other molecules with antioxidant properties.   
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 ROS have been heavily implicated in the endothelial to mesenchymal transition 

(EMT), a process in which cancer stem cells (CSCs) transition into a more metastatic 

phenotype, as well as field cancerization6. In numerous studies, ROS were found to 

activate various pathways, such as the Notch signaling and TAK1 pathways 6,7. In other 

studies, ROS have also been shown to maintain CSCs via the NF-κB pathway, in turn 

causing resistance to chemotherapy and radiotherapy6,8. Chronic exposure to high 

concentrations of H2O2 has been shown to promote the malignant transformation of 

fibroblasts and epithelial cells, pointing to the formation of a pre-malignant field 9–11. 

 When rate of ROS scavenging is out of equilibrium with the rate of ROS 

production, this results in a state known as oxidative stress. The main biochemical 

pathway involved in the detection of oxidative stress within normal cells, and the 

promotion of metastasis within cancer cells, is the HIF-1 pathway. 

The HIF-1 Pathway 

 HIF-1 is divided into two subunits: HIF-1α and HIF-1β. The HIF-1β subunit 

functions as a constitutively expressed aryl hydrocarbon receptor nuclear translocator, 

but the HIF-1α subunit functions as a hypoxia-signaling transcription factor12,13. 

Upstream from HIF-1α, prolyl hydroxylase domain (PHD) enzymes catalyze the binding 

of the Von Hippel (VHL) complex to HIF-1α under normoxic conditions, marking HIF-1α 

for ubiquitination. Under hypoxic conditions, the VHL complex is unable to bind to HIF-

1α due to the absence of oxygen-containing hydroxyl groups, resulting in the 

accumulation of HIF-1α. Sufficient accumulation of HIF-1α in the cytosol allow it to 

penetrate the nucleus, binding to the HIF-1β subunit and forming HIF-1. The HIF-1 

transcription factor then binds to hypoxia response elements (HREs) in the DNA12,13. 
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This binding of HIF-1 to the HREs leads to upregulation of HIF-1 activated proteins such 

as vascular endothelial growth factor (VEGF), which encourage angiogenesis, initiate a 

switch to anaerobic metabolism, and other effects that lead to increased survivability 

and motility (Fig. 1)12,14. 

Because oxygen accepts electrons when they exit the electron transport chain, a 

lack of oxygen within the mitochondria results in increased generation of ROS at 

Complex III. When cells lacking Complex III are in a 1.5% O2 environment, HIF-1α 

expression is significantly attenuated, indicating that the ROS produced at Complex III 

are both required and sufficient for HIF-1α stabilization15. When ROS generation 

increases because of hypoxia, HIF-1α expression also increases. With increased HIF-

1α expression, HIF-1α helps to counteract ROS-induced cell death by decreasing ROS 

levels within the cell. This same mechanism also enables cells with high levels of HIF-

1α expression to be radiation-resistant16. 
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Figure 1. Molecular pathway chart displaying effects of normoxia (red lines), hypoxia (blue 
lines), normoxia and hypoxia (green lines) on HIF-1α, as well as downstream effects from HIF-
1α. One pathway of particular interest in this study is the path leading from hypoxia to nitric 
oxide (NO)/reactive oxygen species (ROS), and from ROS to the stabilization of HIF-1α. 
Additionally, the inhibitory normoxia pathway shows how HIF-1α is degraded in the presence of 
oxygen. (IMG: Muz) 
 

Defining Hypoxia and Normoxia 

 As shown in Figure 2, tumor oxygenation state is a function of supply and 

demand. On the supply side of the equation, oxidative stress can be brought about 

when the vasculature forms shunt flows around the tumor, contains low pO2, is not 

dense, or is arranged haphazardly17. On the demand side of the equation, tumors often 

undergo stages of rapid proliferation during development. As a result of this rapid 

proliferation of cells within the tumor, some cells experience brief periods of time in 

which the concentration of oxygen within the tumor microenvironment is lower than 

normal due to the imbalance of oxygen consumption and oxygen supply17,18. During this 
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period of imbalance, the tumor often undergoes two forms of hypoxia simultaneously 

due to the distance of diffusion for cells further from blood vessels and the variations in 

red blood cell flux through the microvessels18. Intermittent hypoxia, or high frequency 

hypoxia, occurs over short periods of time, each hypoxic period lasting about 15-20 

minutes19. Chronic hypoxia lasts for longer periods of time, with periods lasting 

anywhere from hours to days. A popular analogy used to describe the relationship of 

these two types of hypoxia is the relationship between tides and waves in an ocean17. 

Since it may be difficult to critically examine the effects both types of hypoxia have on 

the HIF-1α pathway in vivo, there is a need to examine both forms of hypoxia on a 

cellular level under controlled oxygenation conditions. 

 Traditionally, a hypoxic environment is defined as one in which the concentration 

of oxygen is low enough to induce oxidative stress within cells. However, this definition 

becomes more complex when attempting to emulate physiological hypoxia in-vitro. 

When attempting to emulate the oxidative environment of a specific organ, it is 

important to consider the oxidative characteristics of that organ. For example, liver and 

kidney tissue display pronounced physiological O2 gradients that have been visualized 

using VEGF (downstream product of HIF-1)20,21. Under in-vitro conditions, it is essential 

that as much as possible is done to ensure that pericellular O2 levels are as close to the 

desired O2 levels as possible. Since the oxygen diffusion limit is only about 100-200 

µm, the depth of media within a cell plate should be minimized 20,22–24. Some strategies 

for verifying pericellular O2 levels include using phosphorescent dyes or gas-permeable 

plates. However, these methods do have their drawbacks. For example, many adherent 

cells do not adhere well to gas-permeable plates 20.  
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 The definition of normoxia is also one that can vary by context. Early in hypoxia 

research, many researchers considered the concentration of oxygen in the air humans 

breathe (also known as “headspace” air), which is 21% O2, to be normoxic. However, 

upon additional consideration, the definition of normoxia has evolved to take the 

physiological conditions of the tumor microenvironment into account 20. When 

examining the efficiency at which the alveoli of the lungs convert atmospheric oxygen 

into blood oxygen, it becomes obvious that this 21% number is much closer to 

hyperoxic levels than normoxic level20. The oxygenation status of different tissues in the 

body is not thoroughly defined, but some studies state a median O2% of 6.8-8.5% 

within tissue surrounding breast cancer tumors14,25,26. 

 

 

Figure 2. Flowchart depicting causes of hypoxia in-vivo. The top half of the figure shows various 
factors that impact oxygen supply to the tumor. The bottom half shows that O2 consumption can 
also impact the overall oxygenation state of the tumor. (IMG: Vaupel) 
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Interaction Between Hypoxia, Metabolism, and Metastasis 

 Perhaps at risk of oversimplification, the interaction between hypoxia, 

metabolism, and metastasis can be described in terms of two transitions: hypoxia leads 

to changes in metabolism (mainly through the HIF-1α pathway) and changes in 

metabolism lead to changes in metastatic behavior. In many contexts, cancer can be 

thought of as a car with no brakes and full acceleration. Tumor cells can use the main 

mechanisms of metabolism, glycolysis and oxidative phosphorylation (OXPHOS), at 

maximum efficiency under different tumor microenvironments (TME) to create this “full 

acceleration” effect for growth and proliferation. Under normal conditions, normal cells 

use oxidative phosphorylation in the mitochondria to produce most adenosine 

triphosphate (ATP), while cancer cells turn to glycolysis for ATP production, resulting in 

a decreased dependency on oxygen. This switch to glycolysis under anaerobic 

conditions is a well-known phenomenon called the Warburg effect27. 

 This switch in metabolism is chiefly brought about by a hypoxic change to the 

TME. Under hypoxia, the HIF-1α transcription factor facilitates the upregulation of genes 

such as GLUT-1 and PDK, which in turn increase glucose uptake28,29. This change to a 

more glycolytic metabolic profile allows the tumor cell to become less dependent on 

oxygen for energy. As a result of increased angiogenesis due to HIF-1α stabilization, 

blood vessels become more permeable to cells, allowing for metastasis14,30. A 2018 

study revealed three types of breast cancer cells lines were 1.5-3 times more likely to 

engage in extravasation under hypoxic stress31. In most cases, regardless of tumor 

phenotype, hypoxia within the TME leads to less favorable outcomes for the patient. 

Objectives 
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It is well known that tumor cells are often hypoxic and nutritionally deficient in 

vivo, so this project attempts to simulate these conditions in vitro32. The goal of project 

is to develop a clear understanding of how ROS signaling, and ultimately HIF-1α 

expression, are affected by intermittent and chronic hypoxia environments within murine 

breast cancer tumor cells of high and low metastatic potential. Based on previous 

research, the results should indicate that ROS generation will be greatly increased 

under intermittent hypoxia compared to chronic hypoxia, under nutrient-poor conditions 

compared to low-nutrient conditions, and for both metastatic cells compared to 

nonmetastatic cells. There should also be an initial increase in ROS production from 

both the metastatic and nonmetastatic cell lines, followed by a decrease in ROS 

production in the 4T1 cells, due to increased survivability.  

 

Experimental Methods 

Pilot Experiment – Cells were plated at a density of 150k cells per 35 mm2 dish, 

treated with menadione sodium bisulfite at a concentration of 30 μM dissolved in 

distilled water, and incubated for 1 hour at 37 ̊C. Menadione, also known as Vitamin K3, 

is a polycyclic aromatic ketone that induces the production of ROS within cells via redox 

cycling. Low concentrations of menadione mimic the oxidative stress experienced by 

tumors in vivo. After the first incubation period, CellROX Deep Red (Invitrogen, 

Carlsbad, California) was added to each plate at a final concentration of 5 μM. Cells 

were imaged according to protocol outline in ROS imaging section. 

 Cell Culture – The 4T1 (metastatic) and 67NR (nonmetastatic) murine breast 

cancer cells were cultured using Dulbecco’s Modified Eagle’s Medium (DMEM) 
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supplemented with 10%(v/v) of Fetal Bovine Serum (FBS), 2 mM L-Glutamine, 1% (v/v) 

nonessential amino acids, and 1%(v/v) penicillin-streptomycin in a humidified incubator 

that was set to 5% CO2 and 37 ̊C. Cells were passaged when 80% confluent and 

experimented on within the first 4 passages. 

 Hypoxia Exposure Procedure – A dual gas controller (Oxycycler C42, Biospherix, 

Parish, NY) connected to a modular sub-chamber was used to control oxygen, nitrogen, 

and carbon dioxide levels. The modular sub-chamber, which housed the cell plates, was 

placed inside an incubator. For chronic hypoxia, the gas controller was set to a constant 

level of 1% O2 and 5% CO2 for different lengths of time for each experiment. For 

intermittent hypoxia, the controller was set to cycle between 1% O2 and 8% O2 , with 

each hypoxia/normoxia period lasting 30 minutes. Total hypoxic exposure time for the 

intermittent physiological experiment matched that of the chronic physiological hypoxia 

experiment (Fig. 3). 
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Figure 3. Graphic depicting experimental conditions 

  

Figure 4. Picture of hypoxia chamber setup (left). Diagram of CellROX treatment protocol 
(right). 
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ROS Imaging – The cells were treated with the CellROX Deep Red (Invitrogen, 

Carlsbad, California) oxidative stress probe at a concentration of 5 μM and incubated for 

30 minutes at 37 C̊ at each time point. After incubation, the cells were subsequently 

fixed with formalin (3.7% formaldehyde) for 15 minutes and imaged with a Fluoview 

FV10i confocal laser scanning biological microscope (Olympus, Tokyo, Japan) at 

640/665 nm excitation/emission wavelengths (Fig. 4). For each pilot experiment, 3 

plates were imaged per group. For each hypoxia experiment, 3 plates were imaged at 

each timepoint. However, two plates were removed from the baseline group in the 

67NR chronic hypoxia experiment due to low cell density, and one plate was removed 

from the 4T1 physiological chronic hypoxia experiment due to photobleaching. Plates 

were imaged at 3 ROIs at 60x for the pilot experiments and 10x using a 3x3 grid for the 

hypoxia experiments. All images were taken at 49.6% sensitivity and 60% laser power. 

Non-physiological (Non-Phys) vs. Physiological (Phys) condition – In the non-

physiological condition, the cells (150k/confocal plate) were supplied with 1mL of the 

media recipe mentioned in the cell culture section. In the physiological condition, the cell 

culture media was diluted 1:5 using DI water to simulate the low-nutrition environment 

typically found in hypoxic areas of a tumor and normoxia was defined as 8% O2. 

Additionally, taking the oxygen diffusion limit into consideration, the volume of media in 

each plate was minimized to allow for maximal gas diffusion into the cells. It was 

determined that 600 μL of diluted media was the minimal volume of media that could be 

used without drying up. 
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Image Analysis – Images collected from the Fluoview FV10i confocal microscope 

were analyzed according to pixel-by-pixel fluorescent intensity from the CellROX Deep 

Red probe. Each image, in the TIFF format, was loaded into MATLAB, normalized to 

the maximum possible intensity value, and given a threshold value based on Otsu’s 

method. Every pixel below the threshold value was labeled as ‘dark’ and every pixel 

greater than 0.9 was labeled as ‘saturated’. The number of dark and saturated pixels 

were input into a function used to “stretch” the histogram by setting dark pixels to 0 and 

saturated pixels to 1. Next, the histogram was created using 216 bins for optimal 

resolution. After creating histograms for each image, all histograms for each group were 

combined into one histogram using a cumulative sum of counts. The count number was 

then normalized to the total number of pixels less than 1 and greater than 0. Gaussian 

fits were generated using the Curve Fitter Tool in MATLAB. 
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Results 

 

Figure 5. Each image of 67NR cells is represented by the histogram below it. From left to right, 
the images show cell in the control group, menadione negative group, and menadione positive 
group. As shown in each image-histogram pair, a darker image corresponds to a more left-
shifted peak in the histogram. 
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Figure 6. Histograms displaying intensity normalized to max intensity value (x-axis) and counts 
normalized to total number of counts in the sample (y-axis). Comparing the left and right graphs 
reveals differences in response between M- and M+ groups. Comparing the top and bottom 
graphs reveals differences in response between cell lines. 
 
 

 

A B 

C D 
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Figure 7. Each of the histograms in this figure are cumulative sums of each group normalized to 
the max intensity value (x-axis) and the total number of pixels for each group. Every pair of plots 
shows how the ROS generation profiles change over time under the different conditions: A) 
physiological vs. non-physiological, B) chronic vs. intermittent Hypoxia, and C) 67NR vs. 4T1 
cell lines under chronic hypoxia. 

A 

B 

C 



16 
 

 

Figure 8. Distribution plots comparing intensity distributions for each experimental condition. 
The boxes in red on the left of each graph represent one experimental condition, while the 
boxes on the left in blue represent the other experimental condition. Left) One instance of 
significant difference was detected between groups and four were detected within groups. 
Middle) Two instances of significant difference were detected between groups and two were 
detected within the non-phys group. Note, only similar time points were statistically compared 
for the nutrition condition. Right) Four instances of significant difference were detected between 
groups and five were detected within groups. (*p<0.05,**p<0.01,***p<0.001, Tukey Post-Hoc 
Test). 
 

4T1 and 67NR Cells Respond Differently to Redox Cycling 

 Menadione, the chemical used to treat the experimental group in the pilot 

experiments, induces oxidative stress via futile redox cycling. Futile redox cycling 

creates ROS in both the mitochondria and cytosol, prompting multiple redundant cell 

death pathways to activate if oxidative destruction of DNA is severe. However, 

apoptosis is not required for ROS-dependent mechanisms to come into effect33. Figure 

5 depicts how the histograms quantify CellROX fluorescent intensity in each of the 

images taken with the confocal microscope. An image with no fluorescence will appear 

as a narrow peak, an image with low fluorescence will appear as a slightly broader 

peak, and an image with high fluorescence will appear as a second broad peak shifted 

to the right. In Figure 6, the fluorescence profiles resulting from menadione exposure 

can be seen for 4T1 and 67NR cells. The top and bottom rows of Figure 6 indicate 

67NR cells exhibit increased sensitivity to oxidative stress resulting from menadione 
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exposure compared to 4T1 cells. Within Figure 6a, the Gauss2 fit is clearly visible, while 

the Gauss1 and Gauss3 fits are flat. This likely indicates most fluorescence is either 

background or low-level signal. In contrast, the menadione-positive 67NR cells exhibit 

increased fluorescent intensity, with Gauss2 and Gauss3 showing peaks at about 0.2 

and 0.4, respectively. 

 The 4T1 cells, however, appear to react much differently to menadione-induced 

oxidative stress. The histograms in the bottom row of Figure 6 have little difference 

between them, with each Gaussian fit lying in approximately the same position in both 

figures. Since Gauss3 is strongly pronounced and right shifted compared to the other 

Gauss fits in both figures, it is reasonable to conclude that the 4T1 cells maintain a 

notably higher level of ROS than the 67NR cells in the unstressed and stressed 

oxidative states. 

Physiological Conditions Result in Increased ROS Production 

 Within Figure 7a, each of the histograms corresponding to each timepoint fall in 

approximately the same position, indicating the fluorescence profiles of a 4T1 cell 

population does not change much when provided with ample nutrition. However, the 

change between the time points trend towards a narrower distribution in the low signal 

region of the graph. Under the nutrient-limited condition (Fig 7b), the 4T1 cells undergo 

an intensely high level of ROS generation at the 1-hour time point, followed by a 

reduced, but still relatively high level of ROS generation at the 3- and 6-hour time 

points. Interestingly, the histogram for the 3-hour timepoint appears to have three peaks 

at about 0.12, 0.18, and 0.30. At these points on the x-axis, there is the most overlap 

between the histograms of the individual images, but the peaks of the corresponding 
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individual histograms are at 0.11, 0.29, and 0.34. This indicates the variance between 

the individual histograms may be high compared to the other groups.  

 When comparing the non-physiological and physiological conditions, the 

physiological conditions induce a much stronger ROS generation profile within the 4T1 

cells, as evidenced by broader, more right-shifted peaks in Figure 7. The box and 

whisker plot for the nutrition condition in Figure 8 indicates there was a significant 

difference between the two groups at the 3- and 6-hour time points. 

67NR and 4T1 Cells Exhibit Differential ROS Profiles under Hypoxic Conditions 

 The 67NR hypoxia experiments were designed to compare hypoxia exposure 

times. Compared to the chronic hypoxia experiment, the intermittent hypoxia experiment 

shows a slight initial increase in ROS generation before declining to levels seen in 

chronic hypoxia. The fluorescence profiles of each time group within the chronic hypoxia 

group are extremely similar, indicating little to no change in ROS generation. Under the 

intermittent hypoxia condition, there is a slight initial increase at the 1-hour time point, 

but every time point afterward shows intensity levels below baseline. The perturbation 

comparison in Figure 8 reveals statistically significant differences between oxygenation 

conditions only at the 3-hour time point, in which there is an increase under intermittent 

hypoxia. 

 When comparing both cell types across chronic hypoxia conditions, 4T1 cells 

have greatly increased fluorescence at all time points compared to 67NR cells. This 

contrast is most evident when comparing between histograms in Figure 7c. Additionally, 

the right-most plot in Figure 8 shows a high number of statistical differences between 

the two cell lines. The largest difference appears to occur at the 1-hour time point 
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between the groups, with the 4T1 cells displaying about a 3.5-fold increase in ROS 

generation. While the fluorescence profiles of the 67NR cells show almost no change 

over time, the fluorescence profiles of the 4T1 cells show significant change over time 

within the chronic hypoxia condition. 

Discussion and Future Works 

ROS Control Mechanisms 

 The pilot experiment was primarily designed to test the ability of the CellROX 

Deep Red probe to detect excess ROS generation within the cells, but it also has the 

purpose of evaluating the effectiveness of ROS scavenging between the two cell lines. 

The results in Figure 6 suggest the 4T1 cells are more efficient at maintaining constant 

low levels of ROS compared to the 67NR cells, which appear to allow more ROS to be 

produced with the addition of menadione. Because 4T1 cells are known to be highly 

metastatic, it is likely that the 4T1 cells possess certain ROS regulatory mechanisms to 

keep ROS levels sufficient to produce a HIF-1α response, and in turn, an increase in 

metastasis, but not so high as to become destructive to the cell. However, this study 

cannot conclusively prove this idea of ROS self-regulation without knocking out the 

cell’s ability to regulate ROS and testing for metastases in vivo. One possible 

explanation of this “ROS-regulation” mechanism could lie in the interplay between HIF-

1α and NRF2, a transcription factor that promotes antioxidant defense. In studies done 

on NRF2 thus far, there exists a rather complex relationship between HIF-1α and NRF2. 

In some colorectal cell lines, HIF-1α is shown to regulate NRF2, but silencing NRF2 

expression results in reduced HIF-1α and VEGF expression34,35.  
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Survivability vs. Metastatic Potential Trade-Off 

 In a sense, a lack of nutrients necessary for tumor growth would provide a 

reason for metastasis within a 4T1 tumor. As evidenced in the nutrition condition 

experiments (Figure 7a), there is an increase in ROS level when the cells are exposed 

to a more stressful environment in terms of glucose and amino acid supply. Under the 

non-physiological, high-nutrient condition, the cells start at the baseline with the highest 

level of fluorescence. From this point, fluorescence decreased slightly over time, directly 

correlating with a decrease in ROS levels as well (Figure 7a). This could indicate the 

cells are opting for a more “survival-based” mode that favors growth over survivability 

and growth over mobility. When the cells are more nutrient starved, ROS generation 

increases greatly over the first hour before returning to a lower, yet likely sufficiently 

high level of ROS generation to encourage metastasis. This would suggest a switch to a 

more “metastasis-based” mode. This idea of switching between metabolic states 

matches with the current understanding of metabolic plasticity, defined as the ability of 

more metastatic cells to switch between OXPHOS and glycolysis depending on 

metabolite availability36. In fact, it has been shown that 4T1 cells have to ability use 

OXPHOS efficiently during optimal growth conditions and reversibly switch between 

glycolysis and OXPHOS during transient hypoxia37. 

 Within the hypoxia context, the 67NR cells exhibit a slightly increased ROS 

generation profile under intermittent hypoxia compared to chronic hypoxia. This 

increase can be explained by a simple increase in oxygen within the surrounding 

environment. With increased oxygen flux into the cells, more oxygen radicals will be 

produced. Even under intermittent hypoxia, the 67NR cells are still able to maintain a 
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relatively low level of ROS generation. A study performed on human triple-negative 

breast cancer cells revealed accumulation of HIF-1α under intermittent hypoxia led to 

decreased proliferation and increased migration 38. Since 67NR cells are not triple-

negative and nonmetastatic, it is possible that ROS are kept under tighter control 

because there is no value in their ability to promote metastasis. Under chronic hypoxia, 

the ROS generation profile does not appear to change much over time according to 

Figure 7a. Since 67NR cells are not known to be metastatic, it is possible these cells 

lack the mechanisms necessary to use ROS to encourage metastasis.  

 When comparing 4T1 and 67NR cells under the same experimental conditions, 

striking differences can be observed between the two. Figure 7c displays that 4T1 cells 

allow much higher levels of ROS generation than the 67NR cells. As mentioned in the 

previous section, it appears the concept of a growth-focused metabolism vs. a 

metastasis-focused metabolism holds and is exacerbated by hypoxia. In terms of both 

ROS fluctuation over time and average ROS levels over the course of the experiment, 

4T1 cells clearly exhibit a higher tolerance, and perhaps even a preference, to higher 

ROS levels over their nonmetastatic 67NR counterparts. This observation provides 

compelling evidence that ROS can be considered a signaling molecule for metastasis. 

However, it is yet to be proven that elevated ROS levels are indeed a cause of 

increased metastatic potential rather than simply being a characteristic of metastatic 

cells. 

Future Work 

 Although this study can provide one possible explanation for metabolic 

differences in 4T1 cells and 67NR cells, the mechanisms behind increased ROS 
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generation and ROS levels might be modulated within the cell can still be explored. 

Within the hypoxia context, this experimental setup did well to quantitatively measure 

ROS by obtaining the fluorescent signal of the molecular probe after fixation of the cells, 

but being able to gather ROS data in a live-cell experiment within a closed system will 

more closely resemble the hypoxic processes within the body. To accomplish this, 

future studies should consider growing organoids within a sealed microfluidic chip to 

ensure tighter control over oxygen and nutritional supply. If the cells can be imaged 

without exposure to ambient oxygen, the possibility of increase ROS due to increased 

oxygen supply can be ruled out, therefore increasing the probability of observing ROS 

generation resulting from downregulation of ROS scavengers. 

 Provided that increased levels of ROS generation within breast cancer tumors 

indicate an increase in metastatic potential, the implications of this concept have the 

potential revolutionize cancer prognosis. One promising method for noninvasive 

detection is autofluorescence multispectral imaging technique39. Other optical methods, 

such as diffuse reflectance spectroscopy and Raman spectroscopy, are also being 

developed to better characterize the heterogeneity of tumors noninvasively. These 

optical methods could be used in conjunction with exogenous agents to evaluate and 

reduce the impact of ROS on tumor metastasis. 
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