
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2022

Demonstration of Cyberattacks and Mitigation of Vulnerabilities in Demonstration of Cyberattacks and Mitigation of Vulnerabilities in

a Webserver Interface for a Cybersecure Power Router a Webserver Interface for a Cybersecure Power Router

Benjamin Allen

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

 Part of the Information Security Commons, and the Programming Languages and Compilers

Commons

Citation Citation
Allen, B. (2022). Demonstration of Cyberattacks and Mitigation of Vulnerabilities in a Webserver Interface
for a Cybersecure Power Router. Computer Science and Computer Engineering Undergraduate Honors
Theses Retrieved from https://scholarworks.uark.edu/csceuht/101

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact scholar@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fcsceuht%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.uark.edu%2Fcsceuht%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.uark.edu%2Fcsceuht%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/101?utm_source=scholarworks.uark.edu%2Fcsceuht%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

Demonstration of Cyberattacks and Mitigation of Vulnerabilities in a Webserver Interface for a
Cybersecure Power Router

An Undergraduate Honors College Thesis

in the

Department of Computer Science and Computer Engineering
College of Engineering
University of Arkansas

Fayetteville, AR
April, 2022

by

Benjamin E Allen

Contents

1 Introduction 5

1.1 Motivation . 5

1.2 Scope . 6

2 Features and Development 6

2.1 User Accounts . 7

2.2 Devices, Registers, and Values . 8

2.3 Device View and Memory View . 10

2.4 Frameworks and Libraries . 11

2.4.1 Django [7] . 11

2.4.2 SQL . 12

2.4.3 MinimalModbus [9] . 12

2.4.4 Django Two-Factor Authentication [10] 13

2.4.5 Chart.js [11] . 13

3 Attacks & Mitigations 13

3.1 Supply Chain Attack . 13

3.2 SQL Injection . 15

3.2.1 Sample attacks . 18

3.3 Cross-Site Scripting . 21

3.3.1 Sample attacks . 22

4 General Security 24

4.1 Multi-Factor Authentication . 24

4.2 Man-in-the-Middle . 25

5 Conclusion 26

3

List of Figures

1 The login screen requires both a username and password. After entering the

correct password the user is required to enter a 2FA code. 8

2 When using Django’s code-first database modeling, the framework is able to

create an administration page that allows admin users to create and update

database objects without knowledge of SQL. 9

3 The “data view” page, which allows users to view data received from the

physical Modbus device. The chart in this image is empty since there was no

physical device connected to communicate with. 10

4 The “memory view” page, which allows users to view data received from the

physical Modbus device by viewing contiguous memory regions reported by

the device. Here a sine wave was produced in hardware emulation and its

data placed into memory for viewing. 11

5 Entering the SQL Injection payload. 19

6 The debugger paused at the point of receiving the POST request from the

client. Note that the username field shown at the bottom of the screen matches

the form, indicating that the server has received the input as written and

mitigation of the attack must be server-side. 19

7 Verifying that the auth user table still exists 20

8 The XSS attack has failed, as the tag text is still visible and has not been

parsed as HTML. 24

4

1 Introduction

1.1 Motivation

Grid-connected devices are increasingly outfitted with internet connectivity for the purpose

of improved management of the United States’ electrical infrastructure. Colloquially known

as the smart grid, the upgrade aims “to increase energy efficiency, reliability, and security; to

transition to renewable sources of energy; to reduce greenhouse gas emissions; and to build a

sustainable economy” [1]. However, these advanced networking capabilities come with costs,

and the cost of network connectivity is exposure to cyberattacks.

Attacks on infrastructure are frequent. For recent examples, see the 2021 closure of the

Colonial Pipeline by ransomware attackers [2], the 2015 cyberattack on Ukraine’s power grid

which triggered a blackout [3], or the attempt to poison the water supply of Oldsmar, FL

[4]. The attack in [2] halted the flow of refined gasoline and triggered a wave of panic buying

until the flow was restored. The attack in Oldsmar was enabled by remote control systems

installed on employee computers at the city’s water treatment plant. In the 2015 attack on

the Ukraine power grid, the attack focused on compromising the industrial control systems

and was initiated by a “phishing” campaign that relied on social engineering to gain access.

These attacks are made possible by the networked infrastructure that is increasingly being

used to manage the power grid; it follows that the security of this networked infrastructure

is highly important.

Defense-in-depth is a critical strategy of building proper cybersecure systems. This approach

works to limit the impact of security failures by ensuring that multiple layers of security

features are in place to catch attacks. A system utilizing defense-in-depth does not rely on one

security component to block all attacks, but overlapping components that can redundantly

block attacks, mitigate attacks, or warn of potential breaches. Since many systems are

themselves layered, defense-in-depth advises proper defenses at each layer, as well as building

5

defenses upon people, process, and technology [1] since individual elements can be defeated.

1.2 Scope

This undergraduate honors project is part of a defense-in-depth approach to designing a

designing a cybersecure power router (CSPR) for use in smart grid infrastructure. In addition

to the defenses built into the hardware itself, as well as that hardware’s control system, a

cybersecure management interface was necessary.

The task of this project was to build a webserver interface for interfacing with these CSPR

devices and then subject that webserver to cyberattacks and verify its defenses against them.

The different features of the webserver are discussed in section 2. These attacks make up

the bulk of the project’s effort, and are described in detail in section 3. SQL injection

attacks, cross-site-scripting attacks, supply chain attacks, and man-in-the-middle attacks

are all considered. Additionally, general security practices such as password requirements

that work to avoid weak passwords and multi-factor authentication support are built into

the webserver; these are discussed in section 4.

2 Features and Development

Developing the webserver was one of the tasks undertaken as part of this project, but the

primary task was still the security testing performed against the web application. The

purpose of the webserver is to act as a management interface for smart-grid electronics

communicating over the Modbus protocol. It can be used to monitor smart-grid devices

in real-time. The administrator of the web application sets up particular Modbus registers

(memory locations) to be monitored, and while the user is on that device’s page the values

in those Modbus registers will be read multiple times per minute. The server also includes a

form to allow users to manage the smart-grid devices by updating values in Modbus registers.

The webserver code can be found on the University of Arkansas GitLab instance, at the URL

6

provided in [6]. The security features mentioned here are discussed at more length in sections

3 and 4.

2.1 User Accounts

The webserver supports user account creation with two-factor authentication security. User

accounts are also subject to password requirements that disallow short passwords, passwords

that are too repetitive, and passwords that match a list of common passwords maintained

by Django. These follow the best practices outlined by the United States Cybersecurity &

Infrastructure Security Agency [5]. After creation, user accounts are required to add a second

factor. For development purposes this prints out access codes to the developer console, but

integration with SMS-sending services is supported by the plugin.

7

Figure 1: The login screen requires both a username and password. After entering the correct
password the user is required to enter a 2FA code.

2.2 Devices, Registers, and Values

“Modbus devices” are physical hardware that the server communicates with over a serial

connection via the Modbus RTU protocol. “Registers” are the memory locations that the

webserver users are allowed to modify. “Values” are the memory locations that the webserver

is allowed to query and display in its dynamic chart.

8

Users that are given administrative privileges can manage the Modbus devices, registers, and

values that are defined in the database using the Django-provided admin panel. From here,

administrators can create devices, add registers and values, or edit the memory locations

referenced by these registers and values. The variables for device creation primarily relate

to how the Modbus communication library should be configured to communicate with the

physical hardware; some examples are the baud rate for communication and the number

of stop bits to be expected. Registers and values have data for the memory address in

question, as well as whether the data should be understood as an integer or a fixed-point

decimal value, and, if so, how many decimal places it should have. All of this data is stored

in a SQL database.

Figure 2: When using Django’s code-first database modeling, the framework is able to
create an administration page that allows admin users to create and update database objects
without knowledge of SQL.

9

2.3 Device View and Memory View

The server exposes a view for each device. When a user is routed to the view, the server

initiates Modbus communication with the device and begins to fetch data for the Values.

A form is generated which allows the user to input values for Registers and submit write

commands to the Modbus device. A list of the values defined for that device is exposed,

with buttons to add or remove them from the chart at the bottom of the page. The page

runs a loop that asynchronously queries the server for updated readings from the Modbus

device; when data is received it is stored in memory on the client’s machine. When the user

clicks a button to add a value to the chart, a time series of that value’s data for each reading

taken since the user arrived on the page is added to the chart, and the chart rescaled to fit

that data.

Figure 3: The “data view” page, which allows users to view data received from the physical
Modbus device. The chart in this image is empty since there was no physical device connected
to communicate with.

10

There is an alternate view, called the “memory view”. In this view the user can specify

a memory address and a number of registers to read from the Modbus device. The data

read in this way will be plotted on the chart at the bottom of the page. This was used in

demonstrative sessions such as the one pictured in figure 4, where a sine waveform generated

by emulation on the hardware was performed.

Figure 4: The “memory view” page, which allows users to view data received from the
physical Modbus device by viewing contiguous memory regions reported by the device. Here
a sine wave was produced in hardware emulation and its data placed into memory for viewing.

2.4 Frameworks and Libraries

2.4.1 Django [7]

Django is a framework for developing web applications in Python. It focuses on rapid

execution of app ideas and adheres to Python’s “batteries included” philosophy. Django

11

provided the webserver capabilities and routing systems, allowing my development work to

be limited to application logic, views, and communication with Modbus devices. Django

also provided a suite of secure-by-default subsystems that were critical to implementing this

server in a cyberattack-resistant manner. These secure defaults are discussed more in section

3.

2.4.2 SQL

A SQL server is used to store persistent data about configured devices. Interface to the server

is provided by Django’s object-relational model (ORM), which enables code-first definitions

of database constructs and allows for easy upgrades via migrations. Models are first defined

as Python classes, provided with database-specific attributes (data type, primary key, etc.),

then Django uses this information to build or update tables within the SQL database. New

rows, updates, or deletions are all passed through the ORM, enabling Django’s secure defaults

to protect the database from SQL injection attacks. While the server is database-agnostic

(requiring only that a Django plugin exists to support your database provider of choice), the

development version of the website used MariaDB as the database provider [8].

2.4.3 MinimalModbus [9]

MinimalModbus is a python library that facilitates communication with electronic devices

implementing the Modbus standard. The library manages the construction of modbus data

packets and the serial communication necessary to transmit requests and responses. Once

properly configured, se of this library enabled me to focus on the high-level logic of Mod-

bus communication. Modbus registers are read from and written to synchronously, which

integrates well with Django’s default setup for synchronous communication.

12

2.4.4 Django Two-Factor Authentication [10]

This library adds two-factor authentication support to the Django user accounts module.

Two-factor authentication is discussed in more detail in section 4. In this project a second

factor is required to log in once the user has enabled two-factor authentication, and each

view exposed by the server (excepting the login view and the view to set up the second

factor) require the user to have logged in with a two-factor protected account.

2.4.5 Chart.js [11]

Chart.js is a javascript module that enables the production of dynamic charts on webpages.

The library provides a configurable HTML5 canvas element that is used in this project to

generate a chart of data received from Modbus communications with a device. These updates

are performed in real time. The logic to upkeep the dataset was implemented as part of this

project, but chart.js handles all features related to display.

3 Attacks & Mitigations

3.1 Supply Chain Attack

Instead of directly targeting the application to be compromised, the attacker in a supply

chain attack compromises some part of that application’s dependencies. This definition is

broad, and attacks that are classified under it include

• A hacker compromises an application provided to internet users for download. The

compromised application downloads or executes malware upon its installation, but the

original creator of the application does not know this.

• A rogue employee compromises the software produced by their company to extract

sensitive information from one of that company’s clients. The compromised software

is a dependency of the real target and is not the target itself.

13

• An attacker compromises an open-source library that is a dependency of several larger

projects.

With respect to the CSPR webserver, our concern is with the last of these. The project uti-

lizes the Django framework as well as several open-source JavaScript modules; any of these

are potential points of weakness. Supply chain attacks of this variety are not theoretical —

they have actually occurred. Recently the developer of two open-source packages, colors.js

and faker.js, sabotaged these projects by pushing breaking changes to the repositories used

to serve them to thousands of dependents. Many projects that had these libraries as tran-

sitive dependencies, often several layers deep, found themselves victim to this self-sabotage

[12]. Another instance is the well-known SolarWinds attack, in which hackers breached the

network of IT firm SolarWinds and caused the updates issued by SolarWinds to include

compromised code. The perpetrators are believed to have used this to focus on a small

number of high value targets, even though many were compromised [13].

Finally, in July of 2021, Cloudflare described a vulnerability found within their cdnjs product

which they had patched and believed to not be executed. cdnjs ”provides JavaScript, CSS,

images, and font assets for websites” with the benefits that 1) visitors to the website need

not re-download script files if another website they visited has already referenced them, and

2) server owners do not need to host the files themselves [14]. The vulnerability allowed

remote code execution and the ability to modify assets, potentially forcing cdnjs to serve

compromised JavaScript files. Cloudflare believes that this vulnerability was not exploited

before it was patched, but it’s possible that future vulnerabilities of similar scope will be

found in any web-based package provider. However, the first redeveloped version of the

CSPR webserver utilized cdnjs to deliver JavaScript libraries for data visualization, namely

the chart.js, moment.js, and chartjs-adapter-moment packages. When the user landed on the

device management page these scripts would be downloaded from cdnjs and, if compromised,

run compromised code in the user’s browser session. Note that while this vulnerability exists,

14

it’s not possible to demonstrate an exploit on the webserver due to the requirement to take

control of a package provider like cdnjs, which is illegal. Nevertheless, this vulnerability

required an immediate fix.

Because the number of scripts used was small and the size of the files themselves were small

enough to avoid causing hosting problems, the webserver pages were redesigned to serve a

copy of stable versions of these scripts. The dependency on cdnjs was completely removed and

the reliance on an auto-updating set of dependencies was severed, mitigating the vulnerability

to supply chain attacks on the CSPR webserver. The updates required configuring the

Apache service hosting the webserver to also serve static files from a static directory. The

files are included in the code repository and managed by the Django framework.

3.2 SQL Injection

SQL injection is a class of attacks that exploit poor input-sanitization procedures to interact

with a data store in unintended ways. A SQL injection exploit may allow an attacker to

read data from the database arbitrarily, update entries in the database (possibly giving

a user controlled by the attacker more access than they are otherwise authorized), delete

data in the database, or change the schema of stored data in service of future exploits [15].

Since these attacks can serve to escalate privileges they are a high-value exploit sought after

by malicious actors. Clarke notes that while web applications are not uniquely vulnerable

and any application that receives untrusted user input has a chance of compromise, web

applications are targeted most frequently due to their oftentimes database-driven nature.

The inputs that the user enters will cause interactions with the database, so there are ripe

opportunities for exploit [15].

Galluccio et. al [16] describe how these vulnerabilities arise: Imagine a web form in which

a user enters a string to search for other users registered with the application (perhaps for

the purposes of sharing a document). The web application searches for usernames matching

15

that substring in the database and returns a list of all partial matches, which is then placed

into a dropdown list on screen to allow the user to make their selections. Under intended

operation, the webserver runs a query, shown below, that is based on the user’s input.

SELECT username

FROM use r s

WHERE username LIKE ’<input>%’

The webserver replaces the <input> text with the entry entered by the user. However, if the

server uses simple text-replacement to construct the query, it is vulnerable to a maliciously-

engineered query. Suppose that an attacker wishes to retrieve user emails for a spamming

operation. They input ’ UNION SELECT email FROM users; --. The server will perform

text-replacement and execute the following query:

SELECT username

FROM use r s

WHERE username LIKE ’ ’ UNION SELECT emai l FROM use r s ; −−%’

This is most clearly reformatted as

SELECT username

FROM use r s

WHERE username LIKE ’ ’

UNION

SELECT emai l

FROM use r s ;

−−%’

With this formatting it is clear that two queries are being executed. The first query is

16

“intended” by the web application programmer and is simply searching for users with no

username. This query’s results are unioned with another query that reads user emails from

the database. This malicious query thus returns all available user emails, and the method

could be extended to determine which users are administrators, or to extract passwords or

password hashes for later cracking.

Instead of searching for data, an attacker can also destroy information. With the input

’; DROP TABLE users; -- the attacker can cause the entire users table to be destroyed,

necessitating restoration from backup. Alternatively the attacker could engineer the takeover

of an existing user account by changing the email associated or deleting that user and

recreating it.

Galluccio et. al. demonstrate several methods of defense against SQL injection. These

defenses are often mixed and matched as part of a defense-in-depth strategy. Input validation

is performed by inspecting the user input before a query is constructed. This process can

involve denying input that contains any “special” characters that are necessary for a SQL

injection attack, such as ’ or -, or only accepting input if it matches a certain pattern (and

that particular pattern only contains safe characters). Parameterized queries are another

approach. Instead of constructing strings dynamically as shown in the previous examples,

placeholder variables are used while building the SQL statement. Data is then bound to

those variables, which properly escapes the input data and constructs a safe string. If the

example above had used parameterized queries, the database would have correctly searched

for a user named ’; DROP TABLE users; -- instead.

According to the Django documentation, parameterized queries are used when interfacing

with a SQL database from the Django framework and its Object-Relational Mapping [17].

The documentation explains that ”since parameters may be user-provided and therefore

unsafe, they are escaped by the underlying database driver.” Because the updated CSPR

webserver performs all database access using Django models, the inputs are safely escaped

17

and the system is not vulnerable to SQL injection.

3.2.1 Sample attacks

This section describes attacks run on the webserver that are SQL injection attempts. In

each attack an attached debugger was used to stop the program and inspect memory.

1. This attack was performed on the login form, with the goal to delete the users table

from the database. The text ’; DROP TABLE auth user; -- was input to the login

form in the username field and a garbage password was entered.

Result: The users table was not deleted. This was verified by inspecting the database

and confirming that no data deletion occurred.

The steps to reproduce the attack are

(a) With the project open, set a debugger in the file django/contrib/auth/ init .py

at the top of the authenticate(request, **credentials) function. In my

project, set up following the install instructions included with the code, this file

lives in the django subfolder of ~/venvs/cspr env/lib/python3.7/site-packages.

(b) Run the project with debugger attached.

(c) Navigate to http://localhost:8000. Logout of the CSPR website, if logged in.

(d) Login to the MySQL instance. I run the following commands to login and verify

that the table exists before the attack:

> sudo mysql -u cspr -p

> use cspr_db;

> select * from auth_user

(e) On the CSPR website, enter any text you like into the password field, and enter

18

the text ’; DROP TABLE auth user; -- into the username field (see figure 5).

Submit the form.

Figure 5: Entering the SQL Injection payload.

(f) Your debugger should pause at the authenticate function where the breakpoint

was set (see figure 6). From here it can be verified that the malicious input was

received by the server and will be used to look up a user. Resume the program.

Figure 6: The debugger paused at the point of receiving the POST request from the client.
Note that the username field shown at the bottom of the screen matches the form, indicating
that the server has received the input as written and mitigation of the attack must be server-
side.

19

(g) Verify after resuming the program that the login fails and the auth user table still

exists (see figure 7. The attack has failed.

Figure 7: Verifying that the auth user table still exists

2. This attack was performed on the login form, with the goal to gain access to an-

other user without possessing that users password. A testing user was created named

sqltest2. The text sqltest2 was entered into the username field and the text ’ AND

1=1; -- was entered into the password field.

Result: No users were returned by the query, which was verified by inspecting the

immediate query results with an attached debugger.

To reproduce this attack after creating the sqltest2 user:

(a) Follow steps 1a, 1b, and 1c.

(b) On the CSPR website, enter the username sqltest2 and the password ’ AND

1=1; --.

(c) Submit the form and verify with a debugger (similar to step 1f) that the input is

received as written. Note that the login fails, and thus the attack has failed.

3. This attack was also performed on the login form, with the goal of updating an ex-

isting user to have administrative permissions. Using the same testing user as before,

sqltest2, we attempt to login with a query that has the side effect of updating that

user’s admin flag to true. While logging in a query is appended that searches for the

user and sets the is staff to 1:

sqltest2’; UPDATE auth_user SET is_staff = 1 WHERE username = ’sqltest2’; --

20

Any text is allowed for the password.

To reproduce this attack:

(a) Follow steps 1a, 1b, and 1c.

(b) On the CSPR website, enter the username above and any password.

(c) Submit the form and verify with a debugger (similar to step 1f) that the input

is received as written. Continue execution and then inspect the database table.

Note that the user’s is staff flag is still 0, indicating that the attack has failed.

This failure can also be verified by logging in as the user and noting the lack of

any links to the admin page.

3.3 Cross-Site Scripting

Cross-site scripting (abbreviated XSS) exploits unsanitized user input to change the structure

of a web page or execute arbitrary code in the client browser [18]. The attack occurs when

the site displays compromised text from a user. Because the user’s input is part of the

HTML content of the page, carefully crafted input can be rendered by the browser as if it

was HTML text.

In a simple example, imagine a user profile page that includes a freeform text field for the

user to write a description of themselves. The contents of that field are rendered inside a

<p> tag for visitors to the profile page. If the user enters the text

Hel lo , world !

into the text field, the server will render the entered content inside of the <p> tags and the

 tags will cause the content to be written in bold. This is due to the fact that the browser

interprets the text as part of the HTML page.

21

More malicious variants of this attack exist. The Django security documentation describes

how attackers can run scripts in the client’s browser by storing the malicious script in

database fields and then retrieving them for other users [17]. In the CSPR webserver defense

against these attacks is provided both by the Django framework and by the schema of the

database and models. Django escapes specific characters that must be used to perform an

XSS attack, which works by converting characters according to the following scheme [19]:

• < and > are converted to < and >

• ’ and " are converted to ' and "

• & is converted to &

These changes protect from most attacks, but are still dependent on myself, the programmer,

to avoid using the templating language in places where attackers can inject code without

those characters. In some forms Django will also restrict character entry to certain allowed

characters, like when creating users.

Another defense strategy is based on the database schema and model definitions. When

entering values for registers on the device management page the server expects all inputs

to be numbers. This requirement is enforced both on the front end and on the back end.

The webpage shown to the user requires input to be numeric, but this can be defeated with

client-side debugging tools. Therefore, the server also verifies that received data is numeric

for these fields and returns an exception if the field is not numeric. Finally, the database’s

data types for certain fields also assist in enforcing data validity.

3.3.1 Sample attacks

1. I verified that the signup form does not allow users with the username testuserxss

to be created. Django verifies the text on the server-side and refuses to create the user

because it contains < and > in its username. To reproduce this attack, follow these

22

steps:

(a) Run the project and navigate to the home page. If you are logged in, log out.

(b) Click on the signup button to go to the signup page.

(c) Enter the text testuserxss for the username field, and any password.

(d) Submit the form and notice that Django rejects the submission for having illegal

characters in its username.

2. In this attack I edited an existing device’s name in the database to demonstrate that

Django properly escapes characters. A device had its name changed to <i>Device</i>

by manipulating the database. Note that this change of data would require an attacker

to first infiltrate the database, but it is useful as a demonstration of Django’s anti-XSS

features. To reproduce this attack:

(a) Create a device using an admin user.

(b) Access the MySQL database with your admin user. On my testing machine, the

command for this is > sudo mariadb -u <username> -p

(c) Use the database for the Webserver. > use cspr db

(d) Run the following SQL command to change device names to ¡i¿Device¡/i¿. Note

that this will update the name of every device, but this is sufficient for testing

purposes.

> update devices set name = ’<i>Device</i>’;

(e) Run the webserver, login, and navigate to a device page. The name of the device

appears as written above, and not in italics, indicating that Django has detected

this attempt at cross-site scripting and properly escaped the characters to foil it.

23

Figure 8: The XSS attack has failed, as the tag text is still visible and has not been parsed
as HTML.

For another example, use the text <script>alert(’XSS’)</script>Device instead,

which will produce a pop-up dialog in the browser if it is successful. By extension, we

can see how XSS attacks can enable the embedding of malicious scripts for the purpose

of hijacking a client session, harvesting data, or escalating to another exploit.

4 General Security

4.1 Multi-Factor Authentication

In the most basic sense a multi-factor authentication (MFA) scheme requires the user at-

tempting to access resources to present multiple proofs of identity; a real-life example might

be the multitude of documents needed to obtain a passport. Each additional independent

credential increases the difficulty of an account takeover. The Cybersecurity and Infrastruc-

ture Security Agency states [20]:

A typical MFA login would require the user to present some combination of the follow-

ing:

• Something you know: like a password or Personal Identification Number (PIN);

• Something you have: like a smart card, mobile token, or hardware token; and,

24

• Some form of biometric factor (e.g., fingerprint, palm print, or voice recognition).

Multi-factor authentication was added to the CSPR webserver by using the plugin django-

two-factor-auth [10]. During the signup process the user is able to create an account without

providing a second factor, but when attempting to access any page the user must be authen-

ticated with a second factor just as they must be logged in. If the user is not authenticated

they are redirected to the plugin’s provided page to enable a second factor. For development

purposes, the plugin is currently configured to print the 2FA code to the developer console;

configuration options exist to send the second-factor codes over SMS.

4.2 Man-in-the-Middle

HTTP is vulnerable to man-in-the-middle (MITM) attacks, where an attacker impersonates

the server and/or client while the real server and client transact information. Sitting in the

middle of the two, the attacker has full access into the requests and responses and is free to

edit data, save responses for later, or extract secret information. These attacks can result in

total compromise of sensitive information, or enable the attacker to bypass security protocols

by impersonating an authorized user

Transport Layer Security (TLS) is used to prevent this kind of attack; it is one of a kind of

key exchange protocols that require the communicating to authenticate and is the dominant

such protocol for the purpose of securing web traffic. Boyd et. al. outline how TLS differs

from Secure Shell (SSH) and Internet Protocol Security (IPSec), but most critical to know

is that web traffic secured using TLS is called HTTPS. There have been two versions of SSL

and four versions of TLS, with most browsers and sites currently operating on TLS 1.2 and

migrating to TLS 1.3 [21].

In an HTTPS context, the communication parties establish a TLS connection before sending

HTTP data across the connection. In the handshake procedure the parties exchange cry-

25

tographic keys and thereafter can communicate with encrypted data. This prevents MITM

attacks not by preventing an actor from intercepting the messages, but by preventing them

from decoding any intercepted messages. TLS also has the property that the keys have

forward secrecy, meaning that if, in the future, the key used by the server is compromised

the old session data still cannot be recovered and an attacker must still own the client’s key

to decrypt the communicated data [21].

For this project, demonstrative HTTPS support was added to the webserver by configuring

an instance of the Apache webserver to use a locally-generated certificate. In a production

environment this would be switched for a certificate obtained from a certifying authority,

such as Let’s Encrypt (a service provided by the Internet Security Research Authority [22]).

5 Conclusion

Network-connected electric grid hardware promises to make the electric grid better-monitored

and more efficient, and designing smart grid systems in a secure manner is vital to their

continued operation. Since the electric grid is critical infrastructure, a defense-in-depth ap-

proach is necessary to secure the network-connected components of the smart grid. Thus,

any interface to components of the grid system must also have defensive measures. The

demonstrated attacks against the CSPR webserver serve to test its ability to defend against

common intrusion attempts, and the general security work conforms to the defense-in-depth

approach by making each attempted attack more costly.

The CSPR webserver utilizes the Django framework’s approach to secure user input against

SQL Injection and XSS attacks, and serves its own static files to greatly increase the dif-

ficulty of supply chain attacks.. With a security certificate and an HTTPS-enabled host,

the web server can be assured that man-in-the-middle attacks are guarded against, and

two-factor authentication provides additional layers of authentication to ensure that multi-

26

ple parts of a user’s identity must be compromised to hijack their account. These changes

provide a strong foundation for cybersecurity and leave room for enhancements to follow.

Possible enhancements include intrusion detection based on network activity analysis, or a

dependency-verification system that monitors for vulnerabilities in the dependencies of the

web application and notifies developers of potential vulnerabilities in their supply chain.

References

[1] V. Pillitteri and T. Brewer, “Guidelines for Smart Grid Cybersecurity,” September
2014.

[2] D. E. Sanger, C. Krauss, and N. Perlroth, “Cyberattack Forces a Shutdown
of a Top U.S. Pipeline,” The New York Times, May 2021. [Online]. Available:
https://www.nytimes.com/2021/05/08/us/politics/cyberattack-colonial-pipeline.html

[3] D. E. Sanger, February 2016.

[4] F. Robles and N. Perlroth, “‘Dangerous Stuff’: Hackers Tried to Poi-
son Water Supply of Florida Town,” February 2021. [Online]. Available:
https://www.nytimes.com/2021/02/08/us/oldsmar-florida-water-supply-hack.html

[5] “Choosing and Protecting Passwords,” Cybersecurity & Infrastructure Agency, 2022.
[Online]. Available: https://www.cisa.gov/uscert/ncas/tips/ST04-002

[6] B. Allen. CSPR Webserver. [Online]. Available: https://git.uark.edu/bea005/cspr-
webserver

[7] “Django,” Django Software Foundation, 2022. [Online]. Available:
https://www.djangoproject.com

[8] “Mariadb,” MariaDB Team, 2022. [Online]. Available: https://mariadb.org

[9] J. Berg, “MinimalModbus Documentation,” 2022. [Online]. Available:
https://minimalmodbus.readthedocs.io/en/stable/

[10] “Django Two-Factor Authentication Documentation,” Jazzband, 2022. [Online].
Available: https://django-two-factor-auth.readthedocs.io

[11] “Chart.js,” Chart.js Team, 2022. [Online]. Available: https://www.chartjs.org

[12] E. Roth, “Open source developer corrupts widely-used libraries, af-
fecting tons of projects,” The Verge, January 2022. [Online]. Avail-
able: https://www.theverge.com/2022/1/9/22874949/developer-corrupts-open-source-

27

libraries-projects-affected

[13] “SolarWinds Cyberattack Demands Significant Federal and Private-Sector Re-
sponse,” Government Accountability Office, April 2021. [Online]. Avail-
able: https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-federal-
and-private-sector-response-infographic

[14] J. Ganz, T. Calderon, and S. Sauleu, “Cloudflare’s Handling of an
RCE Vulnerability in cdnjs,” Cloudflare, July 2021. [Online]. Available:
https://blog.cloudflare.com/cloudflares-handling-of-an-rce-vulnerability-in-cdnjs/

[15] J. Clarke, SQL Injection Attacks and Defense. Waltham, MA: Elsevier Science and
Technology Books, 2012.

[16] E. Galluccio, E. Caselli, and G. Lombari, SQL Injection Strategies : Practical Tech-
niques to Secure Old Vulnerabilities Against Modern Attacks. Birmingham, UK: Packt
Publishing, 2020.

[17] “Security in Django,” Django Software Foundation, February 2022. [Online]. Available:
https://docs.djangoproject.com/en/4.0/topics/security/

[18] M. Shema, Hacking Web Apps : Detecting and Preventing Web Application Security
Problems. Waltham, MA: Elsevier Science and Technology Books, 2012.

[19] “The Django template language,” Django Software Foundation, February 2022. [Online].
Available: https://docs.djangoproject.com/en/4.0/ref/templates/language/automatic-
html-escaping

[20] “Multi-Factor Authentication,” Cybersecurity & Infrastructure Security Agency,
January 2022. [Online]. Available: https://www.cisa.gov/publication/multi-factor-
authentication-mfa

[21] C. Boyd, A. Mathuria, and D. Stebila, Protocols for Authentication and Key Establish-
ment. Berlin, Germany: Springer-Verlag, 2020.

[22] “Let’s Encrypt,” Internet Security Research Authority, 2022. [Online]. Available:
https://letsencrypt.org

28

	Demonstration of Cyberattacks and Mitigation of Vulnerabilities in a Webserver Interface for a Cybersecure Power Router
	Citation

	tmp.1651115178.pdf.uNd8t

