
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2022

Ransomware and Malware Sandboxing Ransomware and Malware Sandboxing

Byron Denham

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

 Part of the Information Security Commons, and the Other Computer Sciences Commons

Citation Citation
Denham, B. (2022). Ransomware and Malware Sandboxing. Computer Science and Computer Engineering
Undergraduate Honors Theses Retrieved from https://scholarworks.uark.edu/csceuht/98

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact scholar@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fcsceuht%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.uark.edu%2Fcsceuht%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/98?utm_source=scholarworks.uark.edu%2Fcsceuht%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

Ransomware and Malware Sandboxing

An Undergraduate Honors College Thesis

in the

Department of Computer Science and Computer Engineering
College of Engineering
University of Arkansas

Fayetteville, AR
May 2022

by

Byron Denham

Ransomware and Malware Sandboxing

Byron Denham
Department of Computer Science and Computer Engineering

University of Arkansas
Fayetteville, AR 72701, USA

bedenham@uark.edu

Dale R. Thompson
Department of Computer Science and Computer Engineering

University of Arkansas
Fayetteville, AR 72701, USA

drt@uark.edu

Abstract— The threat of ransomware that encrypts data on a
device and asks for payment to decrypt the data affects individual
users, businesses, and vital systems including healthcare. This
threat has become increasingly more prevalent in the past few
years. To understand ransomware through malware analysis, care
must be taken to sandbox the ransomware in an environment that
allows for a detailed and comprehensive analysis while also
preventing it from being able to further spread. Modern malware
often takes measures to detect whether it has been placed into an
analysis environment to prevent examination. In this work, several
notable pieces of ransomware were placed into sandbox
environments to discover how they might obfuscate themselves for
evading analysis and to determine ways they propagate. The goal
of the work is to identify and understand these how these
obfuscation and propagation techniques function in a sandbox, so
that mitigation methods can be developed.

Keywords— ransomware, sandboxing, malware, analysis
environment, Wannacry, Cryptolocker

I. INTRODUCTION
Although the idea of malware that locks users from their files

until a ransom is paid is not a novel one, the existence of
asymmetric encryption and the growing ubiquity of
cryptocurrency have made the development of ransomware
more effective and thus it has become a prevalent cybersecurity
threat over the last ten years. While there does exist ransomware
that holds the user’s data by merely restricting access to
particular files, most ransomware gets its leverage to demand a
ransom by encrypting the victim’s files, rendering them useless.
The encryption process of ransomware begins by the generation
of an RSA key pair on the side of the attacker, the public key of
which is sent to the victim’s machine. This public key can be
used for one of two things depending on the design of the
ransomware. If the designer of the ransomware wants to avoid
generating keys on the victim’s machine, the ransomware will
use the public key for the encryption of the files. In this case a
new RSA key will need to be generated for each victim meaning
that the public key is likely retrieved from a command-and-
control server. If the designer of the ransomware wants to avoid
needing to generate a new RSA key for each victim, they will
generate symmetric keys on the victim’s machine instead,
encrypt them with their public key, and send the encrypted
symmetric keys back to a command-and-control server. In this
case the file encryption would be done with the symmetric keys.
Finally, if the victim decides to pay the ransom, the attacker will

either send them the private key or decrypted symmetric key
needed for the user to decrypt their files.

The increasing popularity of cryptocurrency has made it
easier for attackers to demand payments for decrypting files that
cannot be tracked. During the first half of 2021, the FBI’s
Internet Crime Complaint Center received 2084 incidents of
ransomware which was a 62% increase from the same
timeframe of the previous year causing $16.8M in losses [18].
Because of its use of modern encryption techniques, recovery of
files encrypted by the ransomware is often impossible without
paying the ransom. This makes the recovery of machines
infected with ransomware significantly more difficult than the
recovery of machines infected with other types of malware.
Recovery from ransomware can rarely be done by actually
decrypting the files targeted by the ransomware and must almost
always be done by restoring a machine to a previous state from
a backup, losing any newer data that was not backed up.
However, it is difficult to keep backups up to date manually and
off site, and ransomware’s targeting of things like shadow
copies compounds this problem. Because of the difficulty of
recovery from ransomware, effort has been and will need to be
put into methods of mitigating and recognizing it as early as
possible, potentially recording keys it generates if this occurs,
and ideally preventing it from encrypting anything at all. To
achieve this level of ransomware mitigation, detailed analysis of
existing and new samples will be necessary. A key component
of malware analysis is sandboxing: the creation of an
environment that allows for the execution of malicious code
such that its effects are contained and it does not infect anything
outside of the sandbox. The purpose of this work is to detail the
techniques and setup used to sandbox general malware for
analysis, then to run ransomware samples in these environments
and observe how the analysis of ransomware might differ from
that of general malware.

II. RELATED WORK
In this section, ransomware, sandboxing for malware

analysis, and ransomware mitigation and detection are
described.

An overview of how ransomware fits into the landscape of
malware as a whole and details of how it operates are described
in [10][2][8]. The work in [2] gives a synopsis of malware in
general then discusses the specifics of ransomware. It cites
phishing emails and drive-by downloads as the two primary

vectors of infection used by ransomware. Ransomware
generally follows the steps of infection, execution, attacking
backups, encryption, and user notification. In [8], the way
ransomware scans to spread from the infected machine to others
on the network is described. Self-propagation is a potential
source of infection along with software security exploits,
redirecting Internet traffic to sites that can infect a victim,
injecting malicious code into non-malicious websites, and
malvertising campaigns [10]. Six common ransomware families
as well as the use of command-and-control servers to
communicate encryption keys are described in [10]. Command-
and-control servers are owned by the attacker and function to
send instructions to malware, or retrieve information gathered
from it. Many types of malware use obfuscation techniques and
[10] discusses observed obfuscation methods used in
ransomware such as the use of TOR, domain shadowing,
polymorphic behavior, and dormancy. TOR’s onion routing is
used to obscure malware’s interaction with resources like
command-and-control servers. Sometimes communication to
these servers will be blacklisted by an IDS on a victim’s
machine. Domain shadowing allows for such communication to
occur through the registration of domain names that are not yet
blacklisted, but that point to malicious addresses. Polymorphic
behavior allows for the ransomware to create mutations of itself
that are functionally the same but by merely being different are
more difficult to identify. Dormancy allows for the ransomware
to remain inactive until the ideal time to execute occurs. All
three of these sources, as well as [1][5] mention the existence of
two main types of ransomware: locker and crypto. Locker
ransomware restricts access to a computer or parts of a computer
until the ransom is paid while crypto ransomware encrypts a
user’s files and will only decrypt them once the ransom is paid.
This distinction is notable because crypto ransomware is more
distinct from the majority of malware than locker because of its
use of cryptographic encryption. Cracking the modern
encryption algorithms used by crypto ransomware is considered
a nearly unsolvable problem unless the ransomware has a
specific inherent flaw that allows for recovery of its encryption
keys. Because of the uniqueness of this type of ransomware, the
malware that is sandboxed in this project is crypto ransomware.

Because recovery from crypto ransomware is considered
nearly impossible, much of the research has gone into
methodology for ransomware’s early detection and mitigation
[1][5][6][7][9]. The authors of [1] cite a growing increase in the
existence of ransomware that avoids detection and contribute to
the ability to recognize ransomware by focusing on how
ransomware propagates through a network, rather than how it
behaves on an already infected machine. Work in [5] looks at
the actions of ransomware one step later in its process by
examining file system traversal prior to encryption. This paper
points out the issues with detection methods that focus on the
entropy generated from the encryption process as it allows for
the ransomware to do some damage before being halted. One
detail of the ransomware process that [5] discusses that is worth
considering for sandboxing is how ransomware chooses which
files to encrypt. Specifically, the authors state that ransomware
may operate by blacklisting or whitelisting file extensions to
encrypt. The focus of contribution in [6] to the problem of
ransomware is the automation of the analysis of logs generated
by ransomware to aid in detection. The work in [7] analyzes logs

from ransomware attacks with high detail logs being used for
detection and low detail logs to aid in recovery attempts.
Highlights of common detection methods used in literature are
described in [9]. Machine learning and artificial intelligence
have been used to analyze the behavior of ransomware to discern
patterns that can be used in its detection [1][5][8][9]. Most
literature that focuses on detection uses data sets that must be
gathered from sandbox environments to develop analysis tools
[1][5][6][7][9]. All of this indicates the significance of
examining how the nuances of ransomware should be
considered in an analysis environment.

The authors of [3] and [4] examine the tools, techniques, and
practices used in modern malware analysis. The work in [4]
primarily discusses tools used, and briefly discusses sandboxing.
It divides analysis into two types: static and dynamic analysis.
Static analysis is defined as information gathering done without
executing the malicious code. It mentions tools like PeStudio,
Resource Hacker, and IDA Pro for things like string extraction
and reverse engineering. Dynamic analysis is defined as analysis
done during the execution of the malicious code. It mentions
using tools like Wireshark and Process Monitor to track how the
malware executes. Lastly, it describes the importance of
sandboxing in dynamic analysis to prevent malware from
escaping. The work in [3] emphasizes the widespread use of
virtualized environments rather than physical systems for
sandboxing, listing sandboxing products such as Cuckoo that
can be used. The work in [4] consolidates and analyzes
information gathered from career malware researchers in an
effort to create models for malware research. The authors cite
five primary goals that malware researchers have with analysis:
1) finding IP addresses, domain names, and hashes to blacklist,
2) determining the specifics of the executable’s malicious
behavior, 3) labeling the malware into families of similar type,
4) finding indicators of compromise in the malware, and 5)
generating a report for their clients. Information gathered from
the researchers also suggests an increasing focus on the
importance of dynamic, behavioral analysis further indicating
the significance of understanding sandboxing approaches.
Sources for obtaining samples of malicious code are also
discussed, citing sources like VirusTotal, The Zoo, and Malware
Bazaar [17][14][19]. All models of malware researchers’
workflow in [4] use static and dynamic analysis, but one of the
models contains an emulating malware stage. The idea behind
this is to emulate things like responses from command-and-
control servers to make the malware operate to its full extent.
Because of ransomware’s use of command-and-control servers,
the need for emulation was kept in mind for the sandboxing of
ransomware. The authors in [4] discuss how sandboxing is done
and why analysts use the sandboxes they do. Sandboxes can be
physical machines or virtual machines and can use proprietary
or open-source tools. The broad consensus among analysts in [4]
is to use virtual machines rather than physical because of the
expense of potentially damaging costly physical machines as
well as issues with testing large quantities of samples not scaling
well with physical machines. Analysts also preferred open-
source software rather than proprietary because of the greater
potential for custom configuration with open-source. Lastly,
custom or premade sandboxes (such as Cuckoo) can be used.
Many of the analysts preferred the customizability of non-
premade sandboxes.

III. SANDBOXING SETUP
Based on the broad consensus of researchers in [4], the

sandbox environments used in this work were custom made
virtual environments. Because most ransomware is designed for
the Windows operating systems [11], the virtual machines used
Windows 7 and Windows 10 as operating systems to study
previously analyzed malware. All virtual machines exist on a
host operating system. Even though the sandboxes used were in
the virtual machines, the specifics of their host were still
considered. In the setup used in [1], one of the physical machines
was responsible for monitoring the network traffic between the
other machines and thus was not intended to be infected. The
monitoring machine had a different operating system than the
machines to be infected because the ransomware was not
designed to infect it. For this project, because the sandboxes
were Windows 7 and Windows 10, the host machine was the
most current version of Ubuntu Linux (Ubuntu 20.04.3). While
it is likely possible to create a virtual sandbox with the same
operating system as the host, having the two sandboxed
operating systems be different from the host operating system is
one of the best preventative measures to avert the host machine
being infected. Lastly, it is best to use a host machine dedicated
to hosting sandbox environments that uses no important
passwords and does not contain important files.

Oracle’s VirtualBox [12] was used as the virtual machine
manager. There are many options for virtualization software, but
VirtualBox was chosen for several reasons. VirtualBox is open-
source software as per the preference of the analysts in [4]. In
addition, VirtualBox is highly customizable, with the ability to
change certain specs that are very useful for malware
sandboxing such as memory and network settings. VirtualBox
also supports snapshots which is helpful for the easy
customizing of sandboxes that the analyst’s in [4] considered
valuable. Snapshots allow the state of the virtual machine to be
saved, and those saved states can be returned to at any time. This
feature has numerous benefits. The most apparent benefit being
that the state of the machine can be saved before infection by the
malware and can easily be returned to no matter how much
damage is done to the virtual machine. In addition, many tools
are used for analysis in sandbox environments. This means the
setup of the variety of analysis tools need only be done once per
operating system as long as a snapshot is taken of that state. It is
possible for malware to need a specific environment to run to its
full extent. If there exist two samples that need the same
operating system but different configurations, snapshots allow
for both configurations to be created without needing to setup
multiple virtual machines. In the setup of this project, four main
phases of snapshots were used: first a snapshot of the operating
system after initial setup, second a snapshot of the machine once
the desired analysis tools were installed, third a snapshot of the
machine with the malware samples put onto the machine but
prior to infection, and lastly a snapshot of the infected machine.

There are many instances of malware that are designed to
detect that they are being run in a virtual environment. Neither
of the ransomware samples analyzed in this project fall into this
category but as ransomware continues to evolve there will likely
be a growing number of ransomware instances that will employ
these tactics. One of the ways malware will attempt to recognize
being run in a virtualized environment is through observation of

system resources. This can be mitigated by giving the virtual
machine as realistic of an amount of resources as possible, or at
the very least more than the default settings of the virtual
machine manager. Also, installing more software than just
analysis tools and doing normal operations to generate logs can
make it more difficult for the malware to detect being in a
sandbox.

Once the virtual machine with the desired operating system
has been created and a snapshot taken, analysis tools must be
installed. The process of installing analysis applications into a
virtual environment can be a long and difficult procedure as
different software may have unique dependencies and system
requirement that must be met. If only a small number of analysis
applications are wanted in the sandbox it would not be difficult
to download a few; however, there is a large quantity of tools
that are useful for malware analysis. Flare-VM [13] is a free and
open-source tool that automates the process of installing a wide
variety of applications useful for malware analysis as well as
adding repositories to aid in the installation of other desired
packages. Flare-VM includes many tools such as hex editors like
HxD, debuggers like x64dbg, disassemblers like IDA, portable
executable analysis tools like PeStudio, and networking tools
like Wireshark. It also installs utilities like wget, Yara, and
Python. The Mandiant distribution of Flare-VM assumes the
installation is occurring on Windows 7 Service Pack 1 or later
and 50-60 GB of total storage. It also requires the .NET
framework to be at least 4.5 and WMF to be at least 5.1. The
Windows 7 machine used for this project did not meet these
requirements initially, but the installation of these two
dependencies highlights some nuances of sandboxing with older
operating systems. The Internet Explorer web browser on the
Windows 7 virtual machine was too outdated to travel to the
download pages for .NET 4.5 and WMF 5.1. This problem can
be solved using VirtualBox’s shared folder functionality. Shared
folders exist to aid in the transfer of files between a host machine
and a virtual machine and can be used to transfer the installers
for .NET 4.5 and WMF 5.1 or for a modern browser’s installer
that can be used to obtain other installers. Once these
requirements were met, the zip file for the Flare-VM installation
package was downloaded and extracted, an instance of
Powershell was run as administrator and its execution policy
was set to unrestricted per the Flare-VM install instructions.
Lastly the installation script was run. One potentially useful tool
that was not included in Flare-VM that was downloaded was
Microsoft Network Monitor. Microsoft Network Monitor is like
Wireshark but can associate captured packets with the process
that they originated from.

As mentioned in [4], emulating responses expected by
malware can be important for getting it to exhibit all the
behavior a researcher might want to observe. Ransomware
almost always contacts a command-and-control server for key
generation or storage and may not run if communication is not
established. Ideally, a malware sandbox environment will be
isolated from network connections with any other machines and
thus will not be connected to the internet meaning the
ransomware will not be able to reach its command-and-control
servers. One of the tools provided by Flare-VM that has the
potential to solve this issue is FakeNet-NG [16]. FakeNet-NG is
designed to intercept and redirect network traffic while

TABLE I. VIRTUALBOX VIRTUAL MACHINE COMMUNICATION ABILITY
UNDER DIFFERENT NETWORK SETTINGS [15]

simulating network responses. For example, in a virtual machine
put on a host-only network, a ping command to google.com
would be unable to find an IP address that it could send those
ICMP packets to. However, with FakeNet-NG using its default
settings and running on that same machine, a ping request to
google.com would result in all four packets being “received” the
response being that the destination host is unreachable. Once the
Flare-VM install script completed and Microsoft Network
Monitor and FakeNet-NG were installed, another snapshot was
taken.

After tools have been installed, it is time to acquire samples
and finalize isolating the sandbox for the safe execution of
ransomware. All malware samples used in this project were
obtained from the Github repository, theZoo [14]. In order to
complete isolating the sandbox, any shared folders were
disconnected, the VirtualBox guest additions were removed, and
the virtual machine was put onto a host-only network. Getting
rid of folders shared between the host and the virtual machine
prevents the ransomware from potentially placing malicious
data onto the host or from encrypting files on the host. The
removal of the VirtualBox guest additions (which may be
present on the virtual machine if shared folders were used) is a
way to further prevent the malware’s detection of being in a
virtualized environment. Future ransomware that attempts to
resist analysis might look for the existence of things like
VirtualBox’s guest additions that would reveal that it is being
run in a virtualized environment. Lastly, the virtual machine was
put onto a host-only network as suggested in the Flare-VM
documentation. As said in the VirtualBox network
documentation and shown in Table I, a host only network allows
for communication with the host and with other virtual machines
on the network while preventing communication with the
Internet and other machines on the host computer’s local area
network.

VirtualBox networks can be created and configured in the
network tools of VirtualBox’s VM manager. The adapter can be
configured automatically or manually and the DHCP server
settings for the network can also be configured. In order for the
virtual machines on the same network to be configured the
DHCP server must be enabled. If the host machine has the same
operating system as the sandbox, it would likely be better to use
an internal network as it would not be able to communicate with
the host machine.

IV. ANALYSIS OF WANNACRY
Malware analysis typically begins with a static analysis as it

does not require the execution of the malware which will, in the
case of ransomware, cause parts of the system to become
unusable. In this section, the analysis of Wannacry is described
[21]. The Wannacry ransomware attacks occurred in 2017 using

Fig. 1. Wannacry Exeinfo PE results

the EternalBlue exploit, which targeted a vulnerability in the
SMB protocol on Windows. The attack impacted individuals
and organization across the world, notably affecting the National
Health Service in the United Kingdom, impacting their ability to
provide medical care [20]. The attack was eventually halted by
malware researcher Marcus Hutchins after the discovery of a
DNS kill switch found in the code of the ransomware.
 During static analysis, the sample was first put into PeStudio
which revealed that the first two bytes were 4D 5A (M Z), that
it contained the DOS stub message “!This program cannot be
run in DOS mode.”, and that the original name file was
“diskpart.exe” all of which are indicators used to identify
disguised executables. PeStudio is a static analysis tool that
examines an executable to search for indications that it might be
malicious. All three of the hashes generated by PeStudio (md5,
sha1, sha256) on the sample were flagged as malicious by 62 out
of the 73 scanners on VirusTotal [17]. PeStudio was also able to
recognize the use of a PKZIP resource. As shown in Fig. 1, the
Exeinfo PE tool was able to recognize that the sample was not
packed. Lastly the sample was passed to the strings command
line tool which was able to recognize more notable strings than
were shown by PeStudio. Some interesting strings that appear in
Fig. 2 showed the existence of multiple “.wnry” files many of
which seemed to contain messages in different languages, such
as “msg/m_english.wnry”. It also references some potential
executable that may be called by the main sample such as
“taskdl.exe” and “taskse.exe”. Lastly, there were multiple
strings that referenced cryptography and encryption such as
“CryptGenKey” and “CryptEncrypt” indicating that the sample
is crypto ransomware.

Fig. 2. Exa Wannacry Exeinfo PE results

Fig. 3. Wannacry warning message

For dynamic analysis the sample was run alongside Process
Hacker, Microsoft network monitor, and Wireshark. The first
notable attribute of the Wannacry sample was the fact that it
would execute to its full extent in both the Windows 7 and
Windows 10 sandboxes without needing any network
emulation. The sample was able to encrypt files and display the
Wannacry warning message as seen in Fig. 3.

Beyond being convenient for the dynamic analysis in the
sandbox, this reveals several things about the sample. The fact
that Wannacry will go through with encryption regardless of
whether it is able to communicate with a command-and-control
server could mean that Wannacry is storing the keys used to
encrypt files on the host machine until it is able to send them to
the command-and-control server. This would be unlikely unless
Wannacry is storing encrypted forms of the keys on the infected
machine that could be decrypted to reveal the actual keys to the
command-and-control server. Secondly, the fact that encryption
occurred discloses that key generation is performed on the
infected machine, as it was not possible for Wannacry to retrieve
them from a server.

Only one core was used by the sandbox initially, as ideally a
sandbox will not need to use a large amount of system resources
unless necessary to bypass malware’s virtual machine detection
which was not necessary in this case. Keeping this in mind,
resource hacker showed the CPU’s available resources hovering
between 90%-100% prior to execution of the sample. At the
beginning of the sample’s execution the available resources
dipped to 40%-50% range and eventually stabilized to the 70%-
80% range. It was also notable that the initial executable stayed
in the range of using 5%-20% of CPU resources and many
subroutines were called by the initially run executable including:
“cmd.exe”, “cscript”, “conhost”, and “taskdl” all of which may
be further analyzable by extracting the pkzip resource detected
in PeStudio. Eventually the processes being run by the malware
stabilized to what is pictured in Fig. 4 with the above being from
the Windows 7 sandbox and the below being from the Windows
10 sandbox.

As mentioned prior, a famous attribute of the original
Wannacry virus was the presence of the DNS kill switch

Fig. 4. Wannacry processes in process hacker

discovered and registered by malware researcher Marcus
Hutchins, preventing Wannacry from spreading further;
however, more permutations of Wannacry that were not affected
by the kill switch were eventually released. The DNS kill switch
is a section of Wannacry’s code that attempts to confirm if a
certain domain name exists and only allow it to execute further
if the domain does not exist. One reason such a kill switch might
have been implemented into Wannacry originally was the fact
that it spread through worm-like behavior, meaning it could
spread without action being taken by the victim. The presence
of the kill switch may have been a way for the authors of
Wannacry to eliminate its effects if they ever decided it had
spread further than they had intended. Something noticeable
from the Wireshark capture was a lack of DNS queries
originating from the IP of the infected sandbox machine,
suggesting the sample was not susceptible to the DNS kill
switch. All packets captured with the source IP address being
that of the sandbox machine used NBNS, LLMNR, and IGMPv3
protocols; however, it was difficult to discern which if any of
these packets were associated with Wannacry. Also, no packets
captured were able to be associated with the Wannacry
executable by Microsoft Network Monitor. The NBNS protocol
is a name resolution protocol like DNS, but all the queries
originating from the sandbox’s IP address were to the name “B-
PC<1c>”, a domain controller. All these requests were to the
broadcast address of the subnet. LLMNR is also a name
resolution protocol, however, all its queries were to “b-PC”
through the multicast address 224.0.0.252. The IGMPv3 packets
were also to a multicast address, 224.0.0.252, possibly to search
for other devices in the subnet.

One interesting behavioral component of Wannacry was that
Wannacry offers to decrypt some files for free, even if it has no
network connection. This could mean that Wannacry stores at
least some of the file encrypting keys unencrypted on the
infected system, or the files that it claimed to decrypt were never
actually encrypted. Lastly, both sandboxes were put onto the
same host only network that was setup to allow them to
communicate with each other (in VirtualBox, a DHCP server
must be enabled to do this). The sample was run on only one of
the sandboxes to see if infection would eventually spread to the
other sandbox. Despite running for about an hour, there was no
indication of the ransomware spreading to the other machine.

V. ANALYSIS OF CRYPTOLOCKER
In the static analysis of Cryptolocker [22], PeStudio also

found the first bytes to be 4D 5A (M Z) and the DOS-stub “!This
program cannot be run in DOS mode.” indicating the sample as
an executable. All three hashes generated by PeStudio were
recognized by 63 out of the 73 of the scanners on VirusTotal.
Although PeStudio was unable to recognize the original name of
the file, one of its indicators was that “The file references

Fig. 5. Cryptolocker Exeinfo PE results

extensions like a Ransomware | Wiper”. It was also able to
recognize the use of an RTF resource. The Exeinfo PE scan
shown in Fig. 5 indicated that the sample was not packed.

As shown in Fig. 6, the strings command line tool was also
able to recognize more in this case as well. Some of the
recognized strings seem to be text for a warning message
explaining how to make payments with cryptocurrency such as
“Bitcoins can be transferred through a computer of smartphone
without an intermediate financial institution.” There were also
strings indicating the use of cryptographic encryption such as
“Microsoft Enhanced RSA and AES Cryptographic Provider”
and strings indicating HTTP GET and POST requests.

Unlike Wannacry, Cryptolocker was not able to run to its full
extent in the initial sandbox environment. After execution, there
were no encrypted files and no warning messages appeared.
Unlike Wannacry, which upon execution will generate multiple
files in the same directory that the initial sample was executed,
Cryptolocker deletes the initial executable upon running it.
However, in both the Windows 7 and Windows 10 sandboxes
the process remained running while barely using any resources.

The process remained running on reboot of the sandbox,
possibly trying to do more after reboot than it did beforehand
which was suggested by the fact that, the Windows 7 sandbox
requested permission for the process to continue to run after
reboot but not upon initial execution. Microsoft network monitor
was unable to associate any traffic with this specific process but
some packets in Wireshark showed NBNS queries to suspicious
addresses like “pfwnssjgmdxb.ru”.

Fig. 6. Cryptolocker strings output

Fig. 7. Cryptolocker processes in process hacker

 Six queries to these domains would occur before being
switched to another domain. There were also LLMNR and
IGMPv3 packets like in Wannacry. The IGMPv3 packets didn’t
seem any different from the Wannacry analysis, but there were
LLMNR and other NBNS packets that did not occur in the
Wannacry analysis. All three types of packets had the same
destination addresses as in the Wannacry analysis, but besides
there being NBNS queries to suspicious addresses like those
mentioned prior, there were LLMNR and NBNS queries to the
name “ISATAP”, which is used for IPv6 addresses. The final
difference in packets captured was the existence of NBNS
queries to the name “WORKGROUP”. The fact that the sample
was unable to run and the existence of persistent queries to
suspicious domains indicates that Cryptolocker does not
generate keys on the victim’s machine and instead retrieves
them from their command-and-control servers. If this is the case,
then Cryptolocker is likely trying to hide itself and quietly
continue to achieve connection with the command-and-control
servers until it can get keys to encrypt. The sample would also
not run to its full extent when Fakenet-NG was running using
default configurations. Based on responses from Fakenet-NG, it
was able to automatically intercept the suspicious requests but
clearly was unable to reply with the responses expected by the
Cryptolocker process.

VI. EVALUATION
The two instances of ransomware tested in this project

proved to be good examples of both ransomware that was easy
to analyze in a sandbox and ransomware that was more difficult
to analyze. The samples also helped to demonstrate some of the
nuances of sandboxing ransomware. The most noticeable
takeaway was the fact that isolation and safe execution was
considerably easier than emulation. The use of VirtualBox and
Flare-VM made the creation and setup of a virtual machine
designed for the execution and analysis of malware simple and
straight forward. VirtualBox’s snapshot capability allowed for
easy reversion to uninfected states in the sandboxes for cases
when something might have been missed in a dynamic analysis.
The use of VirtualBox’s host only network in combination with
a host operating system different than that of the sandboxes
prevented the spread of the ransomware to the host machine or
any machine other than the sandboxes, while allowing the
sandboxes to communicate with each other. While it would be
possible to use an internal network such that the host was not in
the network, there is a distinct advantage in having the host on
the same network, especially with ransomware. Because
ransomware encrypts files on the machine it infects, this could
cause difficulty if the ransomware targets pcap files created by
programs like Wireshark for packet capturing. This will become
increasingly likely as ransomware is developed to resist
analysis. Having the host be attached to the network allows for
the monitoring of the network without the files created for
monitoring being at risk of encryption by the ransomware. After
all the analysis, which included running both the Wannacry and
Cryptolocker samples multiple times in both the Windows 7 and
Windows 10 sandboxes, there was no indication of infection on
the host machine. All files on the host stayed unencrypted and

the host’s system monitor showed no suspicious processes or
any process named similarly to those created by either of the
ransomwares.

Emulating things for the malware to allow it to run to its full
extent proved to be the more difficult problem. Neither
Wannacry nor Cryptolocker is known to have mechanisms
designed specifically for analysis and sandbox resistance.
However, some of the known functionality of both samples was
unable to be executed in the environments created. Despite
being temporarily run on the same host only network where both
sandbox machines were able to communicate with each other,
Wannacry never infected the Windows 7 machine, though it
contained the EternalBlue exploit used by Wannacry to spread.
Cryptolocker’s functionality did not reach the encryption or
warning phase, as it was unable to retrieve the necessary
encryption keys from its command-and-control server. These
demonstrate future work that could be done for the sandboxing
of ransomware, namely finding ways to emulate responses
expected by ransomware from command-and-control servers.
This problem might be more straightforward than it may seem,
as most ransomware contacts these servers for the same or
similar types of responses. Future work could be done towards
the configuration of FakeNet-NG such that it could emulate
these types of responses, or into the creation of software that
could whitelist Internet communication in a sandbox such that
ransomware in the sandboxes could only communicate to its
command-and-control servers and not propagate through the
network.

VII. CONCLUSION
Malware analysis and sandboxing is a complicated and risky

topic, and with the rise of ransomware, becoming familiar with
the specificities of sandboxing ransomware will become more
and more important. There are two main considerations when
creating these sandboxes. The first is creating an environment
that prevents the ransomware from spreading outside of the
protected environment and infecting undesired machines. The
second is creating an environment that allows for the
ransomware’s full execution so that all of its behavior can be
observed. As demonstrated in this work, the first of these turns
out to be a simpler task than the second. This is primarily
because of ransomware nearly always contacting command-
and-control servers. As with the Cryptolocker ransomware
analyzed in this work, other ransomware may be unable to
execute unless contact to these servers is established. This issue
arises because of sandbox environments’ isolation from the
Internet. Such isolation prevents the spread of the sample but
also prevents direct connection to servers that might be
necessary for execution. Finding ways to emulate these types of
network connections or ways to safely communicate with these
servers, without potentially infecting other machines, is likely
the most important work for ransomware sandboxing in the
future.

REFERENCES
[1] A. O. Almashhadani, M. Kaiiali, S. Sezer and P. O’Kane, "A Multi-

Classifier Network-Based Crypto Ransomware Detection System: A Case
Study of Locky Ransomware," in IEEE Access, vol. 7, pp. 47053-47067,
2019, doi: 10.1109/ACCESS.2019.2907485.

[2] Wira Zanoramy A. Zakaria, Mohd Faizal Abdollah, Othman Mohd, and
Aswami Fadillah Mohd Ariffin. 2017. The Rise of Ransomware. In
Proceedings of the 2017 International Conference on Software and e-
Business (ICSEB 2017). Association for Computing Machinery, New
York, NY, USA, 66–70. DOI:https://doi.org/10.1145/3178212.3178224

[3] Rakesh Singh Kunwar and Priyanka Sharma. 2016. Malware Analysis:
Tools and Techniques. In Proceedings of the Second International
Conference on Information and Communication Technology for
Competitive Strategies (ICTCS '16). Association for Computing
Machinery, New York, NY, USA, Article 144, 1–4.
DOI:https://doi.org/10.1145/2905055.2905361

[4] Miuyin Yong Wong, Matthew Landen, Manos Antonakakis, Douglas M.
Blough, Elissa M. Redmiles, and Mustaque Ahamad. 2021. An Inside
Look into the Practice of Malware Analysis. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security
(CCS '21). Association for Computing Machinery, New York, NY, USA,
3053–3069. DOI:https://doi.org/10.1145/3460120.3484759

[5] Routa Moussaileb, Benjamin Bouget, Aurélien Palisse, Hélène Le
Bouder, Nora Cuppens, and Jean-Louis Lanet. 2018. Ransomware's Early
Mitigation Mechanisms. In Proceedings of the 13th International
Conference on Availability, Reliability and Security (ARES 2018).
Association for Computing Machinery, New York, NY, USA, Article 2,
1–10. DOI:https://doi.org/10.1145/3230833.3234691

[6] Q. Chen and R. A. Bridges, "Automated Behavioral Analysis of Malware:
A Case Study of WannaCry Ransomware," 2017 16th IEEE International
Conference on Machine Learning and Applications (ICMLA), 2017, pp.
454-460, doi: 10.1109/ICMLA.2017.0-119.

[7] Cornel Constantinescu and Sangeetha Seshadri. 2021. Sentinel:
ransomware detection in file storage. In Proceedings of the 14th ACM
International Conference on Systems and Storage(SYSTOR '21).
Association for Computing Machinery, New York, NY, USA, Article 28,
1. DOI:https://doi.org/10.1145/3456727.3463834

[8] R. R. Sharma and S. Sharma, "A novel Approach to counter
Ransomwares," 2020 10th International Conference on Cloud
Computing, Data Science & Engineering (Confluence), 2020, pp. 775-
780, doi: 10.1109/Confluence47617.2020.9058190.

[9] R. Agrawal, J. W. Stokes, K. Selvaraj and M. Marinescu, "Attention in
Recurrent Neural Networks for Ransomware Detection," ICASSP 2019 -
2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2019, pp. 3222-3226, doi:
10.1109/ICASSP.2019.8682899.

[10] D. Gonzalez and T. Hayajneh, "Detection and prevention of crypto-
ransomware," 2017 IEEE 8th Annual Ubiquitous Computing, Electronics
and Mobile Communication Conference (UEMCON), 2017, pp. 472-478,
doi: 10.1109/UEMCON.2017.8249052.

[11] T. Anderson “Google's VirusTotal reports that 95% of ransomware
spotted targets Windows.” Internet:
https://www.theregister.com/2021/10/14/googles_virustotal_malware/,
Oct. 14, 2021 [Mar. 7, 2022].

[12] VirtualBox. Internet: https://www.virtualbox.org [Oct. 21, 2021]

[13] Flare-VM. Internet: https://github.com/mandiant/flare-vm, Oct. 22, 2021
[Nov. 8, 2021]

[14] theZoo. Internet: https://github.com/ytisf/theZoo, Jan. 10, 2022 [Jan. 13,
2022]

[15] Virtual Networking. Internet:
https://www.virtualbox.org/manual/ch06.html [Mar. 11, 2022]

[16] FakeNet-NG. Internet: https://github.com/mandiant/flare-fakenet-
ng/blob/master/README.md, Nov. 11, 2020 [Dec. 3, 2021]

[17] Virustotal. Internet: https://www.virustotal.com/gui/home/upload [Jan.
17, 2022]

[18] “Ransomware Awareness for Holidays and Weekends.” Internet:
https://www.cisa.gov/uscert/ncas/alerts/aa21-243a, Aug. 31, 2021 [Mar.
10, 2022]

[19] MalwareBazaar. Internet: https://bazaar.abuse.ch, [Jan. 13, 2022]

[20] A. Morse “Investigation: WannaCry cyber attack and the NHS.” Internet:
https://www.nao.org.uk/report/investigation-wannacry-cyber-attack-and-
the-nhs/, Oct. 27, 2017 [Jan. 20, 2022]

[21] “WHAT IS WANNACRY/WANACRYPT0R?” Internet:
https://www.cisa.gov/uscert/sites/default/files/FactSheets/NCCIC%20IC
S_FactSheet_WannaCry_Ransomware_S508C.pdf, [Apr. 3, 2022]

[22] “CryptoLocker Ransomware Infections” Internet:
https://www.cisa.gov/uscert/ncas/alerts/TA13-309A, Nov. 5, 2016 [Apr.
3, 2022]

	Ransomware and Malware Sandboxing
	Citation

	ByronDenhamHonorsThesisPaper

