
Copyright

by

Kunal Vinod Kumar Punera

2007

The Dissertation Committee for Kunal Vinod Kumar Punera
certifies that this is the approved version of the following dissertation:

Enhanced Classification through Exploitation of

Hierarchical Structures

Committee:

Joydeep Ghosh, Supervisor

Ross Baldick

Sarfraz Khurshid

Raymond Mooney

Andrew Tomkins

Enhanced Classification through Exploitation of

Hierarchical Structures

by

Kunal Vinod Kumar Punera, B.E.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2007

Dedicated to my parents, Cdr. Vinod Punera and Shashi Punera.

Acknowledgments

My 27 year journey from birth in Goa, India, to obtaining the Ph.D. degree

at the University of Texas at Austin, has been aided by numerous people in a

myriad of ways. I feel that God has blessed me with more than my fair share

of love, support, guidance, friendship, and of course, technical assistance. In

these pages I would like to acknowledge and express my gratitude towards

everyone who helped me on this journey; I do so in roughly the chronological

order of meeting them.

While this dissertation would certainly not have been possible without

the constant encouragement and support of my family, their key contributions

were made much earlier. I thank Dad for instilling in me the principles of

sportsmanship and a confidence in my abilities, and Mom for shaping my

outlook in terms of moderation and adaptability. To both I am thankful for

teaching me that hard work performed and knowledge gained is never wasted.

In these principles, I might never quite be able to live up to the standards

they set in their lives, but to do so continues to be my goal. Finally, I would

like to give my love to my little sister, Tripti, and to tell her that I am proud

of what she has achieved and am excited to see what else the future holds for

her.

The most important contribution to this dissertation is that of my advisor,

Prof. Joydeep Ghosh, who has, throughout my graduate studies, mixed in just

the right amount of guidance along with copious amounts of freedom, all the

while backed up with unshakable support. He was very encouraging when my

v

research digressed into areas not of interest to him and very patient while I was

looking for a thesis topic. His input on my research, coming from considerable

intellectual depth and experience, has been an invaluable learning resource

for me. While he has left indelible marks on this dissertation, much more

importantly, I thank him for his unique style of advising and accessible nature

that have greatly shaped me as a researcher. I have been extremely lucky to

have had him as my graduate advisor.

In addition, I thank Prof. Ross Baldick, Prof. Sarfraz Khurshid, Prof.

Raymond Mooney, and Dr. Andrew Tomkins for serving on my Ph.D. disser-

tation committee, and for all their input on my research and thesis writeup.

I would like to thank all my colleagues at the IDEALab for creating an

excellent work atmosphere and for their invaluable help with my research. In

particular, I learnt a lot from my interactions with Sreangsu Acharyya, Arin-

dan Banerjee, Meghana Deodhar, Gunjan Gupta, Goo Jun, Manish Katyal,

Chase Krumpelman, Alex Liu, Srujana Merugu, and Suju Rajan, especially

during our weekly group meetings. A special thanks to Srujana, Suju, and

Meghana for the warm friendships, eager help, and home cooked food, both

in and away from Austin. Finally, I thank Amy Levin and Melanie Gulick

for all their help with successfully negotiating the administrative landscape of

UT-Austin.

During the course of my stay in the US, I have been fortunate to make some

very close friends with whom I have spent nearly all my time away from the lab.

In Austin Siddarth Krishnan, Shobha Vasudevan, and Vinod Viswanathan

have been a family to me. I thank them for the countless enjoyable hours

spent talking, laughing, and playing. I thank Naresh Rajkumar, Anu Murthy,

Srujana Merugu, and Suju Rajan for providing me a similar home in the San

vi

Francisco bay area.

A significant part of my development as a researcher has happened during

internships. I have spent many happy months working at Yahoo! Research

and IBM Almaden Research Center, and I would like to thank everyone I inter-

acted and collaborated with during those wonderful learning experiences. In

particular, apart from all other things, I thank Andrew Tomkins for taking on

the role of advisor while I was away from Austin, Andrei Broder for agreeing to

mentor my internship at Almaden in the summer of 2005 after three successive

mentors of mine moved to Yahoo, Ravi Kumar for patiently investing precious

time in our joint work and getting me interested in theoretical research, and

Deepayan Chakrabarti, Sandeep Pandey, and Aris Anagnostopoulos for in-

sightful discussions over hyper-competitive games of foosball. I also spent a

year as a research assistant to Prof. Soumen Chakrabarti and Prof. Rushikesh

Joshi at Indian Institute of Technology - Bombay right after my undergradu-

ate studies, and I would like to thank them for introducing me to high quality

research that early in my career.

Lastly, and most importantly, I would like to express my affection, my

respect, and my gratitude to my lovely wife, Darpana. In the last few months

as I have spent more and more time in the abstract world of computer science

she has often been my one anchor to the real-world, and has provided a much

needed diversity in perspective. I thank her with all my heart for her love,

patience, and understanding in the face of considerable time and monetary

constraints. It is now time to start our much awaited “after the thesis” life.

vii

Enhanced Classification through Exploitation of

Hierarchical Structures

Publication No.

Kunal Vinod Kumar Punera, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Joydeep Ghosh

Humans often organize information by encoding it in structures that link

together entities such as concepts, objects, properties etc. Among the various

structures possible, hierarchies are commonly used. For instance, taxonomies

of categories commonly employ hierarchies to indicate that one category “is a”

type of another. The Yahoo! Web Directory and the Open Directory Project

are two examples of large taxonomies where topics are hierarchically arranged.

Hierarchies are also used to recursively decompose composite objects into their

constituent parts. Examples of this are webpages that can be parsed and then

represented as DOM-trees, where the DOM nodes correspond to sections of

the webpages.

In this thesis we argue that these hierarchical relationships between en-

tities can be exploited to facilitate common data mining tasks defined upon

them, like automated classification. Specifically, we show that the information

encoded in these hierarchies can be reduced to constraints on class member-

ship scores that can then be enforced as a post-processing step to enhance the

viii

accuracy of classification. We demonstrate our ideas and algorithms on three

real-world tasks.

First, we tackle the problem of classification into hierarchical taxonomies.

We show how different taxonomy structures can be translated into constraints

on the outputs of classifiers learned at the nodes of the hierarchy. In addition,

we give algorithms to optimally enforce these constraints and show that this

results in improved classification accuracy. In cases where the taxonomies

are not available, we give an approach to automatically derive hierarchical

relationships amongst a flat set of categories. Next, we work on the problem

of detecting noisy (templated) parts of webpages. We give algorithms that

rate each section of a webpage in terms of how templated it is. Then we show

that smoothing the output of these template classifiers over the DOM-tree

hierarchy improves the template detection performance of our system. Finally,

we investigate the task of segmenting websites into topically cohesive regions.

We define a framework and within it a set of measures that characterize good

segmentations, and give an efficient algorithm to find the best segmentation

within this framework.

We formalize the problem of enforcing constraints on the outputs of clas-

sifiers as regularized isotonic or unimodal regression on rooted trees; these are

generalizations of the classic isotonic regression problem. The nature of the

constraints as well as the cost functions is different in each of the applications

mentioned above. For all these formulations we give efficient algorithms to op-

timally smooth the classifier outputs. These novel formulations and algorithms

might be of interest independent of the applications in this thesis.

ix

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

Chapter 2. Background and Related Research 9

2.1 Introduction . 9

2.2 Clustering and Classification 10

2.3 Taxonomy Construction via Hierarchical Clustering 12

2.4 Classification using Hierarchies 15

2.5 Isotonic and Unimodal Regression 18

2.6 Webpage Template Detection 19

2.7 Topical Segmentation of Websites 21

Chapter 3. Automated Construction of Taxonomies 23

3.1 Introduction . 23

3.2 Automatic Taxonomy Generator (ATG) 25

3.2.1 The Automatic Taxonomy Construction Problem 25

3.2.2 Proposed Solution (ATG) 28

3.3 Comparison with Related Work 34

3.4 Experiments . 37

3.4.1 Datasets . 38

3.4.2 Implementation Details 40

3.4.3 N-ary Taxonomies are More Natural 41

x

3.4.4 Comparison over Classification Accuracy 45

3.5 Conclusions . 47

Chapter 4. Enhanced Hierarchical Classification via Smoothing 50

4.1 Introduction . 50

4.2 Regularized Isotonic Regression 57

4.2.1 Formulation . 57

4.2.2 Algorithm for the case γ = ∞ 62

4.2.3 Algorithm for Regularized Tree Isotonic Regression . . . 66

4.3 Regularized Unimodal Regression 74

4.3.1 Formulation . 74

4.3.2 Algorithm . 77

4.4 Experimental Setup . 82

4.4.1 Datasets . 82

4.4.2 Evaluation Measures . 85

4.4.3 Classification Algorithms 87

4.4.4 Parameter Settings . 87

4.5 Evaluation on TaxonomyI under Scenario I 89

4.5.1 Classification Performance 89

4.5.2 The Effect of Missing Classifier Scores 93

4.6 Evaluation on Remote Sensing Data under Scenario I 98

4.6.1 Classification Performance 98

4.6.2 Evaluation on the Knowledge Transfer Task 99

4.6.3 The Effect of Missing Classifier Scores 102

4.7 Evaluation on GOTaxonomy under Scenario II 107

4.8 Evaluation on TaxonomyII under Scenario III 109

4.9 Discussion and Conclusions . 115

Chapter 5. Page-level Template Detection via Isotonic
Smoothing 119

5.1 Introduction . 119

5.2 Site-level Template Detection 123

5.2.1 DOM-based algorithm 124

xi

5.2.2 Text-based algorithm 126

5.3 Volume and Evolution of Webpage Templates 129

5.3.1 Methodology . 129

5.3.2 Templates on Today’s Web 134

5.3.3 Evolution of Templates 134

5.3.4 Conclusions from our study 141

5.4 Page-level Template Detection 142

5.4.1 Framework . 143

5.5 Step-regularized Tree Isotonic Regression 147

5.6 Details of the System . 153

5.6.1 Constructing Training Data 153

5.6.2 Learning the Classifier 154

5.6.3 Smoothing Classifier Scores 155

5.7 Experiments . 157

5.7.1 Template Detection Performance 158

5.7.2 Application to Duplicate Detection 165

5.7.3 Application to Webpage Classification 168

5.8 Conclusions . 171

Chapter 6. Hierarchical Topic Segmentation of
Websites 172

6.1 Introduction . 172

6.2 Formulation . 178

6.2.1 Hierarchical Topic Segmentation 178

6.2.2 Formal Definition . 180

6.3 Segmentation Algorithm . 181

6.3.1 A Generic Algorithm . 182

6.3.2 Cost Measures . 184

6.3.2.1 Cohesiveness Costs 184

6.3.2.2 Node Selection Costs 186

6.4 Experiments . 187

6.4.1 Website Segments: Obtaining Labeled Data 188

6.4.2 Measuring Segmentation Performance 191

xii

6.4.3 Performance on Semi-Synthetic Benchmark 192

6.4.4 Performance on Hand-Labeled Benchmark 194

6.4.5 Exploring the Role of α-Measure 198

6.5 Conclusions . 201

Chapter 7. Conclusions and Future Work 202

7.1 Conclusions . 202

7.2 Future Work . 204

7.2.1 Algorithmic Aspects . 204

7.2.2 Application Oriented . 206

Bibliography 208

Vita 234

xiii

List of Tables

4.1 Dataset: TaxonomyI. Performance increases in SVM classifier
through isotonic smoothing. 89

4.2 Dataset: TaxonomyI. Performance increases in Naive Bayes
classifier through isotonic smoothing. 89

4.3 Dataset: Botswana. Performance increases in SVM classifier
through isotonic smoothing. 98

4.4 Dataset: KSC. Performance increases in SVM classifier through
isotonic smoothing. 98

4.5 Dataset: Botswana (Knowledge Transfer). Performance in-
creases in SVM classifier through isotonic smoothing. 99

4.6 Dataset: KSC (Knowledge Transfer). Performance increases in
SVM classifier through isotonic smoothing. 99

4.7 Dataset: GOTaxonomy. Performance increases in SVM clas-
sifier through isotonic smoothing. 107

5.1 The number of websites in each category. 131

5.2 Internet Archive data volumes for Unbiased and Popular collec-
tions of websites. 132

5.3 Fraction of links, HTML, and text that appears in templates by
data collection and date range. 135

5.4 Accuracy of PageLevel on Common and Random datasets
in terms of F-measure. 159

5.5 Number of duplicate and non-duplicate pairs detected by the
shingling approach after removing templates detected by PageLevel
and SiteLevel . FullText indicates no template detection
and removal. 167

5.6 Averaged classification accuracies on 2-class problems. The
training data for the two categories was selected from different
websites causing template content to be learned as discriminat-
ing features. Moreover, the test instances followed an adver-
sarial distribution which made the problem extremely difficult.
The best accuracies for each class combination are in bold. . 170

xiv

List of Figures

3.1 Pseudo-code for our proposed approach for automatic construc-
tion of a taxonomy (ATG). 32

3.2 Taxonomies constructed for the Glass dataset by the ATG and
AIB algorithms. ATG recovers the exact hierarchical structure
specified in the UCI-ML description of the Glass dataset. . . . 42

3.3 Taxonomies constructed for the 20-newsgroups dataset by the
ATG and AIB algorithms. 43

3.4 Taxonomies constructed for the Botswana dataset by the ATG
and AIB algorithms. 44

3.5 Taxonomies constructed for the KSC and Pendigits datasets by
the ATG algorithm. 44

3.6 Learning rates when the taxonomies are pre-constructed. . . . 48

3.7 Learning rates when taxonomies are built from limited data. . 49

4.1 A taxonomy of classes from the 20-newsgroups dataset. . . . 52

4.2 Examples of hierarchies with scores on nodes. The green circles
highlight correct scores and the red squares erroneous ones. . 59

4.3 Algorithm to solve Problem 4.2. Array x contains the origi-
nal classifier scores and x̂ is the set of unique values in x. wv

denote the node-specific weights. BuildErrorStrict con-
structs functions err(·, ·) and val(·, ·) which are then used by
IsotoneSmooth to find the smoothed scores y(·). 63

4.4 Algorithm to solve Problem 4.4. Array x contains the original
classifier scores and x̂ is the set of unique values in x. wv and
γv denote the node-specific weights and penalties. BuildEr-
rorRelax constructs functions err(·, ·) and val(·, ·) which are
then used by IsotoneSmooth to find the smoothed scores y(·). 69

4.5 Algorithm to solve Problem 4.13. Array x contains the original
classifier scores and x̂ is the set of unique values in x. wv and
γvu denote the node-specific weights and penalties. BuildEr-
rorUnimodal constructs functions err(·, ·) and val(·, ·) which
are then used by UnimodalSmooth to find the smoothed
scores y(·). 79

xv

4.6 Dataset: TaxonomyI. Performance of smoothing outputs of
SVM classifiers as measured by classification accuracy and area
under the ROC curve. The horizontal lines are the baseline
scores obtained by the classifiers without the smoothing. . . . 90

4.7 Dataset: TaxonomyI. Performance of smoothing outputs of
SVM classifiers as measured by increases in F-measure. The
horizontal lines are the baseline scores obtained by the classifiers
without the smoothing. 91

4.8 Dataset: TaxonomyI. Performance of smoothing outputs of
Naive Bayes classifiers as measured by classification accuracy
and area under the ROC curve. The horizontal lines are the
baseline scores obtained by the classifiers without the smooth-
ing. 92

4.9 Dataset: TaxonomyI. Performance of smoothing outputs of
Naive Bayes classifiers as measured by increases in F-measure.
The horizontal lines are the baseline scores obtained by the
classifiers without the smoothing. 93

4.10 Dataset: TaxonomyI. Performance with SVMs under Scenario
I with missing values. Curves with pink no-fill shapes are per-
formance of raw classification scores. Curves with blue solid
shapes are performance after smoothing.. 96

4.11 Dataset: TaxonomyI. Performance with Naive Bayes classi-
fiers under Scenario I with missing values. Curves with pink no-
fill shapes are performance of raw classification scores. Curves
with blue solid shapes are performance after smoothing. . . . 97

4.12 Dataset: Botswana (Knowledge Transfer). Performance of
smoothing outputs of SVM classifiers as measured by classifica-
tion accuracy and area under the ROC curve. The horizontal
lines are the baseline scores obtained by the classifiers without
the smoothing. 100

4.13 Dataset: Botswana (Knowledge Transfer). Performance of
smoothing outputs of SVM classifiers as measured by increases
in F-measure. The horizontal lines are the baseline scores ob-
tained by the classifiers without the smoothing. 101

4.14 Dataset: KSC (Knowledge Transfer). Performance of smooth-
ing outputs of SVM classifiers as measured by classification ac-
curacy and area under the ROC curve. The horizontal lines
are the baseline scores obtained by the classifiers without the
smoothing. 102

4.15 Dataset: KSC (Knowledge Transfer). Performance of smooth-
ing outputs of SVM classifiers as measured by increases in F-
measure. The horizontal lines are the baseline scores obtained
by the classifiers without the smoothing. 103

xvi

4.16 Dataset: Botswana. Performance with SVMs under Scenario
I with missing values. Curves with pink no-fill shapes are per-
formance of raw classification scores. Curves with blue solid
shapes are performance after smoothing.. 105

4.17 Dataset: KSC. Performance with SVMs under Scenario I with
missing values. Curves with pink no-fill shapes are performance
of raw classification scores. Curves with blue solid shapes are
performance after smoothing.. 106

4.18 Dataset: GOTaxonomy. Performance of smoothing outputs
of SVM classifiers as measured by classification accuracy and
area under the ROC curve. The horizontal lines are the baseline
scores obtained by the classifiers without the smoothing. . . . 107

4.19 Dataset: GOTaxonomy. Performance of smoothing outputs
of SVM classifiers as measured by increases in F-measure. The
horizontal lines are the baseline scores obtained by the classifiers
without the smoothing. 108

4.20 Precision of classes predictions as true labels before and after
smoothing with SVM classifiers on TaxonomyII under Sce-
nario III. 112

4.21 AvgPrecision@1 of classes predictions as true labels before and
after smoothing with SVM classifiers on TaxonomyII under
Scenario III. 113

4.22 Performance with SVM classifiers on TaxonomyII under Sce-
nario III when constraining the cross-over nodes to have a smoothed
value of 1. 114

5.1 Running time and aggregate detection performance for a variety
of parameters. Each point is labeled with the parameters W.F.D.P128

5.2 Proportions of templated content for all categories 133

5.3 Fraction of content inside versus outside templates as a function
of time. 136

5.4 Average duration of all templates and detemplated pages exist-
ing at each point in time. 138

5.5 Histogram of durations of templates and detemplated content
over all pages. 140

5.6 Distribution of magnitude of change in full text and detem-
plated content. 141

5.7 Algorithm to solve Problem 5.2. Array x contains the original
classifier scores and x̂ is the set of unique values in x. wv de-
note the node-specific weights. BuildErrorStep constructs
functions err(·, ·) and val(·, ·) which are then used by IsotoneS-
mooth to find the smoothed scores y(·). 150

xvii

5.8 Segmentation performance of PageLevel Basic, PageLevel
Basic+Merge, and PageLevel Smooth. 160

5.9 Variation in template detection accuracy on the Common dataset
with changing values of penalty. The x-axis represents the fac-
tor being multiplied into the penalty. 162

5.10 Variation in segmentation accuracy on both datasets with chang-
ing values of penalty. The x-axis represents the factor being
multiplied into the penalty. 163

6.1 Two websites with different organization of topics along the
URL directory structure. 178

6.2 Cumulative distribution of number of candidate segments for
all sites in our sample and for the sites we sampled for manual
segmentation. 188

6.3 Precision–recall curves (with varying β) over the semi-synthetic
benchmark. The values are averaged over all hybrid sites cre-
ated (over different number of grafts settings). 192

6.4 Precision–recall curves (with varying β) obtained by using KL+Alpha
cost measures over the semi-synthetic benchmark. Different
curves correspond to different number of grafts. 193

6.5 Precision–recall curve (with varying β) over the hand-labeled
websites. 195

6.6 Cumulative distribution of the absolute error in the number of
segments detected for the hand-labeled websites. 196

6.7 Adjusted Omega score obtained over the hand-labeled websites
(with more than one true segment) for different values of β. . 197

6.8 The averaged f-measure of segmentation found by the algorithm
for websites with different number of segments in the labeled
solution. 198

6.9 The fraction of runs in which all grafts in the hybrid tree were
found vs number of grafts. 199

6.10 The recall of grafts in the hybrid tree vs number of grafts. . . 200

xviii

Chapter 1

Introduction

In philosophy, the term Ontology refers to the study of existence or being.

Broadly speaking, a key aspect of an ontology is the categorization of enti-

ties into groups, and the study of relationships amongst these groups. More

specifically, in the fields of computer and information sciences, the term ontol-

ogy refers to a data model that represents concepts within a domain and the

relationships between these concepts [Gru93].

The basic components that make up ontologies are the individuals, also

referred to as objects or instances that are being studied and reasoned about.

Examples of these are concrete objects such as people, automobiles, docu-

ments etc, or even abstract entities like numbers or vowels. These instances

are described completely by a set of properties and their values; we call them

features. For instance, automobiles might be described by features like num-

ber of axles, weight, horsepower, color etc. Concepts (also called classes) are

often more abstract groups of instances and/or other classes. For example, in

1

our ontology of automobiles, Car, Truck, and Sedan might be three distinct

classes. The class Car might group together the instances Honda-Civic and

Ford-Mustang, and also the class Sedan. Finally, ontologies contain a set of

relations that link classes to instances as well as link classes amongst them-

selves. An important type of relation is subsumption, which denotes that an

entity is-a type of another entity1. This can be used to define which instances

are members of which classes. When applied between classes, the subsump-

tion relation results in hierarchies of classes; the child class is-a type of the

parent class (in the above example, Sedan is-a Car). Such a system of classes,

the relationships amongst them, and the rules of memberships of instances to

classes, are often collectively referred to as a taxonomy.

Throughout our intellectual history, humans have sought to organize their

knowledge of the world with the help of taxonomies. Around 300 BC, Aristotle

devised a taxonomy of all possible things that can be referred to in sentences;

he called this treatise “Categories” [1]. Some of the classes in this taxonomy

were Substance, Quantity, Quality, Position, Action etc. Carolus Linnaeus,

who is known as the “father of modern taxonomy”, attempted to categorize

all living things into a canonical biological taxonomy in the eighteenth cen-

tury. The levels of the Linnaean taxonomy divided organisms into Kingdoms,

then Classes, and then Orders etc. Even today, the use of taxonomies for

organization spans the gamut of knowledge from objects as ephemeral as web-

pages [DMO] to concepts as eternal as human goals [CRW01].

Of the different taxonomical structures possible, those with subsumption

relations linking classes have become ubiquitous as knowledge organization

1Another important relation is meronymy, which represents how entities combine to-
gether to form other composite entities [WCH87].

2

tools. In addition to some mentioned above, taxonomies such as the US Patent

Office class codes, the Library of Congress catalog, the phylogenetic “Tree of

Life” [Me04], and even the ACM Computing Classification System are hier-

archical in nature. In general, taxonomies structured as hierarchies make it

easier to navigate and access the data as well as to maintain and enrich it. This

is especially true in the context of the World Wide Web where the amount

of available information is overwhelming. Therefore, it is not surprising that

many Internet topic directories such as Yahoo! [Yah] and DMOZ [DMO] are

organized as hierarchies.

Apart from classes in hierarchical taxonomies, other types of objects are

also often arranged in hierarchies. In many domains, the instances placed in

taxonomies are not atomic objects, but themselves have an internal hierarchi-

cal structure (often formed of meronymic relations). For example, a webpage

can be represented by a tree of DOM nodes, which represent parts of the

webpage - the content and formatting instructions - and are connected via

containment relations [HHW+04]. As another example, consider a set of web-

pages that are individual chapters, sections, and subsections of a thesis. In

this case, the instances (webpages) are related to each other by the overall

hierarchical organization of the thesis (chapters contain sections etc).

In this thesis we study domains and scenarios where classes, objects, or

parts of objects are related to one another via hierarchical relationships. We

propose ways in which this hierarchical information can be translated into

gains in accuracy of data mining tasks such as classification. Finally, we eval-

uate these approaches and showcase their efficacy on real-world applications

like text classification, template detection and website segmentation.

3

Automated Construction of Taxonomies.

Traditionally, taxonomy construction has been done manually by humans.

When Linnaeus attempted to classify all of nature into a hierarchy, he manu-

ally compared the physical characteristics of organisms while deciding which

Kingdom, Class, and Order, to place them in. Even as recently as a few years

ago, both Yahoo! and DMOZ taxonomies were constructed and populated

manually by employees and volunteers2. This manual process is, however,

time-consuming, expensive, and, in the case of an changing and expanding

corpus like the World Wide Web, inherently incomplete. Hence, there has

been a lot of recent research on automating the taxonomy construction pro-

cess [KGC02, PRG05, VD04, ST99, SKO01].

In Chapter 3 we tackle the problem of constructing a hierarchical tax-

onomy of classes automatically. We propose a framework that characterizes

a “good” taxonomy, and also provide an algorithm to construct it [PRG06].

Our approach improves on prior work by avoiding unnecessary restrictions on

the hierarchical structure learned (we allow n-ary trees) and not requiring any

user-defined parameters to be specified. We compare our work to an existing

approach that yields taxonomies structured as binary trees, and our empirical

results show that n-ary tree based taxonomies constructed by our approach

group classes in more “natural” ways.

Exploiting Hierarchical Taxonomies for Classification.

Given that a large portion of human knowledge is currently in the form

of taxonomies, it is natural that there is considerable interest in being able to

automatically place instances into appropriate classes. Consider a taxonomy

2www.dmoz.org/about.html

4

with the following set of classes: Car, Truck, and Motorcycle. We want to

find a function that takes as input a vector of features-values - number of

axles, weight, horsepower, color - and outputs the label of the vehicle - Car,

Truck, or Motorcycle - which these attributes describe. The task we have

just described is known as classification in machine learning literature. The

standard model of classification of instances into a “flat” set of classes has

been extensively studied and numerous techniques have been proposed to solve

it [Hay99, MN98, Mit97, PR03, Qui, Vap95]. Under this model, each instance

is classified based on only its features-values, and each class does little more

than group similar instances together, separate from instances of other classes.

However, there is often some structure in the classification problem, and

this can be exploited to improve accuracy. One form of structure is subsump-

tion relationships between classes in the taxonomy. Suppose the taxonomy

mentioned above contains an additional class Sedan that is-a a type of class

Car. In such a taxonomy, instances can have multiple labels: the instance

Honda-Civic belongs to both the classes Sedan and Car. However, the struc-

ture within the taxonomy places limits on these labellings: an instance cannot

be labeled both a Sedan and a Motorcycle. More importantly, the structure

helps in inference of class memberships: if we know an instance belongs to

class Sedan, we can be sure that it also belongs to class Car. Contrapositively,

our knowledge that an instance is not a Car, also informs us that it is not a

Sedan. Using this additional structure in taxonomies to devise improved clas-

sification functions has also been studied [CDAR98, DC00, KS97, MRMN98,

PRG06, TJHA05, Fal96].

In Chapter 4 we show how the information implicitly encoded in the hi-

erarchical structure of taxonomies can be translated into constraints on the

5

class membership scores of instances. Furthermore, we argue that these con-

straints can be enforced as a post-processing step to correct errors introduced

by classifiers and hence to improve classification accuracy. Alternate taxon-

omy structures and the different forms of constraints they generate are also

discussed. We formalize the problems of enforcing constraints on membership

scores as regularized generalizations of the classic isotonic and unimodal tree

regression problems. We also provide efficient dynamic programming based al-

gorithms to find optimal solutions to these problems. Empirical evaluation on

real-world domains shows that enforcing constraints on membership scores de-

rived from the hierarchical relationships between classes of a taxonomy results

in improved accuracy of classification.

Exploiting Other Sources of Hierarchical Information.

Another source of structure, which can be exploited for improving ac-

curacy in classification problems, is the hierarchical relationships amongst

instances being classified. The way objects in some domains are linked to

one another often constrains how they can be classified. Consider the tem-

plate detection problem, where parts of webpages have to be labeled either

templates (irrelevant content) or non-templates (relevant content). Webpages

are represented by a rooted tree structure based on their HTML code (DOM

trees [HHW+04]), and so the problem boils down to assigning “templateness”

scores to nodes of a tree. However, the scores for nodes (sections of webpages)

are constrained by the edges in the tree structure. For example, if we declare a

node to be non-template, we cannot have its parent labeled as template; con-

tent of a page section (parent node) that contains relevant content (child node)

cannot be called irrelevant. Recently, specialized classification algorithms have

6

been proposed to exploit this kind of structure amongst instances to improve

accuracy in various domains [CDI98, DGMS01, PDG02]

In Chapter 5 we investigate the problem of template detection on the Web.

We begin by reporting on two large-scale studies we performed to measure the

volume and evolution of templates [GPT05]. The results from the studies show

that more than half of all content on the web is within templates (is irrelevant).

Having established the gravity of the problem, we introduce both local and

global methods that assign “templateness” scores to sections of a webpage.

These scores are then adjusted to conform to constraints derived from the

tree structure within the webpage [CKP07]. We formulate this constraint

enforcement problem as isotonic tree regression with step regularization, and

give an efficient exact algorithm to solve it. Through large-scale experiments

we show that our approach to enforcing constraints as a post-processing step

accurately segments a webpage into template and non-template parts.

In Chapter 6 we tackle the problem of topically segmenting the hierarchical

structure of a large website [KPT06]. As in the template detection problem,

the class labels of a webpage (leaf in the URL directory tree of the website) are

constrained based on labels of other webpages in the same directory (internal

node in the URL tree). Unlike the template detection problem, however, only

leaf nodes in the tree are assigned membership scores. The goal is to find

segments of the URL tree such that content within them is topically cohesive.

We develop a set of cost functions that can be used to measure the quality of a

segmentation and provide an efficient algorithm to find the best segmentation

in this framework. Through extensive experiments on human-labeled data we

confirm the soundness of our framework and show that a judicious choice of

cost functions allows the algorithm to perform surprisingly accurate topical

7

segmentations.

In summary, this thesis introduces ideas and algorithms through which

information implicitly encoded in hierarchical relationships can be exploited

in principled ways to improve accuracy of data mining tasks. Two very distinct

sources of this information are considered; the subsumption relations between

classes in a taxonomy and the hierarchical arrangement of instances being

classified. Moreover, as we show, the existence of different types of taxonomies

as well as the diverse ways in which instances link to each other lead to further

variations in the type of information encoded in edges of a hierarchy. In our

work we describe how all these different types of hierarchical relationships can

be translated into constraints on class membership scores. In order to enforce

some of these types of constraints we introduce regularized versions of the

classic isotonic and unimodal tree regression problems and give algorithms to

solve them exactly3.

We motivate these abstract problems through diverse real-world applica-

tions such as hierarchical classification, template detection, and website seg-

mentation. For each problem, we construct end-to-end systems in which our

work on exploiting hierarchical relationships is an important sub-system. For

example, in the case of hierarchical classification, we also give an approach to

construct hierarchical taxonomies automatically. While, in the template detec-

tion work, we perform large-scale studies on the prevalence of noisy content on

the Web, and construct a classifier that labels irrelevant sections of webpages

as templates. These applications also help us showcase the improvements in

performance due to our approach to enforcing constraints in hierarchical data.

3These novel problem formulations and the exact algorithms we give to solve them might
of interest independent of applications discussed in this thesis

8

Chapter 2

Background and Related Research

2.1 Introduction

In broad terms, this thesis deals with work on automated taxonomy con-

struction, hierarchical classification, isotonic regression, template detection,

and topical website segmentation. Here we review some background infor-

mation on the machine learning concepts used in the later chapters. Basic

undergraduate level knowledge of algorithms [KaT05] and probability [Fel68]

is assumed and not covered.

The problems covered in this thesis have received considerable attention

in the data mining and machine learning research community in recent years.

In this chapter we briefly describe some of this prior research. For detailed

descriptions of these works readers are referred to the original publications.

9

2.2 Clustering and Classification

Machine learning problems are typically studied under the broad dichotomy

of unsupervised and supervised learning. The goal of unsupervised learning is

to discover “interesting” structure in a dataset X = {x1, . . . , xn} assumed to

be have been drawn i.i.d. from a distribution D. Some unsupervised learning

approaches try to estimate the form and parameters of the distribution that

likely produced dataset X. Clustering is one form of unsupervised learning.

Clustering. The goal in clustering is to partition a dataset into clusters

(groups), such that pairs of data instances from within the same group are

more “similar” to each other than pairs taken from across groups. Many dif-

ferent approaches to finding clusters have been proposed, and they can be

broadly divided into two categories: Partitional and Agglomerative. Parti-

tional methods try to divide the dataset into exhaustive and disjoint partitions

such that each data instance is closest to the partition it belongs to. Differ-

ences in aspects such as representation of clusters and the metrics used to mea-

sure distances (or similarities) give rise to various partitional algorithms. One

of the most popular partition-based approaches is k-Means [Mac67], which

represents each cluster by the mean of the instances that comprise it and

measures the distance between an instance and a cluster mean using the Eu-

clidean metric. Variations of k-Means differ in the measures used to compute

distance, such as cosine distance [DFG01], KL-distance [DMK03], and Breg-

man divergences [BMDG05]. Partitional clustering algorithms can also be

model-based [DLR77, BDGS05], where each cluster is represented by a den-

sity function and goal of learning is to estimate the parameter values that most

likely generated the observed data. Other partition-based approaches use ad-

hoc notions of density of data [EKSX96, SEKX98, ABKS99] or partition the

10

similarity graph of instances [Cha04, SG02] to locate clusters.

Agglomerative clustering approaches [JD88] differ from partition-based

ones in that they find partitions of the dataset at all levels of granularity,

effectively constructing a hierarchy. These methods are discussed in detail in

the next section.

Classification. In the supervised learning setting, along with the data X

we also are given a vector y with a target value for each data instance. It

is assumed that the pairs {xi, yi} are sampled i.i.d. from a joint distribution

X× Y. The task is to learn the function τ : X → Y; when yi ∈ Y are discrete

labels, this task is called classification.

Depending on how they learn the function τ , classification algorithms are

categorized as generative or discriminative. Generative approaches first try to

model the conditional density functions p(x|y) for each class and then make

predictions using Bayes rule. Linear Discriminant Analysis [DHS00], Bayesian

Networks [PR03], and the popular Naive Bayes algorithm [MN98] are exam-

ples of generative learning methods. In contrast, discriminative learning ap-

proaches try to directly learn a function that predicts the posterior probability

p(y|x) or the class labels y. Examples of discriminative learning algorithms

approach are Decision trees [Qui], Neural Networks [Hay99], Support Vector

Machine [Vap95], and Logistic Regression [NJ02].

Within classification, the special case of yi ∈ {0, 1} - binary classification

- has been very well studied. Most well known learning approaches, like C4.5

(decision tree) [Qui93], neural network algorithms such as Perceptron [Ros58]

and Backpropogation [RHW86], and Support Vector Machine [Vap95] are best

suited for two class problems. Even theoretical analysis of learning is better

11

established for binary classification [Val84, Vap95]. Hence, much research has

focused on finding ways to solve multi-class problems by reducing them to

multiple binary classification problems [DB95, ASS00, CS02, RK04].

While unsupervised and supervised learning represent two extremes of

the machine learning landscape, recent work has explored problems that fall

into the middle ground. Typically, in these problems two sets of data are

provided, with ground truth available for only one set; hence, these problems

are referred to as semi-supervised learning [CSZ06]. In one of the earliest

such approaches, Nigam et al. [NMTM00] present an algorithm that improved

classification accuracy by exploiting large amounts of unlabeled data. Other

work has focused on improving clustering accuracy by using a small amount of

labeled data in the form of constraints [BBM02, BBM04]. A related problem is

that of transductive learning [Joa99], where the task is to learn a classification

function for a specific test dataset, and not for the entire data space.

2.3 Taxonomy Construction via Hierarchical Clustering

Hierarchical taxonomies are used for organizing knowledge in many do-

mains [Me04, CKKS02, DMO]. In Chapter 3, we present a novel approach

to automatic construction of n-ary tree based taxonomies. In this section,

we review existing work on hierarchical clustering and its use in taxonomy

construction.

Semi-automatic Taxonomy Building. The taxonomy construction pro-

cess involves the specification of a hierarchical system of classes as well as

placing data into the nodes of this hierarchy. In the past, both these processes

have typically been done by hand by humans. For example, both Yahoo [Yah]

12

and DMOZ [DMO] taxonomies were created manually by employees and vol-

unteers1. However, as the size of taxonomies grow - DMOZ has over 500

thousand classes and millions of webpages - the manual process of creation

and maintenance becomes expensive and time consuming. Moreover, the is-

sues of scale are exacerbated by the dynamic and expanding nature of domains

like the World Wide Web.

Gates et al. [GTC05] describe a system for semi-automatic construction

of a large general purpose taxonomy for categorization of Web and intranet

documents. They also present arguments in favor of automatic construction

of taxonomies as opposed to manual labeling of documents. Other efforts on

semi-automatically defining taxonomies and labeled data for text categoriza-

tion systems include the InfoAnalyzer system by Zhang et al. [ZLPY04] and a

Self-Organizing Maps based approach by Adami et al. [AAS03]. Finally, there

has been some recent work on identifying hierarchical relationships between

concepts via “folksonomies” [Kom05], which are organizations and categoriza-

tions developing on the web from user-generated tags and content.

Hierarchical Clustering. Hierarchical clustering algorithms group data

instances together to produce nested partitions of all possible sizes. Hence,

they try to arrange instances as leaves of a tree such that each anti-chain

of nodes represents a good clustering of that size. These hierarchies can be

formed in either a bottom-up or a top-down manner. The bottom-up or ag-

glomerative approach starts with each data instance forming a cluster on its

own. Then the clusters that are closest according to some distance measure

are merged successively until the termination criterion is satisfied. The clas-

1www.dmoz.org/about.html

13

sic single-link and complete-link algorithms [JD88] are examples of bottom-up

approaches. The top-down or divisive approach starts with all instances in

the same cluster, and successively splits a clusters into smaller clusters un-

til the stopping condition is fulfilled. Any partitional clustering algorithm,

such as k-Means, can be fit into the divisive framework to generate hierar-

chies via repeated bisections. There are also some approaches which try to

improve upon the greedy nature of agglomerative clustering by employing a

hybrid search phase [PG05, ZRL96, ZK05], or by using complex splitting and

merging criteria [GRS98, KHK99].

While the algorithms mentioned above are discriminative in nature, many

generative model-based hierarchical clustering methods have also been pro-

posed. Tishby et al. [TPB99] present a top-down method based on the Infor-

mation Bottleneck principle that finds clusters using a deterministic annealing

procedure. Other approaches that employ deterministic annealing to create hi-

erarchies are given in [GGPC02, KGC02, Hof99]. Finally, there has been some

recent work on learning mixture model hierarchies [GR04, SKO01, VD00b].

Automatic Taxonomy Construction. Many of the above mentioned al-

gorithms can be used to construct taxonomies by applying them to the set

of class means. Hierarchical agglomerative clustering [JD88] applied to class

means works by considering each class as a separate cluster and then succes-

sively merging clusters that are closest to each other. This results in a topic

hierarchy structured as a rooted binary tree with classes at the leaves. Sim-

ilarly, divisive hierarchical clustering algorithms [TPB99, GGPC02] can also

be used to automatically construct taxonomies.

Considerable work has also been done on algorithms dedicated to taxon-

omy generation. Kumar et al. [KGC02] propose a top-down approach (called

14

BHC) for construction of binary hierarchies of classes. The BHC approach

recursively partitions a set of classes into two disjoint subsets of classes until

only singleton sets of classes remain. The partitioning is achieved through

a deterministic annealing process. Like BHC, Vural and Dy [VD04] and

Punera et al. [PRG05] describe methods for creation of binary hierarchies

in top-down fashion by successively splitting sets of classes using the k-Means

algorithm. Tibshirani and Hastie [TH07] perform the same top-down construc-

tion using the optimal margin classifier at each split. In addition, Punera et al.

[PRG05] consider splitting the classes themselves if their contents belong in

multiple different parts of the taxonomy. Finally, Slonim and Tishby propose

an agglomerative approach in [ST99] that produces binary trees by greedily

merging clusters that minimize the loss in mutual information between the

intermediate clustering and the category labels.

The methods mentioned so far are restricted to finding binary tree based

taxonomies. There has also been some work on learning taxonomies that can

be represented as n-ary trees [BGJT04, GR04, Hof99, SKO01, VL99].

2.4 Classification using Hierarchies

In this section we review past works that attempt to exploit hierarchical

relationships to improve classification accuracy; this is the theme of our work

in Chapters 3, 4, and 5. Some works explore scenarios where a set of classes are

arranged in a hierarchical taxonomy, while others involve classifying instances

that have a hierarchical relationships amongst themselves.

Classification with Hierarchical Taxonomies. Hierarchical classifi-

cation systems typically create one multi-class classifier for each internal node

15

in the hierarchy, and classify a test instance once at each level so as to direct it

to the classes at the leaves. This approach has been shown to have many ad-

vantages. Chakrabarti et al. [CDAR98] use hierarchical classifiers to segment

large classification problems into more manageable units at the nodes of the hi-

erarchy. Dumais and Chen [DC00] and Koller and Sahami [KS97] show that a

smaller set of features suffices for each classifier when using well defined hierar-

chies. Finally, in the event of scarce labeled data, McCallum et al. [MRMN98]

obtain more robust parameter estimates for classes via the parameter estimates

of their parents in the hierarchy.

In a similar vein, hierarchies have also been used to decompose the output

space of a multi-class problem into a series of binary problems that can be

solved using popular binary classifiers like SVMs [KGC02, SKO01, VD04].

Also, there is some recent work on generalizing support vector learning to take

into account relationships among classes mirrored in the class hierarchy [CH04,

TH07, TJHA05].

Classification of Hierarchical Objects. There is a rich body of lit-

erature around classification of tree-structured objects such as semi-structured

HTML or XML documents, website URL directories etc. Theobald et al. [TSW03]

discuss classification of XML documents, using features that derive from the

tree structure of the XML document. However, these features are extracted

from simple types of path relationships, and are then processed by a traditional

classifier. Diligenti et al. [DGMS01] consider classification of semi-structured

documents using a “hidden tree Markov model”, in which each subtree is gen-

erated by a particular Markov model. Piwowarski et al. [PDG02] and Denoyer

and Gallinari [DG04b] consider a similar model in which document trees are

modeled using Bayesian networks. Tian et al. [THG+03] model both the URL

16

tree structure within websites and the DOM tree structure within webpages

using hidden tree Markov models to classify the pages in the website.

Hierarchical Probabilistic Models. Other researchers have employed

hierarchical models, not to the problem of classifying hierarchical objects, but

in order to consider flat objects at different levels of granularity. Hierarchical

HMM, introduced by Fine et al. [FST98], is a hierarchical generalization of

the widely used hidden Markov model. Hierarchical HMMs have been shown

to be useful for unsupervised learning and modeling of complex multi-scale

structures that occur in language, handwriting, and speech; in particular, they

were used to construct hierarchical models of natural English text. Koller and

Sahami [KS97] show a hierarchical generative model called tree-augmented

naive Bayes. The goal is to capture local similarities in vocabulary within a

document. Blei and Jordan [BJ03] consider the problem of modeling annotated

data and derive hierarchical probabilistic mixture models to describe such data.

Exploiting Constraints from Object Relationships. There are many

approaches to classification of objects where the outputs of classifiers are mod-

ified to conform to various types of constraints. Chakrabarti et al. [CDI98]

present Hyperclass, a hyperlink-aware classifier operating upon webpages in a

graph. In this work the label of a webpage is related to the labels of neighbor-

ing webpages via a technique based on Markov Blankets. In their research on

natural language tasks, Roth and Yi [Rot02, RtY04] propose a inference with

classifiers framework, which separates learning of classifiers and the mainte-

nance of task-specific constraints. The constraints are enforced by formulating

and solving integer programming problems. Agarwal et al. [ACA06] formulate

and solve optimization problems to enforce user preference constraints while

17

ranking networked entities. Finally, in [BVZ01] Boykov et al. give a fast ap-

proximate algorithm for segmentation of entities related by general graphs.

This algorithm also can be used to update the classification of a node with

respect to labels of neighbouring nodes.

2.5 Isotonic and Unimodal Regression

In Chapters 4 and 5 we introduce regularized versions of the classic iso-

tonic and unimodal regression problems. Algorithms for these classic problems

have been used when the domain dictates that a function being estimated is

constrained to be monotonically increasing, or maybe unimodal, but the data

doesn’t exhibit this behavior because of noise. Hence, in [MICAM02] isotonic

regression is used to smooth the probability of heart attack as a function of

cholesterol level, and in [SAM97] the credit-worthiness as a function of in-

come. Other applications include epidemiology [MJDP+00], microarray data

analysis [AHKW06], and calibration of classifiers [ZE02].

A lot of research has concentrated on finding efficient algorithms for iso-

tonic regression under different cost functions. For complete orders, Stout [Sto00]

gives algorithms to find the optimal solutions for L1 norm in O(N log N) time

and for L2 norm in O(N) time. Boyarshinov and Magdon-Ismail [BMI06] give

a linear time algorithm under the L1 cost for cases where the number of out-

put levels is bounded. For isotonic regression on rooted trees the best known

algorithms work in O(N log N) time for L2 [PX99] and O(N2 log N) time

for L1 [AHKW06] metrics. Schell and Bahadur [SS97] propose a method for

regularizing isotonic regression outputs by merging adjacent level-sets whose

values are not significantly different.

Unimodal regression can be solved by multiple calls to isotonic regression

18

but this simple approach leads to expensive algorithms. Stout [Sto00] intro-

duces prefix isotonic regression, whereby the regression on all initial segments

is computed. The prefix approach utilizes the solution for one initial segment

to aid in the solution of the next, which considerably reduces the total time re-

quired, giving O(N log N) and O(N) time algorithms over complete orders for

the L1 and L2 norms respectively. We do not know of any work that considers

unimodal regression over trees.

2.6 Webpage Template Detection

Webpages contain a combination of unique content and template material,

which is often present across multiple pages and used primarily for formatting,

navigation, and branding. These template structures pollute the content by

digressing from the main topic of discourse of the webpage. Furthermore, they

can cripple the performance of many search engine modules, including the in-

dex, ranking function, summarization, duplicate detection, etc. Consequently,

a lot of research work has focused on automatically detecting templates on

webpages. Techniques proposed for the problem fall into two families. Global

techniques consider a family of pages together (often from the same website)

and exploit the property that templates occur many times. Local techniques,

on the other hand, detect templates on an individual page using only infor-

mation local to the webpage.

Site-level Template Detection. The problem of extracting templates

from web pages was first introduced by Bar-Yossef and Rajagopalan [BYR02].

They propose a technique based on segmentation of the DOM tree and selec-

tion of certain key nodes using properties of the content of the node (such as

19

the number of links within the node) as candidate templates. Yi et al. [YLL03]

and Yi and Liu [YL03] study template extraction in order to improve data min-

ing results by removing noisy features due to templates. They present a data

structure called the style tree which takes into account certain metadata about

each node of the DOM tree, rather than the particular content of the node.

Vieira et al. [VSP+06] frame the template detection problem as a problem of

mapping identical nodes and subtrees in the DOM trees of two different web-

pages. They propose performing the expensive task of template detection on

a small number of pages, and then removing all instances of these templates

from the entire site using a much cheaper approach.

Page-level Template Detection. Some page-level algorithms have also

been proposed recently. Kao et al. [KHC05] segment a given webpage using a

greedy algorithm operating on features derived from the page. However, their

method is not completely page-level; they use some site-level features such as

the number of links between pages on a website. Debnath et al. [DMPG05] pro-

pose a page-level algorithm (“L-Extractor”) that applies a classifier to DOM

nodes, but only certain nodes are chosen for classification, based on a prede-

fined set of tags. Kao et al. [KCLH02] propose a scheme based on information

entropy to focus on the links and pages that are most information-rich, reduc-

ing the weights of template material as a by-product. Song et al. [SLWM04]

use visual layout features of the webpage to segment it into blocks which

are then judged on their salience and quality. Other local algorithms based

on machine learning have been proposed to remove certain types of template

material. Davison [Dav00] uses decision tree learning to detect and remove

“nepotistic” links, and Kushmerick [Kus99] develops a browsing assistant that

learns to automatically remove banner advertisements from pages. Finally,

20

some related research focuses on segmentation of webpages for the purpose of

displaying them on small mobile device screens [Bal06, CXMZ05, YL04].

2.7 Topical Segmentation of Websites

In Chapter 6 we tackle the problem of segmenting a website into topi-

cally cohesive regions. We propose an algorithm that operates upon a tree-

structured object with a class distribution at each node. The goal is to segment

the tree structure into connected components that are cohesive in terms of the

class distributions. While we have not been able to find previous work that

directly studies such objects, we list below a number of related ones.

Site-level Classification. There has been some prior work on treating

websites or groups of webpages as the basic unit of analysis [Pie00, THA99,

TW04]. Kriegel et al. [KS04, EKS02] present various website classification

schemes based on features extracted from the individual webpages. Some of

their schemes consider topics at individual webpages but they use these as

features for the site level classifier. They have no notion of segmenting a

website into sub-parts, and they learn models for websites as a whole. More

recent work by Tian et al. [THG+03] uses “hidden Markov trees” to model

both the site directory trees as well as the DOM trees of the webpages. They

then employ a two-phase system through a fine-to-coarse recursion to classify

the site. Sun et al. [SL03] propose a technique to partition websites into “Web

Units”, which are collections of webpages. These fragments are created using

heuristics based on intra-site linkages and the topical structure within the

website is not considered.

Hierarchical Partitioning. Chakrabarti et al. [CJT01] propose a method

21

motivated from information theory for segmenting the DOM tree of a webpage

into pagelets that are topically cohesive. Moving beyond the purview of ma-

chine learning, there are some approaches to partitioning hierarchical objects.

Fagin et al. [FGK+05, FKK+05] consider a general notion of partitioning hi-

erarchical structures based on a variety of different quality measures.

Our website segmentation work is closely related to the problem of facility

location on trees. While the problem on general graphs is NP-hard [KH79], lot

of work has been done to obtain fast exact algorithms for the facility location

problem on trees with n nodes; the goal is to find k facilities. Tamir [Tam96]

obtained a dynamic programming algorithm that runs in time O(kn2); this was

an improvement over the O(k2n2) algorithm of Kariv and Hakimi [KH79] and

O(kn3) algorithm of Hsu [Hsu82]. For some important special case distance

functions, the best running time bound of O(n log n) is due to Shah and Farach-

Colton [SFC02].

22

Chapter 3

Automated Construction of Taxonomies

3.1 Introduction

In Chapter 1 we discussed the ubiquitous use of taxonomies as knowledge

management tools. In additional, various information retrieval, data mining,

and machine learning approaches make use of data arranged in hierarchies.

Categories from taxonomies such as the Yahoo Web Directory are returned

as search results for queries that map to them. Searchers can even provide

context to their queries by searching documents within a certain category.

The Scatter Gather system of Cutting et al. [CKT92, HKP95] makes use of

hierarchical clustering techniques to provide an intuitive paradigm for pre-

sentation and exploration of retrieved results to users. Hierarchies have also

been used to decompose the output space for the purposes of classification in

diverse domains such as text mining [CDAR98, DC00, KS97], hyper-spectral

analysis [KGC02], and image classification [HKZ98]. In machine learning, hi-

erarchies of classes have been used for smoothing parameter estimates, as in

23

Shrinkage [MRMN98]. Hierarchical taxonomies are also a core component of

ontologies for the Semantic Web [BLHL01], and their construction and main-

tenance of is the subject of much current research [DMDH02, FFR97, NM00].

Automatic Taxonomy Construction.

In this chapter we tackle the problem of arranging a given set of classes

into a hierarchy, specifically as leaves of a rooted n-ary tree. Moreover, given

the high cost and unscalable nature of manual intervention, we seek to do this

completely automatically (parameter-free). Several approaches that seek to

solve parts of this problem have been proposed. Kumar et al. [KGC02], Vu-

ral and Dy [VD04], and Punera et al. [PRG05] propose top-down approaches,

while Slonim and Tishby [ST99] describe an agglomerative approach, for the

construction of binary hierarchies of classes. Apart from the fact that these

approaches perform greedy operations, the binary restriction on the branching

factor of nodes creates artificial groupings of classes, especially at the top levels

of the taxonomy. There has also been some work on learning n-ary tree struc-

tured hierarchies [GR04, SKO01] but these methods require significant user

input on the structure of the tree. Specifying these parameter settings is very

difficult without significant insight into the structure of the data. In contrast

to these approaches, our algorithm is parameter-free and learns the structure

of the taxonomy from the given data in an entirely automatic manner.

Our Contribution.

(1) In Section 3.2 we present an approach that constructs taxonomies of cat-

egories in a completely automated fashion. We introduce a novel constraint

on the relationships between categories, and this helps our algorithm learn

“good” taxonomies with no user-defined parameters.

24

(2) Our approach doesn’t place any restrictions on the branching factor of

the tree being learned, effectively constructing n-ary trees. This avoids the

problem of arbitrary groupings of categories at the top levels of the tree.

(3) In our approach, some greedy decisions made early in the taxonomy con-

struction process are re-evaluated in more specific contexts. This makes our

approach significantly less greedy than some previous methods in literature

that we review in Section 3.3.

(4) Through experiments (Section 3.4) on datasets from a variety of domains,

we show that taxonomies modeled as n-ary trees are more “natural” and result

in better hierarchical classification accuracies than those modeled as binary

trees. To the best of our knowledge this is the first study of this kind.

3.2 Automatic Taxonomy Generator (ATG)

We begin with a detailed description of the problem of automatic tax-

onomy construction and then propose our solution to it. Henceforth in this

chapter, we use the terms “class” and “category” interchangeably. Moreover,

since we model taxonomies as hierarchies, and as trees to be specific, we use

the terms “taxonomy”, “hierarchy”, and “tree” interchangeably too.

3.2.1 The Automatic Taxonomy Construction Problem

We broadly define the problem of automatic taxonomy construction as

finding an arrangement of classes in a hierarchy. In this chapter we tackle the

problem of learning the structure of a rooted n-ary tree with the classes placed

at the leaves. The desiderata of a solution are as follows:

25

1. “Similar” classes should be placed close to each other in the learned

taxonomy. Since our taxonomy is a rooted tree, similar classes should

be closer to each other than different ones in terms of, say, the number

of undirected edges in the path connecting them. For example, in the

creation of a Shopping taxonomy, the lowest common ancestor of classes

Car and SUV should be farther from the root than that of classes Car and

Power-Tool. This is a standard requirement of any taxonomy employed

for classification.

2. The internal nodes should have an interpretation based on their con-

tent. In other words, the content of each internal node should be as

homogeneous as possible. Sometimes, taxonomies organize classes by

grouping them arbitrarily. This often happens at the top levels of tax-

onomies which are modeled as binary trees. For example, consider a

Shopping taxonomy where the root is associated with the set of classes

{Electronics, Computers, Home & Garden, Clothing & Accessories}.

These classes are all very different from each other and should all be

placed in separate nodes at the next level. But if the taxonomy is mod-

eled as a binary tree it might be forced to partition the set of classes

into {Electronics,Computers} and {Home & Garden, Clothing & Ac-

cessories}. We desire that the taxonomy construction process partition

the set of classes at each internal node into as many parts as needed to

maintain the homogeneity of the children nodes.

3. The taxonomy creation approach should work automatically without any

user-defined parameters. Many existing approaches require the user to

specify, for instance, the number of internal nodes in the tree or at each

26

level. These parameters are very difficult to set manually without inti-

mate knowledge of the structure of data. We want our approach to avoid

any such parameters.

Notation.

We need a few definitions to make the ideas expressed above and the

subsequent solution to the problem precise. Let X be the set of data-points,

such that each data-point xi has an associated class label li from a set of k

classes C. Thus, each class cj has a set of data-points Xcj
associated with

it using which its prior πcj
and class-conditional probability density functions

pcj
= pX(x|cj) can be estimated.

We want an arrangement of the classes C into a taxonomy. Let the tax-

onomy be represented by a rooted n-ary tree T with k leaves. Let leaf(T)

and root(T) represent the set of leaves and the root of the tree T respectively.

Each class is placed at exactly one leaf of T so that leaf(T) = C. Let w be

an internal node of T , and let Tw denote the subtree rooted at w. Each such

internal node w is then associated with a set of classes Cw = leaf(Tw). Let

XCw represent the data obtained by putting together the data belonging to all

classes in Cw. Using XCw , each set of classes Cw, and thereby each internal

node w, has an associated prior π(Cw) and a probability density function pCw .

Note that more sophisticated models for pCw can be used, such as a mixture

model of pdfs associated with classes in Cw. Finally, we note that while de-

scribing our approach a collection of sets of classes such as {Cvi
: 1 ≤ i ≤ m}

is sometimes shortened to {Cvi
}m

i=1.

27

3.2.2 Proposed Solution (ATG)

In this section we first describe a generic algorithm for the construction

of a hierarchy and then justify the design choices made in our work.

A Generic Top-down Algorithm.

We adopt a top-down approach to learning the tree structure. We start

with T as a single node. Then root(T) is associated with the set of given

classes C and the variable root(T).tosplit is set to true. At any time during

the algorithm’s run there are a set of leaves of the tree T that have their tosplit

variable set to true. We pick one such leaf w for splitting. Let w be associated

with the set of classes Cw. We then need to find the m disjoint subsets {Cvi
}m

i=1

into which Cw must be partitioned. This involves both finding the value of

m and the subsets themselves. This partitioning is computed by a procedure

called findPartition, which is described later in this section. Once the Cvi

are obtained, we create m new nodes vi that are assigned as immediate children

of w. Each Cvi
is then associated with the corresponding leaf vi. The tosplit

variable of each vi whose associated Cvi
has more than one class is set to true;

w.tosplit is set to false. In this fashion we proceed with splitting leaves until

all leaves have tosplit set to false. In other words, internal nodes are split

until the leaves have only one class each. The pseudo-code for this algorithm

is shown in Figure 3.1.

The Partitioning Criterion.

As mentioned above, at each internal node w of the tree we need to find

a partitioning of the set of classes Cw into an appropriate number of subsets.

But before we describe our choice of partitioning criterion we need a notion of

distance between sets of classes.

28

We compute the distance between sets of classes using the Jensen-Shannon

(JS) divergence [Lin91]. The distance between two sets of classes C1 and C2

is defined in terms of their associated pdfs pC1 and pC2 , and priors πi = π(Ci)

JSπ({C1, C2}) = π1KL(pC1 , π1pC1 + π2pC2) + π2KL(pC2 , π1pC1 + π2pC2)

where π1 + π2 = 1, πi ≥ 0, and KL is the Kullback-Leibler divergence [KL51].

The JS divergence measures how “far” the classes are from their weighted

combination, where the πi assign the contribution of the two distributions.

The JS measure is always non-negative, symmetric in its arguments, and,

unlike the KL divergence, is bounded. Moreover, it can be generalized to

more than 2 sets of classes/distributions. The JS divergence between k sets of

classes Ci is defined as

JSπ({Ci : 1 ≤ i ≤ k}) =
k∑

i=1

πiKL(pi, pm) (3.1)

where
∑

i πi = 1, πi ≥ 0, and pm is the weighted mean probability distribution

pm =
∑

i πipi [DMK02]. In this work we use JS({cj : cj ∈ Cvi
}) to refer to the

JS divergence between the set of distributions pcj
; and JS({Cvi

, Cvj
}) to refer

to the JS divergence between the distributions pCvi
and pCvj

, though they are

sets of classes.

Using this definition of distance we can define a criterion of partitioning

Cw. We would like to partition Cw into m disjoint subsets {Cvi
: 1 ≤ i ≤ m}

so as to minimize
m∑

i=1

π(Cvi
)JSπ′ ({cj : cj ∈ Cvi

}) (3.2)

where π(Cvi
) =

∑
cj∈Cvi

πcj
, and π′cj

= πcj
/π(Cvi

), under the constraint that

∀i, j 6= i

JSπ′′
(
{Cvi

, Cvj
}
)

> min{JSπ′′ ({Cvi
, Cw}) , JSπ′′

(
{Cvj

, Cw}
)
} (3.3)

29

where π′′ = {1
2
, 1

2
}.

The objective function in Equation (3.2) computes the similarity of all the

classes to the subset that they end up in. Minimizing this function gives us

subsets that are very homogeneous. We would like to minimize this objective

function over all possible m sized partitionings of Cw, where m ranges from

2...‖Cw‖. Since the function in Equation 3.2 is trivially minimized if Cw is

partitioned into ‖Cw‖ singleton subsets, we need to constrain the solution.

The constraint in Equation (3.3) ensures that none of the m subsets are

closer to each other than to the parent Cw. In other words any solution in

which there exist at least one pair of subsets that are closer to each other

than to the parent is considered invalid. This constraint enforces a distance

between sibling nodes, and is natural in the context of a taxonomy. If two

sets of classes Cv1 and Cv2 are closer to each other than each is to parent Cw,

then it can be argued that they should be placed in the same subset, and be

separated lower in the tree. Setting uniform priors π′′ in Equation (3.3) gives

equal importance to all distributions, and prevents larger classes from biasing

the mean distribution towards themselves.

An attractive feature of this constraint is that the threshold on the distance

between subsets is defined by the distances of the subsets from the parent set,

and from each other. Hence, a solution with Cv1 and Cv2 very close to each

other will still be considered valid if either one of them is still closer to Cw. On

the other hand, another solution in which Cv3 and Cv4 are far from each other

might not be considered valid if both are even further away from the parent

Cw. Since the partitioning criterion depends on the distance relationships

between classes, the structure of the taxonomy is learned automatically and

no parameters need to be set by the user.

30

As mentioned above, we want to minimize the objective in Equation (3.2)

over all possible partitionings of Cw into m (where 2 ≤ m ≤ ‖Cw‖) subsets

that satisfy the constraint in Equation (3.3). The optimal solution can be

obtained by enumerating all possible solutions which satisfies the constraint,

and picking the one which minimizes the objective. The time complexity of

this procedure will be exponential in the number of classes in the parent.

Hence, we need an algorithm that computes a “good” solution efficiently at

the expense of optimality guarantees.

A Greedy Algorithm to Find Partitionings.

In order to find a solution efficiently we devise a greedy agglomerative ap-

proach. This is implemented as the procedure findPartition in the pseudo-

code in Figure 3.1.

Let the current node w being partitioned have a set of n classes Cw asso-

ciated with it. We seek to find the partitioning by agglomeratively clustering

the set of classes. We begin with each class as a separate cluster, {Cvi
}n

i=1.

We then obtain pair-wise distances (as defined by the JS divergence) between

each pair of clusters, and also between each cluster and Cw. We define a

candidate-pair for merging as a pair of clusters Cvi
and Cvj

, such that they

violate the constraint in Equation (3.3). From all such candidate-pairs we

pick the one that has the smallest value for (π(Cvi
) + π(Cvj

))JSπ({Cvi
, Cvj

})
and merge its constituents. The process of merging clusters Cvi

and Cvj
in-

volves replacing them by another cluster Cvk
that includes both their classes

(Cvk
= Cvi

∪ Cvj
), and then recalculating the pair-wise distances and finding

the new set of candidate-pairs. We repeat this process of merging until no

candidate-pairs remain. The final set of clusters (each a set of classes) define

the partitioning of Cw.

31

Algorithm constructTaxonomy

Input:C is the set of all classes
pcj are class-conditional density functions

Output: T is the rooted n-ary tree with leaf(T) = C
1. Initialize T as a single node. Set root(T).classes = C

and root(T).tosplit = true
2. while (w.tosplit == true), for some node w
3. {Cvi

}m
i=1 = findPartition(w.classes)

4. Create m new nodes vi, set vi.tosplit = false
5. for-each vi

6. set vi as a child of w
7. vi.classes = Cvi

8. if (|Cvi
| > 1) then set vi.tosplit = true

9. end-for

10.end-while

Algorithm findPartition

Input: Cw is the set of n classes to partition
Output: {Cvi

}m
i=1 form the partition of C

1. Let each class in Cw be a cluster {Cvi
}n

i=1

2. Get JS divergence among all pairs from Cvi
,

and also between each Cvi
and Cw

3. Find all pairs Pk = (Cvi
, Cvj

) that violate the
constraint in Equation (3.3)

4. From P , select the pair (Cvi
, Cvj

) which has the
lowest value for the expression in Equation (3.4).

5. while (there exists a pair (Cvi
, Cvj

))
6. Replace Cvi

and Cvj
with Cvk

= Cvi
∪ Cvj

7. Recompute pairwise JS divergence as in step 2
8. Pick the pair (Cvi

, Cvj
) as in step 3 and 4

9. end-while

Figure 3.1: Pseudo-code for our proposed approach for automatic construction
of a taxonomy (ATG).

32

In our algorithm, we start with a presumably invalid solution with the

lowest possible objective function value; each class forms a singleton cluster

{Cvi
}n

i=1. We then successively merge clusters (and incur an increase in ob-

jective function value) until a valid solution is obtained. The pair of clusters

for merging are chosen from the set of clusters that violate the constraint, in

such a way so as to minimize the increase in objective function value. After a

valid solution has been obtained we stop merging since further merging cannot

improve the value of the objective function.

Proposition 3.1. At any step in the findPartition algorithm, merging the

candidate-pair (Cvi
, Cvj

) with lowest value of
(
π(Cvi

) + π(Cvj
)
)
JSπ

(
{Cvi

, Cvj
}
)

results in the least increase in the objective function value

Corollary 3.2. Merging clusters will always result in an increase in the value

of the objective function.

Proposition 3.1 can be proved by noting that the change in objective value

due to merging sets Cvi
and Cvj

is

δ =
(
π(Cvi

) + π(Cvj
)
)
JSπ′

(
{c : c ∈ Cvi

∪ Cvj
}
)

− π (Cvi
) JSπ′ ({c : c ∈ Cvi

})

− π
(
Cvj

)
JSπ′

(
{c : c ∈ Cvj

}
)

= (π(Cvi
) + π(Cvj

))JSπ({Cvi
, Cvj

}) (3.4)

where π′ = πc/π(Cv) are the class priors normalized within each cluster. Equa-

tion (3.4) can be obtained by using Theorem 4 in [DMK02]. Then Corollary 3.2

follows from the non-negativity of Jensen-Shannon divergence.

Proposition 3.3. The findPartition algorithm in Figure 3.1 will terminate

with at least two clusters.

33

This proposition states that when only two clusters are left, each cluster

will be closer to the parent than to the other cluster. In other words, a

solution with only two clusters is always valid. This follows from the fact that

the Jensen-Shannon divergence JSπ({pi}) is convex in pi for a fixed π. This

property of our algorithm ensures that the procedure constructTaxonomy in

Figure 3.1 always terminates by outputting a tree with classes placed at the

leaves.

The merging process in our algorithm is greedy and no guarantee can be

given that the objective function will be optimally minimized. However, we

note that some of these merges will be re-evaluated when children nodes are

further partitioned lower in the tree. The parent node during these new parti-

tions will be different and more specific. We claim that this ameliorates some

of the effects of greedy merges and helps our algorithm find better hierarchies.

3.3 Comparison with Related Work

In this section we briefly review existing research on creation of taxonomies

and compare it to our work. We concentrate on those aspects of existing

algorithms that distinguish our approach from them. Readers are referred to

the original publications for details of the works mentioned.

Comparison with Agglomerative Information Bottleneck.

Agglomerative Information Bottleneck (AIB) was proposed by Slonim and

Tishby in [ST99] where it was used to hierarchically cluster words in a given

dataset. However, this technique can also be applied to classes in order to

construct a hierarchical structure over them. The method is initialized with

each class as a separate cluster. The algorithm then produces a binary tree

34

by greedily merging clusters that minimize the loss in mutual information

between the intermediate clustering and the category labels. In this respect,

this method resembles the way we partition the set of classes at each node in

function findPartition in Figure 3.1. We refer the readers to the original

paper by Slonim and Tishby [ST99] for more details about the AIB algorithm.

In spite of having the same cost function as our approach (ATG), AIB

differs in two significant ways. First, while ATG yields n-ary tree based

taxonomies, AIB only constructs binary trees. Second, ATG constructs the

taxonomy in a top-down fashion while AIB is an agglomerative procedure.

Essentially, our approach performs operations partially resembling AIB (the

findPartition function) in order to partition the classes at each internal

node. This top-down nature lets ATG reconsider some of the merge deci-

sions made by the findPartition procedure. AIB does not enjoy this benefit

making it more greedy than ATG.

In the next section, we will empirically compare the n-ary taxonomies

generated by ATG with the binary taxonomies generated by AIB. Since both

approaches use Jensen Shannon divergence based cost functions, this is an

objective evaluation of whether n-ary tree based taxonomies are better than

binary tree based ones. We will show that n-ary taxonomies are more natu-

ral than binary taxonomies, and classifiers learned over them perform better.

Moreover, we will show that ATG makes less greedy merges than AIB.

Comparison with Other Existing Research.

The classic agglomerative clustering method (HAC) [JD88] can be easily

adapted for construction of a taxonomy in much the same way as the AIB

algorithm above. However, it suffers from the same shortcomings as AIB.

35

Tishby et al. [TPB99] present a method for obtaining a hierarchical clus-

tering based on the Information Bottleneck principal that finds clusters using

a deterministic annealing like procedure. The “detection” of clusters in this

process is, however, a very subtle task, and requires tuning of parameters

which is non-trivial without prior knowledge about the data [Slo03]. Further-

more, this taxonomy creation approach is non-deterministic in the solution it

produces. By contrast, our approach is parameter-free and completely deter-

ministic in nature. Other approaches that employ deterministic annealing to

create hierarchies are given in [GGPC02, KGC02, Hof99].

Kumar et al. [KGC02] and Tibshirani and Hastie [TH07] propose top-down

approaches - called BHC and Margin Trees respectively - for the construction

of binary hierarchies of classes specifically with hierarchical classification as

the application. Both approaches recursively partition a set of classes into two

disjoint subsets until only singleton sets of classes remain. The partitioning

is achieved through a deterministic annealing process in BHC and through

maximum margin methods in Margin Trees. Similarly, Vural and Dy [VD04]

and Punera et al. [PRG05] describe methods for creation of binary hierarchies

in top-down fashion by successively splitting nodes using the k-Means algo-

rithm. All these approaches, however, restrict the taxonomy structure to only

binary trees. This results in many arbitrary groupings of classes, especially at

top levels of the hierarchy, where the approaches are constrained to place all

classes in one of two children. By modeling the taxonomy as a n-ary tree our

approach avoids the occurrence of arbitrary groupings of classes. We showcase

this property of our algorithm later in Section 3.4.3.

There has been some work on learning taxonomies that can be repre-

sented as n-ary trees [BGJT04, GR04, Hof99, SKO01, VL99]. But all these

36

algorithms require the user to specify parameters that define the structure of

the taxonomy to be learned. For instance, in the Cluster-Abstraction Model

of Hofmann et al. [Hof99] the structure of hierarchy is fixed and provided to

the algorithm, in Probabilistic Abstraction Hierarchies of Segal et al. [SKO01]

and “nested Chinese restaurant process” by Blei et al. [BGJT04] the number

of internal nodes is a user-defined parameter, while [VL99] and [GR04] are

agglomerative approaches where the user has to specify the number of nodes

for each new level. This type of information is not easy to provide without

significant domain knowledge about the structure of the data. In contrast to

these approaches, our algorithm is parameter-free and learns the structure of

the taxonomy from the given data in an entirely automatic manner. We claim

that this is an extremely desirable characteristic, and along with the ability of

arrange topics as nodes of a n-ary tree sets our approach apart from existing

approaches in literature.

3.4 Experiments

In this section we report on our empirical comparison of taxonomies gen-

erated by our approach (ATG) and Agglomerative Information Bottleneck

(AIB) [Slo03]. First we describe the datasets as well as the experimental

setup. Next, we show that the n-ary tree based taxonomies created by ATG

group classes in more natural ways than the binary tree based taxonomies gen-

erated by AIB. This part of our evaluation involves a subjective comparison of

the taxonomies generated by the two methods. Finally, for a more objective

analysis we report on our experiments with using these taxonomies to learn

hierarchical classifiers.

37

3.4.1 Datasets

We experiment on standard datasets in which classes are related to each

other by a possible hierarchical structure. The datasets used in this chapter

are available from http://www.ideal.ece.utexas.edu/∼kunal/thesis/.

20-newsgroups. This standard text dataset1 [Lan95] consists of around 1000

documents from each of 20 different newsgroups. While the human defined

names suggest a hierarchical organization of the newsgroups, some of the news-

groups such as “talk.religion.misc” and “soc.religion.christianity” have many

cross-postings and share similar vocabularies. On the other hand, newsgroups

such as “sci.crypt” and “sci.space” both fall under the science sub-category but

have very different vocabularies and no cross-postings. The existence of such

relationships between the newsgroups makes this dataset an ideal candidate for

testing the different content-based hierarchy generators. The 20-newsgroups

dataset has been extensively used for evaluating text categorization techniques

(see, for example, [RR01, RK04]).

Remote Sensing Datasets. Remote sensing data is a hyper-spectral im-

age wherein each pixel has a spectral signature associated with it. Each pixel

is assigned a class, which typically refers to a geographical feature, like for-

est, grassland, etc. Similarity between the spectral signatures of the different

classes enables one to define inter-class relationships, and subsequently hi-

erarchies of classes. In this chapter we use remote sensing data 2 obtained

from two sites, the NASA’s John F. Kennedy Space Center (KSC) [Mor02],

Florida and the Okavango Delta, Botswana [HCCG05]. The KSC dataset has

1http://people.csail.mit.edu/jrennie/20Newsgroups/
2http://www.csr.utexas.edu/hyperspectral/codes.html

38

10 landcover types which can be broadly classified into the upland and wetland

classes. Classes 1, 3, 4, 5 and 6 are all trees that grow in the uplands. Classes

2 and 7 are also trees that grow in heavily inundated soil. Class 8 is a type

of marsh grass and Class 9 is the transitional area between land and water.

The Botswana dataset has 14 different land cover types consisting of seasonal

swamps, occasional swamps, and drier woodlands located in the distal portion

of the delta. In this dataset (Figure 3.4(a)), Classes 3 and 4 are grasslands

that grow in regions that can get flooded. Classes 5 and 6 are vegetation found

along streams. Class 7 represents burnt vegetation. Classes 10, 11, 12, and 13

represent grasslands with mopane and acacia tree. The rest of the class labels

are self-explanatory.

Glass. The instances in this dataset – samples of glass used for different

purposes – are described by real-valued features corresponding to chemical

and optical properties. This dataset has a well-defined hierarchy associated

with it. The 6 different glass types are broadly categorized into window and

non-window glass at the highest level of granularity. The window glasses are

then subdivided into the float processed and the non-float processed categories.

It would be interesting to see if our approach can retrieve this hierarchical

structure.

Pendigits. The Pendigits dataset consists of 250 handwriting samples from

44 writers. The handwriting samples were collected using a pressure sensitive

tablet which sent the (x, y) co-ordinates of the pen as inputs at fixed time in-

tervals. Therefore, the similarity between classes in this dataset is defined not

as much by the shape of the numbers but by how they are typically written.

This is a particularly difficult dataset to define inter-class relations on as writ-

ing styles and speeds vary widely among subjects. However, visualizing the

39

average digit for each class [DMS99] is helpful in interpreting the taxonomies

obtained by our approach.

Vowel. In the Vowel dataset the different classes correspond to 11 different

vowel sounds. Each word corresponding to a vowel sound was uttered by 15

different speakers. It would be interesting in this case to see if similar sounding

vowel classes actually end up closer to each other in the generated tree.

3.4.2 Implementation Details

The 20-newsgroups dataset was preprocessed to remove posting headers,

stop words and words that occur less than 5 times leaving us with a vocabulary

of 50736 words. While partitioning an internal node, a vocabulary specific to

that internal node was generated using the Fisher index criterion [CDAR98].

The class-conditional pdfs at the leaf and the internal nodes were then esti-

mated by assuming an independent, multinomial distribution of the words.

For real-valued datasets, a multi-variate Gaussian distribution was used to

model the class-conditional distributions of each of the nodes in the taxonomy.

A node-specific feature space was created prior to partitioning the classes at

that node by using the Fisher discriminant. Since the Fisher discriminant

technique yields a feature space that maximizes the discrimination between

the classes, one could interpret the closeness of the classes projected in this

space as a very strong indicator of the inter-class similarity. For the remote

sensing data, since there is a high degree of correlation between the different

features we made use of a domain-specific feature reduction technique, called

the best-bases algorithm [KGC01], prior to applying the Fisher discriminant.

40

3.4.3 N-ary Taxonomies are More Natural

In this section, we discuss the taxonomies returned by the two approaches

on the different datasets. While analyzing the generated taxonomies, one

has to keep in mind the fact that both the ATG and AIB methods generate

‘content-based’ hierarchies as opposed to ‘concept-based’ ones. A content-

based hierarchy generator allows the data to guide the taxonomy generation

process, and requires minimal human intervention, whereas the ‘concept-based’

hierarchies require an understanding of the underlying data at a more abstract

level. For instance, in the 20-newsgroups dataset, a concept-based hierarchy

would have grouped the two science classes (space and crypt) together whereas

the content of the classes themselves suggest otherwise. Hence our approaches

separate the science classes fairly early in the taxonomy.

From the trees in Figures 3.3(a), 3.4(a), 3.2(a) and 3.5, one can see that the

ATG method yields n-ary taxonomies that reflect the underlying class affini-

ties well. In the case of the 20-newsgroups data, the first level of the ATG

taxonomy (Figure 3.3) shows the different clusters of classes that exist in the

dataset. The taxonomies constructed for the rest of the datasets also clearly

reflect the number of clusters in the classes and the inter-class relationships

between the different classes. For the taxonomy generated for the Pendigits

dataset (Figure 3.5(b)), one has to look at the average digits representation,

as illustrated in [DMS99], to interpret the hierarchy better. Note that the

average figures have shown the extrapolated trajectories between the pen lo-

cations at different time intervals. A careful observation of the scaled average

digits reveals that the pen locations for the clusters identified by the ATG

are similar. Finally, for the Glass dataset, we recover the exact hierarchical

structure specified in the UCI-ML description of the dataset (Figure 3.2(a)).

41

(a) Dataset: Glass, Algorithm: ATG (b) Dataset: Glass, Algorithm: AIB

Figure 3.2: Taxonomies constructed for the Glass dataset by the ATG and
AIB algorithms. ATG recovers the exact hierarchical structure specified in
the UCI-ML description of the Glass dataset.

While the taxonomies generated by the AIB (Figures 3.3(b) and 3.4(b))

also eventually group similar classes together, the meta-classes generated higher

up in the tree are a mix of fairly well-separated classes, such as the “autos”

and “motorcycles” group with that of “politics” and “science”. This behavior

is all the more striking for the Botswana dataset (Figure 3.4(b)) as it has a

wider mix of landcover types. The greedy nature of the AIB approach ensures

that merge decisions that are once made cannot be revisited, whereas in the

ATG technique reevaluating the similarities in a node-specific feature space

better reveals the inter-class affinities. For instance, in the 20-newsgroups

dataset while both the ATG and the AIB technique correctly identify the

Electronics/Computer meta-class, the ATG technique by virtue of reconsid-

ering this cluster in a more specialized space is able to correctly group the

“comp.os.ms.windows.misc” with the “comp.windows” and “comp.graphics”

classes, unlike the AIB that clumps the “comp.os.ms.windows.misc” class with

the hardware classes during the initial stages of hierarchy creation. Similar

observations can be drawn from the taxonomies generated for the remaining

datasets.

42

(a) Dataset: 20-newsgroups, Algorithm: ATG

(b) Dataset: 20-newsgroups, Algorithm: AIB

Figure 3.3: Taxonomies constructed for the 20-newsgroups dataset by the ATG
and AIB algorithms.

43

(a) Dataset: Botswana, Algorithm: ATG (b) Dataset: Botswana, Algorithm: AIB

Figure 3.4: Taxonomies constructed for the Botswana dataset by the ATG
and AIB algorithms.

(a) Dataset: KSC, Algorithm: ATG (b) Dataset: Pendigits, Algo-
rithm: ATG

Figure 3.5: Taxonomies constructed for the KSC and Pendigits datasets by
the ATG algorithm.

44

3.4.4 Comparison over Classification Accuracy

In this section we evaluate the utility of taxonomies generated by ATG

(our approach) and AIB [Slo03] for classification.

We used the taxonomies generated by each algorithm to build hierar-

chical classifiers. Experiments were performed using one-vs-all SVM classi-

fiers [RR01] at each level of the hierarchy. Linear kernel SVMs and Gaussian

kernel SVMs were used for text and numeric data respectively. 5% of the

training data was used as the validation set to tune both the upper bound on

the support vector coefficients (varied over 0.125, 0.25, 0.5, 1, and 2) as well

as the kernel width of the Gaussians (varied over 0.0625, 0.125, 0.25, 0.5, 1,

and 2) for the numeric datasets.

The SVMs were trained using the original feature space as preliminary

experiments showed that feature selection did not improve SVM classification

accuracies. However, a useful property of learning hierarchical classifiers is

that of exploiting feature spaces that are specialized to each sub-problem.

Hence, experiments were also performed using a Bayesian classifier at the

internal nodes. The Fisher discriminant as detailed in Section 3.3 was used

to reduce the dimensionality of the input space prior to classification. The

data was then projected into the feature space associated with that node prior

to classification. In the case of text data we made the usual independence

assumption, whereas for the real-valued datasets we used the full-covariance

matrix.

For each dataset, 80% of the data was used as the training set and the re-

maining 20% was used as the test set. All the classification accuracies reported

here were obtained by averaging the results over five different samplings of the

45

training and test set. Two sets of experiments were performed as detailed

below.

In the first set of experiments, the entire training set was used to first

construct the taxonomy. Once the ATG and the AIB trees were obtained,

fractions of the training data (5%, 10%, 20%, 40%, 60%, and 80%) were

used to obtain both the new node-specific feature spaces as well as to train

the internal SVM or Bayesian classifiers. It was expected that since the n-

ary splits are more natural than binary, classifiers built on those hierarchies

should have better classification accuracies than similar classifiers built on

binary trees.

The learning rates for the different datasets are shown in Figure 3.6. The

superior classification accuracies of the ATG-Bayesian classifiers, under the

limited data conditions, validate our belief about the utility of using a more

“natural” tree to learn a hierarchical classifier. Figure 3.6(a) shows that for

text datasets like 20-newsgroups, even “powerful” classifiers such as SVMs

benefit from the n-ary splits in terms of the classification accuracies. One might

also expect that the easier decision boundaries of the n-ary trees speeds up

the training times for SVMs. Similar results were obtained for the remaining

datasets.

While in the previous set of experiments the hierarchy was constructed

using the entire training set, we also investigated the effect of limited data on

hierarchy creation and the classification accuracy of the resulting classifiers.

Fractions of the training data (5%, 10%, 20%, 40%, 60%, and 80%) were used

to construct the AIB and ATG hierarchies, the corresponding feature spaces,

and train the internal node classifiers. The results of these experiments are

shown in Figure 3.7. It can be seen that for all datasets using the ATG hierar-

46

chy with internal Bayesian classifiers outperforms the AIB based hierarchical

classifiers. Using SVM-based ATG classifiers offers comparable, if not better,

classification accuracies than using SVMs with the AIB hierarchy. The results

show that the proposed ATG method can not only be used to generate mean-

ingful hierarchies, but can also be used as an alternative classifier especially

for low data conditions. Note that while the hierarchies are used to obtain an

output space decomposition we did not take advantage of parent-child relation-

ships in the hierarchy. Evaluating the different methods while using shrinkage

techniques to estimate class parameter estimates of child-nodes is part of our

future work.

3.5 Conclusions

In this chapter, we presented a framework to learn hierarchies, modeled as

rooted n-ary trees over a set of categories, in a completely automated manner.

Our experimental evaluation over multiple datasets, from diverse domains,

showed that our approach produces more “natural” taxonomies than the bi-

nary taxonomies outputted by Agglomerative Information Bottleneck [ST99].

Finally, we also showed that hierarchical classification using the taxonomies

modeled as n-ary trees learned by our approach resulted in higher accura-

cies than taxonomies modeled as binary trees, especially under limited data

conditions.

47

(a) Dataset: 20-newsgroups (b) Dataset: KSC

(c) Dataset: Botswana (d) Dataset: Vowel

(e) Dataset: Glass (f) Dataset: Pendigits

Figure 3.6: Learning rates when the taxonomies are pre-constructed.

48

(a) Dataset: 20-newsgroups (b) Dataset: KSC

(c) Dataset: Botswana (d) Dataset: Vowel

(e) Dataset: Glass (f) Dataset: Pendigits

Figure 3.7: Learning rates when taxonomies are built from limited data.

49

Chapter 4

Enhanced Hierarchical Classification via
Smoothing

4.1 Introduction

Given the widespread use of hierarchical taxonomies as tools for knowl-

edge management, there has been considerable interest in automated meth-

ods for hierarchical classification, and numerous techniques have been pro-

posed [DC00, CDAR98, KS97, TJHA05]. In Chapter 3 we proposed an al-

gorithm for automated construction of n-ary tree based taxonomies. We also

showed that classifiers learned over well-structured taxonomies achieved higher

accuracy than those learned over badly organized ones. In this chapter, we

will introduce ideas as well as algorithms that serve to further improve the

accuracy of hierarchical classification systems.

While studying systems that classify instances into a taxonomy (hierarchi-

cal arrangement) of classes we have to consider many different configurations.

50

Some of these variations are a result of characteristics of the taxonomy itself.

For instance, there exist many different relationships that can connect classes

to each other; of these a principal one is subsumption. Under this relation,

a class “is-a” type of its parent class. We can interpret this to mean that all

data that belongs to a class also belongs to its parent class. Many hierarchies

of classes we deal with in this chapter have this property. Taxonomies also

vary in whether an internal node class is allowed to have data of its own or if it

can only contain data belonging to its leaf-level sub-classes. Our work in this

chapter will explicitly allow for hierarchical taxonomies of both these types.

A related issue is that of instances belonging to multiple classes that are not

related by a subsumption relation (for example, an instance belonging to two

leaf-level nodes)? Once again, our algorithms from this chapter are applicable

to both situations.

In addition to the characteristics of taxonomies, another major source of

variation in hierarchical classification systems is the mechanism by which data

is classified. One method, commonly applied in literature, is to learn a classifier

at each node of the hierarchy to distinguish between the node’s children. Then,

starting from the root, a data instance can be progressively classified amongst

the children of each node to determine the final class. This is the method

that we used for classification experiments in Chapter 3. Another mechanism,

and the one that we use in this chapter, involves learning a classifier at each

node to distinguish the node’s content from data not belonging to the node.

In this approach, all learned classifiers are applied to a test data instance to

obtain the true set of classes (labels). The subtle difference between the two

approaches is that the former approach learns classifiers in the context of the

parent class. In the latter approach, however, each classifier is learned on

51

Figure 4.1: A taxonomy of classes from the 20-newsgroups dataset.

the entire training set distinguishing data in the corresponding node from all

other data not in the node. As is evident from the description, the latter

set of classifiers encodes some redundancies and in this chapter we introduce

algorithms that exploit this fact to improve classification accuracy.

Finally, classification systems differ based on how they handle hierarchies

that allow data to belong to internal nodes: whether the classifiers at each

node learn a pattern for the data belonging to just the node or for the data

belonging to all nodes in the subtree. In order to make these and other vari-

ation mentioned above concrete, lets consider a few real-world scenarios. We

will refer to these scenarios throughout the chapter to place the applicability

of our approaches in context. A taxonomy constructed on the 20-newsgroups

dataset (Figure 4.1) is used as a running example below.

52

• Scenario I: In the 20-newsgroups dataset all instances belong to leaf-

level classes of the taxonomy (Figure 4.1). Suppose while learning the

classifiers at each node, the positive (negative) set of instances are from

the leaf nodes within (outside) the subtree rooted at the node. For ex-

ample, for the classifier at the node comp.*, the positive document set

comes from all computer related leaf-level classes, and the negative docu-

ment set from all other classes. In this scenario, when a test document is

classified as belonging to a class (say, comp.graphics) all internal classes

on the path to the root must also be predicted as true. Similarly, if an

internal node is predicted as a true label for a document at least one of

the sub-classes under it must also be predicted true.

• Scenario II: There exist taxonomies in which instances sometimes be-

long to classes that are internal nodes and not to any leaf-level classes.

Once again consider the taxonomy for the 20-newsgroups dataset. We

can imagine that the internal node comp.* might contain documents

that discuss computers in general, and not software or hardware (MS or

Mac) in particular. Now, if the classifiers are learned as in Scenario I

- distinguishing the documents within the subtree from those outside -

we can see that, if a node is predicted true for a test document then all

internal classes on the path to the root must also be predicted as true

labels. However, since there is no restriction that the document be as-

sociated to any leaf-level class, it is not necessary that at least one child

of the node also be predicted true.

• Scenario III: As above, consider taxonomies where instances sometimes

belong to internal classes. Consider a situation where the classifier for

each node is trained to distinguish instances belonging to that class from

53

instances belonging to all other classes (even its own subclasses). For

example, for the classifier at internal node comp.* documents belonging

to it (on general computer topics) are used as the positive training set

and documents belonging to all other nodes (including specialized hard-

ware/software documents) are used as the negative training set. In this

scenario, for any test document only one of the classifiers in the entire

taxonomy can output true, making this system very different from those

in Scenario I and Scenario II.

In addition to these three scenarios several other variations in the structure

of the taxonomy and construction of classification problems can be imagined.

A common aspect, however, is our mechanism for classifying new data in-

stances into the taxonomy. For this purpose each learned classifier is applied

to the new data instance to obtain a membership score for the corresponding

node. The membership scores output may be binary, or they can be thresh-

olded to determine the classes that are predicted as true labels.

However, from our discussion of different hierarchical classification scenar-

ios we know that in many cases these membership scores are related across

nodes. For example, in case of the 20-newsgroups dataset under scenario I,

if class comp.graphics is predicted as a true label for a new data instance

then so too must the comp.* class. The relationship between between clas-

sifier outputs can also involve inverse correlation, such as under scenario III,

where if comp.* is predicted the true class then no other class can be true.

Therefore, conditioned on the characteristics of taxonomies and specifics of

classifier training, relationships between classes in a taxonomy lead to rela-

tionships between outputs of their classifiers. Furthermore, these properties

54

can also be devised from knowledge of the application domain or the behavior

of classification algorithms.

Our Contribution.

The central idea in our work is that once we have identified the exact

property that the outputs of classifiers in a taxonomy must satisfy, we can

post-process the classification scores to enforce these constraints. Whenever

classifier scores violate these constraints we will replace them with consistent

scores that are as close as possible to the original ones. Since only a few

classifiers are likely to make mistakes on any one instance it is hoped that the

outputs of the incorrect ones will be modified appropriately.

In this chapter, we formulate the problem of enforcing constraints on clas-

sifier outputs under Scenarios I and II as regularized isotonic median regression

problems. Classification score smoothing under Scenario III is modeled as a

regularized unimodal median regression problem. These are generalizations of

the classic isotonic regression problem. We will give algorithms to find the

optimal solutions to these more general optimization problems in O(n2 log n)

time; this is equal to the best known algorithms for the classic problem. We

will present empirical analysis from multiple real-world domains to show that

post-processing of classifier scores results in improved classification accuracy.

55

Notation.

Before we describe the formulations and algorithms we establish some

notation that will be used throughout this chapter.

Let C be a set of n classes in a taxonomy that have a one to one mapping

with the nodes of a rooted tree T . Let leaf(T) and root(T) represent the set of

leaves and the root of the tree T respectively. Let v be an node of T (written

as v ∈ T) and let Tv denote the subtree rooted at v. We refer to a node in the

tree T sometimes as a class. We use parent(v) to denote the parent of v in T ,

child(v) to denote the set of all immediate children of v in T . Let D denote

the set of all data instances. These instances belong to one of the classes in

C; this mapping is denoted by function τ . Depending on the scenario τ may

map instances to only a subset of classes in C.

Each class v ∈ T has associated with it a function cv : D → [0, 1], where

cv(d) is the degree of membership of instance d in class v. Depending on

the application setting this value can be a posterior probability; using an

appropriate threshold it can be rounded to a boolean value. An instance d can

be represented by a function xd where the xd(v) represents the value cv(d).

Since each class corresponds to a unique node in the taxonomy T , we can

think of x(.) as being scores assigned to nodes of T . From now onwards we

will use T , v, and x(v) as metaphors for the taxonomy, a class or a node,

and the original classifier score or node value respectively. In our application

settings we distinguish between an instance belonging to a class (implying that

τ(d) = v) and associating with a class (implying that because of the way

classifiers were trained we expect xd(v) = 1). However, when it is clear from

context, we will use the two terms interchangeably.

56

4.2 Regularized Isotonic Regression

In this section we will formulate the problem of enforcing constraints on

classifier outputs as an isotonic regression problem. We will introduce a reg-

ularized version of the problem which generalizes existing cost functions and

provide an efficient algorithm to solve it.

4.2.1 Formulation

Consider the Scenario I described above. The data instances under this

setting always belong to one of the leaf-level classes1; the range of τ is leaf(T).

Moreover, for an internal node v ∈ T the positive set of instances for training

classifier cv is the union of instances that belong to nodes in leaf(Tv). Conse-

quently, this means that the true labeling of any instance is a leaf-level class v

and all its parents on the path to the root(T). This property can be succinctly

stated as follows:

Property 4.1 (Strict Classification Monotonicity). An instance belongs to a

class in the taxonomy if and only if it belongs to at least one of its children

classes.

This means that we expect x(v) = 1 ⇐⇒ ∃u ∈ child(v) : x(u) = 1.

However, as each classifier cv processes the instances independently of

other classifiers, they miss this intuitive relationship amongst classifier out-

puts; x(·) need not satisfy Property 4.1. Hence, we need to transform x(·) into

smoothed classifier scores y(·) such that elements in y(·) satisfy the mono-

tonicity property. Moreover, we assume that the individual classifiers have

1Our formulations and algorithms also hold for setting where an instance belongs to more
than one leaf-level nodes.

57

reasonable accuracy and so we want to obtain y(·) that is as close as possible

to the original scores x(·) while satisfying the monotonicity property.

Before we can state the problem, however, we need a more general mono-

tonicity property that can handle real-valued classifier scores; currently the

monotonicity property is defined over boolean classification values. We con-

sider a natural generalization. Smoothed classifier scores y(·) satisfy the gen-

eralized strict classification monotonicity property if for every internal node

v, with children u1, . . . , u`, y(v) = max{y(u1), . . . , y(u`)}, i.e., the smoothed

score of an internal node is the equal to the maximum of its children’s smoothed

scores. Note that generalized strict monotonicity ensures that whenever an in-

stance is associated with a non-root class v, first, it is also associated with

parent(v), and second, it is also associated with at least one child of v, if any.

Now we are ready to state the problem:

Problem 4.2. Given classifier scores x(·), find smoothed scores y(·) that min-

imize ∑
v∈T

|x(v)− y(v)| (4.1)

while satisfying the generalized version of Property 4.1.

Here we compute the distance between x(·) and y(·) via the L1 distance.

While any other distance measure could also have been used, we chose the L1

metric because of its robustness to noise.

Now consider the Scenario II mentioned above. In this situation there

exist some instances that belong only to internal nodes, and not to any of the

leaf nodes. Moreover, the positive set of instances used for training classifier

cv for a node v ∈ T is the union of instances that belong to all nodes in the

58

Figure 4.2: Examples of hierarchies with scores on nodes. The green circles
highlight correct scores and the red squares erroneous ones.

subtree Tv. This implies that the true labels for an instance will be a node

v ∈ T and all its parents on the path to root(T). However, unlike Scenario

I, its no longer necessary for at least one child of v to also be included in the

true labels.

As is evident, this relationship between classifiers scores is not covered by

Property 4.1, which enforces that every instance must belong to at least one

leaf node. In order to incorporate situations such as Scenario II we state the

relaxed monotonicity property.

Property 4.3 (Relaxed Classification Monotonicity). The classifier score of

a node is always greater than or equal to the classifier scores of its children.

Smoothed classifier scores y(·) satisfy relaxed monotonicity if for every in-

ternal node v, with children u1, . . . , u`, y(v) ≥ max{y(u1), . . . , y(u`)}. Finding

such a y(·) while minimizing Equation (4.1) will help us correct some of the

errors introduced by the classifiers.

59

For example, consider the classification scores on the tree A in Figure 4.2.

The nodes that are shaded by red squares represent the errors in the classi-

fication. The leaf-node with score 1 clearly violates monotonicity constraints

since its ancestors’ scores are lower than its own. This error will be corrected

since, by Equation (4.1), it is more expensive to increase all the ancestors’

scores than it is to reduce the erroneous node’s score.

However, the relaxed monotonicity property will not correct certain other

types of errors that might occur frequently. For example, consider the node

with the erroneous score in tree B of Figure 4.2. This node doesn’t violate

the relaxed monotonicity property since its parent’s score is higher than its

own. However, this error node’s score would have been corrected by the strict

monotonicity property, which would have required at least one child of the

error node to have the same score. It would have cost less (in terms of Equa-

tion (4.1)) to reduce 0.6 to 0, than to increase a whole series of 0s to 0.6.

In order to correct the latter type of errors we introduce an additional reg-

ularization term in our objective function, which penalizes violations of strict

monotonicity. Hence, while we will accept y(·) that satisfy the relaxed mono-

tonicity property as valid solutions, they will be charged for all the violations

of the strict monotonicity constraints. In the case of the tree B in Figure 4.2,

if the penalty is high enough, it will cost less to reduce the error node’s value

to 0 than to leave the scores as it is, thus correcting the false positive error.

Regularization also corrects false negative errors when it is cheaper to increase

a child node value than to pay the penalty.

60

Taking into account this regularization we state a new problem:

Problem 4.4 (Regularized Tree Isotonic Regression). Given classifier scores

x(·), find smoothed scores y(·) that minimize∑
v∈T

wv · |x(v)− y(v)|+
∑

v∈T,{ui}=child(v)

γv · (y(v)−max{y(ui)}) (4.2)

while satisfying Property 4.3, where wv and γv are node-specific weights and

penalties, respectively.

In Equation (4.2), wv are the node-specific weights that control the amount

each classifier’s score contributes to the total cost. We can set these weights

to reflect our belief in the classifier’s accuracy. The γv values are weights

that control the extent to which violations of strict monotonicity constraints

are prohibited: we overload the term penalty to also refer to these weights.

These penalty values can be set in a node-specific fashion based on our domain

knowledge of whether parent and child values can differ.

Problem 4.4 is a regularized version of the classic isotonic regression prob-

lem on trees which has been widely studied [AHKW06, PX99, Sto00]. It

reduces to the standard isotonic regression when all the penalties are set to

0. Moreover, we can also enforce strict monotonicity (Property 4.1) by setting

γv = ∞.

61

4.2.2 Algorithm for the case γ = ∞

We first present an algorithm for the special case of penalty γ = ∞; in

fact, we’ll solve Problem 4.2. The dynamic program presented in this section

is similar in structure to the more general algorithm presented in the next

section, and serves as a good starting point in introducing the ideas behind

the approach.

Before we describe the algorithm we will discuss a crucial detail of the

structure of the problem. We show that the optimal smoothed scores in y(·)

can only come from the classifier scores x(·).

Lemma 4.5. For Problem 4.2 there exists an optimal solution, y(·), where,

for all i ∈ T there is a j ∈ T such that y(i) = x(j).

Proof. Consider the maximal connected subtree T ′ of nodes in T such that

(1) i ∈ T ′, and (2) for all j ∈ T ′, y(j) = y(i). If y(i) is not the median of the

set of scores {x(j) | j ∈ T ′}, then we can push y(i) closer to the median by a

small amount and decrease the cost of the solution given by Equation (4.1);

this follows since the median is the minimizer for L1 distance.

This result shows that in the optimal solution the smoothed score for each

node will come from a finite set of values. Note that this result also holds

for the case of weighted L1 distance. In this case each weighted node in the

tree can be considered as multiple nodes, which number proportional to the

weight, and which always have the same score. In this case too, the minimizer

remains the median of this expanded graph. And hence the smoothed score

values come from the finite set of original values.

62

Algorithm BuildErrorStrict (v, x, x̂)
1. if (v is a leaf) then
2. for i = 1 : |x̂| /* all values node v can take */
3. err(v, i) = wv · |x(v)− x̂(i)|
4. else

5. for child u of node v
6. BuildErrorStrict(u, x, x̂)
7. for i = 1 : |x̂| /* all values child u can take */
8. errheap(i) = err(u, i)
9. for i = 1 : |x̂| /* all values node v can take */
10. val∗ = argminj∈{1...|x̂|},x̂(j)≤x̂(i) errheap(j)
11. val(u, i) = val∗

12. err′(i)+ = err(u, val∗)
13. if ((err(u, i)− err(u, val∗)) < minchilderr(i)) then
14. minchilderr(i) = err(u, i)− err(u, val∗); minchild(i) = u
15. for i = 1 : |x̂| /* all values node v can take */
16. val(minchild(i), i) = i
17. err(v, i) = err′(i) + minchilderr(i) + wv · |x(v)− x̂(i)|

Algorithm IsotoneSmooth (err, val, x̂)
1. val∗ = argmini∈{1...|x̂|} err(root(T), i)
2. p(root(T)) = val∗; y(root(T)) = x̂(val∗)
3. for v in a breadth-first search order of T
4. p(v) = val(v, p(parent(v))); y(v) = x̂(p(v))

Figure 4.3: Algorithm to solve Problem 4.2. Array x contains the original clas-
sifier scores and x̂ is the set of unique values in x. wv denote the node-specific
weights. BuildErrorStrict constructs functions err(·, ·) and val(·, ·) which
are then used by IsotoneSmooth to find the smoothed scores y(·).

63

To solve Problem 4.2 optimally we construct a dynamic program (pseudo-

code in Figure 4.3). The program consists of two main algorithms, (1) BuildEr-

rorStrict, which builds up the index function val and error function err, and

(2) IsotoneSmooth, which uses the val function to compute the optimal val-

ues for each node in the tree. Let x̂ be the set of unique values in x(·), and let

i be an index into this set. Then index function val(v, i) holds the index of the

value that node v should take in the optimal solution when its parent takes the

value x̂(i). In other words, when y(parent(v)) = x̂(i) then y(v) = x̂(val(v, i)).

In order to compute the function val, BuildErrorStrict computes for each

node v the function err(v, i), which holds the total cost of the optimal smoothed

scores in the subtree Tv when y(v) = x̂(i).

Initially BuildErrorStrict is invoked with root(T) as a parameter.

The function then recursively calls itself (step 6) on the nodes of T in a depth-

first order. While processing a node v, for each possible value x̂(i) that v can

set itself to, BuildErrorStrict finds the best values for its children that

are less than or equal to x̂(i) (step 10). All children of v are assumed to be

set to their best possible values (step 11) and their costs (errors) are added

up (step 12). Also, since in the final solution one of the children’s value has

to be equal to value of v, BuildErrorStrict maintains information about

the child that would cost the least (steps 13 & 14) to move to x̂(i) (step 16).

At the end the cost of all children and the additional cost of the “minchild”

that is moved are added (step 17) to obtain the cost for the current node.

To demonstrate the correctness of this algorithm, we show that the re-

striction of the optimal solution to a subtree is also the optimal solution for

the subtree under the monotonicity constraint imposed by its parent.

Consider the subtree rooted at any non-root node v ∈ T . Now suppose the

64

smoothed score y(parent(v)) is specified. Then, let z(·) be the smoothed scores

of the optimal solution to the regularized tree isotonic regression problem for

this subtree, under the additional constraint that z(v) ≤ y(parent(v)). Note

that if v is chosen as “minchild” in algorithm BuildErrorStrict above, the

constraint is z(v) = y(parent(v)).

Lemma 4.6. For all nodes i in the subtree of v, y(i) = z(i).

Proof. Consider a smoothed solution w(·) where w(i) = z(i) for all nodes i in

the subtree of v, and w(i) = y(i) otherwise. It is clear that since z(·) obeys

the monotonicity property and z(v) ≤ y(parent(v)), the solution w(·) obeys

the monotonicity property. Now, the cost c(w) is the sum of the cost for the

smoothed scores z(i) in the subtree of v and the cost for the scores y(k) for all

other nodes. Thus, the difference between c(w) and c(y) is just the difference

in costs for z(i) and y(i) in the subtree of v, for which we know that z(·) is

the optimal. The lemma follows.

Theorem 4.7. Algorithm IsotoneSmooth in Figure 4.3 solves Problem 4.2

exactly.

Proof. The algorithm computes up the optimal smoothed scores for each sub-

tree, i.e., the err(·, ·) arrays, while maintaining Property 4.3 for every possible

smoothed score of the parent. Further, the child that costs the least to move

from its optimal position to the parent value is moved. This causes the least

increase in the cost in Equation (4.1). Hence, the solution computed for each

possible smoothed value of the parent is optimal. By Lemma 4.5, the parent

can take only finitely many smoothed scores in the optimal solution, and by

Lemma 4.6, combining the optimal smoothed scores for subtrees yields the

optimal smoothed scores for the entire tree.

65

Complexity. Let |T | = n, and so |x̂| can at most be n. The dynamic pro-

gramming table takes O(n) space per node, and so the total space required

is O(n2). Next, we consider the running time of the algorithm. In the al-

gorithm BuildErrorStrict-I, step 2 takes O(n2) time, step 7 takes O(n2)

time amortized over all calls (this loop is called for each node only once), and

the loop in step 9 can be done in O(n2 log n) time by storing errheap values in

a heap and then running over the values i ∈ {1 . . . |x̂|} in ascending order of

x̂(i). Hence, the total running time is O(n2 log n). Note that this is same as the

best time complexity of previously known algorithms for the non-regularized

forms of tree isotonic regression [AHKW06].

4.2.3 Algorithm for Regularized Tree Isotonic Regression

In the previous section we presented an algorithm to solve Problem 4.2.

In this section we give an algorithm that solves the more general regular-

ized isotonic regression problem exactly. The main difference between the two

problems is that in the latter case the hard constraint of a parent’s value be-

ing equal to at least one of its children’s value is enforced via soft penalties.

These violations of the strict monotonicity rule are charged for in the objec-

tive function, so that if the cost of incurring the penalties is lower than the

improvement in L1 error, the optimal solution will contain violations. This

makes the current problem much tougher to solve. When constraints were

strict each child only had two ways it could set its own value: equal to the

best possible value less than the parent’s value or equal to the parent’s value.

In the current problem because penalties are soft, the child has more options

of values it can set itself to. However, we show that this set of possible values

is still finite.

66

Here we prove that the central result (Lemma 4.5) which facilitated the

algorithm in Figure 4.3 also holds for the modified objective function Equa-

tion (4.2).

Preliminary Facts.

Consider the maximal connected subtree T ′ of nodes in T such that

(1) i ∈ T ′, and (2) for all j ∈ T ′, y(j) = y(i). Let m be the median of the set

of original scores ST ′ = {x(j) | j ∈ T ′}. The cost incurred by T ′ through the

first term of Equation (4.2) (L1 distance between x and y) is minimized when

y(i) = m. As we raise or lower y(i) the increase in this cost is piecewise-linear,

with the discontinuities at the values in the set ST ′ . In other words, in between

any two adjacent values in ST ′ the rate of change in the L1 cost is constant

(we denote this rate by a function rm(·)).

Now lets consider the cost due to penalties. Let u be the “maximal”

node in T ′, such that parent(u) 3 T ′. Note that, as T ′ is connected and is

a tree, there is a unique such node. Also, let {vi} ∈ T ′ be a set of nodes

such that at least one child of each vi is not in T ′. Some elements in the

set PT ′ = {parent(u), child({vi})} are involved in penalties for having values

different from y(i). This cost from penalties also changes in a piecewise-linear

fashion with possible discontinuities at the values in the set PT ′ . Let us denote

the rate of change of penalty-based cost as rp(·).

Lemma 4.8. For Problem 4.4 there exists an optimal solution, y(·), where,

for all i ∈ T there is a j ∈ T such that y(i) = x(j).

Proof. Let the cost of the optimal solution y(·) be c(y). We will prove the

above lemma for a solution y(·) that has the fewest distinct score values of all

67

solutions that have cost c(y). If this is not the case, then we’ll show how y(·)

can be converted to y′(·) that has fewer distinct score values.

Consider the maximal connected subtree T ′ of nodes in T such that

(1) i ∈ T ′, (2) for all j ∈ T ′, y(j) = y(i), and (3) there does not exist any

j ∈ T such that y(i) = x(j). As mentioned above, since y(i) 6= m (median of

ST ′ = {x(j) | j ∈ T ′}), we can decrease the cost due to L1 error at the rate of

rm(y(i)) by moving y(i) towards m. Also, the cost due to penalties changes

at the rate of rp(y(i)) when we move y(i). If the values rm(y(i)) 6= −rp(y(i))

then we can move y(i) very slightly to decrease the overall cost.

Hence, we consider the case where rm(y(i)) = −rp(y(i)). Let m1 ∈ ST ′

be the closest value to y(i) in between it and m. Since the two rates of cost

change counterbalance each other, small changes in y(i) result in solutions

with the exact same cost. In fact, we can move y(i) to m1 without any change

in the overall cost, hence producing an optimal solution with satisfies the

lemma. To see why this happens, consider that as we move y(i) to m1, rm(y(i))

will not change as explained above. The quantity rp(y(i)) will change if we

encounter an element from the set PT ′ in between y(i) and m1. But this means

that we can obtain a solution with cost c(y) that has fewer distinct values,

which violates our assumption. Another way in which rp(y(i)) can change is

if the maximal node u stops/starts having the highest value of all its siblings

(stops/starts getting penalized) as we move y(i). However, it can be easily

verified that this can only reduce the cost of the new solution further.

68

Algorithm BuildErrorRelax (v, x, x̂)
1. if (v is a leaf) then
2. for i = 1 : |x̂| /* all values node v can take */
3. err(v, i) = wv · |x(v)− x̂(i)|
4. else

5. for child u of node v
6. BuildErrorRelax(u, x, x̂)
7. for i = 1 : |x̂| /* all values child u can take */
8. errheap(i) = err(u, i)
9. for i = 1 : |x̂| /* all values node v can take */
10. val∗ = argminj∈{1...|x̂|},x̂(j)≤x̂(i) errheap(j)
11. val(u, i) = val∗

12. err′(i)+ = err(u, val∗)
13. errchildren(i, u) = err(u, i)− err(u, val∗)− γv · x̂(i)
14. if ((x̂(val∗) > maxchildval(i)) then
15. maxchildval(i) = x̂(val∗)
16. for i = 1 : |x̂| /* all values node v can take */
17. (val∗, u) = argminj∈{1...|x̂|},k∈child(v),maxchildval(i)≤x̂(j)≤x̂(i) errchildren(j, k)
18. val(u, i) = val∗

19. err′(i)+ = errchildren(val∗, u) + γv · x̂(val∗) + γv · |x̂(i)− x̂(val∗)|
20. for i = 1 : |x̂| /* all values node v can take */
21. err(v, i) = err′(i) + wv · |x(v)− x̂(i)|

Algorithm IsotoneSmooth (err, val, x̂)
1. val∗ = argmini∈{1...|x̂|} err(root(T), i)
2. p(root(T)) = val∗; y(root(T)) = x̂(val∗)
3. for v in a breadth-first search order of T
4. p(v) = val(v, p(parent(v))); y(v) = x̂(p(v))

Figure 4.4: Algorithm to solve Problem 4.4. Array x contains the original
classifier scores and x̂ is the set of unique values in x. wv and γv denote the
node-specific weights and penalties. BuildErrorRelax constructs func-
tions err(·, ·) and val(·, ·) which are then used by IsotoneSmooth to find the
smoothed scores y(·).

69

Now we are ready to present the dynamic program to solve Problem 4.4

(pseudo-code in Figure 4.4). The input to the system is x(·), the original

classifier scores; x̂ is the set of unique values in x. The algorithm BuildEr-

rorRelax, invoked on the root node, recurses over nodes of T in a depth

first order (step 6) and fills up the index function val and error function err.

The index function val(v, i) holds the index of the value that node v should

take in the optimal solution when its parent takes the value x̂(i), while the

function err(v, i) stores the total cost of the optimal smoothed scores in the

subtree rooted at v when y(v) = x̂(i). In these respects, BuildErrorRelax

is identical to the algorithm for the strict monotonicity property presented in

Section 4.2.2. The main difference is that now the cost of the solution doesn’t

just come from the L1 error, but also from the penalties. Hence, while picking

a value for a child node we have to consider both the cost of the optimal solu-

tion in the subtree of the child and the cost of the child’s value differing from

the parent value. To add to the complexity, we have to consider the latter cost

only when the child has the maximum value amongst its siblings.

While operating on a node v, for each possible value x̂(i) that v can set

itself to, BuildErrorRelax first obtains the best value assignments for its

children that are less than or equal to x̂(i) (step 10). At this stage, only

the cost of the optimal solutions in the subtree of a child is considered while

determining its best value (step 8); for now the cost, due to penalties, of a

child’s value differing from x̂(i) is ignored. The val array entries of the children

are set to these best values (step 11) and the costs are added up (step 12).

While processing each child this way another table errchildren is populated

with the additional cost of moving one of the children to be the maximum

child under v (step 13). Once all children values have been set this way, in a

70

second pass the errchildren table is used to determine which child should be

moved, and what value it should be moved to, so that the sum of the cost

from its subtree and penalty w.r.t. the parent value is minimum (step 17).

Once the child and its new value are determined, step 18 and step 19 update

the val array and the cost of the current node v respectively. Note that the

initial assignment of values to children might not change in this second pass

if the original child with the maximum value also costs the least once we take

into account penalties. Once BuildErrorRelax has filled the val array,

the function IsotoneSmooth uses it to compute the optimal values for each

node in the tree.

To demonstrate the correctness of this algorithm, we first show that the

restriction of the optimal solution to a subtree is also the optimal solution

for the subtree under the constraints imposed by its parent. Consider the

subtree rooted at any non-root node v ∈ T . Now suppose the smoothed score

y(parent(v)) is specified and also whether v has the maximum value of its

siblings in the optimal solution. If v does not have the maximum value then

let z(·) be the smoothed scores of the optimal solution to the regularized tree

isotonic regression problem for this subtree, under the additional constraint

that z(v) ≤ y(parent(v)). If v does have the maximum value then let z(·)

represent the optimal smoothed scores in Tv such that they minimize c(z) +

γv · |y(parent(v))− z(v)| subject to z(v) ≤ y(parent(v)), where c(z) is the cost

of the subtree Tv under z(·).

Lemma 4.9. For all nodes i in the subtree of v, y(i) = z(i).

Proof. This Lemma can be proved by similar reasoning as Lemma 4.6. Con-

sider a smoothed solution w(·) where w(i) = z(i) for all nodes i in the subtree

71

of v, and w(i) = y(i) otherwise. It is clear that since z(·) obeys the monotonic-

ity property and z(v) ≤ y(parent(v)), the solution w(·) obeys the monotonicity

property. Now, the cost c(w) is the sum of the cost for the smoothed scores

z(i) in the subtree of v and the cost for the scores y(k) for all other nodes, plus

the penalty of each parent’s value differing for the maximum of its children’s

values. Thus, the difference between c(w) and c(y) is just the difference in L1

and penalty costs for z(i) and y(i) in the subtree of v, including the difference

between γv · (y(parent(v))− z(v)) and γv · (y(parent(v))− y(v)). For this cost

we know that z(·) is the optimal. The lemma follows.

In order to proceed with showing correctness of our algorithm, we have

to next show that the two separate loops in steps 9-15 and steps 16-19 do

an optimal job of assigning values to children nodes. The first loop assigns

children values only based on the costs within their subtrees. The second loop

then changes the value of a single child node making it the maximum amongst

all siblings. Hence, we need to prove that this one transformation results in

the optimal assignments of values to children.

Consider a node v ∈ T with children u1, . . . , u`. Let y(·) be the optimal

solution to Problem 4.4 for the subtree Tv when y(v) is constrained to be some

value x̂(i). Also, let y′(·) be a valid solution with y′(v) = x̂(i) obtained after

execution of steps 5-15 in algorithm BuildErrorRelax in Figure 4.4.

Lemma 4.10. For a node v ∈ T with children u1, . . . , u`, at most one child

um = argmax{y(ui)} will be such that y′(um) 6= y(um). All other children will

have the same values in y′(·) and y(·).

Proof. Let uj 6= um be a child of node v such that y′(uj) 6= y(uj). There can

be two cases, (1) y′(uj) ≤ y(um) and (2) y′(uj) > y(um). For case (1), we can

72

undo the move of uj from y′(uj) to y(uj) and reduce the cost of the solution.

This is because y′(uj) is the cheapest solution for uj less than or equal to y(v)

(from step 10 of BuildErrorRelax). This case implies that y(·) is not the

optimal solution and so it is not possible. For case (2), once again we can reset

uj from y(uj) to y′(uj) and obtain a cheaper solution. This is because cost of

the subtree Tuj
is lower at y′(uj) than at y(uj) (step 10), and since y′(uj) is

closer to y(v) than y(um), the cost from penalties is lower too. no other node

than um could have

Theorem 4.11. Algorithm IsotoneSmooth in Figure 4.4 solves Problem 4.4

exactly.

Proof. By Lemma 4.8, in the optimal solution, a node can take only take

values from a finite sized set, and by Lemma 4.6, combining the optimal

smoothed scores for subtrees yields the optimal smoothed scores for the entire

tree. Hence, all that remains to be shown is that BuildErrorRelax finds

optimal assignments for the children ul of a given node v. For each value x̂(i)

the parent can take, by steps 8 and 10 each child is assigned to its optimal value

val(ul, i) less than or equal to x̂(i). The additional cost of the maximum child

ul assigned to x̂(j) is err(ul, j) − err(ul, val(ul, i)) + γv · (x̂(i)− x̂(j)). Hence,

storing additional costs in errchildren by step 13 and extracting smallest cost

increases via step 17 returns the child that causes the least increase in cost via

Equation (4.2). By Lemma 4.10 it is sufficient to adjust the value of only one

such child value to obtain the optimal solution.

Complexity. The space complexity of the algorithm is O(n2) as there are

O(n) entries in the dynamic programming table for each node. In the algo-

rithm BuildErrorRelax, step 2 takes O(n2) time, step 7 takes O(n2) time

73

amortized over all calls (this loop is called for each node only once), and the

loops in step 9 and step 16 can be done in O(n2 log n) time by storing errheap

and errchildren values in heaps and then running over the values i ∈ {1 . . . |x̂|}
in ascending order of x̂(i). Hence, the total running time is O(n2 log n). Note

that this is same as the complexity of the algorithm for the strict case (in

Figure 4.4) and also the best time complexity of previously known algorithms

for the non-regularized forms of tree isotonic regression [AHKW06].

4.3 Regularized Unimodal Regression

In the previous section we formulated the task of smoothing classifier

outputs in Scenarios I and II as regularized isotonic regression problems. In

this section we will discuss how to perform classifier output smoothing under

the conditions of Scenario III as described in the introduction to the chapter.

4.3.1 Formulation

Consider classification under Scenario III. The instances, in this case, can

belong to any of the nodes in the hierarchy; in other words, the range of τ is

T . Moreover, the classifier at node v is trained to distinguish the instances

that belongs to v from instances that belong to all other nodes; even from

instances belonging to child nodes of v. In such a setting, a instance belongs

to, and is associated with, only a single class/node.

In terms of classifiers scores this means that the nodes in the tree should

be labeled in such a fashion that there is only one node with a peak value and

the rest of the values “fall away”. By this we mean that values on nodes mono-

tonicity decrease as we move away from the “peak-node”. Notice that such a

set of values satisfy the relaxed monotonicity constraint from Subsection 4.2.1

74

when the root of the tree is the peak-node. However, since in our applications

edges are directed and the root of the hierarchy has a special meaning (the

superclass), we cannot just move it to the peak-node. Therefore, we soften

the notion of a peak-node to mean a node whose value is higher than all its

parents and descendants in the tree. This definition leaves room for multiple

peak-nodes in a set of smoothed scores on a hierarchy. This is useful because

documents often have multi-modal topic distributions and might legitimately

belong to multiple nodes in the hierarchy. These types of situations are often

encountered in real world applications, such as classification into a web tax-

onomy, which often have a faceted structure [Hea06]. Hence, we define the

property that we want smoothed scores to satisfy under Scenario III.

Property 4.12 (Classification Tree Unimodality). Smoothed classifier scores

y(·) are unimodal on the taxonomy, if for each leaf node v ∈ leaf(T), where

the values of nodes on the path from root are {y1 . . . yv}, there exists a node i,

such that y1 ≤ y2 ≤ . . . yi ≥ yi+1 ≥ . . . yv.

For any path from the root to a leaf node v, multiple nodes can qualify

as the node i in the property above if they all have the maximum score. Of

all these nodes the one that is closest to the leaf node will be referred to

as the cross-over node. We call the part of the path from the root to the

cross-over node as the “up-phase” and the rest of the path to leaf v as the

“down-phase”. Note that for a path either the up-phase or the down-phase

may not exist; the scores might only increase or only decrease. All that the

property above guarantees is that the down-phase will follow the up-phase, if

both exist. There exists one cross-over node for each path, though, multiple

paths might share cross-over nodes. A node in the tree that acts as a cross-

over node for all paths from the root to the leaves in its subtree is called the

75

“peak-node”. Notice that by the very definition of peak-nodes, they cannot

be ascendants or descendants of each other in the tree. It is these peak-nodes

in our smoothed scores, with values above a threshold, that will be predicted

as true labels by our approach.

Now that we have stated the property that we expect smoothed classifier

scores to follow, we can state the problem of finding such a solution.

Problem 4.13 (Regularized Unimodal Regression). Given classifier scores

x(·), find smoothed scores y(·) that minimize∑
v∈T

wv · |x(v)− y(v)|+
∑

v,u∈T,u∈child(v)

γvu · |y(v)− y(u)| (4.3)

while satisfying Property 4.12, where wv and γu are node-specific weights and

penalties, respectively.

Let us compare this problem with regularized isotonic regression (Prob-

lem 4.4). One major difference is the nature of the constraints that need to be

satisfied; in this case the values from the root to the children can increase and

then decrease. However, there are other differences as well. First, and most

importantly, the penalty term of the cost function in the current problem pe-

nalizes all differences between parent and child node values. This is in contrast

to Problem 4.4 where a single child of each parent is penalized. The reason

is that in the current problem as we traverse down the tree from the root, we

want increases in score only if the path leads to the true peak-node. All other

paths should remain at the same score as their parents (preferably zero). Also,

as we move down the subtree of the true peak-node, we want that the values

should go to zero very quickly, as according to our scenario there is just one

peak-node on any path from the root to the leaves. The second difference is

76

that the penalty function γ now can depend on the parent-child pair; in pre-

vious problems the penalty function was parameterized by the parent node.

This gives us additional flexibility in encoding our domain knowledge about

the taxonomy into the smoothing process. Finally, since the parent value

might be higher or lower than the child value, we need to use their absolute

difference in computing the penalties.

4.3.2 Algorithm

Before we present the algorithm for obtaining an optimal solution to Prob-

lem 4.13, we will show that in the optimal solution all unique classifier values

will come from the finite set of original classifier values.

Proposition 4.14. For Problem 4.13 there exists an optimal solution, y(·),

where, for all i ∈ T there is a j ∈ T such that y(i) = x(j).

Proof. This result follows directly from Lemma 4.8.

The basic idea behind the algorithm is that there is a unique cross-over

node on every path from the root to the leaves. Hence, each node that is

on the up-phase of the path to the leaves can offer its children the option to

be lower or higher than it in value. A node that is on the down-phase can

only offer its children one option of being lower than it in value. In order

to implement this, algorithm BuildErrorUnimodal builds up the err and

val functions, which store the optimal error and value assignments of nodes.

The value err(v, i, phase) stores the least value of error possible when a node

v takes the value indexed by i when it is a part of the up/down phase. The

entry val(v, i, phase) stores the index of the value of v where the least error is

77

obtained when the parent takes the value indexed by i and is on the up/down

phase of the path.

The BuildErrorUnimodal algorithm has a similar structure to the two

dynamic programs presented previously in this chapter. It is invoked on the

root node and recursively calls itself on the children in a depth first order so

as to fill the err and val arrays. The major difference in the current program

is the way it finds optimal child assignments for the two up/down phases. For

each value x̂(i) that a parent node v can take, first the optimal values for the

children in the down-phase are found (steps 8 & step 11) and the err and val

arrays are updated (steps 12 & 13). The optimal error and value of a child on

the down-phase are also stored in the arrays mindnerr and mindnval (steps 12

& 13). Next the optimal values for the children constrained to be higher than

x̂(i) are found (steps 9 & 15). Since the parent in the up-phase can offer its

children the option of being higher as well as lower than its value, both options

are compared, and the one with the lower optimal error is chosen (steps 17-20).

Once again, the val and err arrays are updated.

Once the val array table has been filled by BuildErrorUnimodal the

algorithm UnimodalSmooth traces the paths from the root that give least

error. It uses the current value of “phase” to look at the appropriate entries

of the val array (steps 5 & 7). Moreover, it detects when a crossover point

has been reached by checking the optimal value of the current node with that

of the parent (step 8). The function UnimodalSmooth is then recursively

called on the children with the updated value of phase.

78

Algorithm BuildErrorUnimodal (v, x, x̂)
1. if (v is a leaf) then
2. for i = 1 : |x̂| /* all values node v can take */
3. err(v, i, up) = err(v, i, dn) = wv · |x(v)− x̂(i)|
4. else
5. for child u of node v
6. BuildErrorUnimodal(u, x, x̂)
7. for i = 1 : |x̂| /* all values node u can take */
8. errheapdn(i) = err(u, i, dn)− γvu · x̂(i)
9. errheapup(i) = err(u, i, up) + γvu · x̂(i)
10. for i = 1 : |x̂| /* all values node v can take */
11. val∗ = argminj∈{1...|x̂|},x̂(j)≤x̂(i) errheapdn(j)
12. errdn′(i)+ = mindnerr(i) = err(u, val∗, dn) + γvu · |x̂(i)− x̂(val∗)|
13. val(u, i, dn) = mindnval(i) = val∗

14. for i = 1 : |x̂| /* all values node v can take */
15. val∗ = argminj∈{1...|x̂|},x̂(j)≥x̂(i) errheapup(j)
16. tmperr = err(u, val∗, up) + γvu · |x̂(i)− x̂(val∗)|
17. if(tmperr > mindnerr(i)) then
18. errup′(i)+ = mindnerr(i); val(u, i, up) = mindnval(i)
19. else

20. errup′(i)+ = tmperr; val(u, i, up) = val∗

21. for i = 1 : |x̂| /* all values node v can take */
22. err(v, i, up) = errup′(i) + wv · |x(v)− x̂(i)|
23. err(v, i, dn) = errdn′(i) + wv · |x(v)− x̂(i)|

Algorithm UnimodalSmooth (v, err, val, x̂,phase)
1. if (v is the root) then
2. (val∗, phase) = argmini∈T,j∈{up,dn} err(root(T), i, j)
3. p(root(T)) = val∗; y(root(T)) = x̂(val∗)
4. else if (phase == dn) then
5. p(v) = val(v, p(parent(v)), dn); y(v) = x̂(p(v))
6. else

7. p(v) = val(v, p(parent(v)), up); y(v) = x̂(p(v))
8. if (y(v) < y(parent(v))) then phase = dn
9. for u ∈ child(v)
10. UnimodalSmooth(u, err, val, x̂,phase)

Figure 4.5: Algorithm to solve Problem 4.13. Array x contains the original
classifier scores and x̂ is the set of unique values in x. wv and γvu denote
the node-specific weights and penalties. BuildErrorUnimodal constructs
functions err(·, ·) and val(·, ·) which are then used by UnimodalSmooth to
find the smoothed scores y(·).

79

To show that this algorithm is correct we first show that the restriction of

the optimal solution to the subtree under a node is also the optimal solution for

the subtree under the constraints from the node’s parent. Consider the subtree

rooted at a non-root node v ∈ T . Suppose the parent score y(parent(v)) is

given and, without any loss of generality, that the current phase is up. Then

let z(·) be the optimal scores for nodes in subtree Tv such that c(z)+γparent(v),z ·
|y(parent(v))− z(v)| is minimized subject to z(v) ≥ y(parent(v)), where c(z)

is the cost of the subtree Tv under z(·). Then the following lemma holds (also

for the case when phase=down):

Lemma 4.15. For all nodes i in the subtree of v, y(i) = z(i).

Proof. This lemma can be proved using arguments identical to the proof of

Lemma 4.9.

Theorem 4.16. Algorithm UnimodalSmooth in Figure 4.5 solves Prob-

lem 4.13 exactly.

Proof. For every possible smoothed score of the parent x̂(i), the algorithm finds

the best value for each child lesser than x̂(i) (taking into account penalty)

and uses it for the down-phase solution. For the up-phase solution it com-

pares each child’s best values higher and lower than x̂(i) (once again, taking

penalty into account) and uses the one with lower error. By Lemma 4.5,

the parent can take only finitely many smoothed scores in the optimal solu-

tion, and by Lemma 4.6, combining the optimal smoothed scores for subtrees

yields the optimal smoothed scores for the entire tree. Finally, algorithm Uni-

modalSmooth starts with the minimum error value for the root considering

both the up and down phases. Before recursively calling itself on a child node,

the UnimodalSmooth function checks if a phase change has occurred.

80

Complexity. Let the number of nodes be n = |T |, and so |x̂| can at most be

n. The dynamic programming table has both the up and down phase entries

for each possible value of each node. Hence the storage goes up by a factor of

2 over the IsotoneSmooth algorithm, and is still O(n2). In the algorithm

BuildErrorUnimodal, step 2 takes O(n2) time, step 7 takes O(n2) time

amortized over all calls (this loop is called for each node only once), and

the loops in step 10 and 14 can be performed in O(n2 log n) time by storing

errheapdn and errheapup values in heaps and then running over the values

i ∈ {1 . . . |x̂|} in ascending order of x̂(i). Hence, the total running time is

O(n2 log n), the same as the IsotoneSmooth algorithm.

81

4.4 Experimental Setup

In this section we provide details of the framework under which we eval-

uate the effect of smoothing of classifier outputs on accuracy of classification.

First we describe the datasets used in the evaluation. Next we enumerate the

different aspects of smoothing performance that we want to compare and the

measures that compute them. Finally, we end the section with implementation

details of our classification and smoothing system.

4.4.1 Datasets

The following are the datasets that we used in our evaluation of our al-

gorithms under the three scenarios mentioned earlier. All datasets used in

this thesis are available from http://www.ideal.ece.utexas.edu/∼kunal/

thesis/.

Text Datasets. We use the 20-newsgroups dataset to perform our empir-

ical analysis in the text classification domain. This dataset has been exten-

sively used for evaluating text categorization techniques [RR01]. It contains

a total of 18, 828 documents that correspond to English-language posts to

20 different newsgroups, with a little fewer than a 1000 documents in each.

The dataset presents a fairly challenging classification task as some of the

categories (newsgroups) are very similar to each other with many documents

cross-posted among them (e.g., alt.atheism and talk.religion.misc). In order to

evaluate our classifier smoothing schemes we use the hierarchical arrangement

of the 20 newsgroups/classes constructed during experiments in [PRG06]. The

hierarchy is shown in Figure 4.1 and we refer to it as TaxonomyI.

Since all documents in the 20-newsgroups taxonomy belong to leaf level

82

nodes, it serves to evaluate our approach on Scenario I. In order to represent the

conditions encountered under Scenario III, we constructed “hybrid” documents

that represent the content of internal nodes in the hierarchy. For each internal

node class, hybrid document were constructed by combining documents from

a subset of its children classes. The size and constituents of this subset were

randomly picked. Care was taken to ensure that the number of distinct words

in a hybrid document as well as its length were similar to the documents being

combined. For each internal node around 1000 new documents were created

this way. We refer to this modified taxonomy as TaxonomyII.

Remote Sensing Datasets. In addition to text data, we also evaluate our

approach on hierarchies of classes where the instances are pixels in hyper-

spectral images. We use two separate datasets which comprise hyperspectral

images of the NASA’s John F. Kennedy Space Center (KSC) [Mor02], Florida

and the Okavango Delta, Botswana [HCCG05]. These datasets have previously

been described in detail in Section 3.4. In that section we used our approach

to create n-ary tree based hierarchies of the classes in the two datasets. In this

chapter we use these hierarchies (Figures 3.4(a) and 3.5(a)) for our smooth-

ing experiments. In both the Botswana and the KSC hierarchies all pixels

or data instances belong to leaf level classes, and hence these hierarchies fall

under Scenario I.

These remote sensing datasets have also been used for evaluating tech-

niques on the task of Knowledge Transfer [RGC05]. This task involves pre-

dicting class labels for pixels from a hyperspectral image that is spatially or

temporally removed from the training data image. The motivation for this

task is that it is very expensive to retrieve ground truth for hyperspectral im-

ages, and so transferring knowledge learned images of one area to another is

83

extremely useful. The difficulty in the task is due to the fact that a different

area or a different time of image acquisition causes changes in hyperspectral

signatures so that the distribution from which training and test instances are

drawn are not the same. For the knowledge transfer task we use as a test

dataset an image in the Botswana dataset that is spatially removed from

the training data. For the KSC dataset, our test dataset is an image that is

spatially as well as temporally removed.

Bioinformatics Dataset. This dataset was derived from the Mousefunc

competition 2, which involved predicting the functional labels (from the Gene

Ontology [AMBCea00]) for mouse genes using multiple sources of evidence.

We experimented with the task of predicting labels for the 361 GO taxonomy

terms with more than 30 genes associated with them. This left us with a

dataset of 6790 genes. In terms of sources of evidence we restricted ourselves

to using the 8537 protein annotation features from the Pfam [FMSB+06] and

Interpro [MAea07] datasets as they were available for all the genes in our

dataset. The GO taxonomy terms are arranged in a directed acyclic graph;

we performed our smoothing over a tree structure embedded in the taxonomy,

which was found using a bread-first traversal from the root. We call this

tree structure along with the mouse genes as GOTaxonomy. Since genes

can belong to the internal nodes of our GOTaxonomy, the bioinformatics

dataset helps us evaluate our approach on taxonomies under Scenario II.

2http://hugheslab.med.utoronto.ca/supplementary-data/mouseFunc I

84

4.4.2 Evaluation Measures

We report our results using a few different evaluation measures to highlight

various aspects of the performance of our smoothing approach.

Measures for Scenario I and Scenario II. A standard measure we use

is classification accuracy microaveraged over all the classes in the dataset. The

classification accuracy is fraction of instances for which the true labels and the

predicted labels match. Later in the chapter we will show that smoothing

classifier outputs results in an increase in the number of correct predictions.

While the classification accuracy showcases improvements in performance from

the classifier’s perspective, we can also analyze performance from each data

instance’s perspective.

Each instance has multiple true labels (a taxonomy node and all its parents

on the path to the root). Hence, we can pose a question about whether our

approach finds all true labels of a document successfully. We measure this

performance in terms of precision and recall of true labels for each instance.

Precision is the fraction of class labels predicted as positive by our approach

that are actually true labels, while recall is the fraction of true class labels

that are also predicted by our approach as positive. These precision-recall

numbers can be summarized by their harmonic mean, which is also known as

the F–measure. These measures are widely used in machine learning as well

as information retrieval literature.

For each instance, the decision about which labels are positive and which

negative is made by ordering the labels based on their classifier scores and then

applying a threshold. Hence, we can obtain many different pairs of precision-

recall values by varying the threshold. Typically as we lower the threshold

85

(make it easier for labels to be positive) precision drops and recall improves;

the effect is exactly the opposite when the threshold is increased. While we can

better study these precision-recall trade-offs by plotting all values for varying

threshold, it becomes quickly unwieldy if we want to examine many parame-

terizations of our approach.

Receiver Operating Characteristics (ROC) graphs convey similar informa-

tion as the precision-recall graphs. ROC graphs are two-dimensional graphs in

which the true positive rate (the fraction of the true labels that were correctly

predicted) is plotted on the Y -axis and the false positive rate (the fraction of

the negative labels that were mistakenly predicted) is plotted on the X-axis.

One of the characteristics of the ROC graphs that makes them attractive for

collections like 20-newsgroup is the fact that the graphs are insensitive to the

ratio of the number of positive and negative labels. A detailed description of

the ROC graphs can be found in [Faw03].

Since we want to compare different algorithms, and often across different

parameterizations, we need a quantitative measure of a given ROC graph.

One that is often employed is the area under the curve (AUC) score of a ROC

graph. A labeling that randomly predicts labels for documents has an expected

AUC score of 0.5, while a perfect labeling system scores an AUC of 1.

Measures for Scenario III. Scenario III presents a different sort of chal-

lenge in the sense that each test instance has only a single true label. We are

mostly interested in finding whether the single true label was found after the

application of our smoothing approach. Hence, we use a couple of different

measures for the evaluation.

The first measure is the Precision of the set of labels predicted as true

86

(before and after smoothing). Since there is only a single true label, this

measure essentially depends on how many labels were returned as true and

whether the actual true label was one among them. A class is considered

predicted true if its score is above 0.5, and when no labels are predicted true

the precision is considered to be 0. However, this measure doesn’t discriminate

between situations when the true label has the highest or lowest classifier score

among the all the labels predicted true. To measure this aspect of performance,

we compute the fraction of instances on which the true label also has the

highest score. We call this measure the AvgPrecision@1, and it is equivalent to

classification accuracy when only the label with the highest score is predicted

as true.

4.4.3 Classification Algorithms

We trained one classifier for each node, internal as well as leaf-level, of

the taxonomies. As classification algorithms we used the Support Vector Ma-

chine [Vap95] and Naive Bayes classifier [Mit97], both of which have been

shown to be very effective in the automated classification task [RK04, PRG06].

In order to ensure that the outputs of distinct classifiers/nodes that are being

smoothed are comparable to each other, we transformed the classifier outputs

into posterior probabilities [WLW04, HWL06].

4.4.4 Parameter Settings

All results reported in this section were obtained after a 5-fold cross val-

idation. Hence, in each fold 80% of the data was used for training. Out of

that 10% was held out to be used as a validation set for adjusting parameters.

Each performance number reported in this section is averaged over the 5 folds.

87

The variation in performance across folds was typically on the order of 1000ths

and so all improvements reported in this section are statistically significant.

The text classification and bioinformatics tasks SVM classifier was trained

with a linear kernel and the “C” parameter was learned using the validations

set by searching over {0.1,1,10} as possible values. These set of values have

been seen to be effective in past work [PRG06]. For hyperspectral classification

SVM classifier with RBF kernel was used. The “C” and “γ”parameter for this

classifier were varied over {0.1,1,10} and {0.01,0.1,1,10} respectively and set

using a validation dataset. Both classification algorithms were trained without

any feature selection as both are fairly robust to overfitting (our classifier’s

performances were very close to those previously recorded in [PRG06]). We

believe that while extensive feature selection might have improved performance

by a couple of percentage points, these benefits would have been available to

both the baseline as well as the smoothing approach and would not have

qualitatively altered the results we discuss in our evaluation sections.

While performing smoothing on classifier outputs the node specific penalty

values for each node is the same, unless indicated explicitly. Similarly, in all

experiments in this chapter, the weights for all classifiers are set to 1.

Finally, while evaluating the results of classification and smoothing any

measure, such as precision or recall, that needs a binary prediction uses 0.5

as the score threshold. This makes sense since our classifiers give us posterior

probabilities for classes being the true label. Moreover, when multiple classes

are predicted (our classification and smoothing approach both allow it) we

choose one class randomly for our classification accuracy measure.

88

No Smoothing
With Smoothing

γ = 0 γ = ∞
Classification Accuracy 0.74 0.734 0.86 (16.2% ↑)

AUC score 0.927 0.927 0.96 (3.6% ↑)
F-measure 0.87 0.872 0.91 (4.5% ↑)

Table 4.1: Dataset: TaxonomyI. Performance increases in SVM classifier
through isotonic smoothing.

No Smoothing
With Smoothing

γ = 0 γ = ∞
Classification Accuracy 0.67 0.67 0.76 (13.4% ↑)

AUC score 0.907 0.907 0.935 (3% ↑)
F-measure 0.828 0.828 0.853 (3% ↑)

Table 4.2: Dataset: TaxonomyI. Performance increases in Naive Bayes clas-
sifier through isotonic smoothing.

4.5 Evaluation on TaxonomyI under Scenario I

In TaxonomyI documents can only belong to leaf-level nodes, and under

Scenario I, classifiers are trained to distinguish the content within a node from

the content outside. Hence, we trained a classifier for each node such that the

positive set of documents belonged to the leaf-level classes under the node,

and the negative set of documents to all other leaf-level classes.

4.5.1 Classification Performance

First we discuss the performance of isotonic smoothing in terms of average

classification accuracy per class and average AUC per document. In Figure 4.6

we plot both these measures against varying values of penalty. As we vary the

penalty from 0 to ∞, the problem changes from simple isotonic regression to

enforcing the strict monotonicity constraints. We can see from the plots that

this progression of problems also translates into improved performance; both

89

Figure 4.6: Dataset: TaxonomyI. Performance of smoothing outputs of SVM
classifiers as measured by classification accuracy and area under the ROC
curve. The horizontal lines are the baseline scores obtained by the classifiers
without the smoothing.

classification accuracy and AUC increase significantly with higher penalties.

This shows that our method for smoothing classifier scores improves perfor-

mance from the perspectives of both the classes as well as the documents.

Figure 4.7 plots the values for precision, recall, and F-measure averaged

across all documents. Once again, these values are plotted against increasing

penalty values. As we can see F-measure rises as penalties are increased and

we move towards enforcing strict monotonicity constraints. These strict con-

straints ensure that the value of the parent is equal to the value of at least one

of its children. This type of smoothing takes care of situations where leaf-level

classes are mislabeled while their parent nodes are correctly labeled. In these

cases, high penalty values make children conform to the parent’s score cor-

recting the error, resulting in increased precision and recall. However, strict

90

Figure 4.7: Dataset: TaxonomyI. Performance of smoothing outputs of SVM
classifiers as measured by increases in F-measure. The horizontal lines are the
baseline scores obtained by the classifiers without the smoothing.

constraints can also sometime lead to some false positives - especially in shal-

low hierarchies like the 20-newsgroups - causing a decrease in precision. These

trends are exactly what we observe in Figure 4.7. However, the increase in

recall compensates for the slight decrease in precision by far, resulting in a

higher overall F-measure score.

Since we are evaluating on a dataset that falls under Scenario I, and the

strict monotonicity property was framed for just such a scenario, it makes

sense that of all penalty values, γ = ∞ results in best performance. However,

it is also interesting to observe the behavior of our dynamic program for low

and high range of penalties. As we can see from Figure 4.6 and Figure 4.7 for

penalty values between 0 and 1 there is hardly any change in performance from

simple isotonic regression (γ = 0). This is because, in this range of penalty

the cost to a node for deviating from its parent’s smoothed value is less than

91

Figure 4.8: Dataset: TaxonomyI. Performance of smoothing outputs of Naive
Bayes classifiers as measured by classification accuracy and area under the
ROC curve. The horizontal lines are the baseline scores obtained by the clas-
sifiers without the smoothing.

the cost from L1 error for deviating from its own original value. Hence, the

regularization term gets no chance to correct certain types of common errors,

especially in shallow hierarchies like TaxonomyI. Also, as penalty increases

well above 1 (γ ≈ 5) the increase in performance saturates. This is because

once penalty becomes sufficiently large it becomes impossible to violate any

strict monotonicity constraints (a node’s value always equals the maximum of

its children’s value) and the smoothing behaves as if penalty was set to ∞.

We summarize the performance of our smoothing approach in Table 4.1

and Table 4.2. As we can see, over and above just classification, smoothing

provides considerable gains in terms of classification accuracy over classes and

precision-recall of labels for a document. According to our results, simple

isotonic regression without penalties results in almost no improvement, high-

92

Figure 4.9: Dataset: TaxonomyI. Performance of smoothing outputs of Naive
Bayes classifiers as measured by increases in F-measure. The horizontal lines
are the baseline scores obtained by the classifiers without the smoothing.

lighting that the gains are due to the regularization aspect of our approach.

4.5.2 The Effect of Missing Classifier Scores

In certain applications, especially those involving dynamic, fast changing,

and vast corpora like the Web, we may not have the time or the data to train

classifiers for each node (internal or leaf-level) in a hierarchical classification

system. In such situations we can classify test instances for nodes with trained

classifiers, while resorting to guessing at values for nodes without classifiers.

In this section we evaluate whether smoothing the outputs of classifiers that

have been trained can help us predict scores for classifiers that haven’t been

learned.

In order to simulate situations like these we randomly select a set frac-

tion of nodes in our 20-newsgroups taxonomy that we don’t train classifiers

93

for. Then we apply our smoothing approach to the tree of nodes (some with

missing values) and see if the smoothed scores of the nodes with missing val-

ues match the true labels. In our dynamic program the nodes with missing

values are given a weight of zero so that they don’t contribute to the L1 error.

The smoothing approach hence replaces the values of the missing nodes with

whatever value that helps reduce the cost of isotonic smoothing. However, as

the number of missing nodes increases the amount of information provided to

the smoothing algorithm decreases and, therefore, we expect the performance

of the whole system to also degrade.

In order to provide baseline performance we replace the missing classifier

scores randomly with a true or a false - we bias the random predictions by the

observed priors for the missing class. This class prior information is gathered

from the training data for the class. In situations where classifier values are

missing because of lack of training data, we can use other priors for these

replacements (maybe average size of other classes in the data). Note that we

didn’t use the class prior information in the smoothing approach to predicting

missing values.

In Figure 4.10 we examine the performance of our system as the fraction

of missing classes is increased (on the X-axis). The performance is measured in

terms of the metrics mentioned earlier in this paper. As we can see from the

plots, as the fraction of missing values increases the performance decreases.

However, the decrease in the quality of smoothed outputs is far lower than

the baseline predictions. Even though the smoothed and baseline predictions

start with similar accuracy values, the difference between their performances

grows dramatically with increasing number of missing values. For instance,

in Figure 4.10(a) the classification accuracy after smoothing is 16% higher

94

than baseline with no missing values and this difference grows to 254% at 50%

missing values. Similarly, the corresponding numbers for AUC are 3% and

24%. Figure 4.10(b) graphs performance in terms of precision, recall, and F-

measure against varying amounts of missing values. Once again as the number

of missing values increases, the difference in performance of smoothed outputs

over baseline balloons: at 50% missing values, smoothing outperforms baseline

by 155% in terms of F-measure.

The decrease in performance of baseline predictions is very dramatic at

the beginning but after sufficient number of values are missing the effect of

predicting with priors kicks in and the accuracy stabilizes. Since our smoothing

approach does not use the knowledge of class priors, its performance never

stops decreasing and at around 90% missing values the accuracy of smoothed

scores and baseline scores is similar again. Hence, devising a well founded

way to incorporate such prior information into the smoothing will improve the

performance of our approach even more, especially in adverse conditions with

many missing values.

95

(a)

(b)

Figure 4.10: Dataset: TaxonomyI. Performance with SVMs under Scenario
I with missing values. Curves with pink no-fill shapes are performance of
raw classification scores. Curves with blue solid shapes are performance after
smoothing..

96

(a)

(b)

Figure 4.11: Dataset: TaxonomyI. Performance with Naive Bayes classifiers
under Scenario I with missing values. Curves with pink no-fill shapes are
performance of raw classification scores. Curves with blue solid shapes are
performance after smoothing.

97

No Smoothing
With Smoothing

γ = 0 γ = ∞
Classification Accuracy 0.918 0.919 0.935 (1.9% ↑)

AUC score 0.973 0.973 0.979 (0.6% ↑)
F-measure 0.959 0.959 0.961 (0.2% ↑)

Table 4.3: Dataset: Botswana. Performance increases in SVM classifier
through isotonic smoothing.

No Smoothing
With Smoothing

γ = 0 γ = ∞
Classification Accuracy 0.909 0.906 0.932 (2.5% ↑)

AUC score 0.917 0.972 0.979 (6.7% ↑)
F-measure 0.96 0.96 0.966 (0.6% ↑)

Table 4.4: Dataset: KSC. Performance increases in SVM classifier through
isotonic smoothing.

4.6 Evaluation on Remote Sensing Data under Scenario
I

In the previous section we evaluated our approach under the constraints on

Scenario I on TaxonomyI. In this section we will repeat the experiments on

datasets from the hyperspectral analysis domain: the Botswana and KSC

datasets described earlier. Since all instances in these datasets must belong to

leaf-level classes, these datasets also fall under Scenario I.

4.6.1 Classification Performance

The results of our smoothing experiments are summarized in Table 4.3

and 4.4. As we can see the accuracy in terms of various measures is increased

very slightly when we performing smoothing in comparison to when we do not

perform smoothing. The reason is that the accuracy of hyperspectral classifi-

cation is extremely high even without smoothing. This leaves smoothing with

98

No Smoothing
With Smoothing

γ = 0 γ = ∞
Classification Accuracy 0.677 0.676 0.732 (8.1% ↑)

AUC score 0.876 0.876 0.902 (3% ↑)
F-measure 0.787 0.785 0.806 (2.4% ↑)

Table 4.5: Dataset: Botswana (Knowledge Transfer). Performance increases
in SVM classifier through isotonic smoothing.

No Smoothing
With Smoothing

γ = 0 γ = ∞
Classification Accuracy 0.584 0.588 0.62 (6.2% ↑)

AUC score 0.83 0.83 0.85 (2.4% ↑)
F-measure 0.737 0.738 0.747 (1.4% ↑)

Table 4.6: Dataset: KSC (Knowledge Transfer). Performance increases in
SVM classifier through isotonic smoothing.

very few errors to correct. In fact, while increases in classification accuracy

seem very small, 2% and 2.5% for Botswana and KSC respectively, these

results represent a > 10% reduction in classification error.

The variations in accuracy as we change the value of the penalty parameter

is similar to what we expect for a dataset that falls under Scenario I: the

accuracy in all measures increases as we increase the penalty parameter. The

general trends are similar to the plots in Figures 4.12 and 4.13 for Botswana

and Figures 4.14 and 4.15 for KSC.

4.6.2 Evaluation on the Knowledge Transfer Task

The task of predicting class labels for instances from an unseen test dataset

after learning from ground truth available for a distinct training dataset is

called Knowledge Transfer. The motivation for this problem in the current

scenario is the high cost of obtaining ground truth for hyperspectral data.

99

Figure 4.12: Dataset: Botswana (Knowledge Transfer). Performance of
smoothing outputs of SVM classifiers as measured by classification accuracy
and area under the ROC curve. The horizontal lines are the baseline scores
obtained by the classifiers without the smoothing.

Moreover, additional factors such as location and time of image acquisition

cause hyperspectral signatures for the same class to vary. Hence, knowledge

transfer techniques can help us leverage available labeled data to classify pixels

in new hyperspectral images.

In this section we use our smoothing approach to apply the hierarchical

classifier learned on training data to independent test sets in our two remote

sensing datasets. For the Botswana dataset the independent test set is spa-

tially removed while for the KSC dataset the independent test set is spatially

as well as temporally different. The hope is that while the signatures for any

class over the train and test set would be different, the smoothing approach

would be able to correct some of the misclassification by taking into account

the membership scores of neighboring classes in the taxonomy.

100

Figure 4.13: Dataset: Botswana (Knowledge Transfer). Performance of
smoothing outputs of SVM classifiers as measured by increases in F-measure.
The horizontal lines are the baseline scores obtained by the classifiers without
the smoothing.

The results of our experiments on knowledge transfer are summarized in

Tables 4.5 and 4.6. First observation to make is that the knowledge transfer is

a much harder problem than standard hyperspectral classification. For both

the Botswana and KSC the classification accuracy in the standard setting

was higher than 90%. In the knowledge transfer setting this value drops to 67%

for Botswana and 58% for KSC. However, upon smoothing we see significant

gains in classification performance after smoothing in terms of all measures.

The increase in classification accuracy is 8% in the case of Botswana dataset

and around 6.2% for the KSC dataset.

The variation in accuracy measures while varying the penalty parameter

value is plotted in Figures 4.12 and 4.13 for Botswana and Figures 4.14

and 4.15 for KSC. As we can see increasing the penalty parameter results in an

101

Figure 4.14: Dataset: KSC (Knowledge Transfer). Performance of smoothing
outputs of SVM classifiers as measured by classification accuracy and area
under the ROC curve. The horizontal lines are the baseline scores obtained
by the classifiers without the smoothing.

increase in the classification performance. This agrees with our intuition that

strictly enforcing strict monotonicity constraints results in the best smoothing

for datasets which correspond to Scenario I.

4.6.3 The Effect of Missing Classifier Scores

In Section 4.5.2 we investigated the effect of missing classifier values on

the classification performance before and after smoothing. We showed that

as the fraction of nodes in the taxonomy with missing values increases, the

classification performance drops. However, the drop after smoothing is much

lesser than the drop before smoothing. In this section we perform the same

experiment for the remote sensing datasets.

As before in our current experiments we randomly drop the classification

102

Figure 4.15: Dataset: KSC (Knowledge Transfer). Performance of smooth-
ing outputs of SVM classifiers as measured by increases in F-measure. The
horizontal lines are the baseline scores obtained by the classifiers without the
smoothing.

scores for a fraction of class nodes. These missing values are then predicted us-

ing the class priors in the case of the baseline (no smoothing). The smoothing

approach sets the missing value nodes to zero weight before running regular-

ized isotonic regression. The final smoothed score for the missing nodes is

used as the predicted value. In Figures 4.16 and 4.17 we plot the accuracy

measures for the baseline as well as the smoothing approaches in relation to

the fraction of missing classifier values. As we can see, in terms of both the

classification accuracy and f-measure the performance drops significantly for

the baseline as the fraction of missing classifier scores increases. This drop,

however, is much gentler in the case of smoothing. This results in significant

difference in performance at 50% missing values: for the Botswana dataset

the classification accuracy and f-measure upon smoothing are 210% and 160%

higher respectively than the baseline. Similar results also hold for the KSC

103

dataset.

We also performed an experiment with the smoothing approach in which

we used the class prior to set the weight for each missing node. Here each

missing value was replaced by a zero value but weighted according to the prior

probability that the instance did not belong to the node. Hence, while predict-

ing the smoothed score for a node with a missing value our approach would

take into account the neighboring nodes’ values as well as the prior probability

of the missing node taking value zero. The results from this experimented are

plotted in Figures 4.16 and 4.17 as the curve labeled “Smoothing with Priors”.

As we can see from the plots smoothing while taking into account prior in-

formation gives a significant gain in classification performance over and above

simple smoothing. In fact at 50% missing classifier scores, smoothing with

priors gives us a performance boost of 42% in classification accuracy and 16%

in f-measure over and above standard smoothing in the case of Botswana

dataset. Similar improvements in performance are seen for the KSC dataset.

104

(a)

(b)

Figure 4.16: Dataset: Botswana. Performance with SVMs under Scenario
I with missing values. Curves with pink no-fill shapes are performance of
raw classification scores. Curves with blue solid shapes are performance after
smoothing..

105

(a)

(b)

Figure 4.17: Dataset: KSC. Performance with SVMs under Scenario I with
missing values. Curves with pink no-fill shapes are performance of raw classifi-
cation scores. Curves with blue solid shapes are performance after smoothing..

106

No Smoothing
With Smoothing
γ = 0 γ = ∞

Classification Accuracy 0.26 0.32 (23% ↑) 0.122
AUC score 0.78 0.79 (1.3% ↑) 0.78
F-measure 0.535 0.565 (5.6% ↑) 0.50

Table 4.7: Dataset: GOTaxonomy. Performance increases in SVM classifier
through isotonic smoothing.

Figure 4.18: Dataset: GOTaxonomy. Performance of smoothing outputs of
SVM classifiers as measured by classification accuracy and area under the ROC
curve. The horizontal lines are the baseline scores obtained by the classifiers
without the smoothing.

4.7 Evaluation on GOTaxonomy under Scenario II

We trained one classifier for each node, internal as well as leaf-level, of

GOTaxonomy. In this dataset, genes can belong to any node of the tree.

Hence, while training a classifier for a node the positive set of genes came from

all classes in the subtree of the node. All the genes from classes outside the

107

Figure 4.19: Dataset: GOTaxonomy. Performance of smoothing outputs of
SVM classifiers as measured by increases in F-measure. The horizontal lines
are the baseline scores obtained by the classifiers without the smoothing.

subtree of the node formed the negative set.

Here while smoothing we cannot assume that a node’s score must equal

the maximum of its children’s score. The document being classified may not

belong to any of the children and hence a node’s score can be larger than all

of its children’s scores. In such a scenario the role of regularization is more

subtle than in previous experiments. Very aggressive regularization will enforce

strict monotonicity constraints which do not match the problem. Hence, the

regularization penalty will have to be large enough to undo classification errors

but also low enough to leave room for legitimate cases where documents are

not classified into any child.

In fact, we observe that simple isotonic regression (γ = 0) is sufficient to

correct classification errors. We summarize the results of our experiments in

Table 4.7. From the table we can see that isotonic smoothing results in sig-

108

nificant gains in classification accuracy (23%) and f-measure (5.6%) over the

baseline of simple classification. In Figure 4.18 and Figure 4.19 we plot the

performance of our smoothing approach with varying values of the penalty

parameter. As we can see smoothing the outputs of classifiers via isotonic

regression gives us significant improvements in terms of all measures. More-

over, any increase in penalty above γ = 0 causes a decrease in classification

performance. This ties in with our intuition about the performance of our

smoothing approach on datasets under Scenario II.

4.8 Evaluation on TaxonomyII under Scenario III

Under Scenario III classifiers are trained to distinguish documents belong-

ing to a node from those belonging to all other nodes. Hence, each instance

must have only one true class label. Therefore, as mentioned in Section 4.4

we use Precision and AvgPrecision@1 to evaluate our smoothing approach.

First let us consider the performance of smoothing on instances for which

the original classifiers predict more than one class as true label. Instances with

only one class predicted as true will not be affected much by our approach

since these set of scores often already satisfy unimodality constraints. Hence,

we measure how well our smoothing approach repairs classification scores that

predict more than one class as true. These numbers are plotted in Figures 4.20

and 4.21.

In Figure 4.20(a) we plot the precision of the smoothed solutions against

increasing penalty values. The horizontal line is the baseline performance of

classification without any smoothing. As we can see, for certain values of

penalty the precision of the smoothed scores is much higher than the original

classifier scores. For extreme values of penalty, the accuracy of the smoothing

109

procedure drops. The amount of improvement made by smoothing all instances

as opposed to only instances with two or more classes predicted as true labels

is shown in Figure 4.20(b). As we can see the performance of smoothing is

much higher over instances that have multiple predicted labels in the original

score. This is because smoothing with regularization tends to select one of the

predicted labels and reduces the others to zero. This has an effect of improving

precision if the correct label is chosen.

This observation can be confirmed using the AvgPrecision@1 measure.

We plot this measure in Figure 4.21(a) against increasing penalty values. We

can see that at the appropriate values of penalty, the chances that the true

label has the highest score is around 20% higher after we smooth the original

classifier scores. Once again the improvement is higher for documents that

have more than one class predicted as true in the original classification scores.

This is because when the original scores for a document have only one predicted

label, then even if this label is incorrect, the smoothing cannot find the true

label, reducing the overall improvement in the test data. Smoothing is most

useful in finding the true label from among multiple predicted ones.

Effect of Constraining Cross-over Nodes to Value 1.

In a bid to reduce false positive classification errors we make an slight

modification to our formulation. We now require that every cross-over node

have a smoothed score of 1. The intuition behind this approach is that forcing

cross-over nodes to have a final value of 1, we make it too expensive for all

but the true label to have a score 1. For example, if a prospective cross-over

node has an optimal smoothed score of 0.6, now that it is forced to have a

score of 1, it might be cheaper to reduce the score to 0, since moving it to 1

will incur an extra cost from the L1 error and also extra penalty-based cost.

110

The possible ill-effects of this formulation is that it might result in no node

qualifying as a cross-over node. Also if multiple nodes do qualify as cross-over

nodes, they will all have the same score of 1 and our AvgPrecision@1 metric

might suffer.

The results from this experiment are plotted in Figure 4.22. As we can see

while there is no appreciable difference in the best value of precision attained,

constraining cross-over nodes to a smoothed score of 1 increases the range of

penalties over which smoothing performs well. Unlike results in Figure 4.20,

our new approach shows appreciable increases in accuracy over the whole range

of penalties. This is because as explained above the constraint of forcing cross-

over nodes to 1 acts as a penalty term increasing the cost of predicting classes

with mediocre scores as true. However, as predicted the new constraint does

cause a slight reduction in the AvgPrecision@1 measure as multiple class that

are predicted true all have score 1 and we have to choose one among them

randomly.

111

(a) Precision with varying penalty

(b) Improvement in precision with varying penalty

Figure 4.20: Precision of classes predictions as true labels before and after
smoothing with SVM classifiers on TaxonomyII under Scenario III.

112

(a) AvgPrecision@1 with varying penalty

(b) Improvement in AvgPrecision@1 with varying penalty

Figure 4.21: AvgPrecision@1 of classes predictions as true labels before and
after smoothing with SVM classifiers on TaxonomyII under Scenario III.

113

(a) Precision (b) Improvement in Precision

(c) AvgPrecision@1 (d) Improvement in AvgPrecision@1

Figure 4.22: Performance with SVM classifiers on TaxonomyII under Sce-
nario III when constraining the cross-over nodes to have a smoothed value of
1.

114

4.9 Discussion and Conclusions

Our Approach vs Top-down Classification.

The standard top-down classification model involves learning a classifier

for each internal node of the taxonomy, which directs a test instance to one of

the children nodes. A test instance is then classified down the tree, starting

from the classifier at the root node, until it arrives at a leaf node. In contrast

to this model, in our work in this chapter we have proposed an alternate way

to perform hierarchical classification. Our system learns a one-vs-all classifier

for each internal node in the taxonomy. A test instance is then classified by

each one-vs-all classifier and the classifier scores are smoothed to yield the final

membership scores.

The top-down classification model has a serious problem in that errors

in classification are propagated down the tree. Once an error is made at an

internal node classifier, the test instance cannot arrive at the correct leaf node.

In contrast, as we have shown empirically in this chapter, our classification

approach can be used to correct many of the errors made by classifiers. A

second drawback of top-down classification is its inability to deal with missing

classifiers at internal nodes. Without a classifier to guide us at a node, we

wouldn’t know which child node to propagate the test instance to. Classifiers

could be missing because of lack to time to train them or abrupt changes in

taxonomy structure. Once again, as we have seen in this chapter, our approach

deals with missing classifiers very gracefully.

For the flexibility of recovering from classification errors and missing clas-

sifiers, our approach pays in terms of time needed to classify a test instance.

Our method has to classify a test instance through each classifier learned: this

115

takes time linear in the size of the tree. A top-down classifier has to only clas-

sify an instance down one path to a leaf node: this takes time on the order of

log of the size of the tree. However, our approach can be significantly sped-up

by indexing classifiers using approaches similar to [ABP06, PC06], and through

parallelization techniques such as the map-reduce framework [DG04a]. These

speed-ups are not afforded to the top-down classification model because clas-

sification at each successive node can only be done after the decision from the

classification at parent node is known.

Enforcing Classifier Constraints while Training.

There is some recent work on enforcing constraints from hierarchies or

general graphs within classifiers. Some of this work has been cited in Sec-

tion 2.4. In our approach we enforce constraints as a post-processing step to

classification. This might seem like a slightly greedy approach especially if the

integrated classifier does a very good job of reducing classification error while

satisfying constraints. However, these classifiers typically are very complex

and need large amounts of training data for learning. Moreover, while they

are trained to satisfy hierarchical constraints on training data, they might not

do so while classifying unseen test instances. Finally, it is often the case that

different classification algorithms work well for different domains. Hence, we

might need to modify a different classification algorithm to enforce constraints

for each domain that we encounter.

In contrast our approach can work with any off-the-shelf classifier since it

is only concerned with smoothing final classification scores. These classifiers

can be as simple or as complex as each application domain demands and our

approach will work with all of them. Finally, as our approach smooths output

116

classifier scores for test instances, the final scores will always satisfy the hier-

archical constraints. That being said our approach can also benefit from some

information about the training data (such as class priors etc). Integration of

training data characteristics into the smoothing process for increased accuracy

is part of the future direction for this work.

Experiments with the “Best” Classifiers.

In this chapter we perform experiments with SVMs used as classifiers at

each internal node of the taxonomy. While we tuned the classifiers to obtain

the extremely good accuracy, in particular to mimic classifier performances

in Chapter 3, we didn’t do feature selection or use techniques like shrink-

age [MRMN98] to achieve the absolute best performance.

The reason is that our central goal in this chapter is to show that smooth-

ing improve classification accuracy and not to achieve the absolute best clas-

sification accuracy. We believe that using slightly better classifiers will not

change the qualitative nature of our results. Of course, if the classifiers al-

ready have very good accuracy then the improvements through smoothing are

smaller; this can be seen in the results in Tables 4.3 and 4.4. However, as we

have shown in our experiments, in such situations the smoothing process still

results in modest improvements in classification performance.

Concluding Remarks.

In conclusion, in this chapter we demonstrated how hierarchical relation-

ships between classes in a taxonomy can be translated into constraints on the

outputs of the classifiers learned over them. The problem of smoothing the

117

classifier outputs to satisfy these constraints was formulated as novel optimiza-

tion problems that we call regularized isotonic and unimodal regressions. We

gave efficient algorithms to find solve these problems exactly. Using real-world

datasets, we also showed that performing smoothing as a post-processing step

after classification can significantly improve accuracy.

118

Chapter 5

Page-level Template Detection via Iso-
tonic
Smoothing

5.1 Introduction

Template material is common content or formatting that appears on mul-

tiple pages of a site. Almost all pages on the web today contain template

material to a greater or lesser extent. Common examples include navigation

sidebars containing links along the left or right side of the page; corporate

logos that appear in a uniform location on all pages; standard background

colors or styles; headers or drop-down menus along the top with links to prod-

ucts, locations, and contact information; banner advertisements; and footers

containing links to homepages or copyright information. The template mecha-

nism is used to support many purposes, particularly navigation, presentation,

and branding.

119

There is no single dominant mechanism by which templates appear in

web pages. At one extreme is web site design software that allows a user to

single-handedly manage a medium-size web site, formally editing and applying

templates to groups of pages as necessary. At the other extreme is the personal

web site in which the owner copies the same fragment of HTML from one page

to the next in order to provide a uniform look and feel, and diligently avoids

the overhead of changing templates too frequently. Other familiar mechanisms

include application servers that implement page templates in code; dynami-

cally generated pages that wrap content into a template; portal servers that

arrange content into cells with arbitrary content around them; and content

management systems that manage templates.

Templates are a Cause for Concern.

On today’s web, templates are a significant cause for concern. As we show

below, templates are responsible for roughly 40–50% of the content on the web.

The repeated occurrence across a website of content purporting to be original

misleads search engines, page classification, clustering, link analysis, and other

applications providing advanced text analysis on web content. Furthermore,

an accurate assessment of whether the content of a page has changed is critical

in several applications. First, crawlers may behave more efficiently based on

knowledge of the change rate of pages. Second, alerting applications should

not alert users due to template changes. And third, any applications that

support trending over web data should not be misled into believing that a site

has changed significantly due to a template modification.

Further, we show that the proportion of templated text on the web has

been growing consistently for nearly a decade, and thus all these applications

will need even greater awareness of templates in coming years.

120

On the other hand, effectively recognizing templates brings several advan-

tages. Once extracted, they can be used to identify key pages on a website,

such as the products page of a company, or the entry point or each school of

a university. Pages that share a template can also be grouped together into

a cluster that may not be apparent using other mechanisms. Finally, once

templates have been identified, any analysis algorithms can realize a nearly

two-fold improvement in storage and processing requirements, by exploiting

redundancy.

Automated Detection of Templates.

Unfortunately, no simple and completely effective algorithm for template

extraction is known. Techniques for the problem fall into two families. Local

techniques operate on an individual page without reference to other pages,

while global techniques consider a family of pages together and exploit the

property that templates occur many times. Purely local techniques are effec-

tive at stripping away certain kinds of banners and navigational material, but

these techniques are only heuristics and are somewhat error-prone as the web

changes. It is quite common, for example, for certain paragraphs of textual

content in the middle of a page to be templates—detecting this without refer-

ence to global information is essentially impossible. Global techniques, on the

other hand, achieve very high precision, since its relatively rare that content

that repeats many times is not a template. However, there do exist templates

that don’t manifest themselves via repetition and global approaches typically

miss these.

In this chapter, we present two global techniques for template detection

and one that operates with only information local to a webpage. We also

describe how we can exploit the output of our global approaches to obtain

121

better page-level template detection. Finally, we describe a novel approach to

smoothing values over tree structures that can be used to further improve the

accuracy of our system.

Study of Volume and Evolution of Templates.

Using our global template detection algorithms we perform two studies

to investigate the nature, the volume, and the evolution of templates on to-

day’s web. In the first, we randomly sample two hundred sites from a large

crawl containing approximately fifty million sites and two billion pages. We

hand-classify this site-level sample into seven categories such as personal sites,

catalog sites, community sites and so on. We then analyze the nature and

prevalence of templates within sites belonging to each category. For each site,

we create a uniform random sample of the crawled content from the site of

approximately two hundred pages, and study the commonality of templating

across this sample; thus, our study captures only templates that occur on some

small fraction of the pages on a site.

In our second study, we consider the evolution of template usage. Using

crawls from the Internet Archive [Kah], we study multiple snapshots of pages

from two collections: the hand-classified sites from our first study and the

sites studied by Ntoulas et al. [NCO04]. We gathered approximately 72K

page instances during this study, over 1380 snapshots of time. According to

our studies, the volume of templated material is 40–50% of the total bytes on

the web, and this quantity has been growing at the rate of 6–8% over the last

8 years with no signs of slowing.

122

Accuracy and Impact of Template Detection.

To validate our algorithms we perform an extensive set of experiments

measuring their accuracy and their impact on third-party applications. In

terms of detecting content within templates, our algorithm achieves a F-

measure in excess of 0.65 for text and 0.75 for links on a human-labeled test

set. Within these results we isolate the impacts of using just the local informa-

tion to score page-section as templates, and of smoothing the template scores

via regularized isotonic regression. As for the impact of template detection,

we show that removing templates as a pre-processing step boosts the accu-

racy of standard web mining tasks on our datasets, by as much as 140% on

duplicate detection and 18% on webpage classification. We also compare the

performances of our global and local approaches and identify conditions under

which one is preferred over the other.

5.2 Site-level Template Detection

In this section we describe our global approaches to template detection.

As mentioned before, global approaches rely on the property that template

material is often repeated across multiple pages on a website. Hence, through

the rest of the chapter, we refer to these approaches as SiteLevel.

We consider two algorithms, one based on the DOM structure of the web

page, and the other based on syntactic sequences of characters. DOM-based

algorithms provide efficient representations (as a typical page may contain

10-20K of content but only around 100 DOM nodes), and perform well on

hierarchical templating schemes using table layouts. Text-based algorithms,

on the other hand, are amenable to a class of probabilistic speedups, and

123

perform well in jsp-style templates, as the material in the template need not

correspond strictly to the DOM tree.

5.2.1 DOM-based algorithm

This algorithm uses the DOM structure of the pages on a website by

searching for nodes of the DOM tree that are repeated across multiple pages on

the website. It is based on the work of Rajagopalan and Bar-Yossef [BYR02],

and Yi and Liu [YL03], but contains simplifications from those techniques.

Construction of the DOM tree for a page requires that the page first be

cleaned. This is a substantial problem on the Web due to the diverse set of

languages, authors, and tools; and also due to the excellent efforts of web

browsers to render badly-formed HTML correctly. We modified an existing

HTML parsing and cleaning library called HyParSuite [Cha] to address this

problem, maintaining offsets to nodes in the original unclean page so that

the links and text inside and outside templates may be extracted later. The

algorithm then operates in two passes.

First Pass. The first pass iterates over all the pages in the website and

dumps information about all the DOM nodes in a page. This information

consists of the hash of the content of the node (template-hash) and the start

and end offsets into the original file. The template-hash is calculated using

the HTML content within the node’s start and end tags and DOM node’s

name, attributes, and their values. For example, consider the following HTML

substructure:

<td>Click here to visit ...</td>

124

This structure consists of four HTML nodes. The top-most node is the <td>

node. The template-hash of this node will be computed from the entire HTML

string. The <a> tag is a child of the <td> node and its template-hash will be

calculated using the the contents between the <a> and tags inclusive of

the tags. Text nodes are constructed for stretches of text in HTML files and

the above example consists of two text nodes.

Thus the template-hash is a compressed representation of the HTML tag

and its contents. Counting the number of times a template-hash is encountered

in a website tells us the number of times a specific HTML node is seen. Hence,

the first pass keeps track of the number of times each template-hash has been

seen in the website and passes this information to the second pass.

Second Pass. The second pass then scans this information and computes a

set of template-nodes for each page. A HTML node in a particular page is said

to be a template-node if the following conditions are met: first, the occurrence

count of the node’s template-hash is within a specified threshold; and second,

the node is not a child of any other template-node.

Sibling template nodes are then coalesced to produce the templates on a

page. The coalescing process permits small gaps of changing content in the

final templates produced. This is useful for templates with dynamic content,

where small portions of the template content changes while the essential HTML

and text structure remains the same.

Parameter Settings. The DOM-based algorithm is parameterized by the

upper and lower thresholds on the number of occurrences of template-nodes.

A lower-threshold value of 1 will cause the entire web page to be regarded as a

125

single template, as the root of the page always occurs at least once. The upper-

threshold parameter prevents the algorithm from detecting extremely small

HTML constructs like
 as templates just because they are fairly common

in HTML files. Other than removing small commonly-occurring HTML nodes

from consideration, the upper-threshold does not have significant impact on

the quality of templates detected.

For the experiments reported below, the lower threshold is set to 10% of

the number of pages scanned on each site, while the upper threshold is set

conservatively to the full number of pages scanned, since the volume of small

templates detected does not contribute significantly to the overall proportions.

200 pages were scanned per site. The processing runs at an average of 17.5

seconds per site on a 2.4GHz Pentium IV machine.

5.2.2 Text-based algorithm

The text-based algorithm does not make use of HTML structural informa-

tion. The page is pre-processed to remove all HTML tags, comments, and text

within <script> tags. The resulting detagged content is typically 2-3 times

smaller than the original HTML. The algorithm operates henceforth on this

representation.

The algorithm detects templates using a two-pass sliding-window con-

trolled by four parameters: a window size W , a fragment frequency threshold

F , a sampling density D, and a page sample size P . All are described below

in more detail.

First Pass. In the first pass, P pages are sampled uniformly at random

126

from the crawled pages of the site1 and a window of size W is slid over the

text of those pages. At each offset, a counter is incremented for the fragment

contained in the window. Those fragments which occur at least F times in the

sample are passed to the second pass.

For efficiency, we introduce the sampling density parameter D in the first

pass. A counter for a fragment is only kept if the hash of the fragment is

zero modulo D. Thus, only 1 in every D fragments will be considered, but

the downsampling is performed such that if a certain fragment is counted on

one page, it will be counted on all pages. Other downsampling mechanisms,

such as retaining every Dth fragment, do not have this essential property.

We choose D ≈ W in order to increase the likelihood that after the filtering

process concludes, consecutive fragments are contiguous. A coalescing process

in the second pass ensures that the total volume of template text is counted

correctly. A value of D = 0 in the experiments means all fragments are used.

Second Pass. In the second pass, each page is scanned for these frequent

fragments, and overlapping or contiguous fragments are coalesced into a single

template. At the end of the second pass, we have a set of template hashes

which are either individual or coalesced fragments. These hashes are stored in

a hash table, so that a new page can be broken into fragments and scanned

quickly for templates.

Parameter Settings. Figure 5.1 shows the performance of this algorithm

for various values of the parameters. These studies were performed on a

1Note that a uniform sample is critical here; if we were instead to crawl only the first
few levels of a site, for example, significant biases could be introduced.

127

Figure 5.1: Running time and aggregate detection performance for a variety
of parameters. Each point is labeled with the parameters W.F.D.P

2.4GHz Pentium IV machine: the running time varies from 0.4 to 12.5 seconds

per site, compared to 17.5 seconds per site for the DOM-based algorithm.

The 32.10.0.200 data point represents the algorithm with no downsam-

pling of the number of available templates. Increasing or decreasing W results

in a greater proportion found. However, D can now be set to achieve equiva-

lent performance, with much improved running time. With D = 40 we achieve

a similar proportion detected, with a running time of 0.59 seconds per site,

or 3 ms per page, achieving a speedup of 20 times over the non-randomized

approach.

Note that if P is set to a smaller value, the detection accuracy changes.

As the number of pages sampled is decreased, F must decrease too, in order

to detect the same fragments. With very small values of F , however, there is

a risk of detecting greater numbers of spurious fragments.

In our experiments, we apply the algorithm with parameter settings 32.10.0.200.

128

5.3 Volume and Evolution of Webpage Templates

In this section we report on our studies on the nature, volume, and evo-

lution of templates on the Web. We perform these studies using our two

SiteLevel approaches.

5.3.1 Methodology

Our concern is to analyze the prevalence and nature of templates across

the entire web without introducing unnecessary biases towards a particular

subset. To begin, we make use of the IBM WebFountain data set, a large

crawl containing over two billion pages and fifty million sites. From this set,

we select uniformly at random a subset of two hundred sites, each containing

at least two hundred pages2; we refer to this dataset as unbiased. The scale

of the initial collection provides a broad underlying sample space from which

to resample. We then manually classify these sites into categories and report

results of template behavior for each category.

In addition to studying the amount of templated content on the web, we

also study how templating behavior varies across seven site categories deter-

mined by inspection of the two hundred sites. These categories are intended

to reflect various genres or modes of content that occur on the web, without

regard to the nature of the content. Each has implications for the kinds of for-

matting and quantities of information that occur on each page. The categories

are:

• Brochure. The online presence of a company or organization, typically

2The requirement that each site contain at least two hundred pages introduces a bias;
we discuss the nature of this and other biases below.

129

containing events, reviews, press releases and diverse other information.

• Catalog. Listings of products, usually for sale.

• Community. Sites with content submitted and managed by a large num-

ber of individuals.

• Documents. Sites containing reference material. Many academic and

government sites fall into this category.

• News. Sites which contain regular and editorially controlled updates on

some range of topics. Most often this is local news or news devoted to

specific topics.

• Personal. Homepage of a single individual, irregularly updated and con-

taining a mix of content.

• Portal. Links to contents elsewhere. Often these are local portals, for a

particular city or region.

A dating site, for example, falls most naturally into the “Catalog” cat-

egory, even though the “products” are not really for sale. If the site also

contained a chat forum, it would also fall into the “Community” category;

thus, multiple assignments are allowed in our categorization.

Of the 200 sites, 109 were labeled, and the remainder were either porno-

graphic (about 3%), no longer existent (about 15%), or not in a language

understandable by the authors (about 30%); see below for a discussion of the

biases introduced by this labelling. The number of sites in each category are

shown in Table 5.1. Roughly 5% of sites are news sites, much fewer than the

130

News 5
Personal 8
Community 14
Documents 14
Catalog 40
Brochure 42
Portal 16

Table 5.1: The number of websites in each category.

number of community and personal sites. The dominance of the commercial

sector of the web is clear from the number of catalog and brochure sites.

In addition to studying the templates on today’s web, we also examine the

evolution of templates a from 1996 to 2004, based on a crawl of pages stored

in the Internet Archive [Kah]. We study two sets of sites. The first set is the

collection of 109 unbiased sites described above. We will refer to this data set

as the unbiased set. Of the 109 sites in the set, we found at least one snapshot

for 78 of them.

Our second evolutionary dataset covers more popular web sites, and is

better represented in the Internet Archive’s historical database. Ntoulas et

al. [NCO04] used a set of 157 sites in order to study changes over time. While

this set may be less representative of the web at large, it is perhaps more

representative of the types of content that people typically browse, and it has

been extensively studied by Ntoulas and his co-authors, allowing us to place

our results in context. We found at least one snapshot for 105 of the 157 sites

in the set.

We successfully crawled approximately 72K pages from the Internet Archive

from these two datasets representing 1380 snapshots of a website at a partic-

131

Unbiased Popular
Non-empty Websites 78 105

Total pages 32K 42K
Avg snapshots/site 5 8

Year of Snapshot
Unbiased

#Snapshots
Popular

#Snapshots
1996 2 19
1997 5 51
1998 10 46
1999 15 64
2000 50 162
2001 60 165
2002 98 178
2003 194 198
2004 24 39
Total 458 922

Table 5.2: Internet Archive data volumes for Unbiased and Popular collections
of websites.

ular time. Some details about these data sets are shown in Table 5.2.

Summary of Biases: The following biases exist in our sample. First,

we consider only sites with at least two hundred pages in our crawl. Pages

that lie on smaller sites represent approximately 20% of the overall crawl, and

thus represent a non-negligible fraction; nonetheless, for technical reasons, we

focus on the 80% of pages that belong to larger sites. Second, we consider non-

pornographic sites only; we thus report results for the non-pornographic region

of the web. Third, our classification results apply only to sites in English, but

all other results apply to sites in all languages. This bias is difficult to overcome

without enlisting the skills of many assistants. Third, the crawling of sites

is performed by a commercial crawler, which encodes many design decisions

that may influence its behavior for or against a particular site. Finally, our

132

Text-
Based

DOM
HTML

DOM
Text

DOM
Links

Brochure 56 59 53 55
Catalog 66 59 57 51
Community 64 51 50 53
Documents 35 57 26 58
News 12 15 8 12
Personal 67 68 77 52
Portal 44 48 39 43
OVERALL 53 53 46 49

Figure 5.2: Proportions of templated content for all categories

“popular” set of sites used in the evolutionary study is biased towards websites

with high pagerank. Experiments on this set of sites give us more robust

measurements and help us compare our results with those in past studies.

However, we also perform experiments on an unbiased dataset in order to

confirm that none of our conclusions are due to the biases. Overall, however,

we believe the scope of the underlying dataset makes the results reasonably

representative.

133

5.3.2 Templates on Today’s Web

We ran both the DOM-based and the text-based algorithms over the unbi-

ased sample set. The text-based algorithm reports the fraction of text content

within templates on each page. The DOM-based algorithm reports the frac-

tion of template versus non-template HTML content on the page, and then

through post-processing of the resulting templates, also reports the fractions

of links and text that appear within a template.

The two algorithms should report similar values for the fraction of text

content that appears in templates. An examination of the results shows that

the reported fractions of template content on average differ by only 7%, and

show a similar level of agreement for each individual category. Given the

extremely different approaches taken by these two approaches, we find the

measures of fraction of template content to be fairly stable across these ap-

proaches.

The results are shown in Figure 5.2. The figure shows a significant differ-

ence between the volumes of templates across the different categories. Overall,

the amount of template text on a page is around 50%, but this is significantly

lower for News sites, and significantly higher for Personal sites. The types

of text found in templates also vary across categories: for example, there are

noticeably more links in templates in the Documents category.

5.3.3 Evolution of Templates

For each snapshot in the unbiased and popular evolutionary datasets, we

identified templates using the DOM based detection method, and considered

six regions on each page: links, text, and HTML within and outside templates.

134

Unbiased Sites Popular Sites
Category 96–01 02–04 All 96–01 02–04 All
Links 44% 55% 52% 32% 42% 36%
HTML 39% 46% 44% 32% 40% 35%
Text 28% 38% 35% 21% 28% 24%

Table 5.3: Fraction of links, HTML, and text that appears in templates by
data collection and date range.

Fraction of Template Content over Time.

Our first set of evolutionary results covers the fraction of content that

appears inside versus outside templates as a function of time. The results and

trends are similar for popular and unbiased sites, so we report only results

for popular sites as the number of snapshots is larger. Figures 5.3 are scatter

plots in which each point represents a website from our popular dataset at

a particular point in time (i.e., one of the snapshots of Table 5.2). The x

axis represents the time of the snapshot. The y axis is the fraction of content

on the page that occurs inside a template. For instance, Figure 5.3(a) and

Figure 5.3(b) show the increase in the fraction of links within templates over

time for the unbiased and popular set of sites respectively. While coverage

for sites in the 1990s is sparser, it is clear that snapshots from 2002 and 2003

show a significantly larger proportion of sites with more links in templates.

The best fit trend line shows a growth of 8% per year in the fraction of links

that are inside a template.

135

(a) Links in Unbiased Websites (b) Links in Popular Websites

(c) HTML in Unbiased Websites (d) HTML in Popular Websites

(e) Text in Unbiased Websites (f) Text in Popular Websites

Figure 5.3: Fraction of content inside versus outside templates as a function
of time.

136

Figures 5.3(d) and 5.3(f) show the same type of scatter plot for the fraction

of the bytes of HTML, and the bytes of detagged content, that appear within

templates for the popular websites. The best fit growth rates are about 7% and

6% respectively. Total bytes of HTML again shows a mass of more heavily-

templated pages in more recent years. While many recent pages have more

than 70% of their links in templates, this is not true for total HTML content,

supporting the intuition that pages may contain menus, headers, footers, and

sidebars with a large number of navigational links, but will still contain some

reasonable amount of non-template content. Similar trends are also seen for

the unbiased set of sites.

Table 5.3 shows summary information for these figures. The popular sites

show less overall template activity than the unbiased sites, though with similar

trends. The unbiased sites from 2002 onwards show 38% of their text, 46%

of their HTML, and fully 55% of their links in templates. Combining this

aggregate information with the trend lines, we see that a large and rapidly-

growing fraction of links appear in templates, suggesting that template-based

navigation continues to increase in popularity. The aggregate results shown

in this table are normalized for site size and number of internet archive crawls

per site. Thus, the results should be taken as representative of the “average”

page in the given collection.

Rate of Change of Webpages.

Ntoulas and his co-authors crawled each site of the popular set weekly,

and performed experiments to capture the amount of change noted each week;

this amount was found to be very small for most changes. We conducted a

similar experiment to check whether the amount of change would be higher

if we first removed templates from these pages. The Internet Archive crawls

137

Oct−96 Feb−98 Jun−99 Nov−00 Mar−02 Aug−03 Dec−04
200

300

400

500

600

700

800

900

du
ra

tio
n

in
 d

ay
s

Template−text
Detemplated text

Figure 5.4: Average duration of all templates and detemplated pages existing
at each point in time.

pages much less frequently than once per week, so the change on each visit

will be on average much larger in our case. However, from our data we can

estimate changes that occur less frequently than every hundred days.

We perform the following experiment. Consider a series of n snapshots

of a web page, and let x1, . . . , xn be the value of the templated region of the

page at each timestep. Let ti be the time of the ith snapshot. We will apply

exactly the same approach to the detemplated region of the page; that is, all

content on the page other than the templates. In this analysis, we consider

the text content rather than the HTML or links. Consider the ith snapshot,

xi. If x1 6= xi 6= xn then we say that the value xi is bracketed, meaning that we

saw the page before this template appeared, and thus we have some estimate

of the date when it appeared; and we saw the page after the template had

disappeared, and thus we have an estimate of the date when it disappeared.

For any bracketed value xi, we define the first value f(xi) as the index i′ at

138

which xi′ = xi, but xi′−1 6= xi. Likewise, the last value `(xi) is the index i′

such that xi′ = xi but xi′+1 6= xi. The beginning B(xi), the time at which

the template appeared, is then estimated to be (tf(xi) − tf(xi)−1)/2. Likewise,

the end E(xi) is estimated to be (t`(xi)+1 − t`(xi))/2. Notice that these times

must all exist if xi is bracketed. Finally, the duration D(xi) is taken to be

E(xi)−B(xi).

For any time t, we say the active templates at t are all the templates such

that B(xi) ≤ t ≤ E(xi). Notice that the active templates at time t are all the

templates that both exist on some page at time t and are bracketed (so that

we can estimate their duration). The average duration at time t is then the

average of the duration of all templates that are active at time t. Figure 5.4

shows the average duration as a function of time. The figure also shows a

second curve in which the value of xi is not the templated region of the page,

but is the remainder of the page (that is, the detemplated region). In both

cases, the average duration of a template can be seen to shrink dramatically

over time, implying that the rate at which both content and templates are

changing is shrinking. The average duration of templates is slightly larger than

that of detemplated text, but the difference does not appear to be significant.

Figure 5.5 shows the histogram over the entire timeframe of the study of

the average durations of templates. Due to the refresh rate of the Internet

Archive, we do not have detailed information for content that changes more

frequently than every hundred days. However, the figure demonstrates that

both templates and detemplated content typically last for between fifty and

three hundred days, with perhaps five percent remaining for two years or more.

139

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

duration in days

fr
ac

tio
n

of
 d

ur
at

io
ns

Template−text
Detemplated−text

Figure 5.5: Histogram of durations of templates and detemplated content over
all pages.

Change Rate vs Change Magnitude.

Figure 5.6 shows an analysis of changes in the text content of pages from

one version of a page to another. For two documents with word sets A and B,

the magnitude of the change is taken to be: 1− 2 |A∩B|
|A|+|B| . The figure shows the

distribution of the magnitude of change for the detemplated region of the page

and for the entire page. Changes of magnitude 65% or larger are about twice

as likely in the detemplated text, suggesting that results on large changes may

be biased by the presence of a significant and unchanged template. Overall,

however, the results in this figure are very similar to those of Ntoulas et al.

140

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

fr
ac

tio
n

of
 c

ha
ng

es

1 − word intersection

Full text
Detemplated text

Figure 5.6: Distribution of magnitude of change in full text and detemplated
content.

5.3.4 Conclusions from our study

Templates represent 40–50% of the total bytes on the web, and this frac-

tion continues to grow at a rate of approximately 6% per year. Similarly, the

fraction of visible words, and the fraction of hyperlinks appearing in templates

is extremely high. This finding implies that: (1) the graph structure of the

web is increasingly dominated by boilerplate, suggesting that link analysis al-

gorithms require understanding of templates; (2) with increased bandwidth,

site creators are spending an increasing fraction of their resources on convey-

ing information that has little raw content value, suggesting that improved

caching and delivery mechanisms are needed.

141

5.4 Page-level Template Detection

Most existing methods for template detection operate on a per website ba-

sis by analyzing several webpages from the site and identifying content and/or

structure that repeats across many pages. We proposed two such SiteLevel

measures in the previous sections. While these global template detection meth-

ods offer a lot of promise, they are of limited use because of the following two

reasons. First, site-level templates constitute only a small fraction of all tem-

plates on the web. For instance, page- and session-specific navigation aids

such as “Also bought” lists, ads, etc. are not captured by the site-level no-

tion of templates. Second, these methods are error prone when the number

of pages analyzed from a site is statistically insignificant, either because the

site is small, or because a large fraction of the site is yet to be crawled. In

particular, they are totally inapplicable when pages from a new website are

encountered for the first time. An alternative paradigm that avoids many

of these pitfalls is to detect templates on per webpage basis, i.e., “page-level”

template detection. This is especially attractive since it can be easily deployed

as a drop-in module in existing crawler work-flows.

A tempting approach to page-level template detection is to extract suf-

ficiently rich features from the DOM nodes and train a classifier to assign

“templateness” scores to each node in a DOM tree. While this approach is

entirely plausible, it has several handicaps. First, for the classifier to have

a reasonable performance both accurate and comprehensive training data is

required; this can involve prohibitive human effort. Second, by classifying

each DOM node in isolation this approach does not take a global view of the

templateness of nodes in the DOM tree.

In this chapter we develop a framework for page-level template detection.

142

5.4.1 Framework

In this section we describe the proposed framework for the page-level tem-

plate detection problem. We first fix some notation.

Recall the DOM tree representation of an HTML document where each

node in the DOM tree corresponds to an HTML fragment; we identify the

DOM node with the fragment it represents. Let T be the rooted DOM tree

corresponding to the document. From here onwards, we use the tree T as a

metaphor for the document. Let templ(T) denote the set of all nodes in T

that are templates. We use v ∈ T to denote that node v belongs to tree T ,

parent(v) to denote the parent of i in T , child(v) to denote the set of children

of v in T , and root(T) to denote the root of T .

Let H denote the set of all possible DOM nodes. In the page-level template

detection problem, we seek a boolean function τ : H → {0, 1} such that

τ(v) = 1 for all v ∈ templ(T), and τ(i) = 0 otherwise. In a relaxed version

of the problem, we seek a function τ̃ : H → [0, 1] where if v ∈ templ(T)

and w /∈ templ(T), then τ̃(v) > τ̃(w); using an appropriate threshold, we can

round τ̃ to make it boolean.

A first-cut approach to page-level template detection would be to extract

sufficiently rich features from the DOM nodes (in the context of a page) and

train a classifier x : H → [0, 1] to score the “templateness” of each node in a

given page. While this appears plausible, it has several issues when scrutinized

closely. The first set of issues revolve around the construction of the training

data for our classifier. For the classifier to learn the notion of “templateness”

of DOM nodes on the web in general, it must be trained comprehensively over

all forms of templates that it is likely to encounter. The heterogeneity and

scale of the web imply that a huge corpus of accurate and diverse training data

143

will be required. These requirements present a daunting task that demands

tremendous human effort. Secondly, this approach to classification ignores the

global property of templateness in the DOM tree, crisply stated as follows.

Property 5.1 (Templateness Monotonicity). A node in the tree is a template

if and only if all its children are templates. In other words, the function τ(·)

is monotone on the tree.

As is apparent, by working on each node of T in isolation, a naive classifier

misses this intuitive relationship among templateness of nodes in the tree.

Our three step framework is meant precisely to address these issues, and

is described below.

1. Automatic Generation of Training Data. The first step is the au-

tomatic generation of training data. To this end, we use the site-level template

detection paradigm of [GPT05]. Note that even though site-level template de-

tection is less feasible as a web-scale template detection mechanism, we show

that we can still use it to generate training data for our approach.

The basic intuition behind the site-level template detection approach is

the following. One of the common properties of templates is that they occur

repeatedly across many pages on a single site. Therefore, if a DOM node

occurs many times on different pages from a single site, then it lends credible

evidence that this DOM node perhaps corresponds to a template.

We now describe a generic algorithm that we will call SiteLevel (θ).

This algorithm operates on a site by site basis. For each site, it obtains a set

T of random pages from the site. Then, for each page T ∈ T and for every

DOM node i ∈ T , it computes h(i), where h(·) is a random hash function. Let

144

I+
θ ⊆ H be the set of DOM nodes that occur on at least θ fraction of pages

in T. Note that using hashes, this set can be identified efficiently. SiteLevel

returns I+
θ as the set of DOM nodes deemed templates.

2. Classification. The second step is to use the set of DOM nodes I+
θ

identified by SiteLevel as training data for a classifier. For this, we first

identify appropriate features of DOM nodes in I+
θ , in the context of the pages

they appear in. We then train a classifier x : H → [0, 1] using these features of

the DOM nodes, treating those in I+
θ as positive examples; the output of the

classifier is a templateness score for a given DOM node in a tree. The hope in

using a classifier is that it can distill features from site-level templates that can

be generalized to all templates on the web. This can help us identify templates

that don’t manifest themselves by repeatedly occurring across multiple pages

on a website — templates that a pure site-level template detection approach

cannot discover by itself. As we empirically observe in Section 5.7.2, this is

indeed what happens.

3. Isotonic Smoothing. At this point, one could use the classifier to assign

a templateness score x(·) to each DOM node in the given page T . However,

as we argued earlier, this does not fully capture the essence of the problem

since the templateness scores assigned by the classifier to each DOM node in

isolation may not satisfy the property that a node is a template if and only if

all its children are templates (Property 5.1). On the other hand, assuming the

classifier has reasonable accuracy, the scores it assigns makes sense for most,

if not for all, of the nodes. The question now is how to reconcile the score

assigned by the classifier with the monotonicity property of the templates.

145

To handle this question, we first consider a natural generalization of the

monotonicity property for the case of real valued templateness scores. Suppose

y(v) is the templateness score of a node v in the tree. Then, y(·) is said to

satisfy generalized templateness monotonicity if for every internal node v, with

children u1, . . . , u`, y(v) = min{y(u1), . . . , y(u`)}, i.e., the templateness of an

internal node is the equal to the least of its children’s templateness scores.

Note that generalized monotonicity ensures, first, that the templateness

score of a node is at least the templateness score of its parent, and second,

that the templateness score of the parent equals the templateness score of all

its children, when the children all have same templateness score. We also have

an additional requirement that the templateness score y(·) be close to the x(·)

scores assigned by the classifier. Generalized monotonicity together with this

closeness requirement leads to the problem of generalized isotonic regression

on trees, which we solve in this chapter.

While we defer the detailed description of our solution to the next section,

we now highlight the advantages of our framework. Besides addressing the

issues with using just the classifier scores, our framework offers additional

benefits. First, the overall framework is simple and modular. Second, any

off-the-shelf classifier can be used, instead of having to design one that works

specifically for the given DOM tree structure. Third, as we will see later,

a neat by-product of isotonic smoothing is that we obtain a sectioning of a

webpage; this can be useful in many applications.

146

5.5 Step-regularized Tree Isotonic Regression

In this section we formulate and solve the generalized isotonic regression

problem on trees. Recall that we are given as input a DOM tree with each node

labeled by a score assigned by the classifier. The purpose of isotonic regression

is to fix these scores so that they satisfy the monotonicity constraints, while

remaining as faithful as possible to the original classifier scores. Let x(v) be

the classifier score for each node v ∈ T and let y(v) be the smoothed score we

wish to obtain.

The first step in our formulation is to alter the generalized monotonic-

ity property in two ways. First, we only ensure that the templateness score

of a node is at most the least of its children’s scores, instead of equal to

it. This relaxation is derived from the current domain in which the cost of

misclassifying a non-template as a template is much higher than vice versa.

Hence, if according to the classifier an internal node’s template score is much

lower than that of all of its children, then we would want to respect that.

Second, we introduce a regularization that penalizes if, for a node v, the tem-

plateness score y(v) is different from those of its children y(u1), . . . , y(u`).

Clearly, if y(u1) = · · · = y(u`), then this regularization will try to ensure that

y(v) = y(u1).

Thus, we have

(1) For every internal node v with children u1, . . . , u`, y(v)≤min{y(u1), . . . , y(u`)}.

For purposes of regularization, we develop the notion of compressed score

that embodies sectioning of the DOM tree into subtrees. A compressed score

is a function ŷ : T → [0, 1] ∪ {⊥} with the following properties:

(2) ŷ(root(T)) 6= ⊥, and

147

(3) if v is an ancestor of u and ŷ(v) 6= ⊥ 6= ŷ(u), then ŷ(v) < ŷ(u).

Let the size |ŷ| of the compressed score be the number of places where ŷ

is defined; |ŷ| = |{v | v ∈ T, ŷ(v) 6= ⊥}|.

For all v ∈ T such that ŷ(v) = ⊥, let anc(v) be the closest ancestor of v

such that ŷ(anc(v)) 6= ⊥; note that such an ancestor always exists by (2). We

now interpolate ŷ to a unique y as follows.

y(v) =

{
ŷ(anc(v)) if ŷ(v) = ⊥
ŷ(v) otherwise

It is clear that if ŷ satisfies (2) and (3), then the corresponding interpolated y

satisfies (1). Also, given a y satisfying (1), it is easy to construct the unique

ŷ. From now on, we use the smoothed score y and its compressed counterpart

ŷ interchangeably.

Finally, the cost of a smoothed score y with respect to x is defined as

(4) c(y) = γ · |ŷ|+ d(x, y),

where γ is a penalty term that captures the cost of each new smoothed score

and d(·, ·) is some distance function. Note that unlike the regularization in

Chapter 4, where the penalty depended on the absolute difference between

parent child values, the current regularization is a step function. Any difference

between parent child values is charged a penalty of γ. It is also possible to

have a node-specific penalty γv for node v; for simplicity of exposition, we

state the algorithm in terms of a node-independent term γ.

This cost function and the tree structure lead to a regularized version of

the isotonic regression problem.

Problem 5.2 (Step-regularized Tree Isotonic Regression). Given a tree T and

x : T → [0, 1], find y : T → [0, 1] that satisfies (1) and minimizes c(y) as given

148

by (4). 3

For the rest of the chapter, we take d(·, ·) to be the L1 norm since it is

robust against outliers.

Before presenting the algorithm we discuss a key property of the L1 dis-

tance measure that aids us in designing an efficient algorithm for this problem.

We show that the optimal smoothed scores in y can only come from the clas-

sifier scores in x.

Lemma 5.3. There exists an optimal solution, ŷ, where, for all i ∈ T , if

ŷ(i) 6= ⊥, then there is a j ∈ T such that ŷ(i) = x(j).

Proof. This lemma is proved by the same reasoning as Lemma 4.5.

We build a dynamic program (pseudo-code in Figure 5.7) using the above

result to obtain an algorithm for the regularized tree isotonic regression prob-

lem. Let x(·) be the original “templateness” scores and x̂ be the set of unique

values in x. Algorithm BuildErrorStep builds up an index function val(v, i)

and an error function err(v, i) for each node v ∈ T . The value err(v, i) rep-

resents the cost of the optimal smoothed scores in the subtree rooted at v if

when its smoothed score is set to y(v) = x̂(i). Using the err function, index

val(v, i) is set to the hold the index of the optimal smoothed score for node v

given by y(v) = x̂(val(v, i)), when the y(parent(v)) = x̂(i).

3Note that a special case of our problem has been considered before in statistics and
computer science contexts; it is usually referred to as the isotonic regression problem: given
~x = x1, . . . , xn, find ~y = (y1, . . . , yn) such that y1 ≤ · · · ≤ yn and d(~x, ~y) is minimized,
where d(·, ·) is some distance function. It is easy to extend this definition to the case when
the yi’s have to respect a given partial order, say, imposed by a tree.

149

Algorithm BuildErrorStep (v, x, x̂)
1. if (v is a leaf) then
2. for i = 1 : |x̂| /* all values node v can take */
3. err(v, i) = wv · |x(v)− x̂(i)|
4. else

5. for child u of node v
6. BuildErrorStep(u, x, x̂)
7. for i = 1 : |x̂| /* all values child u can take */
8. errheap(i) = err(u, i)
9. for i = 1 : |x̂| /* all values node v can take */
10. val∗ = argminj∈{1...|x̂|},x̂(j)≤x̂(i) errheap(j)
11. if (err(u, i) > err(u, val∗) + γvu) then
12. err′(i) = err(u, val∗) + γvu; val(u, i) = val∗

13. else
14. err′(i) = err(u, i); val(u, i) = i
15. for i = 1 : |x̂| /* all values node v can take */
16. err(v, i) = err′(i) + wv · |x(v)− x̂(i)|

Algorithm IsotoneSmooth(err, val, x̂)
1. val∗ = argmini∈{1...|x̂|} err(root(T), i)
2. p(root(T)) = val∗; y(root(T)) = x̂(val∗)
3. for v in a breadth-first search order of T
4. p(v) = val(v, p(parent(v))); y(v) = x̂(p(v))

Figure 5.7: Algorithm to solve Problem 5.2. Array x contains the original
classifier scores and x̂ is the set of unique values in x. wv denote the node-
specific weights. BuildErrorStep constructs functions err(·, ·) and val(·, ·)
which are then used by IsotoneSmooth to find the smoothed scores y(·).

150

For a child u of a node v, if val(u, i) is the same as i, i.e, the optimal

value for v and parent(v) are the same x̂(i), then the only contribution to cost

from node u is the L1 distance between x(u) and x̂(val(u, i)), otherwise there

is an additional γ cost as well. The algorithm computes this error function

by finding the values for children of v that cost the least and are feasible in

that they are greater than value for v (step 10). Upon finding such a value for

a child a decision (step 11) is made between (a) continuing with the parent’s

value and only adding the error of the child at parent’s value to err′ (step 12),

or (b) creating a new section with a new value for the child and paying in

the full cost (error of child at new value + γ) in err′ (step 14). Once all error

functions have been computed, the optimal smoothed scores are obtained using

Algorithm IsotoneSmooth, which starts with the best index p(root(T)) at

the root, and progressively finds the best index p(·) for nodes lower down in

the tree.

To demonstrate the correctness of this algorithm, we show that the re-

striction of the optimal solution to a subtree is also the optimal solution for

the subtree under the monotonicity constraint imposed by its parent.

Consider the subtree rooted at any non-root node i ∈ T . Now suppose the

smoothed score y(parent(i)) is specified. Then, let z(·) be the smoothed scores

of the optimal solution to the regularized tree isotonic regression problem for

this subtree, under the additional constraint that z(i) ≥ y(parent(i)).

Lemma 5.4. For all nodes j in the subtree of i, y(j) = z(j).

Proof. This lemma follows from the proof of Lemma 4.6.

Theorem 5.5. Algorithm IsotoneSmooth in Figure 5.7 solves the step-

regularized tree isotonic regression problem.

151

Proof. The algorithm computes up the optimal smoothed scores for each sub-

tree, i.e., the err(·, ·) arrays, while maintaining (1) for every possible smoothed

score of the parent. By Lemma 5.3, the parent can take only finitely many

smoothed scores in the optimal solution, and by Lemma 5.4, combining the

optimal smoothed scores for subtrees yields the optimal smoothed scores for

the entire tree.

Complexity. Let |T | = n. The space required per node is O(n), and so

the total space required is O(n2). Next, we consider the running time of the

algorithm. In the dynamic program, step 2 takes O(n2) time, step 7 takes

O(n2) time amortized over all calls, and step 9 can be done in O(n2 log n)

time by storing errheap values in a heap and then running over the nodes

j ∈ T in ascending order of x(j). Hence, the total running time is O(n2 log n).

Note that this is same as the complexity of the algorithms for other forms of

regularized isotonic regression introduced in Chapter 4 and also the best time

complexity of previously known algorithms for the non-regularized forms of

tree isotonic regression [AHKW06].

152

5.6 Details of the System

In this section we describe the details of both the classification and smooth-

ing aspects of our system.

5.6.1 Constructing Training Data

As mentioned before, we used a site-level template detection algorithm

to generate training data for our classifier. The construction of training data

involved two distinct steps: collecting webpages and obtaining labeled tem-

plates. We sampled 3, 700 websites from the Yahoo! search engine index such

that each website had at least 100 webpages. We also biased the sampling

process slightly towards picking good quality host domains, and avoided pick-

ing pornographic or spam websites. Then, for each website we downloaded at

most 200 randomly picked webpages.

All DOM nodes that occurred on more than 10% of the pages of any web-

site were tagged as site-level templates. Since we wanted to learn a classifier for

all internal DOM nodes we wanted representative labeled data from all levels

of the DOM trees. Hence, for each internal node we computed how much of its

HTML was part of a site-level template. DOM nodes with more than 85% of

their HTML content within site-level templates were also labeled as templates.

The rest of the DOM nodes were used as instances of the non-templates class.

Note that the condition required for tagging a node as template is very

strong. This is done intentionally for two reasons. First, recall that a node is

a non-template if any node in its subtree is a non-template. And second, the

cost of misclassifying a non-template as a template is much higher than that

of the reverse error.

153

5.6.2 Learning the Classifier

There are multiple steps involved in learning the classifier. Each of these

steps is described below.

Preprocessing. Each webpage is preprocessed and parsed so that features

can be extracted for its DOM nodes. The preprocessing step involves cleaning

the HTML code using Hypar4, annotating the DOM nodes with position and

area information using Mozilla5, and parsing the HTML to obtain a DOM tree

structure. The text in the HTML page is also processed to remove stop words.

Feature Extraction. The training data that we employ for learning cor-

responds to site-level templates. However, we want our classifier to generalize

to the global definition of templates. This makes the process of feature extrac-

tion very critical. From each DOM node, we extract features that we believe

are indicative of whether or not that DOM node is a template. For example,

intuitively, if the text within a DOM node shares a lot of words with the title

of the webpage, then perhaps it is not a template node. Similarly, the distance

of a DOM node from the center for the page indicates its importance to the

main purpose of the page, and hence its templateness.

In a similar fashion, we constructed several other features from the position

and area annotations of DOM nodes as well as from the text, links, anchortext

they contain. The most discriminative features turned out to be: closeness to

the margins of the webpage, number of links per word, fraction of text within

4www.cse.iitb.ac.in/∼soumen/download
5www.mozilla.org

154

anchors, the size of the anchors, fraction of links that are intra-site, and the

ratio of visible characters to HTML content.

Classifier Training. We trained Logistic regression classifiers [Mit97] over

the set of features described above. Apart from performing very well, these

classifiers have the additional benefit that their classification output can be

interpreted as the probability of belonging to the predicted class. In our ex-

ploratory experiments we observed that distributions of feature values varied

heavily depending on the area of the DOM node. This is because template and

non-template nodes have very different characteristics at different levels of the

DOM trees; these levels can be approximated by the area of the node. Hence,

we trained four logistic regression models for DOM nodes of different sizes.

Now, given a webpage, the appropriate logistic model is applied to each node

of the DOM tree, and the output probabilities are fed to our post-classification

smoothing function.

5.6.3 Smoothing Classifier Scores

The smoothing algorithm allows arbitrary choices of penalty values for

each tree node. However, in the domain of template detection, there are

several desiderata that a good penalty function must try to achieve. We list

these below, along with the particular functions that we considered, and the

one that we finally settled upon.

Desiderata for Penalties. There are three main desiderata for a smooth-

ing algorithm in the context of template detection. First, nodes that are too

small in area should not form segments of their own. Such nodes have very

little content, and their classification scores are unreliable. Also, having such

155

small segments impairs the applicability of webpage segmentation to page vi-

sualization and browsing.

Second, adding nodes as segments should be easier as we move up from

leaves to the root. The smoothed values assigned to nodes high up in the tree

impose constraints on the possible values in their entire subtree. If creation

of new segments is hard, such nodes may merge with other nodes to form

larger segments whose smoothed scores may be drawn too far away from the

classification score of the node itself, thus hurting all nodes in their subtree.

Third, if a child node accounts for a large fraction of the area of its parent

node, then it should be harder to set the child to a value different from that

of its parent. This encourages the smoothing algorithm to form large sections

without too much nesting, which agrees with our intuitions about how webpage

segments are created.

Handling Very Small Nodes. All nodes whose area is less than 2000 sq

pixels are neither classified nor smoothed; they are “hidden,” and their effect

is rolled into their parent node. Thus, a node with k hidden children acts as

if it were (k + 1) nodes, all with the same classification value. This reduces

to multiplying the distance measure d(·, ·) with (k + 1), and the smoothing

algorithm can handle it trivially. This heuristic goes some way in achieving

the first desideratum.

Penalty Functions. We experimented with several penalty functions, at-

tempting to achieve the aforementioned desiderata. Starting with a user-

defined constant c, several transformations for γi (penalty for node i) were

tried:

156

(1) γi = c ·N/Ni, where Ni is the number of nodes in the subtree rooted at i,

and N is the total number of nodes in the DOM tree. This penalty is high for

nodes near the leaves and low for nodes near the root, satisfying the first and

second desiderata.

(2) γi = c · A/Ai, where Ai is the area of node i, and A the area of the whole

HTML page. Again, this penalty satisfies the first and second desiderata.

(3) γi = c · Aparent(i)/Ai, where Aparent(i) is the area of the parent of node i.

This tries to achieve the third desideratum.

We tried all combinations of these penalties, over a large range of values

for the constant c, and visually inspected the results of smoothing on a few

webpages. We finally settled on setting γi = 0.01 · A/Ai, which gave the best

results. For the rest of this chapter, unless specified otherwise, the penalty is

always set to this function.

5.7 Experiments

We now present an empirical evaluation of our system, called PageLevel.

Using human-labeled data, we show in Section 5.7.1 that our approach is very

effective in detecting the template sections of webpages. Then, in Sections 5.7.2

and 5.7.3 we show that applying template detection as a pre-processing step

significantly improves accuracy on standard web mining tasks such as dupli-

cate webpage detection and webpage classification. We also show that tem-

plate removal using PageLevel provides more benefits than using the more

expensive SiteLevel approach.

157

5.7.1 Template Detection Performance

The desiderata for a template detection system are as follows: (a) it must

divide the webpage into segments separating template and non-template con-

tent; and (b) it must accurately identify the webpage segments as template or

non-template. In this section we show that our system, PageLevel, achieves

both these objectives.

Datasets. In order to evaluate the template detection performance of PageLevel

we manually created two labeled datasets.

Common. We selected and manually labeled 44 pages from websites that were

commonly visited by the authors. The selected pages come from a diverse set

of domains, such as, news websites like NYTimes and CNN, university websites

like UTexas-Austin, etc. For each webpage, the manual labeling process iden-

tified the largest possible HTML fragments that were either entirely template

or non-template. These HTML fragments correspond to nodes in the webpage

DOM tree. Hence, for each webpage we labeled an antichain of nodes through

the DOM tree, forming an exhaustive and disjoint cover of all leaf nodes.

Random. In order to evaluate the algorithms on webpages more represen-

tative of the general Web, we manually labeled 100 pages selected uniformly

at random from the DMOZ directory6. The selected set of webpages is a mix

of topically focused content or hub pages and entry points to larger websites.

As was done for the Common dataset, the labeling process identified for each

webpage an antichain of DOM nodes and marked each node as either template

or non-template.

6www.dmoz.org

158

Dataset
PageLevel PageLevel

Basic Smooth

Common
Text 0.56 0.60 (7.1% ↑)
AT 0.65 0.71 (9.2% ↑)

Links 0.69 0.73 (5.8% ↑)

Random
Text 0.63 0.66 (4.8% ↑)
AT 0.71 0.73 (2.8% ↑)

Links 0.75 0.77 (2.7% ↑)

Table 5.4: Accuracy of PageLevel on Common and Random datasets in
terms of F-measure.

Template Detection Accuracy. As we demonstrate later in this section,

text and links present within the template regions mislead standard web-

mining algorithms for tasks such as duplicate detection and automated clas-

sification. Here we measure the efficacy of PageLevel in identifying text

and links that occur within templates. We report accuracy in terms of F-

measure, which is the harmonic mean of precision (p) and recall (r); i.e.

f = 2pr/(p + r). In the current setting, precision is the fraction of words

(links) identified by PageLevel as occurring within templates that are also

manually placed within templates. Recall is the fraction of all words (links)

manually labeled as lying within template regions that PageLevel also cor-

rectly identifies as templates. This evaluation setting has previously been used

by Vieira et al. [VSP+06].

In Table 5.4, we present the accuracy numbers (in terms of F-measure)

achieved by PageLevel for the two datasets: Common and Random. We

present accuracies for two variations of our approach: PageLevel Basic

only applies the classifier to the DOM nodes individually, while PageLevel

Smooth, in addition also performs Isotonic smoothing on the templateness

scores. The performance is measured along multiple dimensions: Text, Anchor-

159

Figure 5.8: Segmentation performance of PageLevel Basic, PageLevel
Basic+Merge, and PageLevel Smooth.

text (AT), and Links. As is clear from the table, our approach is very effec-

tive in identifying all types of page content that lies within template regions.

Furthermore, smoothing is shown to significantly improve accuracy across all

dimensions of evaluation, in some cases by almost as much as 10%. An inter-

esting observation is that the accuracy over the Common dataset is slightly

lower than that over Random. This is because the template structure in

webpages in Common is more extensive than those in Random. Further,

note that the gains afforded by the isotonic smoothing are larger on the more

difficult of the two datasets.

Segmentation Accuracy. As we mentioned in Section 5.5, a by-product

of the isotonic smoothing algorithm is a segmentation of the page into DOM

nodes that act as the roots of the template and non-templates regions. Here,

we show that the segmentation found by PageLevel closely matches the

manually labeled segments.

160

Notice that the manual segmentation, an antichain of nodes of the DOM

tree, induces a grouping of the leaves in which each node in the segmentation

defines a group. A leaf then belongs to the group corresponding to the seg-

ment node that covers it. Similarly, the segmentation output by PageLevel,

even though it allows for nested segments, also induces a grouping of leaves.

Each leaf can be considered as belonging to the group corresponding to its

closest ancestor in the segmentation. Hence, we can evaluate the PageLevel

segmentation against the manually labeled one by comparing the correspond-

ing groupings using the adjusted RAND index [HA85]. The adjusted RAND

index is a measure of how similar two groupings are, i.e., whether pairs of

objects (leaves) are together in both groupings, or in different groups in both

groupings. It is used as a preferred measure of agreement between cluster-

ings [MC86]. The value of the adjusted RAND index is upper bounded by 1,

and its expected value for a random clustering is 0.

In Figure 5.8 we plot the accuracy of PageLevel segmentation in terms of

adjusted RAND. The PageLevel Basic and PageLevel Smooth approaches

have been described above. As we can see the PageLevel Basic algorithm

achieves close to random results, but this is expected since it is not performing

any smoothing of scores and hence almost every leaf is in a group of its own.

In contrast the segmentation discovered by the isotonic smoothing function

(PageLevel Smooth) conforms very well to the manually labeled segments.

In order to put the accuracy of PageLevel Smooth in context, we also present

numbers for a PageLevel Basic + Merge heuristic. This approach does a

“naive” smoothing of the classifier scores by grouping adjacent leaves together

when their templateness scores differ by less than δ (the best δ was found by

exhaustive search). As we can see from the plot, “merging” improves the scores

161

Figure 5.9: Variation in template detection accuracy on the Common dataset
with changing values of penalty. The x-axis represents the factor being multi-
plied into the penalty.

of the PageLevel Basic; however, the results are still far lower than those

achieved by isotonic smoothing. This shows that the smoothing operation is

constructing highly non-trivial segmentations of webpages.

Effect of Variations in Penalty. We have shown above that PageLevel

successfully obtains and labels template segments within webpages. Here we

discuss the sensitivity of our approach to penalty parameters in the isotonic

smoothing function.

Figure 5.9 plots the variation in template detection accuracy on the Com-

mon dataset with changing values of penalty. In the plot, the x-axis represents

the factor multiplied into the penalty in order to vary it. As we can see, an

increase or decrease in penalty results in an decrease in the template detec-

tion accuracy. However, the decrease is larger with higher values of penalty

as this results in very few segments and hence a mixing up of template and

162

Figure 5.10: Variation in segmentation accuracy on both datasets with chang-
ing values of penalty. The x-axis represents the factor being multiplied into
the penalty.

non-template structures into the same segment. Lower values of penalty do

not give us the improvements inherent in smoothing, but they do not reduce

the discriminative power of the Basic classifier. The same behavior is seen for

Random as well.

Variations in segmentation accuracy on both datasets with changing val-

ues of penalty are plotted in Figure 5.10. Just as in the case of template

detection accuracy, the segmentation accuracy also forms a unimodal curve,

dropping with high and low values of penalty. However, the drop in segmen-

tation accuracy is larger for changes in penalty values as compared to drop in

detection accuracy. This is because the smoothing impacts the segmentation

performance more directly, as compared to detection performance. As we in-

crease (decrease) penalty values the number of groups of leaves obtained are

lesser (greater) than the manually labeled groups. Both these changes nega-

tively impact the segmentation performance. Another interesting difference is

163

that template detection accuracy achieves high values even when segmentation

performance is not at its peak. The reason is that the manual labeling is bi-

nary (template or non-template), while the segments we find are labeled with

real numbered scores. Hence, we can still achieve a high template detection

accuracy when the smoothing function places leaves into groups smaller than

those in the manual labellings. However, groups smaller than those in the

manual labeling causes a decrease in segmentation accuracy. This indicates

that if achieving good segmentation is our primary objective, using a slightly

higher value of penalty might be advantageous.

To summarize, in this section we showed that PageLevel accurately

segments webpages, and also labels the segments appropriately as template

or non-template. Further, we showed that isotonic smoothing is critical to its

success, contributing to increases in both segmentation and template detection

accuracies. We were unable to provide any comparisons with the site-level

approach on the human labeled data, since SiteLevel needs many pages

from each website in order to make template judgments for pages.

Next we show that webpage template detection is very useful as a pre-

processing step in several applications, such as finding webpages with dupli-

cate content, and webpage classification. Furthermore, since in these datasets

we have several webpages from the same website available, we also present

an evaluation comparing PageLevel with the site-level template detection

approach.

164

5.7.2 Application to Duplicate Detection

Duplicate webpages and mirrored websites present challenging problems

to web search engines that crawl and index them. Duplicated pages use up

valuable index space and duplicate results returned for search queries spoil

the user experience. Hence, detection of duplicates on the Web in a scalable

fashion has been the subject of much research [BBDH00, BGMZ97, CSGM00].

Most duplicate detection methods rely on the concept of shingles. For each

webpage, shingles are extracted by moving a window of fixed length over the

text and the ones with the N smallest hash values are stored. Two documents

that share shingles are then considered to be near-duplicates.

Problems Caused by Templates. The templates regions often contain text

whose purpose is orthogonal to the main content of the webpage. Hence, this

templated content must not be used while making decisions about whether

pages are duplicates. For example, text present within navigation bars, copy-

right notices etc., must not be compared when two pages are being checked

for duplicate material. The presence of templated content of webpages can foil

duplicate detection algorithms whenever the shingling process retains shingles

from the templated regions. Two pages that have absolutely the same con-

tent, say the exact same AP news story repeated across two different news

websites, might be considered non-duplicates if the shingling process retains

shingles from the template regions of the webpages as this portion of the

webpages is different. This can lead to false negatives and cause us to return

duplicate results for queries. Similarly, two webpages with the same templated

content but different main content might be considered duplicates if all the

shingles hit the templated region. This can result in false positives and cause

165

us to ignore valuable content on the web. In this section we evaluate the effect

of templates on duplicate detection performance, and also also compare the

template detection performance of PageLevel to the site-level approach.

The Lyrics Dataset. We constructed the Lyrics dataset by obtaining

the webpages containing lyrics for the same song from three different web-

sites. This way we knew that the webpages from different websites con-

taining lyrics to the same song should be considered duplicates7. We also

knew that webpages containing lyrics of different songs, irrespective of what

website they come from, should be considered non-duplicates. We were able

to obtain 2359 webpages from the websites www.absolutelyrics.com, www.

lyricsondemand.com, and www.seeklyrics.com containing lyrics to songs by

artists ABBA, BeeGees, Beatles, Rolling Stones, Madonna, and Bon Jovi. We

chose to get lyrics by a few diverse artists in order to minimize the possibility

of cover songs. The Lyrics dataset consists of 1711 duplicate pairs (webpages

with lyrics of the same song from different websites) and 2058 non-duplicate

pairs (webpages with lyrics of different songs from the same website).

Experimental Setup. SiteLevel was run on all the pages on each lyrics

website and the threshold parameter was set to 10%. This setting was seen to

perform well in [GPT05].

We used a standard shingling process. Before the shingling was performed

the text of the webpage is made lowercase and only alphanumeric characters

are retained. Shingles are computed over moving windows of 6 consecutive

words each, and the 8 minimum hashes are stored for each webpage. A pair

7Actually, these might only be near-duplicates, due to transcription errors on the different
pages. However, this affects all algorithms equally.

166

Total Pairs PageLevel SiteLevel FullText

Dup 1711
1299 730 529
(76%) (42.7%) (30.9%)

Non-Dup 2058
1885 1712 1781

(91.6%) (83.2%) (86.5%)

Table 5.5: Number of duplicate and non-duplicate pairs detected by the
shingling approach after removing templates detected by PageLevel and
SiteLevel . FullText indicates no template detection and removal.

of pages is tagged as a duplicate if there are at least 4 matching hashes out

of the 8 for each webpage. We run this experiment under different settings:

(1) all segments (and words) are used (FullText), (2) only segments tagged

as non-template by PageLevel are used, and (3) only segments tagged as

non-template by SiteLevel are used for shingling.

Results. The results of our duplicate detection experiments are presented in

Table 5.5. Not detecting and removing template content (FullText) per-

forms very badly, especially in flagging duplicate pairs. Using the PageLevel

approach to clean the data before shingling recovers 76% of the duplicate pairs,

and 92% of non-duplicate ones. These represent an improvement of 140% and

6% respectively over the FullText approach. Finally, PageLevel also out-

performs the SiteLevel template detection approach by a large margin in

both flagging duplicate and non-duplicate pairs.

The Lyrics dataset is not representative of the density of duplicates and

non-duplicate pairs found on the web; we created it to highlight the problems

posed by templates to duplicate detection algorithms. Hence, while the num-

bers seen in these experiments will not apply exactly to the web in general, the

results are indicative of the benefits of template detection and removal, and

the dataset serves as an appropriate test-bed for comparing the algorithms

167

PageLevel and SiteLevel.

Discussion. Why does PageLevel outperform SiteLevel even though it

is trained on the output of the latter? Comparing errors performed by the

two on the LYRICS dataset offers us an opportunity to investigate this. As

stated before, errors occur when shingles come from templated regions of the

page. Many of the errors committed by SiteLevel involved shingles from a

segment on “Popular lyrics by this Artist” that seemed to change based on

the artist whose song lyrics were being displayed. Since this segment changed

within webpages on the same site, SiteLevel was unable to identify it as a

template. However, thanks to the careful selection of DOM node features in

the page-level classifier, PageLevel generalizes beyond the site-level training

data. Thus, it picked out such segments as templates, boosting its accuracy

significantly.

5.7.3 Application to Webpage Classification

Automated classification of webpages is a well-studied problem and nu-

merous approaches have been proposed for it. While many sources of infor-

mation like hyperlinks [CDI98], site structure [KPT06], etc. are often used,

techniques for classifying the text content of webpages [Mit97] form the main-

stay of webpage classification. In this section we perform experiments on the

effect of template content on the classification of textual content of webpages,

and show that template removal using PageLevel gives a boost in accuracy.

Problems Caused by Templates. Even though classification algorithms

are very good at identifying and removing noisy features, in certain scenarios

templates can present a challenging problem. Consider a binary classification

168

problem between classes Camera and Notebook. If the template terms (noise)

in both classes are the same, a classifier would be able to detect and remove

it, say, using the correlation of features to the class labels. However, the noisy

features could differ across the two classes; say, the webpages in Camera class

come from CNET, and those in Notebook class come from PCConnection, the

classifier will not be able to remove the template content automatically, making

template detection as a pre-processing step imperative.

Dataset and Experimental Setup. For the classification experiments we

used a subset of the dataset used by Vieira et al. [VSP+06]. The dataset

consisted of webpages on 5 topics (Camera, Notebook, Mobile, Printer, TV)

obtained from 4 websites, CNET, J&R, PCConnection, and ZDNET. Details

of this dataset can be obtained in [VSP+06]. From this data, we constructed

binary classification problems in which training data for classes C1 and C2

were taken from different websites, and the rest of the data for these classes

were used as test data. For instance, in one binary problem, C1 is Camera

and C2 is Notebook. The training data for C1 and C2 comes from CNET

and PCConnection respectively. The test data for C1 then comprises J&R,

PCConnection, and ZDNET, while that for C2 comprises CNET, J&R, and

ZDNET. This evaluation setting has been used previously [VSP+06, YLL03].

We employed a Naive Bayes classifier8 for the binary classification problems.

The classification accuracy numbers we report are averaged over all possible

binary classification problems of the type mentioned above.

We run this experimental setup with different amounts of webpage clean-

ing: (1) with all segments (and words) (FullText), (2) with only segments

8www.cs.cmu.edu/∼mccallum/bow/

169

Categories PageLevel PageLevel SiteLevel FullText
Smooth Basic

camera mobile 60.17 59.57 64.17 55.10
camera notebook 40.03 35.24 35.61 30.48
camera printer 41.18 39.75 38.84 32.76
camera tv 37.21 39.51 40.67 34.82
mobile notebook 66.92 64.94 70.26 60.45
mobile printer 28.55 24.5 24.16 21.06
mobile tv 24.79 24.85 23.86 23.03

notebook printer 53.91 48.7 43.95 39.9
notebook tv 50.94 50.2 48.85 43.47
printer tv 47.57 48.7 44.12 41.17

Average 45.13 43.6 43.45 38.22

Table 5.6: Averaged classification accuracies on 2-class problems. The train-
ing data for the two categories was selected from different websites causing
template content to be learned as discriminating features. Moreover, the test
instances followed an adversarial distribution which made the problem ex-
tremely difficult. The best accuracies for each class combination are in bold.

tagged as non-template by SiteLevel, (3) only segments tagged as non-

template by the PageLevel Basic algorithm (4) only segments tagged as non-

template by the PageLevel Smooth algorithm. Recall that in PageLevel

Basic algorithm the smoothing function is disabled and only raw templateness

classifier assigned scores are used.

Results. The results of the classification experiments are presented in Ta-

ble 5.6. The best accuracies for each class combination are highlighted in

bold. First, we point out that the problem that we constructed above is ex-

tremely hard and hence results in accuracies that are well below that of random

guessing. In other words, the classifiers are actively misleading us in terms of

classifying test instances. Since we used training data for each class from a

different website, the template structure (which is very uniform within each

class) is learned as excellent discriminants. Since the test set is adversarial in

170

nature in that it is devised to actively fool the classifiers - instances of topic

of class 2 from the website used in class 1, and vice versa, are included in the

test set - the classifiers perform worse than random guessing.

However, as we can see, using template detection as a pre-processing

step always improves the classification accuracy of the Naive Bayes classifier.

Furthermore, webpage cleaning via the PageLevel algorithm outperforms

SiteLevel on a majority of class combinations. Even among the PageLevel

approaches, the use of isotonic smoothing of the templateness classifier’s out-

put results in better template detection and removal, as evidenced by an in-

crease in the Naive Bayes classifier accuracy. In the final analysis, webpage

template detection and removal via our PageLevel system increases classifi-

cation accuracy on this dataset by an average of 18%.

5.8 Conclusions

In this chapter, we reported on our studies of templated content on the

Web that showed that templates are a significant and growing problem. We

then presented a framework for classifier based page-level template detection

that constructs the training data and learns the notion of “templateness” au-

tomatically using the site-level template detection approach. We formulated

the smoothing of classifier assigned templateness scores as a regularized iso-

tonic regression problem on trees, and presented an efficient algorithm to solve

it exactly; this may be of independent interest. Using human-labeled data we

empirically validated our system’s performance, and showed that template

detection at the page-level, when used as a pre-processing step to webmining

applications, such as duplicate detection and webpage classification, can boost

accuracy significantly.

171

Chapter 6

Hierarchical Topic Segmentation of
Websites

6.1 Introduction

As the major established search engines vie for supremacy, and new en-

trants explore a range of technologies to attract users, we see researchers

and practitioners alike seeking novel analytical approaches to improve the

search experience. One promising family of approaches that is generating

significant interest is analysis at the level of websites, rather than individual

webpages. There are a variety of techniques for exploiting site-level infor-

mation. These include detecting multiple possibly-duplicated pages from the

same site [Aum03, BBDH00], determining entry points [CHR01], identifying

spam and porn sites [KSGM03], detecting site-level mirrors [BBDH00], ex-

tracting site-wide templates [GPT05] and structures [RT00], and visualizing

content at the site level [Gib04].

172

In this chapter we consider site segmentation, a particular form of site-level

analysis in which a website must be segmented into one or more largely uniform

regions. The segmentation may be performed based on the topics discussed

in each region, or based on the look and feel, or based on the authorship, or

other factors. We focus specifically on topical segmentation, i.e., segmenting

a site into pieces that are largely uniform in the topics they discuss. Such a

topical segmentation offers many potential advantages:

1. Various algorithms that are currently applied to websites could more

naturally be applied to topically-focused segments.

2. Websearch already incorporates special treatment for pages that are

known to possess a given topic—for instance, many engines provide

a link to the topic in a large directory such as the Yahoo! Directory,

Wikipedia, or the Open Directory Project. These approaches can natu-

rally be extended when several pages from a search result list lie within

a topically-focused segment.

3. The resultant segments provide a simple and concise site-level summary

to help users who wish to understand the overall content and focus of a

particular website.

4. A host such as an ISP may contain many individual websites, and a

topical segmentation is a useful input to help tease out the appropriate

granularity of a site.

5. Website classification is a problem that has been addressed using pri-

marily manual methods since the early days of the web, in part because

sites typically do not contain a single uniform class. Segmentation is an

important starting point for this larger problem.

173

Site segmentation may be viewed from two distinct perspectives. First,

it may be viewed as a constrained clustering problem in which the allowable

segments represent constraints on the possible clusters that the algorithm may

return. At the same time, site segmentation may be viewed as an extended

form of site-level classification in which the algorithm may choose to classify

either the entire site, or various sub-sites. The measure we propose for the

quality of a segmentation is much simpler than standard measures from ma-

chine learning. As a result, while the problem may be viewed as a constrained

version of the NP-hard clustering problem, or an extended version of classi-

fication that incorporates a search for the appropriate objects to classify, the

simple measure of segmentation quality, combined with the class of allowable

segmentations, will allow us to provide an algorithm to return the optimal seg-

mentation in polynomial time. To achieve this bound, we employ a dynamic

programming algorithm that is quite different from traditional algorithms for

either clustering or classification.

One could consider many different classes of allowable segmentations of a

website, for example based on the hierarchical structure of the site, or based

on clusters in the intra-site link graph, or based on regions of the site that

display some commonality of presentation template, and so forth. We will

focus specifically on segmentations that respect the hierarchical structure of a

website, for two reasons. First, we believe that of the many possible approaches

to segmenting websites, hierarchy is the most natural starting point. Site

authors often think in terms of a site being made up of several sub-sites, each

of which may contain sub-structure of its own; and the layout of pages on a

website often follows a “folder” structure inducing a natural hierarchy. And

second, in many applications an individual segment must be returned to the

174

user in some succinct manner. Rather than simply returning a long list of

URLs located at various positions within the site, it is desirable to return

instead a pointer to a particular sub-site.

In general, the hierarchical structure of a website may be derived from the

tree induced by the URL structure of the site, or mined from the intra-site

links or the page content of the site. Our algorithm makes use of whatever hier-

archical information is available about a site to constrain the possible segmen-

tations. We show that 85-90% of sites exhibit a non-trivial form of hierarchy

based on the URL tree that can exploited by our algorithm for segmentation.

The remaining fraction of sites might have a latent hierarchical structure that

could be mined by further analysis of intra-site links or content, but that is

beyond the scope of this work.

Thus, our work is on hierarchical topic segmentation (HTS): the segmen-

tation of websites into topically-cohesive regions that respect the hierarchical

structure of the site.

Formulation.

Consider a tree whose leaves have been assigned a class label or a distribu-

tion on class labels, perhaps by a standard page-level classifier. A distribution

is induced on an internal node of the tree by averaging the distributions of

all leaves subtended by that internal node. These distributions, along with

a hierarchical arrangement of all the pages in the site, are provided to the

HTS algorithm. The algorithm must return a set of segmentation points that

optimally partition the site. The objective function for the segmentation is

a combination of two competing costs: the cost of choosing the segmentation

points (the nodes) themselves and the cost of assigning the leaves to the closest

175

chosen nodes. Intuitively, the node selection cost models the requirements for

a node to serve as a segmentation point, while the cohesiveness cost models

how the selection of a node as a segmentation point improves the representa-

tion of the content within the subtree rooted at it. For example, in a particular

instance of the problem, the node selection cost can capture the requirement

that the segments be distinct from one another and the cohesiveness cost can

capture the requirement that the segments be pure. The underlying tree struc-

ture enables us to obtain an efficient polynomial-time algorithm to solve the

HTS problem.

To complete the overview of HTS, we provide a brief discussion of the

difference between segmentation and classification. The general website clas-

sification problem tries to assign topics to websites by employing features that

are broad and varied. A few example features for this broader problem include

the topic of each page, the internal hyperlinks on the site, the commonly link-

to entry points to the site, with their anchor-text, the general external link

structure, the directory structure of the site, the link and content templates

present on the site, the description, title, and h1-6 tags on key pages on the

site, and so forth. The final classes in a website classification problem may be

distinct from the classes employed at the page level. HTS, on the other hand,

specifically focuses on aggregating the topic labels on webpages into subtrees

according to the hierarchy of a site, in order to convey information such as,

“This entire sub-site is about Sports.” Thus, HTS attacks the problem of

determining whether and how to split the site, but is only the beginning of

a broader research problem of classifying websites using rich features. The

broader problem is of great interest in both binary cases (is the site spam? is

it porn?) and multi-class cases (to what topics should I assign this site?). We

176

believe that a clean and elegant solution to the HTS problem is essential to

fully address the more general site classification problem.

Our Contributions.

We provide a rigorous formulation of HTS for websites that is general

enough to capture many different hierarchical topic segmentation schemes.

We show how to encode two natural requirements within our formulation: the

segments themselves should be sufficiently ‘distinct’ from each other and the

webpages in a segment should be reasonably ‘pure’ in topic. We also present

a polynomial-time algorithm to solve the HTS problem optimally.

We conduct an extensive set of experiments to evaluate the performance

of our algorithm with various natural cost measures on hand-labeled as well

as semi-synthetic websites. We show that a judicious choice of the node se-

lection cost and cohesiveness cost can vastly improve the performance of the

algorithm.

Organization.

Section 6.2 presents the framework for the HTS problem. Section 6.3 con-

tains algorithm for the HTS problem as well as definitions for the cohesiveness

and node selection costs. Finally, the experimental results are presented and

discussed in Section 6.4.

177

Figure 6.1: Two websites with different organization of topics along the URL
directory structure.

6.2 Formulation

We begin this section with a brief discussion of HTS, and then present a

general mathematical formulation.

6.2.1 Hierarchical Topic Segmentation

Consider the problem of describing the topical content of a website to a

user. If the site is topically homogeneous we could provide the user with the

URL of the site and a topic label representing the content. Our segmentation

algorithms should do exactly this. However, most sites are not homogeneous,

and in fact the organization of topics within directories can determine the best

way to summarize site content for the user.

For instance, consider the two hypothetical websites shown in Figure 6.1.

The site in panel (a) contains sub-sites on different topics, while the site in

panel (b) contains a single topically coherent tree expect for a small direc-

tory deep in the site structure. In the first case we could describe the site

using the top-level directories, such as www.my-sports-site.com/tennis,

and for each such directory give its prevailing topic, such as Sports/Tennis.

178

For panel (b) on the other hand, we could tell the user that the entire site

(www.my-cycling-site.com) is about Sports/Cycling, except that a small

piece at www.my-cycling-site.com/.../first-aid/ is about Health/First-

Aid. As this example shows, it is quite reasonable to describe a site using

nested directories if this is the best explanation for the content.

In general, we wish to make optimal use of the user’s attention and con-

vey as much information about the site as possible using the fewest possible

directories, i.e., internal nodes. Hence, each directory we call out to the user

should provide significant additional information about the site.

This informal description of the problem is in terms of explaining the

contents of a website to a user. The other application areas listed in Section 6.1

leverage the same framework, but make use of the final description in other

ways. Generally, the goal is to return a concise segmentation of a website into

topically coherent regions.

Here we note that while in this chapter we restrict ourselves to segmen-

tations that follow the directory (URL) tree, our approach can be applied to

any hierarchical structure within a website. Indeed, websites with trivial URL

based hierarchical structure, for instance dynamic pages with URLs of the

form http://mysite.com/show.php?productid=42, are increasing in num-

ber, especially in the e-commerce domain. However, besides being the first

step to study the segmentation problem, our restriction to URLs captures the

vast majority (85 − 90%) of websites, and allows us to study how to make

use of this key element of site structure. Our approach could be applied to

the remaining websites by first mining their latent hierarchical structure by a

deeper analysis of links, content, or URL [BYKS07], but that is beyond the

scope of this chapter.

179

6.2.2 Formal Definition

The natural approach to modeling a directory structure is by a rooted tree

whose leaves are individual pages.1 We assume that there is a page-level clas-

sifier that assigns class labels or a distribution over class labels to each page

of the directory structure. This induces a distribution on the internal nodes

of the tree as well, by uniformly combining the distribution of all descendant

pages. Our notion of cohesiveness of a subtree will be based upon the agree-

ment between each leaf with the distribution at its parent. We require a few

definitions to make this notion formal.

Let T be a rooted tree with n leaves; let leaf(T) denote the leaves of T

and let root(T) denote its root. Let ∆ be the maximum degree of a node in

T . Let L be the set of class labels. We assume that each leaf x in the tree

T has a distribution px over L, generated by some page-level classifier. We

will write px(i) to denote the probability that leaf x has class label i. For an

internal node u with leaves leaf(u) in the subtree rooted at it we define the

distribution of labels at u as follows:

pu(i) =
1

|leaf(u)|
∑

x∈leaf(u)

px(i).

A subset S of the nodes of T is said to be a segmentation of T if, for each

leaf x of T , there is at least one node y ∈ S, such that x is a leaf in the subtree

rooted at y. For example, S is always a segmentation if root(T) ∈ S. Given a

parameter k, the goal now is to find a segmentation of size at most k whose

components are cohesive. For a leaf x ∈ leaf(T) let Sx ∈ S be the first element

1If internal nodes also correspond to pages, we simply model them using the standard
“index.html” convention.

180

of S on the ordered path from x to root(T). We will say that x belongs to

Sx, and we will define a cohesiveness cost d(x, Sx) that captures the cost of

assigning x to Sx. Further, we will define a node selection cost c(y, S) that

gives the cost of adding y to S. The overall cost of a particular segmentation

S is then

β
∑
y∈S

c(y, S) + (1− β)
∑

x∈leaf(T)

d(x, Sx), (6.1)

where β is a constant controlling the relative importance of the node selec-

tion cost and the cohesiveness cost. Our algorithms then find the lowest-cost

segmentation, given functions c(·) and d(·) representing the problem instance.

The formulation in (6.1) is reminiscent of the uncapacitated facility loca-

tion (UFL) problem in combinatorial optimization. In UFL, we are given a

graph (V, E), a parameter k, and each vertex v has a cost c(v) and the goal is

to choose S ⊆ V with |S| = k such that
∑

v∈S c(v) +
∑

u∈V minv∈S d(u, v) is

minimized. Here, d is the graph metric defined by E. In this most general ver-

sion, UFL is NP-hard. In our case, G is only a tree and the distance function

is more general and is not necessarily a metric.

6.3 Segmentation Algorithm

Our algorithmic approach is based on a general dynamic program that op-

timizes the objective function of (6.1). This dynamic program works for any

cohesiveness cost d(·) and node selection cost c(·). It runs in time O(k2nd).

After describing the dynamic program, we then present a set of candidate cohe-

siveness costs and node selection costs. We compare these different approaches

empirically in Section 6.4.

181

6.3.1 A Generic Algorithm

The idea behind the dynamic program is the following. Given a subtree

whose root has δ children, the optimal way of adding at most k nodes from

the subtree to the segmentation must follow one of two patterns. In the first

pattern, we add the root of the subtree and then recurse on the children with

a budget of k − 1. In the second pattern, we do not include the root of the

subtree, and instead recurse on the children with a budget of k. A naive way

of implementing the recursion would result in segmenting k (or k − 1) into δ

pieces in all possible ways. This is expensive, if δ � 2. To circumvent this,

we show a simple transformation that will convert the tree to binary, without

changing the optimum.

Construct a new tree from the original tree T in the following way, starting

from root(T). Suppose y is an internal node of T with children y1, . . . , yδ and

δ > 2. Then, this node is replaced by a binary tree of depth at most lg δ

with leaves y1, . . . , yδ. The cost c(·) of y, y1, . . . , yδ are the same as before and

the cost of the newly created internal nodes are set to ∞; this is so that they

never get selected in any solution. The construction is recursed on each of

y1, . . . , yδ. It is easy to see that the optimum solution of (6.1) on the new tree

is the same as on T . Furthermore, the size of the new tree at most doubles and

the depth of the tree increases by a factor of lg ∆, where ∆ is the maximum

degree of a node in T . This construction has been used previously; see for

instance [FGK+05, Tam96].

From now on, we will assume that the tree is binary. Let S denote the

current solution set. Let C(x, S, k) be the cost of the best subtree rooted at

node x using a budget of k, given that S is the current solution. Recall that

Sx, if it exists, is the first node along the ordered path from x to the root of

182

the tree T in the current solution S. If Sx exists, then all x′ ∈ leaf(Tx) (leaves

in the subtree under x) can always be covered by Sx, each with cost d(x′, Sx).

Let x1, x2 denote the two children of x. The update rule for the dynamic

program is given by

C(x, S, k) = min


mink

k′=0(C(x1, S, k′)
+ C(x2, S, k − k′))

c(x, S) + mink−1
k′=0(C(x1, S ∪ {x}, k′)

+ C(x2, S ∪ {x}, k − k′ − 1)).

(6.2)

The top term corresponds to not choosing x to be in S and the bottom term

corresponds to choosing x to be in S.

The base cases for the dynamic program are

• C(x, S, k) where x ∈ leaf(T). If we forbid including leaves in the solution

and Sx doesn’t exist, we set this cost to be∞. If leaves of T are permitted

to be part of the solution, the cost is given by

C(x, S, k) =

{
min{c(x, S), d(x, Sx)} if Sx exists
c(x, S) otherwise

(Note that if exactly k nodes are desired, then we can set C(x, S, k) to

∞ whenever k > 1.)

• C(x, S, 0), where the cost is given by

C(x, S, 0) =

{ ∑
x′∈leaf(Tx)

d(x′, Sx) if Sx exists

∞ otherwise

This corresponds to assigning all nodes in the subtree Tx to the node Sx,

if it exists, since we are out of budget in this case.

The dynamic program is invoked as C(root(T), ∅, k). There are knd lg ∆ en-

tries in the dynamic programming table and each update of an entry takes

183

O(k) time as given by (6.2). So, the total running time of the dynamic pro-

gram is O(k2 · n · d · lg ∆). Note that in the dynamic program, we compute

c(x, S) in terms of a partial solution set S that has been constructed so far

and not in terms of the final solution set S as indicated in (6.1); however,

since c(x, S) depends only on the elements in S that are on the path from x

to root(T) and since we compute S top down, these are equivalent.

Proposition 6.1. The above algorithm solves the optimization problem in

(6.1). The running time of the algorithm is O(k2 · n · d · lg ∆).

Notice that the node selection cost c(·) is helpful to incorporate heuristic

choices and requirements. For instance, we might want to ensure that if two

nodes, one of which is a parent of the other, are chosen in the solution, then

they are guaranteed to have different distributions. This is accomplished by

setting c(·) for the child node to be sufficiently high in such situations.

6.3.2 Cost Measures

We now suggest some different variants of the node selection cost c and

the cohesiveness cost d that appear in (6.1). The different choices of these

functions result in algorithms that make different trade-offs and are optimized

for different conditions.

6.3.2.1 Cohesiveness Costs

We propose three cohesiveness costs that capture the purity of a topical

segment. The first cost is based on information theory and the next two are

geometric in nature.

184

KL Cost Measure. This cost measure is based on the Kullback–Leibler

divergence in information theory. For every page x and the node Sx to which

it belongs we define the cost of the assignment to be

d(x, Sx) = KL(px ‖ pSx) =
∑
`∈L

px(`) log

(
px(`)

pSx(`)

)
.

The KL-divergence or the relative entropy of two distributions px and pSx

over an alphabet L is the average number of extra bits needed to encode data

drawn from px using a code derived from pSx . This corresponds to minimizing

the wastage in description cost of leaves of the tree using the internal nodes

that are selected. This property makes the KL-divergence an intuitive choice

for the cohesiveness cost.

Squared Euclidean Cost Measure. The distance between a leaf x (web-

page) and an internal node Sx (directory) can be computed using the squared

Euclidean distance between the corresponding class distributions. Therefore,

d(x, Sx) = ‖px − pSx‖2 =
∑
`∈L

|px(`)− pSx(`)|2.

The sum of squared Euclidean cost has previously been extensively used in

many applications.

Cosine Cost Measure. Drawing from information retrieval, the negative

cosine dissimilarity measure may be employed as a cohesiveness cost, as follows:

d(x, Sx) = −〈px, pSx〉 = −
∑
`∈L

px(`)pSx(`).

The cosine cost measure has previously been successfully used for clustering

documents [BDGS05].

185

6.3.2.2 Node Selection Costs

Having presented three possible cohesiveness costs d(·), we turn now to

the node selection cost c(·), representing the penalty for adding a new element

into S. Our goal is to penalize a new node if it provides little information

beyond its parent. We propose a cost measure to implement this condition,

which we call the α-measure. This cost measure in the context of decision tree

induction was introduced by Quinlan [Qui] and is referred to as information

gain ratio. It is defined as follows.

Let T be a tree consisting of subtrees T1, . . . , Ts. Say we wish to encode the

label of a particular leaf of T , and are allowed two possible encoding schemes.

In the first scheme, we simply communicate the label using an optimal code

based on the distribution of labels in T . In the second scheme, we first com-

municate whether or not the designated leaf lies in T1, and then encode the

label using a tailored code for either T1 or T \ T1 as appropriate. The second

scheme corresponds to adding T1 to the segmentation. Its overall cost cannot

be better than the first, but if T1 is completely distinct from T \ T1 then (and

only then) the cost of the second scheme will be equivalent to the first. Let

p1 = |T1|/|T | be the probability that a uniformly-chosen leaf of T lies in T1.

Then the cost of communicating whether a leaf lies within T1 is H(p1). In the

worst case, T1 will look identical to T \T1 and the second scheme will actually

be H(p1) bits more expensive than the first: the information about the subtree

provides no leverage to the user. We may therefore characterize the value of

subtree T1 relative to its parent by asking where on the scale between H(T)

and H(T) + H(p1) the cost of the second scheme lies. With this intuition in

mind, we now provide the formal definition of the cost measure.

Let x denote the current node we are considering adding to the solution

186

S. Recall that Sx is its nearest parent that is already a part of the solution

S. We assume Sx exists (we will discuss this restriction further below) and

for simplicity, denote Sx by y. Then let x′ be a hypothetical node such that

leaf(Tx′) = {leaf(Ty) \ leaf(Tx)}, i.e., the leaves under the subtree rooted at y

but not x. Let n = |leaf(Ty)|, nx = |leaf(Tx)|, and nx′ = |leaf(Tx′)|. Here, the

split cost is H2(nx/n), the binary entropy. Then, the α-measure is defined to

be

α(x, y) =
(nx/n)H(x) + (nx′/n)H(x′) + H2(nx/n)−H(y)

H2(nx/n)

It can be seen that α takes values between 0 and 1, with lower values indicating

a good split. The cost of adding a node to the solution is then

c(x, S) = c(x, y) = α(x, y) · nx.

One requirement of using α-measure in the dynamic program is that we always

need to select the root of T , i.e., root(T) ∈ S, in order to compute the cost of

adding additional internal nodes. The requirement is not entirely unreasonable

since the root directory of most sites contain a large number of files that cannot

be made part of the solution on their own right and need the root to cover

them.

6.4 Experiments

In this section we evaluate our algorithms on their ability to segment sites

obtained from the World Wide Web. First, Section 6.4.1 describes the hand-

labeled and semi-synthetic benchmark datasets we created, and Section 6.4.2

gives an overview of the experiments we run based on these benchmarks. Then

in Section 6.4.3 and Section 6.4.4 we study the performance of our algorithm

187

Figure 6.2: Cumulative distribution of number of candidate segments for all
sites in our sample and for the sites we sampled for manual segmentation.

on both the benchmarks. In Section 6.4.5, we study the performance of the

three cohesiveness cost measures with and without the node selection cost

based on α-measure.

6.4.1 Website Segments: Obtaining Labeled Data

We used a page-level classifier available within Yahoo! that classifies pages

into a taxonomy of 90 topics selected from the Yahoo! directory. From the site

listings of these 90 topics we picked a random set of 2150 sites. For each of

these sites we fetched all the URLs indexed by Yahoo!, (up to a maximum of

1000 per site) and applied the classifier in order to determine their assigned

category labels. The category labels have an associated confidence measure

that is ignored for the purposes of these experiments.

Hence, a site is represented by a set of URLs, each of which is labeled by

one of 90 topics. In the URL tree corresponding to a particular website, a

188

candidate segment is defined as a node of the tree that has at least 1% of the

total pages on the site under its subtree. In Figure 6.2 we plot the cumulative

distribution of sites with different numbers of candidate segments. As we can

see almost 25% of all sites have fewer than 5 nodes that can be selected as

segments, and more than 50% have less than 15. We should note that in order

to avoid uninteresting solutions to the HTS problem, we only consider sites

that have at least two candidate nodes and more than 300 pages.

From this dataset, we generated two benchmark datasets. We refer to

the first set as the hand-labeled website segments; this set contains 100 sites

manually segmented into topically-cohesive regions. We refer to the second set

as semi-synthetic website segments; it contains 1750 synthetically-generated

websites. Each such site is created by artificially grafting together uniform

regions from varying numbers of other websites, thus representing a benchmark

with an unambiguous, known segmentation. We now describe the creation of

each benchmark dataset in more detail.

Hand-Labeled Website Segments. We randomly sampled and manually

segmented 100 websites from the Yahoo! directory. While sampling the sites

around 10% were deemed to have a trivial directory structure based on URLs

and were skipped. The cumulative distribution of the number of candidate

segments in sites we labeled is plotted in Figure 6.2. As seen, only 10% of

sites sampled for labeling have fewer than 5 candidate segments as compared

to nearly 25% of the set of randomly sampled sites. Hence, while skipping

websites with no directory structure we biased our sample towards sites that

have larger number of candidate segments. This serves our purpose of robust

evaluation of our approach as segmenting sites with very few candidate seg-

ments is a trivial and uninteresting task. Of 100 websites that were segmented

189

74 were segmented into two or more parts while the rest were labeled com-

pletely homogeneous (only one segment at the root directory). Among the

former set of websites, the average number of segments per site was around 7,

with the maximum being 18.

The criteria employed for manually selecting segments were the following.

We always assumed that one segment is anchored at the root-level directory

of the site; this was done to ensure complete coverage of all webpages. Sub-

sequently, any directory that contained pages on a topic different from the

aggregated topics at the root directory of the site was selected as a segment.

We avoided selecting segments that were smaller than 1% of the site’s size and

those that were immediately enclosed within another segment on the same

topic. These criteria were chosen to model the requirements mentioned in

Section 6.2.1.

Semi-Synthetic Website Segments. The hand-labeled data can be used

to measure our algorithm’s ability to detect website segments as identified

by humans. However, in order to perform more controlled evaluation of the

algorithm’s behavior we created a dataset with semi-synthetic segments. For

this purpose we used the 26 sites that were manually labeled as homogeneous.

We created a new site T ′ from site Ta by grafting k subtrees, from another

set of sites T1, T2, . . . , Tk, to internal directories of Ta. Since Ta and Ti are all

relatively homogeneous w.r.t. topics, the new site tree T ′ should have k + 1

segments (including the root directory), one from each of its constituent sites.

We can now test our algorithms by measuring how many of the k+1 segments

they discover. Certain precautions were taken while creating these hybrid

sites. We only grafted subtrees that had 20 to 100 leaves under them. This

ensures that the grafted subtree is larger than 1% of the hybrid site’s size and

190

that the grafted content doesn’t overwhelm the existing content of Ta. If that

happens, our algorithms might create segments of subtrees from the original

Ta as they will now be significantly different from the topic distribution at the

root directory. We created 7 such datasets for k = 1, . . . , 7, each with 250

hybrid sites.

6.4.2 Measuring Segmentation Performance

We detail our methodology and metrics. In Section 6.2.2 we hypothesized

that the “correct” segmentation (including the number of segments) can be

detected by finding the k that minimizes (6.1). We perform experiments on the

hand-labeled as well as semi-synthetic datasets to verify whether this hypoth-

esis holds. All experiments are run to select at most k′ = 30 segments from

the set of candidate segments (nodes with at least 1% of website’s webpages

under them). The root always selected as a segment. As the final number of

segments in solutions can vary, the best way to report results is by computing

the precision and recall w.r.t. to the manually labeled segments, i.e., the true

solution. The precision of a solution is the fraction of segments in the solution

that were identified by our human judges as appropriate segmentation points.

Similarly, the fraction of hand-identified segments that are found by the algo-

rithm represents the recall of its solution. The f-measure—the harmonic mean

2pr/(p + r) of the precision p and recall r—can be used to report the quality

of a solution as a single number. For each combination of cohesiveness cost

and node selection cost, by varying β we can obtain solutions with different

precision and recall values. We expect that configurations with high β would

be very conservative in the number of segments they find, since they bias the

cost function in (6.1) towards not adding a node. Hence, these configurations

191

Figure 6.3: Precision–recall curves (with varying β) over the semi-synthetic
benchmark. The values are averaged over all hybrid sites created (over different
number of grafts settings).

should have high precision but low recall. We expect the opposite behavior for

low β values, with these configurations achieving low precision and high recall

scores.

6.4.3 Performance on Semi-Synthetic Benchmark

The precision–recall curves for the performance of different cohesiveness

and node selection cost combinations over the semi-synthetic websites are plot-

ted in Figure 6.3. The precision and recall values on the plot are averaged over

all the 7 datasets with k = 1, . . . , 7. These curves were computed by varying

β from 0 to 1 in increments of 0.1. It can be seen that as we increase the

value of β from 0 to 1, the curves move from the area of low precision, high

recall to the area of high precision, low recall. On the plot we identify β values

192

Figure 6.4: Precision–recall curves (with varying β) obtained by using
KL+Alpha cost measures over the semi-synthetic benchmark. Different curves
correspond to different number of grafts.

that provide good trade-off for the three combinations of cost measures. For

KL+Alpha, β = 0.8 results in a precision/recall value of 0.94/0.94, while for

Euclidean+Alpha and Cosine+Alpha the values at β = 0.5 are 0.94/0.91 and

0.94/0.85 respectively. This shows that in the case semi-synthetic websites, all

three cost combinations are able to find the correct number of segments and

their locations.

Figure 6.4 plots the precision–recall curves of the KL+Alpha algorithm on

semi-synthetic sites with varying number of grafts separately. Here we plot the

data for k = 1, 3, 5, 7. We can see that the behavior of all the curves is similar,

with best precision–recall trade-off at β = 0.8. The only difference between

the four curves is at β = 0, 1. This is because when β = 0, the algorithm adds

a large number of segments to the solution and hence the precision suffers for

193

all curves. But number of true segments is different for each curve causing a

different lowest precision value. Similarly, the lowest value of recall attained

depends on the number of true segments and hence this value is lower for k = 7

than for k = 1. Finally, the best precision–recall values obtained are around

0.94/0.94 for all curves.

6.4.4 Performance on Hand-Labeled Benchmark

We consider the more difficult task of segmenting actual websites obtained

from the World Wide Web. Figure 6.5 plots precision–recall curves for the

performance of different cohesiveness and node selection cost combinations

over the hand-labeled dataset. These curves were computed by varying β

from 0 to 1 as in Section 6.4.3. On the plot we identify β values that provide

reasonable trade-off of precision and recall for the three combinations of cost

measures. For the KL+Alpha combination, β = 0.8 results in a precision–

recall value of 0.79/0.62, while for Euclidean+Alpha and Cosine+Alpha the

values at β = 0.3 are 0.76/0.69 and 0.8/0.67 respectively. The curves in

Figure 6.5 show that for a robust set of values of β our algorithm produces

very good segmentations of websites.

Now that we have seen that the algorithm finds more or less the correct

segments, lets take a closer look at how well the algorithm performs in esti-

mating the “correct” number of segments. Figure 6.6 shows the cumulative

distribution of error in the number of segments detected. Here, the magnitude

of error is the absolute difference in the number of segments found by our

algorithm and the manual labeling. As seen, our algorithm finds the correct

number of segments in nearly 40% of the cases and for more than 70% of cases

the number of segments found is within ±2 of the number of manually labeled

194

Figure 6.5: Precision–recall curve (with varying β) over the hand-labeled web-
sites.

segments. Furthermore, the performance of all three cost combinations is very

similar.

Comparing with Performance on Semi-synthetic Websites. The

results in Figure 6.5 are similar to those for semi-synthetic benchmarks (Fig-

ure 6.3) in that the curves move from the area of low precision, high recall

to the area of high precision, low recall as we increase β. There are, how-

ever, a couple of differences; the “knee” of the curves is more prominent and

precision–recall values are higher for the semi-synthetic dataset.

These differences can be explained by pointing out that the true segments

are much more unambiguously defined in the case of the semi-synthetic web-

sites than the hand-labeled ones. In other words, in the case of semi-synthetic

websites the benefit of adding a graft as a separate segment is much higher

than the benefit of adding a subtree of Ta (see Section 6.4.1) as a segment

195

Figure 6.6: Cumulative distribution of the absolute error in the number of
segments detected for the hand-labeled websites.

to the solution. This makes it easier to distinguish the true segments from

Ta and hence we obtain very high precision and recall values. In the case of

real websites, the benefit of adding nodes as segments are often very close to

each other and in many cases the segment boundaries are fuzzy. Hence, even

though we get fairly high values of precision and recall, there is a large range

of β values over which the precision–recall trade-off is good.

A Relaxed Performance Criterion. The precision–recall curves plot-

ted above take into account only segmentation points (directories), and treat

even small differences in segmentation boundaries as total errors. Two seg-

mentations with slightly different boundaries are equally acceptable if these

differences do not impact too many webpages. Here we evaluate our algo-

rithms using a measure that considers the context of segments as well as the

segmentation points: the Omega measure, which has been previously used for

comparing overlapping clusterings [CD88]. The solutions found by our algo-

rithms can be considered overlapping clusterings, with each segment in the

solution acting as a cluster and each webpage belonging to all segments on its

196

Figure 6.7: Adjusted Omega score obtained over the hand-labeled websites
(with more than one true segment) for different values of β.

path to the root. In this context, the Omega measure computes the fraction

of pairs of webpages that occur together under the same number of segments

in both the segmentation being evaluated and the manually created segmenta-

tion. In Figure 6.7, we plot the Omega measure adjusted so that the expected

performance value of a random segmentation is zero. Hence, a value of 0.5 can

be interpreted as meaning that the segmentation under evaluation shows a

50% agreement with the manual segmentation, over and above any agreement

that can be expected due to chance. The results in this plot are similar to the

results in Figure 6.5, though with the higher recall (low β) region translating

to slightly higher omega scores. The interesting point to note is that while the

best performance of all cost measure combinations is similar, the KL+Alpha

combination has the desirable property of giving good results over a much

larger range of β than the other two cost measures.

Performance Variation with Number of Segments. Here we want to

evaluate our algorithm’s performance on tasks of varying difficulty. In general,

197

Figure 6.8: The averaged f-measure of segmentation found by the algorithm
for websites with different number of segments in the labeled solution.

it is easier for the algorithm to find all the labeled segments in a site-tree if

the number of segments is small. A partial reason is that the variance in

the manual segmentation of site-trees increases as the number of prospective

segments increases. Relatively cohesive sites with few directories of topically

different content are easy for a human (and our algorithms) to segment. In

Figure 6.8 we plot the f-measure of the segmentation found by our algorithm

for websites in the hand-labeled set with different number of segments. From

the plot we see that as the number of segments in the true solution increases,

the f-measure drops to around 0.6 for both Euclidean and Cosine cohesiveness

cost measures. The performance of the KL+Alpha combination, however,

decreases significantly as the number of segments in the solution increases.

6.4.5 Exploring the Role of α-Measure

The α-measure acts as a regularization term in our objective function and

is necessary to discover the correct number of segments. In this section we

want to evaluate whether the α-measure also plays a role in the selection of

198

Figure 6.9: The fraction of runs in which all grafts in the hybrid tree were
found vs number of grafts.

good segments, or at least in avoiding bad candidates. For this experiment we

use our algorithm to segment the website trees in the semi-synthetic dataset

into a specified number of segments. The intuition behind these experiments

is that since the number of segments is fixed, the α-measure will only be able

to affect the specific segments selected for the solution and not how many

are selected. This will give us a way to compare solutions obtained with and

without the use of α-measure to determine its impact. The reason we use the

semi-synthetic dataset is because unlike the hand-labeled dataset, here the

number of true segments is well-defined.

As stated in Section 6.3.1, our algorithm can be modified to work when the

number of segments is fixed a priori. We used this modified algorithm to seg-

ment each tree into k′ = k +1 segments (number of grafts plus the root). The

β value used for KL+Alpha combination was 0.8, while for Euclidean+Alpha

and Cosine+Alpha it was 0.3. To run our algorithm without the α-measure,

199

Figure 6.10: The recall of grafts in the hybrid tree vs number of grafts.

β was set to 0. Results for each different value of k are summarized in Figures

6.9 and 6.10. Each point in the plot is averaged over 250 websites.

Figure 6.9 plots the average fraction of sites (out of 250) for which all the

graft points in the hybrid tree were detected by the algorithm as a function of

the number of grafts (k). As we increase the number of grafts, the difficulty of

identifying all the grafts increases and the fraction of sites perfectly segmented

decreases. All cost measure combinations other than Cosine perform almost

identically for k = 1, but as we increase k, their performance numbers diverge

significantly. In all cases, techniques that use the α-measure perform better

than their counterparts that don’t. Moreover, as the difficulty of the task

increases, the decrease in accuracy of techniques using α-measure is gentler.

Figure 6.10 plots the fraction of total grafts that were discovered (recall)

by the algorithm for each value of k. The root segment of the hybrid tree,

which is always detected, is not considered a graft and hence not counted in the

200

fraction of grafts detected. As we can see, in spite of the fact that performances

in Figure 6.9 fall drastically as k is increased, the values in Figure 6.10 stay

relatively the same. This shows that even though the algorithms aren’t able to

segment the entire hybrid tree perfectly as the problem becomes harder, they

do discover most of the segments. As in the earlier experiments, techniques

that employ the α-measure perform better than their counterparts that do not.

These two experiments show that the α-measure is useful not just in regulating

the size of the solution but also in identifying the “correct” segments when

the solution size is specified.

6.5 Conclusions

In this chapter, we considered the problem of identifying and segmenting

topically cohesive regions in the URL tree of a large website. We developed a

general framework to use various cost measures for describing the quality of a

segmentation; we also provided an efficient algorithm to find the best segmen-

tation in this framework. Our experiments on hand-labeled and semi-synthetic

benchmarks confirm the soundness of our framework and suggest that a judi-

cious choice of cost measures can improve the precision/recall significantly.

201

Chapter 7

Conclusions and Future Work

In this chapter we present the conclusions from our work in this thesis and

describe some potential directions for future research.

7.1 Conclusions

In this thesis we studied various scenarios and proposed several novel ap-

proaches where the knowledge encoded in hierarchical relationships between

entities is exploited to improve the efficacy of data mining tasks like auto-

mated classification. In Chapter 3, we studied the induction of hierarchical

relationships among classes in a flat taxonomy and proposed a completely au-

tomated approach to find them. Using several real-world datasets, we showed

that our approach constructed more “natural” taxonomies than existing tech-

niques, and that well structured hierarchies of classes can give significant gains

in the accuracy of classifiers learned over them.

202

In Chapter 4, we presented approaches to further improve classification

accuracy in taxonomies by post-processing classifier outputs to enforce con-

straints obtained from hierarchical links between classes. We studied several

different scenarios with varying characteristics of taxonomies and classifier con-

struction methods. In each scenario we showed how hierarchical relationships

among classes can be translated into constraints among the corresponding

classifier outputs. We formulated the problem of enforcing these constraints

as regularized isotonic/unimodal tree regression problems and gave exact al-

gorithms to solve them. Finally, using real-world datasets we showed that our

smoothing approach corrects certain errors introduced by classifiers, thereby

resulting in an increase in accuracy of classification.

In Chapter 5, we investigated the problem of webpage template detection

and showed through large scale studies that the problem is significant and

growing. We then proposed multiple functions that assigned “templateness”

scores to each internal DOM node of a webpage. We argued that these tem-

plateness scores should satisfy a monotonicity property and formulated the

problem of enforcing this property as step regularized isotonic regression on

trees. We gave an efficient algorithm to solve this problem exactly, and then

showed that smoothing the “templateness” scores over the DOM-tree corrects

errors made by the scoring functions and also gives us a sectioning of the web-

page. We also demonstrated that removing templates found by our approach

has a positive effect on standard webmining tasks like duplicate detection and

webpage classification.

In Chapter 6, we studied the task of identifying topically cohesive parts

of a website. We formulated this task as the problem of finding segments

nodes in the URL directory hierarchy such that each segment is itself pure in

203

topic as well as topically distinct from other identified segments. We defined

purity and difference of topic using various cost measures and gave an efficient

algorithm to find the optimal segmentation in terms of the resulting objective

functions. Finally, we showed that with a judicious choice of cost measures our

approach can closely mimic the performance of humans at the task of topical

segmentation of websites.

7.2 Future Work

The work in this thesis can be extended along many dimensions. Possible

directions for future research on the central idea of exploiting hierarchical rela-

tionships among entities for better classification is presented in Section 7.2.1.

Other potential research involves the application settings that we explore in

the thesis: template detection and website segmentation. These are addressed

in Section 7.2.2.

7.2.1 Algorithmic Aspects

In Chapter 3, we presented an approach to automated construction of n-

ary tree based taxonomies. The key idea in the work was a constraint that

related the distances between sibling and parent nodes in valid taxonomies.

The constraint, which was used in our approach to construct the top-down split

of classes at each level, states that in a valid split the children nodes should

be further from each other than they are to the parent node. In future work,

this constraint can be generalized by requiring that the distance amongst the

children be at least a fraction of the distance of the children from the parent.

This fraction can then be adjusted to achieve flatter or deeper taxonomies. The

final goal might be to learn this fraction parameter from labeled data, possibly

204

so as to maximize the accuracy of classifiers learned over the taxonomy. As

the constraint controls the number of nodes in the taxonomy at each level,

another direction of future work is to investigate whether the constraint boils

down to a BIC like model selection criterion [Sch78].

Our work on smoothing the outputs of classifiers over a hierarchy (both of

classes and objects) can be extended to take into account different domains as

well as taxonomy structures, and the novel constraints that result from them.

For instance, many taxonomies are naturally expressed as directed acyclic

graphs (DAGs) as opposed to trees. Examples of these are the Yahoo! Web

directory [Yah] and the Gene Ontology project 1. It would be interesting to

see what types of constraints are generated on outputs of classifiers when the

smoothing has to be performed over the nodes of a DAG. Moreover, our exact

algorithms from Chapters 4 and 5 are designed to optimize over tree structures

and will need to be extended to work with DAGs.

Our work in this thesis has focused on exploiting hierarchical relationships

between classes of a taxonomy in Chapter 4 and between parts of composite

objects in Chapter 5. However, we have not investigated the scenario where

both the classes as well as the objects have hierarchical relationships amongst

themselves simultaneously. This scenario is common enough; in fact we can

construct it using the applications we studied in this thesis: we want to classify

parts of webpages (which are represented as nodes of a DOM-tree) into a

hierarchical taxonomy of topics. Here the membership of an object into a class

will depend upon its membership in related classes as well as the membership

of related objects in the class. It would be interesting to show that using

1http://www.geneontology.org/

205

both types of hierarchical relationships simultaneously gives larger increases

in classification accuracy than using only one at a time.

7.2.2 Application Oriented

The application settings, in the contexts of which we studied our ap-

proaches to exploiting hierarchical relationships for classification, also offer

exciting avenues for future research. In Chapter 5 we tackled the problem of

template detection. We presented global (site-level) as well as local (page-level)

approaches to solve the problem and evaluated the strengths and weaknesses

of both. Site-level approaches, while requiring no training data and achiev-

ing high precision, often miss certain types of templates (achieving low recall)

and require a lot of computational resources to implement in a search engine

pipeline. Page-level approaches on the other hand, improve upon site-level

techniques by learning a more general model of templates and being extremely

efficient in resource usage, but are often not as accurate on repeated content

type templates. What is needed is a hybrid approach that uses the strengths

of both approaches. Note that our page-level system in Chapter 5 trains au-

tomatically by using the template data generated by a site-level algorithm,

thus achieving some synergy. However, we believe that a tighter coupling

of two paradigms could be used to achieve more gains in template detection

performance.

Other interesting future work involves extending our work on website seg-

mentation in Chapter 6. In this work we presented an approach to segment the

URL directory structure within websites. However, our informal experiments

show that around 10-15% of websites are completely dynamically generated

and do not have any URL structure. We can still construct a URL struc-

206

ture between webpages from the dynamic URLs, such as www.mysite.com/

showpage.php?id=123&..., using recent work in [BYKS07]. A much more

elegant approach, though, would be to extend our framework and algorithms

to deal with general graphs (not just trees), especially those induced by hyper-

links. Hyperlinking is a fundamental property of the World Wide Web, and

all websites support it. Hence, the new framework and algorithms would be

applicable to a much larger set of websites than our current approach.

207

Bibliography

[AAS03] Giordano Adami, Paolo Avesani, and Diego Sona. Bootstrap-

ping for hierarchical document classification. In Proc. of Interna-

tional Conference on Information and Knowledge Management,

pages 295–302. ACM Press, 2003.

[ABKS99] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and

Jörg Sander. Optics: Ordering points to identify the clustering

structure. In Proc. of ACM SIGMOD International Conference

on Management of Data, pages 49–60. ACM Press, 1999.

[ABP06] Aris Anagnostopoulos, Andrei Z. Broder, and Kunal Punera. Ef-

fective and efficient classification on a search-engine model. In

Proc. of International Conference on Information and Knowl-

edge Management, pages 208–217. ACM Press, 2006.

[ACA06] Alekh Agarwal, Soumen Chakrabarti, and Sunny Aggarwal.

Learning to rank networked entities. In Proc. of the ACM

SIGKDD International Conference on Knowledge discovery and

data mining, pages 14–23. ACM Press, 2006.

[AHKW06] S. Angelov, B. Harb, S. Kannan, and L.-S. Wang. Weighted

isotonic regression under the L1 norm. In Proc. of Annual ACM–

SIAM Symposium on Discrete Algorithms, pages 783–791, 2006.

[AMBCea00] Blake J Ashburner M Ball C and et al. Gene ontology: tool for

208

the unification of biology. the gene ontology consortium. Nature

Genetics, 25(1):25–29, May 2000.

[ASS00] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reduc-

ing multiclass to binary: A unifying approach for margin classi-

fiers. In Proc. of International Conference on Machine Learning,

pages 9–16. Morgan Kaufmann Publishers Inc., 2000.

[Aum03] David J. Aumueller. A tool for gathering, analysing, export-

ing, and visualizing the structure of a website. Master’s thesis,

University of Leeds, Institute of Communications Studies, 2003.

[Bal06] Shumeet Baluja. Browsing on small screens: Recasting web-page

segmentation into an efficient machine learning framework. In

Proc. of International Conference on World Wide Web, pages

33–42, 2006.

[BBDH00] Krishna Bharat, Andrei Broder, Jeffrey Dean, and Monika R.

Henzinger. A comparison of techniques to find mirrored hosts

on the WWW. Journal of the American Society for Information

Science, 51(12):1114–1122, 2000.

[BBM02] Sugato Basu, Arindam Banerjee, and Raymond J. Mooney.

Semi-supervised clustering by seeding. In Proc. of International

Conference on Machine Learning, pages 27–34. Morgan Kauf-

mann Publishers Inc., 2002.

[BBM04] Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney. A

probabilistic framework for semi-supervised clustering. In Proc.

209

of ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 59–68. ACM Press, 2004.

[BDGS05] Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, and Su-

vrit Sra. Clustering on the unit hypersphere using von Mises–

Fisher distributions. Journal of Machine Learning Research,

6:1345–1382, 2005.

[BGJT04] David Blei, Thomas Griffiths, Michael Jordan, and Joshua

Tenenbaum. Hierarchical topic models and the nested Chinese

restaurant process. In Proc. of Advances in Neural Information

Processing Systems. MIT Press, 2004.

[BGMZ97] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and

Geoffrey Zweig. Syntactic clustering of the web. Computer Net-

works, 29(8-13):1157–1166, 1997.

[BJ03] D. Blei and M. Jordan. Modeling annotated data. In Proc. of

Annual International ACM Conference on Research and Devel-

opment in Information Retrieval, pages 127–134, 2003.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic

web. Scientific American, May 2001.

[BMDG05] Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and

Joydeep Ghosh. Clustering with Bregman divergences. Journal

of Machine Learning Research, 6:1705–1749, 2005.

[BMI06] Victor Boyarshinov and Malik Magdon-Ismail. Linear time iso-

tonic and unimodal regression in the L1 and L∞ norms. Journal

of Discrete Algorithms, 4(4):676–691, 2006.

210

[BVZ01] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate

energy minimization via graph cuts. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 23(11):1222–1239, 2001.

[BYKS07] Ziv Bar-Yossef, Idit Keidar, and Uri Schonfeld. Do not crawl

in the dust: different urls with similar text. In Proc. of Inter-

national Conference on World Wide Web, pages 111–120. ACM

Press, 2007.

[BYR02] Ziv Bar-Yossef and Sridhar Rajagopalan. Template detection

via data mining and its applications. In Proc. of International

Conference on World Wide Web, pages 580–591. ACM Press,

2002.

[CD88] Linda M. Collins and Clyde W. Dent. Omega: A general for-

mulation of the rand index of cluster recovery suitable for non-

disjoint solutions. Multivariate Behavioral Research, 23(2):231–

242, 1988.

[CDAR98] Soumen Chakrabarti, Byron Dom, Rakesh Agrawal, and Prab-

hakar Raghavan. Scalable feature selection, classification and

signature generation for organizing large text databases into hi-

erarchical topic taxonomies. VLDB Journal: Very Large Data

Bases, 7(3):163–178, 1998.

[CDI98] Soumen Chakrabarti, Byron Dom, and Piotr Indyk. Enhanced

hypertext categorization using hyperlinks. In Proc. of ACM SIG-

MOD International Conference on Management of Data, pages

307–318. ACM Press, 1998.

211

[CH04] Lijuan Cai and Thomas Hofmann. Hierarchical document cat-

egorization with support vector machines. In Proc. of Interna-

tional Conference on Information and Knowledge Management,

pages 78–87. ACM Press, 2004.

[Cha] Soumen Chakrabarti. HyParSuite, http://www.cse.iitb.ac.

in/∼soumen/download/.

[Cha04] Deepayan Chakrabarti. Autopart: parameter-free graph parti-

tioning and outlier detection. In Proc. of European Conference

on Principles and Practice of Knowledge Discovery in Databases,

pages 112–124. Springer-Verlag New York, Inc., 2004.

[CHR01] N. Craswell, D. Hawking, and S. Roberston. Effective site finding

using link anchor information. In Proc. of Annual International

ACM Conference on Research and Development in Information

Retrieval, pages 250–257, 2001.

[CJT01] Soumen Chakrabarti, Mukul Joshi, and Vivek Tawde. Enhanced

topic distillation using text, markup tags, and hyperlinks. In

Proc. of Annual International ACM Conference on Research

and Development in Information Retrieval, pages 208–216. ACM

Press, 2001.

[CKKS02] W. F. Cody, J. T. Kreulen, V. Krishna, and W. S. Spangler. The

integration of business intelligence and knowledge management.

IBM Systems Journal, 41(4), 2002.

[CKP07] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. Page-

level template detection via isotonic smoothing. In Proc. of In-

212

ternational Conference on World Wide Web, pages 61–70. ACM

Press, 2007.

[CKT92] Douglass R. Cutting, David R. Karger, and Jan O. Peders W.

Tukey. Scatter/Gather: a cluster-based approach to browsing

large llections. In Proc. of Annual International ACM Con-

ference on Research and Development in Information Retrieval,

pages 318–329. ACM Press, 1992.

[CRW01] A. S. Chulef, S. J. Read, and D. A. Walsh. A hierarchical taxon-

omy of human goals. Motivation and Emotion, 25(3):191–232,

September 2001.

[CS02] Koby Crammer and Yoram Singer. On the learnability and de-

sign of output codes for multiclass problems. Machine Learning,

47(2-3):201–233, 2002.

[CSGM00] Junghoo Cho, Narayanan Shivakumar, and Hector Garcia-

Molina. Finding replicated web collections. In Proc. of ACM

SIGMOD International Conference on Management of Data,

pages 355–366, 2000.

[CSZ06] Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien, edi-

tors. Semi-Supervised Learning. MIT Press, 2006.

[CXMZ05] Yu Chen, Xing Xie, Wei-Ying Ma, and Hong-Jiang Zhang.

Adapting web pages for small-screen devices. Internet Com-

puting, 9(1):50–56, 2005.

213

[Dav00] Brian Davison. Recognizing nepotistic links on the web. In

Artificial Intelligence for Web Search, pages 23–28. AAAI Press,

2000.

[DB95] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass

learning problems via error-correcting output codes. Journal of

Artificial Intelligence Research, 2:263–286, 1995.

[DC00] Susan Dumais and Hao Chen. Hierarchical classification of web

content. In Proc. of Annual International ACM Conference on

Research and Development in Information Retrieval, pages 256–

263. ACM Press, 2000.

[DFG01] I. Dhillon, J. Fan, and Y. Guan. Efficient clustering of very

large document collections. In R. Grossman, G. Kamath, and

R. Naburu, editors, Data Mining for Scientific and Engineering

Applications. Kluwer Academic Publishers, 2001.

[DG04a] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data

processing on large clusters. In Proc. of Conference on Sym-

posium on Opearting Systems Design & Implementation, pages

10–23. USENIX Association, 2004.

[DG04b] Ludovic Denoyer and Patrick Gallinari. Bayesian network model

for semi-structured document classification. Information Pro-

cessing and Management, 40(5):807–827, 2004.

[DGMS01] M. Diligenti, M. Gori, M. Maggini, and F. Scarselli. Classifi-

cation of HTML documents by hidden tree-Markov models. In

214

6th International Conference on Document Analysis and Recog-

nition, pages 849–853, 2001.

[DHS00] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern

Classification (2nd Edition). Wiley-Interscience, 2000.

[DLR77] Arthur Dempster, Nan Laird, and Donald Rubin. Maximum

likelihood from incomplete data via the em algorithm. Journal

of the Royal Statistical Society, 39(1):1–38, 1977.

[DMDH02] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning

to map between ontologies on the semantic web. In Proc. of

International Conference on World Wide Web, pages 662–673,

2002.

[DMK02] Inderjit S. Dhillon, Subramanyam Mallela, and Rahul Kumar.

Enhanced word clustering for hierarchical text classification. In

Proc. of ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 191–200. ACM Press, 2002.

[DMK03] Inderjit S. Dhillon, Subramanyam Mallela, and Rahul Kumar.

A divisive Information-Theoretic feature clustering algorithm

for text classification. Journal of Machine Learning Research,

3:1265–1287, 2003.

[DMO] DMOZ. Open directory project, http://www.dmoz.org.

[DMPG05] Sandip Debnath, Prasenjit Mitra, Nirmal Pal, and C. Lee

Giles. Automatic identification of informative sections of web

pages. IEEE Transactions on Knowledge and Data Engineering,

17(9):1233–1246, 2005.

215

[DMS99] Inderjit Dhillon, Dharmendra Modha, and W. Scott Spangler.

Class visualization of high-dimensional data with applications.

Technical report, IBM Almaden Research Center, San Jose, CA

95120, 1999.

[EKS02] Martin Ester, Hans-Peter Kriegel, and Matthias Schubert. Web

site mining: A new way to spot competitors, customers and sup-

pliers in the world wide web. In Proc. of 8th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Min-

ing, pages 249–258, 2002.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.

A density-based algorithm for discovering clusters in large spa-

tial databases with noise. In Proc. of 2nd ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining,

pages 226–231. AAAI Press, 1996.

[Fal96] Andrew Fall. Reasoning with taxonomies. PhD thesis, Simon

Fraser University, 1996. Adviser-Veronica Dahl.

[Faw03] Tom Fawcett. ROC graphs: Notes and practical considera-

tions for data mining researchers. Technical Report HPL-2003-4,

Hewlett Packard Laboratories, January 17 2003.

[Fel68] William Feller. An Introduction to Probability Theory and Its

Applications, Volume 1. John Wiley & Sons, 1968.

[FFR97] Adam Farquhar, Richard Fikes, and James Rice. The ontolin-

gua server: a tool for collaborative ontology construction. Inter-

216

national Journal of Human-Computer Studies, 46(6):707–727,

1997.

[FGK+05] Ronald Fagin, Ramanathan Guha, Ravi Kumar, Jasmine No-

vak, D. Sivakumar, and Andrew Tomkins. Multi-structural

databases. In Proc. of ACM Symposium on Principles of

Database Systems, pages 184–195, 2005.

[FKK+05] Ronald Fagin, Phokion Kolaitis, Ravi Kumar, Jasmine Novak,

D. Sivakumar, and Andrew Tomkins. Efficient implementa-

tion of large-scale multi-structural databases. In Proc. of Inter-

national Conference on Very Large Databases, pages 958–969,

2005.

[FMSB+06] R. D. Finn, J. Mistry, B. Schuster-Bckler, S. Griffiths-Jones,

V. Hollich, T. Lassmann, S. Moxon, M. Marshall, A. Khanna,

R. Durbin, S. R. Eddy, E. L. Sonnhammer, and A. Bateman.

Pfam: clans, web tools and services. Nucleic Acids Research,

34(Database issue):247–251, January 2006.

[FST98] Shai Fine, Yoram Singer, and Naftali Tishby. The hierarchi-

cal hidden Markov model: Analysis and applications. Machine

Learning, 32(1):41–62, 1998.

[GGPC02] Eric Gaussier, Cyril Goutte, Ashok Popat, and Francine Chen.

A hierarchical model for clustering and categorizing documents.

In Proc. of BCS-IRSG European Colloquium on IR Research,

pages 229–247, 2002.

217

[Gib04] David Gibson. Surfing the web by site. In Proc. of International

Conference on World Wide Web, pages 496–497, 2004.

[GPT05] David Gibson, Kunal Punera, and Andrew Tomkins. The vol-

ume and evolution of web page templates. In Proc. of Interna-

tional Conference on World Wide Web, pages 830–839, 2005.

[GR04] Jacob Goldberger and Sam Roweis. Hierarchical clustering of

a mixture model. In Proc. of Advances in Neural Information

Processing Systems, 2004.

[GRS98] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE:

an efficient clustering algorithm for large databases. In Proc.

of ACM SIGMOD International Conference on Management of

Data, pages 73–84, 1998.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology

specifications. Knowledge Acquisition, 5(2):199–220, 1993.

[GTC05] Stephen C. Gates, Wilfried Teiken, and Keh-Shin F. Cheng.

Taxonomies by the numbers: building high-performance tax-

onomies. In Proc. of International Conference on Information

and Knowledge Management, pages 568–577. ACM Press, 2005.

[HA85] Lawrence Hubert and Phipps Arabie. Comparing partitions.

Journal of Classification, 2:193–218, 1985.

[Hay99] Simon Haykin. Neural Networks: A Comprehensive Foundation.

Prentice Hall, 1999.

218

[HCC04] Chien-Chung Huang, Shui-Lung Chuang, and Lee-Feng Chien.

Liveclassifier: creating hierarchical text classifiers through web

cor pora. In Proc. of International Conference on World Wide

Web, pages 184–192. ACM Press, 2004.

[HCCG05] Jisoo Ham, Yangchi Chen, Melba M. Crawford, and Joydeep

Ghosh. Investigation of the random forest framework for classi-

fication of hyperspectral data. IEEE Transactions on Geoscience

and Remote Sensing, 43(3):492–501, 2005.

[Hea06] Marti A. Hearst. Clustering versus faceted categories for infor-

mation exploration. Communications of the ACM, 49(4):59–61,

2006.

[HHW+04] Arnaud Le Hors, Philippe Le Hgaret, Lauren Wood, Gavin

Nicol, Jonathan Robie, Mike Champion, and Steve Byrne.

Document object model (dom) level 3 core specification.

Technical report, W3C, http://www.w3.org/TR/2004/

REC-DOM-Level-3-Core-20040407/DOM3-Core.html, April

2004.

[HKP95] Marti A. Hearst, David R. Karger, and Jan O. Pedersen. Scat-

ter/Gather as a tool for the navigation of retrieval results. In

Working Notes AAAI Fall Symp. AI Applications in Knowledge

Navigation, 1995.

[HKZ98] Jing Huang, S. Ravi Kumar, and Ramin Zabih. An automatic

hierarchical image classification scheme. In ACM Multimedia,

pages 219–228, 1998.

219

[Hof99] Thomas Hofmann. The cluster-abstraction model: Unsuper-

vised learning of topic hierarchies from text data. In Proc. of

International Joint Conference on Artificial Intelligence, pages

682–687. Morgan Kaufmann Publishers Inc., 1999.

[Hsu82] Wen-Lian Hsu. The distance-domination numbers of trees. Op-

erations Research Letters, 1:96–100, 1982.

[HWL06] Tzu-Kuo Huang, Ruby C. Weng, and Chih-Jen Lin. General-

ized Bradley-Terry models and multi-class probability estimates.

Journal of Machine Learning Research, 7:85–115, 2006.

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for clustering

data. Prentice-Hall Inc., 1988.

[Joa99] Thorsten Joachims. Transductive inference for text classification

using support vector machines. In Proc. of International Confer-

ence on Machine Learning, pages 200–209. Morgan Kaufmann

Publishers Inc., 1999.

[Kah] Brewster Kahle. The internet archive, http://www.archive.

org.

[KaT05] Jon Kleinberg and Éva Tardos. Algorithm Design. Addison-

Wesley, 2005.

[KCLH02] Hung-Yu Kao, Ming-Syan Chen, Shian-Hua Lin, and Jan-Ming

Ho. Entropy-based link analysis for mining web informative

structures. In Proc. of International Conference on Informa-

tion and Knowledge Management, pages 574–581. ACM Press,

2002.

220

[KGC01] Shailesh Kumar, Joydeep Ghosh, and Melba M. Crawford. Best-

bases feature extraction algorithms for classification of hyper-

spectral data. IEEE Transactions Geoscience and Remote Sens-

ing, 39(7):1368–1379, 2001.

[KGC02] Shailesh. Kumar, Joydeep Ghosh, and Melba M. Crawford. Hi-

erarchical fusion of multiple classifiers for hyperspectral data

analysis. Pattern Analysis and Applications, special Issue on

Fusion of Multiple Classifiers, 5(2):210–220, 2002.

[KH79] O. Kariv and S. L. Hakimi. An algorithmic approach to network

location problems, part II: p-medians. SIAM Journal on Applied

Mathematics, 37:539–560, 1979.

[KHC05] Hung-Yu Kao, Jan-Ming Ho, and Ming-Syan Chen. WISDOM:

Web intrapage informative structure mining based on document

object model. IEEE Transactions on Knowledge and Data En-

gineering, 17(5):614–627, 2005.

[KHK99] George Karypis, Eui-Hong (Sam) Han, and Vipin Kumar.

Chameleon: Hierarchical clustering using dynamic modeling.

Computer, 32(8):68–75, 1999.

[KL51] S. Kullback and R. A. Leibler. On information and sufficiency.

Annals of Mathematical Statistics, 22:79–86, 1951.

[Kom05] Sam H. Kome. Hierarchical subject relationships in folk-

sonomies. Master’s thesis, University of North Carolina at

Chapel Hill, Nov 2005.

221

[KPT06] Ravi Kumar, Kunal Punera, and Andrew Tomkins. Hierarchical

topic segmentation of websites. In Proc. of ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining,

pages 257–266, 2006.

[KS97] Daphne Koller and Mehran Sahami. Hierarchically classifying

documents using very few words. In Proc. of International Con-

ference on Machine Learning, pages 170–178. Morgan Kaufmann

Publishers Inc., 1997.

[KS04] Hans-Peter Kriegel and Matthias Schubert. Classification of

websites as sets of feature vectors. In Proc. of IASTED Inter-

national Conference on Databases and Applications, pages 127–

132, 2004.

[KSGM03] S. D. Kamvar, M. T. Scholsser, and H. Garcia-Molina. The

eigentrust algorithm for reputation management in P2P net-

works. In Proc. of International Conference on World Wide

Web, pages 640–651, 2003.

[Kus99] Nicholas Kushmerick. Learning to remove internet advertise-

ment. In Proc. of the Third International Conference on Au-

tonomous Agents (Agents’99), pages 175–181. ACM Press, 1999.

[Lan95] Ken Lang. Newsweeder: Learning to filter netnews. In Proc. of

International Conference on Machine Learning, pages 331–339,

1995.

[Lin91] J. Lin. Divergence measures based on the shannon entropy.

222

IEEE Transactions on Information Theory, 37(1):145–151, Jan-

uary 1991.

[Mac67] J. B. MacQueen. Some methods for classification and analysis of

multivariate observations. In Proc. of 5th Berkeley Symposium

on Mathematical Statistics and Probability, pages 281–297, 1967.

[MAea07] Nicola J. Mulder, Rolf Apweiler, and Teresa K. Attwood et al.

New developments in the interpro database. Nucleic Acids Re-

search, 35(Database Issue):224–228, 2007.

[Mat04] Adam Mathes. Folksonomies - cooperative classification and

communication through shared metadata. In Computer Medi-

ated Communication - LIS590CMC. University of Illinois Ur-

bana Champaign, Dec 2004.

[MC86] Glenn Milligan and Martha Cooper. A study of the compara-

bility of external criteria for hierarchical cluster analysis. Mul-

tivariate Behavioral Research, 21(4):441–458, 1986.

[Me04] D. R. Maddison and K.-S. Schulz (ed.). The tree of life web

project: http://tolweb.org, 2004.

[MICAM02] Malik Magdon-Ismail, Hung-Ching Chen, and Yaser S. Abu-

Mostafa. The multilevel classification problem and a monotonic-

ity hint. In Proc. of International Conference on Intelligent Data

Engineering and Automated Learning, pages 410–415. Springer-

Verlag, 2002.

[Mit97] Thomas Mitchell. Machine Learning. McGraw Hill, 1997.

223

[MJDP+00] Tony Morton-Jones, Peter Diggle, Louise Parker, Heather O.

Dickinson, and Keith Binks. Additive isotonic regression models

in epidemiology. Statistics in Medicine, 19(6):849–859, 2000.

[MN98] Andrew McCallum and Kamal Nigam. A comparison of event

models for Naive Bayes text classification. In AAAI-98 Work-

shop on Learning for Text Categorization, 1998.

[Mor02] Joseph T. Morgan. Adaptive Hierarchical Classifier with Limited

Training Data. PhD thesis, University of Texas at Austin, 2002.

[MRMN98] Andrew McCallum, Ronald Rosenfeld, Tom M. Mitchell, and

Andrew Y. Ng. Improving text classification by shrinkage in

a hierarchy of classes. In Proc. of International Conference on

Machine Learning, pages 359–367. Morgan Kaufmann Publish-

ers Inc., 1998.

[NCO04] Alexandros Ntoulas, Junghoo Cho, and Christopher Olston.

What’s new on the web?: the evolution of the web from a

search engine perspective. In Proc. of International Conference

on World Wide Web, pages 1–12. ACM Press, 2004.

[NJ02] Andrew N. Ng and Michael Jordan. On discriminative vs. gen-

erative classifiers: A comparison of logistic regression and naive

bayes. In Proc. of Advances in Neural Information Processing

Systems, 2002.

[NM00] Natalya Fridman Noy and Mark A. Musen. Prompt: Algorithm

and tool for automated ontology merging and alignment. In

224

Proc. of Conference on Innovative Applications of Artificial In-

telligence, pages 450–455. AAAI Press / The MIT Press, 2000.

[NMTM00] Kamal Nigam, Andrew Kachites McCallum, Sebastian Thrun,

and Tom Mitchell. Text classification from labeled and unlabeled

documents using em. Machine Learning, 39(2-3):103–134, 2000.

[PC06] Navneet Panda and Edward Y. Chang. Kdx: An indexer for

support vector machines. IEEE Transactions on Knowledge and

Data Engineering, 18(6):748–763, 2006.

[PDG02] B. Piwowarski, L. Denoyer, and P. Gallinari. Un modèle pour

la recherche d’information sur des documents structurés. In

6th Journées internationales d’Analyse statistique des Données

Textuelles, 2002.

[PG05] Kunal Punera and Joydeep Ghosh. Clump: A scalable and ro-

bust framework for structure discovery. In Proc. of IEEE In-

ternational Conference on Data Mining, pages 757–760. IEEE

Computer Society, 2005.

[PG07] Kunal Punera and Joydeep Ghosh. Advances in Fuzzy Clustering

and its Applications, chapter Soft Cluster Ensembles, pages 69–

90. John Wiley & Sons, Ltd., 2007.

[Pie00] John Pierre. Practical issues for automated categorization of

web sites. In ECDL 2000 Workshop on Semantic Web, 2000.

[PLP+04] Michael Pelikan, James Leous, Richard Pearce, Margaret E.

Smith, and Russell Vaught. Searching for the needle in the

225

haystack: taxonomies, tags and targets. In Proc. of Annual

ACM SIGUCCS Conference on User services, pages 256–261.

ACM Press, 2004.

[PR03] Judea Pearl and Stuart Russell. Bayesian networks. In

Michael A. Arbib, editor, he Handbook of Brain Theory and

Neural Networks. MIT Press, 2nd edition, 2003.

[PRG05] Kunal Punera, Suju Rajan, and Joydeep Ghosh. Automatically

learning document taxonomies for hierarchical classification. In

Proc. of International Conference on World Wide Web (Special

interest tracks and posters), pages 1010–1011. ACM Press, 2005.

[PRG06] Kunal Punera, Suju Rajan, and Joydeep Ghosh. Automatic

construction of n-ary tree based taxonomies. In Proc. of IEEE

International Conference on Data Mining - Workshops, pages

75–79. IEEE Computer Society, 2006.

[PX99] P. M. Pardalos and G. Xue. Algorithms for a class of isotonic

regression problems. Algorithmica, 23(3):211–222, 1999.

[Qui] J. Ross Quinlan. Induction of decision trees. Machine Learning,

1(1):81–106.

[Qui90] J. Ross Quinlan. Induction of decision trees. In Jude W. Shavlik

and Thomas G. Dietterich, editors, Readings in Machine Learn-

ing. Morgan Kaufmann, 1990. Originally in Machine Learning

1:81–106, 1986.

[Qui93] J. Ross Quinlan. C4.5: programs for machine learning. Morgan

Kaufmann Publishers Inc., 1993.

226

[RGC05] Suju Rajan, Joydeep Ghosh, and Melba M. Crawford. Exploiting

class hierarchies for knowledge transfer in hyperspectral data.

In Multiple Classifier Systems, pages 417–427. Springer Berlin,

2005.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.

Williams. Learning internal representations by error propaga-

tion. pages 318–362, 1986.

[RK04] R. Rifkin and A. Klautau. In defense of one-vs-all classification.

Journal of Machine Learning Research, 5:101–141, 2004.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for

information storage and organization in the brain. Psychology

Review, 65(6):386–408, November 1958.

[Rot02] Dan Roth. Reasoning with classifiers. In Proc. of European Con-

ference on Principles of Data Mining and Knowledge Discovery,

pages 489–493. Springer-Verlag, 2002.

[RR01] Jason Rennie and Ryan Rifkin. Improving multiclass text classi-

fication with the support vector machine. AI Memo AIM-2001-

026, Massachusetts Institute of Technology, 2001.

[RT00] F. Ricca and P. Tonella. Web site analysis: Structure and evo-

lution. In Proc. of IEEE International Conference on Software

Maintenance, pages 76–86, 2000.

[RtY04] Dan Roth and Wen tau Yih. A linear programming formula-

tion for global inference in natural language tasks. In Proc. of

227

Conference on Computational Natural Language Learning, pages

1–8, 2004.

[SAM97] Joseph Sill and Yaser S. Abu-Mostafa. Monotonicity hints. In

Proc. of Advances in Neural Information Processing Systems,

volume 9, page 634. The MIT Press, 1997.

[Sch78] Gideon Schwarz. Estimating the dimension of a model. The

Annals of Statistics, 6(2):461–464, 1978.

[SEKX98] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu.

Density-based clustering in spatial databases: The algorithm

gdbscan and its applications. Data Mining Knowledge Discovery,

2(2):169–194, 1998.

[SFC02] Rahul Shah and Martin Farach-Colton. Undiscretized dynamic

programming: Faster algorithms for facility location and related

problems on trees. In Proc. of Annual ACM–SIAM Symposium

on Discrete Algorithms, pages 108–115, 2002.

[SFT01] Noam Slonim, Nir Friedman, and Naftali Tishby. Agglomerative

multivariate information bottleneck. In Proc. of Advances in

Neural Information Processing Systems, 2001.

[SG02] Alexander Strehl and Joydeep Ghosh. Cluster ensembles – a

knowledge reuse framework for combining multiple partitions.

Journal of Machine Learning Research, 3:583–617, December

2002.

228

[SKO01] Eran Segal, Daphne Koller, and Dirk Ormoneit. Probabilistic

abstraction hierarchies. In Proc. of Advances in Neural Infor-

mation Processing Systems, 2001.

[SL03] Aixin Sun and Ee-Peng Lim. Web unit mining: finding and

classifying subgraphs of web pages. In Proc. of International

Conference on Information and Knowledge Management, pages

108–115, 2003.

[Slo03] Noam Slonim. The Information Bottleneck: Theory and Appli-

cations. PhD thesis, The Hebrew University, 2003.

[SLWM04] Ruihua Song, Haifeng Liu, Ji-Rong Wen, and Wei-Ying Ma.

Learning block importance models for web pages. In Proc. of

International Conference on World Wide Web, pages 203–211.

ACM Press, 2004.

[SS97] Michael J. Schell and Bahadur Singh. The reduced monotonic

regression method. Journal of the American Statistical Associ-

ation, 92(437):128–135, 1997.

[ST99] Noam Slonim and Naftali Tishby. Agglomerative information

bottleneck. In Proc. of Advances in Neural Information Pro-

cessing Systems, 1999.

[Sto00] Q. Stout. Optimal algorithms for unimodal regression. Comput-

ing Science and Statistics, 32:348–355, 2000.

[Tam96] Arie Tamir. An o(pn2) algorithm for the p-median and related

problems on tree graphs. Operations Research Letters, 19:59–64,

1996.

229

[TH07] Robert Tibshirani and Trevor Hastie. Margin trees for high-

dimensional classification. Journal of Machine Learning Re-

search, 8:637–652, 2007.

[THA99] Loren Terveen, Will Hill, and Brian Amento. Constructing, or-

ganizing, and visualizing collections of topically related web re-

sources. ACM Transactions on Computer-Human Interaction,

6(1):67–94, 1999.

[THG+03] YongHong Tian, TieJun Huang, Wen Gao, Jun Cheng, and

PingBo Kang. Two-phase web site classification based on hidden

Markov tree models. In IEEE/WIC International Conference on

Web Intelligence, pages 227–236, 2003.

[TJHA05] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann,

and Yasemin Altun. Large margin methods for structured and

interdependent output variables. Journal of Machine Learning

Research, 6:1453–1484, 2005.

[TPB99] Naftali Tishby, Fernando Pereira, and William Bialek. The in-

formation bottleneck method. In Proc. of the Annual Allerton

Conference on Communication, Control and Computing, pages

368–377, 1999.

[1] E. M. Edghill (translator). Categories. The University of Ade-

laide, 2007.

[TSW03] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. Exploit-

ing structure, annotation, and ontological knowledge for auto-

230

matic classification of XML data. In Proc. of 6thInternational

Workshop on the Web and Databases, pages 1–6, 2003.

[TW04] Mike Thelwall and David Wilkinson. Finding similar academic

web sites with links, bibliometric couplings and colinks. Infor-

mation Processing and Management, 40(3):515–526, 2004.

[Val84] Leslie G. Valiant. A theory of the learnable. Communications

of the ACM, 27(11):1134–1142, 1984.

[Vap95] Vladimir Vapnik. The Nature of Statistical Learning Theory.

Springer, 1995.

[VD00a] Shivakumar Vaithyanathan and Byron Dom. Hierarchical un-

supervised learning. In Proc. of International Conference on

Machine Learning, June 2000.

[VD00b] Shivakumar Vaithyanathan and Byron Dom. Model-based hi-

erarchical clustering. In Proc. of Conference on Uncertainty in

Artificial Intelligence, June 2000.

[VD04] Volkan Vural and Jennifer G. Dy. A hierarchical method for

multi-class support vector machines. In Proc. of International

Conference on Machine Learning, pages 105–114. ACM Press,

2004.

[VL99] Nuno Vasconcelos and Andrew Lippman. Learning mixture hier-

archies. In Proc. of Advances in Neural Information Processing

Systems, pages 606–612. MIT Press, 1999.

231

[VSP+06] Karane Vieira, Altigran Silva, Nick Pinto, Edleno Moura, Joao

Cavalcanti, and Juliana Freire. A fast and robust method for web

page template detection and removal. In Proc. of International

Conference on Information and Knowledge Management, pages

256–267, 2006.

[WCH87] Morton E. Winston, Roger Chaffin, and Douglas Herrmann. A

taxonomy of part-whole relations. Cognitive Science, 11(4):417–

444, 1987.

[WLW04] Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. Probabil-

ity estimates for multi-class classification by pairwise coupling.

Journal Machine Learning Research, 5:975–1005, 2004.

[Yah] Yahoo! Web directory http://dir.yahoo.com.

[YL03] Lan Yi and Bing Liu. Web page cleaning for web mining through

feature weighting. In Proc. of International Joint Conference on

Artificial Intelligence, 2003.

[YL04] Xinyi Yin and Wee Sun Lee. Using link analysis to improve

layout on mobile devices. In Proc. of International Conference

on World Wide Web, pages 338–344, 2004.

[YLL03] Lan Yi, Bing Liu, and Xiaoli Li. Eliminating noisy information

in web pages for data mining. In Proc. of ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining,

pages 296–305. ACM Press, 2003.

[ZE02] Bianca Zadrozny and Charles Elkan. Transforming classifier

scores into accurate multiclass probability estimates. In Proc. of

232

ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, pages 694–699, 2002.

[ZK05] Ying Zhao and George Karypis. Hierarchical clustering algo-

rithms for document datasets. Data Mining and Knowledge Dis-

covery, 10(2):141–168, 2005.

[ZLPY04] Li Zhang, ShiXia Liu, Yue Pan, and LiPing Yang. InfoAnalyzer:

a computer-aided tool for building enterprise taxonomies. In

Proc. of International Conference on Information and Knowl-

edge Management, pages 477–483. ACM Press, 2004.

[ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH:

an efficient data clustering method for very large databases. In

Proc. of ACM SIGMOD International Conference on Manage-

ment of Data, pages 103–114, 1996.

233

Vita

Kunal Punera was born on January 15 1980 in the state of Goa in India.

He received the Bachelor of Engineering degree in Computer Engineering from

the University of Mumbai, India, in 2001. After graduation he worked as a

research assistant for a year at the Indian Institute of Technology in Bombay,

India.

Kunal entered the graduate program at The University of Texas at Austin

in the fall of 2002 and joined the Intelligent Data Exploration and Analysis

Lab headed by Dr. Joydeep Ghosh. He was awarded the Master of Science in

Engineering degree in December 2004 upon the completion of his thesis work

titled “Soft Cluster Ensembles” under the supervision of Dr. Ghosh. Since

that time he has been a doctoral student working on problems in data mining

and information retrieval for the World Wide Web. He has also completed

internships at the IBM Almaden Research Center and Yahoo! Research.

Permanent address: B-1504, Gokul Gagan,
Thakur Village, Kandivli(East),
Mumbai 400101, India

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

234

