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Traditional approaches in gamma-ray spectroscopy for determining the absolute 

full-energy peak efficiencies of germanium detectors are primarily either too time 

consuming or not economically viable.  In addition, these approaches are difficult to use 

for arbitrary source shapes and counting geometries.  An open source software package, 

KMESS (Kevin’s Mesh Efficiency Simulator Software), was developed to address these 

problems.  KMESS uses a new semi-empirical mesh-grid method to predict the absolute 

full-energy peak efficiencies of n- and p-type germanium detectors in both coaxial and 

closed-ended configurations.  The model assumes that any gamma-ray source shape can 

be treated as a collection of point sources.  The code was written in a modular form, 

making it easy to adapt for other detector configurations and materials.  A suite of web-

based graphical front-end tools was also developed to make the execution of KMESS 

user-friendly.  KMESS can predict most full-energy peak efficiencies to within 10% 

accuracy for the energy range 100–1800 keV in less than 10 minutes.   
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AN OPEN SOURCE SOFTWARE PACKAGE FOR THE MODELING 
OF GERMANIUM DETECTOR EFFICIENCIES 

Chapter 1:  Introduction 

1.1 INTRODUCTION 

The discovery of radioactivity by Henri Becquerel in 1896 revolutionized the 

fields of physics and chemistry, and forever changed the world in which we live.  His 

discovery invoked the basic human desire to understand the fundamental nature of the 

universe by delving deeper into the structure of the atom.  The study of radioactivity was 

essential in showing the world the benefits of nuclear power and the horrors of nuclear 

weapons.  It has also led to the ability to treat certain cancers, sterilize food, and control 

insect populations.  Even the social and political climates of society have been shaped by 

its discovery, ranging from the Cold War to the current nuclear situations with Iran and 

North Korea.  There is no doubt that the study of radioactivity will continue to amaze and 

revolutionize generations to come.   

The desire to quantify the amount of radioactivity in a substance has led to the 

invention of various forms of radiation detectors.  A study is performed here on the 

efficiencies of one type of radiation detector, namely the germanium detector.  

Furthermore, the result of this study has been to produce an open source software 

package that can quickly and accurately predict the efficiencies of germanium detectors.  
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1.2 GAMMA-RAY DETECTION 

1.2.1 History of Gamma-rays 

Radioactivity is the process in which an unstable atomic nucleus releases energy, 

or decays, in order to reach a more stable nuclear configuration.  The energy released by 

the nucleus during its decay is typically in the form of either particles or electromagnetic 

waves.  One possible product of radioactive decay is a gamma-ray, a form of 

electromagnetic radiation.  Gamma-rays are the most energetic class, highest frequency 

and shortest wavelength, of the electromagnetic spectrum. 

Paul Ulrich Villard is generally regarded as the discoverer of the gamma-ray, and 

also as the one who coined the name (Debertin et al., 1988).  Villard discovered them in 

Paris in 1900 while noticing that rays emanating from Uranium were not deflected by a 

magnetic field (Debertin et al., 1988).  Gamma-rays were soon realized, like X-rays, to 

be electromagnetic waves.  For a long time there was no distinction between X-rays and 

gamma-rays, primarily because they were both electromagnetic radiations that interacted 

in matter similarly.  The distinction was eventually made that gamma-rays were a 

characteristic of nuclear decay, whereas X-rays were the result of electrons changing 

their orbital shells (Friedlander and Kennedy, 1957). 

 

1.2.2 History of Gamma-ray Detectors 

In order to quantify the radioactivity of a substance using a detector, one needs to 

know the efficiency of that detector.  The efficiency is a measure of how many decay 

events are observed by the detector relative to the number of decay events produced by a 

sample.  If the radioactive source happens to give off a non-trivial quantity of gamma-

rays, a gamma-ray detector is often employed to measure its radioactivity.  Early forms of 
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gamma-ray detectors were either gas chambers or sodium-iodide (NaI) crystals.  In the 

1960’s, the first semiconductor gamma-ray detectors became commercially available 

(Knoll, 2000).  Semiconductor detectors soon became widely used because of their 

superior energy resolution.  The primary semiconductor materials used in these detectors 

were either germanium or silicon.  Germanium became the preferred choice for gamma-

ray spectroscopy because, having a higher atomic number, it yielded higher efficiencies 

for a given crystal size (Knoll, 2000).  Germanium was also easier to manufacture in a 

pure form.  Silicon detectors are still used, but primarily for X-ray spectroscopy.  Since 

that time, the manufacturing processes of germanium detectors have changed, but their 

basic functionality remains the same. 

 

1.3 KEVIN’S MESH EFFICIENCY SIMULATOR SOFTWARE (KMESS) PACKAGE  

1.3.1 Code Justification 

Knowledge of the absolute detector efficiency is necessary for radioactivity 

determination and helps with nuclide identification.  Traditional approaches to find the 

absolute efficiency of germanium detectors are primarily either overtly time consuming 

or not economically viable.  The Chemistry division’s Nuclear and Radiochemistry group 

(C-NR) at Los Alamos National Laboratory currently has a counting room that employs a 

large number of germanium detectors (~40), routine source shapes (~10), and available 

counting geometries (~20).  The amount of time and cost to experimentally calibrate the 

efficiencies for all the possible combinations of detectors, source types, and counting 

geometries is significant.  These measurements would also only be valid for the source 

shape and counting geometry used in the calibration.  Therefore, the ability to predict 
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efficiencies, to within a fair degree of accuracy, <10% but not >20%, for any detector, 

source shape, and counting geometry in a timely manner, ~minutes, was needed. 

A new semi-empirical mesh-grid method that quickly (~minutes) and accurately 

(~10%) models the absolute full-energy peak efficiencies (FEPE) of germanium detectors 

for arbitrary gamma-ray source shapes and counting geometries was developed to address 

this need.  An open source software package, called KMESS (Kevin’s Mesh Efficiency 

Simulator Software), was written that utilizes this method.  The current version of the 

code is being prepared for open source distribution under the GNU (GNU’s Not Unix) 

Public License (GPL).  A suite of user-friendly web-based tools to control and execute 

KMESS was also developed.  There is no software package currently available, either 

commercially or open source, that performs as diverse, quick, and accurate calculations 

of germanium detector efficiencies. 

   

1.3.2 Brief Description of KMESS 

KMESS is a software package written in the C language to predict the full-energy 

peak efficiencies of n- and p-type germanium detectors in both true and closed-ended 

coaxial configurations.  The base KMESS code was written in C in order to achieve fast 

computational times and to provide easy debugging for future users.  It uses a new semi-

empirical mesh-grid method to predict the full-energy peak efficiencies of arbitrary 

gamma-ray source shapes and counting geometries.  The mesh-grid method is based on 

the effective solid angle concept, and needs only one experimentally measured reference 

efficiency curve to predict the efficiencies of other counting geometries.  The primary 

assumption of the method is that any gamma-ray source shape can be approximated as a 

collection of point sources.  The source is input into KMESS as a mesh of points, thus 

making the code handle arbitrary gamma-ray source shapes. 
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The base KMESS code is run from the command line and controlled with 

arguments and flags.  KMESS was designed to be modular, meaning that it can be easily 

altered to run in different ways.  This allows future users to easily modify the code and 

change the way that KMESS makes calculations.  For instance, the code could be adapted 

to handle well or planar detector configurations.  Compiling and building KMESS is done 

using the GNU Make tools, so that running it on different platforms is straightforward. 

  A suite of web-based graphical front-end tools, written in a combination of the 

PHP (PHP: Hypertext Preprocessor) and JavaScript programming languages, were also 

developed to facilitate a more user-friendly interaction with KMESS.  The programming 

languages for the front-end were chosen so that KMESS could be easily incorporated into 

the current counting room software.  For more information regarding the code design and 

usage, see Chapter 4 or the README files included in Appendix A.1. 
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Chapter 2: Background 

2.1 HISTORY OF GAMMA-RAY DETECTOR EFFICIENCY CALCULATIONS 

2.1.1 Introduction 

Semiconductor detectors, primarily high-purity germanium, have become an 

industry standard for gamma-ray spectroscopy.  These detectors allow one to study 

gamma-rays in the energy range from a few keV up to several MeV.  When used 

properly, the detectors produce pulses whose amplitudes are proportional to the energy 

deposited by incident gamma-rays.  If these pulses are binned based on amplitude using a 

multi-channel analyzer, an energy spectrum is produced.  Typically encountered spectra 

have a continuum rich in features and peaks.  The individual peaks appear to have a 

shape like a typical normal distribution, or a normal distribution with an exponential tail.  

As seen in the spectra, each peak corresponds to a specific photon energy.  If the peak is 

at the same energy as a known gamma-ray, then the area under this peak is called the area 

under the full-energy peak.   

The determination of the activity of a sample from the observed area under a full-

energy peak requires knowledge of the detector’s absolute full-energy peak efficiency.  A 

comparative standard is typically used to determine this efficiency because it depends 

upon both photon energy and counting geometry.  Thus, for non-standard counting 

geometries and sample shapes, it is often difficult to obtain the absolute full-energy peak 

efficiency experimentally, computationally, or even theoretically.  Therefore, many 

assumptions and approximations must often be made.  The word “efficiency” from 

henceforth is used to imply absolute efficiency at a specific energy, rather than relative 

efficiency, unless otherwise noted. 
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All of the traditional approaches to determine the absolute full-energy peak 

efficiencies of a gamma-ray detector can be categorized into one of three methods.  The 

three traditional methods are called relative, Monte Carlo, and semi-empirical.  These 

methods are described further in Section 2.2. 

 

2.1.2 History 

The available work on gamma-ray detector efficiencies dates back to the early 

1950's.  The Mathematics Panel at Oak Ridge National Laboratory initially computed a 

simple equation describing the total detection efficiency of NaI detectors, as a function of 

geometry and interaction probability (Kahn, 1953).  The extensions to total detection 

efficiency of a point, line, and disk sources were calculated analytically at the Idaho 

Operations Office of the Atomic Energy Commission (Vegors et al., 1958; Heath, 1957).   

Eventually these integrals were extended to planar Ge(Li) detectors and intrinsic 

Ge detectors for both point and disk shaped sources (Grosjean et al., 1962; Heath, 1964; 

Graduynya et al., 1971; Kaplanis, 1978).  Total efficiencies for large coaxial Ge(Li) 

detectors, both closed and open, were found for point sources with respect to point 

sources on the detector primary axis (Camp et al., 1969; Griffiths, 1971).  These 

landmark papers on cylindrical radiation detector efficiencies were, however restricted 

only to finding the total detector efficiency.  To convert to absolute full-energy peak 

efficiency, one needs the so-called peak-to-total ratio at the energy of interest (Vegors et 

al., 1958).  Some of the older literature strongly suggested using Monte Carlo methods to 

find the absolute full-energy peak detector efficiency (Griffiths, 1971; Waino et al., 

1966). 

Other methods were developed to find the absolute full-energy peak efficiency of 

coaxial Ge(Li) detectors for points, disks, cylinders, and spheres, but were based on 
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approximations that represent the detector and source as physical points (Cline, 1979; 

Gunnink, 1972).  This is called the single point-to-point detector or the effective 

interaction depth model (Gunnink, 1972).  The model reduces the detector volume to an 

equivalent point, where all gamma-ray interactions are considered to occur.  Several other 

people have studied the point-to-point detector model experimentally and 

computationally to measure the effective interaction depth in germanium detectors (Yucel 

et al., 1996; Notea, 1971; Crisler et al., 1971; Cline, 1979; Baba et al., 1991).  A modern 

form of this method was developed that uses primarily the manufacturers’ detector 

specifications to predict absolute full-energy peak efficiencies to within a few percent 

(Gunnink, 1990; Gunnink et al., 1992). 

A method of calculating the absolute full-energy peak efficiency that treats bulk 

sources as a collection of point sources was developed (Kushelevski et al., 1975).  This 

method demonstrated that displacing a point source off the detector’s primary axis caused 

the detection efficiency to decrease.  Furthermore, as the source was displaced, the 

efficiency dropped off like a Gaussian distribution whose width depended upon the 

energy of the gamma-ray and the height of the source above the detector (Kushelevski et 

al., 1975; Chatani, 1999; Noguchi et al., 1980).  Another group showed how to correct 

this method for source self-absorption (Noguchi et al., 1980).  In addition, another group 

showed that a volumetric source inside a NaI well detector could be modeled as a 

collection of disc sources (Cejnar et al., 1979).  However, all of these groups fit their 

model to rigorously obtained experimental data from calibrated sources in order to 

reconstruct their volumetric efficiencies.  All of the models appear to be only valid for 

points with a displacement from the detector’s primary axis less than the radius of the 

detector.  It was also important for this method to use single-line emitting gamma-ray 

sources in order to reduce coincidence-summing effects. 
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In the early 1980's, a new method was suggested to find the absolute full-energy 

peak detector efficiency, using the concept of the effective solid angle (Moens et al., 

1981).  Afterwards, a few highly successful codes utilizing this “Moens” method were 

developed, but then quickly disappeared (Ugletveit et al., 1989; Vukotic et al., 1997; 

Jovanovic et al., 1997).  Hybrid Moens methods using Monte Carlo integration, rather 

than typical numerical integration, were also investigated (Jiang et al., 1998; Vidmar, 

2005).  It was found that the hybrid Monte Carlo method gives results that are the same 

as numerical integration, but that Monte Carlo integration facilitates calculations when 

the source is placed off-axis (Jiang et al., 1998).  However, much of the current literature 

is still preoccupied with using Monte Carlo methods to produce absolute full-energy peak 

efficiencies (Jackman, 2004; Hurtado et al., 2004; Ewa et al., 2001; Rodenas et al., 2003; 

Karamanis, 2003). 

 

2.2 TRADITIONAL METHODS TO CALCULATE DETECTOR EFFICIENCIES 

2.2.1 Relative Method 

The relative method is where one tries “to imitate as well as possible” the sample 

with a comparative standard (Jovanovic et al., 1997).  For this method to be sufficiently 

accurate, the standard must be similar to the sample in both geometry and composition, 

and the counting conditions must be the same for both samples.  If “enough care” is 

taken, the results of this method are often sufficiently accurate that they cannot be 

surpassed by any other method (Jovanovic et al., 1997).  However, the lack of “similar 

enough” standards, combined with the difficulty of varying counting and source 

geometries, restricts this method to special circumstances. 
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2.2.2 Monte Carlo Method 

Calculations using a stochastic, or Monte Carlo, method may be employed to 

yield absolute full-energy peak efficiencies for any arbitrary sample shape and counting 

conditions.  This method statistically models the interactions of each photon emitted from 

the source, until the photon either leaves the “world” or deposits all of its energy within 

the active detector volume (Jovanovic et al., 1997; Jackman, 2004).  It must also contain 

a treatment of all secondarily produced electrons, positrons, and photons.  Because it is a 

statistical method, the primary errors that arise are themselves statistical in nature 

(Jackman, 2004).  For this method to be exact, one needs to model a sufficiently large 

number of source particles, know precise details about the compositions of detector and 

intercepting layers, their corresponding energy dependent cross sections, and parameters 

characterizing electron, positron, and photon behavior in the model (Jovanovic et al., 

1997).   

The primary limiting factors to this method are the temporal requirements of 

computation necessary for a “sufficiently large” number of source photons, unsatisfactory 

knowledge of detector specifications, lack of understanding of the exact physics, and 

poor knowledge of other physical parameters aforementioned (Jovanovic et al., 1997; 

Jackman, 2004).  One Monte Carlo study revealed that a few millimeter variations in 

fundamental detector parameters like detector diameter, end cap distance, and well 

diameter can produce large variations, ~15%, in simulated full-energy peak efficiencies 

(Vargas et al., 2002).  At present, the accuracy of this method is difficult to reduce much 

below 10% because of the uncertainties in these detector parameters (Jackman, 2004).  In 

addition, the amount of computation time necessary to yield good statistics using a code 

such as MCNP is on the order of days for a modern desktop PC (Jackman, 2004). 
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2.2.3 Semi-empirical Method 

A semi-empirical method can be employed that uses a combination of 

experimental measurements and theoretical detector response.  This is typically done 

using an experimentally measured reference efficiency curve where, relative to this, 

calculations of the desired efficiencies can be made (Moens et al., 1981; Jovanovic et al., 

1997; Gunnink et al., 1992).  There are many different treatments of the semi-empirical 

method, but only the simultaneous treatment of photon attenuation, geometry, and 

detector response is justified (Moens et al., 1981).  The two primary methods that have 

arisen are called the effective interaction depth and effective solid angle methods.   

The effective interaction depth method defines the efficiency as the product of 

terms that describe photon attenuation, geometry, and detector response (Gunnink et al., 

1992).  It makes the assumption that all of the gamma-ray interactions occur at a single 

point in the detector.  Efficiency curves are created from semi-empirical functions 

describing three different regions of the photon energy spectrum.  These functions were 

generated from fitting data across a wide range of detector sizes and manufacturers’ 

specifications (Gunnink, 1990; Gunnink et al., 1992). 

The effective solid angle method analytically calculates, using vector calculus, a 

mathematical integral that simultaneously treats photon attenuation, geometry, and 

detector response.  The computation time in this method is trivial, because it is primarily 

limited only by how fast one can numerically integrate.  The accuracy is often better than 

that obtained with the stochastic method (Ugletveit et al., 1989; Jovanovic et al., 1997; 

Ewa et al., 2001).   

One limitation to the current semi-empirical methods is that they have only been 

solved for simple source shapes, such as the point, disk, cylindrical, and Marinelli 

geometries.  The Marinelli geometry is a large plastic beaker with an annular bottom that 
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slips over the detector.  Another limitation is that uncertainties in the experimentally 

measured reference efficiency curves permeate throughout subsequent calculations.  

However, because the semi-empirical methods calculate the absolute full-energy peak 

efficiency using a reference curve, they should be less sensitive than Monte Carlo 

methods to the uncertainties in fundamental detector parameters. 

 

2.3 COMPUTER CODES 

2.3.1 Introduction to Computer Codes 

Computer codes to perform absolute full-energy peak efficiency calculations have 

been developed many times over.  Most typical gamma-ray analysis codes have a feature 

to perform relative method efficiency calibrations.  Thus, more attention will be paid here 

to the codes that utilize Monte Carlo and semi-empirical methods. 

 

2.3.2 Monte Carlo Method Codes 

The industry standard Monte Carlo based codes are MCNP and GEANT.  Both of 

these codes were originally coded in FORTRAN.  Since then, GEANT has been ported to 

C++ and a version of MCNP is currently being ported to the C language (Hurtado et al., 

2004).  Both codes are difficult to use, install, and setup for different sample shapes and 

counting geometries.  In addition, modeling of exotic source shapes is very difficult in 

both codes.  Furthermore, MCNP and GEANT both lack proper handling of important 

low-energy gamma-ray physics.  In fact, MCNP has been shown to do a poor job of 

modeling low-energy gamma-ray source self absorption (Venkataraman et al., 2005).  

Also, the low-energy GEANT extension libraries correct Compton cross-sections for 

bound electron momentum, but do not account for resulting changes in the scattered 
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particle energies (Kippen, 2004).  In addition, the low-energy GEANT extension libraries 

have errors in the treatment of Rayleigh scattering (Kippen, 2004). 

One group has developed a new Monte Carlo based code called GESPECOR 

specifically for absolute full-energy peak efficiency calculations (Sima et al., 2001).  

Though the code has a nice graphical front-end, the restrictions that GESPECOR is only 

Monte Carlo based, and only a WINDOWS based program are inherent downsides.  

Another group developed their own Monte Carlo code called DETEFF (Cornejo Diaz et 

al., 1998).  This code tracks only photons that deposit all of their energy in the detector, 

and contribute to full-energy peaks.  It also neglects Bremsstrahlung from secondary 

electrons.  As a result, the calculations are only good for photons less than 2 MeV 

(Cornejo Diaz et al., 1998).  On the commercial market, Canberra has its 

LABSOCS/ISOCS software which is relatively inexpensive.  However, Canberra must 

characterize the detector in order to use LABSOCS/ISOCS, which is an expensive 

process.  LABSOCS/ISOCS also only works on WINDOWS.  Though it looks promising 

from the outside, the inside reveals that the code is basically just using a polynomial or 

“grid” fit to MCNP data (Venkataraman et al., 2005).  Furthermore, one group found that 

the Canberra LABSOCS/ISOCS software was only accurate to about 8%, and therefore 

was not good enough to be used for their quantitative analyses (Bossus et al., 2006). 

 

2.3.3 Semi-empirical Method Codes 

Several semi-empirical method based codes have been developed.  The earliest, 

SOLANG, was coded for VAX 11/780 in FORTRAN 77, and eventually ported in 

FORTRAN to PC (Moens et al., 1981).  This code restricted volume and disc sources to 

be centered on the detector’s primary axis.  The source code for SOLANG is not 

available, as the program was commercialized, and has since been incorporated into a 
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package called KAYZERO/SOLCOI.  The other codes based on SOLANG had names 

like EXTSANGLE, MARSANGLE, and WELLSANGLE.  These codes performed 

effective solid angle calculations for cylindrical, Marinelli, and well geometries 

respectively. 

Another group used the same method, but developed a separate code that used 

Romberg integration, rather than Moens choice of Gauss-Legendre quadrature (Ugletveit 

et al., 1989).  Also, instead of integrating the detector only once with the coaxial hole 

included, this code integrated the detector as a true cylinder and then subtracted out the 

effect of the “coaxial hole” detector.  This produced results within 2-3% of experimental 

data (Ugletveit et al., 1989).  Different groups have used Monte Carlo integration and 

produced results equivalent to numerical integration, as in the code EFFTRAN (Vidmar, 

2005; Jiang et al., 1998).   

Another group, from the former Yugoslavia, wrote a PASCAL code called 

ANGLE-PC, which used the same algorithms as the Moens old FORTRAN codes, but 

with a nicer menu driven front-end (Jovanovic et al., 1997).  ANGLE-PC allowed for 

volume and disc sources to be placed off the primary detector axis.  However, despite the 

stunning accuracy (~3%) and quick run time (~seconds), ANGLE was still designed only 

to use under WINDOWS and for standard geometric source shapes.   

Another code called DETEFF, which has nothing to do with the Monte Carlo 

code of the same name, was developed (Lippert, 1983).  This code does not restrict the 

source to be on the detector’s primary axis.  It uses a simple model of treating the source 

and detector as collections of point sources.  However, the code neglects the central hole 

in true coaxial, closed-end coaxial, and well detectors.  It shows fairly good results for 

point sources, but the results for sources of other geometrical shapes, appear to be poor 
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(Lippert, 1983).  The source code is unavailable for all of these packages, except possibly 

EFFTRAN. 

Another commercially available program, called SYNTH, allows for the 

generation of synthetic gamma-ray spectra.  This program was developed at Pacific 

Northwest National Laboratory under WINDOWS and uses Visual Basic combined with 

old FORTRAN routines.  Efficiency curves can be generated based on simple detector 

parameters, specified in the manufacturers’ data sheets.  The efficiencies are generated 

using a version of the single point-to-point detector model (Gunnink, 1972).  The most 

modern version of Gunnink’s code, called EFFIC, is incorporated into the GAMANAL 

and GRPANAL codes.  EFFIC allows for several or even no reference points to be used 

to calculate theoretical efficiency curves (Gunnink, 1990).  EFFIC has produced results 

that agree within an accuracy of a few percent for small or typically encountered sources 

placed on the detector’s primary axis (Gunnink et al., 1992).  In addition, the typical run 

times for the code are fractions of a second.  The accuracy of Gunnink’s model for 

arbitrary source shapes and counting geometries is unknown.  As will also be shown, the 

latest version of SYNTH differs dramatically from the latest version of EFFIC. 

KMESS combines most of the better features found in the other semi-empirical 

codes.  For example, it allows for arbitrary source shapes, counting geometries, source 

self-absorption corrections, and absorbers.  Because it is also modular, KMESS offers 

more versatility than the other codes.  This means that each of the features in KMESS can 

be independently improved upon without making major changes to the code.  The 

computational algorithms used in EFFIC, for example, could therefore be easily 

incorporated into KMESS.  KMESS also allows for inhomogeneous radionuclide 

distributions within the source.  In addition, many of the codes aforementioned are either 
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expensive or no longer available.  KMESS eliminates those problems by being open-

source and freely distributed.   
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Chapter 3: Theory 

3.1 GAMMA-RAY INTERACTIONS 

3.1.1 Introduction to Gamma-ray Interactions 

All radiation detectors should, in principle, produce an output pulse for each 

quantum of radiation that interacts within its sensitive volume.  However, because 

gamma-rays lack charge, detection is only possible if they first undergo a significant 

interaction in the detector.  There are a large number of interaction mechanisms possible 

for gamma-rays, but only three play a major role in X-ray and gamma-ray measurements 

with germanium detectors.  These are photoelectric absorption, Compton scattering, and 

pair production.  All of these processes lead to the partial or complete loss of gamma-ray 

energy in the detector (Knoll, 2000).  Each of these processes has a specific gamma-ray 

energy range in which it is dominant over the other processes.  Photoelectric absorption 

tends to dominate the low energy gamma-ray interactions.  Compton, or incoherent, 

scattering dominates the middle energy gamma-ray interactions.  Pair production in the 

material dominates the higher energy gamma-ray interactions.  Figure 3.1 shows the 

linear attenuation coefficients for germanium as a function of gamma-ray energy.  This 

plot serves to illustrate the effects that each of these processes have on the total linear 

attenuation coefficient.   
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Figure 3.1: Total Linear Attenuation Coefficient for Germanium and Processes that 
Contribute to it as a Function of Gamma-ray Energy (Berger et al., 2007). 
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3.1.2 Photoelectric Absorption 

When a photon is incident upon the surface of a metal, it is observed that 

electrons may be ejected (Rohlf, 1994).  This phenomenon is known as the photoelectric 

effect.  In photoelectric absorption, a photon interacts with a bound electron in such a 

way that the photon completely disappears and the atom ejects an energetic photo-

electron from one of its bound shells (Knoll, 2000).  For this to happen, the energy of the 

gamma-ray must be greater than the binding energy of the electron.  Gamma-rays of 

sufficient energy will typically eject a photo-electron from the tightly bound K shell of 

the atom (Knoll, 2000).  The ejection of the photo-electron leaves behind a vacancy in 

one of the atomic shells.  This vacancy is filled by the capture of a free electron and/or by 

the shifting of electrons in other shells.  Thus, the production of one or more 

characteristic X-rays typically accompanies this process. 

 

3.1.3 Compton Scattering 

The process by which a photon scatters with a free electron is called Compton, or 

incoherent, scattering.  It is named after Arthur Compton, who first made measurements 

of photo-electron scattering in 1922 (Rohlf, 1994).  In Compton scattering, a photon 

encounters a free electron, seemingly at rest.  The photon imparts some of its energy to 

the electron, and then deflects through some angle.  The electron, having gained some 

momentum from the collision, then goes off at some other angle.  As most electrons 

encountered in nature are bound in atomic shells, the free electron assumption is not 

always true.  If the binding energy of the electron is taken into account, the energy of the 

scattered photon spreads into a distribution (Knoll, 2000).  However, except for low 

initial gamma-ray energies, the momentum transferred to the atom in the collision can 

generally be neglected (Kippen, 2004).    
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3.1.4 Pair Production 

If the energy of the incident gamma-ray energy exceeds twice the rest-mass 

energy of an electron, 1.022 MeV, the process of pair production becomes possible 

(Knoll, 2000).  The probability for pair production remains very low until the gamma-ray 

energy approaches several MeV (Knoll, 2000).  The interaction typically takes place in 

the Coulomb field of the nucleus.  In pair production, the incident gamma-ray disappears 

and an electron-positron pair is created.  Excess initial gamma-ray energy, above 1.022 

MeV, goes into the kinetic energy shared by the positron and electron.  The positron is 

inherently unstable and annihilates on the order of 1 ns after slowing down in the medium 

(Knoll, 2000).  The annihilation of the positron produces two photons of energies 0.511 

MeV.  Compared with the response time of detectors, 100 to 700 ns, the annihilation of 

the positron occurs almost instantaneously (Gilmore and Hemingway, 1995).  Because of 

this, the creation of secondary annihilation photons is generally considered to be part of 

the entire pair production interaction.  If one of the annihilation photons escapes, it 

produces a single escape peak that is seen in the spectrum at 0.511 MeV below the full-

energy gamma-ray peak.  If both of the annihilation photons escape, it produces a double 

escape peak that is seen in the spectrum at 1.022 MeV below the full-energy gamma-ray 

peak. 

 

3.1.5 Rayleigh Scattering 

Another gamma-ray interaction mechanism is called Rayleigh, or coherent, 

scattering.  In this case, a photon scatters elastically with all of the electrons in the atom, 

coherently, and leaves the electrons’ energies unchanged (Rohlf, 1994).  The gamma-ray 
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neither excites nor ionizes electrons in the atom and retains most of its original energy 

after the scattering event.  Thus, virtually no energy is exchanged in this reaction, and 

scattering events do not contribute to detector response (Knoll, 2000).  This type of 

interaction is also strongly forward peaked, so that the gamma-ray is not significantly 

deflected from its original path (Moens et al., 1981).  The probability for Rayleigh 

scattering is significant only for low photon energies and absorbers with high atomic 

numbers (Knoll, 2000). 

 

3.2 GERMANIUM DETECTORS 

3.2.1 Semiconductors 

In order to have a good understanding of the functionality of germanium 

detectors, it is essential to be familiar with some of the properties of semiconductors.  

Much of the discussion here will primarily focus on germanium as the semiconductor of 

interest.  However, the properties of other semiconductor materials are similar. 

Modern techniques for purifying germanium, such as zone refining, can typically 

reduce the amount of impurities to less than 910  3−⋅ cmatoms   (Knoll, 2000).  

Germanium is therefore a prime candidate for semiconductor studies because of this high 

level of purity.  When atoms of germanium are combined, they bind together to form into 

a crystalline solid.  When this happens, the energy levels of the electron shells broaden 

into bands that contain a fixed number of electrons (Knoll, 2000).  Between these bands 

are energy regions, also called gaps, which are forbidden to electrons.  The lower band 

that results is called the valence band, which corresponds to the outer-shell electrons 

being bound to specific lattice sites within the crystal (Knoll, 2000).  The upper band is 
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called the conduction band, in which electrons are free to move about the crystal (Knoll, 

2000).   

In order for an electron to move between the valence and conduction bands, it 

must gain or lose an amount of energy equal to the energy of the band gap.  

Semiconductors typically have a band gap energy of about 1 eV.  When an electron is 

promoted to the conduction band it leaves behind a vacancy in the valence band.  This 

vacancy is effectively positively charged and is called a hole (Gilmore and Hemingway, 

1995).  The electrons and holes then tend to redistribute themselves until the holes lie at 

the top of the valence band and the electrons at the bottom of the conduction band.   

The electrons and holes can be made to move in the presence of an electric field 

(Knoll, 2000).  Thus, they are often referred to as charge carriers.  In the absence of an 

electric field, the electrons excited to the conduction band would be expected to return 

back to the valence band.  In the presence of an electric field the electrons and holes will 

migrate against or with the electric field vector respectively (Knoll, 2000).  The mobility 

of these charge carriers contributes to the overall conductivity of the material. 

The mobility of charge carriers in a semiconductor material is also highly 

dependent upon the material temperature.  At temperatures above absolute zero, charge 

carriers can be made to move between the valence and conduction bands simply by 

thermal excitation from the surroundings.  Germanium detectors are typically operated at 

low temperatures in order to reduce the number of charge carriers arising from thermal 

excitation.  Gamma-rays can also be used to cause the mobility of electron and hole 

charge carriers.  A gamma-ray interaction a semiconductor can often produce primary 

electrons with energies considerably above the energies of thermally excited charge 

carriers (Gilmore and Hemingway, 1995). 
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In general, the discussion above is only valid for pure semiconductor materials.  

Due to the limitations of modern refining techniques, there will always be a certain 

amount of impurities leftover.  These impurities disturb the electronic balance of the 

crystal lattice.  If the impurity valence state is too low, there will be an absence of 

electrons at that lattice site, and it will tend to accept electrons.  These are called acceptor 

impurities.  A germanium lattice with an overall net acceptor impurity is called p-type 

germanium.  On the other hand, if the impurity valence state is too high, there will be an 

excess of electrons at that lattice site, and it will tend to donate electrons.  These are 

called donor impurities.  A germanium lattice with an overall net donor impurity is called 

n-type germanium.  Thus, a p-type material has an excess of holes, and an n-type has an 

excess of electrons.  The impurities effectively negate each other, but the net 

semiconductor material properties will depend upon which impurity is in excess (Gilmore 

and Hemingway, 1995).  These impurities can be adjusted by adding small amounts of 

impurities of an appropriate type, a process called doping. 

An interesting behavior occurs when two materials of dissimilar semiconductor 

type are placed in contact with each other, called a p-n junction.  Under thermal influence 

the electrons and holes will diffuse from one band to the other, until they have effectively 

cancelled each other out (Gilmore and Hemingway, 1995).  The result is that around the 

physical junction of the two materials, there will be a region where there are essentially 

no mobile charge carriers.  This is typically called the depletion region because the 

mobile charge carriers have been depleted there (Simpson, 1987).  A net charge will be 

leftover from the ionized acceptor and donor impurity atoms.  This net charge creates an 

electric potential across the junction, called the contact or diffusion voltage. 

An external voltage can be applied across the p-n junction, called biasing, to make 

the materials behave in interesting ways.  If a positive voltage is applied to the n-type 
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side of the junction, and a negative to the p-type side, the effect is a widened depletion 

region.  This is called reverse biasing the junction.  If a negative voltage is applied to the 

n-type side of the junction, and a positive to the p-type side, the effect is a smaller 

depletion region.  This is called forward biasing the junction.  It is preferable to use a 

reverse bias for a germanium detector, because a larger depletion region translates into a 

larger sensitive detector volume. 

 

3.2.2 Detector Characteristics 

There are two main types of germanium detectors that result from the process of 

purifying germanium.  The leftover impurities in the crystal determine whether the 

detector will become an n-type or p-type.  Donor and acceptor atoms are typically added 

to the crystal surfaces in the form of contact layers.  These layers create a reverse biased 

p-n junction, and allow for the crystal region between the contacts to be fully depleted.  

The detector type determines how and where these contacts are applied. 

One widely used crystal shape is called a coaxial design.  Figure 3.2 shows the 

typical coaxial crystal designs, as well as the placement of the contact layers on the 

crystal surfaces.  All of the germanium detectors used in experiments and simulations in 

this work were p-type and closed-end coaxial.  The p-type contact is typically a layer 0.3 

µm thick of ion-implanted boron.  The n-type contact is typically a layer 700 µm thick of 

diffused lithium.  However, the n-type contact thickness for a typical lithium-drifted 

detector is greater. 
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Figure 3.2: Three Common Coaxial Detector Designs and the Placement of Contact 
Layers (Knoll, 2000). 

The sensitive detector region is in general, the region between the n-type and p-

type contacts (Knoll, 2000).  The region between the physical crystal surface and contact 

layer is therefore not considered a sensitive part of the detector.  This region acts as a 

dead-layer of material to incident radiation, because the contacts generally have 

appreciable thicknesses.  For instance, p-type detectors have the thicker n-type contact 

layer on their outer surface, and thus have a thicker outer dead-layer.  This dead-layer 

will attenuate photons that pass through it.  For gamma-ray energies over 200 keV, this 

attenuation is generally negligible.  However, lower energy gamma-rays can be severely 

attenuated by this dead-layer.  It has been shown that the dead-layer varies in time and 
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over the surface of the crystal (Knoll, 2000; Keyser, 2002).  Thus, the dead-layer 

thickness quoted on a manufacturer specification sheet is more of an approximation to the 

average dead-layer thickness.  However, several experimental measurements would allow 

one to quantify the dead-layer more accurately (Jackman, 2004). 

 

3.2.3 Detector Use and Corrections 

Basic detector operation is obtained by applying a high voltage reverse bias to the 

detector contacts.  This voltage fully depletes the region between the contacts and 

produces a sensitive detector volume of mobile charge carriers.  The electrons and holes 

are swept out the sensitive detector volume by this voltage, along its electric field lines.  

The charges are collected by the preamplifier and turned into voltage pulses.  The 

amplitude of these pulses is proportional to the energy deposited by the incident gamma-

ray.  The output of the preamplifier is generally fed into an amplifier to change the pulse 

shape and increase its magnitude.  A multi-channel analyzer (MCA) is then used to sort 

the pulses based on their amplitudes.  The result of the binning produces what is 

commonly seen as an energy spectrum. 

To produce meaningful results, a semiconductor detector must be kept at very low 

temperatures.  If the detector is operated at room temperature, there will be too large of a 

thermally-induced leakage current.  This is because the band gap of germanium is only 

about 0.7 eV, and a large number of thermally excited charges will easily cross the band 

gap (Knoll, 2000).  These thermally induced charges will tend to dominate the detector’s 

signal in the form of noise, and degrade its energy resolution.  In order to reduce the 

thermally induced leakage current, the detectors are typically cooled to around 77 K.  

Cooling is often done using liquid nitrogen in an insulated dewar that is kept in thermal 
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contact with the detector.  The detector is also housed in a vacuum-tight cryostat to 

reduce thermal conductivity with the surroundings. 

There are several corrections that often need to be made to detector observations.  

These are dead-time, pulse pile-up, and summing corrections.  Dead-time is a measure of 

the minimum amount of time needed between pulses in order to record them as separate 

events.  Dead-time is a function of count rate, so that higher activity samples produce 

higher dead-time losses.  Corrections for this effect are usually made in the multi-channel 

analyzer.  Another problem encountered is when two events are recorded as one pulse 

from the detector.  If multiple radiations from the same nuclear decay event are observed 

this is called true coincidence summing.  However, if multiple events are added together 

into a single pulse because of the inherent limited resolving time of the detector, this is 

called random coincidence summing or pulse pile-up.  Pulse pile-up is proportional to the 

square of the counting rate, whereas true coincidence summing is linearly proportional to 

it (Knoll, 2000). 

 

3.3 TRADITIONAL AND MOENS EFFICIENCY CALCULATIONS 

3.3.1 Traditional Method 

3.3.1.1 Remarks on the “Efficiency” 

In the field of gamma-ray spectroscopy, it is common to hear someone talk about 

the “efficiency” of a detector.  There are typically four efficiencies of interest in studying 

germanium detectors, namely the relative, geometric, absolute, and intrinsic efficiencies.  

The absolute and intrinsic efficiencies are typically split up into two distinct classes 

called the full-energy peak and total efficiencies. 
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The relative efficiency is commonly encountered when looking at detector 

manufacturer specifications.  It is the general performance measure relating the efficiency 

of detection for a gamma-ray at 1332 keV of the detector to that of a standard sodium 

iodide scintillation detector (Gilmore and Hemingway, 1995).  However, the relative 

efficiency is of little, if any, importance to this work, so nothing more about it will be 

mentioned.   

The geometric efficiency is a measure of the geometric attenuation that results 

from the unique counting scheme.  It is directly related to the solid angle of a source that 

is subtended by the detector.  This is useful in determining the fraction of gamma-rays 

leaving a source that enter the detector.  However, it does not take into account the 

different interaction types that can cause a gamma-ray to lose energy along its path. 

There are often times when one needs to know the radioactivity of a source.  This 

is generally done by using the absolute full-energy peak efficiency.  In gamma-ray 

spectroscopy, the absolute full-energy peak efficiency is the ratio of pulses recorded 

under the photopeak to the total number of gamma-rays emitted by the source.  This 

efficiency depends strongly on the geometrical counting arrangement and on the detector 

properties.  The absolute total efficiency is the ratio of the total number of pulses 

recorded in the entire spectrum to the total number of gamma-rays emitted by the source.  

It is common in gamma-ray spectroscopy to use full-energy peak efficiencies, because 

the number of full-energy events is less influenced by noise in the system or effects like 

scattering from surrounding objects.  The full-energy peak efficiency should not be 

confused with the peak efficiency, which describes the maximum efficiency of the 

detector. 

The intrinsic full-energy peak efficiency is the ratio of the number of pulses 

recorded under the photopeak to the total number of gamma-rays incident on the detector.  
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Similarly, the intrinsic total efficiency is the ratio of the total number of pulses recorded 

in the whole spectrum to the total number of gamma-rays incident on the detector.  The 

intrinsic efficiencies are based solely on the properties of the detector.  The main 

difference between the intrinsic and absolute efficiency is that the absolute efficiency 

depends on this geometrical arrangement, whereas the intrinsic efficiency does not. 

 

3.3.1.2 Traditional Geometric Solid Angle 

One main principle of calculating the efficiency of a detector is the concept of the 

geometrical solid angle.  The common definition for the geometrical solid angle for thin 

detectors, like surface barrier detectors, is shown in Equation 3.1 (Knoll, 2000). 

  

         ∫=Ω
A

dA
r 2

cosα .         (3.1) 

 

Where: Ω  is the solid angle subtended by a thin detector of area A (in steradians). 

 dA is a detector surface element. 

 r is the distance between the source and surface element dA. 

α  is the angle between the normal to the surface element dA and  

     the source direction. 

 

It is more convenient to express the geometrical solid angle in vector form. This 

allows the expression to be generalized to arbitrary source and detector geometries.  In 

order to do this a fundamental principle of vector calculus is necessary.  Equation 3.2 is 

the typically encountered form for the dot product of two vectors.   
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.         (3.2) 

 
Where: A

r
 is some vector with magnitude A . 

 B
r

  is some vector with magnitude B . 

 α   is the angle between the vectors A
r

 and B
r

. 

 

In the case of the geometrical solid angle, the normal to the surface element is a 

unit normal and has a magnitude of 1 and some direction un̂ .  Therefore the dot product 

of the source vector with the unit normal direction is just a projection of the source 

magnitude along the unit normal direction un̂ .  Equation 3.2 can then be rewritten as 

Equation 3.3. 

 

          αα coscos1 TPTPnTP u ==⋅
→→

.        (3.3) 

 

Where: 
→

TP  is the vector from a point T in the source to a point P on the  

                    detector surface. 

 
→

un  is the unit vector normal to the detector at the surface element of 

                   interest. 

 TP  is the magnitude of vector 
→

TP .   

 1  is the magnitude of unit vector 
→

un , which is by definition unity. 

 α  is the angle between the vectors 
→

TP  and 
→

un . 

 
The r in Equation 3.1 should be taken to mean TP , the magnitude of the vector 

→

TP .  This is the magnitude of the distance from a point T in the source to a variable point 
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P on the detector surface, S.  One can then express the geometrical solid angle in the 

vector form, by combining Equations 3.3 and 3.1 to yield Equation 3.4.  This is the 

geometrical solid angle equation in a generic form. 

 

         ∫ ∫∫ ∫
→→

⋅
==Ω

S

u

S

d
TP

nTPd
TP

σσα
32

cos .        (3.4) 

 

Where: σd  is an infinitesimal area of surface S. 

 

3.3.2 Moens Method 

3.3.2.1 Moens Geometric Solid Angle 

The semi-empirical Moens method begins with the experimental determination of 

the absolute full-energy peak efficiency versus photon energy curve for a reference 

source shape and source-detector distance.  This was typically done using a certified 

gamma-ray emitting source at a large source-detector distance to reduce summing effects.  

This was done for a large number of gamma-ray energies, to better characterize the 

absolute full-energy peak efficiency versus photon energy curve (Moens et al., 1982).  

Next, the total efficiency was calculated for this reference configuration and calculated 

for any required source-detector distance and source geometry.  The reference measured 

absolute full-energy peak efficiency, calculated reference total efficiency, and calculated 

total efficiency for the desired geometry were then used to predict the desired absolute 

full-energy peak efficiency. 

Assume the detector of interest is a cylinder of radius 0R  and height H.  Also 

assume that the source is a point located above the detector surface, but at a radial 

distance from the z-axis less than the radius of the detector.  Draw the three-dimensional 
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Cartesian coordinate axes such that the origin lies in the center of the top of the detector 

surface.  Make the axes such that the z-axis points along the cylindrical detector’s 

primary axis as shown in Figure 3.3.  The unit normal vector 
→

un  then points in the minus 

z-direction. 

 

Figure 3.3: Graphical Representation of Cartesian Coordinate System Established for 
Geometrical Solid Angle Calculations When Source is Located Above the 

Detector. 

Let the points T and P be expressed as three-dimensional sets in Cartesian 

coordinates such as T( Tx , Ty , Tz ) and P( Px , Py , Pz ).  Equation 3.4 can be evaluated for 

the case of Figure 3.3, and expressed as Equation 3.5. 
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The choice of coordinate system was such that the surface of the detector top was 

chosen to coincide with the 0=z  plane and therefore 0=Pz .  The dot product in the 

numerator is the projection of the vector 
→

TP  along the unit 
→

un vector, pointing in the 

minus z-direction, which is just the z-coordinate of T, namely Tz .  The magnitude of the 

vector 
→

TP , also written as TP , is just the usual square root of the sum of squares of the 

distances form for the magnitude of a vector.  Equation 3.5 can therefore be rewritten as 

Equation 3.6. 
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It is furthermore convenient to formulate this problem in terms of cylindrical 

coordinates, due to the fact that we have cylindrical symmetry.  Assume that in 

cylindrical coordinates the points T and P have coordinate sets T( r ,ϕ , Tz ) and 

P( R ,φ , Pz ) respectively.   Because we are only performing one integral here, it is 

advantageous to choose the coordinate system cleverly.  Assume that we choose the point 

T to lie in the x-z plane.  This makes the y-coordinate of T zero in Cartesian coordinates, 

but also makes 0=ϕ  in cylindrical coordinates.  Introducing the resulting polar 

coordinates, in place of the Cartesian ones, produces Equation 3.7.  This equation can be 

further simplified by our choice of coordinates to Equations 3.8 and 3.9. 
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Noticing the angular symmetry in the problem and introducing the correct limits 

of integration yields Equation 3.10. 
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3.3.2.2 Effective Solid Angle 

Knowing the geometrical solid angle is useful, but only solves for the geometrical 

relationship associated in determining the efficiency of a detector.  It was shown that only 

the simultaneous treatment of geometry, gamma-ray attenuation, and detector response is 

justified (Moens et al., 1981).  Hence, the concept of effective solid angle was 

introduced.   

The quantity of interest here is the absolute full-energy peak efficiency.  The 

absolute full-energy peak efficiency can be found through any of the methods discussed 

in Chapter 2.2.  The calculation of the total efficiency, the probability for an emitted 

photon to hit the detector and undergo inelastic interaction within the detector material, is 

a matter of mathematical analysis (Moens et al., 1982).  The conversion of the total 

efficiency to the full-energy peak efficiency can be done using the “virtual” peak-to-total 

ratio as shown in Equation 3.11. 
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TP T

P εε =
.        (3.11) 

 

Where: Pε  is the absolute full-energy peak efficiency. 

 Tε   is the absolute total efficiency. 

 
T
P   is the “virtual” peak-to-total ratio. 

 

The “virtual” peak-to-total ratio refers to a hypothetical bare and isolated detector 

crystal, assumes no photon scattering occurs on inactive parts of the setup, and is 

different from what would be measured in an actual counting experiment (Moens et al., 

1982).  This is because, in experiments, gamma-rays undergo inelastic scattering in 

adjacent and surrounding materials and then contribute to the total area of the spectrum 

by reaching the detector with degraded energy (Moens et al., 1982).  The experimentally 

measured peak-to-total ratio is therefore dependent on sample counting geometry (Moens 

et al., 1982).  Historically, the “virtual” peak-to-total ratio was assumed to be a constant 

of the detector crystal, and independent of source geometry, source composition, and 

source-to-detector distance (Moens et al., 1982).  However, this assumption was made for 

sources confined to the region above the detector surface and at a radial distance from the 

z-axis less than the radius of the detector.  If the source is moved out of this region, the 

“virtual” peak-to-total should be expected to change.  This is primarily due to the fact that 

there would be a change in the amount of active detector material a photon would pass 

through before either complete absorption or escaping the sensitive region of the detector. 

Any desired absolute full-energy peak efficiencies were calculated using 

experimentally measured reference absolute full-energy peak efficiencies and calculated 

absolute total efficiencies.  The desired absolute full-energy peak efficiency curves were 
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then calculated using Equation 3.12.  For computational purposes, an equivalent formula 

was used, Equation 3.14, which was obtained by combining Equations 3.12 and 3.13. 

 

                
refT

XT
refPXP
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,
,, ε

ε
εε = .                 (3.12) 

 
Where: XP,ε  is the absolute full-energy peak efficiency of the desired source    

                      geometry “X”. 

 refP,ε  is the absolute full-energy peak efficiency of the reference,  

                      experimentally measured, source geometry. 
 XT ,ε   is the total efficiency of the desired source geometry “X”. 

 refT ,ε  is the total efficiency of the reference, experimentally measured, 

                      source geometry. 
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Where: Ω
r

is the effective solid angle subtended at the source by the detector. 

 Tε is the total efficiency. 
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Where: XT ,Ω

r
 is the effective solid angle subtended for the desired source            

                       geometry “X”. 
 refT ,Ω

r
 is the effective solid angle subtended for the reference geometry. 
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It has been mentioned several times that only the simultaneous solution of 

detector response, geometry, and photon attenuation was found to be valid (Moens et al., 

1981).  Thus, until now only geometry has been taken into account.  The next factor 

considered was the photon attenuation of the source by any materials situated between 

the source and detector.  Examples include the source itself, source container, air, 

detector end-cap, and the germanium crystal dead layer.  To correct for this effect, the 

inner integrand of Equation 3.10 is multiplied by Equation 3.15.  Rayleigh scattering is 

ignored in this calculation because it has a negligible effect on the incident gamma-ray’s 

energy and path (Moens et al., 1981).   

 

       ⎟
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=
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iiattF

1
exp δμ .       (3.15) 

 

Where: attF  is the attenuation factor. 

iμ  is the linear, total narrow beam absorption coefficient, of a given 

      energy, of the ith absorber, excluding Rayleigh scattering. 

 iδ  is the undisturbed path length of the photon through the ith absorber. 

 m is the total number of absorbers. 

 

The next factor of interest involved a characterization of the detector response, 

called the intrinsic efficiency factor.  This was a measure of the probability that a photon 

impinging on the active zone of the detector would interact within the detector material 

before leaving.  It was decided to multiply the inner integrand of Equation 3.10 by 

Equation 3.16.  Notice that for photons not passing through the coaxial hole, sometimes 

called the p-core, 2Δ = 0, and therefore 1Δ  is the undisturbed distance traveled in the 
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crystal.  The same conditions arise for a detector crystal with no coaxial hole.  Rayleigh 

scattering is ignored in this calculation because it does not contribute to detector events 

(Moens et al., 1981). 

 
         ( ) ( )( ) ( )( )121 exp*exp1exp1 Δ−−Δ−−+Δ−−= dhddeffF μημμμ .    (3.16) 

 
Where: effF  is the intrinsic efficiency factor.   

dμ  is the linear, total narrow beam absorption coefficient, of a given  

      energy, of the detector, excluding Rayleigh scattering. 

hμ  is the linear, total narrow beam absorption coefficient, of a given  

      energy, of the coaxial hole, excluding Rayleigh scattering. 

1Δ  is the undisturbed distance traveled in the detector active zone before 

      entering the coaxial hole along a path 
→

TP . 

2Δ  is the undisturbed distance traveled in the detector active zone after  

      leaving the coaxial hole along a path 
→

TP . 

η    is the undisturbed distance traveled along a path 
→

TP  inside the coaxial  

             hole. 

 

All three of these necessary factors can be combined to yield Equation 3.17.  This 

is the cylindrical coordinate Moens solution for the effective solid angle of a point source 

situated at a radial distance from the z-axis less than the radius of the detector. 
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The calculation of several parameters in both the attenuation and intrinsic 

efficiency factors is non-trivially dependent upon the path that a photon takes from the 

source to detector before interaction.  However, all of the necessary path lengths in both 

can be determined either analytically or from intersections of the photon path with 

important planes and cylinders.  Equation 3.17 is typically integrated numerically, as 

analytical solutions for this integral form are not readily available.  A photon can only 

travel one of eight paths, when the source is located above the detector and at a radial 

distance from the z-axis less than the radius of the detector (Moens et al., 1981).  These 

eight paths are depicted in Figure 3.4.  Logical testing of the photon path traveled at 

every piece-wise step during numerical integration of Equation 3.17 was performed to 

determine the effective solid angle.  The necessary logical test conditions were 

determined from intersections of the photon path traveled with important detector, and 

absorber, planes and cylinders (Moens et al., 1981). 

 

 

Figure 3.4: Paths a Through h Show Possible Paths to be Followed by a Photon 
Impinging upon the Detector Top Surface (Moens et al., 1981). 
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This same method has been applied to yield the effective solid angles for 

cylindrical detectors with disc and cylindrical sources (Moens et al., 1981).  However, 

the solutions derived there are only valid when the entire source remains completely 

within radial distances from the z-axis less than the radius of the detector.  The effective 

solid angle for a cylindrical source and cylindrical detector valid for any radial distance 

or source radius has been determined (Jovanovic et al., 1997).  This has also been 

determined for Marinelli and well geometries (Jovanovic et al., 1997). 

 

3.4 MESH-GRID METHOD EFFICIENCY CALCULATIONS 

3.4.1 Assumptions 

In the Moens method, the sample shapes were geometrically restricted to standard 

geometric shapes (point, disk, cylinder, Marinelli, or well).  If one desired to solve those 

integrals for some arbitrary sample shape, the resulting mathematical equations could 

become extremely complicated.  Many approximations to the standard geometric shapes 

would then be necessary.  Thus, a new method must be employed that simplifies the 

whole approach. 

Suppose that instead of modeling a cylindrical sample as a cylinder, and solving 

for some complicated integral, the cylinder is chopped into a bunch of tiny pieces and 

then each piece is approximated as a point source.  Then the source geometry becomes 

trivial, because any geometry could then be approximated as a collection of point 

sources.  This process is hereby called meshing or the mesh-grid method.  In the event 

that the grid size, or mesh order, becomes large enough, the point source grid 

approximation should approach the true continuous solution.  One should also expect that 
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there will be a trade-off in the mesh order between accuracy and computational time.  

This is because choosing a higher mesh order will mean modeling more point sources and 

hence, performing more effective solid angle integral calculations. 

Several other assumptions in the mesh-grid method are made, and the validity of 

each is addressed further in Chapter 5.  One assumption is the invariance of the “virtual” 

peak-to-total ratio on sample position.  Another is that the detector is well approximated 

by a cylinder.  If the coaxial detector had been treated as a solid crystal detector minus a 

“hole detector,” that assumption would need justification.  However, the work here has 

chosen simply to use logical loops and avoid that assumption altogether.  Lastly, the work 

performed here assumed that the radionuclides within the source were distributed 

homogenously.  This was necessary because the exact distribution of radionuclides within 

a source is rarely known.  However, the mesh-grid method and KMESS code are 

generalized to include a weighting factor in the averaging calculations to allow correction 

for the source distribution.  This weighting factor was set to 1 for all calculations made in 

this work. 

 

3.4.2 Mathematical Form 

  Suppose that we have a point source as mentioned above in the Moens method.  

The same coordinate system used in the Moens method will be employed here.  As long 

as the point remains above the detector top surface and at a radial distance from the z-

axis, no larger than the radius of the detector, Equation 3.17 will suffice.  However, once 

the point source is moved to the detector side, or to a radial distance from the z-axis 

greater than the radius of the detector, new integrals must be employed.  There are also 

four additional possible paths through the detector other than those shown in Figure 3.4.  

The additional possible paths are shown in Figure 3.5. 
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 Figure 3.5: Paths i Through l Show the Four Additional Possible Paths to be Followed by 
a Photon Impinging Upon the Detector Side Surface (modified from Moens 

et al., 1981). 

 

Assume first, that the source is placed to the side of the detector, below the plane 

of the top detector surface, and above the plane of the bottom of the detector surface.  

This means that photons emitted will only enter the detector through the detector’s side 

surface.  The corresponding effective solid angle integral was derived analytically and is 

shown in Equation 3.18.  Note that the origin is still placed on the detector’s top surface 

centered on the detector’s primary axis.  Also note that the point source is still confined 

to the x-z plane, hence and the y-coordinate of the source location at point T is zero in 

Cartesian coordinates.  The setup for this case is shown in Figure 3.6. 
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Figure 3.6: Graphical Representation of Cartesian Coordinate System Established for 
Geometrical Solid Angle Calculations When Source to the Side of the 

Detector. 
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Where: OR  is the radius of the detector. 

 H is the detector height. 

 r  is the perpendicular distance from the source to the z-axis. 

 φ  is the angular polar coordinate of a point on the detector’s side surface.  

attF  is the attenuation factor. 

effF  is the intrinsic efficiency factor. 

Pz  is the z-coordinate of a point on the detector’s side surface. 

Tz  is the z-coordinate of the point source. 
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MINφ  is minimum angular polar coordinate  
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MAXφ  is maximum angular polar coordinate 
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Measurement of Tz  is trivial; it is just the distance from the top of the detector 

surface to the point source in a plane parallel to the z-axis.  Measurement of r is in 

principle possible, but may not be necessarily desired for this specific geometry.  If we 

notice that we have still required the y-coordinate to be zero, by confining the point 

source to be in the x-z plane, then by polar coordinate definition, 

rrrxT === 0coscosϕ ; that is, the radial coordinate is the same as the Cartesian x-

coordinate of the point source.  It may be more convenient, however, to define a new 

variable d that measures the distance of the point source from the detector.  Let d be the 

distance from the point source to the side surface of the detector, measured in a plane 

parallel to the x-axis and hence perpendicular to the y- and z-axes.  This new variable can 

be written in terms of known quantities such that d = r - OR = Tx - OR .  Using this 

identity, Equation 3.18 can be rewritten as Equation 3.19. 
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This can be further simplified to Equation 3.20. 
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Equation 3.20 is the effective solid angle solution for a point source located along 

side the detector.  Hence, this integral is good for the region below the plane of the top 

surface of the detector and above the plane of the bottom of the detector.  It should be 

noted, that the point source only “sees” less than half of the curved side of the cylindrical 

detector.  Hence, the detector surface area of the “dark-side,” the side facing away from 

the point source, is justifiably not included in the integration.  

Up to now, we have confined the photons to only enter the detector through the 

either the top or the side surfaces.  Now, suppose we have a point source located in the 

region above the detector top surface, but also at a radial distance from the z-axis greater 

than the radius of the detector, as shown in Figure 3.7.  This means that the photons 

emitted from a point source will interact both in the detector’s top and side surfaces. 
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Figure 3.7: Photons From a Point Within a Source T, as Shown, Can Interact With the 
Detector Top Surface at Points Like P or the Side Surface at Points Like P’. 

 

The restrictions placed on the source position in the examples above were only 

done in order to ignore this effect.  However, both surfaces can be treated as separate 

integrals.  The total effective solid angle can thus be found by summing the contributions 

to the top and side surfaces individually.  In this case, it is better to keep the point source 

coordinates in terms of r.  Equation 3.21 shows the general form of the effective solid 

angle for any arbitrary point in this space. 
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Where: Ω
r

  is the total effective solid angle. 

 Ω
r

d  is the differential effective solid angle of any arbitrary surface. 

 topS  is the detector’s top surface. 

 sideS  is the detector’s side surface. 

 

The integral of Equation 3.21 is trivial to evaluate for a point source, now that it 

has been broken up.  This is because the top and side surface integrals have already been 

separately solved for point sources displaced off the detector’s primary axis.  This means 

simply that the first integral in Equation 3.21 is just Equation 3.17 and the second integral 

is just Equation 3.18.  Thus, combining of all three of these equations we can write 

Equation 3.22.  It should be noted, that this integral is the “master mesh-grid formula” for 

a point source that reduces to Equations 3.17 or 3.18 under appropriate boundary 

conditions.  This formula is also applicable, by symmetry, to points located below the 

detector’s bottom surface at an arbitrary point, by simply requiring the z-axis point in the 

opposite direction.  This assumption is even true if the detector is a closed-end coaxial 
detector, because the intrinsic efficiency factor, effF , takes the coaxial hole into account.  

It was shown, that in order to simplify the intrinsic efficiency factor, effF , that the 

effective solid angle of the “coaxial hole detector” could be simply be subtracted from the 

effective solid angle of a true cylindrical detector (Ugletveit et al., 1989).  However, this 

assumption was not made, because the correct photon path lengths were instead found 

using logical loops. 
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Suppose now that one desires to model some arbitrary source shape using the 

mesh-grid method.  The difficulty now arises as to how to take all these “grid-point” 

absolute full-energy peak efficiencies and add them up to yield the average absolute full-

energy peak efficiency.  If the radionuclides in the source are distributed within the 

source homogeneously, then every point could be weighted equally and Equation 3.23 

would reduce to Equation 3.24.  If the distribution of radionuclides in the source were 

distributed heterogeneously, it would be necessary to introduce weighting factors that 

correctly describe the distribution of radionuclides for the source, and use Equation 3.23.  

For the purposes of this work, all sources were assumed to have a homogenous 

radionuclide distribution within them. 
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Where: N is the mesh order, or number of grids (ie. the number of point source  

      efficiencies). 

 ia  is the ith weighting factor, all = 1 for a homogenously distributed 

     source. 
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 iε  is the absolute full-energy peak efficiency of the ith point source within 

     the grid. 

 ε is the calculated average absolute full-energy peak efficiency. 
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For large sources, sample self-attenuation corrections would need to be included.  

This would be taken into account in the attenuation factor, attF .  For sources close to the 

detector, the experimentally obtained data may need coincidence summing corrections.  

However, the way in which experimental data are corrected for coincidence summing is 

beyond the scope of this work.  

Performing effective solid angle calculations using a semi-empirical mesh-grid 

method only yields the total detector efficiency.  A reference efficiency curve, as in the 

Moens method, or knowledge of the “virtual” peak-to-total ratio would be required to 

convert to full-energy peak efficiency as in Equations 3.11 or 3.12.  The experimentally 

measured peak-to-total ratio was found to be counting geometry dependent (Moens et al., 

1982).  Thus, experimentally obtained values of the peak-to-total ratio would not be able 

to convert to true full-energy peak efficiency using this method (Moens et al., 1982).  The 

conversion of total to full-energy peak efficiency should therefore be done through a 

meticulous measurement of a reference efficiency curve and counting geometry.  Thus, 

the averaging of the finite number point sources, combined with calculations of effective 

solid angles, and a carefully measured reference curve, will yield the absolute full-energy 

peak efficiency for any source shape or counting geometry. 
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3.4.3 Additional Derivations 

There are several equations above whose derivations are not entirely 

straightforward.  This section is reserved for those derivations.  One of these is the 

determination of the undisturbed path lengths through any absorbing materials necessary 

in the calculation of the attF  term shown in Equation 3.15.  However, if one assumes each 

absorbing materials has a uniform thickness, then these path lengths can be determined 

from the vector 
→

TP .   

First, consider the case where the point T is above the surface of the detector and 

the point P is on the top surface of the detector.  All of the absorbing materials then, 

dead-layer, end-cap, etc…, exist above and at greater radii than the active detector 

volume.  This means that each absorbing material can be treated as if it is bounded on the 

top and bottom by infinite planes parallel to the x-y plane.  Figure 3.8 shows the 

geometrical setup of this situation. 
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Figure 3.8:  Attenuation of Gamma-rays Following Path TP Through Absorbing 
Materials Above the Detector Surface. 

 

All of the bounding planes of the absorbing materials are all parallel to each other 

and the x-y plane.  Unit normals that point in the minus z-direction can also be 

constructed for each of the planes.  Define an angle θ  as the angle that the vector 
→

TP  

makes with respect to the minus z-direction.  The angle θ  takes into account both the x 

and y components of the vector 
→

TP .  The vector 
→

TP  therefore makes the same angle θ  

with respect to all of the absorbing surfaces, because the unit normals to the surfaces all 

point in the minus z-direction.  The path length through the ith material can then be found 

using simple trigonometry as shown in Equation 3.25. 
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Where: iδ  is the undisturbed path length through the ith absorbing material. 

  it   is the thickness of the ith absorbing material. 

 θ  is the angle between the vector 
→

TP  and the normals of the absorbing     

      surfaces. 

 

The only unknown on the right hand side of Equation 3.25 is the cosine of the 

angleθ .  This can be found taking the dot product of the vector 
→

TP  with a normal which 

points in the minus z-direction.  Equation 3.26 shows the dot product of these vectors. 

 

( )( ) ( )PTTPz zzzzzzTPTPnTP −=−⋅−===⋅
→

−

→
ˆˆcoscos1 θθ .         (3.26) 

 

Where: 
→

TP  is the vector that points from point T to point P of magnitude TP . 

 
→

−zn  is a unit normal that points in the minus z-direction of magnitude 1. 

Pz    is the z-coordinate of the point P. 

Tz    is the z-coordinate of the point T. 

 

In the case where we have placed the origin on the top surface of the detector, 

Pz =0.  Equation 3.26 can thus be rewritten as Equation 3.27. 

 

 
TP
zT=θcos .               (3.27) 

 

Plugging Equation 3.27 into Equation 3.25 yields Equation 3.28. 
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T

i
i z

TPt
=δ .        (3.28) 

 
The magnitude TP  can be remembered from Equations 3.5 and 3.9 in cylindrical 

coordinates which allows Equation 3.28 to be rewritten as Equation 3.29.  This gives the 

undisturbed path length through the ith absorber when the absorbers are placed above the 

detector. 

 

    
[ ]

T

Ti
i z

zrRrRt 222 cos2 ++−
=

φ
δ .      (3.29) 

 

Now consider the case where the point T is placed to the side of the detector, 

below the plane of the top detector surface, and above the plane of the bottom of the 

detector surface.  The absorbing materials are still outside of, and have greater radii than, 

the active detector volume.  However, the absorbers in this case cannot be treated as flat 

parallel planes, because they curve in both the x and y directions.  They are instead 

treated as infinite concentric cylinders.  The path lengths through these absorbers can be 

found by calculating the intersections of the vector 
→

TP  with each of these cylinders.  This 

is very similar to the way that path lengths through the detector are found.  The equations 

necessary for calculating the intersections of a vector with a cylinder are discussed later 

in this section. 

It is not entirely straightforward how Equation 3.16 is obtained either.  For this 

derivation, consider the attenuation of gamma-rays through three different materials.  

Assume that there is a collimated narrow beam of monoenergetic gamma-rays moving in 

the x-direction with a fluence, 0I , as shown in Figure 3.9.  Further assume that there is no 

build-up resulting from secondary radiation interactions in the materials. 
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Figure 3.9:  Attenuation of Gamma-rays with a Fluence, 0I , Passing Through Three 
Different Materials. 

 

The fluences at each interface are the result of simple exponential attenuations of 

the gamma-rays through each medium (Knoll, 2000).  These can easily be found and are 

shown in Equations 3.30 through 3.32. 

 

               11
01

teII μ−= .                    (3.30) 

 

Where: 1I  is the gamma-ray flux at interface 1. 

 1μ  is the linear attenuation coefficient of region 1. 

  1t   is the thickness of material 1. 

  

 

                     2211
02

tt eeII μμ −−= .         (3.31) 
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Where: 2I  is the gamma-ray flux at interface 2. 

 2μ  is the linear attenuation coefficient of region 2. 

  2t   is the thickness of material 2. 

 

         332211
03

ttt eeeII μμμ −−−= .         (3.32) 

 

Where: 3I  is the gamma-ray flux at interface 3. 

 3μ  is the linear attenuation coefficient of region 3. 

  3t   is the thickness of material 3. 

 
The quantity of interest in the effF term is the fraction of 0I  that interacted in 

regions 1 and 3.  This is simply Equation 3.33. 
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Now assume that materials 1 and 3 are the detector, and that material 2 is the 

coaxial hole.  With these substitutions and a little algebra on Equation 3.33, one can 
arrive at Equation 3.16.  The form of effF  shown in Equation 3.16 includes attenuation in 

the coaxial hole.  If one assumes that the hole is filled with vacuum, then the linear 

attenuation coefficient for the coaxial hole is zero.  This reduces Equation 3.16 to 

Equation 3.34.  This method can easily be generalized, under the initial assumptions, for 

gamma-rays passing through any number of absorbing materials. 

 
            211 Δ−Δ−−= dd eeFeff

μμ .                      (3.34) 
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The intersections of a 3-dimensional line with an infinite cylinder are essential in 

the calculation of the effective solid angle.  Consider a line that passes through two points 

in Cartesian space, namely ),,( 111 zyx  and ),,( 222 zyx .  An infinite cylinder of radius 0R , 

whose primary axis is the z-axis, can be described by Equation 3.35. 

 

              02
0

22 =−+ Ryx .                       (3.35) 

 

Where: 0R  is the radius of the infinite cylinder. 

  x    is an arbitrary Cartesian x-coordinate. 

  y    is an arbitrary Cartesian y-coordinate. 

 

The linear components of the line can be summarized by Equations 3.36, 3.37, 

and 3.38. 

 

             )( 121 xxuxx −+= .                       (3.36) 

 

             )( 121 yyuyy −+= .                       (3.37) 

 

             )( 121 zzuzz −+= .                       (3.38) 

 

Where: u is the 3-dimensional analogue of the slope of the line. 

z    is an arbitrary Cartesian z-coordinate. 
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The intersections of the line and cylinder can be found by plugging Equations 

3.36 and 3.37 into Equation 3.35 to yield Equation 3.39. 
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12 =−++−+−+−+− Ryxuyyyxxxuyyxx .  (3.39) 

 

This is easily recognized as a quadratic equation which can be solved, using the 

quadratic formula.  The two roots of u can then be plugged back into Equations 3.36, 

3.37, and 3.38 to solve for the two intersections. 

The final calculation that is important in the determination of the effective solid 

angle is the intersection of a line with a plane.  The equations describing a line in 3-

dimensional Cartesian space have already been given as Equations 3.36, 3.37, and 3.38.  

The most common plane of interest in calculations of effective solid angles is a plane 

parallel to the x-y plane.  The equation for such a plane intersecting the z-axis at A is 

shown in Equation 3.40. 

 

              0=− Az .                                   (3.40) 

 

Inserting Equation 3.38 into 3.40 and solving for u yields Equation 3.41. 
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Equation 3.41 can be plugged back into Equations 3.36, 3.37, and 3.38 to yield 

the intersections. 
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3.4.4 Uncertainties 

Uncertainties in the mesh-grid method can arise from several different factors.  It 

is important to know each detector specification to a high degree of certainty, because the 

mesh-grid method uses these values in its effective solid angle calculations.  For 

example, the detector dead layer thickness will be important because it will greatly affect 

gamma-ray attenuation at low photon energies.  However, because the equations use a 

ratio form, the mesh-grid method should be less sensitive to uncertainties in detector 

specifications than Monte Carlo methods.   

The counting geometry parameters, such as distance from the source to detector, 

and source shape, should also be known to within a high degree of certainty.  With 

current technology, these factors can be experimentally measured to a high degree of 

certainty.  The source composition (matrix) will need to be known well in order to 

properly correct for source self-absorption.  The gamma-ray attenuation cross-sections 
should be well known, as they will highly affect both attF  and effF  terms. 

Because this method uses an experimentally obtained reference efficiency curve, 

any uncertainty in that measured curve will be reflected directly in the calculated 

efficiency curve.  Thus, the reference curve should be measured using NIST traceable, or 

similar quality, sources with small uncertainties in their known activity.  Corrections for 

experimentally observed summing effects or dead time should be performed when 

necessary.  The measurements should be taken carefully in order to yield results that 

produce high experimental precision and accuracy to a high degree of confidence. 

The equation used to calculate the full-energy peak efficiency was given in 

Equation 3.14.  The uncertainty in the predicted efficiency can be found, using the rules 

for the multiplication and division of uncertainties, and is shown in Equation 3.42. 
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Where: Xe,σ  is the expected uncertainty in the predicted full-energy peak  

                      efficiency. 

  Xε     is the predicted full-energy peak efficiency. 

 refe,σ is the uncertainty in the experimentally measured reference  

          efficiency. 

refε     is the experimentally measured reference efficiency. 

X,Ωσ  is the uncertainty in the calculated effective solid angle of the  

          desired geometry. 

XΩ    is the effective solid angle of the desired geometry. 

ref,Ωσ  is the uncertainty in the calculated effective solid angle of the  

           experimentally measured reference geometry. 

refΩ   is the effective solid angle of the reference geometry. 

 

It should be expected that the dominating term in Equation 3.42 will be the 

uncertainty in the experimentally measured reference efficiency.  However, that 

uncertainty should also be small if it is the result of a meticulously performed 

experimental efficiency calibration.  The other two terms, the effective solid angle 

uncertainties, should contain the uncertainties in all of the necessary dimensions, 

geometrical setup, and constants.  The uncertainty in an effective solid angle calculation 

can be expressed as some complicated function of several variables as shown in Equation 

3.43.  
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Where: Ωσ  is the uncertainty in an effective solid angle calculation. 

Ω     is the effective solid angle. 

f     is a function that describes the relationships of the uncertainties. 

i,μσ  is the uncertainty in the ith attenuation coefficient. 

iμ    is the ith attenuation coefficient. 

i,δσ  is the uncertainty in the ith absorber path length. 

iδ     is the ith absorber path length. 

id ,σ  is the uncertainty in the ith detector dimension. 

id     is the ith detector dimension. 

i,Δσ  is the uncertainty in the ith detector path length. 

iΔ    is the ith detector path length. 

ig ,σ  is the uncertainty in the ith geometry setup parameter. 

ig    is the ith geometry setup parameter. 

 

The detector dimension parameter used in Equation 3.43 should take into account 

things like the detector diameter, length, dead-layer, etc…  The geometry setup parameter 

should take into account things like the source-to-detector distance, absorber thickness, 

etc…  Because the uncertainty in the effective solid angle is not a simple function of its 

variables, the use of partial derivatives is essential.  Underlying this use is the assumption 

that the parameters are independent variables.  This is justified because, for example, the 

measurement of the detector diameter should have no dependence on a separate 

measurement of a gamma-ray attenuation coefficient.  Arguments for the independence 
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of all the parameters from each other can similarly be made.  The effective solid angle 

function shown in Equation 3.22 is thus partially differentiated with respect to each of the 

parameters.  Estimates of the parameter uncertainties are then used to yield the combined 

effective solid angle uncertainty as shown in Equation 3.44.  These partials are 

summarized in this shorthand notation, because the derivatives are often excessively 

complicated and some need to be differentiated numerically. 
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Where: Ω    is the effective solid angle function. 

 idμ   is the estimated error in the ith attenuation coefficient. 

 idδ   is the estimated error in the ith absorber path length. 

idΔ   is the estimated error in the ith detector path length. 

 

3.5 MONTE CARLO 

Some of the validation of the mesh-grid assumptions could not easily be 

performed using experimental or theoretical methods.  Therefore Monte Carlo methods 

were invoked in several cases to justify these assumptions.  This purpose of this section is 

only to familiarize the reader with the basics of Monte Carlo calculations.  For a more 

detailed description of code functionality, or Monte Carlo methods in general, consult the 

code user manuals or other literature (Jackman, 2004). 

Monte Carlo calculations of radiation transport assume that radiation can be 

treated as stochastic in nature.  Because of this, the primary uncertainties that arise are 
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themselves stochastic.  This means that often the method must be used for a large number 

of particles in order to produce acceptable uncertainty.  This can generate a non-trivial 

amount of computational time, even on a modern PC (Jackman, 2004). 

Particle tracks and histories are generated by simulating the random nature of 

particle interactions in matter.  A particle’s history is created using probability 

expressions that describe the particle’s most likely interaction types and track lengths.  

Each particle is initially given a path length, energy, and direction.  Once the particle 

arrives at its destination, the next path length, direction, energy lost, and interaction type 

are computed using probability. The probabilities are assigned using random or 

pseudorandom number generators.  This process is repeated until the particle loses all of 

its kinetic energy or escapes the tracking “world” (Shultis et al., 2000). 

The two Monte Carlo codes used in this work were MCNP version 5 and GEANT 

version 4.  Each code has their unique advantages and disadvantages, but the main point 

is that both use the Monte Carlo method.  The MCNP (Monte Carlo N-Particle) transport 

code was developed by Los Alamos National Laboratory and is distributed through the 

Radiation Safety Information Computation Center at Oak Ridge National Laboratory.  

GEANT is the European equivalent of MCNP, but is open source and distributed by the 

Conseil Européen pour la Recherche Nucléaire (CERN).  GEANT was primarily 

designed for high-energy physics and particle accelerators, but has since been adapted to 

handle almost all types of physics interactions. 
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Chapter 4: KMESS Code Description 

4.1 KMESS CODE FORMAT 

4.1.1 Overview of the Code 

KMESS was developed as the computational realization of the mesh-grid method.  

Its function is to try to simulate, or predict, the full-energy peak efficiencies of a 

germanium detector.  It does so using the basic detector data supplied by the 

manufacturers and one experimentally measured reference curve.  It can predict 

efficiencies for arbitrary source shapes and counting geometries.  As will be shown, if 

used properly, it can predict these efficiencies quite well. 

The main KMESS code was written in the C language.  It was coded in this 

language for two basic reasons, the primary being that writing codes in programming 

languages closer to machine code tends to allow faster program execution and thus 

quicker run times.  The other reason is so that future generations will be able to easily 

debug and understand the code. 

KMESS, as a stand alone code, is intended to be operated at the command line 

and uses flags and arguments to control its execution.  Descriptions of the various flags 

and run methods are included in Appendix A.1.1.  The code was intended to be compiled 

and built using the GNU GCC compiler.  A “Makefile” was written to accompany the 

source code so that it can be easily compiled and built using the GNU Make tool.  Figure 

4.1 shows a brief flow chart of how KMESS runs. 
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Figure 4.1:  Flow Chart for KMESS Code Execution. 

 

Command line execution is not desirable to most modern computer users, who 

instead prefer a graphical interaction with programs.  As a result of this, concurrent with 

KMESS development, a graphical web interface to KMESS was coded in PHP and 

JavaScript.  This choice of web programming allows the code to be executed across 

multiple operating system platforms.  This also allows the user to have a graphical 

interaction in controlling KMESS execution through any modern web browser. 

KMESS and its graphical web front-end were written to easily interface with the 

current C-NR group’s counting room gamma-ray analysis software at Los Alamos 
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National Laboratory.  That analysis software is often called the Next Generation Web 

(NGWeb).  The NGWeb is a suite of gamma-ray spectroscopy tools that competes with 

currently available commercial codes, but is distributed open-source under the GPL.  

Therefore, KMESS was also written with the intent of open-source distribution under the 

GPL.  Figure 4.2 shows the current way that KMESS is intended to be interfaced with the 

current counting room software. 

 

 

 

Figure 4.2:  How KMESS Fits Into the Current NGWeb Analysis System. 
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The current numerical integration routine in KMESS uses Romberg integration.  

For a full description of the Romberg integration procedure, one can consult most 

common math books on the subject (Press et al., 1990).  The numerical integration 

routines were written separately from the routines that describe the effective solid angle 

terms.  This allows one to easily incorporate various other integration methods, such as 

Monte Carlo or Gauss-Legendre quadrature, in the calculation of the effective solid 

angles.   

   

4.1.2 Code Defaults and Limitations 

There are some limitations and defaults in the code that deserve some attention.  

These can be discovered upon inspection of the source code, but it is better to just 

mention them here.  The first limitation in KMESS is that the code can currently only 

read the file formats that were developed alongside the code.  These files have a 

keyword-value format to increase readability and ease white space parsing.  Descriptions 

of each allowed file format and keyword are included in Appendix A.1.   

Another limitation in the code is that it will not calculate effective solid angles for 

sources placed below the bottom of the active detector crystal.  This is because there is no 

generally used mounting configuration across different brands of germanium detectors.  

These mounting mechanisms are often complicated and intricate as well.  There was also 

little need to calculate effective solid angles for sources placed behind the detector. 

Many of the detector manufacturers do not provide some of the important detector 

parameters, such as coaxial hole dimensions, on their specification sheets.  These 

dimensions can usually be obtained by contacting the manufacturer unless the detector is 

old.  To address this, some defaults for germanium detectors needed to be set in KMESS.  

One of these was the coaxial hole dimensions.  Across the coaxial detectors used in the 



 67

counting room at LANL, most have a 10 mm diameter coaxial hole.  The true coaxial 

detectors have a depth equal to the length of the crystal, but the closed-ended detectors 

have a coaxial depth that is around ¾ of the length of the crystal.  Therefore, those were 

set as the defaults.  Other detector defaults can be found in the descriptions of the 

KMESS Detector File (KDF) format in Appendix A.1.4. 

 

4.2 KMESS FEATURES 

4.2.1 Currently Included 

KMESS currently has several features that can influence its effective solid angle 

calculations.  The code can perform attenuation in both the source and absorber materials 

placed between the source and active detector crystal.  However, the current routines that 

perform each of these calculations have limited usefulness.   

The absorber functionality is currently limited to handle only one absorber.  This 

absorber is specified with a KMESS Absorber File (KAF).  The currently allowed KAF 

format is described in Appendix A.1.2, but only the absorber thickness can be specified 

in the current format.  The absorber is assumed to be uniformly distributed over the 

detector end-cap.  By doing this, the absorber is used for all calculations of the effective 

solid angle.  There is also currently only a limited selection of absorbing materials 

allowed. 

Source self-attenuation can be included in KMESS calculations.  The current 

routine can only approximate the path length through the source.  This was done because 

there is no blanket geometrical parameterization that can be applied to describe arbitrary 

source shapes.  The path length is assumed to be the distance between the current mesh 

point and some other point in the mesh.  The second, or end, mesh point is the one 
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furthest out in the source mesh and closest to the gamma-ray path.  Unfortunately, the 

routine that finds these source path lengths increases the KMESS run times by a factor of 

5 or more.  This approximation makes the source self-attenuation calculations more valid 

for larger collections of point sources.  However, it also has the consequence that larger 

collections of point sources take longer for KMESS to find the correct source path 

lengths. 

The KMESS source description are sets of (x, y, z) coordinates that describe a 

source mesh.  These coordinates describe the placement of the source points relative to 

the center of the detector end-cap top.  This allows arbitrary source shapes to be 

described as collections of point sources placed almost anywhere around the detector.  

The source is input using the KMESS Source File (KSF) format.  The currently allowed 

KSF format is described in Appendix A.1.6.  However, the web interface was designed 

with a conversion tool to allow conversion of commonly used mesh formats, such as 

GAMBIT, FLUENT, and OpenFOAM, to the KSF format. 

Another feature included in KMESS is the ability to weight source mesh points 

relative to other points in the mesh.  This is useful if the distribution of radionuclides in 

the source is known.  This allows for correction of radionuclide inhomogeneity within the 

source.  The weighting factors are input with the source coordinates in the KSF file.  The 

weighting factors of all points should be normalized to 1.  The weighting factors are used 

in the determination of the average effective solid angle as shown in Equation 3.23.   

 

4.2.2 Future Additions 

Future additions to KMESS could improve its ability to predict full-energy peak 

efficiencies of germanium detectors in a shorter amount of time.  Improvements could be 

made to the source self-attenuation calculations by instead using some sort of polynomial 
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fit to the external points in the source mesh.  This would allow more rapid determination 

of gamma-ray path lengths through the source.  Routines could be written that better 

describe radionuclide inhomogeneity in the source.  These could be just simple routines 

that describe the source distribution using standard ones, like Gaussian or log-normal.  

Additional numerical integration engines can be written to improve the speed and 

accuracy of the effective solid angle calculations.  These could incorporation of other 

numerical integration methods such as Monte Carlo or Gauss-Legendre quadrature.  

Coincidence summing correction routines could also be written to correct the 

experimentally measured reference curves for those effects.  Additional materials could 

also be added for use as KMESS absorbers or sources.  A procedure on how to do this is 

described in the KMESS Cross-section File (KCF) format guidelines found in Appendix 

A.1.3.  Finally, improvements could be made to KMESS to allow input of additional file 

formats such as those used by SYNTH, LabSOCS, or other mesh formats. 

KMESS could also be easily coupled to a 3D scanner.  These scanners typically 

photograph an object from different angles to produce a 3D computer-aided design 

(CAD) drawing.  The CAD drawing could then be meshed and used as the input for 

KMESS.  This would make producing full-energy peak efficiencies for exotic source 

shapes quick and easy. 
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Chapter 5: Results and Discussion 

5.1 VALIDATION OF MODEL ASSUMPTIONS 

5.1.1 Invariance of Virtual Peak-to-Total Ratio 

One primary assumption in the Moens method of effective solid angle 

calculations is the invariance of the “virtual” peak-to-total ratio.  As aforementioned, this 

ratio refers to a hypothetical bare and isolated detector crystal.  Scattering in nearby 

materials are ignored because they reach the detector with degraded energy.  The photons 

thus contribute to the total area of the spectrum, rather than depositing their full-energy.  

The initial Moens justification of this invariance was confined to sources in the region 

above the detector surface and at a radial distance from the z-axis less than the radius of 

the detector.   

Any change in the amount of active detector material a photon would pass 

through should be expected to change the virtual peak-to-total ratio.  The invariance 

assumption is supported primarily because the detector is the same for both the desired 

and reference counting geometries.  It is further justified if the reference source is 

counted under similar conditions to the desired geometry. 

In order to validate this invariance, the peak-to-total ratios of a bare isolated 

crystal in a vacuum were computed using GEANT4.  The crystal had a diameter of 59.8 

mm and a length of 59.6 mm in the simulations.  The crystal was also assumed to have no 

coaxial hole.  Three sets of simulations were conducted for isotropic point sources at 

twelve different energies corresponding to on-axis, 45 degrees, and 90 degrees source 

placements.  The angles were measured relative to the center of the detector crystal and 

from the detector primary axis.  The source-to-detector distances for each of the three 
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source placement were allowed to vary to 0, 5, and 10 cm.  These source-to-detector 

distances were measured along a vector pointing in the direction of the given angle, to the 

intersection of that vector with the outer crystal surface.  Tables 5.1, 5.2, and 5.3 show 

the compiled results and standard deviations of the peak-to-total ratios for these three sets 

of simulations. 

 

 

 

 

Table 5.1:  Results of Peak-to-Total Ratio Simulations for a Source-to-Detector Distance 
of 0 cm for Three Different Angular Source Placements. 
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Table 5.2:  Results of Peak-to-Total Ratio Simulations for a Source-to-Detector Distance 
of 5 cm for Three Different Angular Source Placements. 

 

 

 

Table 5.3:  Results of Peak-to-Total Ratio Simulations for a Source-to-Detector Distance 
of 10 cm for Three Different Angular Source Placements. 
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Upon inspection of Tables 5.1 through 5.3, it is evident that the peak-to-total 

ratios do not vary significantly with angle, at fixed distances, except when the source is 

placed close to the detector and the gamma-ray energy is high.  However, the point 

source at 0 cm and 45 degrees is skewing the standard deviations.  Because the cylinder 

is not exactly a right circular cylinder, this point is actually located on the top of the 

detector and just inside its radius.  Gamma-rays traveling down and radially outward 

from this point will only travel through a small amount of detector material.  This 

discrepancy may be attributed to the fact that high energy gamma-rays have a small 

probability of totally depositing their full-energy in that small amount of detector 

material.  Thus, the higher energy gamma-rays will then tend to contribute more to the 

total continuum rather than the peak.  This results in the reduction of the peak-to-total 

ratio for high energy gamma-rays as seen for that case.  The standard deviations of the 

peak-to-total ratios for fixed angles and varying distances are shown in Table 5.4. 

 

Table 5.4:  Variation of Peak-to-Total Ratio Simulations for Three Fixed Angular Source 
Placements and Source-to-Detector Distances Varying as 0, 5, and 10 cm. 
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As shown in Table 5.4, the ratios do not vary significantly with distance at fixed 

angles, except when the angle is 45 degrees and the gamma-ray energy is higher.  This is 

also because the point source at 0 cm and 45 degrees is skewing that standard deviation.  

By similar reasoning to that above, this peak-to-total ratio in that case is smaller.  This 

variation is not seen in the other 45 degrees cases, because gamma-rays are more likely to 

travel through a larger amount of detector material and deposit their full-energy.  

However, all of the peak-to-total ratios agree to within less than 10%. 

The bare crystal used in the GEANT4 simulations is nearly a right circular 

cylinder.  For detector crystals whose dimensions vary significantly from this, the virtual 

peak-to-total ratio should be expected to change when the source is moved to other 

positions around the detector.  As proof of this, consider the cases of a large thin disc 

detector and a long cylinder detector with a small radius.  In the case of the large thin disc 

detector, gamma-rays will have a greater chance of depositing their full-energy when 

they enter the crystal from the side.  Similarly, gamma-rays entering the long cylinder 

detector will have a greater chance of depositing their full-energy when they enter the 

crystal from the top.  Because of this, the reference source used in an effective solid angle 

calculation of the full-energy peak efficiency should be placed in as similar location as 

possible to the geometry of the desired efficiency.  Following this guideline will tend to 

preserve the invariance of the “virtual” peak-to-total ratio.  Large differences between the 

reference and desired geometrical counting setups will tend to break this preservation, 

and will reduce the validity of the predicted efficiency curve. 

Experimentally measured peak-to-total ratios should be expected to depend on the 

counting geometry.  This is because the photons will scatter off nearby materials and 

reach the detector with degraded energy.  This assumption was tested experimentally 

using an HPGe detector and a Canberra S-PTC source calibration set.  The sources were 
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placed on-axis at distances of 0, 4, 8, and 10 cm.  The results of these measurements are 

compiled in Table 5.5. 

 

Table 5.5:  Experimentally Measured Peak-to-Total Ratios for On-axis Sources at 
Distances of 0, 1, 4, and 10 cm. 

 

 

As expected the peak-to-total ratios do differ, however slightly, with varying 

counting geometry.  This difference can primarily be attributed to the differing amounts 

of gamma-ray scattering on near detector materials.  Attempts were made to measure the 

experimental peak-to-total ratios of off-axis sources.  However, the number of available 

sources with high enough activity inhibited these measurements. 

 

5.1.2 Detector Approximated as a Cylinder 

In calculations of the effective solid angle, the active detector region is 

parameterized as a cylinder.  The coaxial hole in the detector is also parameterized as a 

cylinder.  In reality however, germanium detectors are typically manufactured as 

bulletized crystals as shown in Figure 3.2.  This is done to improve the charge collection 

characteristics of the detector.  The coaxial hole is also typically rounded off at the tip as 

well.  In an effort to justify this assumption, MCNP5 was used to compare the efficiency 

curves produced from two different detector models.  One detector model treated the 
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detector and coaxial hole as cylinders.  The other model took into account the 

bulletization of the detector crystal, and the rounding of the tip of the coaxial hole.  

Pictures of the two different MCNP5 models are shown in Figures 5.1 and 5.2. 
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Figure 5.1:  Picture of MCNP5 Model with the Detector Crystal and Coaxial Hole 
Approximated as Cylinders. 
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Figure 5.2:  Picture of MCNP5 Model that Includes the Detector Crystal and Coaxial 
Hole Bulletization. 
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Both models simulated a mixed radionuclide source placed in a plastic liquid 

scintillation vial for 11 different gamma-ray energies.  Simulations were run for both 

models with the source placed on-axis at source-to-detector distances of 0, 1, 2, 3, 4, 5, 6, 

and 12 inches.  The efficiencies from the simulations were then computed.  The 

differences observed between the two models are compiled in Tables 5.6 and 5.7.  The 

two models are henceforth called the cylinder model and the bullet model in order to 

differentiate between the two. 

 

Table 5.6:  Percent Differences Between the Cylinder and Bullet MCNP5 Models at 
Source-to-Detector Distances of 0, 1, 2, and 3 inches. 

 

 

Table 5.7:  Percent Differences Between the Cylinder and Bullet MCNP5 Models at 
Source-to-Detector Distances of 4, 5, 6, and 12 inches. 
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The models both agree well with each other for gamma-rays with energies greater 

than about 100 keV.  For gamma-rays with energies below that threshold, the amount of 

variation increases significantly.  One important thing not shown in the tables is that the 

percent differences were calculated relative to the cylinder model.  Most of the percent 

differences in the tables are positive, indicating that the efficiencies of the cylinder model 

were typically greater than the efficiencies of the bullet model.   

Disagreement at low energy may primarily be caused by the loss of the detector 

cylinder corners.  Low energy photons typically deposit their full-energy within the first 

few millimeters of the active crystal.  A reduction in the amount of active material 

presented to the low-energy gamma-rays in these first few millimeters, would therefore 

lower the efficiency.  However, this did not affect higher energy gamma-rays traveling 

through the detector corners.  This is because high energy gamma-rays have a low 

probability of depositing their full-energy in that small amount of active material.  Thus, 

rounding off the corners of the detector should tend to reduce the number of high energy 

gamma-rays that only partially deposit energy.  This, however, does not significantly 

reduce the number of high energy gamma-rays that deposit their full-energy under the 

peak.  This means that effective solid angle calculations are more valid for energies 

above 100 keV.  Care should therefore be taken in using the mesh-grid method for 

energies much below that threshold.  The discrepancy may also mean that MCNP has 

poor cross-section data or does not properly treat the physics. 

The rounding of the coaxial hole has the effect of adding back a small amount of 

active material.  This should tend to increase the number of events that occur in the 

detector, because there is a larger active detector volume.  However, the amount of active 

material added back in these simulations was small.  Therefore, it does not appear to 

significantly affect the detector efficiency. 
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5.1.3 Coaxial Hole Considerations 

Initially, it was the intent of the mesh-grid method to treat a detector as a true 

cylinder detector minus a “coaxial hole” detector.  The amount of energy deposited in the 

real detector would be then have been calculated from the amount deposited in the true 

cylinder minus the amount deposited in the coaxial hole detector.  This is similar to the 

assumption made in other work (Ugletveit et al., 1989).  The advantage to this method is 

that the path length calculations in the detector, necessary for the determination of 
the effF term in the effective solid angle equation, would be much easier.   

This assumption was quickly abandoned in favor of using logical loops to 

determine the path lengths through the detector.  In this case, there is no need to justify 

the true cylinder minus the coaxial hole detector assumption.  The path lengths through 

the detector and coaxial hole are directly determined using the intersections of the 

gamma-ray path with important detector cylinders and planes.   

The assumption was abandoned for three reasons.  First, the determination of the 

path lengths through the detector and coaxial hole required only a minimal amount of 

extra work to use logical loops.  Second, the assumption proved difficult to justify.  The 

primary avenue explored in this justification was the use of Monte Carlo methods.  The 

simulations of the coaxial hole detector required a significant amount, on the order of 

weeks, of computation time to produce enough statistics to justify only one geometrical 

counting setup.  Last, the assumption requires numerical integration of the effective solid 

angle equations twice.  This means that for each effective solid angle calculation, the 

amount of work done by the computer is essentially doubled.  Thus, using logical loops 

takes a small amount of extra work during the integration process, but the overall runtime 

of the code is less. 
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5.1.4 Weighting Factors and Homogeneity 

The exact distribution of radionuclides within a source is rarely ever known.  

Because of this, the calculations performed here all assumed that the radionuclides were 

distributed homogenously in the source.  This is a good assumption for point sources, 

because they only have one place to exist, namely the point.  For all of the simulations 

and experiments involving volumetric sources, the radionuclides were treated as being 

suspended in 4M HCl.  This strong acid tends to help distribute the radionuclides 

homogenously within the solution.  Aside from painfully difficult experiments to attempt 

to prove this assumption, this assumption was taken a priori.  The KMESS code and the 

mesh-grid model allow for the introduction of weighting factors in the averaging of the 

point source efficiencies.  This allows one to correct for source inhomogeneity, if the 

source distribution happens to be known.  All of the weighting factors were fixed to 1 for 

all of the effective solid angle calculations in this work. 

 

5.2 VALIDATION OF CODE CALCULATIONS 

5.2.1 KMESS vs. Experimental 

Validation of the mesh-grid method, as a means of predicting the full-energy peak 

efficiency of a germanium detector, was done through comparison with experimental 

results.  The detector used for validation was a lithium-drifted germanium detector that 

has a long history, 30+ years, of efficiency calibration data associated with it.  This 

detector is known at LANL as counter 76.  This means there is an archive of efficiency 

curves that are well known and documented for this detector.  This made it the optimal 

choice for comparison to KMESS simulations. 
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Several simulations were performed using KMESS for both point sources and 

cylindrical sources.  The point source was assumed to be made from a NIST traceable 

mixed radionuclide solution, model number QCY48, from AEA Technologies, Inc.  The 

cylindrical sources were 5 mL of this mixed radionuclide solution, in 4M HCl, in a 20 

mL polyethylene liquid scintillation vial.  The source-to-detector distances for these 

measurements are set by the automatic sample changer shelf heights.  The shelf height 

distances for the sample changer associated with counter 76 are shown in Table 5.8. 

 

Table 5.8:  Shelf Height Distances (in cm) for Point Source and Vial Source Counting 
Geometries for Counter 76. 
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The distances shown in Table 5.8 for point sources, are the exact distance from 

the source to the detector end-cap.  However, the distances shown in Table 5.8 for the 

vial source are the distances from the lid of the liquid scintillation vial to the detector 

end-cap.  Thus, to get the distance from the top of the solution, one has to add 4.95 cm to 

the vial source distances shown in Table 5.8. 

The first set of simulations performed were for point sources with the most recent 

experimental efficiency calibration data.  These happened to be shelf numbers 1, 2, 5, 10, 

12, and 22.  Using shelf 10 as the reference geometry, the effective solid angles were 

computed for the other shelves.  The results of these calculations are shown in Tables 5.9 

through 5.13. 

 

Table 5.9:  Experimentally Measured Efficiencies and KMESS Effective Solid Angle 
Calculated Efficiencies for a Point Source on Shelf 1 of Counter 76. 
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Table 5.10:  Experimentally Measured Efficiencies and KMESS Effective Solid Angle 
Calculated Efficiencies for a Point Source on Shelf 2 of Counter 76. 

 

 

Table 5.11:  Experimentally Measured Efficiencies and KMESS Effective Solid Angle 
Calculated Efficiencies for a Point Source on Shelf 5 of Counter 76. 
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Table 5.12:  Experimentally Measured Efficiencies and KMESS Effective Solid Angle 
Calculated Efficiencies for a Point Source on Shelf 12 of Counter 76. 

 

 

Table 5.13:  Experimentally Measured Efficiencies and KMESS Effective Solid Angle 
Calculated Efficiencies for a Point Source on Shelf 22 of Counter 76. 
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The experimental and KMESS calculated full-energy peak efficiencies agree quite 

well except at the energy extremes or when the source is placed close to the detector.  

This could be due to improper treatment of the low-energy peaks during the experimental 

analysis.  The choice of Am241  for the low-energy calibration was also probably a poor 

one, because it tends to have some calibration difficulties associated with it.  The 

differences at low gamma-ray energy could also be attributed to the improper treatment 

by KMESS of the detector bulletization.  The exact dead-layer thickness and distribution 

for counter 76 is also not known.  KMESS assumes that the dead-layer is uniform and 

that the thickness supplied by the manufacturer is correct.  These assumptions were 

shown elsewhere to not always necessarily be true (Jackman, 2004).  Because of this, 

low-energy differences may arise from the KMESS treatment of the dead-layer.   

The disagreements at high gamma-ray energies tend to increase with shorter 

source-to-detector distances.  This disagreement is primarily because the experimental 

efficiencies were not properly corrected for coincidence summing.  The isotopes used to 

calibrate the four highest energy points were Y88 and Co60 .  These two isotopes are well-

known to emit multiple cascade gamma-rays, with high intensities, in their decay.  The 

cascade summing losses increase for shorter source-to-detector distances, and thus reduce 

the experimentally observed full-energy peak efficiencies. 

The next set of simulations performed were for the vial source with the most 

recent experimental efficiency calibration data.  These happened to be shelf numbers 1, 5, 

10, 12, 13, and 22.  Using shelf 10 as the reference geometry, the effective solid angles 

were computed for the other shelves.  The results of these calculations are shown in 

Tables 5.14 through 5.18.  These calculations were done without source self-attenuation, 

but included attenuation through the polyethylene liquid scintillation vial. 
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Table 5.14:  Experimentally Measured Efficiencies and KMESS Effective Solid Angle 
Calculated Efficiencies for a Vial Source on Shelf 1 of Counter 76. 

 

 

Table 5.15:  Experimentally Measured Efficiencies and KMESS Effective Solid Angle 
Calculated Efficiencies for a Vial Source on Shelf 5 of Counter 76. 
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Table 5.16:  Experimentally Measured Efficiencies and KMESS Effective Solid Angle 
Calculated Efficiencies for a Vial Source on Shelf 12 of Counter 76. 

 

 

Table 5.17:  Experimentally Measured Efficiencies and KMESS Effective Solid Angle 
Calculated Efficiencies for a Vial Source on Shelf 13 of Counter 76. 
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Table 5.18:  Experimentally Measured Efficiencies and KMESS Effective Solid Angle 
Calculated Efficiencies for a Vial Source on Shelf 22 of Counter 76. 

 

 

The experimental and KMESS calculated full-energy peak efficiencies agree quite 

well except at low gamma-ray energies for all shelves.  The disagreement at low gamma-

ray energies could be attributed to poor experimental treatment of the Am241  peak.  They 

also could be attributed to detector bulletization or a non-uniform dead-layer.  The run 

time on these simulations was on the order of ~10 minutes.  This was because the source 

was meshed to a high order that produced around 4,900 points.  

The final KMESS simulations performed were for a vial source, but done using a 

point source at shelf 10 as the reference geometry.  This tested how well KMESS was 

able to convert between different source geometries.  The results of shelves 1 and 22 are 

shown in Tables 5.19 and 5.20.  These simulations included source self-attenuation and 

attenuation through the polyethylene scintillation vial for the vial source. 
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Table 5.19:  Experimentally Measured Efficiencies and KMESS Effective Solid Angle 
Calculated Efficiencies for a Vial Source on Shelf 1 of Counter 76 Using a 

Point Source on Shelf 10 as the Reference Curve. 

 

 

Table 5.20:  Experimentally Measured Efficiencies and KMESS Effective Solid Angle 
Calculated Efficiencies for a Vial Source on Shelf 22 of Counter 76 Using a  

Point Source on Shelf 10 as the Reference Curve. 
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The results for shelves 1 and 22, using a point source on shelf 10 as the reference 

efficiency curve, seem to have fairly good agreement with experimental measurements 

except at low gamma-ray energies.  This could be due to improper treatment by KMESS 

of the detector bulletization or lack of knowledge of exact detector dimensions, such as 

the dead layer.  The differences at low gamma-ray energy may also be attributed to poor 

experimental treatment of the Am241  peak.  The simulations took significantly longer to 

run using the current source self-attenuation routines.  This however, serves as a 

testament that KMESS works well at converting between different sample shapes and 

counting geometries.   

   

5.2.2 KMESS vs. Other Codes 

One of the reasons for the development of KMESS was that no code currently 

available could make quick and accurate calculations of detector efficiencies.  To 

demonstrate this, the results of several codes were compared to those obtained by 

KMESS.  The cases considered were the same as those above in Section 5.2.1.  The codes 

used to compare with KMESS were SYNTH and EFFIC.  Both of these codes use the 

same underlying principle of effective interaction depth (Gunnink et al., 1992).  EFFIC 

was the code developed by Ray Gunnink to predict and fit efficiency curves for the 

GAMANAL program.  The documentation on SYNTH claims that it uses the same 

algorithms as EFFIC, but as will be shown, this is not the case.  The results of SYNTH 

and EFFIC for the point source cases of counter 76 considered above are compiled in 

Tables 5.21 through 5.25.  EFFIC was run with the same reference curve as KMESS, 

namely a point source on shelf 10. 
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Table 5.21:  Experimentally Measured, SYNTH, and EFFIC Efficiencies for a Point 
Source on Shelf 1 of Counter 76. 

 

 

Table 5.22:  Experimentally Measured, SYNTH, and EFFIC Efficiencies for a Point 
Source on Shelf 2 of Counter 76. 
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Table 5.23:  Experimentally Measured, SYNTH, and EFFIC Efficiencies for a Point 
Source on Shelf 5 of Counter 76. 

 

 

Table 5.24:  Experimentally Measured, SYNTH, and EFFIC Efficiencies for a Point 
Source on Shelf 12 of Counter 76. 
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Table 5.25:  Experimentally Measured, SYNTH, and EFFIC Efficiencies for a Point 
Source on Shelf 22 of Counter 76. 

 

 

The point source calculations of detector efficiencies by SYNTH for almost all 

cases have poor agreement with the experimental curves.  The only exception to this is on 

shelf 12, where the SYNTH results seem to agree slightly better for high and low gamma-

ray energies.  The EFFIC results seem to agree poorly for short source-to-detector 

distances, but agree fairly well for larger distances.  This may be because the 

experimental efficiencies at short source-to-detector distances were not corrected for 

coincidence summing.  In all cases, it is evident that there is a distinct difference between 

SYNTH and EFFIC.  The KMESS results previously shown in Section 5.2.1 show much 

better agreement with experimental efficiencies at short source-to-detector distances.  For 

all shelf heights, it can be argued that the KMESS results have comparable or better 

experimental agreement than EFFIC.  The run times for all the codes are also 

comparable, because they predict point source efficiencies in fractions of a second. 

The results of SYNTH and EFFIC for the vial source cases of counter 76 

considered above are compiled in Tables 5.26 through 5.30.  EFFIC was run with the 

same reference curve as KMESS, namely a vial source on shelf 10.  SYNTH was also 

allowed to correct for source self-attenuation and the attenuation in the polyethylene 
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liquid scintillation vial.  Unfortunately, the available version of EFFIC would not run if 

source or scintillation vial attenuation was used. 

 

Table 5.26:  Experimentally Measured, SYNTH, and EFFIC Efficiencies for a Vial 
Source on Shelf 1 of Counter 76. 

 

 

Table 5.27:  Experimentally Measured, SYNTH, and EFFIC Efficiencies for a Vial 
Source on Shelf 5 of Counter 76. 
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Table 5.28:  Experimentally Measured, SYNTH, and EFFIC Efficiencies for a Vial 
Source on Shelf 12 of Counter 76. 

 

 

Table 5.29:  Experimentally Measured, SYNTH, and EFFIC Efficiencies for a Vial 
Source on Shelf 13 of Counter 76. 
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Table 5.30:  Experimentally Measured, SYNTH, and EFFIC Efficiencies for a Vial 
Source on Shelf 22 of Counter 76. 

 

 

The vial source calculations of detector efficiencies by SYNTH for almost all 

cases have poor agreement with experimental data.  The only exceptions to this are on 

shelves 13 and 22.  At shelf 13 the SYNTH results seem to agree slightly better for high 

and low gamma-ray energies.  At shelf 22, the SYNTH results agree slightly better for 

the middle energy gamma-rays.  The EFFIC results seem to agree poorly for shelf 1, but 

agree fairly well for all other shelves.  This may again be due to coincidence summing 

issues in the experimental data at shorter distances.  The KMESS results previously 

shown in Section 5.2.1 show much better agreement than SYNTH and EFFIC for shelf 1.  

For all other shelf heights, it can be argued that the KMESS results show experimental 

agreement that is comparable to the results obtained with EFFIC.  The run times for 

KMESS were slightly longer, ~10 minutes, whereas the run times for SYNTH and EFFIC 

were still fractions of a second. 
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5.2.3 Grid Sensitivity Tests 

One of the main techniques employed by the mesh-grid method is to treat 

distributed sources as large collections of point sources.  In order to quantify what “large” 

collection of point sources means to KMESS, it is necessary to perform tests of the mesh-

grid sensitivity.  This also allows one to determine the highest degree of accuracy 

produced by KMESS in the smallest amount of computation time.  The detector used in 

these tests was counter 76. 

The first test performed was using two line sources placed above the surface of 

the detector at a source-to-detector distance of 1 cm.  The lines were drawn parallel to the 

x-axis and placed at y = -1 cm and y = 1 cm.  The lines had lengths of 2 cm and the 

endpoints were placed at x = -1 cm and x = 1 cm.  The lines were then divided into 

smaller grids by including more points on the lines between the endpoints.  The average 

effective solid angles for different numbers of grid were then calculated using KMESS.  

The results of this test are shown in Figure 5.3.  Because of the cylindrical symmetry of 

the situation, it was deemed unnecessary to perform this test for the y-dimension. 
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X Grid Test
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Figure 5.3:  Average Effective Solid Angle, as a Function of the Number of Points on the 
Line, for Two Line Sources Pointing in the X-direction. 

 

The next test performed was using four line sources placed above the detector 

surface.  However, this time the lines were drawn parallel to the z-axis and placed at xy-

coordinates of (-1,-1), (-1, 1), (1, -1), and (1, 1).  The lines had lengths of 10 cm and the 

endpoints were placed at z = 1 cm and z = 11 cm.  The lines were then divided into 

smaller grids and the average effective solid angles calculated using KMESS.  The results 

of this test are shown in Figure 5.4. 
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Z Grid Test
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Figure 5.4:  Average Effective Solid Angle, as a Function of the Number of Points on the 
Line, for Four Line Sources Pointing in the Z-direction. 

The final test performed was using a disc source placed above the surface of the 

detector at a source-to-detector distance of 0.5 cm.  In this test, the disc was modeled in 

cylindrical coordinates and had a radius of 1.2 cm.  The disc was placed so that its axis 

coincided with the primary axis of the detector and it was parallel to the detector surface.  

The disc was then divided into grids using the same number of grids for both the r and θ 

directions.  One limitation to this test was that the number of grids in both directions was 

only allowed to go to 70.  This limitation was necessary because the number of points 

began to reach the maximum number of points allowed, ~5000, by KMESS.  The results 

of this test are shown in Figure 5.5. 
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R-θ  Grid Test
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Figure 5.5:  Average Effective Solid Angle, as a Function of the Number of Points in the 
R and θ Directions, for a Disc Source. 

 

All of these tests seem to hint at the same end result.  This is that the average 

effective solid angle begins to level off after grid sizes between about 0.1 to 1 mm per 

grid in any given direction.  This is despite changes in source-to-detector distance.  Based 

on these results, the current limitation on the number of allowed points in KMESS should 

probably be increased in the future. 
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Chapter 6: Conclusions 

The results reported in this work appear promising for using KMESS to predict 

the full-energy peak efficiencies of high-purity germanium detectors.  As was shown, 

KMESS can predict the absolute full-energy peak efficiencies of germanium detectors to 

within an accuracy of less than 10% on average, and in most cases much less than 10%, 

for the energy range 100–1800 keV.  This energy range covers the gamma-rays from 

most fission products.  The code performed slightly better when the reference geometry 

was the same as the desired geometry.  However, even when the reference geometry was 

changed, the predicted efficiencies still had good agreement with experimental results.  

The KMESS results tended to disagree more for high and low gamma-ray energies and 

for close source-to-detector distances.   

KMESS performed much better at predicting efficiencies than SYNTH.  It 

performed just as well, if not better, at predicting efficiencies than EFFIC.  The run times 

of KMESS were comparable to EFFIC and SYNTH.  However, the run times are 

significantly less for KMESS than required when using Monte Carlo techniques.  

KMESS ran on the order of a fraction of a second for point sources.  Large source 

meshes, ~5000 points, ran on the order of 10 minutes.  However, KMESS ran 

significantly longer when the current source self-attenuation routine was used. 

Further improvements to KMESS could be made in several ways.  The code could 

be made to run faster by including a better source self-attenuation calculation routine.  

Other numerical integration methods should be explored to improve code run times and 

accuracy.  Corrections for summing, non-uniform dead-layers, and detector bulletization 

may help improve results for low and high energy gamma-rays.  Additional source and 

absorber materials should also be added to improve code versatility.     
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KMESS is currently being prepared for open-source distribution under the GNU 

Public License.  The web interface for KMESS is intended for open-source distribution as 

well.  This software will be incorporated into the NGWeb software of the Nuclear and 

Radiochemistry group’s counting room at Los Alamos National Laboratory.  A copy of 

the source code may be obtained by contacting this group at Los Alamos National 

Laboratory. 
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Appendix 

A.1 ADDITIONAL KMESS DOCUMENTATION 

A.1.1 KMESS README FILE 

 
KMESS README FILE 
 
Kevin Jackman 
June, 2007. 
 
I. Description of KMESS 
 
KMESS is a C language program that uses a semi-empirical method to calculate 
the full-energy peak efficiencies of a germanium detector. The basic idea  
behind KMESS is built around the concept of the Moen's effective solid angle.  
For information on the effective solid angle concept, see the following  
journal article: 
 
L. Moens et al., Nuclear Instruments & Methods, Vol. 187 (1981) pgs 451-472. 
 
The methods used by both KMESS and Moen's are based on using an  
experimentally determined reference measurement to predict the full-energy  
peak efficiency for a different desired counting geometry. Moen's (as well  
as others) typically described the gamma-ray source shape analytically,  
using standard geometrical shapes (cylinders, discs, etc...). Their methods  
became extremely difficult to use for source shapes that could not be easily  
parametrized using analytic functions. Thus, their methods are highly  
undesirable for oddly shaped sources.  
 
Enter KMESS.  
 
KMESS treats the gamma-ray source as a collection of point sources. It  
determines the full-energy peak efficiency for each point source and then  
averages them together. Weighted averaging is possible, but is currently 
disabled. This makes it easy to predict efficiencies for anything from simple 
to very complex source shapes. In KMESS, both a reference source shape and a  
desired source shape are specified with a mesh. This mesh is a collection of  
points that describes both the source shape, and location of the source  
relative to the germanium detector. For a description on the required mesh  
coordinate system, see the README file on source files. In short, assume the  
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center of the outer surface of the detector end cap is the origin. In  
addition to a mesh, the user must supply a table of energy-efficiency point  
pairs in order to convert effective solid angle into full-energy peak  
efficiency. At a minimum then, KMESS needs a reference source file (.ksf),  
a desired geometry source file (.ksf), a detector file (.kdf), and a  
reference energy-efficiency curve file (.krf) to calculate a full-energy peak 
efficiency. KMESS can also be run to account for any additional absorbing  
materials between the source and detector. At the time of writing this  
document, absorber use is limited to one absorber. KMESS also assumes that  
the absorber covers the entire detector end cap. See the README me on  
absorber files for more information. The number of available materials is  
also limited to those currently in the materials/ directory. For help in  
adding new materials see the README on cross-section files. KMESS output 
defaults to the screen unless the -o <filename> option is used to tell it 
to output the results to <filename>. 
 
II. Compiling and Building of KMESS 
 
Included with the KMESS source code should have been a Makefile. Thus, to 
build KMESS, all you have to do is go to the directory where the source 
files were unpacked and type "make" at a command prompt to compile and 
build KMESS. The GNU GCC compiler (version > 4.0) should be used and the 
GNU Make utility must be installed. 
 
If the Makefile is not there or if you are attempting to build on a non-Unix 
/Linux platform, you need to first have a C compiler. Then each of 
the source files needs to be compiled using a command similar to: 
 
#gcc -c kmesscalc.c 
 
Then the whole package can be put together with a command similar to: 
 
#gcc -o kmess kmess.c kmesscalc.o kmessnumrec.o kmessfileio.o 
 
III. Available KMESS Run Methods 
 
1. ./kmess -t 
DESCRIPTION: Runs a test set of data through KMESS. Output is to screen. 
 
 
2. ./kmess -d <det-filename> -s <rsrc-filename> 
DESCRIPTION: Calculates the average effective solid angles of the points 
in the source file <rsrc-filename> using the detector file <det-filename>.  
Output is to screen. 
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3. ./kmess -d <det-filename> -s <rsrc-filename> -g <gsrc-filename> 
DESCRIPTION: Calculates the average effective solid angles of the points 
in the source files, <rsrc-filename> and <gsrc-filename>, using the detector  
file <det-filename>. Output is to screen. 
 
 
4. ./kmess -d <det-filename> -s <rsrc-filename> -g <gsrc-filename> -r <ref-filename> 
DESCRIPTION: Calculates the full-energy peak efficiency of the desired source 
geometry file <gsrc-filename>, using <rsrc-filename> as the refernce source 
geometry file and reference curve file <ref-filename>. This is done using the 
detector file <det-filename>. Output is to screen. 
 
 
5. ./kmess -d <det-filename> -s <rsrc-filename> -a <abs-filename> 
DESCRIPTION: Calculates the average effective solid angles of the points 
in the source file <rsrc-filename> using the detector file <det-filename>. 
Uses an absorber file <abs-filename> to correct for an absorber placed 
between the source and detector. Output is to screen. 
 
 
6. ./kmess -d <det-filename> -s <rsrc-filename> -g <gsrc-filename>  -a <abs-filename> 
DESCRIPTION: Calculates the average effective solid angles of the points 
in the source files, <rsrc-filename> and <gsrc-filename>, using the detector  
file <det-filename>. Uses an absorber file <abs-filename> to correct for an  
absorber placed between the source and detector. Output is to screen. 
 
 
7. ./kmess -d <det-filename> -s <rsrc-filename> -g <gsrc-filename> -r <ref-filename>  -a 
<abs-filename> 
DESCRIPTION: Calculates the full-energy peak efficiency of the desired source 
geometry file <gsrc-filename>, using <rsrc-filename> as the refernce source 
geometry file and reference curve file <ref-filename>. This is done using the 
detector file <det-filename>. Uses an absorber file <abs-filename> to correct  
for an absorber placed between the source and detector. Output is to screen. 
 
 
8. ./kmess -d <det-filename> -s <rsrc-filename> -o <out-filename> 
DESCRIPTION: Same as run method 2, but output is to file <out-filename>  
instead of to screen. 
 
 
9. ./kmess -d <det-filename> -s <rsrc-filename> -g <gsrc-filename> -o <out-filename> 
DESCRIPTION: Same as run method 3, but output is to file <out-filename>  
instead of to screen. 
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10. ./kmess -d <det-filename> -s <rsrc-filename> -g <gsrc-filename> -r <ref-filename> -o 
<out-filename> 
DESCRIPTION: Same as run method 4, but output is to file <out-filename>  
instead of to screen. 
 
 
11. ./kmess -d <det-filename> -s <rsrc-filename> -a <abs-filename> -o <out-filename> 
DESCRIPTION: Same as run method 5, but output is to file <out-filename>  
instead of to screen. 
 
 
12. ./kmess -d <det-filename> -s <rsrc-filename> -g <gsrc-filename>  -a <abs-filename> 
-o <out-filename> 
DESCRIPTION: Same as run method 6, but output is to file <out-filename>  
instead of to screen. 
 
 
13. ./kmess -d <det-filename> -s <rsrc-filename> -g <gsrc-filename> -r <ref-filename>  -
a <abs-filename> -o <out-filename> 
DESCRIPTION: Same as run method 7, but output is to file <out-filename>  
instead of to screen. 

 

A.1.2 KMESS Absorber File (KAF) README 

 
KMESS ABSORBER FILE FORMAT DESCRIPTION (.KAF) 
 
Kevin R. Jackman 
Los Alamos National Laboratory 
05/08/2007 
 
 
I. INTRODUCTION 
 
This file contains the primary description on how to create an absorber file  
(.KAF) for use with KMESS (Kevin's Mesh Efficiency Simulator Software). The 
primary information contained in a KMESS absorber file is the absorber  
material and thickness. At present, the absorber is assumed to surround the  
entire detector end cap, both top and sides, with the specified thickness of 
the specified material. In other words, an absorber in KMESS is like an  
additional detector end cap that that surrounds the real detector end cap  
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with the specified thickness of the specified material. This may, to some,  
seem like a limiting assumption for simualtions involving absorbers. However, 
because of the rarity of absorber measurements at LANL, this assumption was  
chosen. In future versions of KMESS and the .KAF file format, it may be more  
useful to specify the absorber as a mesh, as an absorber that surrounds the  
source, or an absorber based on a standard geometrical shape. Another  
limitation is that KMESS currently allows for only one absorber. This means  
that there can be only one absorber material of one thickness. Future  
releases of KMESS should allow for multiple materials of multiple  
thicknesses. There is also only a small amount of materials to choose from 
for the absorbing material. A new material can be added by making a KMESS  
photon cross-section file for that material and adding that material name and 
file name into the KMESS source code in the appropriate places. See the KMESS 
source code and photon cross-section README files for how to do that. 
 
The format for a KMESS absorber file follows a keyword-value format. This  
allows one to be able to tell what is contained within the file simply by  
looking at it in a text file viewer. The files should be written such that  
they are white space (spaces or tabs) delimited. It should be mentioned that  
the C routine written to read in the file only cares that it finds the  
keyword identifier followed by white space followed by values that are  
delimited by white space up until the end of the line. The current file  
reading routine can only handle 200 characters per line. However, this can be 
easily increased in the "kmess.h" file. For help doing that, see the comments  
contained in that file. The keyword identifiers and values needed to make a  
successful absorber file are described below as well as the units that are  
expected for such values. The keyword identifier can be no longer than 30  
characters. This can be easily adjusted in the kmess source files.  
 
 
II. KEYWORD IDENTIFIERS, THEIR ASSOCIATED VALUES, AND 
DESCRIPTIONS 
 
The following is a complete list of the currently recognized keyword  
identifiers contained in a KMESS absorber file, followed by a brief  
description of each. The order of the keyword identifiers in the file is  
unimportant. However, the minimum keyword identifiers and values necessary  
for specifying an absorber in a KMESS absorber file are an absorber name,  
an absorber material, and an absorber thickness in units of centimeters (see  
descriptions of identifiers II.1 through II.3 below). Future additions to  
KMESS may be to include a "unit" value after the absorber thickness, so that 
the input is more flexible with respect to the system of units allowed.  
Comments are kept if and only if they are specified with the keyword  
identifier shown in II.4. Any other comments, stray lines/characters, are  
ignored. 



 110

 
 
II.1. Absorber Name 
 
usage: 
ABS_NAME <value> 
 
ex.  
ABS_NAME 3/4"-Al 
 
Description: This keyword identifier is used to specify the name of the  
absorber used in the simulation. The <value> is a "string" C data type (a  
string of characters). The string case is unimportant, but the name needs to  
be all one word (underscores or hyphens may help to do this). This keyword  
identifier and value are one of the three that are absolutely necessary. 
 
 
II.2. Absorber Material 
 
usage: 
ABS_MAT <value> 
 
ex. 
ABS_MAT Al 
 
ex. 
ABS_MAT Ge 
 
ex. 
ABS_MAT B 
 
ex. 
ABS_MAT Li 
 
ex. 
ABS_MAT Be 
 
ex. 
ABS_MAT Polyethylene 
 
Description: This keyword identifier is used to specify the material of the 
absorber used in the simulation. Currently there are only six available  
materials for use as an absorber. These are elemental aluminum, germanium,  
boron, lithium, beryllium, and polyethylene. All allowed uses are shown in  
the examples above. The <value> is a "string" C data type (a string of  
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characters). The string value is case sensitive and must be entered as shown  
in the examples above. This keyword identifier and value are one of the three 
that are absolutely necessary. 
 
II.3. Absorber Thickness 
 
usage: 
ABS_THICKNESS <value> 
 
ex. 
ABS_THICKNESS 2.0 
 
Description: This keyword identifier is used to specify the thickness of the 
absorber (in centimeters) used in the simulation. The <value> is a "float" C  
data type (a floating point number). This keyword identifier and value are  
one of the three that are absolutely necessary. 
 
 
II.4. Absorber File Comments 
 
usage: 
ABS_COMMENT <value> 
 
ex. 
ABS_COMMENT this is a comment haha 
 
Description: This keyword identifier is used to specify that it is an  
absorber comment line. This comment is stored in an array of strings and is  
reported in KMESS output. 
 
 
III. FUTURE ADDITIONS 
 
Some of the future additions to this file format could be to include support 
for the following features: 
 
-"units" as an additional <value> after floating point values 
-multiple absorbing materials 
-multiple absorbing thickness 
-simple geometric absorber shapes 
-additional absorbing materials 
-mesh absorber specification 
-an absorber surrounding source 
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A.1.3 KMESS Cross-section File (KCF) README 

 
KMESS CROSS-SECTION FILE FORMAT DESCRIPTION (.KCF) 
 
Kevin R. Jackman 
Los Alamos National Laboratory 
05/09/2007 
 
 
i. PREFACE ON UNITS AND PHOTON "CROSS-SECTIONS" 
 
It should be mentioned here that I use the word "cross-section" very loosely 
in this README. It SHOULD be used in this case to imply the linear,  
narrow-beam energy-dependent photon absorption coefficient (mu in commonly  
used Greek symbols). That has units of cm^-1, and thus strictly speaking is a 
"cross-section". However, in photon attenuation calculations, the  
"cross-section" is commonly reported in tables as the MASS interaction  
coefficient (mu/rho in commonly used Greek symbols) that is in units of  
(cm^2/g). To convert between the two, one needs only the density (rho) 
of the material in (g/cm^3). The source of the "cross-sections" used in  
KMESS comes from NIST. See the NIST X-COM Photon Cross-section page: 
 
http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html 
 
NIST reports their data as mass interaction coefficients, in units of  
(cm^2/g). In order to make it easier to create new material "cross-section"  
files, I designed the KCF file format to accept the NIST data as is (in their 
units), and have the person creating the KCF file just specify the density of 
the material. Therefore, all calculations to convert the mass interaction  
coefficients into "cross-sections" are just handled in KMESS. 
 
 
I. INTRODUCTION 
 
This file contains the primary description on how to create a cross-section  
file (.KCF) for use with KMESS (Kevin's Mesh Efficiency Simulator Software).  
Most common uses of the KMESS code will not require creation of new  
cross-section files. However, this README was developed along-side the code  
to allow future developers of the code to be more familiar with what I've  
done. This file also contains a brief description on how to add additional  
elements to the allowed materials for absorbers. Adding additional materials  
to the list of available detector materials can be accomplished in a similar  
way. The primary information contained in a KMESS cross-section file is the  
density of the material, and then a point wise table of energy and photon  
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mass interaction coefficients (henceforth called MuOverRho for the Greek  
symbols commonly used to represent that value). See section i above if you  
don't follow what I mean. The mass interaction coefficients (MuOverRho) used  
should be the total minus coherent scattering. The reasons behind excluding  
coherent scattering are beyond the scope of this README. However, an  
explanation can be found in the following journal article: 
 
L. Moens et al., Nuclear Instruments & Methods, Vol. 187 (1981) pgs 451-472. 
 
The format for a KMESS cross-section file follows a keyword-value format.  
This allows one to be able to tell what is contained within the file simply  
by looking at it in a text file viewer. The files should be written such that  
they are white space (spaces or tabs) delimited. It should be mentioned that  
the C routine written to read in the file only cares that it finds the  
keyword identifier followed by white space followed by values that are  
delimited by white space up until the end of the line. The current file  
reading routine can only handle 200 characters per line. However, this can be 
easily increased in the "kmess.h" file. For help doing that, see the comments  
contained in that file. The keyword identifiers and values needed to make a  
successful absorber file are described below as well as the units that are  
expected for such values. No more than 1000 energy-MuOverRho point pairs are 
allowed either. The keyword identifier can be no longer than 30 characters. 
These both can also be easily adjusted in the kmess source files.  
 
 
II. KEYWORD IDENTIFIERS, THEIR ASSOCIATED VALUES, AND 
DESCRIPTIONS 
 
The following is a complete list of the currently recognized keyword  
identifiers contained in a KMESS cross-section file, followed by a brief  
description of each. The order of the keyword identifiers in the file is  
unimportant. However, the minimum keyword identifiers and values necessary  
for specifying a new material with a KMESS cross-section file are a material 
name, a density for that material (in g/cm^3), and at least one pair of  
energy (in MeV) / MuOverRho (in cm^2/g) points (see descriptions of  
identifiers II.1 through II.3 below). Future additions to KMESS may be to  
include a "unit" value after the density, energies, and MuOverRho values so  
that the input is more flexible with respect to the system of units allowed.  
Comments are kept if and only if they are specified with the keyword  
identifier shown in II.4. Any other comments, stray lines/characters, are  
ignored. 
 
 
II.1. Material Name 
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usage: 
MAT_NAME <value> 
 
ex.  
MAT_NAME Al 
 
ex.  
MAT_NAME Air 
 
Description: This keyword identifier is used to specify the name of the  
material to be added to KMESS. The name should be something representative of 
the material, like its elemental symbol, or a description like "Air" (see the  
examples above). The <value> is a "string" C data type (a string of  
characters). The string case is unimportant, but the name needs to be all one 
word (underscores or hyphens may help to do this). This keyword identifier  
and value are one of the three that are absolutely necessary. 
 
 
II.2. Material Density 
 
usage: 
MAT_DENSITY <value> 
 
ex. 
MAT_DENSITY 5.323 
 
Description: This keyword identifier is used to specify the density of the 
material to be used by KMESS in units of grams per centimeter^3 (g/cm^3). The  
<value> is a "float" C data type (a floating point number). This keyword  
identifier and value are one of the three that are absolutely necessary. 
 
 
II.3. Material's Energy Dependent Mass Interaction Coefficients (MuOverRho) 
 
usage: 
MAT_ENERGY_MUOVERRHO <value> <value> 
 
ex. 
MAT_ENERGY_MUOVERRHO 4.000E-03 2.92E+00 
 
Description: This keyword identifier is used to specify that the two values  
following it are an energy-MuOverRho point pair that descibes the total  
mass interaction coefficient (MuOverRho) minus coherent scattering of the  
material at that given energy to be used by KMESS. The energy should be  
quoted in units of Mega electron Volts (MeV), and MuOverRho in units of  
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centimeters^2 per gram (cm^2/g). The <value> is a "float" C data type (a  
floating point number). Exponential formating is allowed as well. This  
keyword identifier and value are one of the three that are absolutely  
necessary. 
 
 
II.4. Cross-section File Comments 
 
usage: 
MAT_COMMENT <value> 
 
ex. 
MAT_COMMENT this is a comment haha 
 
Description: This keyword identifier is used to specify that it is a material 
cross-section comment line. This comment is stored in an array of strings and 
is NOT reported in any KMESS output. 
 
 
III. FUTURE ADDITIONS 
 
Some of the future additions to this file format could be to include support 
for the following features: 
 
-"units" as an additional <value> after floating point values 
-other material properties? 
 
IV. HOWTO ADD A NEW MATERIAL IN KMESS 
 
A new material can be fairly easily interfaced into KMESS. That was the point 
right? First, the material needs a "cross-section" file. Lastly, one needs to 
edit the KMESS source code in the proper place to add it as an available  
material. 
 
To create the cross file, one only needs to have the proper keyword  
identifiers and values as described in section II above. As an example let's  
say I wanted to create a new material of elemental Magnesium. In the  
cross-section file I would put something like: 
 
MAT_NAME Mg 
MAT_DENSITY 1.738 
MAT_ENERGY_MUOVERRHO 1.000E-03 9.20E+02  
...(other energy-MuOverRho points here)... 
MAT_ENERGY_MUOVERRHO 1.000E+05 3.05E-02 
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Lets, step back. How did I get the energy-MuOverRho data you ask? Here's how 
I do it (though you could hand copy from a book somewhere but why?). Go to  
the NIST X-COM Photon Cross-section page: 
 
http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html 
 
Then, do a database search for the material you are interested in. One thing  
that is neat about the NIST website, is that you can specify a mixture and 
it will calculate the cross-section for you. That saves a lot of time trying 
to do it on your own. Also, it allows you to specify the energy range, so you 
can tone it down from 10000 MeV if you'd like. 
 
Once you've found the material, you should see a table, you can select a  
little check box next to the mass interaction coefficients you want. You want 
total minus coherent scattering. Then, choose some identifier (say space) and 
click the Download Data button. Copy these data points into separate columns  
in a spreadsheet. Add a column with the identifier MAT_ENERGY_MUOVERRHO in  
front of all the data points. Save this file as a text file, and rename to  
<whatever you want>.kcf. Then, you only have to add the MAT_NAME and  
MAT_DENSITY keyword identifiers and values and ...bingo, you're done. 
 
Now, changing the KMESS code to recognize your new material is fairly easy 
too. Say you wanted to add this new material as a new kind of absorber. Find 
the cross-section read file section in the source code. Add your material to 
be available by entering in a few lines of code (to read in the correct .kcf  
file just like the others). Then, find the part of the code that reads in the 
ABS_MAT keyword identifier. Add some code there (just like the others),  
recompile, build, and you're done. A similar process can be repeated to  
change the available materials for any other keyword identifier from other 
types of files too. 

 

A.1.4 KMESS Detector File (KDF) README 

 
KMESS DETECTOR FILE FORMAT DESCRIPTION (.KDF) 
 
Kevin R. Jackman 
Los Alamos National Laboratory 
05/07/2007 
 
 
I. INTRODUCTION 
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This file contains the primary description on how to create a detector 
file (.KDF) for use with KMESS (Kevin's Mesh Efficiency Simulator Software).  
It should be mentioned that the terms "crystal" and "detector" are used  
loosely here, but refer to the actual germanium crystal and everything inside 
the detector end cap respectively. 
 
The format for a KMESS detector file follows a keyword-value format. This  
allows one to be able to tell what is contained within the file simply by  
looking at it in a text file viewer. The files should be written such that  
they are white space (spaces or tabs) delimited. It should be mentioned that  
the C routine written to read in the file only cares that it finds the  
keyword identifier followed by white space followed by values that are  
delimited by white space up until the end of the line. The current file  
reading routine can only handle 200 characters per line. However, this can be 
easily increased in the "kmess.h" file. For help doing that, see the comments  
contained in that file. The keyword identifiers and values needed to make a  
successful detector file are described below as well as the units that are  
expected for such values. The keyword identifier can be no longer than 30  
characters. This can be easily adjusted in the kmess source files. 
 
 
II. KEYWORD IDENTIFIERS, THEIR ASSOCIATED VALUES, AND 
DESCRIPTIONS 
 
The following is a complete list of the currently recognized keyword  
identifiers contained in a KMESS detector file, followed by a brief  
description of each. The order of the keyword identifiers in the file is  
unimportant. However, the minimum keyword identifiers and values necessary  
for specifying a detector in a KMESS detector file are the detector name,  
detector type, coaxial configuration, detector diameter, and detector length 
(see descriptions of keyword identifiers II.1 through II.5 below). Future  
additions to KMESS may be to include a "unit" value after all of the  
numerical values, so that the input is more flexible in respect to the system 
of units allowed. Comments are kept if and only if they are specified with  
the keyword identifier shown in II.16. Any other comments, stray  
lines/characters, are ignored. 
 
 
II.1. Detector Name 
 
usage: 
DET_NAME <value> 
 
ex.  
DET_NAME 76 
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ex. 
DET_NAME Cow  
 
Description: This keyword identifier is used to specify the name of the  
germanium detector to be simulated. In LANL use, it should be the counter  
number. The <value> is a "string" C data type (a string of characters). The  
string case is unimportant, but the name needs to be all one word. This  
keyword identifier and value are one of the five that are absolutely  
necessary. 
 
 
II.2. Detector Type 
 
usage: 
DET_TYPE <value> 
 
ex.  
DET_TYPE P 
 
ex. 
DET_TYPE n 
 
Description: This keyword identifier is used to specify the type of germanium  
detector to be simulated. Simply put, it is whether the detector is a p-type 
or an n-type. It is important because it determines whether the outer  
contact of the crystal is assumed to be ion-implanted boron (as in an n-type) 
or diffused lithium (as in a p-type). It also determines whether the inner  
contact of the crystal is assumed to be ion-implanted boron (as in an p-type) 
or diffused lithium (as in a n-type). There are currently only two allowed 
values for this keyword identifier (P or N). Both uses are listed in the  
examples above. The <value> is a "char" C data type (a single character). The  
character can be either upper or lower case. This keyword identifier and  
value are one of the five that are absolutely necessary. 
 
 
II.3. Detector Coaxial Configuration 
 
usage: 
DET_COAXTYPE <value> 
 
ex.  
DET_COAXTYPE TRUE 
 
ex. 
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DET_COAXTYPE closed-ended 
 
Description: This keyword identifier is used to specify the coaxial  
configuration of the germanium crystal to be simulated. There are currently  
only two allowed types for the value of this keyword identifier (true or  
closed-ended). Both uses are listed in the examples above. A "true" coaxial  
detector has a hole in the crystal that goes all the way through it. A  
"closed-ended" coaxial detector has a crystal that goes partially through it. 
Consult any book on germanium detectors, if you still are unclear about what  
this means (ex. Glenn F. Knoll's "Radiation Detection and Measurement").  
Future additions to KMESS may be to include well and planar detectors here.  
But for now, there are only two available. The <value> is a "string" C data  
type (a string of characters). The string needs to be either all upper case  
or all lower case. This keyword identifier and value are one of the five that 
are absolutely necessary.  
 
 
II.4. Detector Diameter 
 
usage: 
DET_DIAMETER <value> 
 
ex.  
DET_DIAMETER 59.8 
 
Description: This keyword identifier is used to specify the diameter of the  
detector (in millimeters) to be simulated. This is the diameter quoted on a  
typical germanium detector specification sheet. More precisely, it is the  
diameter of the germanium crystal.  The <value> is a "float" C data type (a  
floating point number). This keyword identifier and value are one of the five 
that are absolutely necessary. 
 
 
II.5. Detector Length 
 
usage: 
DET_LENGTH <value> 
 
ex.  
DET_LENGTH 59.6 
 
Description: This keyword identifier is used to specify the length of the  
detector (in millimeters) to be simulated. This is the length quoted on a  
typical germanium detector specification sheet. More precisely, it is the  
length of the germanium crystal. The <value> is a "float" C data type (a  
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floating point number). This keyword identifier and value are one of the  
five that are absolutely necessary. 
 
 
II.6. Detector Outer Contact Layer Thickness (Dead Layer) 
 
usage: 
DET_OUTERCONTACT <value> 
 
ex.  
DET_OUTERCONTACT 700.0 
 
Description: This keyword identifier is used to specify the thickness of the 
outer contact layer (in micrometers) of the detector crystal to be simulated.  
This is the absorbing layer (or so-called dead layer) quoted on a typical  
germanium detector specification sheet. More precisely, it is the thickness 
of inactive material between the inner-most extent of the outer contact layer 
and the physical outer surface of the crystal on the top and sides of the  
germanium crystal. The dead layer is assumed to be uniform, even though this  
has been proven to be only a fair assumption. Future additions to KMESS may 
include separate specifications for top and side dead layers and possibly a  
point wise table of thicknesses. The <value> is a "float" C data type (a  
floating point number). This keyword identifier and value are not necessary,  
but they are highly recommended for accurate simulations. If a value is not  
specified, a dead layer of 700 micrometers is assumed for p-type detectors  
and 0.3 micrometers for n-type detectors. The material composition of this  
layer is dependent upon the DET_TYPE specified above (see section II.2 for  
more details). 
 
 
II.7. Detector Inner Contact Layer Thickness 
 
usage: 
DET_INNERCONTACT <value> 
 
ex.  
DET_INNERCONTACT 0.3 
 
Description: This keyword identifier is used to specify the thickness of the 
inner contact layer (in micrometers) surrounding the coaxial hole in the  
detector crystal to be simulated. The inner contact layer thickness is rarely  
quoted on germanium detector specification sheets. It is the thickness of 
inactive material between the inner-most extent of the inner contact layer  
surrounding the crystal coaxial hole and the physical edge of the crystal  
surface within the coaxial hole. The inner contact is assumed to be uniform,  
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even though this may be only a fair assumption. Future additions to KMESS may 
include separate specifications for top and side inner contact thicknesses  
and possibly a point wise table of thicknesses. The <value> is a "float" C  
data type (a floating point number). This keyword identifier and value are  
not necessary, but they are highly recommended for accurate simulations. If a  
value is not specified, an inner contact of 0.3 micrometers is assumed for  
p-type detectors and 700 micrometers for n-type detectors. The material  
composition of this layer is dependent upon the DET_TYPE specified above (see 
section II.2 for more details). 
 
 
II.8. Detector Coaxial Hole Diameter 
 
usage: 
DET_HOLEDIAMETER <value> 
 
ex. 
DET_HOLEDIAMETER 10.0 
 
Description: This keyword identifier is used to specify the diameter of the  
coaxial hole (in millimeters) in the detector crystal to be simulated. The  
hole diameter is rarely quoted on germanium detector specification sheets, 
and usually must be obtained from the detector manufacturer. The <value>  
is a "float" C data type (a floating point number). This keyword identifier  
and value are not necessary, but they are highly recommended for accurate  
simulations. If they are not specified, a hole diameter of 10.0 millimeters  
is assumed. 
 
 
II.9. Detector Coaxial Hole Depth 
 
usage: 
DET_HOLEDEPTH <value> 
 
ex. 
DET_HOLEDEPTH 46.4 
 
Description: This keyword identifier is used to specify the depth of the  
coaxial hole (in millimeters) in the detector crystal to be simulated. The  
hole depth is rarely quoted on germanium detector specification sheets, and  
usually must be obtained from the detector manufacturer. The "depth" is the  
distance from the bottom of the crystal to the top of the coaxial hole. The  
<value> is a "float" C data type (a floating point number). This keyword  
identifier and value are not necessary, but they are highly recommended for  
accurate simulations. If they are not specified, a hole depth of 3/4 of the  
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detector length (as specified with the DET_LENGTH keyword identifier as  
above) is assumed for closed-ended coax configurations. The hole depth  
defaults to the entire detector length for true coax configurations. The  
coax configuration is specified with the DET_COAXTYPE keyword identifier  
listed above. 
 
 
II.10. End Cap Window Material 
 
usage: 
DET_ENDCAPWINDOWMAT <value> 
 
ex. 
DET_ENDCAPWINDOWMAT Be 
 
ex. 
DET_ENDCAPWINDOWMAT Al 
 
Description: This keyword identifier is used to specify the material of the  
end cap window above of the detector crystal to be simulated. This end cap  
material will be used in any gamma-ray attenuation calculations where the  
gamma-ray enters the end cap from above the end cap window surface. There are 
only two currently available values for the end cap material (Al or Be). The  
<value> is a "string" C data type (a string of characters). The string value  
is case sensitive and must be entered as shown in the examples above. This  
keyword identifier and value are not necessary, but they are highly  
recommended for accurate simulations. If no material is specified, an  
aluminum (Al) end cap window material is assumed. 
 
 
II.11. End Cap Window Thickness 
 
usage: 
DET_ENDCAPWINDOWTHICK <value> 
 
ex. 
DET_ENDCAPWINDOWTHICK 1.0 
 
Description: This keyword identifier is used to specify the thickness of the  
end cap window (in millimeters) above of the detector crystal to be  
simulated. The <value> is a "float" C data type (a floating point number).  
This keyword identifier and value are not necessary, but they are highly  
recommended for accurate simulations. If no thickness is specified, an end  
cap window thickness of 1.0 millimeters is assumed. 
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II.12. End Cap To Crystal Gap Thickness 
 
usage: 
DET_ENDCAPTOCRYSTALGAP <value> 
 
ex. 
DET_ENDCAPTOCRYSTALGAP 4.0 
 
Description: This keyword identifier is used to specify the distance of the  
end cap window (in millimeters) from the top of the detector crystal to be  
simulated. This is the "end cap to detector" or "distance from window" that  
is quoted on a typical germanium detector specification sheet. More  
precisely, it is the distance from the top of the crystal to the inner bottom 
of the end cap window. Loosely defined, it is the thickness of empty space  
between the crystal and the end cap window. The <value> is a "float" C data  
type (a floating point number). This keyword identifier and value are not  
necessary, but they are highly recommended for accurate simulations. If no  
thickness is specified, an end cap to crystal gap of 4.0 millimeters is  
assumed. 
 
 
II.13. End Cap Side Wall Material 
 
usage: 
DET_ENDCAPWALLMAT <value> 
 
ex. 
DET_ENDCAPWALLMAT Al 
 
Description: This keyword identifier is used to specify the material of the 
end cap wall on the side of the detector crystal to be simulated. This end  
cap material will be used in any gamma-ray attenuation calculations where the  
gamma-ray enters the end cap from the side of the end cap surface. There is  
only one currently available value for the end cap material (Al). The <value> 
is a "string" C data type (a string of characters). The string value is case 
sensitive and must be entered as shown in the example above. This keyword  
identifier and value are not necessary, but they are highly recommended for  
accurate simulations. If no material is specified, an aluminum (Al) end cap  
wall is assumed. Future additions to KMESS may be to allow for different end  
cap side wall materials. 
 
 
II.14. End Cap Side Wall Thickness 
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usage: 
DET_ENDCAPWALLTHICK <value> 
 
ex. 
DET_ENDCAPWALLTHICK 1.0 
 
Description: This keyword identifier is used to specify the thickness of the 
side wall of end cap (in millimeters) on the side of the detector to be  
simulated. The <value> is a "float" C data type (a floating point number).  
This keyword identifier and value are not necessary, but they are highly  
recommended for accurate simulations. If no thickness is specified, an end  
cap wall thickness of 1.0 millimeters is assumed. 
 
 
II.15. Mounting Cup Wall Thickness 
 
usage: 
DET_MOUNTCUPWALLTHICK <value> 
 
ex. 
DET_MOUNTCUPWALLTHICK 1.0 
 
Description: This keyword identifier is used to specify the thickness of the  
side wall of the aluminum mounting cup (in millimeters) that holds the  
detector crystal to be simulated. The <value> is a "float" C data type (a  
floating point number). This keyword identifier and value are not necessary,  
but they are highly recommended for accurate simulations. If no thickness is  
specified, a mounting cup wall thickness of 1.0 millimeters is assumed. 
 
 
II.16. Detector File Comments 
 
usage: 
DET_COMMENT <value> 
 
ex. 
DET_COMMENT this is a comment haha 
 
Description: This keyword identifier is used to specify that it is a detector 
comment line. This comment is stored in an array of strings and is reported 
in KMESS output. 
 
 
III. FUTURE ADDITIONS 
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Some of the future additions to this file format could be to include support 
for the following features: 
 
-"units" as an additional <value> after floating point values 
-multi-string detector name support 
-well and planar detectors 
-non-uniform inner and outer contact layers 
-different end cap window and wall materials 
-different mounting cup wall materials 
-include mylar shields and insulators around the crystal 
-include bulletization parameters for the crystal and coaxial hole 

 

A.1.5 KMESS Reference File (KRF) REAME 

 
KMESS REFERENCE CURVE FILE FORMAT DESCRIPTION (.KRF) 
 
Kevin R. Jackman 
Los Alamos National Laboratory 
05/09/2007 
 
 
I. INTRODUCTION 
 
This file contains the primary description on how to create a reference curve 
file (.KRF) for use with KMESS (Kevin's Mesh Efficiency Simulator Software).  
The primary information contained in a KMESS reference curve file is a set of 
energy-efficiency-uncertainty point pairs. The file format of this type of  
file differs dramatically from all the other standard KMESS file formats.  
This is because KMESS was originally designed to interface with the  
efficiency calibrations tool available on Russ Gritzo's NGWeb. One of the  
resulting files from performing an efficiency calibration is called a VAX  
file. This is a legacy format that is used to supply our VAX run gamma-ray  
analysis software with energy-efficiency-uncertainty point pairs. Because of  
this, it made sense to just allow KMESS to read VAX files. This means that if 
the VAX computers ever go away, and we hope they do, the KRF file format  
should probably be re-designed to follow formats that more closely resemble  
the other standard KMESS file formats. This README is less useful than the  
others because I only supply an example VAX file and tell you it has to be  
exactly like that. This reference curve will be used by KMESS to convert 
the effective solid angle of some desired counting geometry into a  
full-energy peak efficiency for that desired counting geometry. It will also 
use the uncertainties, if supplied, in the propogation of uncertainty. The 
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number of allowed reference curve points is 5000, but this can be easily 
changed in the KMESS source code. 
 
 
II. EXAMPLE VAX FILE 
 
The following is an example of the VAX efficiency file format. The first line 
is just a comment line. The data points are energy (in keV) in the first  
column, the absolute full-energy peak efficiency in the second, and the  
efficiency uncertainty (in percent) is the third. The -1.00 is just a signal  
for the end of file. It has to be exactly in this format, same number of  
columns, number of decimal places, exponent sign, exponent format, etc... 
 
  
 0760210  1.00000    NGW78  07-26-06 
     59.50  9.905e-4  8.841e-1 
     88.04  2.941e-3  7.665e-1 
    122.06  3.775e-3  4.979e-1 
    165.86  3.667e-3  5.237e-1 
    279.20  2.515e-3  4.939e-1 
    391.70  1.808e-3  4.394e-1 
    661.70  1.084e-3  4.880e-1 
    898.00  8.158e-4  4.595e-1 
   1173.20  6.431e-4  4.234e-1 
   1332.50  5.767e-4  4.562e-1 
   1836.10  4.447e-4  8.300e-1 
     -1.00  0.000e+00 
 
 
III. FUTURE ADDITIONS 
 
Some of the future additions to this file format could be to include support 
for the following features: 
 
-re-design entire format 

 

A.1.6 KMESS Source File (KSF) README 

 
KMESS SOURCE FILE FORMAT DESCRIPTION (.KSF) 
 
Kevin R. Jackman 
Los Alamos National Laboratory 
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05/08/2007 
 
 
I. INTRODUCTION 
 
This file contains the primary description on how to create a source file  
(.KSF) for use with KMESS (Kevin's Mesh Efficiency Simulator Software). The 
primary information contained in a KMESS source file are the (x,y,z)  
coordinates (in units of centimeters) of a source mesh. These source  
coordinates should be prepared before hand, in whatever meshing software is 
your flavor, to be in a Cartesian coordinate system with the origin set on  
the primary detector axis at the center of the outer surface of the germanium 
detector end cap window. Furthermore, the positive z-axis should point along  
the primary detector axis, away from the detector.  
 
The format for a KMESS source file follows a keyword-value format. This  
allows one to be able to tell what is contained within the file simply by  
looking at it in a text file viewer. The files should be written such that  
they are white space (spaces or tabs) delimited. It should be mentioned that  
the C routine written to read in the file only cares that it finds the  
keyword identifier followed by white space followed by values that are  
delimited by white space up until the end of the line. The current file  
reading routine can only handle 200 characters per line. However, this can be 
easily increased in the "kmess.h" file. For help doing that, see the comments  
contained in that file. The keyword identifiers and values needed to make a  
successful source file are described below as well as the units that are  
expected for such values. The keyword identifier can be no longer than 30  
characters. This can be easily adjusted in the kmess source files. 
 
 
II. KEYWORD IDENTIFIERS, THEIR ASSOCIATED VALUES, AND 
DESCRIPTIONS 
 
The following is a complete list of the currently recognized keyword  
identifiers contained in a KMESS source file, followed by a brief description 
of each. The order of the keyword identifiers in the file is unimportant.  
However, the minimum keyword identifiers and values necessary for specifying  
a source in a KMESS source file are a source name and at least one set of  
(x,y,z) source coordinates, in units of centimeters (see descriptions of  
identifiers II.1 and II.2 below). Future additions to KMESS may be to include  
a "unit" value after all of the (x,y,z) source coordinate values, so that the 
input is more flexible with respect to the system of units allowed. Comments  
are kept if and only if they are specified with the keyword identifier shown  
in II.5. Any other comments, stray lines/characters, are ignored. 
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II.1. Source Name 
 
usage: 
SRC_NAME <value> 
 
ex.  
SRC_NAME QCY48 
 
ex.  
SRC_NAME 9991-06-123 
 
Description: This keyword identifier is used to specify the name of the  
source used in the simulation. In LANL use, it should be the name of the  
solution or the SHOT-JUG-MASS. The <value> is a "string" C data type (a  
string of characters). The string case is unimportant, but the name needs to  
be all one word (underscores or hyphens may help to do this). This keyword  
identifier and value are one of the two that are absolutely necessary. 
 
 
II.2. Source (X,Y,Z) Coordinates without Weights 
 
usage: 
SRC_XYZ <value> <value> <value> 
 
ex. 
SRC_XYZ 1.03 -2.5001 5.43529 
 
Description: This keyword identifier is used to specify the (x,y,z)  
coordinates of the source mesh. These can be either vertices or the centers  
of the source mesh, because really only the mesh order is critical for good  
simulations of complex source descriptions. The three values are entered as  
<X-coordinate> <Y-coordinate> <Z-coordinate> and must be in that specific  
order. Negative values are allowed, but negative Z coordinate values imply  
that the source is below the plane of the detector end cap window. KMESS will 
thus adjust the calculations accordingly. Read section I above if you are  
confused by what this means. The <value> arguments are "float" C data types  
(floating point numbers). Exponential formating of the coordinates is  
allowed. This keyword identifier and value are one of the two that are  
absolutely necessary. KMESS currently allows only up to 5000 source  
coordinates to be entered. However, this number is arbitrary and can easily  
be changed to accommodate more source coordinates in the "kmess.h" file. 
This identifier is used when weighting the source points is not desired. 
This makes all of the weights used in averaging default to 1.0.  This  
identifier should not be mixed with that in section II.3. 
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II.3. Source (X,Y,Z) Coordinates with Weights 
 
usage: 
SRC_XYZW <value> <value> <value> <value> 
 
ex. 
SRC_XYZW 1.03 -2.5001 5.43529 0.89 
 
Description: This keyword identifier is used to specify the (x,y,z)  
coordinates of the source mesh. These can be either vertices or the centers  
of the source mesh, because really only the mesh order is critical for good  
simulations of complex source descriptions. The three values are entered as  
<X-coordinate> <Y-coordinate> <Z-coordinate> and must be in that specific  
order. Negative values are allowed, but negative Z coordinate values imply  
that the source is below the plane of the detector end cap window. KMESS will 
thus adjust the calculations accordingly. Read section I above if you are  
confused by what this means. The <value> arguments are "float" C data types  
(floating point numbers). Exponential formating of the coordinates is  
allowed. This keyword identifier and value are one of the two that are  
absolutely necessary. KMESS currently allows only up to 5000 source  
coordinates to be entered. However, this number is arbitrary and can easily  
be changed to accommodate more source coordinates in the "kmess.h" file. 
This identifier is used when weighting the source points is desired. This  
weights of all the points should be normalized such that they add up to  
equal 1.0. These weights will control the contribution to the average of 
each point. This identifier should not be mixed with that in section II.2. 
 
 
II.4. Source Material 
 
usage: 
SRC_MAT <value> 
 
ex. 
SRC_MAT 4MHCl 
 
 
Description: This keyword identifier is used to specify the material of the 
source used in the simulation. Currently there is only one available  
material for use as an source. This is a 4M HCl solution. All allowed uses  
are shown in the examples above. The <value> is a "string" C data type  
(a string of characters). The string value is case sensitive and must be  
entered as shown in the example above. This keyword identifier is optional, 



 130

but not specifying a source material will make KMESS not correct for source 
self attenuation. 
 
 
II.5. Source Type 
 
usage: 
SRC_TYPE <value> 
 
ex. 
SRC_TYPE 2 
 
Description: This keyword identifier is used to specify the "type" of the  
source to be simulated. This "type" is one of the many types that are  
commonly used at LANL and refer to a specific source geometry. This keyword 
identifier and value are not necessary, and have no affect on how KMESS  
runs. They are included merely for book keeping purposes. If not specified, 
a source type of 666 is assumed. The <value> argument is an "int" C data type  
(integer number). 
 
 
II.6. Source Shelf Height 
 
usage: 
SRC_SHELFHEIGHT <value> 
 
ex. 
SRC_SHELFHEIGHT 12 
 
Description: This keyword identifier is used to specify the counting system's 
shelf height that the source is placed at for the simulation. This  
corresponds to a specific counting geometry for LANL counting systems.  
However, the shelf height number itself is just a reference number, and the  
actual source-to-detector distances are recorded in tables elsewhere. This  
keyword identifier and value are not necessary, and have no affect on how  
KMESS runs. They are included merely for book keeping purposes. If not  
specified, a shelf height of 666 is assumed. The <value> argument is an "int" 
C data type (integer number). 
 
 
II.7. Source File Comments 
 
usage: 
SRC_COMMENT <value> 
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ex. 
SRC_COMMENT this is a comment haha 
 
Description: This keyword identifier is used to specify that it is a source 
comment line. This comment is stored in an array of strings and is reported 
in KMESS output. 
 
 
III. FUTURE ADDITIONS 
 
Some of the future additions to this file format could be to include support 
for the following features: 
 
-"units" in (x,y,z) source coordinate values 
-multi-string source name support 
-different (x,y,z) source coordinate orders ex. (z,y,x) 
-cylindrical (r,theta,z) source coordinates 
-spherical (r,theta,phi) source coordinates 
-a translation factor for X, Y, Z source translations 
-a rotation factor for X, Y, Z source rotations 

 

 

A.2 PROCEDURE FOR USING KMESS TO DETERMINE EFFICIENCIES 

This part of the Appendix describes a systematic procedure for using KMESS to 

predict the full-energy peak efficiency of a high-purity germanium detector.  This section 

is divided into steps to further simplify the determination process. 

 

A.2.1 Determination of an Experimental Reference Curve 

This step is one of the most important of all of the procedures in using KMESS.  

This is because any uncertainty in the measured reference curve is directly reflected as an 

increased uncertainty in the predicted efficiencies.  The steps described below serve to 

help in the determination of a proper source and counting geometry. 
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First, a careful choice of a reference source should be made.  This source should 

first and foremost have a well-known activity.  NIST traceable sources or equivalent are 

highly encouraged.  The source should be chosen such that it has gamma-ray energies in 

the region that efficiencies are desired.  The radionuclides in the source will primarily 

determine the gamma-ray energy range that is covered.  If at all possible, a wide range of 

gamma-ray energies should be preferred.  If the source has a high activity, there may be 

problems with coincidence summing or dead-time.  The source shape, or geometry, 

should be chosen such that it is as close to the other desired geometry as possible.  This 

serves to help preserve the invariance of the “virtual” peak-to-total ratio. 

Second, a desired reference counting geometry should be chosen for the reference 

curve.  This is initially done through selection of the proper type of detector.  If very low-

energy gamma-rays are desired to be studied, it may be desirable to use an n-type 

detector with a thin end-cap window.  Proper shielding, such a lead, may also help to 

reduce the background in the detector and increase its detection capabilities.  The 

counting geometry should be selected such that coincidence summing effects are 

minimized.  Typically a source-to-detector distance of greater than 10 cm is enough to 

reduce these effects (Knoll, 2000).  Reducing summing effects serves to primarily reduce 

the uncertainties that will arise later in the net peak area determination.  However, 

depending upon the activity of the source, reducing summing effects may be abandoned 

in favor of determining the curve in a shorter amount of time.  This is done by simply 

placing the source close to the detector.  If at all possible, the source should be counted 

with its center coinciding with the primary detector axis.  This is done in order to increase 

reproducibility of the counting geometry, and typically yields a greater overall counting 

efficiency than other counting geometries.  The counting length should then be selected 

to be long enough so that the statistical in the spectra are optimized. 
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Last, a careful analysis of the resulting spectrum and the determination of the full-

energy peak efficiencies are performed.  This is first and foremost done by using good 

gamma-ray analysis software.  The software should be able to fit peaks and determine 

their net peak areas, even for multiplets and strong low-energy tails.  Corrections for 

coincidence summing should also be performed here if necessary.  Dead-time corrections 

may also need to be applied.  The isotopes in the source should be corrected for decay 

from the zero-time to the count time.  The full-energy peak efficiencies at the energies of 

interest should then be determined.  These energy-efficiency pairs may then be fit using 

some semi-empirical function or equivalent in order to evaluate the efficiencies at other 

energies.  The result of these careful measurements will result in a good full-energy peak 

reference curve. 

 

A.2.2 Setting up and Running KMESS 

At this point, the reference geometry should have been chosen and its efficiency 

curve determined.  The next step is to prepare the necessary files for use with KMESS.  If 

an absorber was used in the measurements, KMESS will need an absorber file.  Both the 

reference and desired source geometries should be meshed into a large collection of 

points using some standard meshing software.  These points should be the (x, y, z) 

coordinates of the points relative to the center of the detector end-cap top.  Then a 

KMESS source file is generated using either the conversion tools or the proper keyword-

value identifiers.  If source self-attenuation is desired to be corrected for, the proper 

choice of source material should be specified in the source file.  A detector file should be 

made that includes as much of the detector data as can be obtained from the detector 

manufacturer.  This detector file will include things like the crystal diameter, length, and 

dead-layer.  A KMESS reference curve file should also be created that contains the 
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energy-efficiency point pairs of the experimentally determined reference curve.  Finally, 

the desired run method of KMESS should be selected from the list of available choices 

shown in Appendix A.1.1.  Descriptions of the allowed KMESS file formats are also 

shown in Appendix A.1.  Then KMESS should be executed and the predicted efficiencies 

will be output. 
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