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Abstract: The wide application of additive manufacturing in dentistry implies the further investi-
gation into oral micro-organism adhesion and biofilm formation on vat-photopolymerization (VP)
dental resins. The surface characteristics and microbiological analysis of a VP dental resin, printed at
resolutions of 50 um (EG-50) and 100 pm (EG-100), were evaluated against an auto-polymerizing
acrylic resin (CG). Samples were evaluated using a scanning electron microscope, a scanning white-
light interferometer, and analyzed for Candida albicans (CA) and Streptococcus mutans (SM) biofilm, as
well as antifungal and antimicrobial activity. EG-50 and EG-100 exhibited more irregular surfaces
and statistically higher mean (Ra) and root-mean-square (rms) roughness (EG-50-Ra: 2.96 £ 0.32 um;
rms: 4.05 £+ 0.43 um/EG-100-Ra: 3.76 £ 0.58 pm; rms: 4.79 £ 0.74 pm) compared to the CG (Ra:
0.52 £ 0.36 pm; rms: 0.84 £ 0.54 pm) (p < 0.05). The biomass and extracellular matrix production
by CA and SM and the metabolic activity of SM were significantly decreased in EG-50 and EG-100
compared to CG (p < 0.05). CA and SM growth was inhibited by the pure unpolymerized VP resin
(48 h). EG-50 and EG-100 recorded a greater irregularity, higher surface roughness, and decreased CA
and SM biofilm formation over the CG.

Keywords: digital technologies; biomaterials; poly methyl methacrylate resin; photo-polymerizable
resin; surface properties; antifungal activity; antibacterial activity

1. Introduction

The oral cavity is constituted of a complex and diverse microbiota that influences oral
and systemic health [1], such as Streptococcus mutans, a major cariogenic bacterial species [2],
and Candida albicans, a fungal species able to act as an opportunistic pathogen leading to
mucosal and disseminated infections [3] under conditions that trigger the imbalance of
the oral and immune system homeostasis [4-6]. Thus, the introduction of restorative or
prosthetic dental materials into the oral environment might provide such an imbalance,
thereby maximizing biofilm formation [7]. Recently, products manufactured with three-
dimensional (3D) printing have become popular in dentistry, being increasingly used due
to the ease of acquisition, processing, and manipulation of the images obtained through
intraoral scanning [8,9].
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The additive-manufacturing technologies: vat-photopolymerization, power bed fu-
sion, binder jetting, material extrusion, direct energy deposition, material jetting and sheet
lamination enable the application to substrates such as polymers, metals and ceramics,
yielding different results regarding accuracy, precision and trueness, thus providing diverse
and wide applications [10-12]. Digital-light-processing (DLP) technology is one of the
first 3D-printing processes, which is categorized according to ISO/ASTM 52900/15(E) as a
vat-photopolymerization (VP) process, wherein the photopolymerizable liquid is selectively
cured by light projection of the object to be printed through a small projector or mirrors that
display a single image at one time [13]. Each layer is photoactivated so that the resolution
of the item to be printed is directly related to the number of projectors and mirrors used in
the technique. That way, at each activation, solid layers of small cubic blocks, referred to as
voxels, originate from the interaction of the light with the resin of origin, until the object is
completely formed [10,14-17].

Dental crowns and prostheses, surgical guides and components, orthodontic aligners
and appliances, as well as courseware for research and teaching, represent a reality arising
from digital dentistry [10,18,19]. However, certain parameters need to be observed in order
to obtain the best results from printing techniques applied in dentistry, such as the thickness
of each photoactivated layer, base design, post-processing, and storage media, which are all
factors that are known to influence the accuracy of 3D dental models [20]. As for printing
resolutions, Shim et al. [21] and Unkovskiy et al. [22] demonstrated, through in vitro
studies, that greater accuracy is obtained when objects are printed in a 90° orientation
in both stereolithography (SLA) and DLP techniques. Alternatively, Hada in 2020 [23]
reported that the impression in a 45° orientation presented superior accuracy in relation
to 0° and 90° orientations. Shim et al. [21] also demonstrated, recently, that the printing
orientation also influences the microbiological colonization capacity, as significantly lower
levels of C. albicans were detected on objects printed in a 90° orientation rather than 45°
and 0° orientations.

With respect to biocompatibility and activity against potential pathogens, photopoly-
mers have been evaluated [24-26] regarding the antibacterial capacity of natural poly-
mers [27] and the addition of antimicrobial agents or drugs in the synthetic polymer
matrix [28-30]. Bloukh et al. [31] emphasized that the microbial-resistance phenomenon is
a serious matter that threatens humanity’s existence, mainly due to the indiscriminate use
of antibiotic drugs. In dentistry, the development of alternative antimicrobial properties
of surgical sutures [32], dental implants [33,34], restorative and denture materials [35,36]
are relevant contributors to the mitigation or cessation of the use of antibiotics [37] in
clinical practice.

Although there is an exponential growth in the application of additive manufactur-
ing in dentistry, the knowledge regarding the comparison of VP dental resins to auto-
polymerizing acrylic-resin systems, which are standardly applied to the manufacture of
dental devices, is limited. Therefore, the present research focused on the investigation
of a dental VP resin regarding surface characteristics, microbiological colonization, and
antifungal /antimicrobial activities against an auto-polymerizing acrylic-resin system as
the control. The null hypothesis of our study comprised: (i) the surface characteristics and
biofilm formation by C. albicans and S. mutans of a VP dental resin for additive manufactur-
ing will be similar to an auto-polymerizing acrylic resin, (ii) the 3D-printing resolution will
not affect the surface characteristics and microbiological colonization of VP dental resins,
and (iii) C. albicans and S. mutans growth will not be inhibited by the unpolymerized VP
dental resin.

2. Materials and Methods
2.1. Materials

The sample of this study consisted of 300 specimens (4 mm in diameter x 1 mm
in height) (Figure 1), divided into three groups (n = 100): control group (CG), consti-
tuted of auto-polymerizing acrylic resin, and experimental groups containing VP additive-
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manufacturing dental resins printed at resolutions of 50 um (EG-50) and 100 um (EG-100)
(Table 1).

Figure 1. Specimen characteristics. (A): CG, auto-polymerizing acrylic resin; (B): EG-50, VP additive-
manufacturing dental resin printed at 50 um resolution; (C): EG-100, VP additive-manufacturing
dental resin printed at 100 pm resolution.

Table 1. Auto-polymerizing acrylic and VP additive-manufacturing resins used in the study.

Product Component Manufacturer
Auto-polymerizing acrylic-resin system Methyl Methacrylate Monomer, DMT, Crosslink, Classico
Ortho Class Methyl Ethyl Methacrylate Copolymer Sao Paulo, SP, Brazil
VP additive-manufacturing dental resin Oligomers, Monomers, Photoinitiators, Yller
COSMOS Splint Stabilizer, Pigment Pelotas, RS, Brazil

The CG was manufactured with an auto-polymerizing acrylic-resin system (Orto-
Class, Sao Paulo-SP, Brazil) by the same operator, with the aid of prefabricated molds of
addition silicone (3 M®, Sao Paulo, SP, Brazil) according to the manufacturer’s recommen-
dations. To reduce the chances of air-bubble occurrence, the specimens were fabricated by
an incremental-build-up technique and immersed in a pan with negative pressure (Protécni,
Araraquara, SP, Brazil) during the polymerization phase. Then, the finishing of the spec-
imens was performed sequentially using 400, 600, and 1200 g sandpapers in a Politriz
metallographic machine (APL4, Arotec, Cotia, SP, Brazil) at a speed of 300 rpm/60 s for
each sandpaper per specimen [38].

In the experimental groups, EG-50 and EG-100, the specimens were designed using
open-source CAD software (Meshmixer v. 3.5, Autodesk, Inc., San Rafael, CA, USA)
(Figure 2) with a 90° print orientation. 3D specimens were manufactured in a dental
resin for additive manufacturing (Cosmos Splint, Yller, Pelotas, RS, Brazil) in a 3D printer
(PHOTON S, Anycubic 3D Printing, Shenzhen, Guangdong) using digital-light-processing
technology (DLP/LCD) with printing resolutions of 50 and 100 pm. The residual surface
monomers on the 3D-printed specimens were cleaned using a wipe and isopropyl alcohol.
Postpolymerization was performed in accordance with the manufacturer’s instructions
using a UV-light polymerization unit (CureDen; DENTIS). The support structures were
removed using low-speed rotary instruments (Beltec, Araraquara, SP, Brazil).

Figure 2. CAD design of the VP additive-manufacturing dental resin sample with 90° printing
orientation (Meshmixer v. 3.5, Autodesk, Inc., CA, USA).
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2.2. Analysis of Surface Characteristics

For the purpose of surface characterization, samples from each group were coated
with gold particles and analyzed using a scanning electron microscope (Quanta FEG 250,
FEI, Eindhoven, The Netherlands) at x250, x500 and x 1000 magnifications.

Morphology and surface roughness were evaluated in three samples per group, in
duplicate, using a non-contact, three-dimensional, scanning white-light interferometer
Zygo NewView 7100 (Zygo, Middlefield, CA, USA) using x20 magnification lenses. The
mean roughness (Ra), root mean square (rms), and mean roughness of the 3rd peak and
valley (R3z) were used, with an area of 40 pm x 40 pum. The mean roughness (Ra) was
quantified from the arithmetic mean of the absolute values and the ordinate distance of
the points of the roughness profile in relation to the mean line within the measurement
area. The root-mean-square (rms) deviation was defined as the square root of the mean
of the ordinates’ squares of the effective profile in relation to the mean line within the
measurement path. Finally, the mean roughness of the 3rd peak and valley (R3z) was
obtained by the arithmetic mean of the partial roughness values corresponding to each of
the five modules.

2.3. Microbiological Analysis

Prior to the beginning of microbiological analysis, the specimens were sterilized by
ultraviolet (UV) light for 30 min [39] and then allocated to cell-culture microplates with
96 wells each (Kasvi®, Sao José dos Pinhais, Parand, Brazil) wherein 1 x 10° Candida albicans
yeasts and 1 x 10° colony-forming units (CFUs) of Streptococcus mutans were added. The
systems were kept in an oven (Quimis®, Diadema, Brazil) at a controlled temperature
of 37 °C + 1 °C for 24, 48, and 72 h, in brain heart infusion (BHI). After each of the
different timepoints, the resins were re-allocated into new 96-well plates, and the biomass,
extracellular matrix, and metabolic activity were quantified in triplicate.

The biomass formed by different micro-organisms was evaluated according to the
method described by Peeters (2008) [40]. The culture media were discarded and the
biomass was fixed with 100% methanol (200 pL) for 15 min. The systems were dried at
room temperature for 5 min and then a solution containing 0.4% crystal violet (200 pL) was
added, and the plates were incubated for 20 min. To remove excess dye, the systems were
washed again with PBS. Subsequently, the biomass was decolorized with 30% acetic acid
(200 pL) for 5 min. The bleach solution (100 uL) was transferred to another 96-well plate,
and the absorbance was measured at 590 nm using a SpectraMax M3 microplate reader
(Molecular Devices, San Jose, CA, USA).

The extracellular matrix was quantified according to the method described by Choi
in 2015 [41]. The culture medium was discarded and a solution containing 0.1% safranin
(200 pL) at room temperature was added to the wells for 5 min. To remove excess dye,
the system was washed with PBS. Subsequently, the extracellular matrix was decolorized
with 30% acetic acid (200 pL) for 5 min. The bleach solution (100 pL) was transferred to
another 96-well plate, and the absorbance was measured at 530 nm using a SpectraMax M3
microplate reader.

The metabolic activity of the microbial biomass formed after each incubation time was eval-
uated by reducing XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[ (phenylamino)carbonyl]-
2H-tetrazolium hydroxide (XTT; Sigma-Aldrich, Saint Louis, MO, USA). A solution of XTT at a
final concentration of 200 pg/mL and 0.04 mM of menadione was added to the wells for 4 h in
the absence of light. After this time, the color change was measured using a SpectraMax M3
microplate reader at a wavelength of 492 nm [36].

2.4. Antifungal and Antimicrobial Activity Testing

The antifungal and antimicrobial activities of unpolymerized VP resin were evaluated
at concentrations of 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, and 0%, diluted
in BHI medium according to modified versions of the CLSI M27-A3 and CLSI M07-A9 (2012)
for yeasts and bacteria, respectively. To each of the wells (96-well plate), 1 x 10° yeasts of C.
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albicans and 1 x 10* CFU of S. mutans were added. The following controls were performed:
(i) pure BHI medium, (ii) pure unpolymerized VP resin, and (iii) BHI medium with micro-
organisms. The plates were visually read after incubation at 37 °C for 48 h [42,43].

2.5. Statistical Analysis

The statistical analysis was performed using the Statistical Package for Social Science
IBM SPSS software for Windows (version 20.0, SPSS Inc., Chicago, IL, USA). The adherence
to the normal curve was assessed with the Shapiro-Wilk test. After verifying the normal
distribution, the control- and experimental-group comparisons of surface roughness and
microbiological data were performed using the one-way analysis of variance (ANOVA)
followed by Tukey’s and Dunnett’s multiple-comparisons tests, respectively. In all of the
analyses, the significance level was set at 5%.

3. Results
3.1. Surface Characteristics
3.1.1. Scanning Electron Microscope (SEM)

SEM images of the auto-polymerizing acrylic and VP resin samples are illustrated in
Figure 3. According to the analysis of the images, a flat but grooved surface was observed
in the CG, with clear notches resulting from the polishing sandpapers. A distinguishable,
corrugated and more irregular surface was noticed in the experimental groups (EG-50
and EG-100), which might be attributed to the photopolymers’ layer-deposition process
(Figure 3).

Figure 3. Representative SEM images of specimens from each group. (A, D and G), CG—auto-
polymerizing acrylic resin. (B, E and H)—EG-50, VP dental resin printed with 50 um resolution. (C, F
and I)—EG-100, VP dental resin printed with 100 um resolution. Magnifications: (A-C), x250; (D-F),
x500; (G-T), x1000.
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3.1.2. Surface Roughness

The surface-roughness data are presented in Table 2. Intergroup comparisons indicated
a statistically significant difference in all of the roughness parameters evaluated (p < 0.05).
The experimental groups, EG-50 (Ra: 2.96 &£ 0.32 pm; rms: 4.05 £ 0.43 um) and EG-100
(Ra: 3.76 £ 0.58 pm; rms: 4.79 £ 0.74 um), recorded the highest mean roughness and root
mean square, compared to the control group (Ra: 0.52 & 0.36 um; rms: 0.84 + 0.54 um). As
for R3z, a statistically significant difference was observed only in EG-100 compared to CG
(EG-100: 58,324.17 £ 4936.48 nm; CG: 31,022.08 + 16,470.44 nm) (Table 2). Images of the
three-dimensional morphology of the samples from each group are shown in Figure 4.

Table 2. Descriptive statistics (mean and standard deviation) of the surface roughness analysis.

Groups Ra (um) p-Value rms (um) p-Value R3z (nm) p-Value
CG 052 +0.364 0.84 £0.54a 31,022.08 + 16,470.44 a

EG-50 296 +£0.32b <0.001 4.05+043b <0.001 53,966.22 + 6866.32 ab 0.042

EG-100 3.76 £0.58 b 479 £0.74b 58,324.17 4 4936.48 b

Ra, mean roughness; rms, root mean square; R3z, mean roughness of the 3rd peak and valley. CG, acrylic-resin
group; EG-50, VP resin printed with 50 um resolution; EG-100, VP resin printed with 100 pm resolution. Distinct
letters indicate statistically significant difference with ANOVA /Tukey test (a = 0.05).
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141 427.75422, 141 +28 91429 141 I+3| 98347
g T o D ¥ ' - 5 J 87
7 R ; ol
* I
vl

-3256589

-8.67083 -27.75892

-30.96008
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+3251361

C: EG-100

Figure 4. Three-dimensional surface-morphology images obtained with a scanning white-light
interferometer (scan area: 40 um?) (A): CG, auto-polymerizing acrylic resin; (B): EG-50, VP resin
printed with 50 um resolution; (C): EG-100, VP resin printed with 100 pm resolution.

3.2. Quantification and Kinetics of Biofilm Formation

The biomass, metabolic-activity, and extracellular-matrix data of the micro-organisms
C. albicans and S. mutans that were evaluated in the different study groups are presented in
Figures 5-7, respectively.

A significantly higher quantification of the biomass of C. albicans was observed in CG
in relation to EG-100 at 72 h (p < 0.05). The CG samples also presented a statistically greater
quantification of the biomass of S. mutans compared to the experimental groups (EG-50
and EG-100) at 24 h and 72 h (p < 0.05), and to EG-50 at 48 h (p < 0.05) (Figure 5).

No significant differences were observed in the metabolic activity of C. albicans among
the study groups. However, a statistically higher metabolic activity of S. mutans was
observed in CG compared to EG-50 and EG-100 at 48 h (p < 0.05), and in CG compared to
EG-50 at 72 h (p < 0.05) (Figure 6).
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Figure 5. Biofilm formation by C. albicans and S. mutans for 24, 48, and 72 h at 37 °C. (A), C. albicans.
(B), S. mutans. At each time point evaluated, the systems were processed to detect biomass by
incorporating a crystal-violet solution at 590 nm. Results are expressed as the mean =+ standard
deviation of three independent replicates. * p < 0.05.
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Figure 6. Biofilm formation by C. albicans and S. mutans for 24, 48, and 72 h at 37 °C. (A), C. albicans.
(B), S. mutans. Ateach time point evaluated, the systems were processed to detect metabolic activity by
reducing XTT in menadione by viable cells at 492 nm. Results are expressed as the mean + standard
deviation of three independent replicates. * p < 0.05.
Safranin
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Figure 7. Extracellular matrix in biofilm formed by C. albicans and S. mutans for 24, 48, and 72 h
at 37 °C. (A), C. albicans. (B), S. mutans. mutans. At each time point evaluated, the systems were
processed to detect extracellular matrix by staining with safranin at 530 nm. Results are expressed as
the mean =+ standard deviation of three independent replicates. * p < 0.05.
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CG presented a higher extracellular matrix production of biofilm formation by C. albi-
cans in relation to EG-50 and EG-100 at 24 h (p < 0.05) and 48 h (p < 0.01). Also, the biofilm
formed by S. mutans recorded increased records of extracellular matrix production in CG
compared to EG-50 and EG-100 at 24 h (p < 0.001) and 72 h (p < 0.001) (Figure 7).

3.3. Antifungal and Antimicrobial Activity Testing

Antifungal and antimicrobial activity testing indicated that, with the exception of pure
unpolymerized VP resin (100%), all of the VP-resin dilutions and control systems of BHI
medium with micro-organisms presented C. albicans and S. mutans growth after a 48 h
incubation period at 37 °C.

4. Discussion

The wide application of additive-manufacturing resources in dentistry implies the
further investigation into the capacity of oral micro-organisms to adhere and form biofilm
on vat-photopolymerization (VP)-resin substrates. This in vitro study analyzed the surface
characteristics of a VP dental resin for additive manufacturing, printed at resolutions of
50 and 100 pum, in order to determine whether there would be a difference in the surface
characteristics and microbiological activity compared to an auto-polymerizing acrylic resin.
This investigation directly applies to the manufacture of intraoral devices that usually
remain in the oral cavity for a long period of time [4,5].

The analysis of the images obtained with SEM (Figure 3) and with the scanning white-
light interferometer (Figure 4) reveals the surface grooves caused by the sequential finishing
with the sandpaper strips in the CG, and the printing traces of each resin layer deposition
in the EG-50 and EG-100.

When investigating the surface quality of a material-jetting additive-manufacturing
process, Udroiu et al. [44] observed that the platen orientation and finishing type were influ-
ential factors of the surface roughness, of which their best interaction produced roughness
values (Ra) of up to 0.5 pm. On the other hand, previous studies reported Ra values ranging
from 0.87 to 5.77 um [45—48], which were attributed to the methodological difference of
the experiments, such as diverse materials, printers, additive-manufacturing technologies,
printing parameters, build orientations, and measurement techniques. In the present study,
the VP resin samples recorded Ra values that were approximately six to eight times higher
(EG-50: 2.9 um and EG-100: 3.7 pm) compared to the auto-polymerizing acrylic-resin
samples (CG: 0.5 pm). Despite the fact that the surface roughness of 3D printed objects has
been previously related to the thickness of each layer deposition [49,50], the Ra parameter
in the present study was not significantly influenced by the layer thicknesses of 50 and
100 pm.

The literature shows that an increased surface roughness above the Ra threshold
of 0.2 pm [51] facilitates a greater microbiological colonization [52,53] owing to features
such as the greater area available for micro-organisms adhesion, the protection from shear
forces and the chemical changes that favor physicochemical interactions [54]. Conversely,
despite the higher average Ra values, EG-50 and EG-100 recorded a decreased C. albicans
and S. mutans biofilm formation in comparison to CG. These findings may be attributed
to the influence of the surface energy and the charge of the photopolymers for additive
manufacturing on micro-organism colonization and growth [7,55]. Cell-surface charge is es-
sential for modulating microbial adhesion and aggregation [56], and since Steiner et al. [57]
presented their discoveries of peptides” antibacterial activity against both bacteria and
eukaryotic cells, these proteins have been employed in polymeric structures. A common
feature is the combination of amino acids with polar and non-polar side chains, leading to
amphiphilic structures in these peptides [25].

The negative surface charge of S. mutans and C. albicans, which is attributed to the
phospholipids and teichoic acids of gram-positive bacteria and the sialic acid of the Candida
cell wall [58], is attracted by the positive surface charge of the auto-polymerizing acrylic
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resin and photopolymers. However, positively, neutral and negatively charged functional
groups can vary depending on the polymer’s composition [25,59-61].

There is also a strong correlation between attractive hydrophobic and repulsive elec-
trostatic forces with C. albicans’ ability to adhere to polymeric surfaces, which are important
in the initial adherence to the dental resin, providing means for further attachment and
colonization [62,63]. The poly methyl methacrylate has monomer units exposed on its
surface that interact with the hydrophobic domains, thus favoring the immediate adhesion
of the fungi [63,64]. Secondarily to hydrophobic forces, there are electrostatic interactions
that favor the adhesion process of micro-organisms [65].

Another factor that may influence microbial colonization is the orientation of the
object at the time of photopolymer printing. In 2020, Shim et al. [21] demonstrated that
objects printed with a 90° orientation, as well as those printed in the present study, had
significantly lower levels of colonization by C. albicans than those printed at 0° and 45°.
In addition, the 90° printing orientation was chosen as it allowed for less contact with
the supporting pillar of the specimen during the printing process, thereby reducing the
interference on the sample’s surface.

The potential of microbiological growth inhibition by the photopolymers should
also be highlighted. Many authors have previously discussed the benefits of introducing
components with antibacterial potential to additive manufacturing, especially against
micro-organisms that have, to some degree, bacterial resistance [25,66-68]. The use of
phytochemical agents has also become a prominent alternative strategy against bacteria and
fungi. Moussaoui et al. [69] showed promising results of the antibacterial, antifungal and
antioxidant power of Lepidium sativum seed oil. Meanwhile, the selection of antimicrobial
components needs to be done carefully, as there is a great similarity between human cells
and fungi (both eukaryotic organisms), which hampers the use of a substance that only has
selective toxicity for pathogens [70].

The antifungal and antimicrobial potential of photopolymers would be crucial in
dentistry with regards to the manufacturing of several intraoral devices such as prostheses
and orthodontic retainers. The photopolymer evaluated in the present study inhibited the
growth of S. mutans and C. albicans in its pure unpolymerized form for a period of 48 h.
However, once diluted, even at the lowest concentration of BHI (90% photopolymer and
10% BHI), there was a positive microbiological growth. Therefore, further investigation
is necessary to evaluate whether the inhibition of microbiological growth in the pure
unpolymerized photopolymer is due to the lack of BHI medium nutrients or to a soluble
component with antifungal and antimicrobial properties that loses its potential of action
when in contact with the BHI medium.

5. Conclusions
Within the limitation of this in vitro study, the following conclusions can be drawn:

e VP dental-resin samples recorded a greater irregularity, higher surface roughness,
and decreased C. albicans and S. mutans biofilm formation over the auto-polymerizing
acrylic resin.

e  Surface characteristics and microbiological colonization of VP resins were not signifi-
cantly affected by the 3D-printing resolutions of 50 and 100 pm.

e VP dental resin inhibited C. albicans and S. mutans growth only in its pure, unpolymer-
ized form for an incubation period of 48 h.
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Abbreviations

Abs Absorbance

BHI Brain Heart Infusion
CA Candida albicans

CG Control group

CFU Colony forming units

DLP Digital light processing technology

EG-50 3D resin experimental group with 50 pm resolution
EG-100 3D resin experimental group with 100 um resolution

uL Microliter
um Micrometer
mm Millimeter
nm Nanometer
n Sample size
rpm Rotations per minute
Ra Surface roughness
rms Root mean square
R3z Roughness of the 3 rd peak and valley
SEM Scanning electron microscope
SM Streptococcus mutans
3D Three-dimensional
uUv Ultraviolet
P Vat photopolymerization
2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]
XTT . .
-2H-tetrazolium hydroxide
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