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Abstract: Over- or under-expression of mRNA results from genetic alterations. Comprehensive
pathway analyses based on mRNA expression are as important as single gene level mutations.
This study aimed to compare the mutation- and mRNA expression-based signaling pathways in head
and neck squamous cell carcinoma (HNSCC) and to match these with potential drug or druggable
pathways. Altogether, 93 recurrent/metastatic HNSCC patients were enrolled. We performed
targeted gene sequencing using Illumina HiSeq-2500 for NGS, and nanostring nCounter® for mRNA
expression; mRNA expression was classified into over- or under-expression groups based on the
expression. We investigated mutational and nanostring data using the CBSJukebox® system, which is
a big-data driven platform to analyze druggable pathways, genes, and protein-protein interaction.
We calculated a Treatment Benefit Prediction Score (TBPS) to identify suitable drugs. By mapping
the high score interaction genes to identify druggable pathways, we found highly related signaling
pathways with mutations. Based on the mRNA expression and interaction gene scoring model,
several pathways were found to be associated with over- and under-expression. Mutation-based
pathways were associated with mRNA under-expressed genes-based pathways. These results suggest
that HNSCCs are mainly caused by the loss-of-function mutations. TBPS found several matching
drugs such as immune checkpoint inhibitors, EGFR inhibitors, and FGFR inhibitors.

Keywords: head and neck squamous cell carcinoma (HNSCC); precision medicine; pathway
analysis; CBSJukebox
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is not a single disease entity,
but a highly heterogeneous group of diseases categorized by diverse tumor types arising
from various anatomic structures including oral cavity, oropharynx, hypopharynx, larynx,
and paranasal sinus. In the era of precision oncology, traditional classification based on
pathology is not sufficient to achieve accurate clinical diagnostics [1]. Next generation
sequencing (NGS) revealed that HNSCC is more heterogeneous based on mutational and
molecular subtypes [2–4].

Recently, we also found several targetable genetic alterations in HNSCC, suggesting
that implementation of precision medicine in HNSCC was feasible [5]. Based on this
feasibility, we designed an umbrella trial for recurred/metastatic HNSCC, consisting of five
targeted therapies including PI3K inhibitor, pan-HER inhibitor, FGFR inhibitor, CDK4/6 in-
hibitor, and immune checkpoint inhibitor (ClinicalTrials.gov: NCT03292250) [6]. Although
potentially targetable genetic alterations in genes such as PIK3CA, EGFR, and FGFR have
been identified in HNSCC, in-depth functional studies to validate their roles as predictive
biomarkers have not been performed.

Integration of cancer genes into networks offers opportunities to reveal protein–protein
interactions (PPIs) with functional and therapeutic significance. PPI networks based on
cancer gene landscapes can give us insight into how these genes contribute to deregulated
oncogenic pathways [7–10]. Pathological over- or under-expression of mRNA results from
cancer specific genetic alterations. Genetic mutation without change in mRNA expression
might not result in the functional change at the protein level; mRNA expression based
pathways are as important as single gene level mutational analysis.

In this study, we aimed to compare the mutational and mRNA expression based signal
transduction pathways in HNSCC and establish a cancer-associated PPI network in an
efficient high throughput format. The objective of this study was to integrate the DNA
mutational landscape and mRNA expression patterns into the PPI network pathways,
which could then be used to match potential drug or druggable pathway in HNSCC.

2. Patients and Methods
2.1. Patients and Data Collection

Altogether, 93 recurrent/metastatic HNSCC patients from 19 institutions were en-
rolled. The details of the study population have been described in our previous report [5].
In brief, pretreatment tumor tissues (somatic) and matched normal DNA (germline) from
prospectively recruited patients with HNSCC were used for the analysis. Clinicopathologi-
cal data were collected from patient medical records. Informed consents were obtained.
The Institutional Review Boards of each institute approved this study protocol.

2.2. Targeted Gene Sequencing and mRNA Expression Assay

Genomic DNA was isolated from formalin-fixed paraffin-embedded (FFPE) tissue
samples for the targeted sequencing of 244 head and neck cancer-related genes. The ge-
nomic regions of the 244 genes were captured by the customized SureSelectXT Target
Enrichment library generation kit (Agilent, Santa Clara, CA, USA) and sequenced using the
Illumina HiSeq 2500 platform with a depth of coverage >1000×. The nCounter Analysis
System (Nanostring Technologies, Seattle, WA, USA) was used to screen for the expression
of 93 immune-related genes. Counts were normalized to the internal controls and reference
genes using the nSolver software, version 4.0 (NanoString, Seattle, WA, USA).

2.3. Basic Scheme of Protein-Protein Interaction Network Analysis

To analyze with a deep insight of the combinatorial signaling events evolved in cell
communication, we applied a novel PPI method called CBSJukebox®. Figure 1 shows
the analytic flow in CBSJukebox®. In brief, CBSJukebox® enabled us to compare DNA
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mutation-based pathways and over- or under-expression based pathways by using PPI
analysis; further, CBSJukebox® enabled us to perform a simple signal pathway analysis as
well as high interaction frequency ratio genes analysis.
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Figure 1. Overflow of protein-protein interaction analysis (CBSJukebox® analysis).

2.4. Gene List Enrichment

The variants selected for DNA mutation-based analysis included nonsynonymous
single-nucleotide variant (SNV), frameshift inserts, frameshift deletions, stop-gain, stop-
loss, and copy number variation (CNV). The significantly different mRNAs expression
subtypes were identified as over- or under-expressed genes based on Student’s t test
(p-value < 0.05 and |fold-change| > 2) and compared with those expressed in normal
tissue for further over- or under-expression based pathway analysis.

2.5. PPI Mapping of Mutated Genes and Over- or Under-Expressed Genes

A multi-functional analytical tool, CBSJukebox®, was used to match DNA mutated
genes with Entrez Gene records (NCBI ID, https://www.ncbi.nlm.nih.gov/gene, accessed
on 25 March 2021) from the iProClass (https://www.ncbi.nlm.nih.gov/pubmed/15022647,
accessed on 25 March 2021) database, and the over- or under-expressed genes were
matched with gene name and synonym in Uniprot/Swiss-Prot (Uniprot Knowledgebase,
https://www.ncbi.nlm.nih.gov/pubmed/27899622, accessed on 25 March 2021) further to
interchange with identification factor “Uniprot Ac” in CBSJukebox®. We then conducted

https://www.ncbi.nlm.nih.gov/gene
https://www.ncbi.nlm.nih.gov/pubmed/15022647
https://www.ncbi.nlm.nih.gov/pubmed/27899622
https://www.ncbi.nlm.nih.gov/pubmed/27899622
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the interactive protein network analysis using the IntAct (IntAct, http://europepmc.org/
abstract/MED/24234451, accessed on 25 March 2021) database, Biological General Reposi-
tory for Interaction Datasets (BioGRID, https://www.ncbi.nlm.nih.gov/pubmed/30476227,
accessed on 25 March 2021) the Database of Interacting Proteins (DIP, https://www.ncbi.
nlm.nih.gov/pubmed/10592249, accessed on 25 March 2021), the Human Protein Refer-
ence Database (HPRD, https://www.ncbi.nlm.nih.gov/pubmed/18988627, accessed on
25 March 2021), and the Molecular INTeraction (MINT, https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC1751541/, accessed on 25 March 2021) database, accordingly. The se-
lectable identification included interaction distance, interaction type, interaction detection
method, number of the interactive information-related database, number of related litera-
ture, and number of interaction detection methods [11]. In this study, we investigated the
directly interacting genes with the start genes (mutation genes, over- or under-expressed
genes), and the organism chosen was Homo sapiens.

2.6. Signal Transduction Pathway Analysis

For each patient, CBSJukebox® identified genes that interacted with start genes and
mapped genes in signal transduction pathways from the Kyoto Encyclopedia of Genes
and Genomes (KEGG, https://www.ncbi.nlm.nih.gov/pubmed/11752249, accessed on
25 March 2021) database and provided the type of interaction information (interaction
distance and ratio etc.). We selected the top 10 signal transduction pathways among all
of the recorded pathways in the KEGG database based on the weight of the number of
interactions as well as the interacting genes.

2.7. High Interaction Frequency Ratio Genes Analysis

For each signal transduction pathway, CBSJukebox® calculated the interaction fre-
quency ratio of interacting genes that interacted with start genes. A 100% interaction
frequency gene is deemed by the gene that has the highest interaction frequency with
start genes within each signal transduction pathway. We calculated that the interaction
frequency ratio of each gene lay within each signal transduction pathway and set the high
interaction frequency ratio cut-off as 75%.

2.8. Treatment Benefit Prediction Score (TBPS) Calculation

We applied a novel algorithm that calculated the gene interaction score for the top
10 signal transduction pathways that divided the number of interactions for each interacting
gene (between start genes and interacting genes) in a specific signal transduction pathway
by the total number of interactions. Then we calculated each gene’s treatment benefit
prediction score (TBPS) by the sum of gene interaction scores included in the top 10 signal
transduction pathways [12].

2.9. Potential Treatment Recommendation for Patient

The CBSJuekbox® current version enables us to suggest potential treatment options
in the order of the genes’ TBPS. The genes with a high TBPS that were considered as
potential targets for patient treatment could be matched with the drug target genes from the
DrugBank (Drugbank, https://academic.oup.com/nar/article/46/D1/D1074/4602867,
accessed on 25 March 2021) database. In this study, we only considered drug targets not
limited to drug conditions of approval, indication, and non-prescription.

2.10. Comparison of Mutation-Based pathway and Over- or Under-Expressed
Genes-Based Pathways

The top 10 mutation-based pathways (MBPs), the top 10 mRNA over-expressed genes-
based pathways (OEBPs) and the top 10 mRNA under-expressed genes-based pathways
(UEBPs) for each patient were analyzed. The matching rate of MBPs and OEBPs and the
matching rate of MBPs and OEBPs were compared.

http://europepmc.org/abstract/MED/24234451
http://europepmc.org/abstract/MED/24234451
https://www.ncbi.nlm.nih.gov/pubmed/30476227
https://www.ncbi.nlm.nih.gov/pubmed/10592249
https://www.ncbi.nlm.nih.gov/pubmed/10592249
https://www.ncbi.nlm.nih.gov/pubmed/18988627
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1751541/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1751541/
https://www.ncbi.nlm.nih.gov/pubmed/11752249
https://academic.oup.com/nar/article/46/D1/D1074/4602867
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2.11. Validation of TBPS in Two HNSCC Patients Treated with Targeted Agents

We validated the TBPS in two HNSCC patients who were treated with molecular tar-
geted gene therapies. One patient was a 55-year-old male patient. He had recurrent cancer
and metastatic oral cavity cancer with Q75E mutation in PIK3CA. The other patient was a
38-year-old female patient, and she had recurrent and metastatic paranasal sinus squamous
cell carcinoma with frame shift mutations in FGFR1. These two patients were enrolled in
the TRIUMPH trial (NCT03292250) [6], an umbrella trial for recurrent/metastatic HNSCC
consisting of five targeted therapies including PI3K inhibitor, pan-HER inhibitor, FGFR in-
hibitor, CDK4/6 inhibitor, and immune checkpoint inhibitor. These two patients received
alpelisib (BYL719) monotherapy and nintedanib monotherapy, respectively, and showed
partial responses. We calculated the TBPS in these two patients and analyzed the correlation
between TBPS and drug matching results.

3. Results
3.1. Clinical Characteristics

Altogether, 93 patients were enrolled. Clinical characteristics are summarized in
Table 1; the median age was 59 years (range, 28–80), and 39 patients (42%) had stage 4 dis-
ease at the initial diagnosis. Median overall survival (OS) was 70.0 months (95% confidence
interval (CI), 57.4–84.4). Oral cavity (38%) was the most frequent location of HNSCC.

Table 1. Baseline characteristics in all patients.

n = 93 n %

Age, median (range) 59 (28–80)
Gender
Female 18 19
Male 75 81

Anatomic site
Oropharnx 26 28
Oral cavity 35 38

Hypopharynx 15 16
Glottic larynx 9 10

Supraglottic larynx 3 3
Maxillary sinus 5 5

Tobacco use
Never 26 28

Former 49 53
Current 18 19

Alcohol use
Never 34 37

Former 33 35
Current 26 28

Initial clinical stage
I–III 54 58
IV 39 42

HPV status
Positive 20 22

Negative 56 60
Unknown 17 18

We excluded tumor samples without any mutations because such tumors cannot
perform in pathway mapping analysis. We also excluded tumor samples with the FoxoG
error [13] and QC flag. Altogether, 77 samples that were available with regard to both
mutational data and over- or under-expression mRNA data were finally analyzed.
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3.2. Top 10 Signaling Pathway Discovered by Mutation-Based Analysis and mRNA Expressed
Genes-Based Analysis

We compared the top 10 pathways frequently discovered by mutation-based analysis
and mRNA gene expressed-based analyses. Two pathways, Kaposi’s sarcoma associated
herpes virus infection and HTLV-I infection pathways, were found to be overlapping,
both in mutation-based analysis and in over- or under-expression genes-based analysis
(Table 2). It was found that the following five pathways were overlapping, both in mutation
based analysis and under-expression based analysis: (1) Pathways in cancer, (2) Human
papillomavirus infection, (3) PI3K-Akt signaling pathway, (4) HTLV-I infection, (5) Ka-
posi’s sarcoma associated herpesvirus infection. Overall, UEBPs were more frequently
overlapping with MBPs. Among the 60 MBPs, 18 MBPs were not overlapping with OEBPs
or UEBPs. Among the 82 OEBPs, 39 OEBPs were not overlapping with MBPs or UEBPs.
All of the UEBPs were overlapping with either MBPs or OEBPs (Figure 2).

Table 2. Top 10 pathways discovered by mutation-based and mRNA over- or under-expressed genes-based analysis.

Mutated Based Analysis mRNA Over-Expressed
Genes-Based Analysis

mRNA Under-Expressed
Genes-Based Analysis

Rank Number of Patients
(n = 77) Pathway Name Number of

Patients Pathway Name Number of
Patients Pathway Name

1 74 Pathways in
cancer 47 Herpes simplex

infection 77 Pathways in
cancer

2 63
PI3K-Akt
signaling
pathway

47

Kaposi’s sarcoma-
associated

herpesvirus
infection

74
Human

papillomavirus
infection

3 62 HTLV-I infection 43
T cell receptor

signaling
pathway

71
PI3K-Akt
signaling
pathway

4 61
Human

papillomavirus
infection

42
NF-kappa B

signaling
pathway

68 Herpes simplex
infection

5 41 MicroRNAs in
cancer 42

Cytokine-
cytokine receptor

interaction
48 Ras signaling

pathway

6 41 Viral
carcinogenesis 38 HTLV-I infection 46 HTLV-I infection

7 35

Kaposi’s sarcoma-
associated

herpesvirus
infection

36
Cell adhesion

molecules
(CAMs)

46

Kaposi’s sarcoma-
associated

herpesvirus
infection

8 34 Epstein–Barr
virus infection 31 Influenza A 40

Natural killer cell
mediated

cytotoxicity

9 33 MAPK signaling
pathway 31

Toll-like receptor
signaling
pathway

40 Endocytosis

10 29 Proteoglycans in
cancer 25 Measles 34 MicroRNAs in

cancer
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Figure 2. Comparison of mutation-based pathways, over-expressed genes-based pathways,
and under-expressed genes-based pathways.

3.3. Overlapping of Mutation-Based Pathway and Over- or Under-Expressed
Genes-Based Pathways

Comparing MBPs and mRNA of over- or under-expression genes-based pathway,
we observed that 19.1% (147/770) of MBPs were overlapping with OEBPs, and 42.7%
(329/770) of MBPs were overlapping with UEBPs (Table 3).

Table 3. Overlapping of mutation-based pathway and mRNA over- or under-expressed genes-based
pathways, and their matching rate comparison.

Matching Rate Comparison

Comparison of mutation-based pathways Number of patients

Over-expressed genes-based pathways > Under-expressed
genes-based pathways 6

Over-expressed genes-based pathways < Under-expressed
genes-based pathways 64

Over-expressed genes-based pathways = Under-expressed
genes-based pathways 7

Average Matching Rate

Average matching rate with mutation-based pathways Average matching rate
Over-expressed genes-based pathways 19.09%

Under-expressed genes-based pathways 42.73%

3.4. Calculation of Treatment Benefit Prediction Score (TBPS)

Table 4 (and Supplementary Table S1) shows the results of TBPS and suggested drug.
In the OEBP results, Patient 4 had an alteration in the T cell receptor signaling pathway,
and the CD3E gene was identified as a druggable gene. Muromonab was suggested as a
targeted agent with TBPS 72.7 for Patient 4. Patient 5 had an alteration in the cell adhesion
molecules (CAMs) pathway and CD274 (PD-L1) over-expression. PD-L1 inhibitors, such as
atezolizumab, avelumab, and durvalumab were suggested for Patient 5. Interestingly, JAK1,
which is not a well-known target for HNSCC, was identified in patient 16, and roxilitinib
was suggested. In the UEBP results, FYN was identified as a candidate gene in Patient 57,
and dasatinib was suggested as the matching drug.
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Table 4. Treatment Benefit Prediction Scores (TBPSs) and suggestion of specific drugs: (A) Over-expression genes-related
analysis, (B) Under-expression genes-related analysis, (C) Mutation genes-related analysis.

(A) Over-Expression Genes-Related Analysis

Patient No. Druggable Pathway Druggable Gene TBPS Matched Drug

4
Measles, Hematopoietic cell lineage, Chagas disease

(American trypanosomiasis), T cell receptor signaling
pathway, HTLV-I infection

CD3E 72.7 Muromonab

5

RIG-I-like receptor signaling pathway, Hepatitis C, IL-17
signaling pathway, MAPK signaling pathway, Toll-like
receptor signaling pathway, Herpes simplex infection,

Influenza A

TNF 135.3
Adalimumab

Golimumab

Infliximab

Toll-like receptor signaling pathway, Cell adhesion
molecules (CAMs) CD80 23.4 Durvalumab

Cell adhesion molecules (CAMs) CD274 9.1
Atezolizumab

Avelumab

Durvalumab

Cell adhesion molecules (CAMs) PDCD1 9.1
Nivolumab

Pembrolizumab

16

Influenza A, Epstein–Barr virus infection, Kaposi’s
sarcoma-associated herpesvirus infection,

Human papillomavirus infection, Pathways in cancer,
Tuberculosis, Herpes simplex infection, HTLV-I infection

JAK1 41.4 Ruxolitinib

(B) Under-Expression Genes-Related Analysis

Patient No. Druggable Pathway Druggable Gene TBPS Matched Drug

57

Axon guidance, T cell receptor signaling pathway,
Measles, Natural killer cell mediated cytotoxicity FYN 30.2 Dasatinib

T cell receptor signaling pathway, Pathways in cancer,
Human papillomavirus infection, Natural killer cell

mediated cytotoxicity
GRB2 18.9 Pegademase bovine

Kaposi’s sarcoma-associated herpesvirus infection,
Pathways in cancer, Human papillomavirus infection,

HTLV-I infection
PIK3R1 16.9 Isoprenaline

T cell receptor signaling pathway, HTLV-I infection,
Natural killer cell mediated cytotoxicity LCK 16

Dasatinib

Nintedanib

Ponatinib

(C) Mutation Genes-Related Analysis

Patient No. Druggable Pathway Druggable Gene TBPS Matched Drug

3

Pathways in cancer, PI3K-Akt signaling pathway, HTLV-I
infection, Human papillomavirus infection, MicroRNAs

in cancer, Kaposi’s sarcoma-associated herpesvirus
infection, Epstein–Barr virus infection, Breast cancer,

Prostate cancer

TP53 42.5 Acetylsalicylic acid

Pathways in cancer, PI3K-Akt signaling pathway,
Human papillomavirus infection, MicroRNAs in cancer,

Focal adhesion, Breast cancer, Prostate cancer
GRB2 27.7 Pegademase bovine

CD274: Programmed cell death 1 ligand 1, CD3E: T-cell surface glycoprotein CD3 epsilon chain, CD80: T-lymphocyte activation antigen
CD80, FYN: FYN Proto-Oncogene, FYN: FYN Proto-Oncogene, GRB2: Growth Factor Receptor Bound Protein 2, GRB2: Growth Factor Re-
ceptor Bound Protein 2, JAK1: Tyrosine-protein kinase JAK1, LCK: LCK Proto-Oncogene, Src Family Tyrosine Kinase, PDCD1: Programmed
cell death protein 1, PIK3R1: Phosphoinositide-3-Kinase Regulatory Subunit 1, TNF: Tumor necrosis factor, TP53: Tumor Protein P53.
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When counting overlapping pathways, MBPs, OEBPs, and UEBPs in cancer were
the most commonly overlapping ones (23 times (29.87%)). The second most commonly
overlapping pathway was the HTLV-I infection pathway (15 time (19.48%)), followed by
the Human papillomavirus infection pathway (12 times (15.58%)).

The HTLV-I infection pathway was most commonly overlapping (16 times (20.78%))
pathway between MBP and OEBP, followed by Kaposi’s sarcoma-associated herpesvirus
infection pathway (11 time, (14.29%)). The PI3K-Akt signaling pathway was the most
commonly overlapping (52 times (68.83%)) pathway between MBP and UEBP (Figure 3,
Supplementary Figure S1).
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Figure 3. Oncoplot for top 20 pathway analyses in all patients.

To validate TBPSs and suggest the matching drug, we analyzed the data of two
HNSCC patients who showed a good response to the treatment with the PIK3CA inhibitor
and the FGFR inhibitor. When analyzing data of the nintedanib responding patient with
the FGFR1 mutation using a cutoff of frequency ratio of 75%, nintedanib was suggested
in mRNA expression-based analysis with a TBPS of 2.5 (Table 5). Alpelisib (BYL719)
was suggested for the alpelisib responding patient at the level of 66% frequency ratio in
mutation-based analysis (Supplementary Table S2).

Table 5. The results of pathway analysis in the FGFR Inhibitor, nintedanib responding patient.

Mutated Based Analysis

Pathway Name High Frequency Gene Frequency Ratio TBPS Maching_Drug_Names

Ras signaling pathway AKT1 100.0 4.8 Enzastaurin
Pathways in cancer AKT1 100.0 3.9 Arsenic trioxide, Enzastaurin

Melanoma RAF1 50.0 3.7 Dabrafenib
Proteoglycans in cancer EGFR 50.0 3.6 Dacomitinib

Regulation of actin
cytoskeleton PDGFRB 100.0 3.3 Becaplermin
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Table 5. Cont.

Mutated Based Analysis

Pathway Name High Frequency Gene Frequency Ratio TBPS Maching_Drug_Names

Breast cancer EGFR 50.0 3.3 Lapatinib, Neratinib, Trastuzumab
Regulation of actin

cytoskeleton FGFR1 100.0 3.3 Palifermin

Regulation of actin
cytoskeleton FGFR2 100.0 3.3 Palifermin

Breast cancer ESR2 50.0 3.3 Tamoxifen
Gastric cancer EGFR 50.0 3.1 Trastuzumab

PI3K-Akt signaling pathway HSP90AA1 50.0 2.6 Alvespimycin, Tanespimycin
PI3K-Akt signaling pathway FGFR1 50.0 2.6 Erdafitinib
PI3K-Akt signaling pathway FGFR2 50.0 2.6 Erdafitinib
PI3K-Akt signaling pathway PDGFRB 50.0 2.6 Erdafitinib, Midostaurin
PI3K-Akt signaling pathway HSP90AB1 50.0 2.6 Tanespimycin

MAPK signaling pathway EGFR 50.0 2.5

Afatinib, Canertinib, Cetuximab,
Erlotinib, Gefitinib, Lapatinib,

Necitumumab, Olmutinib,
Osimertinib, Panitumumab,

Pelitinib, Rindopepimut,
Vandetanib, Zalutumumab

MAPK signaling pathway PDGFRB 50.0 2.5
Becaplermin, Dasatinib, Imatinib,

Midostaurin, Pazopanib,
Regorafenib, Sorafenib, Sunitinib

MAPK signaling pathway RAF1 50.0 2.5 Dabrafenib, Regorafenib, Sorafenib
MAPK signaling pathway EPHA2 50.0 2.5 Dasatinib, Regorafenib

MAPK signaling pathway FGFR2 50.0 2.5 Lenvatinib, Nintedanib,
Regorafenib

MAPK signaling pathway FGFR1 50.0 2.5 Lenvatinib, Nintedanib,
Regorafenib, Sorafenib

mRNA Based Analysis

Pathway Name High Frequency Gene Frequency Ratio TBPS Maching_Drug_Names

Proteoglycans in cancer EGFR 40.0 2.9 Dacomitinib

MAPK signaling pathway EGFR 80.0 2.6

Afatinib, Canertinib, Cetuximab,
Erlotinib, Gefitinib, Lapatinib,

Necitumumab, Olmutinib,
Osimertinib, Panitumumab,

Pelitinib, Rindopepimut,
Vandetanib, Zalutumumab

MAPK signaling pathway FGFR3 80.0 2.6 Lenvatinib, Nintedanib, Pazopanib

MAPK signaling pathway FGFR2 80.0 2.6 Lenvatinib, Nintedanib,
Regorafenib

MAPK signaling pathway FGFR1 80.0 2.6 Lenvatinib, Nintedanib,
Regorafenib, Sorafenib

AKT1: RAC-alpha serine/threonine-protein kinase, RAF1: RAF proto-oncogene serine/threonine-protein kinase, EGFR: Epidermal Growth
Factor Receptor, EPHA2: Ephrin type-A receptor 2, ESR2: Estrogen receptor beta, FGFR1: Fibroblast growth factor receptor 1, FGFR2:
Fibroblast Growth Factor Receptor 2, FGFR3: Fibroblast Growth Factor Receptor 3, HSP90AA1: Heat Shock Protein 90 Alpha Family Class
A Member 1, HSP90AB1: Heat shock protein HSP 90-beta, PDGFRB: Platelet-derived growth factor receptor beta.

4. Discussion

In this study, we described a novel approach for pathway analysis using mutation
data and mRNA expression data. Mutated gene-related pathways were associated mainly
with mRNA under-expression genes-related pathways. These results suggest that HNSCC
are mainly related to loss-of-function mutations. However, big data based platforms for
druggable pathways can find potential matching drugs.

Our model is based on 14 open databases for protein, interaction, and signaling path-
ways such as NCBI, Uniprot, KEGG, Biogrid, DIP, HPRD, and Drugbank. High interaction
genes were mapped to investigate druggable pathways. We hypothesized that integra-
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tion of each mutation and the respective mRNA expression into signaling pathway can
identify their functional significance and therapeutic targets. Pathway networks based on
cancer gene landscapes can give us insight into how these genes contribute to deregulated
oncogenic pathways. Several studies [5,14–16] had similar approaches based on pathway
analysis. However, we developed a novel scoring model that measured the overlap be-
tween mutation and mRNA expression data, and calculated the interaction relationship
score for discovering a potential target drug.

Each mutation and mRNA expression data from signaling nodes and hubs transmit
pathological cues along molecular networks to achieve integrated tumorigenic pathways.
From the interaction of receptors with deregulated growth factors to dimerization of recep-
tor tyrosine kinases triggered by gene mutations, PPIs initiate a cascade of interactions to
promote uncontrolled cell proliferation [9]. In response to oncogenic stimulation, PPIs play
essential roles in linking networks that relay oncogenic signals, and therefore allow for the
suggestion of the target drug.

Unlike existing methods, our model is capable of ranking and scoring the significant
KEGG pathways reported in the cancer research literature. We used the prior knowledge
specified in the pathway in order to identify the particular pathway in gene/protein
interaction that could explain the molecular basis of carcinogenesis. Our novel algorithm,
called CBSJukebox®, calculates the interaction frequency ratio of interacting genes. Based on
the interaction frequency ratio, we can calculate each gene’s TBPS using a sum of gene interaction
scores. The TBPS suggests the matching drug and visualizes the responding probability.

During the experiment, we also observed that not only oncogenic pathways but
also non-oncogenic pathways were deregulated and activated in HNSCC. This multiple
pathway involvement implies that targeting multiple pathways is useful for further refining
the anti-cancer chemotherapy. We also found that overly activated pathways measured by
mRNA over-expression and suppressed pathways measured by mRNA under-expression
were quite different. However, biologically important pathways were overlapping in both
mutation-based and expression-based pathways.

This study has limitations. This model was developed in silico and has not yet been
fully validated in the patients. We tried to validate TBPS in two HNSCC patients who
showed good response to the FGFR inhibitor and the PIK3 inhibitor. Our developed
CBSJukebox® system suggested both the FGFR inhibitor and the PIK3 inhibitor. However,
when we applied an interaction frequency ratio cut-off of 75%, the PIK3 inhibitor was
excluded. This might have been caused by the insufficient availability of gene data that
interacted with the PIK3CA pathway in the public database. We will expand and use the
updated public database in the future to refine our CBSJukebox® system.

Future work will focus on validation of the suggested drugs that were identified in
this study with a larger sample size. Regarding future work, our Bayesian network model
offers an easy way of incorporating additional data types such as CNV, proteomics data,
and methylation data, and so on, and such model extensions should be attempted.

5. Conclusions

In conclusion, our pathway based systematic analysis of mutational and mRNA
expression pathways provides novel mechanistic and clinical insights into the precision
therapeutics for HNSCC. NGS-based mutated gene-related pathways were associated with
mRNA under-expression genes-related pathways. These results suggest that HNSCCs are
mainly caused by the loss-of-function mutations. However, big data based platforms for
druggable pathways can find potential matching drugs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pr9050792/s1, Figure S1. Oncoplot for pathway analysis in all patients. Table S1: Treatment
Benefit Prediction Score (TBPS) and suggestion of drug: (1) Over-expression genes related analysis,
(2) Under-expression genes related analysis, (3) Mutation genes related analysis (Full data). Table S2:
The results of pathway analysis in PIK3CA Inhibitor responding patient.
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