
1

Dynamic Lockstep Processors for Applications with
Functional Safety Relevance

Hans Dermot Doran
Zurich University of Applied Sciences

Institute of Embedded Systems
8401-Winterthur, Switzerland

donn@zhaw.ch

Timo Lang
Zurich University of Applied Sciences

8401-Winterthur, Switzerland
langtim1@students.zhaw.ch

Abstract— Lockstep processing is a recognized technique for
helping to secure functional-safety relevant processing against,
for instance, single upset errors that might cause faulty execution
of code. Lockstepping processors does however bind processing
resources in a fashion not beneficial to architectures and
applications that would benefit from multi-core/-processors. We
propose a novel on-demand synchronizing of cores/processors for
lock-step operation featuring post-processing resource release, a
concept that facilitates the implementation of modularly
redundant core/processor arrays. We discuss the fundamentals of
the design and some implementation notes on work achieved to
date.

Keywords—functional safety, safe processing, high availability,
lockstep processors, FPGA, SoC, Multicore Processors,

I. INTRODUCTION

Processing on processors in functionally safe applications
binds additional resources [1]. Typical solutions to detect
single event upsets include utilizing redundancy by carrying
out the functionally safe code twice, in parallel or in series, and
then comparing the execution or the results. Series execution is
inefficient in terms of latency, parallel execution in terms of
cost. The most common form of parallel execution
architecture, lockstep processing, features two processors
executing the same code either at the same time or staggered
by some small number (1..2) of clocks. This technique,
commonly understood as tightly-coupled lockstepping,
compares the bus activities of the processors and, generally,
asserts a reset should the two differ. Whilst there is a very fast
reaction to errors, within a few clock cycles, there is generally
no scope for degraded operation and the monitoring circuitry
may slow the execution speed of the processors. Additionally,
memory and possibly I/O requires separate protection,
typically achieved using ECC.

Loosely-coupled lockstep processing is generally taken to
mean two processors that tick to their own clocks and use
separate ROM and RAM and, generally, where results of
operations are compared rather than bus activity. The increase
in RAM and ROM space for duplicated storage and,
potentially, slower error detection [2], is offset by the prospect
of supporting software and hardware diversity, a degraded
operation mode and the superfluity of ECC based data

protection. Undeniably, the duplication of ROM/RAM is
costly, especially in integrated circuit solutions [3].

There are numerous single-chip lockstep solutions available
[4, 5], popular in the very cost-sensitive automotive industry.
In other domains where the use of multicore processors is
common but eschew the additional cost of a single-chip
lockstep, researchers grapple with the question of how to
leverage features found in multicore architectures including
debug features [6], re-configurability [7] and core isolation [8],
albeit most such solutions require additional loosely-coupled
lockstepping to ensure safe processing. Researchers [9] also
suggest scheduling non-critical tasks on processors normally
reserved for critical-task execution.

We therefore propose a novel dynamic lockstepping
architecture in which otherwise unrelated homogeneous cores
can independently accept a request to join in lock-step to
process a critical task. Once this task has been executed, the
processors release themselves and are available for other tasks.
This architecture proposal exhibits several advantages namely:
non-permanent allocation of processing resources for
critical/safe-processing tasks; potential to increase availability
through MooN configurations; potential to perform degraded
operation in case of error detection; potential to perform sanity
checks on failed processors whilst upholding the application
and re-integration of processors that pass the sanity check;
much higher flexibility in the scheduling of processing
resources across the entire application.

The paper is structured accordingly. In Section II we make
our design proposal, we briefly mention some implementation
notes in Section III and conclude in Section IV, drawing
conclusions and proposing future work.

II. PROPOSAL

We can model the proposed system as a state machine,
Figure 1. For simplicities sake we do not consider features
such as degraded operation. The system begins in the boot state
which performs checks and can transition into the (permanent)
safe state if the checks do not succeed. If the checks do succeed
the system can enter normal processing mode. If a processing
block (f.i microprocessor running an application) demands safe
processing then the system enters a transient state in which it is
attempted to synchronise enough processing blocks to achieve

We acknowledge the sponsorship of this project by the Swiss
Commission for Technology and Innovation (CTI), number 177277.1PFES-
ES with gratitude.

2

the required MooN configuration, such as 2oo3 or a 3oo5. If
the required configuration can be achieved the system then
transitions into the safe-processing mode. In this mode N-M
processing blocks may fail before the system transitions into
the safe state. Alternatively the task may complete correctly
and the system transitions back into the normal processing
mode.

Figure 1: State Machine Proposed System

At a behavioural level we can illustrate the components

using the following activity diagram (Figure 2). Initially there
are, in the normal processing state, different tasks (app_1 …
app_n) executing asynchronously on several processing
blocks. Some signal must be generated to transition the sub-
system into the safe processing state. If N processing blocks
are required then some unit, in this case the
lock_step_monitor, must ensure that N of these
processing blocks are properly synchronised after some time
period, if not then the system must transition into the safe state.
If the processing blocks can be synchronised then the sub-
system executes safe_app, monitored by the
lock_step_monitor. If the system does not complete
properly, then the system must transition into the safe state,
otherwise the execution of (app_1 … app_n) may resume.

application

app_1 app_m app_n lock_step_monitor

safe_app safe_appsafe_app

[synchronisation_OK]

[lockstep_OK]

[enter_safe_state]

[enter_safe_state]

[continue]

[continue]

Figure 2: Activity Diagram: Application

We consider the entry mechanisms to the safe processing

state, using Figure 3 which depicts the HW component
processing_block. We allow for the use of a monitor,
operating system or other such infrastructure software, which
we simply term monitor, as well as the application. Requests
for safe processing (request_sp) may come from this
monitor, timed or triggered. Alternatively the application may
request a safe processing state, again either timed or triggered.
We must also allow for sources external to the processing

block to request entry into the safe processing state for instance
HW interrupts normally in the scope of the application or
normally outside of the scope of the application. When
triggered, the processing block transitions into a nominally safe
mode – whilst lockstep processing is not available the code is
simple enough to be inspected – asserts a request_sync
signal and waits, for instance, by idling on a bus transfer that is
prevented from completing. When some unit asserts the
continue signal then the safe application code can proceed
albeit, and unknown to the processing_block, in lockstep
mode. When the safe code completes, the state transitions to
normal processing and the processing_block may expect
to return to whatever code it was processing before safe state
was requested. We envisage an interrupt service routine (ISR)
as the simplest basis for the safe_app.

This design translates into 16 functional requirements, [R1
… R6] for the processing block, [R7 … R14] for the
lock_step_monitor and R15, R16 for any external entity. The
relationship between the requirements is illustrated in (Figure
4.)

Figure 3: Activity Diagram Processing Block and Sources of Synchronization
Requests

The sequence diagram below (Figure 5) illustrates a

possible sequence of events with an example of two cores
(processing_blocks) required for a 2oo2 configuration.
core_1 triggers the safe-processing by issuing a trigger signal
(trigger_sp.) This causes the lock_step_monitor to
generate a request signal to all attached cores to which
core_2 and core_n respond instantaneously. These issue a
enter_sp bus transfer which at first stalls. As soon as the
lock_step_monitor has received two participation
requests it releases the stalled bus transfers and safe processing
begins on core_2 and core_n. core_1’s request arrives
later and is rejected. After core_2 and core_n both issue an
exit_sp bus transfer, safe-processing ends. Note that despite
requesting lockstep processing, core_1 does not participate
in it.

3

Figure 4: Control Flow and Component Requirements in the Dynamic
Lockstep System

Figure 5: Sequence Diagram Detailing Lockstep Processing Request

III. IMPLEMENTATION

While this proposal is of particular interest for integration
on integrated circuit multicores, a cost efficient prototype
implementation is easily possible using soft-cores on an FPGA,
for which the two major suppliers offer IEC 61508 certified
design flows [10, 11]. Intel represents an attractive solution
because the Avalon bus is quite simple and is implemented as a
direct connect from processor to device.

Our HW architecture (Figure 6) consists of a number
(three) of processing_blocks each requiring an Avalon
interface (Av[1..3]). If each is configured to access
system_RAM then, during synthesis, system_RAM would
have an arbiter attached and the arbiter would offer a port to
each processing_block and arbitrate between
simultaneous accesses. Similarly, our lock_step_monitor
offers three ports, one for each processing_block. The
lock_step_monitor also requires, a separate RAM for
code and data and, optionally, an input/output device. The code
to be executed safely must be loaded into ls_RAM during
system initialisation. This ls_RAM could, be for instance,
triple modular redundant RAM, as often encountered in safe
systems.

The sequence of operation functions as shown in the
sequence diagram can be visualised by the NIOS II ISR
assembler code in Figure 7.

Figure 6: Architecture of System using NIOS II and the Avalon Bus

For simplicities sake we implemented a two-step

procedure, the first to marshal the correct number of
processing_blocks to perform lockstep processing and
the second to actually synchronise the
processing_blocks and lockstep through the safe code.
This is reflected in the code. The processing_block
signals interest in participating in lockstep processing by
initiating a read transaction to a specific address
(LOCKSTEP_SYNC_ADDRESS.) The address read will return
either an accept or a reject. If participation is accepted the ISR
will call a safe sub-routine, stored at SAFECODE_START. Once
lock-step processing is to stop, a second read of
LOCKSTEP_SYNC_ADDRESS must be performed to ensure a
controlled release out of lock-stepping.

Figure 7. Code Snippet of IRQ Handling a Lockstep Processing request

The corresponding lock_step_monitor architecture

(Figure 8) consists of three subcomponents, of which only the
voter component is safety critical.

The controller component is used to trigger safe-
processing via the request_sp input from an external entity
or via the control_bus. The number of participants, which
must be an odd number greater or equal to three, so that the
voter always has a majority and no ties, can also be set over
the control bus. Once a safe-processing operation has been
requested, the irq output, used to request more
processing_blocks, will be asserted until notified by the
lockstep_processing signal from the synchronizer
component that lockstep processing has begun.

The implementation of the synchronizer component is
kept simple. After detection of an initial read request all
responding processing_blocks will be stalled until at
least N processing_blocks have issued a read request on
psyb. When this occurs the first N responders will be selected
and their read transactions will be answered positively. At the
same time, the selected processing_blocks will have

4

their bit set in the enabled signal vector (enabled[1..N].)
A processing_block will read a negative result from its
read transaction if it is surplus to requirements and may return
to normal processing. Systematic errors could be avoided by
the random choice of processing_block, this is left to
later work.

The voter component is composed of three sub-
components, the compare_matrix compares each of the n
bus inputs (plsb) to every other bus input and exposes an n×n
Boolean matrix as output interface. The majority_voter
takes the output of the compare_matrix and selects an
input representing the majority result for the
bus_multiplexer, the synchronizer will tell the
majority_voter which inputs should be considered for
voting. The bus_multiplexer takes all bus inputs and
selects one for forwarding informed by the
majority_voter which will select the first input that
compares equal to at least M (out of N) inputs. If this criteria is
not met then no input will be selected and the voted safe bus is
kept idle.

The observer component is responsible for detection of
availability errors. That means it measures the time between
state transitions of the synchronizer and, in case of error,
will signal such on the availability error line. This
availability error is also asserted when the
majority_voter reports that there is no valid majority.

Figure 8: Architecture of the lock_step_monitor

The lock_step_monitor component was verified

using the Open Verification Methodology on the cocotb
platform. A demonstrator was built using a DE1-SoC board
[12] which features an Intel Cyclone V FPGA; five NIOS II
cores are instantiated to demonstrate dynamic lockstepping.

There are some caveats in the current design. The branch
prediction in the individual NIOS II cores is dependent on
execution history, which differs in each
processing_block. This difference will result in
additional latency in the execution of the beq instruction but
can be mitigated by switching to static code prediction. We
have ignored the effects of processor caches, by not using
them, and we implemented a shadow stack, as the stack pointer
also differs from processor to processor due to execution
history. Configuring the NIOS with a shadow register set

would help mitigating the effect of different stack-pointers on
different processors executing the same code.

IV. CONCLUSION AND FURTHER WORK

We present a novel and promising proposal for dynamic
lockstep operation of processors in multi-core/processor
environments and some implementation notes for
implementation in an FPGA. Future work includes
investigating the optimal use of cache and expansion to lightly-
coupled lockstepping.

REFERENCES

[1] A. Grasset, "Design of critical embedded systems: from early
specifications to prototypes," in International Symposium on
Rapid System Prototyping (RSP), 2015, pp. 38-38.

[2] C. Hernandez and J. Abella, "Timely Error Detection for
Effective Recovery in Light-Lockstep Automotive Systems,"
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 11, pp. 1718-1729, 2015.

[3] M. Baleani, L. Mangeruca, M. Peri, and S. Pezzini, "Multi
Processor Micro-Controllers for Automotive Safety-Critical
Applications," IFAC Proceedings Volumes, vol. 37, no. 22,
pp. 41-46, 2004/04/01/ 2004.

[4] Texas Instruments Incorporated. (2020, April 11,).
Hercules™ Arm® Cortex®-R MCUs for functional safety.
Available: http://www.ti.com/microcontrollers/hercules-
safety-mcus/overview.html

[5] STMicroelectronics. (2020, April 11). SPC5 32-bit
Automotive MCUs. Available:
https://www.st.com/en/automotive-microcontrollers/spc5-32-
bit-automotive-mcus.html

[6] M. Paulitsch, J. Nowotsch, D. Münch, and L. Girbinger,
"Transparent software replication and hardware monitoring
leveraging modern System-on-Chip features," in IEEE 19th
International Conference on Embedded and Real-Time
Computing Systems and Applications (RTSCA), 2013, pp.
157-164.

[7] D. V. Vu, O. Sander, T. Sandmann, J. Heidelberger, S. Baehr,
and J. Becker, "On-demand reconfiguration for coprocessors
in mixed criticality multicore systems," in International
Conference on High Performance Computing & Simulation
(HPCS), 2015, pp. 569-576.

[8] H. Omar, H. Dogan, B. Kahne, and O. Khan, "Multicore
Resource Isolation for Deterministic, Resilient and Secure
Concurrent Execution of Safety-Critical Applications," IEEE
Computer Architecture Letters, vol. 17, no. 2, pp. 230-234,
2018.

[9] B. H. Meyer, N. George, B. Calhoun, J. Lach, and K.
Skadron, "Reducing the cost of redundant execution in
safety-critical systems using relaxed dedication," in Design,
Automation & Test in Europe (DATE), 2011, pp. 1-6.

[10] Intel. (2020, April 11,). Industrial Functional Safety.
Available:
https://www.intel.com/content/www/us/en/industrial-
automation/programmable/applications/automation/functional
-safety.html

[11] Xilinx. (2020, April 11,). Functional Safety. Available:
https://www.xilinx.com/products/technology/functional-
safety.html

[12] terasic, "DE1-SoC User Manual," January 28, 2019,
Available: https://www.terasic.com.tw.

