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Abstract— Lockstep processing is a recognized technique for 
helping to secure functional-safety relevant processing against, 
for instance, single upset errors that might cause faulty execution 
of code. Lockstepping processors does however bind processing 
resources in a fashion not beneficial to architectures and 
applications that would benefit from multi-core/-processors. We 
propose a novel on-demand synchronizing of cores/processors for 
lock-step operation featuring post-processing resource release, a 
concept that facilitates the implementation of modularly 
redundant core/processor arrays. We discuss the fundamentals of 
the design and some implementation notes on work achieved to 
date. 
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I. INTRODUCTION 

Processing on processors in functionally safe applications 
binds additional resources [1]. Typical solutions to detect 
single event upsets include utilizing redundancy by carrying 
out the functionally safe code twice, in parallel or in series, and 
then comparing the execution or the results. Series execution is 
inefficient in terms of latency, parallel execution in terms of 
cost. The most common form of parallel execution 
architecture, lockstep processing, features two processors 
executing the same code either at the same time or staggered 
by some small number (1..2) of clocks. This technique, 
commonly understood as tightly-coupled lockstepping, 
compares the bus activities of the processors and, generally, 
asserts a reset should the two differ. Whilst there is a very fast 
reaction to errors, within a few clock cycles, there is generally 
no scope for degraded operation and the monitoring circuitry 
may slow the execution speed of the processors. Additionally, 
memory and possibly I/O requires separate protection, 
typically achieved using ECC.   

Loosely-coupled lockstep processing is generally taken to 
mean two processors that tick to their own clocks and use 
separate ROM and RAM and, generally, where results of 
operations are compared rather than bus activity. The increase 
in RAM and ROM space for duplicated storage and, 
potentially, slower error detection [2], is offset by the prospect 
of supporting software and hardware diversity, a degraded 
operation mode and the superfluity of ECC based data 

protection. Undeniably, the duplication of ROM/RAM is 
costly, especially in integrated circuit solutions [3].  

There are numerous single-chip lockstep solutions available 
[4, 5], popular in the very cost-sensitive automotive industry. 
In other domains where the use of multicore processors is 
common but eschew the additional cost of a single-chip 
lockstep, researchers grapple with the question of how to 
leverage features found in multicore architectures including 
debug features [6], re-configurability [7] and core isolation [8], 
albeit most such solutions require additional loosely-coupled 
lockstepping to ensure safe processing. Researchers [9] also 
suggest scheduling non-critical tasks on processors normally 
reserved for critical-task execution.  

We therefore propose a novel dynamic lockstepping 
architecture in which otherwise unrelated homogeneous cores 
can independently accept a request to join in lock-step to 
process a critical task. Once this task has been executed, the 
processors release themselves and are available for other tasks. 
This architecture proposal exhibits several advantages namely: 
non-permanent allocation of processing resources for 
critical/safe-processing tasks; potential to increase availability 
through MooN configurations; potential to perform degraded 
operation in case of error detection; potential to perform sanity 
checks on failed processors whilst upholding the application 
and re-integration of processors that pass the sanity check; 
much higher flexibility in the scheduling of processing 
resources across the entire application.    

The paper is structured accordingly. In Section II we make 
our design proposal, we briefly mention some implementation 
notes in Section III and conclude in Section IV, drawing 
conclusions and proposing future work.  

II. PROPOSAL 

We can model the proposed system as a state machine, 
Figure 1. For simplicities sake we do not consider features 
such as degraded operation. The system begins in the boot state 
which performs checks and can transition into the (permanent) 
safe state if the checks do not succeed. If the checks do succeed 
the system can enter normal processing mode. If a processing 
block (f.i microprocessor running an application) demands safe 
processing then the system enters a transient state in which it is 
attempted to synchronise enough processing blocks to achieve 
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the required MooN configuration, such as 2oo3 or a 3oo5. If 
the required configuration can be achieved the system then 
transitions into the safe-processing mode. In this mode N-M 
processing blocks may fail before the system transitions into 
the safe state. Alternatively the task may complete correctly 
and the system transitions back into the normal processing 
mode. 

Figure 1: State Machine Proposed System 
 
At a behavioural level we can illustrate the components 

using the following activity diagram (Figure 2). Initially there 
are, in the normal processing state, different tasks (app_1 … 
app_n) executing asynchronously on several processing 
blocks. Some signal must be generated to transition the sub-
system into the safe processing state. If N processing blocks 
are required then some unit, in this case the 
lock_step_monitor, must ensure that N of these 
processing blocks are properly synchronised after some time 
period, if not then the system must transition into the safe state. 
If the processing blocks can be synchronised then the sub-
system executes safe_app, monitored by the 
lock_step_monitor. If the system does not complete 
properly, then the system must transition into the safe state, 
otherwise the execution of (app_1 … app_n) may resume.   

application

app_1 app_m app_n lock_step_monitor

safe_app safe_appsafe_app

[synchronisation_OK]

[lockstep_OK]

[enter_safe_state]

[enter_safe_state]

[continue]

[continue]

 
Figure 2: Activity Diagram: Application 

 
We consider the entry mechanisms to the safe processing 

state, using Figure 3 which depicts the HW component 
processing_block. We allow for the use of a monitor, 
operating system or other such infrastructure software, which 
we simply term monitor, as well as the application. Requests 
for safe processing (request_sp) may come from this 
monitor, timed or triggered. Alternatively the application may 
request a safe processing state, again either timed or triggered. 
We must also allow for sources external to the processing 

block to request entry into the safe processing state for instance 
HW interrupts normally in the scope of the application or 
normally outside of the scope of the application. When 
triggered, the processing block transitions into a nominally safe 
mode – whilst lockstep processing is not available the code is 
simple enough to be inspected – asserts a request_sync 
signal and waits, for instance, by idling on a bus transfer that is 
prevented from completing. When some unit asserts the 
continue signal then the safe application code can proceed 
albeit, and unknown to the processing_block, in lockstep 
mode. When the safe code completes, the state transitions to 
normal processing and the processing_block may expect 
to return to whatever code it was processing before safe state 
was requested. We envisage an interrupt service routine (ISR) 
as the simplest basis for the safe_app.  

This design translates into 16 functional requirements, [R1 
… R6] for the processing block, [R7 … R14] for the 
lock_step_monitor and R15, R16 for any external entity. The 
relationship between the requirements is illustrated in (Figure 
4.)   

 
Figure 3: Activity Diagram Processing Block and Sources of Synchronization 
Requests 

 
The sequence diagram below (Figure 5) illustrates a 

possible sequence of events with an example of two cores 
(processing_blocks) required for a 2oo2 configuration. 
core_1 triggers the safe-processing by issuing a trigger signal 
(trigger_sp.) This causes the lock_step_monitor to 
generate a request signal to all attached cores to which 
core_2 and core_n respond instantaneously. These issue a 
enter_sp bus transfer which at first stalls. As soon as the 
lock_step_monitor has received two participation 
requests it releases the stalled bus transfers and safe processing 
begins on core_2 and core_n. core_1’s request arrives 
later and is rejected. After core_2 and core_n both issue an 
exit_sp bus transfer, safe-processing ends. Note that despite 
requesting lockstep processing, core_1 does not participate 
in it.   
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Figure 4: Control Flow and Component Requirements in the Dynamic 
Lockstep System 
 

 
Figure 5: Sequence Diagram Detailing Lockstep Processing Request 

III. IMPLEMENTATION  

While this proposal is of particular interest for integration 
on integrated circuit multicores, a cost efficient prototype 
implementation is easily possible using soft-cores on an FPGA, 
for which the two major suppliers offer IEC 61508 certified 
design flows [10, 11]. Intel represents an attractive solution 
because the Avalon bus is quite simple and is implemented as a 
direct connect from processor to device.  

Our HW architecture (Figure 6) consists of a number 
(three) of processing_blocks each requiring an Avalon 
interface (Av[1..3]). If each is configured to access 
system_RAM then, during synthesis, system_RAM would 
have an arbiter attached and the arbiter would offer a port to 
each processing_block and arbitrate between 
simultaneous accesses. Similarly, our lock_step_monitor 
offers three ports, one for each processing_block. The 
lock_step_monitor also requires, a separate RAM for 
code and data and, optionally, an input/output device. The code 
to be executed safely must be loaded into ls_RAM during 
system initialisation. This ls_RAM could, be for instance, 
triple modular redundant RAM, as often encountered in safe 
systems. 

The sequence of operation functions as shown in the 
sequence diagram can be visualised by the NIOS II ISR 
assembler code in Figure 7. 

 

 
Figure 6: Architecture of System using NIOS II and the Avalon Bus 

 
For simplicities sake we implemented a two-step 

procedure, the first to marshal the correct number of 
processing_blocks to perform lockstep processing and 
the second to actually synchronise the 
processing_blocks and lockstep through the safe code. 
This is reflected in the code. The processing_block 
signals interest in participating in lockstep processing by 
initiating a read transaction to a specific address 
(LOCKSTEP_SYNC_ADDRESS.) The address read will return 
either an accept or a reject. If participation is accepted the ISR 
will call a safe sub-routine, stored at SAFECODE_START. Once 
lock-step processing is to stop, a second read of 
LOCKSTEP_SYNC_ADDRESS must be performed to ensure a 
controlled release out of lock-stepping.  

 

 
Figure 7. Code Snippet of IRQ Handling a Lockstep Processing request 

 
The corresponding lock_step_monitor architecture 

(Figure 8) consists of three subcomponents, of which only the 
voter component is safety critical.  

The controller component is used to trigger safe-
processing via the request_sp input from an external entity 
or via the control_bus. The number of participants, which 
must be an odd number greater or equal to three, so that the 
voter always has a majority and no ties, can also be set over 
the control bus. Once a safe-processing operation has been 
requested, the irq output, used to request more 
processing_blocks, will be asserted until notified by the 
lockstep_processing signal from the synchronizer 
component that lockstep processing has begun.  

The implementation of the synchronizer component is 
kept simple. After detection of an initial read request all 
responding processing_blocks will be stalled until at 
least N processing_blocks have issued a read request on 
psyb. When this occurs the first N responders will be selected 
and their read transactions will be answered positively. At the 
same time, the selected processing_blocks will have 



4 
 

their bit set in the enabled signal vector (enabled[1..N].) 
A processing_block will read a negative result from its 
read transaction if it is surplus to requirements and may return 
to normal processing. Systematic errors could be avoided by 
the random choice of processing_block, this is left to 
later work.  

The voter component is composed of three sub-
components, the compare_matrix compares each of the n 
bus inputs (plsb) to every other bus input and exposes an n×n 
Boolean matrix as output interface. The majority_voter 
takes the output of the compare_matrix and selects an 
input representing the majority result for the 
bus_multiplexer, the synchronizer will tell the 
majority_voter which inputs should be considered for 
voting. The bus_multiplexer takes all bus inputs and 
selects one for forwarding informed by the 
majority_voter which will select the first input that 
compares equal to at least M (out of N) inputs. If this criteria is 
not met then no input will be selected and the voted safe bus is 
kept idle.  

The observer component is responsible for detection of 
availability errors. That means it measures the time between 
state transitions of the synchronizer and, in case of error, 
will signal such on the availability error line. This 
availability error is also asserted when the 
majority_voter reports that there is no valid majority. 

 

 
Figure 8: Architecture of the lock_step_monitor 

 
The lock_step_monitor component was verified 

using the Open Verification Methodology on the cocotb 
platform. A demonstrator was built using a DE1-SoC board 
[12] which features an Intel Cyclone V FPGA; five NIOS II 
cores are instantiated to demonstrate dynamic lockstepping. 

There are some caveats in the current design. The branch 
prediction in the individual NIOS II cores is dependent on 
execution history, which differs in each 
processing_block. This difference will result in 
additional latency in the execution of the beq instruction but 
can be mitigated by switching to static code prediction. We 
have ignored the effects of processor caches, by not using 
them, and we implemented a shadow stack, as the stack pointer 
also differs from processor to processor due to execution 
history. Configuring the NIOS with a shadow register set 

would help mitigating the effect of different stack-pointers on 
different processors executing the same code. 

IV. CONCLUSION AND FURTHER WORK  

We present a novel and promising proposal for dynamic 
lockstep operation of processors in multi-core/processor 
environments and some implementation notes for 
implementation in an FPGA. Future work includes 
investigating the optimal use of cache and expansion to lightly-
coupled lockstepping.  
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