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Abstract—In this paper, a vision for beyond-5G systems is pro-
posed where automation, intelligence and data privacy in cloud-
native infrastructures are in focus. Exploiting the convergence
of cloud technologies at the edge and mobile communication
networks, a set of architectural and technological solutions is
discussed that will play a fundamental role on the path from
5G towards future sixth-generation systems. Currently, a strong
need is felt in the telecommunication world for greater automa-
tion to meet the extreme requirements expected for future 6G
applications. In this regard, Artificial Intelligence (Al) is gaining
high momentum as one of the central enabling technologies
for beyond-5G networks. Reinforcement Learning (RL) and
Federated Learning (FL) are here proposed as technologies to
enhance network automation and enable privacy-aware applica-
tions. Blockchain is proposed as a solution for non-repudiation
and trustworthiness in the AI pipelines. These technologies are
brought together in a comprehensive cloud-native architectural
vision to fill the gap between current 5G systems and Al-powered
secure systems of the future.

Index Terms—6G systems, Federated Learning, Artificial In-
telligence, Reinforcement Learning, Blockchain, Automated Or-
chestration, Edge Computing, Cloud-native.

I. INTRODUCTION

IFTH generation (5G) networks are becoming the core en-

abler for the information society of 2020, but researchers
are already in the process of drafting ideas about what the
intelligent information society of 2030 will be with the sixth
generation (6G) of wireless networks. Many 5G concepts are
currently being applied and delivered, whereas new concepts
and technologies will soon arise to differentiate 6G networks.
NFV (Network Functions Virtualization) capabilities, together
with SDN (Software Defined Networking) mechanisms and
edge computing are among the key 5G technologies. They
are crucial in enabling and supporting the deployment and
orchestration of a wide range of vertical applications with very
heterogeneous but extremely challenging performance and
operating requirements. On the other hand, the huge amount of
data collected by sensors, embedded in all sorts of terminals,
machines, and things, has to be networked with low latency
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fixed-radio connections, elaborated in the Cloud and Edge-
Fog Computing facilities, to eventually result into a variety of
ICT (Information and Communication Technology) services.
Therefore, 5G systems are taking on the characteristics of
a powerful networking-computing-storage infrastructure with
functions partly distributed and partly centralized, supporting
pervasive connections (wired and wireless) characterized by
high capacity and very low latency (a few milliseconds).

If, on one side, technologies first introduced in 5G networks
(e.g., softwarization, cloudization, virtualization, slicing) [1]
will still play an important role in autonomous networks of
the future, intelligentization and connected intelligence are
the recurring keywords to distinguish the next generation
networks from the past [2] [3]. It is, therefore, not surpris-
ing that pervasive Artificial Intelligence (AI) is deemed to
be among the central enabling technologies for beyond 5G
networks [2] [4] [5]. We are observing how the telecoms
world already provides an innovative baseline infrastructure,
which spans from the core out to the radio base stations
and, ever increasingly, to edge devices. However, as scale
increases, so does management and the overhead of that. That
complexity is already present in the horizontal aspects of
the network management, but when vertical end-user-owned
applications are deployed, this complexity explodes adding
advanced orchestration needs (e.g., reactive scaling decisions,
self-* functionalities). Therefore, the need for automation and
dynamic orchestration of services and resources is strongly
felt. Moreover, extensions of current and beyond-5G NFV-
based systems, will have to embed secure and trustworthy
solutions into the management of core network services and
end-user applications to allow the operation on user data
without loss of privacy and trust.

Considering these aspects, the key research question we
address in this paper is: “How to enable intelligent and
dynamic management of infrastructures, network services and
applications through data processing over virtualized remote
and local resources, to enable greater trust in providers, pro-
tect the end-users privacy, and achieve high performance?”

II. SOCIETAL & TECHNICAL CHALLENGES ON THE ROAD
TO 6G SYSTEMS

We can identify some societal, business and technical chal-
lenges to be addressed by next-generation systems.

o Societal and Business Considerations. Today the ex-
change of data over networks is a common occurrence.
This data intrinsically has value, and when transformed



through processing, provides highly useful insights to
the operation of a system. Nonetheless, with its value
comes the use of customer data in a way unknown to
customers. This is typically more evident in business-
to-customer interactions. Protection of the end-users, be
they developers or citizens, is something that needs to be
considered more carefully in upcoming 6G architectures.
Transparency of data and decision-making processes is
also important in some vertical industries, making nec-
essary the development of AI mechanisms that can be
self-explanatory.

Convergence of cloud-native and edge technologies.
To reap the benefits of decentralization, the convergence
of cloud-native infrastructures and mobile networks must
be enhanced in all components of compute, storage and
networking. Connectivity should not only be reliable, but
also able to adapt to changing applications’ and networks’
requirements. While 5G systems already moved a step in
this direction with several functionalities for Edge Com-
puting integration, such as the User Plane Function and
the Session Management Function defined in the 3GPP
5G Service-Based Architecture, actual implementations
are far from maturity. At the same time, computation and
storage at the edge of the network are facing an exponen-
tial data growth which greatly increases the requirements
for faster data processing. Therefore, novel cloud-native
storage and computation solutions are seeing the light
to guarantee low power and efficient computation (e.g.,
computational storage, in-memory storage/computation,
and multi-tier hybrid storage).

Automated orchestration and management. In 5G
systems, customized network instances, called network
slices, are assigned to vertical stakeholders to intercon-
nect their applications hosted at the edge and have the
ability to manage them even if their components are
spread over multiple domains. Currently, slicing often
relies on the same orchestration mechanisms developed
in the past which do not provide the agility required
by upcoming applications. In this respect, Al is the
most promising technique to dynamically provide the
required feedback for real-time adaptations in automated
orchestration. Decision-making for orchestration actions
has to be assisted or fully delegated to Al mechanisms.
Reinforcement Learning can be considered as an indica-
tive and promising technology for this purpose.
Security and privacy. With multiple tenants deploy-
ing their applications over an infrastructure potentially
owned by multiple providers, security and privacy must
be guaranteed by-design. Federated Learning (FL) and
Blockchain are two technologies that can help answering
to this need, as FL systems have privacy-by-design and
blockchain technology can enable non-repudiation of
model contributions. With FL, raw data will be stored
and operated upon locally on devices, whereas only
model updates and refinements are sent to an external
aggregation node for further processing and update of the
global model. In all of this, no data is ever shared with the
central nodes and it never leaves the data holder’s pos-

session, whereas the blockchain non-repudiation feature
will track the participating nodes and the metadata/data
sources.

ITII. 6G ENABLING TECHNOLOGIES: FEDERATED
LEARNING, REINFORCEMENT LEARNING AND
BLOCKCHAIN

A. Federated Learning for Distributed Model Training

FL is a specific machine learning (ML) technique able
to put privacy front-and-centre [6]. In contrast to traditional
centralized ML techniques where all data samples are up-
loaded to one centralized server for model updates compu-
tation, FL trains an algorithm across multiple decentralized
devices holding local data samples. This prevents the privacy-
violating transport of user/application data to untrusted exter-
nal nodes “bringing the code to the data, instead of the data
to the code” [7]. So-called FL server nodes will collect the
model updates (the metadata) produced by the end-devices,
merge them and produce an updated global model. A further
positive effect FL introduces is that raw data is not sent
over bandwidth-constrained networks to central nodes of the
network infrastructure improving latency, energy consumption
and environmental impact. Moreover, the network infrastruc-
ture nodes are not being overloaded with computation, storage
and communication demanding tasks. How the metadata is
going to be exploited depends on the domain and the vertical
application. Nonetheless, the possibility to share the metadata
among similar domains and contexts paves the way for multi-
application and multi-providers collaborations.

Referring to the FL lifecycle described in [6], three main
phases are considered: Selection, Configuration and Reporting.
Fig. 1 reports a representation of one FL round.

Selection Phase: an FL pipeline starts with devices (worker
nodes) that meet some eligibility criteria (e.g., enough com-
putational power and energy levels), checking-in to the server
and announcing that they are ready to run an FL computation
task for a given FL application. Among the many available
devices during a certain time window, the server selects a
subset of devices based on certain objective functions to work
on a specific FL task for a given round (Step 1).

Configuration phase: The devices stay connected to the
server for the duration of the FL round and get instructions
from the server node about what computation to run and how
to execute it. The server node sends to each participant the
current global model parameters and any other necessary state
(Step 2).

Reporting phase: Each participant performs a local com-
putation based on the global state and its local dataset (Step
3) and sends a model update back to the server (Step 4). The
server aggregates these updates into its global state (Step 5)
and reports the devices when to reconnect. The process repeats
for the next FL rounds (Step 6).

The described lifecycle is an ideal case where no network
or device failures occur. When the reporting from some
worker nodes is not possible, e.g., due to network failure/poor
connectivity or mobility, the FL is interrupted. To solve this
issue, we propose the adoption of D2D communications [8] to
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Fig. 1. D2D-aided Federated Learning lifecycle for AI-model updates at the edge.

enable a relay node to act as a temporary collector of model
updates for FL worker nodes. The relay could be the node
with the available (or best) connectivity to the server node, or
the one with the largest computation/battery/storage resources.
Such a D2D-based FL can also be leveraged to further improve
the FL protocol itself, exploiting data locality information to
detect any outliers or anomalies in the trained partial models
caused by biased samples.

B. Reinforcement Learning for Automated Orchestration

Reinforcement Learning (RL) is a generic framework for
representing and solving control tasks, where decisions must
be made or some behaviour must be enacted [9]. In RL, the
learning algorithm decides which actions to take for a control
task, based on the definition of an ultimate goal to achieve.
If the goal is accomplished, a reward is provided, while the
objective of the algorithm is to maximize the long-term reward.
Input data, bundled in the form of states, is provided by
the environment following a dynamic process. Modeling of
a control task in RL is realised as a Markov decision process
(MDP), where each decision does not require knowledge of
the prior states and actions.

RL can boost the development of intelligent orchestration
mechanisms and introduce automation and self-learning char-
acteristics in 6G network management, tackling aspects related
to optimal deployment, network slice and elasticity manage-
ment of network functions and services. The blending of RL
and FL technologies is also promising, since FL can provide
valuable data for training and evaluation of ML pipelines
applied for network management purposes, increasing their ac-

curacy and capacity to efficiently tackle orchestration aspects
(see Fig. 2).

Currently, NFV orchestrators (NFVOs) are supporting func-
tionalities for network slices lifecycle management, optimal
on-boarding of Virtual Network Functions (VNFs) and net-
work services (NSs) and horizontal/vertical scaling actions.
These features enable better usage of the available resources,
provision of guarantees for conformance with Service Level
Agreements, cost and energy reduction. Nonetheless, we are
still far away from the inclusion of automation in NFV orches-
tration decision making and the reduction of the configuration
overhead posed to network administrators. For instance, in
case of policy-driven elasticity management (e.g., scaling of
VMs), mainly rule-based management systems are used, pos-
ing overhead for rules declaration to the network administrator.
Furthermore, dynamicity in the deployment environment (e.g.,
deprovision of resources, changes in routing schemes) cannot
be easily managed, leading in many cases to far-from-optimal
decision making and non-consideration of corner cases (e.g.,
placing a VNF at a cluster that faces connectivity issues or
network attacks).

To address such inefficiencies, we propose RL mechanisms
to support ML pipelines within existing orchestration platforms
and take advantage of the plethora of monitored data. This
data is provided by monitoring frameworks of NFVOs and
include resources’ usage metrics of containers, VMs, clusters
and VNF-specific metrics. The great advantage of RL is its ca-
pacity to change its behaviour when the environment changes.
But this adaptability comes at a price. RL agents not only need
a lot of data but also a wide set of experiences to improve
their accuracy and avoid models’ over-fitting. RL agents have
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to be optimally trained under a set of diverse deployment
scenarios and operational conditions (e.g., different workload
characteristics) to provide models that can be generic enough.
To tackle this challenge, we believe that the exploitation of
FL pipelines can boost the performance and reliability of RL
mechanisms. Aggregating data collected by various local RL
agents and updating constantly a global RL model may lead to
high efficiency in including automation in orchestration tasks.
For instance, in case of elasticity efficiency management, we
can produce an RL model per type of VNF, considering their
categorization based on resources consumption trends. Such
RL models can be trained locally and update the relevant
global RL model, leading to automated elasticity efficiency
policies based on the type of the VNF in an application-
agnostic way. Both the local and global models should be
trained online. In this way, data is continually entering the
system and is incorporated into the global model through
continuous updates. RL models can be updated during runtime,
being able to reflect changes in the monitored environment.
Such a process, in the form of a training pipeline, is depicted
in Fig. 2 where FL is exploited for collaboratively building
RL models. Based on gradients values provided by local
RL agents, a global RL model is maintained through the
calculation of average gradients’ values and made available
back to the local RL agents. Based on the latest version of
the global model, each RL agent interacts with the local RL
environment and provides further updates to the global RL
model. Upon the deployment of a new 6G network application,
the available model parameters are provided to the local agent
to optimally manage its deployment and orchestration.
Among the current challenges, we see a need for RL envi-
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ronments creation, fed by monitoring mechanisms of existing
NFVOs. Having a common set of observable metrics will
help the community to build intelligent agents that can be
trained to opt for sophisticated actions. There is also a need
for defining a set of rewards based on how to promote or
penalize the possible orchestration actions on behalf of the
agents,fine as there is a great lack of literature on how RL
agents are incentivized to choose between the different actions
they support.

C. Blockchain for Trustworthiness and Non-Repudiation

When it comes to identifying who has access, extracts, and
refines data, and what this is going to be used for, concerns
soon arise for several stakeholders. First and foremost, data-
holders are concerned about their private data being stored
and unknowingly exploited in remote cloud-based systems.
Therefore, to truly leverage new advanced solutions society-
wide, guarantees and assurances need to be given to data-
holders such that their data will not be transparently exploited
by data-processor services. We believe that Blockchain is
a valid solution for networking infrastructures to securely
manage data from FL models [11]. Being a blockchain re-
sistant to data modification, its implementation will guarantee
authenticity, integrity and non-repudiation of the information
flowing through the infrastructures. A further advantage is that
data will never be lost as transactions between parties are
recorded efficiently and in a verifiable and permanent way. The
participants of a blockchain network will be able to verify and
audit transactions independently and relatively inexpensively
since data will be available for checks and verification at any



time. The decision on which network node is going to be
part of the blockchain will have to take into consideration the
energy consumption and computational power requirements.
This observation would therefore exclude end-user devices,
but instead consider more appropriate an edge node in the
network infrastructure.

Blockchain can also be adopted for the implementation of
rewarding systems based on tokens, to incentivize users to
offer their computational power for FL pipelines based on
some rewarding model. A tokenization distributed application
on the blockchain nodes will generate and assign tokens
(prizes) to the most committed devices in the FL system. The
earned tokens can be used by the winners to get, for instance,
more computational or network resources, triggering a sort of
virtuous circle among the participants of the network.

IV. A VISION FOR AI-POWERED PRIVACY-AWARE 6G
SYSTEMS

In introducing our architectural vision for Al-powered
privacy-aware 6G systems of the future, a cautious view on
current activities from Standards Development Organizations
such as ITU and European Telecommunications Standards
Institute (ETSI) on one side, and the evolving requirements
of future vertical applications is presented.

A. Standardization activities

NFV MANO [10] is the ETSI-defined framework for the
management and orchestration of all resources in a virtualized
data center including compute, networking, storage, and virtual
machine resources. Its main focus is to allow flexible and easy
on-boarding of network components. It is composed mainly of
three functional blocks, i.e., the NFVO, the VNF Manager and
the Virtualized Infrastructure Manager (VIM). Open Source
MANO is an ETSI-hosted initiative to develop an Open Source
NFV Management and Orchestration (MANO) software stack
aligned with ETSI NFV.

The ETSI ENI (Experiential Networked Intelligence In-
dustry Specification Group) [12] defines a Cognitive Net-
work Management architecture that adopts Al and context-
aware policies to adjust offered services based on changes
in user needs, environmental conditions and business goals.
It integrates well with the 5G networks where automated
services are operated, with optimized slice management and
resource orchestration. Its current focus is on improving the
operator experience, using closed-loop Al mechanisms based
on context-aware policies for actionable decisions in network
management.

The ETSI ZSM (Zero-touch network and Service Man-
agement Industry Specification Group) [13] aims to provide
a framework that enables zero-touch automated network and
service management in a multi-vendor environment. The
framework is applied on top of specifications made available
by NFV, MEC and ENI working groups and aims to incor-
porate existing and future solutions in a common automation
framework, and provide an integration framework towards full
end-to-end network service automation.

A closely related standard is the ITU FG MLSG (Focus
Group on Machine Learning for Future Networks including
5G) [14]. The Focus Group drafted ten technical specifications
for machine learning (ML) for future networks, including
interfaces, network architectures, protocols, algorithms and
data formats. A comprehensive set of (architectural) require-
ments are identified leading to specific architecture constructs
needed.

B. 6G Applications Requirements

6G systems will continue to build on its antecedent technol-
ogy where the original use cases defined in 5G systems (En-
hanced Mobile Broadband -eEMBB, Massive Machine Type
Communications -mMTC, and Ultra-Reliable and Low La-
tency Communications -URLLC) may be combined into a new
generation of applications with unprecedented requirements.
These will include extreme high speed and high capacity
communications, extreme coverage extension, extreme low
power consumption and cost reduction, extreme low latency,
extreme reliable communication, extreme massive connectivity
and sensing.

The architecture proposed in this paper is designed to
meet the aforementioned needs. A possible 6G application
scenario is that of large-scale enterprises/manufacturers, in
which heterogeneous and sensitive data (e.g., images, sensing
data) are collected by UEs, IoT sensors, drones. To identify
potential problems in the industrial production or working
processes, huge amounts of raw data are collected locally and
then sent, stored, and processed by centralised/remote cloud
services. The proposal we make in this paper aims at keeping
the data on the devices within the company administrative
domain sharing only the metadata. The computational power
is moved from a centralized to a distributed architecture
reaching the edge of the network thanks to an intelligent
orchestration of the distributed edge/cloud resources. Cloud-
native computation and storage technologies involving the
edge of the network, will allow for data exchange, latency,
and energy consumption reduction at different levels of the
infrastructure. Automated orchestration mechanisms will be
introduced for supporting re-configuration and scaling actions,
based on the guidance of RL mechanisms. Raw data will be
processed locally, and only the resulting metadata will be then
provided centrally. FL algorithms will reduce latency, improve
efficiency and reduce costs. Since the updated global model is
then redistributed to all the users of the model, secure access
to the data is of paramount importance. For this challenge,
blockchain solutions are proposed to guarantee the needed
non-repudiation and auditability properties.

C. An Al-powered Privacy-aware Cloud-native Architecture

In Fig. 3 we report our proposal for an architecture in-
tegrating the enabling technologies discussed in this paper.
The overall objective is to deliver end-to-end trustworthy
and privacy-aware Al-powered infrastructures with advanced
automation features, leveraging the convergence of cloud-
native technologies and 5G networks.
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Network operators will benefit of a standards-compliant
system that enables pervasive intelligence in their network
to increase zero-touch management capabilities to reduce the
management burden of ever increasing workload deployments.
The infrastructure nodes should be at the edge of the network,
as close as possible to the data itself to minimize latency, en-
ergy consumption and costs. This is where operators of cloud-
like (also NFV-based) infrastructure stand to have an excellent
advantage. They own the “last mile”, they are “closest” to end-
users, and they will provide the infrastructure of the future.

Application providers will benefit of a solution where the
right resources can be acquired and placed close to the
customer’s site. End-users efficiently take advantage of Telcos’
distributed infrastructures with dynamic cloud-native infras-
tructures ranging from the core to the edge of the network.
Once deployed, the application can exploit the FL capability
whereby the application’s data remains with the end-user and
of the RL capability for automated orchestration.

Four main building blocks are identified:

« NFV MANO: This is primarily devoted to the de-
ployment of network slices management mechanisms,
including the lifecycle management of network services
based on NFV principles and the dynamic management
of end-to-end network and compute resources for serving
the vertical application needs. It includes the deployment,
management and orchestration of software elements on
the underlying infrastructure through a number of com-
ponents, namely the Operation Support System (OSS),
the Business Support System (BSS), the NFVO, the
VIM and the monitoring component. It interacts with the
Infrastructure layer to orchestrate the physical and virtual
resources, with the AI system, through an Al plugin,
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for receiving inputs from the ML pipelines, and with
the Blockchain system, through a Blockchain plugin, for
integrating privacy and trustworthiness into the system.
Operator Infrastructure: This includes the set of phys-
ical and virtual resources that the operator must manage
and govern. This ranges from server-class physical ma-
chines, upon which virtual machines and containers are
deployed, storage pools to allow persistence to physical
and software controllable network routers that provide the
features related to network slicing, all the way to radio
heads.

Al System: This is responsible for providing Al capa-
bilities to the MANO. It provides an open and ETSI
standards’ compliant interface (e.g., based on specifica-
tions of the ENI API-Broker) to ML/FL/RL capabilities.
These capabilities are primarily used by the NFVO for
supporting Al-assisted orchestration mechanisms and by
the OSS/BSS for supporting the extraction of business
intelligence analytics.

Blockchain system: This is responsible for providing
blockchain-based secure and trustworthy features to both
network services and vertical applications. This will
integrate trust, non-repudiation and tokenization of re-
warding for contributing to Al model training. In case
of misbehaving or corrupted devices producing wrong or
biased data, the overall FL algorithm can be affected.
Here the blockchain non-repudiation feature will be of
high importance to track the worker node and the meta-
data/data source. This is especially important in multi-
tenant, multi-site, and even multi-organization scenarios,
where malicious or also criminal actions could occur.

In the proposed architecture, the Al plugin is responsible
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to support the injection of Al in decision-making processes of
the NFVO and the OSS/BSS, based on the guidance of the
Al System. It includes a set of adapters for decision-making
with regards to orchestration and business intelligence aspects,
and a data interoperability adapter for managing the data
provided by the AI System. The AI plugin interacts with the
Al System through well-specified application programming
interfaces (APIs), as provided by the API Broker (Fig. 4).

Upon the definition of a high-level orchestration goal by a
MANO component, Al-assisted orchestration can be realised
taking advantage of the execution of a ML pipeline in the
Al System. To do so, the Al Plugin is responsible to proceed
to proper configuration of the ML pipeline, considering the
available monitoring metrics and orchestration actions by the
NFVO. Following, data querying and management APIs are
used to provide the set of required data for analysis to
the API Broker (e.g., time-series data from the Monitoring
Engine of the NFVO). The ML pipeline is executed and
the provided results are provided back to the AI Plugin in
the form of recommendations for undertaking orchestration
actions (e.g., scaling out a VNF). Such recommendations are
translated to specific actions targeted to the deployed MANO
system, aiming to achieve the declared goal. Evaluation of
the achieved efficiency is taking place, leading to continuous
training and improvement of the applied algorithms. The
specified interfaces can be implemented based on existing
NFVO implementations (e.g., OSM) and are compliant with
the specifications provided by the ETSI ENI ISG. It should
be also noted that, in the AI System, ease onboarding and
execution of ML pipelines can be supported, including FL
and RL pipelines.

Similarly, the Blockchain plugin will support the integra-
tion of Blockchain solutions for data/metadata source track-
ing and trustworthiness management at the MANO layer.
The Blockchain plugin will interact with the Blockchain
system through open APIs to trigger Blockchain creations,
send/receive updates on nodes involved in FL pipelines, man-
age the tokenization and rewarding of nodes and users, collect
information about trustworthiness of users and applications.
Decisions on which type of Blockchain will be taken by the
OSS, based on the application constraints, to guarantee the
wished authenticity, integrity, and non-repudiation features.
The BSS instead, will trigger the initiation of tokenization
distributed applications with the scope to generate and assign
tokens (prizes) to the most committed devices in the FL
system.

V. CONCLUSION

In this paper we discussed research directions and tech-
nological trends to address system and application require-
ments for future 6G systems. With an eye on the current
challenges and standardization activities, we discussed how
the convergence of cloud-native technologies and mobile
communication networks can be exploited to enable highly
flexible and dynamic infrastructures ranging from the cloud
to the edge of the network. The proposed architectural vision
gives, among others, answers to the need for intelligent and
automated orchestration, privacy, security and trustworthiness.
Infrastructures interfaces, the cloud-native technologies to
be adopted and interactions with existing management and
orchestration systems have been discussed. RL capabilities
that significantly enhance current state-of-the-art solutions for



automated orchestration of resources have been analyzed.
The growing concerns about end-users data privacy found
an answer through the adoption of FL at the edge of the
network. Whereas, non-repudiation of Al training contribution
and trustworthiness of the involved devices was obtained
through a systematic integration of Blockchain technologies.
We believe that the innovative ideas and the solutions dis-
cussed in this paper will form an important base of discussion
and a starting point for future research activities in industry
and academia towards the definition of future 6G systems.
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