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ABSTRACT 
Localised pressure pulse loads can pose a significant threat to structural 

elements as well as critical equipment and may cause failure and damage in 

the target due to the concentrated energy delivered upon a localised area 

of the target. The impulse impinged upon the localised zone at the contact 

interface can exceed 80% of the total impulse that the charge can deliver to 

the infinite target, leading to potential perforation of the structural element. 

When multiple charges are detonated, the advection of gaseous products 

depends, among other parameters such as fluid density, mass, and shape, 

on the type of blast wave interference and superposition. 

This work examines the influence of multiple charge detonations blasted 

in the air on the external surface of cylindrical shells. Two types of 

detonations were considered, viz. simultaneous and sequential. In both 

cases the charges were positioned at 50mm and 75mm stand-off to the 

right and left of the shell. The Fluid-Structure Interaction (FSI) phenomenon 

was investigated in each scenario. The pressure registered with the gauge 

points of the rigid target was implemented in an uncoupled study on a 

flexible target which demonstrated different mode shapes occurring in the 

shell due to each blast scenario.  

A dimensionless impulse parameter was defined based on the Gaussian 

distribution function associated with the load shape, which renders the 

probability of the impulse as the total impulse that can potentially be 

imparted to the target. 

 
 

1. INTRODUCTION  
Extensive pressure loads, such as those from the detonation of explosives proximal to 
structural elements, pose a significant threat to various components such as plates and shells.  
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The phenomenological physics of blast pressure advection in the air and water gives rise to 
scenarios in each media, respectively, as (i) the shockfront which compresses the air and 
generates the incident wave, and (ii) the initial shock followed by bubble pulsation in 
underwater explosion events. The subsequent interaction of these loads with the structural 
frameworks, referred to as the fluid-structure interaction (FSI) along with superposition of 
waves and constructuve interference renders the dynamics of such extensive events inherently 
complex. For instance, the overpressure generated by the reflection of a blast from the target 
can reach twice the incident wave [1]–[3]. 

Although a multitude of research is available on the performance of structural frameworks 
subjected to such extensive pulse pressure loads [4]–[11], these methods have prevalently 
utilized the classical approaches and failed to account for the nonlinear compressibility effects 
and the FSI phenomenon. Various other studies in the literature have investigated blast loads 
experimentally [12]–[14], numerically [15]–[19], and analytically [20]–[26] addressing the 
effects of stand-off [27]–[29], charge type, mass, geometry [30]–[33]. 

Cylindrical shells have been ubiquitously used in the automotive, aerospace, and renewable 
energy wind power industries [34]–[39]. Onshore and offshore wind turbines utilise hollow 
cylindrical shells made of concrete or steel for the pylon. Due to the extra complications in 
the hydrodynamic and aerodynamic performance and physics of the wind turbine operation, 
the design of such structural frameworks is fraught with difficulty when dealing with these 
loading conditions, also requires further considerations to maintain a reasonable lifespan of 
structural components in the event of extreme loading. 

In the event of multiple blasts detonated simultaneously or sequentially, the imparted 
impulse depends not only on the charge type, geometry, shape of the charges, stand-off 
distance, and the target shape, but also the interaction of the transmitted (and reflected) waves 
from each charge (and target) leading to constructive and destructive interferences. The 
objective of this study is therefore to investigate the influence of multiple blast scenarios on 
cylindrical shells. 

The dissemination of this work is in 6 sections. Following this introduction, we present a 
brief overview of localised blast loads. In section §3 we develop the methodology of our 
numerical study, followed by the result and discussions in section §4. In section 5 an analytical 
solution for the dimensionless impulse is presented, which can determine the effectiveness of 
the shell to withstand the perforation of impulse due to a localised blast. Finally, in section §6 
the concluding remarks of this study are presented. 

 
2. LOCALISED BLAST LOAD 
A blast wave is generated by a rapid release of energy due to the detonation of a high explosive 
and is a pulse with a single peak and an often diminutive time duration. In this work, the blast 
wave is assumed to be generated by multiple cylindrical explosives of a certain mass 𝑀𝑀𝑒𝑒, 
having the diameter 𝐷𝐷𝑒𝑒 , the heat energy per mass of 𝑄𝑄𝑒𝑒  which is placed at a stand-off 
distance 𝑠𝑠𝐷𝐷, the vertical distance from the top coordinate of the target shell. This gives 
parameters defining the cylindrical blast source uniquely as: 𝑀𝑀𝑒𝑒, 𝑠𝑠𝐷𝐷, 𝐷𝐷𝑒𝑒 , and 𝑄𝑄𝑒𝑒 .  

The blast wave pressure can be truncated into the first component of its multiplicative 
decomposition of functions of the spatial part (load shape) and temporal part (pulse shape) 
[40], given in Eq. (1), 
 

𝑝𝑝∗(𝜃𝜃, 𝑥𝑥, 𝑡𝑡) = 𝑃𝑃(𝜃𝜃, 𝑥𝑥)𝑝𝑝3(𝑡𝑡).                                            (1) 
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The Spatial distribution of blast loading 𝑃𝑃(𝑥𝑥,𝜃𝜃) owes its profile to the geometry of the 
initial curvature of the target. For the targets of zero curvature, such as beams and plates, the 
suitable function is to presume as uniformly distributed over the central zone from the point 
of projection of the load over the target surface, while exponentially decaying over the 
surrounding part of the plate. For the blast source and the plates of coaxial normal from their 
centres, this pressure profile reads [41]: 

𝑝𝑝(𝑟𝑟) = �
 1  0 ≤ 𝑟𝑟 ≤ 𝑟𝑟𝑒𝑒
 𝑎𝑎𝑒𝑒−𝑏𝑏𝑏𝑏  𝑟𝑟𝑒𝑒  ≤ 𝑟𝑟 ≤ 𝐿𝐿 ,          (2) 

(a) 

(b) 
Figure 1- (a) Spatial distribution of the pulse pressure load (Load shape), (b) 
Temporal distribution of the load (pulse shape) Rectangular (R), Linear (L) and 
Exponential (E). 𝑝𝑝0 is the maximum overpressure. 

where 𝑟𝑟 is the radial distance from the projection point of the charge on the target surface. 
This profile is depicted in Figure 1a. Various functions are proposed to describe the load pulse 
shape. These may include but are not limited to, the rectangular, exponential, sinusoidal, and 
triangularly decaying functions (Figure 1b). The former profile applies to the impulsive load 

𝑝𝑝(𝑟𝑟) 

𝑝𝑝3(𝑡𝑡) 

𝑡𝑡𝑑𝑑 𝑡𝑡 
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case scenarios. The exponential function relates to the blast loads generated from high 
explosives, in which case it may be idealised with the Friedlander equation [42]. A convenient, 
dimensionless form of the pulse shape is expressed in Eq. (3).  

The sinusoidal pulse profile arises from the gas explosions which has a finite duration. 
While the elastic and perfectly plastic dynamic vibrations of the target [18], [26], [43] have a 
strong dependence on the pulse shape, the pulse shape influence may be eliminated through 
the introduction of effective pressure and impulse parameters [44]. 

For the blast profile given in Figure 1, the parameters that fully define the loading profile 
are: 𝑝𝑝0, 𝑡𝑡𝑑𝑑,𝛼𝛼, 𝑏𝑏 and 𝑅𝑅𝑒𝑒. It should be noted that the parameter 𝑎𝑎 = 𝑒𝑒𝑏𝑏𝑅𝑅𝑒𝑒  is not an independent 
parameter as it links the two functions proposed for the spatial distribution of loading through 
ensuring the continuity of that profile. 

𝑝𝑝3(𝑡𝑡) = (1 − 𝑋𝑋𝑋𝑋/𝑡𝑡𝑑𝑑 )𝑒𝑒−𝑌𝑌𝑌𝑌 ,          (3) 

where 𝑋𝑋,𝑌𝑌 are the coefficients to be determined from experimentations or numerical 
simulations. Eq. (3) reduces to the linear pressure profile upon the choice of 𝑌𝑌 = 0, or to the 
exponential case 𝑝𝑝3(𝑡𝑡) = exp (−𝑌𝑌𝑌𝑌) with the choice of 𝑋𝑋 = 0. In this work, we examine the 
exponential profile given by 𝑋𝑋 = 1. 

3. MATERIALS AND MODELS
The present work deals with the examination of the external, multiple blast scenarios on the 
generic cylindrical shell with a circular cross section. Cylindrical shells have wide industrial 
applications as pipes, hollow beams and columns used in buildings, aircraft fuselages, 
horizontal axis wind turbine pylons of the monopiles, and jacket foundations. This research is 
thus twofold, in the first part of which we examine the FSI in the localised blast generated 
from the multiple blast scenarios from two charges which may be detonated simultaneously 
or sequentially with a duration lag of 𝑡𝑡𝑙𝑙 .. In the second part, we examine the effectiveness of 
the shell to withstand the imparted impulse. The analyses of blast circumstances lend 
themselves to the use of advanced techniques encompassing Fluid-Structure Interaction (FSI). 

A schematic of the generic shell to be studied with the loading applied is depicted in Figure 
2. The coordinates along the shell, as measured from the centre of the shell, are related to the
Polar coordinates as = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑦𝑦 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑠𝑠 = 𝑅𝑅𝑅𝑅. For brevity in the analysis, the angular 
coordinate is measured from the summit node on the shell. 

Figure 2- Cross-section of the cylindrical shell 
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3.1. Simulation of the blast 
The physics of localised blasts, particularly those generated by multiple charges, renders the 
prediction of the actual dynamic solution and associated damage modes intrinsically difficult. 
Reliability of the FE models depends on the account for the parameters that govern the FSI, 
the discretisation of the FE mesh to trace the solutions for traction forces and bending 
moments; as well as the credibility of the input parameters utilised in the continuum mechanics 
equations incorporated in the FE computer programme. Unfortunately, more often than not, 
the coefficients are obtained empirically and vary in the literature. The plethora of values 
necessitates applying the consistency tests and validation of numerical models with 
experiments. However, the multiphysics techniques that account for the fluid compressibility 
in air blast, such as the multi-material arbitrary Lagrangian-Eulerian (MMALE) provide 
promising predictions of the blast pressure and the ensuing target deformation.[14], [27], [45]. 

Hence, the fluid advection and the pressure are investigated using MMALE analyses. The 
MMALE utilises continuum mechanics algorithms to obtain the solutions for the arbitrary 
motion of fluid mesh points relative to the (fixed reference) Eulerian points. In other words, a 
material Eulerian element may contain different material points and the mesh does not 
necessarily follow the motion of material points. For the problem at hand, the multi-material 
in the model consists of air and the explosive which occupy a fraction of the Eulerian medium. 
Upon contact with the detonation front, the solid material points within the unreacted 
explosive instantaneously convert into the gaseous products which propagate through the 
medium. This process is accompanied by a rapid release of energy which causes the air in 
front of the gaseous products to be compressed, generating a shock-front. The program 
incorporates the flux limiting process to capture the second-order advection which enables the 
transference of the state variables (temperature, pressure, velocity) to the target. At the contact 
interface between the fluid and structural target, the deformation and deformation gradients of 
the target can be determined from the conservation of momentum between the target mesh 
points and the explosive gaseous products.  

A 3-dimensional Eulerian cuboid containing the air and explosives was set up in finite 
element hydrocode ABAQUS/Explicit. The schematics of the Finite Element model is drawn 
in Figure 3a. The Eulerian mesh was discretised with EC38R elements of 4mm length (Figure 
3b). These are 8-noded, linear, multi-materials brick elements with reduced integration and 
hourglass control. Due to symmetry, only half of the physical space was integrated into the 
model with symmetry boundary conditions applied on the related segments of the boundary. 
The target was considered as a cylindrical shell of 50 mm radius and 250 mm half-length (500 
mm full length). The target has been assumed as rigid, to capture the pressure and accordingly 
calculate the impulse. This is achieved by prescribing fixed boundary conditions to the 
Eulerian elements at the contact interface, The Eulerian medium hence had a size of 400 
mm×250 mm×200mm. The transmission boundaries on the other faces of the medium were 
prescribed with free outflow boundary conditions as seen in Figure 3. 
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Figure 3- (a) Schematics of the MMALE model, (b) FE mesh 

For the air blast loading, the space was initially filled with air, modelled as an ideal gas 
with the following equation of state: 

𝑃𝑃𝑎𝑎 = �𝐶𝐶𝑝𝑝 − 𝐶𝐶𝑣𝑣�𝜌𝜌𝑎𝑎𝑇𝑇.        (4) 

where 𝑃𝑃𝑎𝑎 is the air gas pressure, 𝐶𝐶𝑝𝑝 = 1.005 kJ/KgK  and 𝐶𝐶𝑣𝑣 = 0.7176 kJ/KgK are the 
specific heat parameters at constant pressure and constant volume, respectively, 𝜌𝜌𝑎𝑎 =
1.228 kg/m3 is the air density and 𝑇𝑇 is the gas temperature the reference value of which is 
289 K [46]. 

The Eulerian medium housed two cylindrical PE4 explosives of ℎ𝑒𝑒 = 12𝑚𝑚𝑚𝑚 height and 
𝐷𝐷𝑒𝑒 = 50𝑚𝑚𝑚𝑚 diameter mounted at either 50 mm or 75 mm stand-off distances above the top 
surface of the shell, in separate analyses. The mass of each charge may be calculated as 𝑀𝑀𝑒𝑒 =
𝜌𝜌𝑒𝑒

𝜋𝜋𝐷𝐷𝑒𝑒2

4
ℎ𝑒𝑒 = 37.72𝑔𝑔. These explosives were either detonated simultaneously or sequentially. 

In the latter case, the charge on the right hand of the middle axis was detonated 50𝜇𝜇𝜇𝜇 later 
than one on the left. For the air blast explosion, the explosive was modelled by Jones -Wilkins-
Lee Equation of state as: 

𝑃𝑃𝑒𝑒 = 𝐴𝐴 �1 − 𝜔𝜔𝜔𝜔
𝑅𝑅1𝜌𝜌0

� 𝑒𝑒
−𝑅𝑅1

𝜌𝜌e
𝜌𝜌′𝑝𝑝  + 𝐵𝐵 �1 − 𝜔𝜔𝜔𝜔

𝑅𝑅2𝜌𝜌0
� 𝑒𝑒

−𝑅𝑅2
𝜌𝜌e
𝜌𝜌′𝑝𝑝 + 𝜔𝜔𝜌𝜌2

𝜌𝜌0
𝐸𝐸𝑚𝑚0.    (5) 

where 𝜌𝜌′𝑝𝑝 is the density of the explosive product, 𝜌𝜌e is the density of the explosive at the 
beginning of the process, 𝐴𝐴,𝐵𝐵,𝑅𝑅1,𝑅𝑅2, and 𝜔𝜔 are the material constants [46], and 𝐸𝐸𝑚𝑚0 is the 
specific internal energy, as presented in Table 1. The detonation is triggered from the centre 
of the explosive mass. The value of specific heat energy 𝑄𝑄𝑒𝑒  for PE4 is taken from Ref [47]. 
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Table 1- Material properties of air and the plastic explosive (after Ref [48] 

Material 𝝆𝝆𝒆𝒆 
[𝐤𝐤𝐤𝐤.𝐦𝐦−𝟑𝟑] 

Detonation. 
Wave speed 
𝝊𝝊 [𝐦𝐦/𝐬𝐬] 

𝑨𝑨 
[𝑮𝑮𝑮𝑮𝑮𝑮] 𝑩𝑩[𝑮𝑮𝑮𝑮𝑮𝑮] 𝑹𝑹𝟏𝟏 𝑹𝑹𝟐𝟐 ω 𝑬𝑬𝒎𝒎 

[𝐤𝐤𝐤𝐤/𝐤𝐤𝐤𝐤] 

Pre-det. 
bulk 

modulus 

PE-4 1601 8193 6.0977 
×1011 

1.295 
×1010 4.5 1.4 0.25 6.057 

×106 0 

Air 
𝜌𝜌𝑎𝑎 

[kg/m3] 𝜇𝜇𝑘𝑘 [𝜇𝜇𝜇𝜇𝜇𝜇. 𝑠𝑠] 𝑃𝑃𝑎𝑎 (Pa) 𝐸𝐸0 
Specific heat constant 
(at high temperature) 
𝐶𝐶𝑝𝑝 − 𝐶𝐶𝑣𝑣 [Jkg-1K-1] 

1.293 18.27 101325 2.5×10-4 287 

For each test, the inflow of pressure was quantified across the gauge points in 
circumferential directions as well as in the axial direction of the shell. The blast pressure 
decays from the centre of the points of projection along both the circumferential and axial 
distances. 

Figure 4- pressure-time histories of the sequential detonations for 75mm stand-
off, at different locations across the shell. 

4. RESULTS AND DISCUSSIONS
The evolution of the blast overpressure with time is plotted in Figure 4 for the sequential 
loading case. The two highest summits of the overpressure, occurring at 25μs and 85μs, 
correspond to the blast loads at interfaces to the left and right of the shell, respectively. In the 
case of simultaneous blasts, a zone of high pressure emanates from the detonation of the two 
charges covering an elliptical area, which then expands and propagates in an orthogonal 
direction to the plane passing through the axis connecting the centres of explosives and 
perpendicular to the plane of the circular base of each charge i.e. the bisector plane of the axis. 
When the two charges, arranged in the horizontal direction, detonate simultaneously they 
typically generate two shock fronts, the first peak is the offspring of the constructive 
superposition which travels to either side of the normal to the virtual axis connecting the two 
charges, while the other is attributed to the outward propagation of the gaseous products of 
each explosive which impinges upon the target underneath. 

𝑝𝑝 3
( 𝑡𝑡

)
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(a) 

(b) 
Figure 5- Pressure profile of the simultaneous and sequential detonations for 
75mm stand-off. (a) comparison of the simultaneous and sequential loads. (b) 
peak pressure distribution across the shell 

The pressure profile of the sequential and simultaneous blasts are presented in Figure 5-
Figure 6. An interesting feature of the blast scenarios is the coincidence of the two blast 
profiles from the simultaneous and sequential blasts. Due to the geometry of the shell and the 
proximity of blasts, the gauge points of arc (1) in Figure 3, which are positioned over 30 mm 
the left arc length s measured from the top line of the shell (line (2)), are impervious to the 
blast pressure generated on the right side of that line. 

In the sequential case of 75mm stand-off, the blast pressure arrives at 20μs from the onset 
of detonation. The subsequent blast pressure reaches the target 65μs later, at 31.42mm arc 
length to the left of the line (2). Such coordinates are the closest to the blast centre of 
detonation. The peak blast pressure, however, occurs at the gauge points underneath each 
charge, which lie on the 63mm arc length to the left of the line (2). This elevated pressure 
occurs at 31μs with a sharp rise in the profile. In the subsequent blast loading, a rather 
symmetric profile to the previous one occurs at relatively equal arc length, but to the right of 
the shell. 
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(a) 

(b) 
Figure 6- Distribution of the pressure across the circumference of the shell, (a) due 
to the detonation of the first charge, (b) due to the detonation of the second 
charge. The unit of the ordinates is MPa 

Comparing now Figure 5 with Figure 7, the position of the peak pressure on the shell 
moves towards the point of projection of the charge on the shell with the increase in the stand-
off.  The simultaneous blast, however, generates a more severe pressure profile to the right 
side of the shell. In such a scenario, the target experiences a blast with two peaks along the 
surface, the first due to the superposition of the two blasts which impacts the top surface of 
the shell, while the other lies at 1.1 radians (63mm along the arc length) to the right and left 
of the shell, which pertain to the gauge points somewhat underneath the cylindrical charges 
[28]. 

The impulse density of the blast is calculated and plotted in Figure 8. The impulse density 
is measured as the impulse per unit area and is a function of the pressure load over time 
corresponding to the gauge points of the chosen surface. 
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Figure 7- pressure distribution from the simultaneous and sequential blasts at 
50mm stand-off 

(a) 

(b) 
Figure 8- Impulse density of the 50mm stand-off- simultaneous loading, (a) across 
𝜃𝜃, (b) across the axial length 𝑥𝑥. 
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Concerning the pressure profile in the axial direction, both pressures registered at the 
gauge points along the top of the shell, as well as those along the along the axial line (2) 
starting from the gauge points with the peak pressure were monitored. To investigate the 
dependence of the pressure in the axial direction on the generalized coordinate 𝜃𝜃, the pressure 
profile along an arbitrarily chosen third axial path was also captured. Clearly, the pressure 
profile across those paths rendered similar profile, hence the spatial components of the blast 
pressure have independent density functions, i.e., the blast pressure 𝑃𝑃(𝜃𝜃, 𝑥𝑥) = 𝑝𝑝1(𝜃𝜃)𝑝𝑝2(𝑥𝑥) 
may be truncated into the single term of its multiplicative decomposition. 

(a) 

(b) 
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(c) 
Figure 9- Validation of the FE data with the empirical models. (a) Prediction of the 
pressure profile across θ using the Gaussian distribution with two terms. (b) the 
load shape models in axial direction using the uniform-exponential and the 
Gaussian density function for 75mm stand-off, (c) predicted load shape models in 
the axial direction with 50mm stand-off. 

The normalised load shape functions may be determined empirically by performing the 
curve fitting of the pressure registered at the gauge points in the circumferential and axial 
directions of the shell. The curve fitting was carried out with the MATLAB built-in Curve 
fitting capability. We depict the results of the analysis in Figure 9. Although the commonly 
accepted load shape of the blast (with 𝑥𝑥 replacing 𝑟𝑟 in Eq. (2) still predicts the variation of the 
pressure along the axial distance favourably with a high coefficient of confidence 
(𝑅𝑅2 = 0.93), an alternative is to prescribe the bell curved,  Gaussian distribution function to 
model the load shape, as expressed in Eq. (6). The Gaussian distribution function has a mean 
of 0 and a low standard deviation. This function is more pertinent to the higher stand-off 
values. The parameters of each load shape model are summarized in Table 2. 

𝑝𝑝2(𝑥𝑥) = 𝑎𝑎𝑒𝑒
−�𝑥𝑥−𝑏𝑏𝜎𝜎𝑑𝑑𝑑𝑑

�
2

.            (6) 
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Table 2- Parameters of the modified exponential (E(x)) and the Gaussian (G(x)) 
distribution functions, defined in Eq. (2) and Eq. (6), respectively, the spatial 
distribution of the pressure across the length of the shell 

Blast Scenario Pressure
function 

Stand-off 
Distance 𝒂𝒂[𝟏𝟏] 𝒃𝒃[𝒎𝒎] 𝝈𝝈𝒅𝒅𝒅𝒅[𝒎𝒎] 𝒓𝒓𝒆𝒆[𝒎𝒎𝒎𝒎] 

Simultaneous G(x) 50 1 0 0.03613 - 
E(x) 2.0434 51.43 - 15 

Sequential G(x) 50 1 0 0.0284 - 
E(x) 2.624 76.31 - 15 

Simultaneous G(x) 75 1 0 0.0614 - 
E(x) 7.93 52.6 - 40 

Sequential G(x) 75 0 0.0286 - 
E(x) 1 61.99 - 20 

Nevertheless, with the increase in charge diameter of the proximal blasts, the uniform-
exponential model (Eq. (2)) yields an accurate prediction of the load shape [19]. The decision 
to classify the blast source as proximal or distal may be determined by the use of Hopkinson-
Cranz scaled distance value or graphs of stand-off to charge diameters available in [4], [27], 
[45]. Concerning the uniform-exponential model, the radius of the portion varies from 15mm 
to 40mm with a 25 mm stand-off increase. For the load shape across the generalised coordinate 
θ, the corresponding Gaussian distribution function is described with two terms: 

𝑝𝑝1(𝜃𝜃) = 𝑎𝑎 exp ��𝜃𝜃−𝑏𝑏
𝜎𝜎𝑑𝑑𝑑𝑑1

�
2
� + 𝑐𝑐 exp ��𝜃𝜃−𝑑𝑑

𝜎𝜎𝑑𝑑𝑑𝑑2
�
2
�,     (7) 

where 𝜎𝜎𝑑𝑑𝑑𝑑1,𝜎𝜎𝑑𝑑𝑑𝑑2 are the standard deviations, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 are the constants to be found through 
the curve fitting models. 

We now investigate the shell response to different pressure profiles by applying the load 
on the flexible cylinder using the uncoupled analysis. To this end, the load shape was 
prescribed as a set of data points corresponding to the points at each section across the shell 
(with 𝜃𝜃 varying along the circumference). The surface pressure of each coordinate was 
generated as the product of the pressure registered by the gauge points in the circumferential 
path with axial pressure profile defined with the Gaussian distribution function. The flexible 
shell had identical dimensions to the rigid one, but with a shell thickness of 2mm. The shell 
was made of visco-plastic Mild Steel, with a Young modulus of 𝐸𝐸 = 200GPa, Poisson’s ratio 
of 𝜈𝜈 = 0.3, static yield stress of 𝜎𝜎0 = 325𝑀𝑀𝑀𝑀𝑀𝑀. 

The plots of the stress-strain constitutive relation of this material, denoted therein as MS4, 
may be found in [14] and [49]. The Cowper-Symonds equation was used to describe the visco-
plasticity (strain rate sensitivity) of the material.  The shell was embedded 25mm into two 
clamps of outer radiuses of 75mm and 100mm, respectively, with a prescribed penalty friction 
coefficient of 0.3 to model the tangential contact behaviour between the interfaces. The model 
was prescribed with symmetric boundary conditions in the same fashion as the rigid one. The 
model was discretized with a uniform mesh of 4mm S4R conventional doubly curved shell 
elements with 5 Simpson points of integration through the thickness and reduced integration 
hourglass control. The clamps were fixed in space and modelled as rigid cylinders whose mesh 
may be chosen as coarse to preserve computational time at no loss of accuracy. 
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(a) 

(b) 

(c) 
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(d) 

(e) 
Figure 10- (a) Maximum translational transient deformation of the shell due to the 
sequential blast with 75mm stand-off (b), (c) schematics of the permanent 
deformation of the shell with bulging shown to the left and right side of the shell, 
respectively. (d) Maximum transient deformation of the shell due to simultaneous 
blasts. (e) schematics of the shell maximum deformation. The units of the legends 
are SI units, while the unit of the ordinate of (a) is mm 

In Figure 10 we compare the results for the 75mm stand-off for the sequential and 
simultaneous blasts. The difference in the response of the shell to each loading case is 
distinguishable. The sequential blast generates two bulging curves at either side of the shell, 
with the first wave transmission penetrating further/ inducing a deeper bulge in the shell than 
the latter one. The simultaneous blast impacts a single, deep bulge on top of the shell, induced 
by the superimposed waves, together with a smaller bulge occurring on the left side, 
underneath the charge on that side. 

Concerning the sequential blasts, the recorded maximum permanent deformation was 
24.9mm pertaining to the bulge with negative angular coordinates corresponding to the region 
of the first peak in Figure 6a (−0.8 ≤  𝜃𝜃 ≤  −0.6)  which was 6.3% larger than the one at the 
projection point of the charge (𝜃𝜃 ≅ −1.1). The two permanent deformations in the bulges that 
appeared on the right side of the shell (positive 𝜃𝜃) were  on average 44.7% smaller than the 
maximum deformation on the left side of line (2). The reason is attributed to the higher peak 
pressures registered with the negative angular coordinates. 
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5. IMPULSIVE LOADING
The total impulse imparted onto the outer surface of a cylindrical shell of fixed radius 𝑅𝑅 is, as 
presented in Eq. (8), the functional of the pressure distribution over the generalized 
coordinates 𝑥𝑥, 𝜃𝜃 and time 𝑡𝑡 over a finite space and time. The impulse is measured from the 
centre of the projection to the characteristic distance 𝐿𝐿  measured from the centre of the shell. 

𝐼𝐼(𝑢𝑢) = 2𝑅𝑅 ∫ ∫ ∫ 𝑃𝑃(𝜃𝜃, 𝑥𝑥)𝑝𝑝3(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑
0 ,𝜃𝜃𝑛𝑛

𝜃𝜃1
𝑢𝑢
0              (8) 

where 𝜃𝜃1 = 0  and 𝜃𝜃𝑛𝑛 = 𝜋𝜋. Assuming the impulse imparted over the defining 𝜆𝜆0 = 𝑙𝑙𝑒𝑒/𝐿𝐿 and 
𝜆𝜆 = 𝑢𝑢/𝐿𝐿, the pressure distribution concerning the angular coordinate 𝜃𝜃 may be evaluated 
numerically by discretizing the surface into a finite number of nodes, giving: 

𝐼𝐼(𝑢𝑢) = 2𝑅𝑅∑ 𝑝𝑝1(𝜃𝜃𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ∫ ∫ 𝑝𝑝2(𝑥𝑥)𝑝𝑝3(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑

0 .𝑢𝑢
0               (9) 

Substituting Eq. (2) into Eq. (9) and noting that 𝑓𝑓(𝜃𝜃) = 2𝑅𝑅∑ 𝑝𝑝1(𝜃𝜃𝑖𝑖)𝑛𝑛
𝑖𝑖=1  yields: 

𝐼𝐼(𝜆𝜆) =  �
  𝑃𝑃0�𝑌𝑌𝑡𝑡𝑑𝑑+𝑒𝑒

−𝑌𝑌𝑡𝑡𝑑𝑑−1�(𝜆𝜆0𝐿𝐿)𝑓𝑓(𝜃𝜃)
𝑡𝑡𝑑𝑑𝑌𝑌2

   𝜆𝜆 < 𝜆𝜆0

 𝑃𝑃0�𝑌𝑌𝑡𝑡𝑑𝑑+𝑒𝑒
−𝑌𝑌𝑡𝑡𝑑𝑑−1�

𝑡𝑡𝑑𝑑𝑌𝑌2𝑏𝑏
[1 − exp(−(𝜆𝜆 − 𝜆𝜆0)𝑏𝑏𝑏𝑏)] 𝑓𝑓(𝜃𝜃)   𝜆𝜆 ≥  𝜆𝜆0

,          (10) 

where 𝑃𝑃0 is the maximum overpressure. The total impulse that the charge could potentially 
impart to the target would thus be given by: 

𝐼𝐼(∞) = lim
λ→∞

{𝐼𝐼(𝜆𝜆)} = 𝑃𝑃0(𝑌𝑌𝑡𝑡𝑑𝑑+𝑒𝑒−𝑌𝑌𝑡𝑡𝑑𝑑−1)
𝑡𝑡𝑑𝑑𝑌𝑌2𝑏𝑏

𝑓𝑓(𝜃𝜃).           (11) 

Thus, a non-dimensional impulse, 𝐼𝐼,̅ can be defined as the quotient of the impulse imparted 
to a target over the total impulse that the blast can generate: 

𝐼𝐼 ̅ = 𝐼𝐼(𝜆𝜆)
𝐼𝐼(∞)

= �

  𝜆𝜆𝜆𝜆𝜆𝜆       𝜆𝜆 < 𝜆𝜆0 

1 − exp�(𝜆𝜆0 − 𝜆𝜆)𝑏𝑏𝑏𝑏�                𝜆𝜆 ≥  𝜆𝜆0

.             (12) 

For the Gaussian distribution profile, the impulse imparted by the charge, over the finite 
region over the finite region 𝜆𝜆0 𝑡𝑡𝑡𝑡 𝜆𝜆 reads: 

𝐼𝐼 (𝜆𝜆) = �𝑌𝑌𝑡𝑡𝑑𝑑+𝑒𝑒−𝑌𝑌𝑡𝑡𝑑𝑑−1�𝑎𝑎𝑃𝑃0σdv√π
2𝑡𝑡𝑑𝑑𝑌𝑌2

 �erf �𝜆𝜆𝜆𝜆−𝜇𝜇
𝜎𝜎𝑑𝑑𝑑𝑑

� − erf �𝜆𝜆0𝐿𝐿−𝜇𝜇
𝜎𝜎𝑑𝑑𝑑𝑑

�� 𝑓𝑓(𝜃𝜃).          (13) 

In the same fashion, the total impulse generated by the charge can be expressed as: 

𝐼𝐼(∞) = lim
λ→∞

{𝐼𝐼(𝜆𝜆)} = (1+𝑌𝑌𝑡𝑡𝑑𝑑−𝑒𝑒−𝑌𝑌𝑡𝑡𝑑𝑑)𝑎𝑎𝑃𝑃0σdv√π
2𝑡𝑡𝑑𝑑𝑌𝑌2 �1 − erf �𝜆𝜆0𝐿𝐿−𝜇𝜇

𝜎𝜎𝑑𝑑𝑑𝑑
�� 𝑓𝑓(𝜃𝜃)     (14) 

with 𝜇𝜇 = 0 here. The dimensionless impulse is then the quotient of the two impulses expressed 
as: 
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𝐼𝐼 ̅ = 𝐼𝐼(𝜆𝜆)
𝐼𝐼(∞)

=
�erf�𝜆𝜆𝜆𝜆−𝜇𝜇𝜎𝜎𝑑𝑑𝑑𝑑

�−erf�𝜆𝜆0𝐿𝐿−𝜇𝜇𝜎𝜎𝑑𝑑𝑑𝑑
��

�1−erf�𝜆𝜆0𝐿𝐿−𝜇𝜇𝜎𝜎𝑑𝑑𝑑𝑑
��

 ,          (15) 

where 

𝑓𝑓(𝜃𝜃) = 2𝑅𝑅∑ 𝑝𝑝1(𝜃𝜃𝑖𝑖)𝑛𝑛
𝑖𝑖=1               (16) 

The denominator of Eq. (15) approaches unity when 𝜆𝜆0 → 0 and 𝜇𝜇 = 0, i.e. the cases 
examined in the previous section. Notably, when using the exponential distribution expressed 
in Eq. (2), the dimensionless impulse assumes the form [27]: 

𝐼𝐼 ̅ = 𝐼𝐼(𝜆𝜆)
𝐼𝐼(∞)

=

⎩
⎪
⎨

⎪
⎧

(𝜆𝜆0𝐿𝐿)2

2+2𝜆𝜆0𝐿𝐿𝐿𝐿+(𝜆𝜆0𝐿𝐿𝐿𝐿)2  𝜆𝜆 < 𝜆𝜆0 

1 − 2𝑒𝑒−𝐿𝐿𝐿𝐿(𝜆𝜆−𝜆𝜆0)[1+𝜆𝜆𝜆𝜆𝜆𝜆]
2+2𝜆𝜆0𝐿𝐿𝐿𝐿+(𝜆𝜆0𝐿𝐿𝐿𝐿)2

 𝜆𝜆 ≥  𝜆𝜆0

   (17) 

Eqs. (15) and (17) indicate the effectiveness of the target to dissipate the impulse being 
imparted upon it, relative to the total target perforation impulse, referred to as the rupture 
impulse or impulse threshold. The decay parameter 𝑏𝑏 depends on the stand-off distance and 
can be determined empirically as done in [27] with a good estimate as: 

𝑏𝑏 = 2.528
𝐷𝐷𝑒𝑒

�𝑠𝑠𝐷𝐷
𝐷𝐷𝑒𝑒
�
−0.711

  (18) 

As most localised blast scenarios correspond to 60 ≤ 𝑏𝑏 ≤ 150, of which the 
corresponding standard deviation varies within the range of 0 < 𝜎𝜎𝑑𝑑𝑑𝑑 < 0.1, given the finite 
region of 0 < 𝜆𝜆 < 0.5, it transpires that the charge becomes 95% efficient in delivering the 
total impulse. The charge can deliver the total impulse 𝐼𝐼 ̅ = 1 when the extent of the pressure 
exceeds half the characteristic length of the target (𝜆𝜆 ≥ 0.5). 

The interaction surface of dimensionless impulse against stand-off and 𝜆𝜆 (Figure 11) 
demonstrates that for the blast loads generated by the same mass of explosive, the cylindrical 
charges with small diameter and larger heights attribute more threatening blast scenarios than 
those with a high charge diameter but lower charge heights. This is due to the nature of the 
detonation waves in a cylindrical explosive which propagates in the direction of its height. 
The pressure wave emanated from the explosive products of larger height/diameter ratios 
would therefore concentrate on the centre of their projection on the target, imparting more 
energy locally, thus rendering a higher value of surface traction, leading to a more localised, 
penetrating effect. For example, within the finite region of 0 < 𝜆𝜆 < 0.5,  the overpressures of 
the material mesh points generated from the proximal blast have a less scattered distribution 
from their mean, generating a potentially perforating impulse. Finally, the variation of the 
dimensionless impulse of the distal charges (𝑠𝑠𝑑𝑑 > 185𝑚𝑚𝑚𝑚) over the characteristic length of 
the blast is smooth. 
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(a) 

(b) 
Figure 11- (a) interaction surface of the dimensionless impulse 𝐼𝐼 ̅ with Gaussian 
distribution load shape, (b) plots of 𝐼𝐼 ̅ with uniform-exponential load shape at 
various stand-off distances 

6. CONCLUDING REMARKS
This work deals with the dynamic response of cylindrical shells of circular cross section due 
to multiple blasts. The FSI phenomena related to the interaction of gaseous products of 
detonated charges of multiple blast scenarios and air are considered. The charges are detonated 
one simultaneously and once sequentially. The effect of FSI due to the air blast of two identical 
charges, which detonated either simultaneously or sequentially, was investigated on the 
dynamic response of the cylindrical shell. Both types of detonations led to a similar pressure 
profile with negative angular coordinate θ, suggesting this side was the blind spot for the 
charge to the other side of the shell.  

Both shells experienced a global mode deformation as well as the local modes which 
induced bulging at the midspan of the shell. However, in the simultaneous blast scenario, an 
elliptical zone of high pressure resulting from to the constructive interference/superposition 
of the two waves projects onto the shell. The shell subjected to such a zone experienced a high 
bulging in its central zone with a symmetric profile. In contrast, the sequential charge induced 
two bulging regions on either side of the shell with respect to the top line (2). The maximum 
deformation of the shell due to such loading at 75mm stand-off pertained to the left side of 
this line. The two bulging on this side were deeper than those occurred on the right side. 
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The profile of the pressure varied exponentially from the centre of projection along the 
length of the shell to which either the Gaussian model or the uniform-exponential models can 
be accurately regressed in order to predict the pressure registered at each coordinate. The 
pressure profile in angular direction was inherently complex and the high-order Gaussian 
distributions was used. The corresponding impulse density had a sharp then a smooth 
degradation with the increase in θ. In the axial direction, the impulse density attributes to a 
simpler pressure profile which varies exponentially the further away from the centre of blast. 

The non-dimensional impulse was compared for each investigated load shape and revealed 
that the proximal charges are capable of impinging the total load generated by the charge with 
a probability exceeding 80%.  
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NOMENCLATURE 
Latin Upper and Lower Case 

𝐿𝐿             Shell characteristic half lengths, [L] 
Cp           Ideal gas specific heat at constant pressure, [L2T−2K−1] 
Cv           Ideal gas specific heat at constant volume, [L2T−2K−1] 
𝐷𝐷𝑒𝑒            Charge diameter, [L] 
𝐸𝐸            Young’s modulus, [ML−1T−2] 
𝐼𝐼             Impulse density, [ML−1T−1] 
𝐼𝐼             Impulse transmitted to the target, [MLT−1] 
𝐼𝐼 ̅            Non-dimensional impulse, [1] 
𝑀𝑀𝑒𝑒          Mass of explosive, [M] 
𝑃𝑃0           Maximum overpressure, [ML−1T−2] 
𝑃𝑃(𝑥𝑥,𝜃𝜃)   Load shape of the blast, [ML−1T−2] 
𝑄𝑄𝑒𝑒           Specific Heat Energy, [L2T−2] 
𝑅𝑅            Shell radius, [L] 
𝑌𝑌            Pulse shape decay constant, [T−1] 
𝑎𝑎              Load shape explosive constant, [1] 
𝑏𝑏              Load shape explosive decay constant, [L−1] 
ℎ              Shell thickness, [L] 
ℎ𝑒𝑒            Charge height, [L] 
𝑝𝑝∗(𝜃𝜃, 𝑥𝑥, 𝑡𝑡)    Overpressure Load, [ML−1T−2] 
𝑝𝑝2(𝑥𝑥)       Dimensionless axial component of the load shape direction, [1] 
𝑝𝑝1(𝜃𝜃)       Dimensionless angular component of the load shape direction, [1] 
𝑟𝑟              Generalized radial coordinates, [L] 
𝑟𝑟e             Radius of the centrally loaded target in the axial direction, [L] 
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𝑠𝑠𝐷𝐷            Stand-off distance, [L] 
 𝑡𝑡𝑑𝑑            Duration of the blast load, [T] 

 
Greek Lower case 

𝜌𝜌𝑝𝑝            Shell mass density, [ML−3] 
𝜌𝜌𝑒𝑒             Explosive density, [ML−3] 
𝜌𝜌𝑎𝑎             Fluid (air) density, [ML−3] 
𝜎𝜎𝑑𝑑𝑑𝑑              Standard deviation, [L−1] 
𝜈𝜈                  Poisson’s ratio 
𝑎𝑎                  Load shape explosive constant, [1] 
𝜇𝜇𝑘𝑘            Dynamic viscosity of air, [ML−1T−1] 
σ0            Material static yield stress, [ML−1T−2] 
𝜎𝜎𝑈𝑈𝑈𝑈          Ultimate static tensile stress, [ML−1T−2] 
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